
Chapter 7
Automated Deployment of Software
Encoding Countermeasure

Jakub Breier and Xiaolu Hou

7.1 Introduction

As it was shown before [15], fault countermeasures often lower the implementation
resistance against side-channel attacks. Therefore, it is necessary to consider these
two classes of physical attacks together when protecting the algorithm. In this
chapter, we show how to automatically construct a code-based countermeasure
that significantly reduces the success of a fault injection attack while keeping low
information leakage via side-channels.

There are two main countermeasure classes to protect implementations against
side-channel attacks. Masking [9] is a software-level countermeasure which tries
to “mask” the relationship between the intermediate values and power leakage.
Hiding [20] tries to reduce the signal and increase noise by utilizing various
techniques—it “hides” the operations performed by the device. While masking can
make fault attacks more challenging, it does not help to prevent them. On the other
hand, some hiding techniques, such as dual-rail precharge logic (DPL), help in
preventing fault attacks by detecting faults [18].

In 2011, DPL was extended to software by Hoogvorst et al. [10], by using
balanced encoding schemes. Since then, there were several other proposals

This research was conducted when author “J. Breier” was with Temasek Laboratories, NTU.
This research was conducted when author “X. Hou” was with Nanyang Technological University.

J. Breier
Underwriters Laboratories, Singapore, Singapore
e-mail: jbreier@jbreier.com

X. Hou (�)
Acronis, Singapore, Singapore
e-mail: ho0001lu@e.ntu.edu.sg

© Springer Nature Switzerland AG 2019
J. Breier et al. (eds.), Automated Methods in Cryptographic Fault Analysis,
https://doi.org/10.1007/978-3-030-11333-9_7

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11333-9_7&domain=pdf
mailto:jbreier@jbreier.com
mailto:ho0001lu@e.ntu.edu.sg
https://doi.org/10.1007/978-3-030-11333-9_7

174 J. Breier and X. Hou

[6, 13, 14, 19], all of them using various coding techniques to prevent side-channel
leakage. However, it was shown that unlike hardware DPL representation, its
software counterpart is not fault resistant by default [4]. Therefore, to prevent both
attack techniques, it is necessary to design the coding scheme from the beginning
with this goal in mind.

In this chapter, we focus on approach presented in [2]. We first explain the
theoretical background necessary for designing software hiding countermeasures
that are resistant to both side-channel and fault attacks. We provide an algorithm
to automatically find optimal codes for various code distances and number of
codewords with given code length. We also provide evaluation of the codes—by
using detection and correction probabilities and by an automated fault simulator.
This simulation is done by using a general-purpose microcontroller implementation
and an instruction set simulator that is capable of injecting different fault models
into any instruction of the code. Our evaluation shows that the codes generated by
our algorithm provide a high security level with respect to both side-channel and
fault attacks.

The rest of the chapter is organized as follows: Section 7.2 provides an overview
of the related work in this field, together with necessary background on coding
theory. Section 7.3 defines the properties of codes with respect to fault attacks.
Section 7.4 details our algorithm and provides estimated and simulated results on
chosen codes. These results are further discussed in Sect. 7.5. Finally, Sect. 7.6
summarizes this chapter.

7.2 General Background

In this section we provide a necessary background on software encoding-based
side-channel countermeasures and on coding theory necessary for developing a
combined countermeasure. Section 7.2.1 overviews the related work in the field.
Section 7.2.2 provides basic definitions that are used later in this chapter.

7.2.1 Related Work

After the paper by Hoogvorst et al. [10], who presented a method to extend the DPL
to software implementations, several works were published in the area of software
hiding schemes.

Rauzy et al. [14] developed a scheme that encodes the data by using bit-slicing,
where only one bit of information is processed at a time. They claim that this kind
of protection is 250 times more resistant to power analysis attacks compared to
the unprotected implementation, while being 3 times slower. For testing, they used
PRESENT cipher, running on an 8-bit microcontroller.

7 Automated Deployment of Software Encoding Countermeasure 175

Chen et al. [6] proposed an encoding scheme that adds a complementary bit to
each bit of the processed data, resulting in a constant Hamming weight code. Their
countermeasure was implemented on a Prince cipher, using an 8-bit microcontroller.

Servant et al. [19] introduced a constant weight implementation for AES, by
using a (3,6) code. To improve the performance, they split 8-bit variables into two
4 bit words and encode them separately. This implementation was also capable
of detecting faults with 93.75% probability. Their implementation used a 16-bit
microcontroller.

Maghrebi et al. [13] proposed an encoding scheme that differs from the previous
proposals. For their case, they did not assume the Hamming weight leakage model
for register bits; therefore, they concluded that balanced codes might not be the
optimal ones to use generally. In their method, they first obtain the profile of a
device to get a vector of register bit leakages. Then they estimate leakage values for
each codeword and build a code by using codewords with the lowest leakage. Their
algorithm selects the optimal code by ranking the codes based on the difference
in power consumption between the codewords and on the power consumption
variance. Our algorithm extends this idea by adding the variance of register bits
in order to achieve better leakage characteristics and by adding conditions for error
detection and correction.

In general, none of the previous schemes has been designed for fault resistance.
Schemes proposed in [6, 14] have been analyzed with respect to fault attacks by
Breier et al. [4], concluding that without additional modifications to assembly code,
the probability of a successful fault attack is non-negligible. Therefore, in this
chapter we focus on design and automated generation of fault tolerant and side-
channel resistant coding schemes.

When it comes to combined countermeasures, in [17], Schneider et al. proposed
a hardware countermeasure based on combining threshold implementation with
linear codes. As stated in the paper, their proposal is not considered for software
targets. In the execution process, there are multiple checking steps that protect the
implementation against faults. However, in software, it would be easy to overcome
such checks by multiple fault injections [21]. Also, it would be possible to inject
faults that are impossible with hardware implementations, such as instruction
skips [3].

This chapter provides the reader with the following information:

• We specify theoretical bounds for encoding schemes with respect to fault attacks
that are necessary to be taken into account when designing a fault resistant
scheme.

• We show how to automatically design a code that is capable of protecting the
implementation against side-channel and fault attacks and we show trade-offs
between these two resistances.

• We adopt the ranking algorithm proposed in [13] and show how to improve it
for constructing side-channel resistant codes with better properties—by ranking
the codes according to the codeword with the highest leakage, and by calculating

176 J. Breier and X. Hou

the register bit variance. We add the conditions for selecting the codes with the
desired error-detection/correction capabilities in an automated way.

• We analyze the codes constructed by the code generation algorithm—we calcu-
late leakages, fault detection, and correction probabilities, and we simulate the
assembly code implementing the codes on a general-purpose microcontroller.

7.2.2 Coding Theory Background

A binary code, denoted by C, is a subset of the n-dimensional vector space over
F2-Fn

2, where n is called the length of the code C. Each element c ∈ C is called
a codeword in C and each element x ∈ F

n
2 is called a word [11, p. 6]. Take two

codewords c, c′ ∈ C, the Hamming distance between c and c′, denoted by dis
(
c, c′),

is defined to be the number of places at which c and c′ differ [11, p. 9]. More
precisely, if c = c1c2 . . . cn and c′ = c′

1c
′
2 . . . c′

n, then

dis
(
c, c′) =

n∑

i=1

dis
(
ci, c

′
i

)
,

where ci and c′
i are treated as binary words of length 1 and hence

dis
(
ci, c

′
i

) =
{

1 if ci �= c′
i

0 if ci = c′
i

.

Furthermore, for a binary code C, the (minimum) distance of C, denoted by dis (C),
is [11, p. 11]

dis (C) = min{dis
(
c, c′) : c, c′ ∈ C, c �= c′}.

Definition 7.1 ([7, p. 75]) For a binary code C of length n, dis (C) = d, let M = |C|
denote the number of codewords in C. Then C is called an (n,M, d)-binary code.

This minimum distance of a binary code is closely related to the error-detection and
error-correction capabilities of C.

Definition 7.2 ([11, p. 12]) Let u be a positive integer. C is said to be u-error-
detecting if, whenever there is at least one but at most u errors that occur in a
codeword in C, the resulting word is not in C.

From the definition, it is easy to prove that C is u-error-detecting if and only if
dis (C) ≥ u + 1 [11, p. 12]. A common decoding method that is used is nearest
neighbor decoding, which decodes a word x ∈ F

n
2 to the codeword cx such that

dis (x, cx) = min
c∈C dis (x, c) . (7.1)

7 Automated Deployment of Software Encoding Countermeasure 177

When there are more codewords cx satisfies (7.1), the incomplete decoding rule
requires a retransmission [11, p. 10].

Definition 7.3 ([11, p. 13]) Let v be a positive integer. C is v-error correcting if
minimum distance decoding with incomplete decoding rule is applied, v or fewer
errors can be corrected.

Remark 7.1 C is v-error correcting if and only if dis (C) ≥ 2v + 1 [11, p. 13].

Definition 7.4 ([8]) An (n,M, d)-binary code C is called an equidistant code if
∀c, c′ ∈ C, dis

(
c, c′) = dis (C).

For our purpose, we will use binary code for protecting the underlying implementa-
tion.

We propose two choices of look-up tables:

1. Correction Table: This table will treat a word x ∈ F
n
2 the same as the codeword

cx ∈ C which satisfies dis (cx, x) ≤ � d−1
2 	, where d is the distance of C. Note

that this is equivalent to using bounded distance decoding [12, p. 36] and taking
the bounded distance to be � d−1

2 	. To use this table we require that dis (C) ≥ 3.
2. Detection Table: This is a normal look-up table that returns a null value when

x /∈ C is accessed.

We will give a theoretical criterion to measure the bit flip fault resistant capability
of a binary code when it is used as an encoding countermeasure against fault
injection attacks in Sect. 7.3. Afterwards we propose three coding schemes. The
encoding scheme will be simulated (and implemented) and evaluated in Sect. 7.4.

Let m be a positive integer such that 1 ≤ m ≤ n, where n is the code length.

Definition 7.5 An m-bit fault is a fault injected in the codeword that flips exactly
m bits. We assume each bit has equal probability to be flipped.

Definition 7.6 When the fault is analyzed, we adopt the following terminologies:

• Corrected: Fault is detected and corrected.
• Null: Fault is detected and results into zero output.
• Invalid: Fault is detected and results into an output that is not a codeword.
• Valid: Fault is not detected and fault injection is successful, i.e., it results in the

output of a valid but incorrect codeword.

7.3 Theoretical Analysis

In this section we will first give the theoretical analysis for the fault resistant
capabilities of binary code in general. Then we propose two different coding
schemes and analyze their fault resistant probabilities.

178 J. Breier and X. Hou

7.3.1 Correction Table

Definition 7.7 For an (n,M, d)-binary code C such that d ≥ 3, let

Fc,m :=
{
x ∈ F

n
2 : dis (c, x) = m and ∃c′ ∈ C such that dis

(
x, c′) ≤

⌊
d − 1

2

⌋}
.

Then

pm,(e) :=
⎧
⎨

⎩
1 m ≤ � d−1

2 	
1 − 1

M(n
m)

∑
c∈C |Fc,m| m > � d−1

2 	 (7.2)

is called the m-bit fault resistance probability with error correction for C.

As mentioned earlier, when a Correction Table is used, it is equivalent to using
bounded distance decoding. When m ≤ � d−1

2 	 bits are flipped, by Remark 7.1, the
error will be corrected and hence pm,(e) = 1. When m > � d−1

2 	 bits are flipped,
the fault will be valid if the resulting word is at distance at most � d−1

2 	 from any
codeword. Thus by Definition 7.6, 1 − pm,(e) gives the theoretical probability of a
Valid fault and the bigger the pm,(e) is, the more resistant the binary code to m-bit
fault. Furthermore, when m = 1, the fault will be corrected and most of the cases
are expected to return Corrected.

Another interesting fault model is random fault, i.e., assuming there is an equal
probability for m-bits fault to occur ∀1 ≤ m ≤ n. Taking this into account, we
define the following.

Definition 7.8 For an (n,M, d)-binary code C such that d ≥ 3, let pm,(e) be its
m-bit fault resistance probability with error for 1 ≤ m ≤ n, then

prand,(e) :=
n∑

m=1

1

n
pm,(e)

is called the overall resistance index with error correction for C.

As suggested by the name, the bigger the prand,(e) is, the more resistant the code C
is to random faults.

7.3.2 Detection Table

Now we consider Detection Table.

Definition 7.9 For an (n,M, d)-binary code C such that d ≥ 2, let

Sm :=
∑

c∈C
|{c′ ∈ C : dis

(
c′, c

) = m}|.

7 Automated Deployment of Software Encoding Countermeasure 179

Then

pm := 1 − Sm

M
(
n
m

) (7.3)

is called the m-bit fault resistance probability for C.

When an m-bit fault is injected in the codeword, if the resulting word is not a
codeword then the value will be set to Null. The only case when the fault is valid
is when after m bits are flipped, the resulting word is still a codeword. Thus by
Definition 7.6, 1 − pm gives the theoretical probability of a Valid fault. Hence, the
bigger the pm, the better the m-fault resistance of the binary code.

Remark 7.2 When m ≤ d, no codeword is at distance m from each other and hence
pm = 1.

Note that if Sn = M , i.e., for each codeword c ∈ C, there exists a c′ ∈ C such that
dis

(
c, c′) = n, then we have

pn = 1 − M

M
(
n
n

) = 1 − 1 = 0.

That means, for this code, n-bit fault will always be injected successfully. In view
of this, we exclude these kind of codes from our selection (see Algorithm 1). In
practice, n and M are the fixed known values, from Eq. (7.3), to get bigger pm the
goal of choosing the code C is to make Sm small. There are several ways of achieving
this depending on the preference of the user:

1. For small values of m, make pm = 0: Choose code with a bigger minimum
distance d, then pm will be 1 for more values of m. Of course, there is a limit
for the minimum distance that can be achieved (see Table 7.1). This particular
scheme will be discussed in Sect. 7.3.3, where it is called Detection Scheme.

2. A certain m0-bit fault resistance is desired: Choose code such that Sm0 = 0.
3. Sacrificing one m0-bit fault resistance to achieve m-bit fault resistance for all

other values of m �= m0: This is possible by using equidistant codes. That is,
take code such that |Sm0 | = M . This particular scheme will be discussed in
Sect. 7.3.3, where it is called Equidistant Detection Scheme.

4. Making all pm almost equally large: Choose C such that Sm are similar for all
m > d. Note that

n∑

m=d+1

Sm = 2M

is always true.

Similar to last subsection, considering random fault, we define the following.

180 J. Breier and X. Hou

Algorithm 1: Ranking algorithm that chooses the code with the optimal
leakage properties

Input : n: the codeword bit-length, M: number of codewords, d: minimum distance of
the code, αi : the leakage bit weights of the register, where i in [[1, n]]

Output: An (n,M, d) binary code
1 for Every set S of M words do
2 for x == 0; x < |S|; x++ do
3 for y == x + 1; y < |S|; y++ do
4 Calculate the distance dis (S[x], S[y]);
5 if dis (S[x], S[y]) < d (or dis (S[x], S[y])! = d, depends on equidistance

condition) then
6 continue with a different set S;

7 if dis (S[x], S[y]) == n then
8 ndistance++

9 if ndistance == n then
10 continue with a different set S;

11 Compute the estimated power consumption for codeword S[x] and store the
result in table A: A[S[x]] = �n

i=1αiS[x][i];
12 Compute the estimated variance for bit leakages in S[x] and store the result in

table B: B[S[x]] = �n
i=1((αiS[x][i]) − μS[x])2;

13 Compute the bit with the highest bit leakage in S[x] and store the result in table
C: C[S[x]] = max(αiS[x][i]);

14 Compute the register leakage variance for codewords in S and store the result in table

D: D[S] = �
|S|
S[x]=1(A[S[x]] − μS)2;

15 Choose the highest variance for register bit leakages for codewords in S and store the
result in table E: E[S] = max(B);

16 Choose the value of the highest register bit leakage among the codewords in S and
store the result in table F : F [S] = max(C);

17 Get the optimal candidate using the following criteria:
1. Choose the candidates with the lowest register variances from D[S];
2. From this set, choose the candidates with the lowest value of the highest leakage

according to F [S];
3. Finally, choose from the previous set, take the candidate with the lowest bit leakage variance

according to E[S];
return M codewords in case all the conditions are met, or an empty set otherwise

Table 7.1 Possible
(n,M, d)-binary codes for
n = 8, 9, 10, M = 16 and
n = 8,M = 4

n M d

8 4 2, 3, 4, 5

8 16 2, 3, 4

9 16 2, 3, 4

10 16 2, 3, 4

7 Automated Deployment of Software Encoding Countermeasure 181

Definition 7.10 For an (n,M, d)-binary code C such that d ≥ 2, let pm be its m-bit
fault resistance probability for 1 ≤ m ≤ n, then

prand :=
n∑

m=1

1

n
pm

is called the overall resistance index for C.

Note that the bigger the prand is, the more resistant the code C is to random faults.

Lemma 7.1 For an (n,M, d)-binary code C, if it is equidistant, then

pm =
⎧
⎨

⎩
1 m �= d

1 − M−1
(n
d)

m = d
, and prand = 1 − M − 1

(
n
d

)
n

.

7.3.3 Coding Schemes

Here we propose two different coding schemes:

1. Detection Scheme: Using binary code which has minimum distance at least 2.
2. Correction Scheme: Using binary code which has minimum distance at least 3

with error correction enabled look-up table.

Furthermore, as will be seen from the rest of this chapter, equidistant codes
have different behaviors than codes that are not equidistant. Hence when equidistant
codes are used, we emphasize the usage by referring to the schemes as “Equidistant
detection scheme” and “Equidistant correction scheme,” respectively.

We will analyze the m-bit fault resistant probability (with error) as well as overall
resistance index (with error) for each of them using (n,M, d) binary codes for
n= 8, 9, 10 and M = 4, 16. We chose M = 4 because it is easy to analyze and
explain, and M = 16 because it can encode one nibble of the data; therefore, it is
usable in a practical scenario. To illustrate the usage of the schemes we refer the
reader to Appendix 2 for calculations of the probabilities for some specific codes as
examples.

First, we discuss the possible values of the minimum distance d. As is well known
in coding theory, fixing the length of the code n and minimum distance d, M is upper
bounded by certain value. This upper bound is tight for small values n and d and still
open for a lot of other values [7, p. 247]. In particular, for n = 8, 9, 10 and different
values of d we know the exact possible values of M . In return, the possible values
of d are known when n, M are fixed. In Table 7.1 we list the possible minimum
distances that can be achieved for n = 8, 9, 10 and M = 4 or 16. Note that the
values are taken from [7, p. 247, 248] and [5].

For equidistant binary code, we have the following constraint on d.

182 J. Breier and X. Hou

Lemma 7.2 Let C be an (n,M, d) equidistant binary code such that M ≥ 3, then
d is even.

Proof Recall the Hamming weight of a word x ∈ F
n
2 denoted by wt(x) is defined to

be the number of nonzero coordinates in x [11, p. 46]. And we have the following
relation (see [11, Corollary 4.3.4 and Lemma 4.3.5]):

wt(x) + wt(y) ≡ dis (x, y) mod 2.

Take an (n,M, d) equidistant binary code C and any three distinct codewords
x, y, z ∈ C, we have

dis (x, y) + dis (y, z) + dis (z, x) ≡ 2wt(x) + 2wt(y) + 2wt(z) ≡ 0 mod 2.

Hence, d cannot be odd.

Furthermore we have M ≤ n + 1[8]. Thus we will only consider (8, 4, 2) and
(8, 4, 4) equidistant binary codes. The fact that such codes exist can be derived
from [8].

7.4 Automated Generation and Evaluation of Codes

In this section, we will utilize the findings stated in Sect. 7.3 to design the algorithm
that automatically generates codes with the optimal side-channel and fault detection
properties for a given code length. First, we present the algorithm that finds the
codes based on searching criteria in Sect. 7.4.1. Then we show properties of the
codes that were produced by the algorithm in Sect. 7.4.2. To verify our theoretical
results, we simulate fault injections into these codes, by using an automated fault
simulator which will be explained in Sect. 7.4.3. Finally, we present and discuss the
simulation results in Sect. 7.4.4.

7.4.1 Code Generation and Ranking Algorithm

When it comes to device leakage, it normally depends on the processed intermediate
values. In [13], they proposed the first encoding scheme that assumed a stochastic
leakage model over the Hamming weight model. In such model, leakage is
formulated as follows:

T (x) = L(x) + ε, (7.4)

where L is the leakage function mapping the deterministic intermediate value (x)
processed in the register to its side-channel leakage, and ε is the (assumed) mean-

7 Automated Deployment of Software Encoding Countermeasure 183

free Gaussian noise. For 8-bit microcontroller case, we can specify this function as
L(x) = α0+α1x1+· · · α8x8, where xi is the ith bit of the intermediate value, and αi

is the ith bit weight leakage for specific register [16]. The αi values can be obtained
by using the following equation:

α = (AT A)−1AT T, (7.5)

where A is a matrix of intermediate values and T is a set of traces. After the
device profiling which obtains the α values, we can use our ranking algorithm to
select the optimal code with given inputs (Algorithm 1). Note that one can still use
the Hamming weight model—for that case, α has to be defined as unity. In the
following, we will explain how the algorithm works.

First, the inputs have to be specified—length (n), number of the codewords
(M), minimum distance (d), and leakages of the register bits (αi). Depending on
these values, the algorithm analyzes every possible set of M codewords that can
be a potential code candidate. Lines 2–3 iterate over every combination of two
codewords. Lines 4–6 test if the minimum distance condition is fulfilled. Then, lines
7–10 check, whether for each codeword there exists another codeword which is at
distance n from it—if yes, we skip this set. This condition is necessary in order to
get a code resistant against n-bit flip (we will detail such case in Sect. 7.5). Lines 11–
13 compute the 3 values that are used in order to calculate the values for the whole
code in the later phase: estimated power consumption for the codeword, stored in
table A, estimated variance for bit leakages in the codeword, stored in table B, and
the highest bit leakage value, stored in table C. Next, the codeword value is stored
in the index table I .

Lines 14–16 use the values from tables A,B,C to compute the register leakage
variance (μS[x] denotes the mean leakage for a word S[x]), highest variance for bit
leakages within registers, and value of the highest bit leakage within registers for
the set S. These values are stored in tables D,E,F , respectively, and are used in the
final evaluation.

The final evaluation is the last phase of the algorithm. First, it takes a subset of D

with the best register leakage variance (μS denotes the mean leakage for codewords
in S). It narrows this subset to candidate codes with the lowest value of the highest
bit leakage according to set E. From these, it chooses the code with the lowest bit
leakage variance using table F .

7.4.2 Properties of Generated Codes

Codes with the best side-channel and fault resistance properties according to
Algorithm 1 with 4 codewords and length 8 can be found in Table 7.2. Their detailed
properties are stated in Table 7.3. More codes with cardinality 16 and various
distances can be found in Appendix 1.

184 J. Breier and X. Hou

Table 7.2 Codes used in
evaluation

Code Distance Denoted by

0x3D, 0x9D, 0xAD, 0xBC = 2 C8,4,eq2

0x0B, 0x19, 0x35, 0xA6 >= 2 C8,4,min2

0x19, 0x35, 0x8A, 0xA6 >= 3 C8,4,min3

0x55, 0x93, 0xA5, 0xC6 = 4 C8,4,eq4

0x19, 0x27, 0x8A, 0xB4 >= 4 C8,4,min4

0x19, 0x6A, 0x87, 0xF4 >= 5 C8,4,min5

For calculating the register variance, we follow the similar methodology as used
in [13], together with their generated α values, but we improved their ranking
algorithm by calculating the bit variances inside registers and by selecting the code
which has the lowest leakage value for the highest leaking codeword. First part of
Table 7.3 shows these three values, with the order of preference according to our
ranking algorithm. Second part of the table shows bit fault resistance probabilities,
denoted by pm for m-bit flips in the codeword, as well as overall resistance index,
denoted by prand for the code. The last part of the table shows the fault resistance
probabilities with error correction, denoted by pm,(e), as well as overall resistance
index with error correction, which is denoted by prand,(e). We do not consider codes
with distance 1 because such codes do not provide protection against 1-bit flips and
therefore the fault protection would be very low. However, such codes can still be
used for minimizing the side-channel leakage.

In general, if we aim for higher distance values, we get better detection and
correction capabilities, but the side-channel leakage is higher as well. That is
because if the distance is higher, it is more likely that the variance of leakage among
the codewords is bigger. Also, we can see that equidistant codes have a constant
detection probability of 1 except the case when number of bit flips is the same as
the code distance. Moreover, if we sum up the probabilities of all the bit flip faults
for non-equidistant codes, the overall detection probability is lower. However, the
side-channel leakage of equidistant codes is more than 10 times higher compared to
non-equidistant codes.

7.4.3 Automated Fault Simulation

The fault simulator we used was customized for the purpose of evaluating a
microcontroller assembly table look-up implementation of the encoding schemes
presented in this chapter. More details on this simulator are provided in [1]. This
simulator helps us to extend the theoretical results to real-world results, where one
has to use capabilities of microprocessors for computing the results.

7 Automated Deployment of Software Encoding Countermeasure 185

Ta
bl

e
7.

3
Si

de
-c

ha
nn

el
an

d
fa

ul
tp

ro
pe

rt
ie

s
of

th
e

co
de

s

α
=

[0
.6

13
33

1,
0.

64
45

84
,0

.6
02

53
1,

0.
19

09
86

,0
.5

86
26

8,
0.

89
09

51
,1

.8
38

81
4,

1.
25

79
43

,0
.8

99
92

2,
0.

61
46

99
]

C
od

e
C 8

,4
,e

q
2

C 8
,4

,m
in

2
C 8

,4
,m

in
3

C 8
,4

,e
q

4
C 8

,4
,m

in
4

C 8
,4

,m
in

5

C
od

ew
or

d
va

ri
an

ce
0.

01
58

1.
15

0
×

10
−5

9.
80

0
×

10
−6

0.
00

21
6.

44
0

×
10

−5
6.

74
3

×
10

−3

H
ig

he
st

le
ak

ag
e

4.
90

03
3.

34
45

3.
34

13
2.

95
14

3.
33

77
3.

34
45

B
it

va
ri

an
ce

0.
24

92
0.

27
48

0.
27

76
0.

15
35

0.
27

76
0.

37
02

p
1

1
1

1
1

1
1

p
2

0.
89

29
0.

98
21

1
1

1
1

p
3

1
0.

99
11

0.
98

21
1

1
1

p
4

1
0.

99
29

0.
98

57
0.

95
71

0.
98

57
1

p
5

1
0.

98
21

1
1

0.
96

43
0.

96
43

p
6

1
1

1
1

1
0.

96
43

p
7

1
0.

93
75

0.
87

50
1

1
1

p
8

1
1

1
1

1
1

p
ra

nd
0.

98
66

0.
98

57
0.

98
04

0.
99

46
0.

99
38

0.
99

11

p
1,

(e
)

–
–

1
1

1
1

p
2,

(e
)

–
–

0.
89

29
1

1
1

p
3,

(e
)

–
–

0.
91

07
0.

78
57

0.
92

86
1

p
4,

(e
)

–
–

0.
91

43
0.

95
71

0.
84

29
0.

85
71

p
5,

(e
)

–
–

0.
92

86
0.

78
57

0.
89

29
0.

85
71

p
6,

(e
)

–
–

0.
75

00
1

0.
78

57
0.

75

p
7,

(e
)

–
–

0.
87

50
1

1
0.

75

p
8,

(e
)

–
–

0
1

1
1

p
ra

nd
,(

e
)

–
–

0.
78

39
0.

94
11

0.
93

13
0.

90
18

186 J. Breier and X. Hou

Instruction set simulator

Output checker

Fault simulator

LDI r0 a
LDI r1 b
LPM r2 r0 r1

a b

output

-> instruction
-> fault model
-> bit position

Is output:
-> corrected
-> valid
-> invalid
-> null

Fig. 7.1 Fault simulator operation overview

A high-level overview is given in Fig. 7.1. There are three instructions in total—
the first two LDI load the two operands into registers r0 and r1. Both of the
operands are already encoded according to one of the coding schemes. The LPM
instruction loads the data from the look-up table stored in the memory by using the
values in r0 and r1, and the result is stored to register r2. This part works as a
standard instruction set simulator. During each execution, a fault is injected into the
code. For each type of fault, we test all the possible combinations of codewords,
and we disturbed all the instructions in our code. We have tested the following fault
models:

• Bit faults: In this fault model, one to n bits in the destination register change its
value to a complementary one.

• Random byte faults: The random byte fault model changes random number of
bits in the destination register.

• Instruction skip: Instruction skip is a very powerful model that is capable of
removing some countermeasures completely. We have tested a single instruction
skip on all three instructions in the code.

• Stuck-at fault: In this fault model, the value of the destination register changes
to a certain value, usually to all zeroes. Therefore, we have tested this value in
our simulator.

After the output is produced under a faulty condition, it is analyzed by the output
checker, which decides on its classification. Outputs can be of four types (Corrected,
Valid, Invalid, and Null), and these types are described in detail in Sect. 7.2.2.

7.4.4 Simulated Results

Figure 7.2 shows plots for C8,4,min4 and C8,4,eq4, with and without the error
correction. Instruction skip faults and stuck-at faults show zero success when

7 Automated Deployment of Software Encoding Countermeasure 187

a b

c d

Fig. 7.2 Simulation results for C8,4,eq4 with equidistant detection scheme in (a) and with
equidistant correction scheme in (b); C8,4,min4 with detection scheme in (c) and with correction
scheme in (d)

attacking any of the generated codes. When it comes to bit flips, we can see that for
better fault tolerance, one should not use the error-correction capabilities, since the
properties of such codes allow changing the faulty codeword into another codeword,
depending on the number of bit flips and minimum distance of the code. When
deciding whether to choose an equidistant code or not, situation is the same as
in Table 7.3—equidistant codes have slightly better fault detection properties, but
worse side-channel leakage protection. Therefore, it depends on the implementer to
choose a compromise between those two.

7.5 Discussion

First, we would like to explain the difference between the calculated results in
Table 7.3 and the simulated results in Fig. 7.2 in equidistant code C8,4,min4. Table 7.3
shows theoretical results assuming that error happens before using the look-up table.

188 J. Breier and X. Hou

a b

Fig. 7.3 Simulation results for the codes: (a) C8,16,min4 and (b) C8,16,min3

However, in a real-world setting, fault can be injected at any point of the execution,
including the table look-up, or even after obtaining the result from the table. That
is also why there are Invalid faults, despite the table always outputs Null in case of
being addressed by a word that does not correspond to any codeword. Because there
are three instructions in the assembly code, faulting the destination register of the
last one after returning the value from the table results into 1/3 of Invalid faults in
all the cases except instruction skips.

To explain the condition on lines 7–8 of Algorithm 1, we can take the code with
n = 8, M = 16, and d = 4 as an example. The simulation result for this code is
stated in Fig. 7.3a. Full results for this code are then in Table 7.5 in the appendix.
There are no codes with these parameters that could satisfy the abovementioned
condition—all 480 codes that can be constructed have the property that if any
codeword is faulted by n bit flip, it will change to other codeword. Therefore, such
codes are not suitable for protecting implementations against fault attacks. For this
reason, it is more suitable to use the C8,16,min3 code, stated in Fig. 7.3b, that does
not suffer from such property.

To summarize the evaluation results, we point out the following findings:

• Correction scheme is not suitable for fault tolerant implementations—while it can
be helpful in non-adversary environments, where it can be statistically verified,
how many bits are usually faulted, and therefore, a proper error-correction
function can be specified, in adversary-based settings, one cannot estimate the
attacker capabilities. In case of correcting 1-bit error, for example, attacker who
can flip multiple bits will have a higher probability of producing Valid faults,
compared to using detection scheme with the same code.

7 Automated Deployment of Software Encoding Countermeasure 189

• We can find an optimal code either from the fault tolerance perspective or from
side-channel tolerance perspective—if we consider both, a compromise has to
be made, depending on which attack is more likely to happen or how powerful
an attacker can be in either setting. If we sacrifice the fault tolerance, we will
normally get a code with distance 2 (e.g., side-channel resistant codes in [13] all
have distance 2 and they are not equidistant codes); therefore, such codes will be
vulnerable to 2-bit faults. On the other hand, by relaxing the power consumption
variance condition, we will be able to choose codes with bigger distance, being
able to resist higher number of bit faults.

• Both types of resistances can be improved if we sacrifice the memory and choose
codes with greater lengths.

• Equidistant detection schemes is a good option in case the implementation can
be protected against certain number of bit flips—because all the Valid faults are
achieved only if the attacker flips the same number of bits as is the distance.
However, this condition does not hold in case of equidistant correction schemes.

7.6 Chapter Summary

In this chapter, we provided a necessary background for constructing side-channel
and fault attack resistant software encoding schemes. Current encoding schemes
only cover side-channel resistance, and either do not discuss fault resistance or
only state it as a side product of the construction, such as [19]. Our work defines
theoretical bounds for fault detection and correction and provides an automated way
to construct efficient codes that are capable of protecting the underlying computation
against both physical attack classes.

To support our result with a practical case study, we designed an automated
simulator to evaluate the table look-up operation under faulty conditions, by using a
microcontroller assembly code. As expected, the codes constructed using the stated
algorithm provide robust fault resistance, while keeping the side-channel leakage at
the minimum.

Appendix 1: Generated Codes

In this section, we state the remaining codes generated by Algorithm 1, for M = 16
and n = 8, 9, 10 (Tables 7.4 and 7.5).

190 J. Breier and X. Hou

Table 7.4 Codes generated by Algorithm 1

Code Length Distance Denoted by

0x0E, 0x4D, 0xF1, 0xEC, 0x2D,
0x26, 0x86, 0x8D, 0xA5, 0x46,
0xD9, 0x13, 0xD2, 0x79, 0x72,
0x5A

8 >= 2 C8,16,min2

0x4D, 0x8B, 0x96, 0x43, 0xE9,
0xE2, 0xBA, 0xD5, 0x33, 0x2E,
0x3D, 0xFC, 0xA5, 0x5A, 0x76,
0xCE

8 >= 3 C8,16,min3

0xBA, 0xD9, 0xEF, 0x73, 0x1F,
0xD6, 0x83, 0xB5, 0x26, 0x4A,
0x7C, 0x45, 0x29, 0x8C, 0xE0,
0x10

8 >= 4 C8,16,min4

0x145, 0x15A, 0x1CA, 0x95, 0xCC,
0xDA, 0xC5, 0x18C, 0x0E, 0xD3,
0x19A, 0x185, 0x07, 0x193, 0x9C,
0x153

9 >= 2 C9,16,min2

0x07, 0xF3, 0x146, 0xB5, 0xEC,
0x2E, 0x1BA, 0x165, 0x13C, 0x1D,
0x1D9, 0x5B, 0x1D4, 0x18B, 0x96,
0x185

9 >= 3 C9,16,min3

0x3B, 0x75, 0x9D, 0x14B, 0x1D4,
0x1A5, 0xEC, 0x13C, 0x1F9, 0x193,
0x07, 0xDA, 0x166, 0xB6, 0x1AA,
0xE3

9 >= 4 C9,16,min4

0x5D, 0xDC, 0x34B, 0x25C, 0x1CB,
0x359, 0xCE, 0x3CA, 0x3E6, 0x1F5,
0x1E7, 0x3F4, 0x375, 0x24E, 0x4F,
0x1D9

10 >= 2 C10,16,min2

0xA7, 0x235, 0x3C8, 0x22A, 0x14C,
0x39, 0x298, 0x3C5, 0x3B1, 0x8B,
0x1B4, 0x1C, 0x326, 0x156, 0x169,
0x353

10 >= 3 C10,16,min3

0x2D, 0x16A, 0x18C, 0x97, 0x136,
0x21A, 0x347, 0x3D4, 0x3A5,
0x159, 0x275, 0x2E6, 0xCB, 0xF8,
0x1F3, 0x24C

10 >= 4 C10,16,min4

Appendix 2: Fault Resistance Probabilities

In this section, we show the detailed theoretical calculations of fault resistance prob-
abilities and the overall resistance index (with error) for some specific examples.

Equidistant Detection Scheme
Using Lemma 7.1, we list the values of pms and prand in Table 7.6 for (8, 4, 2) and
(8, 4, 4) equidistant binary codes.

7 Automated Deployment of Software Encoding Countermeasure 191

Ta
bl

e
7.

5
Si

de
-c

ha
nn

el
an

d
fa

ul
tp

ro
pe

rt
ie

s
of

th
e

co
de

s
fr

om
Ta

bl
e

7.
4

α
0.

61
33

31
,0

.6
44

58
4,

0.
60

25
31

,0
.1

90
98

6,
0.

58
62

68
,0

.8
90

95
1,

1.
83

88
14

,1
.2

57
94

3,
0.

89
99

22
,0

.6
14

69
9

C
od

e
C 8

,1
6,

m
in

2
C 8

,1
6,

m
in

3
C 8

,1
6,

m
in

4
C 9

,1
6,

m
in

2
C 9

,1
6,

m
in

3
C 9

,1
6,

m
in

4
C 1

0,
16

,m
in

2
C 1

0,
16

,m
in

3
C 1

0,
16

,m
in

4

C
od

ew
or

d
va

ri
an

ce
0.

00
13

0.
11

90
1.

82
31

2.
93

5
×

10
−4

0.
00

91
0.

10
43

3.
92

0
×

10
−5

0.
00

17
0.

01
34

H
ig

he
st

le
ak

ag
e

3.
26

07
3.

26
07

0.
19

10
3.

95
10

3.
99

67
3.

59
60

4.
78

12
3.

85
45

3.
90

11
B

it
va

ri
an

ce
0.

46
57

0.
39

49
0.

33
67

0.
25

52
0.

35
71

0.
33

66
0.

31
70

0.
38

75
0.

39
29

p
1

1
1

1
1

1
1

1
1

1
p

2
0.

92
41

1
1

0.
91

67
1

1
0.

94
17

1
1

p
3

0.
92

86
0.

91
29

1
0.

97
32

0.
96

28
1

0.
98

54
0.

98
44

1
p

4
0.

97
14

0.
91

79
0.

8
0.

97
52

0.
96

92
0.

91
47

0.
98

57
0.

98
57

0.
97

80
p

5
0.

93
08

0.
96

21
1

0.
96

83
0.

96
92

1
0.

98
66

0.
98

61
0.

97
67

p
6

0.
92

41
0.

95
54

1
0.

98
81

0.
96

43
0.

96
13

0.
99

11
0.

98
39

0.
99

11
p

7
1

0.
89

06
1

0.
95

49
0.

97
22

1
0.

98
54

0.
97

21
0.

98
65

p
8

0.
12

50
0.

87
50

0
1

0.
98

61
0.

88
89

0.
98

61
0.

98
61

0.
98

61
p

9
–

–
–

1
1

1
1

1
0.

96
25

p
10

–
–

–
–

–
–

1
1

1
p

ra
nd

0.
85

05
0.

93
92

0.
85

0.
97

71
0.

98
04

0.
97

39
0.

98
62

0.
99

04
0.

98
81

p
1,

(e
)

–
1

1
–

1
1

–
1

1
p

2,
(e

)
–

0.
47

78
1

–
0.

74
00

1
–

0.
87

50
1

p
3,

(e
)

–
0.

50
22

0
–

0.
77

82
0.

48
81

–
0.

88
44

0.
84

58
p

4,
(e

)
–

0.
41

79
0.

8
–

0.
66

67
0.

91
47

–
0.

83
99

0.
83

81
p

5,
(e

)
–

0.
41

74
0

–
0.

67
26

0.
41

87
–

0.
83

43
0.

82
19

p
6,

(e
)

–
0.

50
89

1
–

0.
69

64
0.

96
13

–
0.

81
31

0.
79

70
p

7,
(e

)
–

0.
45

31
0

–
0.

69
44

0.
50

69
–

0.
82

40
0.

88
23

p
8,

(e
)

–
0

0
–

0.
76

39
0.

88
89

–
0.

81
11

0.
80

28
p

9,
(e

)
–

–
–

–
0.

87
50

0
–

0.
87

50
0.

83
75

p
10

,(
e
)

–
–

–
–

–
–

–
1

0.
62

50
p

ra
nd

,(
e
)

–
0.

47
22

0.
47

50
–

0.
76

52
0.

68
65

–
0.

87
57

0.
84

50

192 J. Breier and X. Hou

Table 7.6 Theoretical values of pm for (n,M, d)-equidistant binary code

(n,M, d) p1 p2 p3 p4 p5 p6 p7 p8 prand

(8, 4, 2) 1 0.8929 1 1 1 1 1 1 0.9866

(8, 4, 4) 1 1 1 0.9571 1 1 1 1 0.9946

Table 7.7 Distance between
each pair of codewords in the
(8, 4, 4)-binary code
C8,4,min4

dis (·, ·) 00011001 00100111 10001010 10110100

00011001 0 5 4 5

00100111 5 0 5 4

10001010 4 5 0 5

10110100 5 4 5 0

Detection Scheme
Since we require that dis (C) ≥ 2 for Detection Scheme, for 1-bit fault, we expect
the results to be Null, which means p1 = 1. Now we give a theoretical calcu-
lation for the (8, 4, 4)-binary code C8,4,min4 = {00011001, 00100111, 10001010,

10110100}. We first list the distance between every pair of codewords in Table 7.7.
By Eq. (7.3), we can then calculate the m-bit fault resistance probabilities and

the overall resistance index for C:

p2 = p3 = 1 − 1

4
(0 + 0 + 0 + 0) = 1,

p4 = 1 − 1

4
(8

4

) (2 + 0 + 1 + 1) = 69

70
≈ 0.9857,

p5 = 1 − 1

4
(8

5

) (2 + 2 + 2 + 2) = 27

28
≈ 0.9643,

p6 = p7 = p8 = 1 − 1

4
(0 + 0 + 0 + 0) = 1, prand =

8∑

m=1

1

8
pm = 0.9938.

Correction Scheme
m-bit fault resistance probabilities with error correction for the same (8, 4, 4)-binary
code C8,4,min4 = {00011001, 00100111, 10001010, 10110100}. As dis (C) = 4, by
Remark 7.1 it is an 1-error-correcting code. By Eq. (7.2), pm,(e) = 1 for m = 1. To
calculate pm,(e) for m ≥ 2, we first list the table of cardinalities of Fc,m for c ∈ C
and m = 2, 3, . . . , 8 in Table 7.8.

By Eq. (7.2), we can then calculate the m-bit fault resistance probabilities with
error correction as well as the overall resistance index with error correction for C.

7 Automated Deployment of Software Encoding Countermeasure 193

Table 7.8 Cardinality of Fc,m for m = 2, 3, . . . , 8 and c ∈ C8,4,min4

|Fc,2| |Fc,3| |Fc,4| |Fc,5| |Fc,6| |Fc,7| |Fc,8|
00011001 0 4 11 6 6 0 0

00100111 0 4 11 6 6 0 0

10001010 0 4 11 6 6 0 0

10110100 0 4 11 6 6 0 0

p2,(e) = 1 − 1

4
(8

2

) (0 + 0 + 0 + 0) = 1,

p3,(e) = 1 − 1

4
(8

3

) (4 + 4 + 4 + 4) = 13

14
≈ 0.9286,

p4,(e) = 1 − 1

4
(8

4

) (11 + 11 + 11 + 11) = 59

70
≈ 0.8429,

p5,(e) = 1 − 1

4
(8

5

) (6 + 6 + 6 + 6) = 25

28
≈ 0.8929,

p6,(e) = 1 − 1

4
(8

6

) (6 + 6 + 6 + 6) = 11

14
≈ 0.7857,

p7,(e) = p8,(e) = 1 − 1

4
(0 + 0 + 0 + 0) = 1,

prand,(e) =
8∑

m−1

1

8
pm,(e) = 0.9313.

References

1. J. Breier, On analyzing program behavior under fault injection attacks, in 2016 Eleventh
International Conference on Availability, Reliability and Security (ARES) (IEEE, Piscataway,
2016), pp. 1–5

2. J. Breier, X. Hou, Feeding two cats with one bowl: on designing a fault and side-channel resis-
tant software encoding scheme, in Cryptographers’ Track at the RSA Conference (Springer,
Berlin, 2017), pp. 77–94

3. J. Breier, D. Jap, C.-N. Chen, Laser profiling for the back-side fault attacks: with a practical
laser skip instruction attack on AES, in Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security (CPSS ’15) (ACM, New York, 2015), pp. 99–103

4. J. Breier, D. Jap, S. Bhasin, The other side of the coin: analyzing software encoding schemes
against fault injection attacks, in 2016 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST) (IEEE, Piscataway, 2016), pp. 209–216

5. A.E. Brouwer, J.B. Shearer, N.J.A. Sloane, W.D. Smith, A new table of constant weight codes.
IEEE Trans. Inf. Theory 36(6), 1334–1380 (1990)

194 J. Breier and X. Hou

6. C. Chen, T. Eisenbarth, A. Shahverdi, X. Ye, Balanced encoding to mitigate power analysis: a
case study, in International Conference on Smart Card Research and Advanced Applications.
Lecture Notes in Computer Science (Springer, Berlin, 2014), pp. 49–63

7. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, vol. 290 (Springer, Berlin,
2013)

8. F.-W. Fu, T. Kløve, Y. Luo, V.K. Wei, On equidistant constant weight codes. Discret. Appl.
Math. 128(1), 157–164 (2003)

9. L. Goubin, J. Patarin, DES and differential power analysis. The “duplication” method, in
International Workshop on Cryptographic Hardware and Embedded Systems (CHES). Lecture
Notes in Computer Science (Springer, Berlin, 1999), pp. 158–172

10. P. Hoogvorst, J.-L. Danger, G. Duc, Software implementation of dual-rail representation, in
Second International Workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE), Darmstadt (2011)

11. S. Ling, C. Xing, Coding Theory: A First Course (Cambridge University Press, Cambridge,
2004)

12. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error Correcting Codes (Elsevier, Amsterdam,
1977)

13. H. Maghrebi, V. Servant, J. Bringer, There is wisdom in harnessing the strengths of your
enemy: customized encoding to thwart side-channel attacks – extended version–. Cryptology
ePrint Archive, Report 2016/183, 2016. http://eprint.iacr.org/

14. P. Rauzy, S. Guilley, Z. Najm, Formally proved security of assembly code against leakage.
IACR Cryptology ePrint Arch. 2013, 554 (2013)

15. F. Regazzoni, L. Breveglieri, P. Ienne, I. Koren, Interaction between fault attack countermea-
sures and the resistance against power analysis attacks, in Fault Analysis in Cryptography
(Springer, Berlin, 2012), pp. 257–272

16. W. Schindler, K. Lemke, C. Paar, A stochastic model for differential side-channel cryptanaly-
sis, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer,
Berlin, 2005), pp. 30–46

17. T. Schneider, A. Moradi, T. Güneysu, ParTI – towards combined hardware countermeasures
against side-channel and fault-injection attacks, in Annual Cryptology Conference (Springer,
Berlin, 2016), pp. 302–332

18. N. Selmane, S. Bhasin, S. Guilley, T. Graba, J.-L. Danger, WDDL is protected against setup
time violation attacks, in 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC) (IEEE, Piscataway, 2009), pp. 73–83

19. V. Servant, N. Debande, H. Maghrebi, J. Bringer, Study of a novel software constant
weight implementation, in International Conference on Smart Card Research and Advanced
Applications (Springer, Berlin, 2014), pp. 35–48

20. K. Tiri, I. Verbauwhede, A logic level design methodology for a secure DPA resistant ASIC
or FPGA implementation, in Proceedings Design, Automation and Test in Europe Conference
and Exhibition, vol. 1 (IEEE, Piscataway, 2004), pp. 246–251

21. E. Trichina, R. Korkikyan, Multi fault laser attacks on protected CRT-RSA, in 2010 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, Piscataway, 2010), pp.
75–86

http://eprint.iacr.org/

	7 Automated Deployment of Software Encoding Countermeasure
	7.1 Introduction
	7.2 General Background
	7.2.1 Related Work
	7.2.2 Coding Theory Background

	7.3 Theoretical Analysis
	7.3.1 Correction Table
	7.3.2 Detection Table
	7.3.3 Coding Schemes

	7.4 Automated Generation and Evaluation of Codes
	7.4.1 Code Generation and Ranking Algorithm
	7.4.2 Properties of Generated Codes
	7.4.3 Automated Fault Simulation
	7.4.4 Simulated Results

	7.5 Discussion
	7.6 Chapter Summary
	Appendix 1: Generated Codes
	Appendix 2: Fault Resistance Probabilities
	References

