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The greatest of all faults is to be conscious
of none.

–Thomas Carlyle



Foreword

Building cryptographic schemes that offer resistance against determined adversaries
has never been easy, and the number of failed attempts largely outweighs the
successful ones. However, thanks to open research, we have seen huge progress
in the last 50 years. In particular, at conceptual and mathematical level, we are
able to build complex cryptosystems that offer security with high assurance against
adversaries that have only access to the system’s input and output and not its
secret or private keys. This picture becomes somewhat less rosy if the adversary
can get access to side-channel information such as the power consumption or
electromagnetic emanations of the—ultimately physical—devices performing the
actual cryptographic computations. It becomes outright worrisome if an adversary
can disturb these devices, e.g., through the power supply, ambient temperature,
radiation, etc., to cause it to make faults.

We are witnessing the transition of our world into a cyber-age with ubiquitous
smartphones, sensors, cameras, and all appliances thinkable connected to the Inter-
net. The evidently huge security and privacy risks require these devices to support
cryptographic schemes. Clearly, in many realistic attack scenarios, these devices are
effectively exposed to physical measurements and disturbance. Therefore, there is a
need to design, evaluate, and build these systems so that they offer resistance against
real-world adversaries.

The vast proliferation of embedded devices, and, more importantly, the increase
of their diversity, poses a humongous task for designers, evaluation labs, and
implementers. While side-channel attacks still pose a challenge, evaluation of the
related security is nowadays largely routine, thanks to code running in constant time
and automated evaluation tools such as t-tests. For fault attacks, however, in the last
decades, we have witnessed an exponential increase in attack vectors and even in
ways to exploit the behavior of devices under disturbance, and the only hope we
have is automation. And, that is exactly the subject of this book. It treats automation
in analysis, design, and deployment of fault countermeasures in cryptosystems in a
sequence of chapters that have been written by the top researchers that are active in
the domain today. It will be of great use to hardware and/or software designers and
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implementers, evaluators, and academics active in the field of applied cryptography,
and it can even be the material for a specialized course on automating fault analysis
in different stages.

Nijmegen, The Netherlands Joan Daemen
November 2018



Preface

Today’s era of digital communication necessitates the need of security and reli-
ability. Confidentiality and integrity, guaranteed by cryptography, have become
imperative to our everyday lives, protecting our digital identities and limiting the
attack vectors that can come from anywhere in the world at any time. Implementa-
tion attacks were shown to be capable of breaking these guarantees easily, extending
the security evaluations of encryption algorithms from the realm of cryptanalysis
to realms of software and electrical engineering. Evaluation standards, such as
Common Criteria, consider both side-channel attacks and fault injection attacks a
highly potent threat and require implementations of countermeasures for security-
critical applications. However, identifying possible vulnerabilities and applying
remedies requires vast amount of expertise in multiple domains and often results in a
complex, time-consuming process. Moreover, it is highly influenced by a subjective
perception of a person conducting these tasks.

In this book, our objective is to introduce the reader to various methods and
tools that bring automation to fault analysis. More specifically, we provide ways
to automate both the evaluation and the implementation of protecting measures.
We believe that each part of this book brings state-of-the-art understanding of
given topic and provides explanations and guidance to both academic and industrial
practitioners. Each of the four parts focuses on different stages in analysis and
countermeasure deployment, and these can be read in arbitrary order. Here, we
summarize the covered material in more detail:

Part I Automated Fault Analysis of Symmetric Block Ciphers
This part deals with identifying potential vulnerabilities to fault injection attacks
in unprotected cipher design specifications, software implementations, and
hardware implementations.

Part II Automated Design and Deployment of Fault Countermeasures
After identification of vulnerabilities, this part offers automated methods of
protecting software and hardware implementations.

ix
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Part III Automated Analysis of Fault Countermeasures
Whether the applied protection was implemented correctly and effectively can
be evaluated by using one of the methods from this part. Again, both software,
and hardware-level approaches are considered.

Part IV Automated Fault Attack Experiments
To be able to find a fault experimentally, instead of performing a manual device
profiling and fault characterization, one can use methods detailed in this part,
focusing on electromagnetic and laser fault injection.

The book therefore aims to follow a logical sequence that is required for securing
cryptographic applications: first, analyze the existing implementation; second,
deploy protection; third, evaluate the protection theoretically; and finally, conduct
experimental evaluation to support the obtained analysis findings.

We believe the covered topics are of significance to the ever-growing community
of hardware security practitioners that either develop new or protect the existing
encryption techniques.

Singapore, Singapore Jakub Breier
Singapore, Singapore Xiaolu Hou
Singapore, Singapore Shivam Bhasin
November 2018
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Chapter 1
Introduction to Fault Analysis
in Cryptography

Jakub Breier and Xiaolu Hou

1.1 Cryptography Background

Cryptography is ubiquitous for the modern connected world. People communicate
and exchange information through electronic devices, such as mobile phones,
laptops, and tablets, and these exchanges are often private in nature, and thus
require creating a secure channel over a nonsecure network. This requirement
had brought cryptography from the military world to every day’s usage, shifting
the computations from highly specialized secure computers to a wide range of
microcontrollers, often with low computational power and restricted memory size.

Security of ciphers is normally determined by the length of the key, which,
according to Kerckhoffs’s principle, should be the only secret component of the
encryption system [20]. Key length recommendations are provided by standard-
ization bodies, such as National Institute of Standards and Technology (NIST)
for USA, Agence nationale de la sécurité des systèmes d’information (ANSSI)
for France, and Bundesamt für Sicherheit in der Informationstechnik (BSI) for
Germany.

We can divide ciphers according to the way how encryption and decryption are
performed, to symmetric and public key (or asymmetric) cryptography. While the
symmetric ciphers use the same secret key for encryption and decryption, in case
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2 J. Breier and X. Hou

of asymmetric ciphers, there is a key pair, consisting of a private key and a public
key. Depending on use case (digital signature, and encryption), one key is used for
encryption, and the other for decryption. When it comes to key lengths, according to
latest BSI report [27], it should be at least 128 bits for the symmetric cryptosystems,
2000 bits for RSA modulus, and 250 bits for elliptic curve cryptography.

Another division of ciphers is according to data size that can be encrypted in
one run of the algorithm. Block ciphers encrypt the data by chunks, providing a
convenient way when dealing with long messages of a fixed size. On the other hand,
stream ciphers generate a key stream that can be used to encrypt the message bit
by bit.

Cryptanalysis, as a counterpart to cryptography, tries to find methods to break
the security of the cryptographic algorithms in a more efficient manner compared to
exhaustive search over the key space. For established algorithms, finding a “weak”
spot in the cipher is normally hard. For example, the best known cryptanalysis of
AES-128 only reduces the brute-force complexity from 2128 to 2126.1, which is
still infeasible to compute on current machines. On the other hand, a well-aimed
laser fault attack can recover the secret key of AES with just one faulty and correct
ciphertext pair [10].

Since the rest of the book is aimed mostly at symmetric block ciphers, we provide
more details on these below.

Symmetric Block Cipher

A symmetric block cipher is an algorithm operating on blocks of data of a predefined
size. It specifies two processes, encryption and decryption. The encryption takes a
plaintext and a secret key as inputs and produces a ciphertext as an output. Similarly,
for a ciphertext and a secret key as inputs for decryption, it outputs the plaintext.
Block cipher normally consists of several rounds where each round consists of a
small number of operations. Those operations scramble the input by using various
transformations and adding key-dependent data. A key used in a round is referred to
as round key. Round keys are derived from the secret key, which is called master key,
by a key scheduling algorithm that works as an invertible transformation. Therefore,
by getting information about a certain round key, it is possible to get the master key
by using an inverse key scheduling algorithm. This is important in the context of
fault attacks that normally try to recover the last round key.

1.2 Fault Injection Attacks

Fault injection attacks (FIAs) exploit a possibility to introduce a fault during the
execution of a cryptographic algorithm for the purpose of getting information about
the secret key. This attack method falls within active semi-invasive physical attacks
on cryptosystems, complementary to side-channel attacks which are passive and
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mostly noninvasive.1 The attack has two stages: fault injection stage that disturbs the
device by various techniques and causes the fault (see Sect. 1.4), and fault analysis
stage that utilizes different methods to analyze the fault propagation and recover the
secret information (see Sect. 1.3).

FIAs were first introduced by Boneh et al. [8] to attack the calculation of
exponentiation using Chinese Remainder Theorem in RSA. They showed that the
private key can be recovered with just one pair of faulty and correct outputs.
Afterwards, numerous fault analysis methods were developed for attacking various
cryptography primitives. In practice, the attack is normally mounted on a real-
world device, in an implementation that is either hardware—or software-based.
There are many different ways to attack such implementations—one can corrupt the
instruction opcodes resulting in instruction change, skip the instructions completely,
flip the bits in processed constant values or register addresses, or change the values
in the registers and memories directly [4].

1.3 Fault Attack Methods

When a fault is injected into a cryptographic circuit, it either produces a faulty output
or an error—this happens in case it is correctly identified as an unwanted behavior
and the device stops the faulty ciphertext from being outputted. Both of these states
can be exploited by the attacker using various fault analysis methods. In this section,
we will briefly discuss the most significant methods developed to date.

Differential Fault Analysis (DFA) Differential fault analysis (DFA) is among the
most popular fault analysis methods for analyzing symmetric block ciphers. The
concept of DFA was introduced by Biham and Shamir in [6] in ’97. The authors
showed that it is possible to break Data Encryption Standard by analyzing 50–200
faulty ciphertexts with a bit-flip fault model.

DFA attack consists of injecting a fault into the intermediate state of the cipher,
normally during one of the last encryption rounds. The fault then propagates, result-
ing into a faulty ciphertext. Difference between the original and the faulty ciphertext
is then analyzed, giving the attacker information about the secret key. DFA exploits
the properties of the non-linear operation that is used in the cryptosystem. The whole
concept is similar to a classical differential cryptanalysis [5] of a reduced-round
cipher.

Most of the block cryptosystems were shown to be vulnerable against DFA, since
there are no efficient cipher designs that could prevent this analysis up to date. For
further reading, one can find DFA on AES [39], DES [34], PRESENT [2], SIMON
& SPECK [40], etc.

1In some cases, side-channel attacks can be semi-invasive—device decapsulation might be required
when the signal is too low, e.g., in case of low-power smartcards.
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Algebraic Fault Analysis [11] Algebraic fault analysis is similar to DFA. It
also exploits the differences between faulted ciphertexts and original ciphertexts.
The difference is that DFA relies on manual analysis, while AFA expresses the
cryptographic algorithm in the form of algebraic equations and feeds the resulting
system of equations to a SATisfiability (SAT) solver.

Collision Fault Analysis [7] In this fault attack, the attacker invokes a fault in the
beginning of the algorithm and then tries to find a plaintext, which encrypts into
the same ciphertext as the faulty ciphertext by using the same key. Such a collision
can give the attacker information on the secret key. Due to the diffusion nature of
cryptographic algorithms, to find a collision, the attacker injects a fault in the early
rounds so that the fault propagation will enable collisions.

Ineffective Fault Analysis [7] The goal is to find a fault that does not change
the intermediate result, therefore leading into a correct ciphertext. In fact, the
attacker gains information from both scenarios after a fault injection—when faults
do not locally modify intermediate values, and also when they do. Such attack only
requires the knowledge whether the output is correct or not, ultimately leading to
the information on the secret key.

Safe-Error Analysis [41] Similar to ineffective fault analysis, safe-error analysis
also exploits a situation when the ciphertext does not change after the fault injection.
However, safe-error analysis requires the change of the intermediate result. It
utilizes a state when the data is changed but it is not used.

Fault Sensitivity Analysis [25] Exploits the side-channel information, such as
sensitivity of a device to faults and uses this information to retrieve the secret key.
It does not use the values of faulty ciphertexts.

Linear Fault Analysis [21] Linear fault analysis examines linear characteristics
for some consecutive rounds of a block cipher. It is a combination of linear
cryptanalysis and fault analysis.

1.4 Fault Injection Techniques

To physically inject a fault, the attacker normally needs an additional device
that can tamper with the device implementing a cryptographic circuit. This fault
injection device uses one of the fault injection techniques to momentarily disturb the
integrated circuit without destroying it. There are various fault injection techniques
in practice, with different levels of precision, ranging from devices that cost several
hundreds of dollars to hundreds of thousands of dollars. Various levels of expertise
to control these devices are also required. Figure 1.1 depicts examples of three
different fault injection setups: voltage glitch, electromagnetic pulse injection, and
laser fault injection. In this part, we will detail the most popular techniques.
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Fig. 1.1 Different fault injection techniques in practice, on various targets. (a) Voltage glitch on
a smart card. (b) Electromagnetic pulse injection on an FPGA. (c) LASER fault injection on a
microcontroller

Clock/Power Glitch If the device uses an external clock, then a sudden variation
in the clock can result in a fault in the execution. The technique was used in [12], for
example. Similarly, a glitch in the supply voltage can also result in a fault [4]. Glitch
is an efficient and commonly employed method for fault injection in practice. Such
technique is the most accessible way of perturbing the encryption device since the
cost of the fault injection device is low, as well as the expertise required to do the
attack. However, the precision of the injected fault also stays low, mostly resulting
into skipping an instruction or sequences of instructions.

Optical Injection (LASER/X-Ray/Focused Ion Beam) Induction of faults by
optical sources is another commonly used method. Often, this type of attack is
done with a focused laser beam at a particular location of the chip, e.g. [36]. In
this technique, the chip has to be depackaged to be accessible by the beam. Also,
the correct location for injecting the fault has to be found by inspection, which
requires specific expertise and time. While the laser setup falls into less affordable
techniques, it was shown that even with a camera flash and a specific lens, the light
beam can be targeted in a relatively precise manner [14]. Compared to basic optical
techniques, X-ray offers an advantage of keeping the device package untouched.
However, this is balanced by the cost and expertise required to mount such
attack [1]. Focused ion beam falls within the most expensive injection techniques,
normally used for testing and validation of integrated circuits [18]. A method for
automated profiling of FPGA to laser fault injection attack is provided in Chap. 14.

Electromagnetic (EM) Emanation The transistors on the chip can be effectively
forced to produce erroneous output by a high energy EM pulse for a short period
of time [29]. It has a few advantages over other techniques. For example, effect of
the clock/voltage glitch is generally global to the chip, whereas EM emanation can
be made local to a particular location by suitably placing the probe [35]. Moreover,
it does not require depackaging of the chip as in the case of optical fault, and the
injection devices are cheaper.
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Temperature Variation Forcing a chip to work outside its operating temperature
can cause faulty operations [22]. While such technique is of extremely low cost,
the resulting faults are very hard to control. Therefore, there are no practical works
up to date that would show breaking the cryptographic algorithms by varying the
temperature.

Other Techniques for fault injection include, for example, rowhammer [23].
Rowhammer is a known side effect in dynamic random-access memory (DRAM).
Repeatedly accessing a row in a DRAM can lead to flipping bits in the adjacent rows
of the memory. This behavior can be achieved by a malicious software (malware),
running on the target machine. However, memory chip manufacturers are aware of
this behavior, and newer chips utilize error-correcting mechanisms to avoid faults.

Another source of a fault can be a Hardware Trojan, as shown in [9]. Hardware
Trojan consists of a trigger and a payload. Trigger is a condition that activates a dor-
mant Trojan to start a malicious behavior—to deliver the payload. Hardware Trojan
can be used for many adversarial purposes, the one implemented in [9] precisely
flips the bits in a cryptographic circuit to achieve a desired fault propagation.

1.5 Countermeasures

Since the first reported attacks, various ways have been developed, protecting the
implementation of ciphers. When selecting a countermeasure, one needs to decide
what degree of protection to implement, taking into account the data value and
protection cost. There is no universal countermeasure, each method has its advan-
tages and limitations. In general, countermeasures against fault attacks focus on
techniques that allow two different ways to protect the underlying implementation:
detection and prevention.

Detection Countermeasures

Fault detection countermeasures aim at detecting an anomaly online to raise an
alarm. Once the alarm is raised, it can be decided what will happen next—a standard
emergency procedure is to prevent the device from outputting the ciphertext to
thwart the attacker from analyzing it. However, as it was shown in [12], the attacker
might get information about the secret even without the faulty ciphertext analysis,
simply by getting the knowledge that a fault happened. Therefore, in case there is a
need for strong security, it might be of interest to erase the secret information and
render the device unusable. Of course, the risk of false positives has to be considered
before implementing such protection.

The initial fault countermeasures used detection principles from information
theory and concurrent error detection like parity code [19] or non-linear codes,
etc. Concurrent error detection adds redundancy to the sensitive data processed,
which allows the detection of data modification under given fault model. Such
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countermeasures are easy to implement and incur acceptable overhead. However,
the protection is limited to specific fault models and the countermeasure can be
bypassed [16]. In Chaps. 10 and 11, we show how to automatically analyze code-
based countermeasures for software and hardware, respectively.

Operation-level redundancy can also be used for fault detection, e.g., dupli-
cated computation-and-compare (for detection) or triple-modular redundancy for
correction. In fact, industrial encryption schemes often involve a simple duplication,
since the overheads stay within reasonable limits, and precise fault injection
into both redundant circuits requires a significant effort on the attacker’s side.
Although, it has been demonstrated several times that such an attack is practically
achievable [37, 38].

Fault detection can also be done at circuit level, by monitoring physical condi-
tions that can be exploited for fault injection. This essentially involves design of
physical sensors which often work in plug and play configuration staying algorithm
independent [15]. Automated deployment of such sensors is detailed in Chap. 9.

Use of randomization has also been proposed to boost the security of fault
detection countermeasures [26]. Implementation of such randomized scheme can
be found in [3], where authors utilize a protocol-level detection technique against
faults.

Prevention Countermeasures

Fault prevention focuses either on preventing the attacker from accessing the device
or preventing her from getting a meaningful information from the faulty output.

To prevent the attacker from opening the device, chip shielding and protection
packages can be used [4]. In case the attacker tries to access the chip, it would be
destroyed together with the package. Infection is an algorithmic-level prevention
against fault attacks [32]. It causes deeper diffusion (or pollution) of faulty value
upon detection such that the faulty value is no longer usable by the attacker.
Some infection approaches simply replace the faulty value by a random number.
Software-level prevention can be achieved by idempotent instruction sequences [30]
that normally offer fault tolerance for single fault injections. More sophisticated
approaches combine redundancy with bit slicing, such as intra-instruction redun-
dancy [33] and internal redundancy countermeasure [24]. On the protocol level,
there are key refreshing techniques that are designed to prevent fault and side-
channel attacks [28]. The protocol updates the session key every time with a fixed
master key. Since fault attacks normally require several correct and faulty ciphertext
pairs, the attack is prevented. When it comes to protecting the public key encryption
schemes, it was shown that they can profit from strong arithmetic structure to
prevent faults [13].
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1.6 Chapter Summary

In this chapter, we presented the necessary background that will help the reader
understand the latter parts of this book. For more details on fault injection attacks,
techniques, and countermeasures, we advise the reader to reach to some of the books
in this area that provide a comprehensive coverage of each of the topics [17, 31].
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Chapter 2
ExpFault: An Automated Framework
for Block Cipher Fault Analysis

Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta

2.1 Introduction

Support for cryptographic computation has become indispensable for modern
embedded computing devices. Block ciphers, being one of the prime constituents of
cryptographic protocols, are deployed with most of the modern devices. The wide
variation of resource and performance requirements in computing platforms has led
to the development of a broad range of block cipher designs. For example, several
lightweight block cipher algorithms like PRESENT [6], LED [12], and SKINNY [4]
have been deployed in recent years targeting low-resource embedded devices.
However, given the fact that performance requirements are getting stringent day-
by-day, there is an increasing trend of designing precisely engineered, application
-specific cipher algorithms.1 Further, the practice of designing proprietary ciphers is
increasingly prevalent among defense and civil organizations. In essence, numerous
commercially usable block ciphers are available today, and this number is expected
to increase significantly in the coming years.

The continual increase in block cipher usage makes fault attack a necessary evil.
The threat has become more severe with the advent of small embedded devices,
where ensuring security is essential but challenging due to resource-constraints.2

1In fact, recently there is a call from National Institute of Standards and Technology (NIST)
for standardizing lightweight cipher designs (available online at https://csrc.nist.gov/Projects/
Lightweight-Cryptography).
2Fault attack countermeasures, in general, are resource-hungry.
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The common trend in cipher design is to evaluate the security of a cipher against
classical attacks like differential and linear cryptanalysis before it is deployed.
However, evaluation of cipher algorithms against fault attacks has been largely
undermined so far. Given the fact that fault attacks exploit several algorithm-level
features, and are very close to classical differential cryptanalysis attacks by nature,
an algorithmic evaluation is essential before implementation and deployment.
Usually, countermeasures are deployed at various levels of abstractions (algorithm-
level, implementation-level or system- level) to defend against fault attacks. On the
other hand, countermeasures have overheads which have to be optimized carefully
in order to provide proper security bounds within specified resource-constraints.
Such precisely engineered countermeasures can only be devised if the complete
attack space of a given cipher is well-understood. While finding a single attack
instance for a system is sufficient from the perspective of an attacker, certifying
a system for fault attack resilience demands comprehensive knowledge of the entire
attack space. Unfortunately, most of the fault analysis efforts till date are manual,
and they primarily target a couple of well-known block ciphers like AES [8] and
PRESENT. Consequently, most of the existing block ciphers are yet to be analyzed
extensively, to the extent that their entire attack spaces can be understood. Given
a large number of available ciphers and their diverse structures, exploration of the
complete fault attack space seems to be quite an arduous task with traditional manual
fault analysis approaches. The example of the AES algorithm highlights the nature
of this problem, where it took the research community 9 years of extensive research
to discover the optimal attack.

The automation of fault attacks promises to solve the attack space charac-
terization problem within feasible time. In this chapter, we address the problem
of attack space exploration in the context of differential fault analysis (DFA)
attacks [5, 10, 22]. DFA is the most widely explored and complex class of fault
attacks so far and is particularly interesting given their (relatively) low data/fault
complexity. Also, they form the mathematical basis for many new classes of fault
attacks. It is well-established that even a single properly placed malicious fault
is able to compromise the security of mathematically strong crypto-primitives in
certain cases. Interestingly, not every possible fault in a cipher is exploitable in
a practical sense to cause an attack, and determining the exploitability of a fault
instance is nontrivial.3 Characterization of the exploitable fault space of a block
cipher is a difficult task given the formidable size and diversity of the fault space
even for a single block cipher. Typically, faults in a cipher (let us focus on the block
ciphers only) are specified by multiple attributes (e.g., the location, width and value
of the fault, fault model, plaintext and the mathematical structure of the cipher),
which eventually lead to a fault space of formidable size, accounting the need for
automation in this context.

3This claim is certainly not restricted to DFAs only and is valid for other classes of fault attacks as
well.
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The very first step towards building such automation is to devise a core engine
which can determine the exploitability status of an individual fault instance on a
given block cipher. However, the problem of exploitable fault space exploration
demands certain properties to be fulfilled by any such automated tool. Any
automated methodology, which targets individual fault instances for exploitability
evaluation should be sufficiently fast and scalable in order to practically explore
huge fault space. On the other hand, the automation should be applicable to most
of the available block ciphers and fault models. Another point of concern is the
interpretability of an attack instance. Interpretability of an attack is extremely
important to get necessary insights which may eventually lead to improved cipher
and countermeasure designs. Designing automation which fulfills all the abovemen-
tioned properties is nontrivial, but indeed an interesting research problem.

The aim of this chapter is to introduce some of the recent advances in automated
fault analysis. Research in this area is still in its infancy, and only a few references
can be found. Here, we shall mainly focus on the work presented recently at
CHES 2018, which simultaneously meets the goals specified above. The framework,
known as ExpFault [20] is able to perform automated fault analysis on any given
block cipher and fault model. Although ExpFault at its current form focuses on
DFA, it can be extended for other classes of fault attacks as well. The compelling
feature of this framework is that it can automatically figure out the attack algorithm
along with an estimation of attack complexity.

In order to explain the key concepts behind ExpFault, three attack examples
corresponding to AES [8] and PRESENT [6] block ciphers have been used in this
chapter. We shall explain how ExpFault discovers these attacks in steps. Finally,
we analyze a recently proposed cipher GIFT [1], and automatically figure out
several attacks corresponding to different fault models. To provide a glimpse of
the capacity of ExpFault, here we summarize some interesting results for GIFT.
ExpFault found that the 2128 bit key-space of GIFT can be reduced to a size of 27.06

by means of two nibble faults injected consecutively at the 25th and 23rd round
of the cipher on average. The overall computational complexity of the attack is,
however, 217.53. Moreover, the attack is found to be optimal from an information
theoretic perspective.4

The chapter is organized as follows. We start by describing two well-known
ciphers—AES and PRESENT, for which we provide three attack examples using
the proposed framework (Sect. 2.2). Next, we present a brief overview of some early
efforts in automated fault analysis followed by a summary of the main features of
ExpFault (Sect. 2.3). The next three sections present the detailed technical concepts
behind the framework along with examples. In Sect. 2.4, the cipher and the fault
models are formalized. Detailed description of the framework is presented next
in Sect. 2.5. Proof-of-concept evaluations of three known attacks on AES and
PRESENT are used as examples while describing the scheme. Section 2.6 presents
DFA results on the GIFT block cipher. Finally, we conclude the chapter in Sect. 2.7.

4We refer to [20] for the proof of optimality.
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The appendix at the end of this chapter further explains the implementation aspects
of ExpFault, and certain other intricacies related to the attacks on GIFT. A detailed
discussion over two related work is also provided in the appendix.

2.2 Preliminaries

In this section, we introduce some basic terminology encountered frequently in this
chapter. Some of them will be formally defined according to our cipher model in the
following section. We also provide a brief description of the two ciphers AES and
PRESENT in this section which are to be used as examples throughout this chapter.

2.2.1 Basic Terminology

Block ciphers are the realizations of pseudo-random permutations (PRP). In general,
block ciphers are constructed by repeating a round multiple times (perhaps with
slight modifications in some iterations). Each round is a sequence of sub-operations.
In this chapter, the input of each sub-operation is called an intermediate state (also
known simply as a state). With the injection of a fault, states assume faulty values
which differ from the correct values assumed by them in the absence of the fault. We
use the term state differential to represent the XOR-difference between the correct
and faulty computation of a state. Each state differential consists of word variables
known as state differential variables, where the word size typically depends on the
cipher under consideration.

2.2.2 AES

The AES block cipher is the current worldwide standard for symmetric key
cryptography. The widely used version AES-128 uses a block size of 128 bits
and a master key of the same size, all of which are processed as 1-byte chunks.
The encryption is realized by iterating a round function 10 times. The round
function of AES consists of four sub-operations, namely SubBytes, ShiftRows,
Mixcolumns, and AddRoundKey. The SubBytes consists of 16 identical 8×8
nonlinear S-Boxes. The ShiftRows sub-operation is a permutation realized at
the byte level, whereas the Mixcolumns is a linear transformation by means of
a maximum distance separable (MDS) matrix. The last sub-operation in a round is
the AddRoundKey, which performs a bitwise XOR operations between the state
and 128-bit round keys generated by means of a key schedule for each round, from
the master key. It is worth mentioning that the round function in the last round of
AES does not include the Mixcolumns sub-operation.
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AES is the most widely analyzed cipher in the context of fault attacks, especially
for DFA [5]. Most of the DFA attempts on AES till date target the last three rounds
of the cipher. The most optimal attack on AES is due to Tunstall et al. [22], which
requires only a single byte fault injection at the beginning of the eighth round of
the cipher resulting in a keyspace of size 28. The computational complexity of
this attack is 232. In [19], Saha et al. have shown that the same attack can still
be realized even if multiple bytes at the beginning of eighth round get faulty. The
only constraint is that the faulty bytes must remain within the same diagonal in
the matrix representation of the AES state. Further, in [9], Derbez et al. proposed
impossible differential fault attack (IDFA) and meet-in-the-middle (MitM) attack,
both of which target the beginning of the seventh round of AES. Finally, Kim et al.
proposed integral fault attacks on AES [16]. Being well explored, AES is a major
mean for experimentally validating our framework in this chapter. More specifically,
we shall show that our framework in its current state can detect the standard DFA
attempts on AES including the IDFA attacks.

2.2.3 PRESENT

The PRESENT [6] is a widely known block cipher of the lightweight genre. The
PRESENT-80 version of the cipher utilizes an 80 bit master key with a 64 bit block
size. Round keys of 64 bits are generated from the 80 bit key state for 31 iterations
having the same round structure. The constituent sub-operations for the round
function are AddKey, sBoxLayer, and pLayer, of which the sBoxLayer is a
nonlinear layer consisting 16 identical 4 × 4 bijective S-Boxes. The linear diffusion
layer of PRESENT is constructed with a simple bit-permutation operation which is
significantly different and simpler than that of the MDS based diffusion functions
of AES.

Just like AES, PRESENT has gone through several fault analysis attempts mostly
targeting the 28, 29th rounds of the cipher as well as the key schedule [18, 23–
25]. In this chapter, we shall use the attack proposed by Jeong et al. [14] on the
28th round of the cipher to explain various parts of the framework. This attack
requires two instances of 16 bit faults injected at the beginning of the 28th round.
The computational complexity of the attack is O(232).

2.3 Automated Fault Analysis: A Brief Discussion

2.3.1 Some Early Automation Efforts

Most of the efforts in fault attack automation are fairly recent. Perhaps the
most popular among them is the algebraic fault analysis (AFA) framework [24].
The main idea of AFA is to encode the cipher and a fault instance to a low-
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degree system of multivariate polynomial equations, which is then solved with
SAT solvers by converting it to a Boolean formula in conjunctive normal form
(CNF). A detailed discussion comparing AFA with ExpFault will be presented
in the appendix of this chapter. However, as a justification of not following the
path of AFA during the ExpFault development, here we want to point out that
analyzing a single fault instance in AFA involves solving a SAT problem, which
often requires prohibitively long time. This makes AFA not a very convenient
choice in the exploitable fault space characterization context. Moreover, the attacks
reported by a SAT solver are often difficult to interpret. As a result, they do
not provide any clue by which one may improve the design and implementation
of the cipher. Also, certain things like attach complexity analysis are extremely
cumbersome and computationally impractical with AFA. However, the algebraic
representation of AFA automatically handles all the available information at once,
which become important in certain applications.5 Recently, Barthe et al. [2] have
proposed a framework for synthesizing fault attacks automatically given a software
implementation using concepts of program synthesis. However, their framework
mainly targets for public key cryptosystems.

The most relevant work in the present context is due to Khanna et al. [15],
who proposed a framework called XFC based on principles somewhat similar to
that of ExpFault. The key component of XFC is the characterization of the fault
propagation path by means of coloring, where each color represents a variable. The
coloring based static analysis eventually provides a scalable way for the calculation
of the attack complexity as well. Albeit being scalable, the usability of the XFC
scheme is found to be limited to a specific class of DFAs. More specifically, it fails
to detect distinguishers, which typically exploit the constraints on the values that
certain fault difference variables may assume. Impossible differential fault analysis
(IDFA) attacks are prominent examples of such cases. Further, XFC scheme lacks
proper automation in its attack complexity analysis algorithm and makes certain
simplifying assumptions, which fails to capture the most generic scenario.

2.3.2 ExpFault: An Overview

As pointed out in the last subsection, the AFA approach encodes every necessary
mathematical property within a cipher and fault. However, such extensive informa-
tion content often becomes a double-edged sword by making AFA computationally
expensive. One should recall that the three prime criteria for automatic fault space
exploration are fault characterization of individual faults, genericness, and scalabil-
ity. The AFA at its basic form can only achieve the genericness. In order to achieve
these three goals simultaneously, a simple strategy has been adopted in ExpFault,

5In the next chapter, we shall present another framework which fully utilizes the aforementioned
advantage of AFA while making it fairly scalable.
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Fig. 2.1 The ExpFault framework (the abbreviation CDG stands for cipher dependency graph,
which will be defined in the subsequent sections)

which just estimates the attack complexity instead of doing the attack explicitly to
recover the secret. In the light of this simple strategy, and a rigorous formalization
of the cipher description and DFA, ExpFault evaluates fault exploitability in three
steps, the first among which is the identification of a set of potential wrong key
distinguishers. The generic distinguisher identification step is realized by analyzing
fault simulation data with assistance from standard data-mining strategies. The
goodness of each DFA distinguisher is also evaluated by means of a metric based
on Shannon entropy. The next step to distinguisher identification is the evaluation
of attack complexity. We propose a graph based abstraction of the cipher to realize
this step, which works by automatically identifying a divide-and-conquer strategy
for evaluating distinguishers on different key guesses. The choice of the divide-
and-conquer strategy has a major role in determining the attack complexity. Finally,
we figure out the overall attack complexity by calculating the size of the keyspace
after a single fault injection and estimate the number of fault injections required to
reasonably figure out the key. A schematic of the whole framework is presented in
Fig. 2.1.

One implicit but extremely crucial feature of ExpFault are the abstractions that
are applied at various steps of the framework. In other words, unlike considering all
information regarding the cipher and fault like AFA, ExpFault only considers the
relevant parts. Especially, the internal mathematical structures of the nonlinear sub-
operations are abstracted. Further, the fault and plaintext values are not considered
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explicitly during the analysis. Both of these abstractions are consistent with classical
fault manual analysis approaches. By ignoring these details we make the fault space
much compact so that it can be explored in a scalable manner. Further, the abstrac-
tion makes attack complexity estimation and attack interpretation feasible. Even
with certain information abstracted, ExpFault automatically finds the average attack
complexity, required number of injections, and the attack algorithm. In general,
these outputs provide sufficient information about the fault space of the cipher.
However, for certain applications like cipher design this is not sufficient. For those
applications we have to consider a rather exact, abstraction-free representation. The
next chapter of this book is devoted for addressing this issue.

The ExpFault framework mines distinguishers from fault simulation data. This
data analysis approach of distinguisher identification shows enough potential to
be extended for other genres of fault attacks, viz. integral fault attacks [16] and
differential fault intensity analysis (DFIA) attacks [11]. A unified framework for
automated fault analysis will be the ultimate goal which has been initiated in this
work by means of ExpFault. One should notice that it is not straightforward to
extend equation based approaches like AFA for attacks like DFIA which are mainly
statistical in nature. Data analysis thus seems to be a better alternative for such cases.

From the next section onward, we shall describe the ExpFault framework in
detail. Designing a cipher-oblivious analysis framework requires a generalization
of the fault attack itself. In the next section we provide a theory generalizing the
fault attacks, which is the backbone of ExpFault. The rest of the framework will be
built upon this theory in the subsequent sections.

2.4 A Formalization of the Differential Fault Analysis

In this section, we construct a formal notion of the cipher representation as well
as the differential fault analysis, which perfectly suits our purpose in this chapter.
We begin with a general view of the DFA attacks and eventually present the formal
framework.

2.4.1 DFA on Block Ciphers: A Generic View

The general concept of DFA remains the same for most of the ciphers, except some
manual cipher-specific tricks, which make the automation a challenging task. DFAs
broadly follow three major steps:

1. Distinguisher Identification: The key step of DFA is to identify wrong key
distinguishers. Distinguishers are constraints defined over the state differential
variables, which make the probability distribution of the state differential
statistically biased (i.e., the distributions deviate from uniform distribution.).
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According to the well-known wrong key assumption, a distinguisher attains a
uniform distribution with a wrong key guess and a non-uniform one with a
correct key guess, which eventually helps to reduce the candidate keyspace. In
the context of DFA, however, distinguishers are mostly described in the form of
constraints rather than statistical distributions.

2. Divide-and-Conquer: The step following the distinguisher identification is the
evaluation of the same with different key guesses to filter out the wrong keys
in a computationally efficient manner. Not every distinguisher is efficiently
computable and the computational efficiency lies in two facts: (1) whether
it can be partitioned into independent subparts and (2) whether each subpart
is efficiently computable, that is with a reasonable number of exhaustive key
guesses.

3. Estimating the Number of Possible Key Candidates: The sole idea of DFA
is to reduce the complexity of the exhaustive key search by means of the
distinguisher. However, the reduction of the search space typically depends upon
the distinguisher used. If the distinguisher is unable to sufficiently reduce the
search space complexity, more faults should be injected. Thus, the quality of a
distinguisher must be quantified to achieve successful and practical attacks.

Automation of the above-mentioned steps demands a mathematical specification
of the cipher and the faults, to begin with. The following subsections present a
formalization of the cipher and the differential fault attacks in this context. To
maintain clarity, a list of notations used is provided in Table 2.1.

2.4.2 Representing a Block Cipher

A block cipher is a mapping Fk : P → C, where P and C denote the plaintext and
ciphertext space, respectively. The mapping is typically specified by a key k ∈ K .
Structurally, they can be represented as a tuple of invertible functions as:

Fk = 〈o1
1, o

2
1, . . . ., o

d
1 , o1

2, o
2
2, . . . ., o

d
2 , . . . .o1

R, o2
R, . . . ., od

R〉 (2.1)

Typically, for a given p ∈ P and a fixed k ∈ K , there exists a unique c ∈ C such that
c = od

R(od−1
R (. . . (o2

1(o
1
1(p)) . . .). Here, each oi

j represents the i-th sub-operation in

the j -th round of an R round cipher. Further, each oi
j can be represented as:

oi
j (x1, x2, . . . .xl) =

h1=l⊕

h1=1

ah1 · xh1 , if oi
j is linear (2.2)

oi
j (x1, x2, . . . .xl) =

h1=2l⊕

h1=1

ah1 ·
∏

h2∈I

xh2 , if oi
j is nonlinear (2.3)
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Table 2.1 List of notations used

Notation Meaning

| · | Size of a set

Fk Block cipher

P, C, K Plaintext, ciphertext, and keyspace

R Total number of iterative rounds in the block cipher

d Total number of sub-operations in each round

oi
j The i-th sub-operation in the j -th round

Ek Data-centric view of the cipher

si
j The state at the input of the i-th sub-operation in the j -th round

λ, m Block size; word-size (size of each word in the cipher state in bits)

l = λ
m

Word count

F A fault instance

X Fault affected register

r , wd, t , f Fault round, width, location and value

δi
j State differential at the input of the i-th sub-operation in the j -th round

w
ij
z A state differential variable (discrete random variable) corresponding to an m-bit

word of the state differential δi
j

�k Set of state differentials of the cipher

pwij

z Probability distribution of w
ij
z

H(·) Entropy

T (.) Dataset for state differentials for each w
ij
z .

{Di
j } Set of distinguishers formed with state differentials

T The enumeration algorithm for the key set using distinguisher

Comp(T ) The complexity of the distinguisher enumeration algorithm

R Remaining keyspace

IS, V S Itemset and variable set

MKS, V G Maximal independent key set, and variable group

Here, I ⊆ {1, 2, . . . .l}, and each ah1 is a constant. The data width of the function
inputs is a notable factor in this description. Given the block width of a cipher is λ

bits, it is processed as m-bit words, where m = λ
l
. We call m as the word size of the

cipher. It is worth mentioning that the data width of each sub-operation might not
be the same for a given cipher. In such cases, we assume the data width of the input
of nonlinear sub-operations as the word size.

In an alternative data-centric view, the cipher Fk is represented as a sequence of
states as follows:

Ek = 〈s1
1 , s2

1 , . . . ., sd
1 , s1

2 , s2
2 , . . . ., sd

2 , . . . .s1
R, s2

R, . . . ., sd
R, c〉 (2.4)

where each si
j represents the input of the i-th sub-operation in the j -th round of

a R round cipher. Intuitively this representation presents an execution trace of the
cipher on a plaintext p and a key k. Each si

j actually refers to an internal state (or
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simply state) of the cipher. The Ek is also referred to as the execution trace of the
cipher. The state sequence begins with the plaintext p = s1

1 . Each state si
j is a vector

of length l of m-bit words. The values assumed by the state vectors are subject to
change with the variation of the plaintext and the key. Intuitively, the data-centric
specification formally represents the simulation data from the cipher.

2.4.3 Formalization of the DFA

The formalization of DFA requires a precise specification of the injected faults. In
general, it is assumed that injected faults are localized and transient so that they can
affect at least one bit from a chunk of contiguous bits within a state, at some specific
round. If a fault affects some part of the input state of the sub-function oi

j , the output

of oi
j will differ from its expected value. We provide a formal representation of

a fault as a tuple F = 〈si1
r , λ,wd, t〉, which is similar to that of [24]. Here, s

i1
r

represents the state, where the fault is injected. It is apparent that r < R. The λ

parameter denotes the data width of the state, wd is the width of the fault, and t is
the fault location within the state. Let us denote any si

j = 〈V1, V2, . . . .Vl〉, where
each Vz (z ∈ {1, 2, . . . , l}) is an m-bit variable. The localized fault, depending on
the scenario, will affect one or more of these variables. In general, this is determined
by the width of the fault wd. To simplify the matter we assume that wd is either ≤ m

or it is a multiple of m. As a result, one or more of the Vzs can be affected by the
fault. For simplicity, it is further assumed that only consecutive Vzs can be affected
by the fault and the location of that is indicated by the fault location parameter t ,
in the fault model. The width of the fault wd is often used to represent the fault
models. In this work, we only consider standard fault models (the bit (wd = 1),
nibble (wd = 4), and byte (wd = 8) fault models), although the framework is not
limited to them.

The reader should notice that the fault model here does not take the value of
the fault and the plaintext into account. In the most general case, every plaintext
and fault value should give rise to a distinct pattern of fault propagation (while all
other parameters like location and width remain unchanged.). Although the attack
complexity, in certain ciphers, may vary over different fault and plaintext values,
classically fault attacks ignore this variation. Instead, they infer a general constraint
for deriving the key by considering all these fault patterns together. This is indeed
an abstraction, and it makes the attack complexity evaluation problem scalable. The
cost of this abstraction is that we always obtain an average case estimation of the
attack complexity.

Once the cipher and the fault model are determined, we can now formally
describe the DFA attack on a cipher. In order to construct a general model
for DFA, we first need to formally define the state differentials and the state
differential variables, already introduced in Sect. 2.2.1. Let us consider the
execution trace Ek of a cipher, as described in (2.4). In order to capture
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the effect of an injected fault, we define a faulty execution trace E′
k =

〈s1
1 , s2

1 , . . . ., sd
1 , . . . ., s

′i1
r , s

′i1+1
r , . . . ., s

′d
r , . . . ., s

′d
R , c′〉. Here each s

′i
j denotes

the faulty input of the i-th sub-operation in the j -th round (r ≤ j ≤ R)
starting from the injection point of the fault at round r . Before the r-th round
the states remain the same. A state differential is defined as δi

j = si
j

⊕
s′ij =

〈V ij

1 ⊕ V
′ij
1 , V

ij

2 ⊕ V
′ij
2 , . . . , V

ij
l ⊕ V

′ij
l 〉 = 〈wij

1 , w
ij

2 , . . . , w
ij
l 〉, r ≤ j < R,

where V
ij
z denotes the z-th m-bit correct state variable, and V

′ij
z denotes

the corresponding faulty state variable. For each such word, ⊕ denote the
bitwise XOR operation. Each w

ij
z denotes a state differential variable. Finally,

we define another formal structure called differential execution trace �k as
�k = 〈δi1

r , δ
i1+1
r , . . . ., δd

r , . . . , δ1
R, δ2

R, . . . ., δd
R〉. Each of the state differentials

δi
j in �k may potentially form a distinguisher.

Given a cipher Fk and a fault F in it, the DFA can be formally described as

A = 〈{Di
j },T ,R〉 (2.5)

where

• {Di
j } denotes a set of distinguishers defined over the state differential variables

of some state differential δi
j .

• T is the exhaustive enumeration algorithm for the key set K via distinguisher
evaluation. A proper divide-and-conquer strategy is essential for this enumeration
algorithm, which enables the evaluation of the distinguishers in parts. The time
complexity of the enumeration algorithm is one of the determining factors of the
overall DFA complexity, which is O(2n), with n ≤ log2(|K |). For practical cases
n 
 log2(|K |), whereas n = log2(|K |) implies no gain from the perspective of
an attacker.

• R is the remaining key search space after the injection of a single instance of
the fault F . The evaluation of the distinguishers over the complete key set K
partitions the set into two non-overlapping subsets Kw and Kcr ; the first one
being the set of wrong keys and the second one being the set of candidate keys
one of which is the correct key. Evidently, R = Kcr and |R| 
 |K | for an
efficient fault attack. One should note that it is sufficient to consider the search
space reduction for one single fault instance, as the reduction for multiple fault
instances can be easily calculated from that. R is often represented as the solution
set of a system of equations or inequations, involving the keys and distinguisher
variables.

2.5 A Framework for Exploitable Fault Characterization

In this section, we describe the proposed automated framework in detail. The
following subsections will provide generic algorithms for computing each of the
components described in (2.5). The input to the framework is a mathematical
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description (linear layers as matrices and the S-Boxes as tables) and an executable
model (software/hardware implementation) of the target block cipher along with an
enumeration of the fault space under consideration. The output is the exploitable
fault space.

2.5.1 Automatic Identification of Distinguishers

In the last section, we have abstractly defined distinguishers as state differentials
having certain mathematical or statistical properties. However, a metric is required
which can identify the state differentials having such special properties and also
quantify the goodness of distinguishers. We define such a metric based on the
entropy of state differentials. Here the state differential variables are considered as
random variables.

Definition 2.1 (Entropy of a State Differential) The entropy of a state differential
δi
j = 〈wij

1 , w
ij

2 , . . . , w
ij
l 〉, where each w

ij
z is a discrete random variable with

probability distribution pwij

z , is defined as H(δi
j ) = H(w

ij

1 , w
ij

2 , . . . , w
ij
l ), that is

the joint entropy of the random variables in the state differential.

Definition 2.2 (Maximum Entropy of a State Differential) The maximum
entropy of a state differential δi

j = 〈wij

1 , w
ij

2 , . . . , w
ij
l 〉, is defined as Hmax(δ

i
j ) =

l∑
z=1

Hmax(w
ij
z ) =

l∑
z=1

(
−

2m−1∑
q=0

p
w

ij
z

q log2(p
w

ij
z

q )

)
, where each w

ij
z is independent

and uniformly distributed within the range [0, 2m − 1], given m is the bit width of
variable w

ij
z .

Note that the maximum entropy defined here assumes the uniformity and inde-
pendence of the associated random variables within a specific range [0, 2m − 1],
where m is the bit length of each variable. In case, the variable is not uniform
within this complete range the entropy will be less than the maximum entropy.
Correlations among the variables will also cause entropy reduction. Next, we define
the distinguishing criteria—the decision criterion for determining the distinguishing
capability of state differentials.

Definition 2.3 (Distinguisher Criteria) A state differential δi
j is called a dis-

tinguisher if the entropy H(δi
j ) is less than the maximum entropy of the state

differential.

The main idea of our dynamic distinguisher identification scheme is to learn the
distinguishers from the fault simulation data, acquired from the executable cipher
model by varying the plaintexts, keys, and the fault values. Let us consider the
differential execution trace �k corresponding to a fault F . The values assumed by
the variables associated with �k vary with the change of plaintext, key, and the
fault value. Such variations result in a fault simulation dataset which is analyzed to
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Algorithm 1: Procedure RngChk

Input : The dataset for a state δi
j as Tδi

j
= 〈T

w
ij
1
, T

w
ij
2
, . . . , T

w
ij
l

〉
Output : 〈{Rng

w
ij
z
}lz=1, HInd(δi

j )〉
1 HInd(δi

j ) := 0;

2 for each T
w

ij
z
∈ Tδi

j

6 do

3 Store all distinct values assumed by w
ij
z in Rng

w
ij
z

� 7;

4 Calculate the probability distribution of w
ij
z as p′wij

z � 8;

5 Calculate the Entropy of w
ij
z as HInd(w

ij
z ) using p′wij

z ;

6 return: 〈{Rng
w

ij
z
}lz=1, HInd(δi

j )〉

identify distinguishers. Let us denote the datasets corresponding to each state differ-
ential δi

j as Tδi
j
. Each Tδi

j
is a table, containing l, m-bit variables w

ij
z (1 ≤ z ≤ l) and

data values, corresponding to each of them. For convenience, we further denote each
column of a Tδi

j
as T

w
ij
z

. Corresponding to each fault according to our formalization,

we have many such tables corresponding to each state differential in �k . Typically, a
subset of the possible state differentials actually qualifies as potential distinguishers.
We denote T�k

= 〈Tδ1
r
, Tδ2

r
, . . . ., Tδd

r
, . . . , Tδ1

R
, Tδ2

R
, . . . ., Tδd

R
〉 as the set of the

tables for the state differentials. Our data-based framework tests each δi
j separately

and decides whether it constructs a distinguisher. Two distinct cases can be identified
in the course of the distinguisher identification which we outline next.

2.5.1.1 Case 1: The Variables Are Independent, But Not Uniform Within
the Complete Range

In this typical case, the probability distributions of individual state differential vari-
ables change, while they still remain independent. Decrease in individual entropies
of the variables due to their non-uniformity over the complete range [0, 2m−1] (note
that uniformity may still hold over some sub-range of [0, 2m − 1]) causes a drop in
the total state differential entropy. The situation is described in Algorithm 1, where

the changed probability distributions are denoted as p′wij

z (z = 1, 2, . . . , l), and the

joint state differential entropy as HInd(δi
j ) = ∑l

z=1(−
∑2m−1

q=0 p′wij
q

z log2(p
′wij

q
z )).

Each column of the table Tδi
j

(denoted as T
w

ij
z

), corresponding to each variable w
ij
z

6z = 1, 2, . . . , l.
7Values of w

ij
z belongs to the set {0, 1, . . . 2m − 1}.

8p′wij
z

q := #q
|T

w
ij
z
| , where #q denote the frequency of q ∈ {0, 1, . . . 2m − 1} in T

w
ij
z

.
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Fig. 2.2 Fault propagation in impossible differential fault attack on AES and formation of the
IDFA property (marked in red). None of the variables in this state differential can assume the value
0 for the correct key guess [20]

is treated separately for missing values (if any) within the range of [0, 2m − 1]. As
a concrete example, if a state differential poses an impossible differential property,
none of the w

ij
z s can assume value 0, and as a result, the value 0 will be missing

in the table T
w

ij
z

for any z. Information regarding the values which are not missing

are important in the context of the distinguisher and hence preserved for each w
ij
z

in the set Rng
w

ij
z

. Typical examples of Case 1 include the IDFA attack on AES and
the attack on PRESENT described in [14].

Example 2.1 (IDFA Attack Distinguisher on AES) IDFA attacks exploit a typical
cipher property that, depending on the fault, the variables of a state differential
corresponding to some internal state of a cipher may not attain certain values within
their domains. Such a property is used in IDFA attacks to distinguish correct key
guesses from wrong ones. For the IDFA attack on AES, a byte fault is injected at
the beginning of the seventh round of the cipher resulting in some state differentials
none of whose variables can assume the value 0, with the correct key guess. The
situation is elaborated in Fig. 2.2, where each large square represents an intermediate
state differential of AES, with the fault injected at the beginning of the seventh
round in the zeroth byte location. Each small square in the figure represents a
state differential variable of size one byte. The shaded states in Fig. 2.2 denote the
existence of an impossible differential, with all bytes being active (fault difference
cannot be 0). It is convenient to use the last among them as a distinguisher due to its
proximity to the ciphertext (marked red in Fig. 2.2).

It is apparent that the distinguisher identification framework of ours identify
this impossible differential property as an instance of Case 1. The RngChk
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function detects the absence of 0 in each of the variables, and as a result, the

entropy becomes HInd(δ3
9) = ∑16

z=1(−
∑28−1

q=0 p′wij
q

z log2(p
′wij

q
z )) = ∑16

z=1(−0 −
∑28−1

q=1
1

255 log2(
1

255 )) = ∑16
z=1(−255 × 1

255 log2(
1

255 )) = 127.90, which makes
the state differential qualify as a distinguisher. One should note that the state
differentials δ1

9 and δ2
9 also possess the impossible differential property and are

detected by the RngChk routine.

Example 2.2 (A Distinguisher on PRESENT) In this example, a fault is injected at
the beginning of the 28th round of the PRESENT cipher. The width of the fault is of
16 bits. The distinguisher identification algorithm, in this case, identifies the input
state of the S-Box of the 30th round (δ1

30) as the best distinguisher (i.e., with lowest
entropy). The RngChk function identifies that each of the 4 bit variables in this
state differential can assume only two values among 24 possible values (although the
two values assumed may change depending on the fault locations), and as a result,
the entropy becomes HInd(δ2

30) = ∑16
z=1(−2 × 1

2 log2(
1
2 )) = 16. This example

establishes that the distinguisher identification algorithm works fine with multiple
nibble/byte fault models.

2.5.1.2 Case 2: The Variables Are Not Independent

The second case of the distinguisher identification problem deals with the sce-
narios where correlations exist between some of the variables within a state
differential, which eventually cause the reduction of state differential entropy.
Typical examples exist for the ciphers with MDS matrices. Detection of the
associations/correlations among the variables is crucial for calculating the entropy
HAssn(δ

i
j ) = H(w

ij

1 , w
ij

2 , . . . , w
ij
l ) in this case. We utilize well-known association

rule mining (itemset mining) strategies for this purpose.

Frequent Itemset and Association Rule Mining

Association rule/itemset mining is a widely explored, classical problem in the
domain of data mining, which refers to the discovery of association relationships
or correlations among a set of items. Formally, given a large number of variables
(attributes) (var1, var2, . . . , varn), and a table/database of values they assume
within their respective domains, an item is defined as varq = val, where val

lies in the domain of varq . The simplest case occurs while dealing with discrete-
valued variables having small ranges, where each item can be defined precisely. If
I = {i1, i2, . . . , ia} is a set of all items constructed from a table of discrete valued
variables, then any Is ⊂ I is called an itemset. The prime task of an association rule
mining algorithm is to figure out associations (if any) of the form A ⇒ B, where
both A and B are propositional logic formulae over the items.

In the present context, we are mainly interested in itemsets and the variables asso-
ciated with them. The number of all possible itemsets is exponential with the size of
I , and most of them are not interesting for practical purpose. This fact leads to the
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Table 2.2 Frequent itemset
mining: toy example

TID v1 v2 v3 v4 v5

1 1 5 7 8 11

2 2 4 6 9 13

3 1 5 7 10 2

4 2 4 6 11 4

5 3 9 8 6 5

6 1 10 11 9 8

finding of itemsets occurring frequently in a table, which is known as frequent item-
set mining. The frequent itemset mining task is governed by a statistical parameter
support, which represents the frequency of occurrence of an itemset in the database.
Formally support of an itemset Is in a table/database DB is defined as supp(Is) =
|Is(ti)|/|DB|, where Is(ti) = {ti |ti is an entry in DB and ti contains Is}.
An itemset is called a frequent itemset if its support is greater than or equal to some
predefined minimum support value. Further, an itemset is called a maximal frequent
itemset if none of its immediate supersets is frequent.

To illustrate the above-mentioned concepts precisely, let us consider the toy
database presented in Table 2.2. There are five discrete valued variables in this table
having value ranges from 1 to 13. We set the support as 2

6 = 0.33. It can be easily
figured out from Table 2.2 that there are two itemsets of size 3, beyond this support
threshold—namely, (v1 = 1, v2 = 5, v3 = 7) and (v1 = 2, v2 = 4, v3 = 6).
It is worth to note that no superset of these itemsets is frequent (that is, these are
the maximal frequent itemsets), and all subsets of these are frequent. Further, it is
interesting to note that for variable v4 and v5 all the itemsets are of cardinality 1.
Intuitively, this implies that the variables v4 and v5 are statistically uncorrelated.
Note that setting the proper support is imperative, as otherwise, one may obtain a
large number of itemsets of little practical interest.

Finding Itemsets Within State Differentials

In the context of distinguisher identification, we are mainly interested in the
maximal frequent itemsets within some reasonable support. The key idea is to figure
out the variables within a state differential, which are strongly correlated. For this
purpose, we utilize the well-known Apriori association rule mining framework. The
complete procedure is described in Algorithm 2. The algorithm takes a Tδi

j
as input,

which is then fed to the Apriori function after some basic preprocessing. From
each of the itemsets generated by the miner, we separate out the variables and create
sets called Variable Sets. Variables within the same variable set are dependent,
whereas they are assumed to be independent across different variable sets. Multiple
itemsets exist corresponding to each Variable Set and a table is formed which
stores each Variable Set, along with its corresponding itemsets. This table contains
complete information regarding the distinguisher of our interest and is represented



30 S. Saha et al.

Algorithm 2: Procedure Miner
Input : Tδi

j
= 〈T

w
ij
1
, T

w
ij
2
, . . . , T

w
ij
l

〉

Output : 〈V Sδi
j
, {ISv

δi
j

}
|V S

δi
j
|

v=1 , HAssn(δ
i
j )〉

1 〈V Sδi
j
, {ISv

δi
j

}
|V S

δi
j
|

v=1 〉 := Apriori(Tδi
j
);

2 HAssn(δ
i
j ) := 0;

3 for each v ∈ V Sδi
j

do

4 tot := VarCount(v) × m � 9;
5 p′v

q := 1
|ISv

δi
j

| , ∀q ∈ ISv

δi
j

� 10;

6 p′v
q := 0, ∀q �∈ ISv

δi
j

;

7 HAssn(v) := −
2tot−1∑
q=0

p′v
q log2(p

′v
q ) � 11;

8 HAssn(δ
i
j ) := HAssn(δ

i
j ) + HAssn(v);

9 return: 〈V Sδi
j
, {ISv

δi
j

}|V S
δi
j
|

v=1
, HAssn(δ

i
j )〉.

here as a pair (V Sδi
j
, {ISv

δi
j

}|V S
δi
j
|

v=1
), where V Sδi

j
denote the set of all variable sets

and {ISv

δi
j

}|V S
δi
j
|

v=1
denote the set of itemsets corresponding to each variable set v.

Next, the state differential entropy is calculated using this table, which involves the
calculation of the joint distribution followed by the joint entropy of each variable
set v ∈ V Sδi

j
(line 6–8 in Algorithm 2). Using the independence assumption of the

variable sets, these entropies can be summed up giving the total entropy of the state
as HAssn(δ

i
j ).

Example 2.3 (A Distinguisher for AES with a Byte Fault Injected at the Beginning
of Eighth Round) This example elaborates the Case 2 of the distinguisher
identification problem. In this attack a byte fault is injected at the zeroth byte
of AES state at the beginning of eighth round. The propagation of the fault is
illustrated in Fig. 2.3. Let us consider the state differential δ1

10, which is the output
of the ninth round MixColumn. This state differential achieves the smallest entropy
value and is eventually selected as the potential distinguisher for the attack. We now
elaborate the entropy calculation for this state differential. The state differential
δ1

10 = 〈w110
1 , w110

2 , . . . , w110
l 〉 contains 16 state differential variables, each with

9VarCount returns the number of variables in a variable set.
10Calculate the probability distribution of each variable set.
11Calculate the entropy of variable sets.
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Fig. 2.3 Fault propagation in AES with the fault injected at the beginning of eighth round.
Distinguisher is formed at the input of the tenth round S-Box (marked in red) [20]

bit-width m= 8. The maximum entropy here is Hmax(δ
1
10)= 128. However,

the function Miner reveals variable associations. More specifically, there
are four variable sets (w110

1 , w110
2 , w110

3 , w110
4 ), (w110

5 , w110
6 , w110

7 , w110
8 ),

(w110
9 , w110

10 , w110
11 , w110

12 ), and (w110
13 , w110

14 , w110
15 , w110

16 ) (variable numbering
was done column-wise maintaining the convention in AES), each having 255
itemsets for them. The joint entropy of each variable set v becomes HAssn(v) =∑255

q=1
1

255 log2(255) = 7.99, which finally results in the state differential entropy

of HAssn(δ
1
10) = 4 × 7.99 = 31.96.

Complete Distinguisher Identification Flow

The complete distinguisher identification algorithm takes the dataset T�k
=

〈Tδ1
r
, Tδ2

r
, . . . ., Tδd

R
〉 as input, and outputs a set Dist = {〈Di

j , H i
j 〉}, where Di

j

is a distinguisher corresponding to the state δi
j (only if δi

j satisfies the distinguishing

criterion), and Hi
j is the entropy of this distinguisher. The entropy Hi

j is typically the

minimum of HInd(δi
j ), HAssn(δ

i
j ) (returned by RngChk and Miner, respectively),

and Hmax(δ
i
j ) (calculated according to Definition 2.2). Indeed, Hi

j < Hmax(δ
i
j )

is the essential criterion for a state differential to qualify as a distinguisher. It
is worth to note that Di

j contains the complete description of a distinguisher,

obtained by combining the outputs of RngChk and Miner, given by Di
j :=

〈{wij
z }lz=1, {Rng

w
ij
z
}lz=1, V Sδi

j
, {ISv

δi
j

}|V S
δi
j
|

v=1
〉. The pseudocode for this algorithm

is rather straightforward and is thus omitted here.
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Determining the Proper Distinguisher

The distinguisher identification step usually returns a set of potential distinguishers
with their respective entropies specifying their qualities. In general, the distinguisher
having the lowest entropy is the best for obvious reasons. However, the evaluation
complexity of a given distinguisher plays a crucial role in its selection for a practical
attack, as will be shown in the next subsection. After the completion of the first
phase of the algorithm, we simply retain all the discovered distinguishers. This
is because their usefulness is difficult to decide at this point. However, some of
the distinguishers can be instantly eliminated based on some simple rules. It is
mandatory to have an S-Box between any distinguisher and the ciphertext. In an
even strict sense, if one intends to extract round keys from a specific round with a
given distinguisher, he/she must have an S-Box between the distinguisher and the
key addition step. Otherwise, the difference equations for key extraction cannot be
constructed. Based on this rule, one can clearly eliminate some of the distinguishers,
if possible. A concrete example of such a situation is discussed in the next section
in the context of IDFA attack on AES.

2.5.2 Enabling Divide-and-Conquer in Distinguisher
Enumeration Algorithm T

Injection of a fault results in a set of distinguishers with different entropy values,
as shown in the previous subsection. However, only a few of them are practically
utilizable for attack, as the usability of a distinguisher depends on the complexity
of evaluating it exhaustively. In DFA, the distinguishers are evaluated in the form
of a system of difference equations (or inequations) and the solution space of the
system results in a reduced set of candidate keys containing the correct key. Given
this system, the practicality of a DFA attack depends on two factors:

1. Distinguisher Evaluation Complexity: The complexity of exhaustively enumer-
ating the system for all possible key guesses.

2. Offline Complexity: Size of the remaining keyspace after distinguisher evalua-
tion, which has to be searched exhaustively.

Following the notation described in Eq. (2.5), we denote the Distinguisher Eval-
uation Complexity with Comp(T ), where T is the distinguisher enumeration
algorithm and Comp(·) denotes the complexity of an algorithm. The Offline
Complexity, on the other hand, is denoted with |R|, where R is the remaining
keyspace after distinguisher evaluation. The Comp(T ) and the |R| can be estimated
once the systems of equations for the distinguishers are in place. The Attack
Complexity of a DFA can be determined as:

Comp(A) = max(Comp(T ), |R|) (2.6)
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One should note that the definition of attack complexity at this point assumes that
only one fault instance has been injected. The attack complexity indeed depends on
the number of faults injected. However, for most of the cases the required number
of injections for making an attack practical can be determined from the value of
Comp(A) with a single fault instance and so we define it in terms of a single
injection.

Knowing the systems of difference equations a priori is not a very practical
assumption for an automated tool, as it depends upon the distinguisher(s) chosen.
The most critical factor associated with distinguisher evaluation is to choose
a proper divide-and-conquer strategy for enumerating the solution space of the
difference equation system. Instead of guessing the complete key at once (which
has a prohibitively large complexity), such a strategy allows guessing small key
parts exhaustively and as a result the correct key can be recovered in parts with
a practical time complexity. In this work, we construct such equation systems
automatically in an abstract form, which is suitable for the purpose of attack
complexity evaluation. Further, this abstract description can be extended to concrete
fault difference equations, if required. To automatically determine the divide-and-
conquer strategy we propose a graph based abstraction of the cipher called cipher
dependency graph (CDG). Let us represent each state si

j as si
j = 〈bij

1 , b
ij

2 , . . . ., b
ij
λ 〉,

where each b
ij
z corresponds to a bit variable.12 Given this representation of the

states, we define the CDG for a block cipher as follows:

Definition 2.4 (Cipher Dependency Graph) A cipher dependency graph (CDG)
for a block cipher is a directed acyclic graph (DAG) G〈V,E〉, where every node
v ∈ V corresponds to a bit variable b

ij
z (1 ≤ z ≤ λ) at the input of round j and sub-

operation i of the cipher. A directed edge e ∈ E represents the dependency between
two bit variables belonging to two consecutive states si

j and si+1
j (or s1

j+1) imposed

by the sub-operation oi+1
j at the abstraction level of bits, considering the bit variable

of si
j as input, and that of si+1

j as the output, respectively.

Certain simplifying assumptions were made, while constructing the CDGs. Some
basic CDG building blocks are illustrated in Fig. 2.4. For the S-Boxes, we assume
that each output variable is dependent on all the S-Box inputs (Fig. 2.4a). The key
addition operations are represented by structures shown in Fig. 2.4b. Permutation
layers are often straightforward and thus not shown here. However, some linear
operations like MDS matrices need special care (more specifically the linear layers
which involves XOR operations). Figure 2.4c, d represents one such scenario for 8
bit variables, which are shown in groups for convenience. Figure 2.4c represents
how an individual 8 bit variable is treated in the CDG for MDS, and Fig. 2.4d
represents the complete graph structure for one complete column of the MDS
layer output. The MDS structures are also complete graphs (of 32 vertices in this
example). It is worth to mention that the graph G is completely cipher-specific, and

12This is in contrast to the last subsection, where they (the states) were represented as vectors of
variables of size m bits.
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Fig. 2.5 Example: finding key parts for the distinguisher evaluations in PRESENT [20]

thus one needs to construct it only once while doing the exploitable fault analysis
for a specific cipher. A CDG corresponding to a fault attack test case on PRESENT
is illustrated in Fig. 2.5. For ease of understanding, only the sub-graph relevant to
an attack example is shown.13 Interestingly, the CDG is already divided into clearly
identifiable levels.

13We have described the distinguisher corresponding to this attack in Example 2.2.
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The CDG graph of a cipher abstracts several mathematical details of the
S-Boxes and certain linear layers like MDS matrices. However, such abstrac-
tions are again consistent with the assumptions of classical fault analysis.
Moreover, the aim of the ExpFault tool is to construct the attack structure
and to estimate the complexity which can be achieved in a scalable way only
by means of such abstractions.

Construction of a Divide and Conquer Strategy

The next step to the CDG construction is the identification of independent key parts
to be guessed. For a given distinguisher, we initiate a series of breadth first searches
(BFS) up to the ciphertexts nodes of the CDG. Each BFS search begins with a
bit variable at the state, where the distinguisher has been constructed. The search
typically figures out all the mutually dependent bit variables starting from the start
node, in the form of the BFS tree (refer to Fig. 2.5 for example). Once the BFS tree
is obtained, one can figure out the key nodes attached to it in O(1) complexity.

Example 2.4 For the sake of illustration, let us refer to Fig. 2.5 once again. The
distinguisher under consideration is the one described in Example 2.2, which is
being constructed at the input of the 30th round S-Box operation (the first layer of
nodes shown in Fig. 2.5.) In the figure, the colored circles represent the associated
state bits one must compute to calculate the first bit in the distinguisher. The key
bits one need to guess to calculate the shaded state bits are shown in red, while
the associated state bits are represented in grey. All the colored variables here are
the part of a BFS tree. Further, from the BFS tree of Fig. 2.5, the key variables to
be guessed can be extracted which are 20 in number for the first bit. In summary,
to calculate the first bit of the distinguisher, it is sufficient to guess these 20 bits
together and no other key bit is required to be guessed. This provides the divide-
and-conquer we require.

Optimizations

Certain intricacies are there to be taken care of while collecting the independent
key parts for a distinguisher. Interestingly, not all key variables obtained by the BFS
search are necessary. To illustrate this, we refer to Fig. 2.6a, which corresponds to
the partial CDG for the IDFA attack on AES.14 For convenience, the word level
representation of the CDG is also provided along with (Fig. 2.6b). It is easy to
observe from the word level representation that the key bits corresponding to k9
are not required to be guessed for distinguisher evaluation. The reason behind this

14The IDFA distinguisher was described in Example 2.1.
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Fig. 2.6 Example: finding key parts for the distinguisher evaluations in AES [20]

fact is that there is no nonlinear layer between the key variables in k9 and the
distinguisher in S9

SR . As a result, these key variables get cancelled out with the
calculation of the differential. However, these key variables will still be detected by
the BFS based search. Fortunately, we can easily enhance the proposed mechanism
to encompass such scenarios. The idea is to keep the track of the nonlinear layers (S-
Boxes) encountered, at each level of the CDG during the BFS traversal. This can be
easily done by maintaining counters within the nodes of the CDG. While collecting
the key variables, if it is found that the level corresponding to the key variables is
not preceded by any S-Box level, the keys can be discarded. Referring to Fig. 2.6a,
the key nodes in blue color thus can be discarded. The first bit of this distinguisher
can be evaluated by guessing just 32 key bits of k10.

Calculation of the Distinguisher Evaluation Complexity

The BFS based key part finding algorithm actually returns sets of key bits,
corresponding to each bit of the distinguisher state. However, in order to calculate
the quantities Comp(T ) and |R| we need to exploit some more structural properties
of the cipher, already present in the CDG. As for most of the time, we are
dealing with m bit distinguisher variables, it is trivial to combine the key bit sets
corresponding to each m bit variable. One should also consider combining the key
bit sets corresponding to the variable sets (if any). While evaluating any of these
variables/variable sets, the corresponding keys must be guessed simultaneously. At
this point, certain other things are to be taken care of. Let us consider a distinguisher
δi
j = 〈wij

1 , w
ij

2 , . . . , w
ij
l 〉. Corresponding to each w

ij
z , there exists a set of key

bit variables. An obvious way is to view the relationships as a bipartite graph, as
shown in Fig. 2.7. Without loss of generality, we just consider variables and not
the variable sets in this discussion, although the same logic applies to the later
one. Let us denote the key set corresponding to each variable w

ij
z as Key Set
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(KSz). The key sets, however, may have overlaps. As a concrete example, one
may consider the PRESENT case study depicted in Fig. 2.5. All four consecutive
nibbles in the distinguisher at round 30 (shown in the diagram as layer SB30)
depend upon the same 16 round key bits from the last round. Such overlaps are
extremely important from the divide-and-conquer point of view. This is because the
overlaps indicate that all the difference equations that can be constructed involving
these key bits and the associated variables w

ij
z will share the key variables. As

a result they must be evaluated simultaneously. Putting it in a more simplified
manner, if there are overlaps, computation related to all the overlapping variables
must be performed simultaneously. To deal with such cases, we define maximum
independent key sets (MKS), which are non-overlapping subsets of key variables,
constructed by taking the union of overlapping KSzs. Each MKSh also imposes
a grouping on the corresponding w

ij
z s attached to its component KSs. We call

such groupings as Variable Groups (VG).15 Intuitively, each 〈V Gh,MKSh〉 tuple
refers to a set of independent equations to be solved for the key extraction. In our
graph based representation, we informally refer them as independently computable
chunks/subparts.

Calculation of Comp(T ) becomes trivial after the above-mentioned grouping.
Let us consider an MKS as MKSh and the corresponding variable group as V Gh

(note that variable groups may also include variable sets as its elements.). Each
V Gh can be evaluated independently. Let us assume that we have M such V Ghs
along with their corresponding MKShs. The time complexity of computing each
of them is given as Comp(Th) = 2|MKSh|, 1 ≤ h ≤ M . It is quite obvious that

15Note that we have used the term “group” to differentiate it from the variable sets. From this
point onwards, we shall use variable set and variable group to identify these two separate entities.
Variable sets can be members of variable groups.
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such a search can be performed (and should be) in a parallel manner. As a result, the
overall complexity of the distinguisher enumeration algorithm T becomes:

Comp(T ) = maxh(Comp(T1), Comp(T2), . . . , Comp(TM)) (2.7)

Example 2.5 (IDFA Attack on AES) In this example, we figure out the evaluation
complexity of the IDFA distinguisher. It is observed that each byte of the distin-
guisher depends on 32 key bits from the tenth round. Further, four consecutive state
differential variables are found to depend on the same 32 key bits. Following our
notation size of each V Gh here is four state differential variables and the associated
MKSh contains 32 bits of key. Clearly, the distinguisher evaluation complexity
Comp(T ) becomes 232 in this case.

Example 2.6 (AES with Eighth Round Fault Injection) In this case, the distinguisher
consists of four variable sets, containing four variables each. Each 8-bit variable in
the distinguisher state depends on eight consecutive key bits (that is key bytes),
and with the existence of variable sets having cardinality four, one must consider
8 × 4 = 32 key bits simultaneously, for guessing (i.e., |MKSh| = 32). Further, the
key bytes associated with each variable set are independent, and hence each V Gh

will contain only a single variable set. Overall, Comp(T ) = 232.

Example 2.7 (PRESENT with 28th Round Fault Injection) The distinguisher here
is formed at the input of the 30th round S-Box. As it can be seen from Fig. 2.5, each
distinguisher bit (actually each nibble) here depends on 20 key bits. However, due
to the overlappings present in different nibble-wise key sets (KSs), the distinguisher
evaluation process can eventually be partitioned into four independent (MKS, V G)

pairs, each having 32 key bits involved—16 from the last round and rest from the
penultimate round. The size of corresponding V Ghs become 4 state differential
variables each. As a result, Comp(T ) becomes 232.

2.5.3 Complexity Evaluation of the Remaining Keyspace R

The final step in finding a successful DFA is the evaluation of the remaining
keyspace size (|R|) after the fault injection. Often, the complexity remains beyond
the practical exhaustive search complexity with a single fault injection and as a
result, one might require multiple faulty ciphertexts. Nevertheless, the required
number of faults for the successful attack can be estimated from the remaining space
complexity of a single injection, and hence we specifically focus on the remaining
search space with a single fault. A distinguisher Di

j and the corresponding key
parts obtained in the last two steps can be utilized to figure out the remaining
keyspace complexity efficiently. Another important component of this computation
is the differential characteristic of the S-Boxes. Differential characteristic (DC) of
an S-Box S basically reports the average number of solutions an S-Box differential
equation may have. They can be calculated from the difference distribution tables
(DDT) of S-Boxes. The DC values for different ciphers can be found in [15].
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The algorithm for remaining search space evaluation is presented in Algorithm 3.
The main idea in this step is to figure out the probability, with which the distinguish-
ing property occurs during distinguisher enumeration with random key guesses. This
probability is then multiplied with the total keyspace in the corresponding MKS,
giving the remaining search space complexity. Referring to the algorithm, the input
consists of the corresponding distinguisher Di

j and a set of tuples with cardinality
M , which contains the MKSs and corresponding VGs. As an additional component,
the DC characteristic of the S-Boxes Hh

S corresponding to each MKSh, V Gh pair
is also supplied. The Hh

S is the DC value corresponding to each (MKSh, V Gh)

pair. In some cases, a distinguisher may involve multiple S-Box layers and as a result
Hh

S should be multiplied many times for each distinguisher variable (or variable set)
evaluation. To keep things simple we directly provide the algorithm with properly
tailored values within Hh

S . Values of the Hh
S with above-mentioned tailoring can be

trivially obtained from the CDGs described in the last subsection, just by keeping
track of the S-Boxes encountered with the distinguisher.

Example 2.8 (IDFA Attack on AES) In this case, it turns out that |R|V G1 = 232 ×(
255
28

)4
(roughly equal to 232 − 226). This is because each state differential variable

in V G1 assumes the distinguishing property with probability 255
28 and there are four

such variables in V G1. The size of the remaining keyspaces is the same for other
three 〈MKSh, V Gh〉 pairs. The large size of the remaining keyspace indicates the
need of multiple fault injection. Although the estimation of the required number
of faults here is slightly nontrivial due to the impossible differential inequalities
involved, it can be estimated using the construction from [9]. Overall, the attack
complexity is O(232) and total 211 faults will be required to extract the key
uniquely [9].

Example 2.9 (AES with Eighth Round Fault Injection) The MKS and VGs, which
are the inputs to the Algorithm 3 are 4 in number in this case. Further, each VG
contains a single variable set and 32 key bits corresponding to that. One needs
to consider the number of itemsets corresponding to each variable set (or variable
group, as in this case each group contains a single variable set) in this case. For each
of the four variable sets, the probability of occurrence of the distinguishing criterion
is P[V Gh] = 255

232 . The DC characteristic of AES S-Box is found to be 1 and the total

number of key possibilities is 232. The remaining keyspace corresponding to each
variable set thus becomes 232 × 2−24 = 28, leading to a complete remaining search
space complexity of (28)4 = 232. One should exhaustively search this remaining
keyspace for the correct key. The total complexity of the attack, considering both
Comp(T ) and |R| thus remains 232.

In [22], Tunstall et al. presented a two-step approach for the attack described
here, which eventually reduces the remaining keyspace size to 28. The idea is
to complete the attack just described, and then to exploit another distinguisher
δ1

9 which was previously costly to evaluate on the complete keyspace. However,
one should notice that the attack complexity still remains 232. The distinguisher
identification framework of ExpFault detects both the distinguishers. The two-
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step attack requires the existence of the inverted key schedule equations. The
proposed tool in its current form can automatically identify the proper sequence
of distinguishers for the attack. However, the algorithm for multi-step attack will
not be outlined in this chapter. Instead, we shall describe it by means of examples
on the GIFT cipher in subsequent sections.

Example 2.10 (Attack on PRESENT) The distinguisher evaluation process, in this
case, can eventually be partitioned into 4 independent 〈MKSh, V Gh〉 pairs, each
having evaluation complexity of 232. For each of the 4 (MKSh, V Gh) pair, the
probability of occurrence of the distinguishing criterion is P[V Gh] = ( 2

16 )4 = 2−12,
and the remaining keyspace size is |R|V Gh

= 220. With a single fault injection, thus
the keyspace reduces to 280 from 2128 16 in this case, and the attack demands the

Algorithm 3: Procedure EVAL_ SEARCH_ SPACE

Input : Di
j , {〈MKSh, V Gh,Hh

S 〉}Mh=1
Output : Complexity of the remaining search space R, after one fault

injection (|R|)
1 |R| := 1;
2 for each V Gh do
3 P[V Gh] := 1;
4 for each gh ∈ V Gh do
5 if (V Sδi

j
== φ); // if Di

j includes no variable sets

6 then
7 count := |Rnggh

|;
8 bc := m;
9 else

10 count := |IS
gh

δi
j

|;
11 bc :=VarCount(gh) ×m;

12 P[V Gh] := P[V Gh] × count
2bc

;

13 ksize := BitCount(MKSh) � 17;
14 |R|V Gh

:= 2ksize × P[V Gh] × (Hh
S )|V Gh|;

15 |R| := |R| × |R|V Gh
;

16 return: |R|.

16The distinguisher here simultaneously extracts round keys from the last two rounds of PRESENT.
Total 128 key bits are extracted which can uniquely determine the 80 bit master key by using key
scheduling equations.
17BitCount returns the number of bit variables in (MKSh).
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injection of at least another fault (complexity becomes (232 × (2−12)2)4 = 232,
which is fairly reasonable). In summary, with two fault injections of 16 bit width,
the 80 bit key can be figured out with Comp(T ) = 232 and |R| = 232.

Discussion

Before going to the case studies, let us summarize the ExpFault framework in
nutshell. For each fault instance, the tool analyzes all state differentials starting
from the fault injection point and figures out a set of distinguishers from them.
Each of these distinguishers is then analyzed with the graph-based framework
and the evaluation and offline complexities are determined. The best performing
distinguisher can be instantly chosen to realize the attack. However, in certain cases,
multiple distinguishers can be combined to get better attacks. In the next section,
we provide a typical example of such situations. Our tool was able to figure out the
optimal attacks in these cases. Further details on the framework are provided in the
appendix.

2.6 Case Studies

Until now we have provided proof-of-concept evaluations of the proposed frame-
work on two well-known ciphers—AES-128 and PRESENT-80. Three known
attacks have been elaborated step by step in the form of examples. However, both
of the ciphers have been examined thoroughly for exploitable faults. It has been
observed that exploitable faults are limited up to 7th round in AES and 28th round
in PRESENT, which agrees with the existing literature. In this section, we evaluate
the ExpFault framework on a recently proposed cipher called GIFT [1]. To the
best of our knowledge, GIFT has never been considered explicitly in the context of
DFA. With the help of the framework, we were able to figure out several interesting
attack instances, which establishes the effectiveness of the proposed framework in
the context of exploitable fault characterization.

2.6.1 Differential Fault Attack on GIFT Block Cipher

GIFT [1] is a lightweight block cipher proposed in CHES 2017. The basic construc-
tion of the algorithm bears resemblance to the PRESENT block cipher. However,
specific changes were made to make it even more lightweight while ensuring
improved resistance against certain attacks like linear hulls. More specifically, GIFT
utilizes a different 4 × 4 S-Box and an improved bit permutation layer along with
a new key addition layer which uses only 32 and 64 bit round keys for GIFT-64
and GIFT-128, respectively. The round keys are derived from a 128-bit key state
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utilizing a simple linear key schedule operation. It has been demonstrated in [1] that
even with these simplifications, GIFT is able to provide comparable (and sometimes
improved) security margins than that of PRESENT, SIMON [3], and SKINNY, for
classical attacks.

In this work, we focus on GIFT-64 which iterates 28 times to generate the cipher-
text. The round structure consists of three sub-operations SubCells, PermBits,
and AddRoundKey, where SubCells is the nonlinear S-Box layer, PermBits
is the bit permutation, and AddRoundKey is the key addition layer. In order to
optimize hardware resources, which is, in fact, the main design goal of GIFT,
the AddRoundKey layer XORs only 32 round key bits and 6 round constant
bits in each round. More specifically, two round key bits are XORed with each
nibble. The simple key schedule operation of GIFT deserves special mention in
this context. It is observed that for any four consecutive rounds, the round keys
used are completely independent of each other. This observation has a significant
impact on the complexities of the fault attacks. In this subsection, we aim to examine
the security of GIFT against differential fault attacks, which to the best of our
knowledge has never been considered explicitly. In [18] authors proposed a side
channel assisted DFA on PRESENT, which is claimed to be equally applicable
for GIFT. In [7] Breier et al. proposed a side channel assisted differential plaintext
attack on PRESENT which seems to be applicable to GIFT as well. None of these
attacks, so far, have tried classical DFA attacks on GIFT, which makes GIFT a
perfect candidate to be evaluated with our proposed framework.

After an extensive evaluation, we figured out several interesting attacks on GIFT-
64, mostly while faults were injected at 25, 26, and 27th rounds. However, due
to incomplete diffusion of the fault at the beginning of the propagation as well
as independent round keys at four consecutive rounds, we found that none of the
aforementioned fault locations can extract the complete 128 bit key alone. Another
injection at a deeper round is thus necessary, and still only one of such fault pairs
can get the complete 128-bit key. Evaluation of these attacks was done based on
three parameters—the distinguisher evaluation complexity Comp(T ), size of the
remaining key search space |R|, and the number of injected faults, all of which are
outputted by our tool for each fault location. A summary of these attacks is presented
in Table 2.3. In this subsection, we shall elaborate one attack where a 4-bit fault is
injected before the S-Box operation at the 25th round, followed by another nibble
fault at the input of the S-Box operation at the 23rd round. This is the most efficient
attack found so far with our framework. Further details of the attacks can be found
in appendix section “More on the DFA of GIFT” of this chapter.

Injection of one 4-bit fault at the beginning of 25 round constructs several
distinguishers. Examples of these distinguishers are provided in Table 2.4. Here
the fault is injected at nibble location 0 from left. The attack will be described based
on these distinguishers, as we have observed that injections at other nibble locations
result in equivalent situations. Notably, none of these distinguishers contain any
variable sets (i.e., variables are independent within the state differentials). However,
the values assumed by the state differential variables differ which eventually
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Table 2.3 Summary of DFA attacks on GIFT

Fault
width Round

Attack results

Evaluation
complexity

|R| No. faults per
location

Keys
extracted Comments

4 24 – – – – No attack found

25, 23 217.53 27.06 1 128 Best attack found

26, 24 26 23.53 1 104 Cannot extract full key

27, 25 26 23.53 1 72 Cannot extract full key
8 24 – – – – No attack found

25, 23 217.53 27.06 1 128 Best attack found

26, 24 26 23.53 1 104 Cannot extract full key

27, 25 26 23.53 1 72 Cannot extract full key

We consider a fault injection a successful attack only if both the evaluation complexity and |R| is
less than the size of the keyspace

Table 2.4 Distinguishers of the best attack (for the first fault injection)

Distinguisher Location Description

D2
27 Input of w227

1 ∈ {0, 3, 5, 7, 9, 13}, w227
2 ∈ {0, 3, 5, 7, 9, 13},

PermBits w227
3 ∈ {0, 3, 5, 7, 9, 13}, w227

4 ∈ {0, 3, 5, 7, 9, 13},
in round 27 w227

5 ∈ {0, 5, 6, 9, 10, 13, 14},
w227

6 ∈ {0, 5, 6, 9, 10, 13, 14},
w227

7 ∈ {0, 5, 6, 9, 10, 13, 14},
w227

8 ∈ {0, 5, 6, 9, 10, 13, 14},
w227

9 ∈ {0, 5, 6, 8, 9, 10, 11, 12, 15},
w227

10 ∈ {0, 5, 6, 8, 9, 10, 11, 12, 15},
w227

11 ∈ {0, 5, 6, 8, 9, 10, 11, 12, 15},
w227

12 ∈ {0, 5, 6, 8, 9, 10, 11, 12, 15},
w227

13 ∈ {0, 3, 7, 11, 15}, w227
14 ∈ {0, 3, 7, 11, 15},

w227
15 ∈ {0, 3, 7, 11, 15}, w227

16 ∈ {0, 3, 7, 11, 15}
D1

27 Input of w127
1 ∈ {0, 4}, w127

2 ∈ {0, 4}, w127
3 ∈ {0, 4},

SubCells in w127
4 ∈ {0, 4}, w127

5 ∈ {0, 2}, w127
6 ∈ {0, 2},

round 27 w127
7 ∈ {0, 2}, w127

8 ∈ {0, 2}, w127
9 ∈ {0, 1},

w127
10 ∈ {0, 1}, w127

11 ∈ {0, 1},w127
12 ∈ {0, 1},

w127
13 ∈ {0, 8}, w127

14 ∈ {0, 8}, w127
15 ∈ {0, 8},

w127
16 ∈ {0, 8}

D1
26 Input of w126

1 ∈ {0, 4}, w126
2 ∈ {0}, w126

3 ∈ {0}, w126
4 ∈ {0},

SubCells in w126
5 ∈ {0, 2}, w126

6 ∈ {0}, w126
7 ∈ {0}, w126

8 ∈ {0},
round 26 w126

9 ∈ {0, 1}, w126
10 ∈ {0}, w126

11 ∈ {0}, w126
12 ∈ {0},

w126
13 ∈ {0, 8}, w126

14 ∈ {0}, w126
15 ∈ {0}, w126

16 ∈ {0}
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create the distinguishing properties. The very first distinguisher utilized is being
constructed in round 27 at the output of the S-Boxes (D2

27). This distinguisher
(Row 1 of Table 2.4) results in the extraction of the round keys of the 28th
round. The evaluation complexity of this distinguisher is Comp(T ) = 28 and the
|R| = 211.53 ≈ 212, with a single fault injection. In other words, one needs to guess
the 32 bit round key in 8 bit chunks to reduce the key search space from 232 to 212.18

The cause of obtaining such Comp(T ) is elaborated in appendix section “More on
the DFA of GIFT” with graphs outputted by the tool.

In order to obtain the master-key of GIFT, one must extract all the 128-bits.
Unfortunately, the equations from the key schedule cannot be used in extracting rest
of the key-bits with the knowledge of 32 bit, due to the very special nature of GIFT
key schedule mentioned above. One must extract all four consecutive round keys in
order to get a complete attack. In this scenario, our framework efficiently exploits all
other distinguishers obtained. The second distinguisher that we utilize is constructed
at the input of the S-Boxes at round 27 (D1

27). This distinguisher, which can extract
the round keys of round 27, has an evaluation complexity of 22 provided the keys of
round 28 are known. For each of the 212 choices of the 28th round key, the size of
the remaining keyspace (i.e., the keyspace of the round keys from 27th round) is 1,
which leaves us with total 212 choices for the keys of last two rounds.

In the third phase of the attack, we utilize the distinguisher formed at the input
of the S-Box layer of round 26 (D1

26). With the knowledge of the keys from
round 27 and 28, keys of round 26 can be determined uniquely with an evaluation
complexity of 22 only. However, it is worth noting that only 8-bit keys of round
26 can be extracted in this case, as the fault only affects the input of 4 S-Boxes
here (incomplete diffusion). As a result, the evaluation this distinguisher leaves
us with total 212 (211.53) choices for 72 bits of the last 3 round keys (32 key bits
from round 28, 32 bits from round 27, and 8 bits from round 26). Also, no other
distinguisher is left which necessitates the injection of another fault. In the final
step of the attack, another nibble fault is injected at the input of the S-Box layer of
round 23. One should note that with the knowledge of 27th and 28th round keys,
the last two rounds of the cipher can be decrypted. As a result, the injection at
round 23 results in an exactly same pattern of distinguishers as for round 25, now
up to round 26. In other words, we now exploit the state differentials D2

25, D1
25,

and D1
24 as distinguishers. With the knowledge of 8 key bits from round 26, the

remaining key complexity (round key 26) after the evaluation of D2
25 becomes 23.53

(distinguisher evaluation complexity is 26). Next, D1
25 is utilized to uniquely extract

the keys of round 25 (with evaluation complexity 22 for each choice of the round
26 keys). By means of these two distinguishers, the remaining keyspace complexity
|R| becomes 211.53 × 23.53 = 215.06 for the whole 128 bit secret key. However,
there is still scope of further improvements. It is to be noted that the key material

18Following the terminology used in this chapter, here we have |MKSh| = 8 and |V Gh| = 4.
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at some round ri of GIFT is repeated once again at round ri + 4. As a result, the
key material at round 24 and 28 becomes the same (actually a permutation of each
other). The attack described until now has already reduced the entropy of the 28th
round key to 211.53, which makes the effective entropy of the 24th round key to be
211.53 (instead of 232). Now using the distinguisher D1

24 (which is structurally same
as D1

26), 8 key bits from round 24 can be determined uniquely. The complexity of
this key material, which happened to be 211.53 without this reduction now becomes
211.53−8 = 23.53. To summarize, two consecutive nibble fault injections at round 25
and 23 recover the complete 128-bit key. The remaining keyspace complexity |R| is
211.53−8 × 23.53 = 27.06.19 The overall value of Comp(T ) of this attack is given by
max(28, 22 × 211.53, 22 × 211.53, 26 × 211.53, 211.53 × 23.53 × 22, 211.53 × 23.53 ×
22) = 217.53. Each of the components of Comp(T ) corresponds to an independent
computation chunk which can be executed on a single thread, in parallel to other
similar chunks running in other threads. Such independent computation chucks
result from the divide-and-conquer strategy automatically identified by our tool.

2.7 Chapter Summary

In this chapter, we have proposed an automated framework for exploitable fault
identification in modern block ciphers. The main idea is to estimate the attack
complexity without doing the attack in the original sense. Moreover, the proposed
framework is fairly generic to cover most of the existing block ciphers, and provides
high fault coverage and degree of automation. Three step-by-step case studies on
different ciphers and fault attack instances were presented to establish the claims.
Further, the tool has been utilized to figure out DFA attacks on a recently proposed
block cipher GIFT. Future works will target further automation and generalization
of the proposed framework as well as comprehensive analysis of different existing
ciphers using it. Some obvious future extensions include the attack automation
on key schedule and round counters. Another extremely important goal could
be the detection of integral attacks, DFIA attacks, and MitM attacks [16, 17]
which also seems to be feasible in this data-analysis based framework. Design
of countermeasures with the assistance from this tool could be another research
direction.

Acknowledgements We would like to acknowledge Synopsys Inc, USA for partially supporting
the research through the grant entitled “Formal Methods for Physical Security Verification of
Cryptographic Designs Against Fault Attacks.”

19For each choice of 28th and 27th round keys we have 23.53 choices for 26th and 25 round keys
combined.
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Appendix 1: Implementation Details of ExpFault

This section elaborates the implementation details of an initial prototype of the
ExpFault framework. The tool is mostly written in Python-3, with an exception
for the data mining algorithm (Apriori) for which we use the WEKA [13] toolbox
implemented in Java. In the following subsections, several attributes of the tool
will be elaborated. We shall also point out some limitations of our current
implementation in nutshell.

Assumptions

The main reason behind the development of ExpFault is a fast and cipher-oblivious
characterization of exploitable faults. As we shall show in later subsections, even
in its prototype implementation, ExpFault is able to characterize individual fault
instances within a very reasonable time. In this work, we have characterized each
fault location of the ciphers under consideration in an exhaustive manner (only
up to a reasonable number of rounds.). However, it is worth mentioning that
the characterization can be made significantly faster considering the structural
symmetries present in standard block ciphers. For example, it is well-known that
all 16 byte locations of AES in a specific stage of computation are equivalent as
fault injection points. The presence of such symmetries should extensively reduce
the number of fault locations to be checked. However, a systematic analysis of such
equivalences is out of scope for this chapter.

Exploitable fault analysis is expected to be performed by an evaluator. During
the construction of the framework, we made assumptions which are only consistent
in the context of an evaluator. For example, the fault locations are assumed to be
known, which is indeed a reasonable assumption in our case. However, it is worth
mentioning that the attacks discovered by our tool can be extended in an unknown
fault location context with a reasonable penalty incurred on the attack complexities.

Inputs and Outputs

In its current form, ExpFault takes an executable of the cipher algorithm as input,
which is mainly used to generate fault simulation traces. Simulation traces are
dumped in .arff format which is the default data format for the WEKA toolset.
The framework also expects an input file describing the cipher, which is used to
generate the CDG and other internal data structures. We call this input as the Cipher
Description file. A cipher description file mainly contains abstract descriptions of
the sub-operations as specified in Fig. 2.4. As a concrete example, we provide the
description for two 4 × 4 S-Boxes in Fig. 2.8. It can be observed that the S-Box
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BEGINBLOCK SLAYER
OPTYPE NONLINEAR
OPINPUT 64
OPOUTPUT 64
% 0 = 0,1,2,3
% 1 = 0,1,2,3
% 2 = 0,1,2,3
% 3 = 0,1,2,3

% 4 = 4,5,6,7
% 5 = 4,5,6,7
% 6 = 4,5,6,7
% 7 = 4,5,6,7
:
:
:
:
ENDBLOCK SLAYER

0 1 2 3

0 2 31

4 5 6 7

4 6 75

...

Fig. 2.8 Code snippet from cipher description file and its corresponding graphical representa-
tion [20]

is specified in a bitwise manner, where the number at the left side of the “=” sign
specifies the sink node of a directed edge, and the number at the right side of the
“=” specifies the source nodes. The complete S-Box layer is required to be specified
within a single <BEGINBLOCK>· · ·<ENDBLOCK> construct. Likewise one can
define other sub-operations.

The outputs corresponding to each fault injection is printed in a text file. The
standard output contains the description of all the distinguishers found along with
their entropy. The evaluation complexity of each distinguisher and the size of the
remaining keyspace after distinguisher evaluation is also outputted along with that.
Attack evaluation with multiple distinguishers and key schedule equations is not
fully automated yet. However, the outputs provided are sufficient to figure out
attacks using multiple distinguishers. Example of a single distinguisher is provided
in Fig. 2.9, just to illustrate the output format and the information provided. It is also
possible to extract the independent and parallely executable computation chunks
(resulted from the divide-and-conquer based distinguisher evaluation) in the form
of subgraphs from ExpFault. Such subgraphs are extremely useful for interpreting
and implementing the attacks. Examples of such subgraphs will be provided in the
appendix section “More on the DFA of GIFT”.

Setup for Distinguisher Identification

Frequent itemset mining is crucially dependent on the support parameter of the
mining algorithm. The implementation of the Apriori algorithm we used (from
WEKA package [13]) iteratively decrements the support from a value of 1.0 to



48 S. Saha et al.

-----------------------------------------------------------
Distinguisher Evaluation Complexity (in log scale) 8
Remaining Key Space Complexity (in log scale)
11.53668207643374

Distinguisher Level 79
Round_no 27
Subop_no 2
Has_associations False
Entropy 43.536682076433735

V2 [0, 3, 5, 7, 9, 13, ]
V0 [0, 3, 5, 7, 9, 13, ]
V12 [0, 3, 7, 11, 15, ]
V6 [0, 5, 6, 9, 10, 13, 14, ]
V8 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V14 [0, 3, 7, 11, 15, ]
V3 [0, 3, 5, 7, 9, 13, ]
V1 [0, 3, 5, 7, 9, 13, ]
V5 [0, 5, 6, 9, 10, 13, 14, ]
V10 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V9 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V13 [0, 3, 7, 11, 15, ]
V7 [0, 5, 6, 9, 10, 13, 14, ]
V4 [0, 5, 6, 9, 10, 13, 14, ]
V11 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V15 [0, 3, 7, 11, 15, ]

No Variable sets exist..

----------------------------------

Fig. 2.9 Description of a distinguisher from the output file [20]

a predefined lower bound. To generate all desired maximal frequent itemsets, the
support lower bound of Apriori was experimentally decided to be 1

2m (m: bit length
of each variable). The maximality of the itemsets was ensured experimentally by
varying the support threshold as well as the data set size, which also nullifies the risk
of generating an insufficient number of itemsets. For ciphers having MDS or similar
operations we found that the dataset size of 12, 750 (that is, 10 plaintexts, 5 different
keys, and all 255 possible fault values) for 128-bit ciphers, and 750 for 64-bit ciphers
(10 plaintexts, 5 different keys, and all 15 possible fault values) are sufficient to
discover all possible itemsets. The relatively small dataset size is attributed to their
deterministic fault propagation patterns (i.e., number of active S-Boxes are same
for all fault values at a specific location). However, for ciphers with bit permutation
operations, the dataset size should be larger as the fault propagation pattern becomes
probabilistic. We found that a dataset of 25, 500 works well for both PRESENT and
GIFT. Varying the keys, plaintexts, and the fault values ensure that the discovered
rules/itemsets are independent of all these factors, which is essential for a DFA
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Fig. 2.10 Runtime analysis: different components of the runtime are shown. Runtimes of RngChk
and CDG based complexity analysis are found to be negligibly small (shown in zoom) [20]

distinguisher. An interesting feature of the itemset generation algorithm is that it
returns null when all the variables are independent. The RngChk function does not
require any parameter setting and works fine with the dataset sizes provided above.

There always exists a risk of generating spurious itemsets in frequent itemset
mining, especially with very low support values. However, detecting such spurious
tuples is not very difficult as the variables from consecutive state differentials have
well-defined mathematical relations. Any itemset not obeying these relations can
be easily removed as spurious. In our experiments, we observed some spurious
tuples for GIFT with low support values which were successfully eliminated using
the structural knowledge from the cipher.20 Such structural knowledge is already
available in the form of the CDG and thus can be exploited without incurring any
significant computational cost.

Analysis of Runtime

The runtime of the framework is a crucial factor for exploitable fault identification.
In order to get a clear idea about different subparts of the framework, extensive
runtime analysis was performed. The results are summarized in Fig. 2.10 for
different attack examples considered in this chapter. All the experiments were

20In fact, all the itemsets found for GIFT were spurious and the cipher does not have variable
associations. In such cases, the support can be increased to stop spurious itemset generation.
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performed on a laptop with Intel Core i5 processor, 8 Gb RAM running Ubuntu
16.04 as the OS.

It is evident from Fig. 2.10 that the Apriori algorithm dominates the runtime
which is about 1220 s. for the AES 7th round attack example and moderately less in
other examples. Fortunately, this step can be extensively parallelized as the analysis
of state differential datasets is completely independent of each other. Although
the current prototype does not implement any such parallelization, improvement
of runtime can be anticipated. Similar arguments can be made for the fault
simulation which is another dominating factor in the tool runtime. As an alternative
strategy for runtime improvement, knowledge about the cipher structure can be
exploited. For example, it is quite well understood that ciphers with bit permutation
layers cannot have variable associations. One may opt to skip the itemset mining
step while analyzing such ciphers, in order to improve the runtime. The third
dominating component of the runtime is the data processing operation which is an
implementation specific overhead. This timing overhead is attributed to the python
wrapper for reading .arff files. In future versions of the tool, we shall try to get
rid of such unnecessary overheads. To summarize, the framework takes less than an
hour to analyze each fault instance which can be improved further. The usability of
ExpFault for exploitable fault space characterization is thus evident.

Current Limitations

The limitations of the initial prototype have already been elaborated in the previous
subsection. The tool at its current state cannot directly handle key schedule
relations and attacks on the key schedules. Handling key schedule relations during
complexity calculation is not very difficult and extension of the tool can handle
it. However, handling key schedule attacks will require algorithmic improvements
in the complexity analysis step. It also worth to mention that the current imple-
mentation does not directly handle attacks using multiple distinguishers and minor
human intervention is still required. However, the algorithm for using multiple
distinguishers is straightforward and is planned to be incorporated in the next
version of the tool.21

Appendix 2: More on the DFA of GIFT

In this section, we provide further details about the DFA attacks discovered by the
ExpFault framework. Specifically, we shall elaborate the distinguisher evaluation
complexity of the attack described in our case study with the help of graphs

21One should note that the tool is still in its initial phase and we shall try to address all the above-
mentioned issues before making it open source.
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generated by our tool. This will be followed by a brief discussion on some other
attack instances on the cipher.

Calculation of the Attack Complexity

Let us refer to the attack on GIFT described in Sect. 2.6.1 of the chapter. For each of
the distinguishers found (for injections at round 25 and 23) we perform a series of
BFS searches on the CDG of the cipher, which eventually provides independently
and parallely computable sub-parts (as described in Sect. 2.5.2) along with the attack
complexity (described in Sect. 2.5.3).22 For each of the distinguishers, we provide
the associated sub-graphs from the CDG, generated by our tool. As an example,
Fig. 2.11a corresponds to the sub-graph associated with the distinguisher D2

27—the
first distinguisher utilized for the attack. For convenience, we refer to a magnified
part of this sub-graph in Fig. 2.11b.23 The graph in Fig. 2.11b corresponds to one
independently computable chunk for the D2

27 with 8 associated key bits, which
results in an evaluation complexity of 28. Each numbered node corresponds to
a bit variable of the cipher. The first layer of this graph (shown with its nodes
colored) corresponds to state differential variables from distinguisher D2

27. It can
be observed from Fig. 2.11b that total four state differential variables are associated
with this independently computable chunk (their corresponding bits are shown
with four different colors). These four variables construct a variable group V Gh

according to the terminology used in the chapter. The 16 key nodes in the graph are
highlighted with black circles and squares. Interestingly, the square key nodes are
not required to be guessed to evaluate the distinguisher, as there exists no nonlinear
layer between these keys and the distinguisher. This leaves us with 8 key bits for this
computing part which are the members of the MKSh corresponding to the V Gh.
Evidently, there are 4 such independent computing chunks in total, each with the
same evaluation complexity of 28. As a result, Comp(T ) becomes 28.

The offline complexity |R| of the attack can now be computed individually
for each computing subpart/chunk. Referring to the first computing subpart/chunk,
there are four associated state differential variables w227

13 , w227
14 , w227

15 , w227
16 in V G4,

each of which can take at most five possible values from the set {0, 3, 7, 11, 15}. As a

result, the size of the remaining keyspace becomes |R|V G1 =
(

5
16

)4 ×28 = 2.4414.

In a similar manner, remaining keyspace corresponding to three other computing

chucks can be estimated as |R|V G1 =
(

6
16

)4×28 = 5.0625, |R|V G2 =
(

7
16

)4×28 =
9.3789, and |R|V G3 =

(
9
16

)4 × 28 = 25.6289. The offline complexity |R| thus

becomes 2.4414 × 5.0625 × 9.3789 × 25.6289 = 211.53.

22Refer to Table 2.4 for the description of the distinguishers.
23The round constant bits of GIFT cipher are not shown in the graphs as they are found to have no
effect on the DFA complexity calculation.
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Fig. 2.11 Graph
corresponding to the
distinguisher D2

27 for the
attack with a nibble fault
injection at the 25th round on
GIFT; (a) The complete graph
from the tool (used to extract
the keys of round 28), (b)
One independent computation
chunk/subpart [20]
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Similar computations can be performed for the two other distinguishers from
25th round fault injection. The complexity calculations are even simpler in these
cases as the sub-graph from the CDG is already segregated into 16 independent
components which make the complexity calculations trivial. Figure 2.12 presents
the graph corresponding to D1

27 outputted by ExpFault framework. Here we assume
that the 28th round keys are already set, and as a result, they are not shown in the
graph. It can be noticed from Fig. 2.12b that the computing chuck only contains one
state differential variable and 2 key bits (that is |V Gh| = 1 and |MKSh| = 2). Each
state differential variable in D1

27 may take two different values. As a result |R|V Gh
=(

2
16

)
× 22 = 0.5, which essentially means that the key can be uniquely determined.

Thus 27th round keys can be uniquely extracted, provided some values are set for the
28th round keys. Extraction of the round keys corresponding to round 26, however,
becomes tricky. Due to incomplete diffusion of the fault at this distinguisher (D1

26)
input of 4 S-Boxes get corrupted and as a result, only 8 associated key bits can
be extracted uniquely. With the injection of another nibble fault at round 23, rest
of the key bits from round 26 as well as the keys from round 25 can be extracted.
The distinguishers obtained are exactly the same in this case, but occur two round
earlier. Assuming the key bits from last two rounds and 8 bits of 26th round key
to be known, rest of the keys from round 26 can be extracted with a complexity((

6
16

)4 × 26
)

×
((

7
16

)4 × 26
)

×
((

9
16

)4 × 26
)

×
((

5
16

)4 × 26
)

= 23.53. The

evaluation complexity at this step is 26 (it is not 28 as two key bits from each of
the independent computation chunk is already known). For each choice of 26th
round keys, the round keys of 25th round can be extracted uniquely. The evaluation
complexity here is 22. Finally, we utilize the fact that in GIFT round keys ri and
ri + 4 are permutations of each other with the same entropy. Given this property,
we can further reduce the keyspace using distinguisher D1

24, which has incomplete
diffusion and thus can extract only 8 key bits corresponding to round 24 and 28
uniquely. Combining all these complexities, the whole attack extracts the 128 bit
keys of GIFT with |R| = 23.53 × 211.53−8 = 27.06, with two faults at two different
locations. If the multiplicities of the faults are increased, the keys can be extracted
uniquely. In other words, with two injections at round 25 and two injections at round
23 (same locations), the full key can be extracted uniquely.

Other Attacks on GIFT

Nibble fault injection at the 26th (and 24th) round of GIFT also results in a similar
attack. However, in this case, 104 key bits can be extracted. The attack results
targeting different rounds of the cipher with varying fault widths are presented in
Table 2.3. It is interesting to observe that even with increased fault width of 8 bits
the attacks remain the same. We found that the distinguishers corresponding to 8
bit faults and 4 bit faults are similar (they are same complexity-wise). This is due
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Fig. 2.12 Graph corresponding to the distinguisher D1
27 for the attack with a nibble fault injection

at the 25th round on GIFT; (a) The complete graph from the tool (used to extract the keys of round
27), (b) One independent computation chunk/subpart [20]
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to the fact that the same set of S-Boxes become active by a nibble fault and a byte
fault in GIFT. This fact can be easily verified from the permutation table of the
cipher. It is also worth mentioning that the fault propagation in GIFT (and in any
bit permutation based cipher in general) is probabilistic as the number of the active
S-Boxes (and thus the complexity of the resulting attack) depends on the value of
the plaintext and the injected fault. The complexity figures returned by our tool are
actually the average-case results and the worst-case attack complexity might vary
up to some extent. From the perspective of a cipher evaluator, such average-case
complexity figures are of utmost importance as they typically represent the average
advantage the attacker can have. However, from the perspective of an attacker, the
average success rate is also very interesting. The future versions of this tool will
include measures for calculating such average-case complexities. In the context of
attacks on GIFT cipher, we observed that the increasing width of the fault up to 8
bits actually makes the attacks more likely to happen. This is quite obvious as a
larger fault width always makes the fault propagation more rapid. However, a very
wide fault window may not work as the fault paths will become overlapped resulting
in the destruction of some distinguishing properties. Although we have not done any
such analysis in this chapter, it is worth mentioning that doing such analysis is quite
straightforward using the ExpFault framework.

Appendix 3: Comparison with the AFA and ML-AFA

Automation of fault attacks has gained significant attention from the research
community in the recent past. In this section, we provide a detailed comparison
of the ExpFault framework with the AFA. The AFA is a powerful method for
automated fault analysis [24]. The main idea of AFA is to construct an algebraic
equation system representing the cipher and injected faults. This system is then
solved by means of state-of-the-art SAT solvers, which are sufficiently robust and
powerful to handle such large problem instances. Although the AFA approach is
fairly easy to implement and quite generic in nature, it is not very suitable for
exploitable fault analysis. This is attributed to the fact that AFA has to explicitly
perform an attack to evaluate the exploitability status of a fault instance, which
can be extremely time-consuming. Evaluation of a fault instance in AFA requires
solving a SAT problem. The time required for solving SAT problems often depends
on the size of the search space. The key fact behind the success of an AFA (or
any DFA attack) is that the size of keyspace of a cipher reduces significantly with
the injection of faults. Solving an AFA instance sometimes suffers from serious
scalability issues if the size of the keyspace after fault injection is still large.
Moreover, computing the exact attack complexity in AFA requires enumerating
all solutions of the corresponding SAT instance. This strategy may incur huge
computational overhead. Although in [24] Zhang et al. handled such scalability
issues of AFA by assuming some of the key bits to be known, the complexity
evaluation process still takes a significant amount of time. Perhaps, the most critical
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problem with AFA lies in its lack of interpretability. From the perspective of an
evaluator, a clear understanding of the attack cause is essential, because it may help
him to improve the cipher design or design good countermeasures. The CNF based
abstraction used in AFA hides all structural information of the attack. In contrast,
it is evident that from the outputs provided by the ExpFault one can have a precise
understanding of each possible attack instance.

Recently, Saha et al. [21] have proposed an alternative approach for exploitable
fault characterization which combines AFA with machine learning to achieve the
speedup desired for exploitable fault characterization. The scheme proposed by
them utilizes a ML model to classify exploitable faults from unexploitable ones. The
ML model is constructed by extracting features from CNF representations of certain
exploitable and unexploitable fault instances already known for a given cipher. A
small set of exploitable and unexploitable fault instances can always be constructed
in an initial profiling phase of the cipher by means of AFA. This specific framework
is somewhat complementary to the ExpFault proposed in this chapter. In particular,
the AFA-ML combination can explicitly characterize the exploitability status of
different fault values corresponding to a specific fault location. This property is
interesting for ciphers without MDS layers, as the exploitability of a fault instance
for these ciphers critically depends upon the value of the fault. As a result, the
success rate of a fault attack corresponding to a specific fault location can be
estimated by the AFA-ML framework exploiting this property, which is still not
possible in the ExpFault framework. However, the attacks identified by the AFA-
ML based framework lack interpretability, which is a strong point of ExpFault.
Moreover, the calculation of attack complexity is not possible with the AFA-ML
tool, which is the main goal of this chapter. In some sense, these two frameworks
are complementary. The AFA-ML tool will be described in the next chapter of this
book.
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Chapter 3
Exploitable Fault Space
Characterization: A Complementary
Approach

Sayandeep Saha, Dirmanto Jap, Sikhar Patranabis, Debdeep Mukhopadhyay,
Shivam Bhasin, and Pallab Dasgupta

3.1 Introduction

Chapter 2 presented the ExpFault framework for constructing fault attacks auto-
matically in a rather cipher oblivious manner. ExpFault has been constructed by
systematizing and generalizing the traditional fault analysis techniques where the
core part is to figure out a set of wrong key distinguishers. The ultimate goal of
ExpFault is to formulate the attack algorithm automatically for a given fault. The
average complexity of the attack is also estimated in this process. However, in
order to achieve these goals, several structural abstractions are made in ExpFault.
For example, the cipher dependency graph (CDG) data structure assumes the S-
Boxes as complete graphs, which abstracts out certain mathematical details of the
S-Boxes. Likewise, the fault model in ExpFault does not explicitly take the fault
value and plaintext value into account. Although the simulation-based distinguisher
identifier captures most of the necessary mathematical properties of sub-operations,
it does not capture them explicitly in the form of equations. Such abstractions are
consistent with traditional fault analysis approaches and do not affect the average
case complexity of an attack in general. Most importantly abstractions enable
scalable solutions to the exploitable fault characterization problem.

An alternative approach to such abstractions is to consider the exact mathematical
structure of the cipher as a whole. Consideration of the exact structure guarantees
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accurate analysis of the attacks. In fact, an exact approach is supposed to capture
intricate bit-level constraints over the keyspace, which may not get identified
explicitly by ExpFault through its word-level analysis. The first challenge in
realizing the exact approach lies in the encoding of the cipher and faults. Fortunately,
such an encoding is fairly straightforward given the fact that any given block
cipher can be represented as a system of multivariate polynomial equations over
the finite field GF(2).1 Faults can also be encoded as extra equations within this
system. Generation of such a system of equations from a given cipher specification
is trivial and can be done in an automated manner. Recently, there has been
significant progress in designing automated fault analysis tools using such algebraic
representations [6, 14, 16, 29, 30, 32]. The most prominent among these automated
frameworks is the so-called algebraic fault attack (AFA), which encodes a given
cipher and an injected fault as an equation system in algebraic normal form
(ANF) [6, 14, 29, 30, 32]. The ANF system is then converted to an equivalent system
in conjunctive normal form (CNF) and fed to a Boolean satisfiability (SAT) solver
with the aim of extracting the key by solving the system. The SAT solver is used
as a black box and handles the mathematical constraints internally making the AFA
framework fairly simple to implement.

Although the algebraic approach of fault attack seems simple and tempting, it
has certain critical drawbacks. In particular, AFA involves solving a SAT problem
for each individual fault instance. Although SAT solvers are remarkably good at
finding solutions to a large class of NP-Complete problem instances, the time taken
for solving is often prohibitively high. In fact, in the context of AFA attacks, the
solver may not stop within a reasonable time for many fault instances. Although
setting a proper timeout seems to be a reasonable fix for such cases, the variation
of solving times is often very high. As a result, the timeout threshold for SAT
must be reasonably high as well, to guarantee the capture of every possible attack
classes. It was already pointed out in the last chapter that fault spaces in block
ciphers are of incredibly large size.2 It is thus quite evident that an informative
characterization of the entire fault space by means of AFA is impractical within
reasonable limits of time. Even the enumeration of the fault space becomes an
issue for the algebraic approaches of fault attack. Unfortunately, even a statistical
characterization of this fault space is difficult, and one must obtain a sufficiently
large number of samples, as the distribution of the fault space may be unknown,
even for well-studied ciphers. Given the time complexity of SAT solving in this
case, characterization of a sufficiently large sample becomes challenging. Also, the
accurate estimation of attack complexity is almost infeasible as it involves a #P -
class problem.

1A block cipher is nothing but a Boolean function, and for every Boolean function, we can have
such an algebraic representation. In fact, this representation is a normal form known as algebraic
normal form (ANF).
2In this chapter, we shall present a quantification of the fault space size. It is worth mentioning that
ExpFault handles the fault space by means of abstraction, which makes the fault space exploration
problem rather scalable.
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This chapter will address the issues of AFA, and eventually, provide a reasonable
solution for (algebraic) exploitable fault space characterization. We shall mainly
focus on the machine learning (ML) based approach proposed in [24]. However,
a reader may question the necessity of such a framework given the existence of
ExpFault. As we shall explain in this chapter, the proposed framework provides
new insights which are not feasible to obtain with ExpFault at its current state.
For example, the algebraic constructions in this chapter expose the fact that certain
attacks are critically dependent on fault and plaintext values. Most importantly, the
success rate of an attack can be estimated which is currently not straightforward
to calculate with ExpFault. One should note that the success rate is different
from the average case complexity estimation as it also encompasses the attack
instances for which the complexity is lower than the average and also cases for
which the complexity is higher than average but still practical for an attacker.
In several occasions, the attack complexities show significant variation from the
average complexity. The success rate can be interpreted as an accumulation of all
attack complexities corresponding to a specific attack location, which are within the
practical limits of exhaustive search and can extract the secret key. This quantity
can be utilized as a metric for estimating the influence of each sub-operation of a
cipher on fault attacks. All these features make this tool indispensable for the cipher
designers for estimating the overall robustness of a construction. In summary, the
new framework is not a replacement for ExpFault, but rather a complementary one
as both of them have different powers.

Before going into the details of the fault characterization framework, we provide
an overview of the approach to motivate the readers. The main crux of the
framework is to make the exploitable fault space characterization feasible by means
of AFA. No abstraction is made for encoding the cipher or faults. In other words,
the cipher encoding encompasses every detail up to the level of bits and the fault
model takes the fault value and the plaintext value into account. The result of these
is an extremely complex equation system and a fault space of formidable size,
which naturally leads towards a statistical solution. To accumulate a large sample
quickly for a sound statistical characterization, we seek the assistance of ML. In
AFA, a fault instance is manifested as mathematical constraints. An exploitable fault
reduces the size of key-space by a significant extent so that exhaustive key search
becomes trivial. Based on the intuition that constrained search spaces for different
exploitable fault instances on a cipher may have certain structural similarities, a
machine learning (ML) classifier is adapted, which, if trained with some already
known exploitable fault instances on a cipher, can predict new attacks on the
same. In essence, one can identify a fault instance to be exploitable with high
confidence without solving a SAT problem. This strategy allows one to characterize
an arbitrarily large number of samples of faults for a cipher within a reasonable
time, making the statistical characterization practically feasible. One should note
that characterization of such arbitrarily large number of samples solely with SAT
solvers is not possible within a reasonable time.

In the main proposal of ML-based fault space characterization in [24], authors
presented experimental evaluations of the framework over two state-of-the-art
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lightweight ciphers—PRESENT [4] and LED [10]. In this chapter, we repeat
these two examples in a more informative manner. One important observation in
this context is that the exploitability of the faults is critically dependent on fault
and plaintext values in the PRESENT block cipher, which further strengthens the
motivation behind estimating the success rates. In the final part of this chapter, we
provide success rate estimates using the framework and show how these estimates
can be utilized to assess the robustness of different S-Boxes with respect to fault
attacks.

The rest of the chapter is organized as follows. Some necessary preliminaries are
presented in the next section. We elaborate on the proposed framework in Sect. 3.3,
along with supporting case studies and a potential application scenario in Sect. 3.4.
Concluding remarks are presented in Sect. 3.5.

3.2 Preliminaries

3.2.1 General Model for Block Cipher and Faults

Let Ek be a block cipher defined as a tuple Ek = 〈Enc,Dec〉, where Enc and
Dec denote the encryption and decryption functions, respectively. Further, the Enc

function (and similarly the Dec function) is defined as Enc(p) = AR ◦ AR−1 ◦
. . . ◦ A1(p) = c, for a plaintext p ∈ P, ciphertext c ∈ C, and a key
k ∈ K . Each Aj denotes a round function in a R round cipher. Further, each
Aj = ol

j ◦ ol−1
j ◦ . . . ◦ o1

j is a composition of certain functions of the form oi
j ,

generally denoted as sub-operations in this work. Each Aj is thus assumed to have
l sub-operations. A sub-operation may belong to the key schedule or the datapath
of the cipher. In other words, oi

j denotes either a key schedule sub-operation or a

datapath sub-operation at any round j . We shall use the term oi
j throughout this work

to denote a sub-operation, without mentioning whether it belongs to key schedule
or datapath. Table 3.1 lists the notations used throughout this chapter.

An injected fault in DFA usually corrupts the input of some specific sub-
operation during the encryption or decryption operation of the cipher. Given the
cipher model, we denote the set of faults as F = {F1, F2, . . . , FH }, where each
individual fault Fh ∈ F is specified as follows:

Fh = 〈oi
r , λ,w, T ,N, {f }Nn=1, {p}Nn=1〉 (3.1)

Here r < R is the round of injection, and oi
r denotes the sub-operation, input of

which is altered with the fault. The parameter λ denotes the data-width of the sub-
operation (more specifically, the bit-length of the input of the sub-operation). The
parameter w is the width of the fault which quantifies the maximum number of bits
affected by a fault. In general, bit-based, nibble-based, and byte-based fault models
are considered which corresponds to w =1, 4, and 8, respectively. The position
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Table 3.1 List of notations Symbol Definition

“+” Bitwise XOR

Ek A block cipher

oi
j ith sub-operation in the j th round

Fh A fault instance

R Number of cipher rounds

l Number of sub-operation in each round

r Round of fault injection

N Fault multiplicity

w Fault width

T Fault position

λ Bit-width of a sub-operation

{f }Nn=1 Set of fault values for a fault injection

{p}Nn=1 Set of plaintext values for a fault injection

MF Set of exploitable faults

τ Timeout for SAT solvers

S Sensitivity threshold

of the fault at the input of a sub-operation is denoted by T with t ∈ {0, 1, . . . λ
w
}.

For practical reasons, w and T are usually defined in a way so that the injected
faults always remain localized within some pre-specified block-operations of the
corresponding sub-operation oi

r . The parameter N represents the number of times a
fault is injected at a specific location to obtain a successful attack within a reasonable
time. N is called the fault multiplicity.

The sets {f }Nn=1, and {p}Nn=1 denote the values of the injected faults and the
plaintexts processed during each fault injection, respectively. In the most general
case, the diffusion characteristics (and thus the exploitability) of an injected fault
critically depend upon the value of the fault and the corresponding plaintext on
which the fault is injected. A typical example is PRESENT cipher, where the number
of active S-Boxes due to the fault diffusion depends on the plaintext and the fault
value and as a result, many faults injected at a specific position with the same
multiplicity may become exploitable, whereas some of them at the same position
may become unexploitable. According to the fault model in Eq. (3.1), the total
number of possible faults for a specific position T in sub-operation oi

r is 2N(w+λ),
for a given fault width w. The total number of possible faults for a sub-operation oi

r

is
(
2N(w+λ) × λ

w

)
, and that for the whole cipher oi

r is
(
2N(w+λ) × λ

w
× R × l

)
.3

In certain cases the fault space can be pruned significantly utilizing the fact that
a large number of faults may be actually equivalent. A prominent example is the

3The fault values and the plaintext values are not explicitly considered (i.e., abstracted) in ExpFault.
The fault space size becomes relatively reasonable to be exhausted without these two parameters.
The flip side of this abstraction is that ExpFault returns the best case attack complexity (from
attacker’s perspective) for certain ciphers like PRESENT.
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AES where every byte fault at some specific position is equivalent irrespective of its
value. However, there exists no automatic procedure to figure out such equivalences,
till date, and the only way is to manually analyze the cipher. As a result, it is
reasonable to adapt the above calculation of the size of the fault space while
analyzing a general construction.

3.2.2 Algebraic Representation of Ciphers

Multivariate polynomial representation, which is quite well known in the context of
AFA [30], is considered one of the most generic and informative representations for
block ciphers. In this work, we utilize the polynomial representations to encode both
the ciphers and the faults. The usual way of representing block ciphers algebraically
is to assign a set of symbolic variables for each iterative round, where each variable
represents a bit from some intermediate state of the cipher. Each cipher sub-
operation is then represented as a set of multivariate polynomial equations over
the polynomial ring constructed on these variables, with GF(2) being the base ring.
The equation system should be sparse and low-degree in addition, to make the cipher
representation easy to solve.

In order to elaborate the process of polynomial encoding, we consider the
example of the PRESENT block cipher. PRESENT is a lightweight block cipher
proposed by Bogdanov et al. in CHES 2007 [4]. It has a substitution-permutation
network (SPN) based round function which is iterated 31 times to generate the
ciphertext. The basic version PRESENT-80 has a block size of 64-bits and a
master key of size 80 bits, which is utilized to generate 64-bit round keys for each
round function by means of an iterated key schedule. Each round of PRESENT
consists of three sub-operations, namely addRoundKey, sBoxlayer, and pLayer. The
addRoundKey sub-operation, computing bitwise XOR between the state bits and
round key bits, is represented as:

yi = xi + ki, for 1 ≤ i ≤ 64 (3.2)

where xi , ki represent the input state bits and round key bits, respectively, and yi

represents the output bits of the addRoundKey sub-operation. Similarly, the pLayer
operation, which is a 64-bit permutation, can be expressed as:

yπ(i) = xi, for 1 ≤ i ≤ 64 (3.3)

where π(i) is the permutation table. The non-linear substitution operation sBoxlayer
of PRESENT consists of 16 identical 4 × 4 bijective S-Boxes, each of which can
be represented by a system of non-linear polynomials. The solvability of a typical
cipher polynomial system critically depends on the S-Box representation, which is
expected to be sufficiently sparse and consisting of low-degree polynomials. One
way of representing the PRESENT S-Boxes is the following:
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y1 = x1x2x4 + x1x3x4

+ x1 + x2x3x4 + x2x3 + x3 + x4 + 1

y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4+
x1 + x2 + x3x4 + 1 (3.4)

y3 = x1x2x4 + x1x2 + x1x3x4 + x1x3+
x1 + x2x3x4 + x3

y4 = x1 + x2x3 + x2 + x4

Here xis (1 ≤ i ≤ 4) and yis (1 ≤ i ≤ 4) represent the input and output bits of a
4 × 4 S-Box, respectively.

Each injected fault instance can be added in the cipher equation system in terms
of new equations. Let us assume that the fault is injected at the input state of the
ith sub-operation oi

r at the rth round of the cipher. For convenience, we denote the
input of oi

r as Xi = x1||x2|| . . . ||xλ, where λ is the bit-length of Xi . In the case
of PRESENT λ = 64. Let, after the injection of the fault, the input state changes
to Y i = y1||y2|| . . . ||yλ. Then the state differential can be represented as Di =
d1||d2 . . . ||dλ, where dz = xz +yz with 1 ≤ z < λ. Further, depending on the width
of the fault w, there can be m = λ

w
possible locations in Xi , which might have

got altered. Let us partition the state differential Di in m, w-bit chunks as Di =
Di

1||Di
2|| . . . ||Di

m, where Di
t = dw×(t−1)+1||dw×(t−1)+2|| . . . ||dw×t for 1 ≤ t ≤ m.

Assuming T be the location of the fault, the fault effect can be modeled with the
following equations:

Di
t = 0, for 1 ≤ t ≤ m, t �= T (3.5)

(1 + dw×(t−1)+1)(1 + dw×(t−1)+2) . . . (1+dw×t ) = 0,

for t = T
(3.6)

It is notable that the location T of a fault can be unknown in certain cases, and this
can also be modeled with equations of slightly complex form [30]. However, for
exploitable fault characterization, it is reasonable to assume that the locations are
known as we are working in the evaluator mode.

3.3 ML-Based Fault Space Characterization: Methodology

3.3.1 Motivation

The goal of the present work is to efficiently filter out the exploitable faults for a
given cryptosystem. It is apparent that the ANF polynomials provide a reasonable



66 S. Saha et al.

way for modeling the ciphers and the faults [30]. Although, the ANF description
and its corresponding CNF is easy to construct, solving them is non-trivial as the
decision problem associated with the solvability of an ANF system is NP-Complete.
In practice, SAT solvers are used for solving the associated CNF systems, and it is
observed that the solving times vary significantly depending on the instance.

One key observation regarding the cipher equation systems is that they are never
unsatisfiable, which is due to the fact that for a given plaintext–ciphertext pair there
always exists a key. However, it is not practically feasible to figure out the key
without fault injections, as the size of the key search space is prohibitively large.
The search space complexity reduces with the injection of faults. The size of the
search space is expected to reach below some certain limit which is possible to
search exhaustively with modern SAT solvers within reasonable time, if a sufficient
number of faults are injected at proper locations.

The above-mentioned observation clearly specifies the condition for distinguish-
ing the exploitable faults from the non-exploitable ones. To be precise, if a SAT
solver terminates with the solution within a pre-specified time limit, the fault
instance is considered to be exploitable. Otherwise, the fault is considered non-
malicious. Setting a proper time-limit for the SAT solver is, however, a critical task.
A relatively low-time limit is unreliable as it may fail to capture some potential
attack instances. As an example, for the PRESENT cipher we observed that most
of the 1-bit fault instances with fault multiplicity 2, injected at the inputs of 28-th
round S-Box operation, are solvable within 3 min. This observation is similar to that
mentioned in [30]. However, we observed that when nibble faults are considered at
the 28th round, the variation of solving time is significantly high; in fact, there are
cases with solving times around 16–24 h. These performance figures are obtained
with Intel Core i5 machines running CryptominiSAT-5 [25] as the SAT solver in
a single threaded manner. Moreover, such cases comprise nearly 12% of the total
number of samples considered. This is not insignificant in a statistical sense, where
failure in detecting some attack instances cannot be tolerated. Such instances do
not follow any specific pattern through which one can visually characterize them
without solving them. This observation necessarily implies that one has to be more
careful while setting solver timeouts and a high value of timeout is preferable.
However, setting high timeout limits the number of instances one can acquire
through exhaustive SAT solving within a practically feasible time span.

According to the fault model described in Sect. 3.2.1, the size of the fault space
in a cipher is prohibitively large. As a concrete example, there are total 2(64+4) = 268

possible nibble fault instances, with fault multiplicity N = 1, for any specific
position T , on any sub-operation oi

r in the PRESENT cipher. The number is even
larger if one considers other positions, sub-operations, fault multiplicity, and fault
models. Moreover, the ratio of exploitable faults to the total number of faults is
unknown a priori. The whole situation suggests that in order to obtain a reliable
understanding of the exploitable fault space even in a statistical sense, one must test
a significantly large sample from fault space. Also, to obtain a sufficiently large set
of exploitable faults for testing purpose, a large number of fault instances must be
examined. With a high timeout required for SAT solvers, exhaustive SAT solving is
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clearly impractical for fault space characterization and a fast mechanism is required.
Our aim in this chapter is to prepare an efficient alternative to the exhaustive
enumeration of the fault space via SAT solving.

3.3.2 Empirical Hardness Prediction of Satisfiability Problems

NP-Complete problems are ubiquitous in computer science, especially in AI. While
they are hard-to-solve on worst case inputs, there exist numerous “easy” instances
which are of great practical value. In general, the algorithms for solving NP-
Complete problems exhibit extreme runtime variations even across the solvable
instances, and there is no describable relationship between the instance size and the
algorithm runtime as such. Over the past decade, a considerable body of work has
shown how to use supervised ML models to answer questions regarding solvability
or runtime using features of the problem instances and algorithm performance
data [12, 13, 22, 23, 28]. Such ML models are popularly known as empirical
hardness models (EHM). Some applications of EHMs include proper algorithm
portfolio selection for a problem instance [28], algorithm parameter tuning [12],
hard benchmark construction [17], and analysis of algorithm performance and
instance hardness [17].

In the context of the present work, we are interested in EHMs which predict the
hardness of SAT instances. The most prominent result in the context of empirical
runtime estimation of SAT problems is due to Xu et al., who constructed a portfolio-
based SAT solver SATzilla [28] based on EHMs. The aim of SATzilla was to select
the best solver for a given SAT instance, depending upon the runtime predictions of
different EHMs constructed for a set of representative SAT solvers. The SATzilla
project also provided a large set of 138 features for the model construction
depending on various structural properties of the CNF descriptions of the problem
instance as well as some typical features obtained from runtime probing of some
basic SAT solvers. In this work, we utilize some of these features for constructing
EHMs which will predict the exploitability of a given fault instance without solving
it explicitly. Brief description of our feature set will be provided later in this section.

3.3.3 ML Model for Exploitable Fault Identifier

In this subsection, we shall describe the ML-based framework in detail. In nutshell,
our aim is to construct a binary classifier, which, if trained with certain number of
exploitable and unexploitable fault instances, can predict the exploitability of any
fault instance queried to it. Before going to further details, we formally describe
the exploitable fault space for a given block cipher and an exploitable fault in the
context of SAT solvability.
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Fig. 3.1 The exploitable
fault characterization
framework: basic idea [24]
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Definition (Exploitable Fault Space) Given a cipher Ek and a corresponding fault
space F , the exploitable fault space MF ⊂ F for Ek is defined as a set of faults
such that ∀Fh ∈ MF , it is possible to extract ne bits of the secret key k, where
0 < ne ≤ |k| . ��
In other words, exploitable fault space denotes the set of faults for which the
combination of the injected fault and a plaintext results in the extraction of ne bits of
the secret key. From the perspective of a cipher evaluator, two distinct scenarios can
be considered at this point. In the first one, it is assumed that none of the key bits
are known a priori and faults are inserted to extract the complete master key of the
cipher. Indeed, one may increase the number of injections to reduce the complexity
of the search space in this scenario. However, it is practically reasonable to assume
some upper bound on the number of injections. In other words, the fault multiplicity
N in the fault model is always ≤ some pre-specified threshold. The second scenario
in this context occurs when some specific key bits are assumed to be known. This
model is extremely useful when only a subset of the key can be extracted by the fault
injection due to incomplete diffusion of the faults. In a typical AFA framework, it is
not possible to obtain a unique solution for the incompletely defused faults unless
some of the key bits are known. However, in this work, we mainly elaborate the
first scenario. It is worth mentioning that the second scenario can be dealt with the
framework we are going to propose, without any significant changes.

The framework for exploitable fault space characterization is depicted in Fig. 3.1.
Referring to the figure, let EFh

k indicate the cipher Ek , with a fault Fh from its
fault space F injected in it. This can be easily modeled as an ANF equation
system denoted as ANF(EFh

k ). The very next step is to convert ANF(EFh

k ) to
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the corresponding CNF model denoted by CNF(EFh

k ). At this point, we specify
the exploitable faults in terms of solvability of SAT problems, with the following
definition:

Definition (Exploitable Fault) A fault Fh ∈ F for the cipher Ek is called
exploitable if the CNF(EFh

k ) is solvable by a SAT solver within a pre-specified time
bound τ . ��

Given fault instances from the fault space of a cipher, we construct CNF encoding
for each of them. A small fraction Itr of these CNFs are solved exhaustively with
SAT solver and labeled accordingly depending on whether they are solvable or not
within the threshold τ . Next, a binary classifier M is trained with these labeled
instances, which is the EHM in this case. The ML model is defined as:

M : T
(
CNF

(
EFh

k

))
�→ {0, 1} (3.7)

Here, T is an abstract function which represents the features extracted from the
CNFs. In the present context, T outputs the feature vectors from the SATzilla feature
set [28]. For convenience, we use the following nomenclature:

Class 0 : Denotes the class of exploitable faults.
Class 1 : Denotes the class of benign/unexploitable faults.

One important difference of our EHM model with the conventional EHM models
is that we do not predict the runtime of an instance but use the labels 0 and 1 to
classify the faults into two classes. In other words, we solve a classification rather
than a regression problem solved in conventional EHMs [13]. The reason is that we
just do not exploit the runtime information in our framework. The main motive of
ours is to distinguish instances whose search space size is within the practical search
capability of a solver, from those instances which are beyond the practical limit. It
is apparent that our classifier-based construction is sufficient for this purpose. In the
next section, we describe the feature set utilized for the classification.

3.3.4 Feature Set Description

In this work, we use the features suggested by the SATzilla—a portfolio-based
SAT solving tool [28]. The SATzilla project proposed a rich set of 138 features
to be extracted from the CNF description of a SAT instances for the construction
of runtime predicting EHMs. The feature set of SATzilla is a compilation of
several algorithm-independent properties of SAT instances made by the artificial
intelligence (AI) community on various occasions [17]. A widely known example of
such algorithm-independent properties is the so-called phase-transition of random
3-SAT instances. In short, SAT instances, generated randomly on a fixed number of
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variables, and containing only 3-variable clauses, tend to become unsatisfiable as the
clause-to-variable ratio crosses a specific value of 4.26 [22]. Intuitively, the reason
for such a behavior is that instances with fewer clauses are underconstrained and
thus almost always satisfiable, while those with many clauses are overconstrained
and unsatisfiable for most of the cases. The SATzilla feature set is divided into
12 groups. Some of the feature groups consist of structural features like the
one described in the example, whereas the others include features extracted from
runtime behaviors of the SAT instances on solvers from different genre—like Davis-
Putnam-Logemann-Loveland (DPLL) solvers, or local search solvers [13, 28].

The structural features of SATzilla are divided into several feature groups, which
include simple features like various variable-clause statistics as well as features
based on complex clause–variable interactions in the CNF formula obtained through
different graph-based abstractions. The first group includes properties related to the
problem size, measured in terms of the number of clauses, variables, and the ratio
of the two. The next three feature groups consist of features extracted from various
graph representations of SAT instances, namely variable-clause graphs (VCG),
variable graphs (VG), and clause graphs (CG). Graphical abstraction of complex
clause–variable interactions quite efficiently represents the difficulty in solving an
instance. Statistics (mean, standard deviation, min, max, entropy) on the degrees of
the nodes, the graph diameters, and special clustering-coefficients are extracted as
features from these graphs. Intuitively, these statistical measurements quantify the
difficulty of an instance. The fourth feature group of SATzilla is called balanced
features which include some simple statistical measurements on the variables and
clauses of an instance. The next feature group, which is the last one among structural
features, measures the proximity of an instance to a Horn formula, which is a class
of SAT instances relatively easier to deal with.

The so-called runtime features in SATzilla, also known as “probing” features,
are computed with short-time runs of the instances on different genres of candidate
solvers. The seventh feature group consists of DPLL probing features, which include
the unit propagation statistics on the corresponding DPLL search tree, as well as an
unbiased estimation of the size of the search space estimated with the average depth
of contradictions in DPLL search trees [20]. The eighth group of features is obtained
by solving a linear programming relaxation of an integer program representing the
SAT instance under consideration, whereas the ninth group consists of probing
features from two stochastic local search algorithms, GSAT and SAPS. The next
feature group contains the statistics of learned clauses for an instance obtained
with a 2 s run on ZChaff SAT solver. Finally, there are the survey propagation
features which are based on estimates of variable bias in a SAT formula obtained
using probabilistic inference [11]. The computation times for these 12 groups of
features are not uniform and there exist both structural and runtime features which
are computationally expensive. The computation time of the features also provides
significant information regarding the instance hardness and as a result, they are
included as the final feature group in SATzilla. Further details on SATzilla feature
set can be found in [13, 23].
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3.3.5 Handling the False Negatives

The ML model proposed in this work provides quick answers regarding the
exploitability of the fault instances queried to it. Such a quick answering system
has an enormous impact on the exploitable characterization problem as it makes
the problem tractable from a practical sense. However, the efficiency comes at the
cost of accuracy. Being a ML-based approach, there will always be some false
positives (a benign fault instance classified as exploitable) and false negatives (an
exploitable instance classified as benign). While a small number of false positives
can still be tolerated, false negatives can be crucial for some applications, for
example, generating a test set of exploitable faults for testing countermeasures. If
some typical exploitable faults are missed, they may lead to successful attacks on
the countermeasure.

In this work, we provide a potential solution for the misclassification issue. More
precisely, we try to statistically eliminate the chances of false negative cases—that
is the chances of an attack getting misclassified. The main idea is to first determine
the cases for which the classification confidence of the classifier is not very high.
We denote such cases as sensitive instances. Note that, sensitive instances are
determined on the validation dataset once the classifier is trained and deployed for
use. Intuitively, such sensitive instances are prone to misclassification (we have also
validated this claim experimentally.). Each sensitive instance is exhaustively tested
with SAT solver. Figure 3.2 presents a conceptual schematic of what we mean by
sensitive instances. Typically, we assume that the two classes defined in terms of the
feature vectors can be overlapping, and the region of overlap constitutes the set of
sensitive instances.

Determination of the sensitive instances or this region of overlap is, however,
not straightforward and could be dealt in many ways. In this chapter, we take
a very simple albeit effective strategy. We use random forest (RF) of decision
trees as our classification algorithm [5]. Random forest is constructed with several
decision trees, each of which is a weak learner. Usually, such ensemble methods
of learning perform majority voting among the decisions of the constituent weak
learners (decision trees in the present context) to determine the class of the instance.
Here, we propose a simple methodology for eliminating the false negatives using

Fig. 3.2 Sensitive region:
conceptual illustration [24]

Class 0Class 1

Sensitive Region
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the properties of the RF algorithm. The proposed approach is reminiscent of
classification with reject—a well-studied area in ML, where a classifier can reject
some instances if the classification confidence is low for them [26]. Let Cl be the
random variable denoting the predicted class of a given instance x in the two-class
classification problem we are dealing with. For any instance x, we try to figure
out the quantities Pr[Cl = 0 | x] and Pr[Cl = 1 | x], which are basically
the probabilities of x lying in any of the two classes. Evidently, the sum of these
two quantities is 1. Note that the probabilities are calculated purely based on the
decisions made by the classifier. In other words, it is calculated exploiting the
properties of the classification algorithm. Next, we calculate the following quantity:

δ = (P r[Cl = 0 | x] − Pr[Cl = 1 | x]) (3.8)

It is easy to observe that having a large value for δ implies the classifier is reasonably
confident about the class of the instance x. In that case, we consider the decision of
the classifier as the correct decision. For the other case, where δ is less than some
predefined threshold S, we invoke the SAT solver to determine the actual class of the
instance. The overall flow for false negative removal is summarized in Algorithm 1.

Algorithm 1: Procedure CLASSIFY_FAULTS
Input : A random fault instance Fh

Output : Exploitability status of Fh

1 Construct ANF(EFh

k ) and then CNF(EFh

k );

2 Compute x = T (CNF(EFh

k ));
3 Compute 〈Pr[Cl = 0 | x], P r[Cl = 1 | x]〉 = M(x);
4 Compute δ using Equation (3.8);
5 if (|δ| < S); // S is a predefined threshold
6 then
7 Query the SAT engine with CNF(EFh

k );

8 if (CNF(EFh

k ) is solvable within τ ) then
9 return: Fh ∈ MF ;

10 else
11 return: Fh �∈ MF ;

12 else
13 if (δ > 0) then
14 return: 0 ; // Fh ∈ MF
15 ;
16 else
17 return: 1 ; // Fh �∈ MF
18 ;

Each tree in an RF returns the class probabilities for a given instance. The class
probability of a single tree is the fraction of samples of the same class in a leaf node
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of the tree. Let the total number of trees in the forest be tr . The class probability of
a random instance x is defined as:

Pr[Cl = c | x] = 1

tr

tr∑

h=1

Prh[Cl = c | x] (3.9)

where Prh[Cl = c | x] denotes the probability of x being a member of a class c

according to the tree h in the forest.
The success of this mechanism, however, critically depends on the threshold S,

which is somewhat specific to the cipher under consideration, and is determined
experimentally utilizing the validation data. Ideally, one would expect to nullify
the false negatives without doing too many exhaustive validations. Although no
theoretical guarantee can be provided by our mechanism for this, experimentally
we found that for typical block ciphers, such as PRESENT and LED, one can
reasonably fulfill this criterion. Detailed results supporting this claim will be
provided in Sect. 3.4.

3.4 Case Studies

This section presents the experimental validation of the proposed framework by
means of case studies. Two state-of-the-art block ciphers, PRESENT and LED,
are selected for this purpose. The motivation behind selecting these two specific
ciphers is that they utilize the same non-linear, but significantly distinct linear layers.
One main application of the proposed framework is to quantitatively examine the
effect of different cipher sub-operations in the context of fault attacks, and in this
chapter, we mainly elaborate this application. The structural features of PRESENT
and LED allow us to make a fair comparison between their diffusion layers. In
order to evaluate the effect of the non-linear S-Box layer, we further perform a
series of experiments on the PRESENT block cipher by replacing its S-Box with
three alternative S-Boxes of similar mathematical properties. In the following two
subsections, we present the detailed study of the PRESENT and LED ciphers
with the proposed framework. The study involving the S-Box replacement will be
presented after that.

3.4.1 Learning Exploitable Faults for PRESENT

The basics of PRESENT block cipher has already been described in Sect. 3.2.2.
Several fault attack examples have been proposed on PRESENT, mostly targeting
the 29-th and 28-th round of the cipher as well as the key schedule of PRESENT [1,
7, 9, 27, 30, 31]. Zhang et al. [30] presented an AFA on PRESENT, requiring 2
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Table 3.2 Setup for the ML on PRESENT and LED

Cipher PRESENT LED

Target rounds 27–30 29–32

Maximum number of times a fault is injected (N ) 2 2

Timeout for the SAT solver (τ ) 24 h 48 h

bit-fault instances on average, at the 28-th round of the cipher in the best case. The
solving times of the corresponding CNFs are mostly around 3 min.

3.4.1.1 Experimental Setup

In order to validate the proposed framework, we create random AFA instances
following different fault models. In order to make the ML classifier generic, we
decided to train it on instances from different fault models. Two competitive fault
models for PRESENT are the bit and nibble fault models, both of which can
generate plenty of exploitable fault instances. In any case, we end up getting a CNF,
the solvability of which determines the exploitability of an instance. So the ML
classifier is supposed to learn to estimate the search complexity of an instance in
some way. Hence, there is no harm in combining instances from two fault models as
such. Table 3.2 presents the basic setup we used for the experiments on PRESENT
and LED. Experiments on any given cipher begin with an initial profiling phase,
where the parameters mentioned in Table 3.2 are determined and attack samples
for training are gathered. For PRESENT, we mainly targeted the rounds 27–30 in
our experiments as one can hardly find any exploitable fault beyond these rounds.
Further, the fault multiplicity (N ) was restricted to 2 (that is, N can assume values
1 and 2) considering low-fault complexities of DFAs. Interestingly, it was observed
that the nibble fault instances (injected 2 times in succession) at 28-th round do
not result in successful attacks, even after 2 days. Further, many of these instances
(almost 12%) take 16–24 h of solving time. No successful attack instances were
found taking time beyond 24 h in our experiments, which were conducted on a
machine with Intel Core i5 running CryptominiSAT-5 [25] as the SAT solver in
a single threaded manner. We thus set the SAT timeout τ = 24 h for PRESENT. For
the sake of experimentation, we exhaustively characterized a set of 1000 samples
from the fault space of PRESENT and LED, individually. However, one should note
that such exhaustive characterization was only required to prove the applicability of
the proposed methodology, and in practice, a much smaller number of instances are
required for training the ML classifier, as we will shall show later. For every new
cipher, such profiling should be performed only once just to build the ML classifier.

3.4.1.2 Feature Selection

The first step in our experiments is to evaluate the feature set. Although we started
with a well-accepted feature set, it is always interesting to know how these features
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impact the learning process and which are the most important features in the
present context. Identification of the main contributing features for a given problem
may also lead to significant reduction of the feature space dimensionality by the
selection of actually useful features, which also reduces the chances of overfitting.
We therefore perform a quantitative assessment of the importance of various features
using the RF algorithm. Before proceeding further, it is worth mentioning that some
of the SATzilla features might be computationally expensive depending on problem
instances. It was found that the unit propagation features (which belong to the group
of DPLL probing features) and the linear programming features in our case take
even more than 15 min of computing time for certain instances. As a result, we did
not consider them in our experiments which left us with 123 features in total.

In this work, we evaluate the feature importance based on the mean decrease of
gini-impurity of each feature during the construction of the decision trees [5]. Every
node ζ , in a given decision tree γ , of an RF 
 imposes a partition on the dataset by
putting some threshold condition on a single feature, so that similar samples end up
in the same partition. The optimal split at a node is calculated based on a statistical
measure which quantifies how well a potential split is separating the samples of
different classes at this particular node. The gini-impurity is one of the most popular
measure for such purposes and is actually used in random forests [5]. Let us assume
that a node ζ in some decision tree γ ∈ 
 has total |ζ | samples among which the
subset ζ q consists of samples from class q ∈ {0, 1}. Then the gini-impurity of ζ is
calculated as:

G(ζ ) = 1 − (p0
ζ )

2 − (p1
ζ )

2 (3.10)

where p
q
ζ = |ζ q |

|ζ | for q ∈ {0, 1}. Let the node ζ partitions the dataset into two nodes
(subsets) ζlef t and ζright , using some threshold condition tθ on some feature θ , and
the gini-impurity of these two nodes are G(ζlef t ) and G(ζright ), respectively. Then
the decrease in impurity at the node ζ , due to this specific split, is calculated as:

�G(ζ ) = G(ζ ) − plef tG(ζlef t ) − prightG(ζright ) (3.11)

where plef t = |ζlef t |
|ζ | , and pright = |ζright |

|ζ | . In an exhaustive search over all variables
θ available at ζ and the space of corresponding tθ s, the optimal split at ζ , for
a particular tree γ , can be determined which is quantified as �θG(ζ, γ ). In the
calculation of feature importance, decrease in gini-impurities is accumulated in a
per-variable basis and the importance value of the feature θ is calculated as follows:

IG(θ) =
∑

γ∈


∑

ζ∈γ

�θG(ζ, γ ) (3.12)

The result of the feature importance assessment experiment is presented in
Fig. 3.3a, where the X-axis represents the index of a feature and the Y-axis
represents its importance scaled within an interval of [0, 1]. It is interesting to
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Fig. 3.3 Machine learning results for PRESENT. (a) Feature importance, (b) ROC curve, and (c)
variation of accuracy with the size of training set [24]

observe that there are almost 66 features, for which the importance value is 0.
Further investigation reveals that these features obtain constant values for all the
instances. As a result, they can be safely ignored for the further experiments.

It can be observed from Fig. 3.3a that the feature no. 42 is the most important one
for our experiments. This feature corresponds to the aggregated computation time
for the variable-clause graph (VCG) and variable-graph (VG) graph-based features.
A VCG is a bipartite graph, with nodes corresponding to each variable and clause.
The edges in this graph represent the occurrence of a variable in a clause. The VG
has a node for each variable and an edge between variables that occur together
in at least one clause. Intuitively, the computation time is a crude representative
for the dense-nature of these graphs, which is usually high if the search space is
very large and complex. However, it is difficult to directly relate this feature with
quick solvability of an instance as other selected features also play a significant role.
In fact, it was observed that every structural feature group have some contribution
in the classification, which is somewhat expected (feature no. 0–59 in Fig. 3.3a).
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In contrast, the contributions from the runtime features were not so regular. In
particular, only the survey propagation features (based on estimates of variable bias
in a SAT formula obtained using probabilistic inference [11]) were found to play
some role in the classification (feature no. 79–96 in Fig. 3.3a). Interestingly, the
features 98–100, which correspond to the approximate search-space size (estimated
with the average depth of contradictions in DPLL search trees [20]), were found
to play some role in the classification. This is indeed expected, as the classification
margin in this work is defined based on the search space size.

3.4.1.3 Classification

We next measured the classification accuracy of the RF classifier with the reduced
set of features. In order to check the robustness of the learning, we ran each of
our experiments several times. For each repetition, new training and validation
sets were chosen from a set of 640 labeled samples (the remaining 360 samples
collected at the profiling phase were utilized for further validation and false negative
removal experiments), where the sizes of them are in the ratio 7:3. The sample
set consists of 320 exploitable and 320 unexploitable fault instances in order to
achieve an unbiased training. The average accuracy obtained in our experiment was
85%. We also provide the receiver operating characteristics (ROC) curve for the
RF classifier, which is considered to be a good representative for the quality of a
classifier. The area under curve (AUC) represents the goodness of a classifier, which
ranges between 0 and 1 with higher values representing a better classifier. The ROC
curve for the PRESENT example is provided in Fig. 3.3c, which shows that the
classifier performs reasonably well in this case. Figure 3.3b presents the variation
of accuracy with the size of training dataset as a box plot. It can be observed that
reasonable accuracy can be reached within 450 training instances (which is around
70% of our dataset size) and accuracy does not improve much after that.

3.4.1.4 Handling False Negatives

Although our classifier reaches a reasonable good accuracy of 85%, there are
almost 15% instances which get misclassified in this process, which contains both
false positives and false negatives. As pointed out in Sect. 3.3.5, false negatives
are not acceptable in certain scenarios. The approach presented in Sect. 3.3.5
critically depends on the threshold parameter S, which must be set in a way so
that the percentage of false negatives becomes 0 or at least negligibly small. If
the percentage of instances below S is too high, it would be costly to estimate
all of them via exhaustive SAT solving. However, the reasonably good accuracy
of our classifier suggests that the percentage of such sensitive instances may not
be very high. We tested our proposed fix from Sect. 3.3.5 on a new set of 250 test
instances with different S values. Table 3.3 presents the outcome of the experiment.
The percentage of instances to be justified via SAT solving and the percentage of
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Table 3.3 Misclassification handling for PRESENT

S Value 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

% sensitive instances 6.0 6.0 10.0 13.2 17.2 20.4 20.4 22.0 22.8 24.8 27.6

% false negatives beyond S 4.1 4.1 3.0 1.8 0.6 0.2 0.0 0.0 0.0 0.0 0.0

Fig. 3.4 ROC curve for
PRESENT cipher with fault
multiplicity of three [24]

false negatives beyond S are presented in the table for each choice of S. It can
be observed from Table 3.3 that a threshold of 0.22 nullifies the number of false
negatives and keeps the percentage of sensitive instances (see Sect. 3.3.5) to 20%,
which is indeed reasonable.

Classically in DFA, increase in fault multiplicity is considered costly and the
target is to extract the complete key with the minimum number of injections
possible. Due to this fact, we intentionally set the operating point of our experiments
to a fault multiplicity 2, which is the minimum number of faults required to extract
the master key of PRESENT. The multiplicity of a fault, however, plays a crucial
role in the success of fault attacks. In order to evaluate the effect of fault multiplicity
on the classification accuracy and false negatives of the tool, we validated it with
fault multiplicity 3 and 4. It has been observed that 94% classification accuracy can
be achieved with fault multiplicity 3 and the value is even higher for higher fault
multiplicities. Figure 3.4 presents the ROC curve corresponding to fault multiplicity
3. Further, roughly 12% of the instances have to be checked with SAT solvers in
order to nullify the false negatives.

The trend observed in classification accuracy and the false negative rate is con-
sistent with the theoretical understanding of DFA. The increase in fault multiplicity
increases the number of equations in the cipher equation system which eventually
results in a constrained search space of reasonable size to be exhausted by a
SAT solver. As a result, most of the instances from round 28 become solvable
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and unsolvable instances mostly belong to other rounds. This phenomenon leads
to a stronger separation between two classes making the classification accuracy
significantly high.

3.4.1.5 Gain over Exhaustive SAT Solving

It would be interesting to estimate the overall gain of our ML assisted methodology
compared to exhaustive characterization via SAT solving. For the sake of elabora-
tion, let us consider a scenario where only nibble faults are injected at the 28th round
of PRESENT. Further, each fault is assumed to be of multiplicity 2. The size of the
resulting fault space is 22×(64+4) = 2136, which is impossible to enumerate. Even
if one considers a reasonable-sized sample of 10,000 fault instances, the exhaustive
characterization with SAT solving only would be impractical. Considering a timeout
threshold of 24 h (τ = 24 h), characterization of these many instances even with
a parallel machine with a reasonable number of cores would take an impractical
amount of time. For example, if one considers a 24 core system, the characterization
would require 416 days, in the worst case. Even with an optimistic consideration of
roughly 50% of the instances hitting the timeout threshold, the time requirement
is still high. In contrast, the proposed framework can provide a fairly reasonable
solution. Firstly, the size of the training set is extremely small, and also saturates
after reaching a reasonable accuracy. One can rapidly characterize any number
of fault instances after training with a reasonable error probability and the time
requirement for that is insignificant.

For a statistical understanding of the exploitable fault space, small error bounds
can be reasonably tolerated. Let us consider an application scenario where two S-
Boxes are compared in terms of their sensitivity to fault attacks. Such a comparison
can be made by estimating what fraction of faults corresponding to a given fault
model is exploitable for each of the S-Boxes. A concrete example of such a scenario
will be presented later in this chapter. Even in the presence of a small number
of false negatives, such comparative analyses remain reasonably accurate. On the
other hand, a small fraction of the false negatives can easily be ensured, while the
classification accuracy is sufficiently high.

For certain security-critical applications, like evaluating a countermeasure or
quantification of security bounds, the misclassified attack instances can be crucial.
A typical example in this context is the test generation for the evaluation of low-
cost countermeasures. The evaluator should store the plaintext and fault values
for a reasonable-sized albeit representative set of attack instances, in this case,
corresponding to each fault location. Misclassification of attack instances, in this
case, may leave some critical corner cases unexplored. Given the practical feasibility
of repeating such corner cases by an attacker, this may eventually lead to a
successful attack with reasonably high probability. Quite evidently removal of
false negatives is essential for such a scenario. It is, however, evident from the
experimental results that the proposed method works fine in such critical scenarios
with a reasonable overhead of characterizing 22% of the instances exhaustively.
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This is indeed better than exhaustive SAT-based characterization, which is the only
alternative, otherwise. For a set of 10,000 fault instances, the proposed approach,
including the false negative removal step, would require 83 days, even in the worst
case which is much better than the figures (416 days) obtained with exhaustive
characterization.

3.4.1.6 Discussion

One of the goals of the ML framework is to discover new attacks while trained on
a set of known attack instances. It was found that the proposed framework is able
to do that with reasonably high accuracy. More specifically, we found that if the
training set contains only of fault instances injected at even-numbered nibbles at the
28th round, it can successfully predict all attacks from odd-numbered nibbles. This
clearly indicates the capability of discovering new attacks. The proposed framework
also successfully validated the claim that with the bit permutation-based linear layer
of PRESENT, the fault diffusion (and thus the attack) strongly depends on the
plaintext and the value of the injected fault. Although this might not be a totally
new observation, our framework figures it out, automatically, and can quantify this
claim statistically within reasonable amount of time.

3.4.2 Exploitable Fault Space Characterization for LED

LED is a 64-bit block cipher proposed in CHES 2011 [10]. LED utilizes a round
function which is similar to that of AES; more specifically it has the following
sub-operations in sequence—SubByte ShiftRow, MixColumn, and addRoundKey. In
contrast to AES, the 64-bit key is added once in each 4 rounds. All the diffusion layer
operations have identifiable nibble-wise structures. The 4 × 4 S-Box of PRESENT
is used as the confusion layer. Interestingly LED has no key schedule and the
same key is used in all rounds. Like PRESENT, LED has also been subjected to
DFA and DFIA [9, 15, 18]. Most of the DFA attempts on LED targeted the last 3
rounds of LED [14, 15, 18, 32]. Recently, Li et al. [19] have proposed an impossible
differential fault analysis attack on the 29-th round of the cipher which requires 43
nibble faults to be injected at a particular nibble. Jovanovic et al. [14] and Zhao et
al. [32] independently presented AFA attacks on LED, where they show that it is
possible to attack the cipher at 30th round with a single fault instance.

3.4.2.1 ML Experiments

In this work, we mainly focus on the last 5 rounds of the LED cipher. However,
unlike the previous experiment on PRESENT, a slightly different strategy was
adopted. In order to examine the proper potential of the ML model in discovering
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a b

Fig. 3.5 Machine learning results for LED. (a) ROC curve and (b) variation of accuracy with the
size of training set [24]

Table 3.4 Misclassification handling for LED

S Value 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

% sensitive instances 4.2 6.0 6.0 11.6 13.2 15.2 17.6 17.6 21.2 23.8 23.8

% false negatives beyond S 2.4 1.6 0.9 0.3 0.18 0.0 0.0 0.0 0.0 0.0 0.0

newer attack instances across different rounds, we intentionally trained it with
samples from the 30 and the 31st rounds and tested it on instances from rounds
29 and 32. The RF model is trained with a total of 450 instances from the 30 and
the 31st rounds and tested on 190 instances from rounds 29 and 32. The setup
for the data acquisition is given in Table 3.2. The accuracy box plot and ROC
curve for the classifier are provided in Fig. 3.5a, b, respectively. It can be observed
that the accuracy is almost 93%. The features used were similar to the PRESENT
experiments. Handling of misclassification was also performed and the result is
presented in Table 3.4.

3.4.2.2 Discovery of New Attacks

We observed a quite interesting phenomenon in this experiment which clearly
establishes the capability of the ML tool in discovering newer attack instances.
More specifically, we found that the ML tool can identify attacks on 29th round
of the cipher, even if it not trained with any instances from the 29th round. The
attack instances observed at the 29th round of LED are mainly bit-fault instances
with 2 fault injections. Attacks on the 29th round of LED are usually difficult
than the 30th round attacks [19, 33], and it is quite remarkable that the ML
model can figure out difficult attacks just by learning easier attack instances.
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3.4.2.3 Discussion

So far we have discussed two ciphers with same S-Box and different diffusion
layers. A comparative study of these two experiments establishes that compared
to PRESENT, the fault space of LED is quite regular in nature. For example, almost
all of the 30 round nibble faults in LED resulted in a successful attack, whereas for
PRESENT there was a significant number of unexploitable instances at 28th round.
From the perspective of an adversary, targeting a cipher having bit-permutation-
based diffusion layers thus becomes a little more challenging as he/she must attack
it with more number of fault injections in order to obtain a successful attack.

3.4.3 Utilizing the Success Rate: Analyzing the Effect of
S-Boxes on Fault Attacks

So far in this chapter, we have discussed how to realize the ML-based fault space
characterization efficiently. However, one of the main targets of this characterization
is to estimate the success rate of an attack, which has not been demonstrated yet. In
this subsection, we shed light on this issue. The estimation of the success rate is
fairly straightforward once we have the ML model. One needs to characterize a
large sample of faults with the model and calculate the percentage of exploitable
faults among them. As we have already pointed out in the introduction, this quantity
indicates what percentage of faults corresponding to a given location in the cipher
practically results in an attack. Quite evidently if this percentage is fairly high, the
location is extremely vulnerable.

The success rate metric, in fact, can shed light on something more crucial. It can
provide relative grading among different fault locations and cipher structures. As
a consequence, we can decide which structure is more vulnerable towards attacks
automatically. Let us establish this claim by means of examples. The S-Boxes are
one of the most important resources in a block cipher construction. However, till
date, no quantitative analysis was performed to evaluate the effect of S-Boxes on
the fault attacks as such. In classical DFA, the attack complexity is related with
the average number of solutions of the S-Box difference equations having the form
S(x) ⊕ S(x ⊕ α) = β. However, S-Boxes were never characterized in the context
of fault attacks considering the cipher as a whole. The characterization of the
exploitable fault space (i.e., the success rate) in this work gives us the opportunity
to perform such analysis.

In this experiment, we study the effect of three different S-Boxes on the
PRESENT cipher, with respect to fault attack. More specifically, we replace the
original S-Box of PRESENT with the S-Box of SKINNY [2], and the S0 S-Box
of the SERPENT [3], and study their effect on the exploitable fault space. The
algebraic characteristics of these 3 S-Boxes are almost identical and presented in
Table 3.5. The exploitable fault space in each case was characterized with our
ML-based framework. For the sake of simplicity, we only tested with nibble faults
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Table 3.5 Mathematical properties of PRESENT, SERPENT, and SKINNY S-Boxes

Property PRESENT SERPENT SKINNY

Size 4 × 4 4 × 4 4 × 4

Differential branch number 3 3 2

Differential uniformity 4 4 4

Max. degree of component functions 3 3 3

Min. degree of component functions 2 2 2

Linearity 8 8 8

Nonlinearity 4 4 4

Max. differential probability 0.25 0.25 0.25

Max. degree of polynomial representation (with
lexicographic variable ordering)

3 3 3

injected with N = 2 (that is two times for each fault instances) at the 28th round.
The obtained test accuracies were similar to that of the PRESENT experiment
and so we do not repeat them here. Further, for each of the S-Box case, we
consider 1000 fault instances for each nibble location (there are total 16 nibble
locations). The characterized fault spaces of the three S-Box test cases are depicted
in Fig. 3.6a–c, respectively. It is interesting to observe that although the PRESENT
and SERPENT S-Box result in almost similar behavior, the SKINNY S-Box results
in a significantly different fault distribution. More specifically, whereas most of the
fault instances for the PRESENT and SERPENT are exploitable (60% exploitable
faults on average), the situation is reverse in the case of SKINNY (23% exploitable
faults on average). In other words, the attack success rate is less in the case of
SKINNY S-Box.

3.4.3.1 Analysis of the Observations

In order to explain the observations made in this experiment, we had an in-depth
look in the 3 S-Boxes as well as the diffusion layer of PRESENT. The fault diffusion
in PRESENT linear layer depends on the number of active S-Boxes (S-Boxes whose
inputs are affected by the faults). For a multi-round fault propagation, the number of
active S-Boxes in the ith round depends on the Hamming weights (HW) of the output
S-Box differential in the (i − 1)th round. Figures 3.7 and 3.8 emphasize this claim
with a very simple example. The lines colored red indicate non-zero differential
value and the red S-Boxes are the active S-Boxes.

Now let us consider the fault diffusion tree for the 28th round nibble fault
injection in the PRESENT structure, shown in Fig. 3.8 up to 30th round, for
convenience. It can be observed that most of the S-Boxes obtain an input difference
of 1 bit. In other words, the inputs of the S-Boxes will have a single bit flipped. With
this observation, the investigation boils down to the following question—If the HW
of the input difference of an S-Box is 1, what is the HW of the output difference?
For all three S-Boxes considered, the average HW of the output difference should
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Fig. 3.6 Exploitable fault spaces with. (a) PRESENT S-Box, (b) SERPENT S-Box, and (c)
SKINNY S-Box [24]
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Fig. 3.7 Relation between the HW of S-Box output differential and fault diffusion in PRESENT.
(a) 4 S-Boxes activated, (b) 3 S-Boxes activated, (c) 2 S-Boxes activated, and (d) 1 S-Box activated
at the ith level [24]
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Fig. 3.8 Fault propagation up to 30th round in PRESENT structure [24]

be 2 when the average is considered over all possible input differences (this is due
to the strict avalanche criteria (SAC)). However, for the typical case, where the HW
of the input difference is restricted to 1, the average HW of the output differences
vary significantly. More specifically, the average is quite low for the SKINNY S-
Box where it attains a value of 2.2. For the PRESENT S-Box, the value is 2.45 and
for SERPENT it is 2.5. This stems from the fact that, for the SKINNY S-Box, there
exist input difference values, for which the HW of the output differences become
1. Whereas for PRESENT and SERPENT S-Boxes, the minimum HW of the output
differences is 2 for any given input difference. In essence, the fault diffusion with
PRESENT and SERPENT S-Box is more rapid on average than the SKINNY S-
Box, which got reflected in the profile observed for exploitable fault spaces (and
over the success rate).

The result presented in this subsection is unique from several aspects. Firstly,
it shows empirically that even if the S-Boxes are mathematically equivalent, they
may have different effects in the context of fault attacks. Secondly, the proposed
framework of ours can identify such interesting phenomenon for different cipher
sub-blocks, which are otherwise not exposed from standard characterization. This
clearly establishes the efficacy of the proposed approach and success rate estimation.

3.4.3.2 Discussion

One of the main applications of exploitable fault characterization is a quantitative
evaluation of block ciphers. One may consider the scenario presented in this section
as a concrete example of such evaluation. The fraction of exploitable faults for
a specific fault location, model, and multiplicity can be utilized as a metric for
cipher evaluation. For example, Fig. 3.6a clearly indicates the high vulnerability of
PRESENT against DFA attacks while a random nibble fault with multiplicity 2 is
injected at the 28th round of the cipher. The attacker will succeed with probability
0.6. The complete extraction of the master key is possible within a reasonable time
for all of these exploitable faults.4 Similar quantitative evaluations can be performed

4However, it is worth mentioning that, by assigning some of the correct key bits in the equation
system, a cipher evaluator can also handle the cases where key extraction by means of a fault is
partial.
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at other locations and fault models. In particular, if a cipher contains a significant
number of such vulnerable locations for any of the practically achievable random
fault models, it cannot be considered as a good design in the context of DFA attacks.

Relative grading of ciphers or various sub-operations is another potential appli-
cation in the context of exploitable fault characterization. For example, among the
three variants of PRESENT with three different S-Boxes, the one with SKINNY
S-Box seems to be the most resilient alternative so far. Such experiments also have
significant practical value for designing proprietary ciphers, where a common trend
is to pick a reasonably good design and then replacing the sub-operations with
similar ones. Also among PRESENT and LED, the former one seems relatively
better as for the LED almost all nibble faults at round 30 are found to be exploitable;
that too with a fault multiplicity of 1.

One critical aspect in statistical exploitable characterization is the choice of the
fault multiplicity. Increasing fault multiplicity often makes the fault propagation
more deterministic which in turn improves the accuracy of the ML model from all
aspects and makes most of the faults at certain locations exploitable. However, one
of the main practical requirements of DFA attacks is low fault multiplicity. Thus,
for a fair comparison, one should choose a proper operating point where the attacks
are possible with the lowest fault multiplicity. This fact justifies our choice of fault
multiplicity 2 throughout our experiments with PRESENT. This fault multiplicity
can be easily determined while acquiring the training data for the ML model.

3.5 Chapter Summary

Exploitable fault space characterization is an extremely relevant but relatively less
explored topic in the fault attack research. We address this problem in the context of
block ciphers, in this chapter, and eventually, come up with a reasonable solution.
The proposed solution is able to efficiently handle the prohibitively large fault space
of a cipher with reasonable computational overhead. The ML-based framework
proposed here is not limited to block ciphers only as is quite well-known that even
stream ciphers, public key algorithms [8], and hash functions can be mapped to
algebraic systems [21].

Fault attacks are somewhat obvious for block ciphers, and there exists no
construction so far, which is inherently resistant against such attacks. However,
the degree of vulnerability may vary which we estimate from different perspectives
in ExpFault and the ML-based framework. Countermeasures are inevitable against
such attacks but they do incur huge overheads. One of the major application sce-
narios for such frameworks can be systematic and optimal countermeasure design.
One simple optimization could be to deploy strong countermeasures to locations
which are extremely vulnerable, and less robust but lightweight countermeasures to
moderately critical locations. However, countermeasures do leak information if not
designed properly. One of the relevant future works in this direction is to automate
the vulnerability assessment of countermeasures.
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Both the ML-based framework and ExpFault work at the algorithm level and
do not consider certain implementation level issues which may leak information.
Although the fault models considered in both of these chapters can incorporate the
faults resulting from implementation aspects like instruction skips, the incorporation
is not obvious. One of the major future works will be to bridge the gap between
implementation and high-level faults in a fully automated manner so that imple-
mentation faults can be directly considered within the rich frameworks developed
in these two chapters. The next couple of chapters in this book, however, will
focus on handling implementation faults directly at the implementation level. These
approaches do not exploit the cipher structures for estimating attacks and can figure
out rather simpler implementation vulnerabilities as a result.
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Chapter 4
Differential Fault Analysis Automation
on Assembly Code

Jakub Breier, Xiaolu Hou, and Yang Liu

4.1 Introduction

As mentioned in Chap. 1, when it comes to attacking cryptographic algorithms,
fault injection attacks are among the most serious threats, being capable of revealing
the secret information by just one single disturbance in the execution [22, 35, 44].
Differential fault analysis (DFA) [11] has become the most commonly used fault
analysis method for attacking symmetric block ciphers. It is the first method of
choice when it comes to testing fault resilience of new cryptographic algorithms
because of its simplicity and power to recover the secret key by a low number of
faulty encryptions.

In practice, the attack always has to be mounted on a real-world device, in
an implementation that is either hardware- or software-based. When we focus on
software, there are many different ways to attack such implementations—one can
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corrupt the instruction opcodes resulting to instruction change, skip the instructions
completely, flip the bits in processed constant values or register addresses, or change
the values in the registers and memories directly [3, 6]. These attacks can be
achieved by various fault injection methods, such as clock/voltage glitch, laser fault
injection, or electromagnetic fault injection [3, 5].

As a consequence, different implementations of the same encryption algorithm
do not necessarily share the same vulnerabilities. Some attacks that work in theory
might either not be possible or be hard to execute in practice (e.g., precisely setting
particular bits of the cipher state to some value [26]). On the other hand, there might
be an exploitable spot in the implementation that is not visible from the specification
of the encryption algorithm and can only be found by analyzing the assembly code.
Up to now, the known DFA on PRESENT all aim before the execution of Sbox
layer of the last round. In Sect. 4.5 we will show a DFA attack on one PRESENT
implementation which aims at the end of player of the last round. The vulnerability
comes from the implementation technique and is not intrinsic to the cipher.

Chapters 2 and 3 presented a thorough automated analysis of DFA on cipher
design level. Since the real attack is always done on a concrete implementation [15,
18], it is also important to have automated tools to find the vulnerabilities of
specific implementations. Our work aims to contribute to the automation of DFA
on assembly code.

Since DFA makes use of the data dependency between the intermediate values
of the algorithm and the secret key, we represent an assembly code as a customized
data flow graph in static single assignment (SSA) form to record the operations
(edges) and memory structures (nodes) holding the data, as well as their relations.
Hence, assuming a fault is injected in one node (equivalently, the fault is injected
in the instruction where this node is an output operand), we can construct the
corresponding subgraphs that represent propagation of faults from this node to the
ciphertext, while also showing its relation to the round key(s). Ultimately, this allows
us to automatically generate differential fault analysis equations, by solving which
we can mount a successful fault injection attack.

Different DFA attacks make use of different properties of the cryptosystems.
The simplest attacks aim at the last round, requiring higher number of faults. More
sophisticated attacks utilize properties of the cipher permutation layer, enabling
them to aim at second or third last round, while lowering the number of faults.
Hence, we allow the users to specify what kind of vulnerable spots to look for,
which is realized as a user input variable called output criteria.

Our methodology was implemented in a tool named DATAC—DFA Automation
Tool for Assembly Code [16] that takes an assembly code as input, and outputs
subgraphs and equations for each vulnerable node according to user-specified output
criteria.

Main Focus of the Chapter In this work we design and implement an automated
tool DATAC which automatically finds the vulnerable instructions with respect to
DFA in an assembly implementation of cryptosystem and outputs the related DFA
equations for further analysis.
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DATAC does not require any specific inputs of the cryptosystem and works
independently of plaintext and secret key, providing a general evaluation of the
underlying implementation. To the best of our knowledge, there is no tool working
on assembly level that could automate the whole process to such extent. We
emphasize that DFA vulnerabilities specific to software implementations are not
visible from cipher design level.

We provide a case study on PRESENT-80 cipher implementation for 8-bit AVR
microcontroller that shows capabilities of DATAC by finding a new DFA attack
which is implementation specific, being able to recover the last round key by 16
fault injections.

To show the usage of output criteria, we provide an analysis of SPECK 64/128
and SIMON 64/128 lightweight ciphers, as well as current industry standard, AES-
128. Time required for the analysis of AES is less than a second, by using a standard
laptop computer. The results show that the whole process is computationally
feasible.

We would like to point out that our tool is modular and enables an easy extension
to the instruction set, making it easy to evaluate implementations for different
devices.

Organization of the Chapter The rest of the chapter is structured as follows. Sec-
tion 4.2 provides preliminaries for this chapter. Section 4.3 specifies our approach,
by detailing each step of the evaluation used in DATAC. Section 4.4 provides
implementation details of DATAC. Section 4.5 explains an implementation-specific
DFA attack on PRESENT-80 found with DATAC. Section 4.6 provides a discussion
and finally, Sect. 4.7 concludes this chapter.

4.2 Preliminaries

In this section, we first detail several related works in Sect. 4.2.1, focusing on
automated fault analysis on design level and on evaluating implementations. In
Sect. 4.2.2, we explain necessary basics of intermediate representations that are
related to our work. We continue with stating assumptions and scope for DATAC
usage in Sect. 4.2.3. Finally Sect. 4.2.4 closes this part with formal definitions and
notations that are used later in the chapter.

4.2.1 Related Work

Agosta et al. [2] utilized an intermediate representation in order to check for single
bit-flip vulnerabilities in the code to point out the exploitable parts. However,
the approach aims at detecting cipher design vulnerabilities instead of low-level
implementation-specific vulnerabilities. That is also why instruction skip model is
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not considered, although it is being one of the most powerful and easy to implement
attacks.

Khanna et al. [37] proposed XFC—a method that checks exploitable fault
characteristics of block ciphers considering the DFA attack method. Their approach
takes a cipher specification as an input and then indicates the fault propagation
through the cipher. The main drawback of this work is its focus on a high-
level cipher representation, and therefore, being unable to check the security of a
particular cipher implementation.

Goubet et al. [32] developed a framework that generates a set of equations for an
SMT solver from assembly code. Then it uses this representation for evaluating
robustness of countermeasures against fault injection attacks. The evaluation is
based on comparison of two code snippets: one that represents a code without
any protection, and a hardened code. These snippets are then represented as finite
automata, unfolded, and analyzed. The main drawback of this work is its focus on
code snippets instead of real implementations of cryptosystems and the fact that
analyzing 10 lines of code requires 10.7 s. Therefore it is not feasible to analyze the
full cipher in a reasonable time.

Dureuil et al. [25] proposed an approach using fault model inference—they first
determine fault models that can be achieved on a target hardware, together with
probability of occurrence of these models. Based on this information, they compute
a “vulnerability rate” that gives an estimate of the software robustness. The focus of
this chapter is to estimate time required in order to successfully inject the required
fault model.

Gay et al. [30] took several hardware implementations of AES and provided their
algebraic representations and translation into formulas in conjunctive normal form
(CNF). These can be directly used by a SAT solver to mount an algebraic fault
analysis.

A different approach to fault analysis automation was presented by Endo
et al. [28]. Their work does not focus on finding a DFA vulnerability. However,
it automates the way to find a pre-defined vulnerable spot in a black-box implemen-
tation with a countermeasure by checking whether the cipher output matches the
requirement for the attack.

Our approach analyzes the assembly code directly, by building a customized data
flow graph, allowing users to tailor the requirements for vulnerabilities according to
desired fault models. Thanks to this, we can identify the points of interest efficiently
and design DFA equations automatically, so that only the solving part is left to
the user. DATAC is also scalable and can be used for analyzing a whole cipher
implementation efficiently.

4.2.2 Intermediate Representation

Compiler construction normally depends on program analysis, where statements
from an abstract high-level language are translated into a binary form that is



4 Differential Fault Analysis Automation on Assembly Code 93

understandable by the underlying processor. This process is not done in a single
step but there are several subprocesses involved, in order to optimize the resulting
program. One of these steps involves creation of an intermediate form that can
be represented as a directed graph. There are various intermediate forms that can
represent a program. Here we detail three intermediate representations which are
most related to our work.

Data Dependency Graph Data dependency graph [1, 19] represents dependencies
between (arithmetic assignment) statements that exist within program loops. For
assembly code, the data dependency graph is also called instruction dependency
graph, where each node corresponds to one instruction and each edge represents a
dependency [24].

Data Flow Graph A data flow graph is a representation of data flow in a program
execution. The nodes correspond to operations. Input data of an operation are
represented as inward edges of the corresponding node and output data of an
operation are represented as outward edges of the node [41].

Static Single Assignment Static single assignment (SSA) form requires that each
variable is assigned exactly once and every variable is defined before it is used. As
an example, we can take an assignment of the form x = exp. Then, the left-hand
side variable x is replaced by using a new variable, e.g., x1. After this point, any
reference to x, before x is assigned again, is replaced with x1 [7].

DATAC In our work, we are dealing with the dependency between different
memory units that can be affected by performing operations on these units. Thus,
DATAC constructs a graph where each node corresponds to a variable and each edge
corresponds to an instruction. There is an edge f from a variable a to a variable b if
and only if a is one input operand of instruction f and b is one output operand of f .

Furthermore, we consider an unrolled implementation. Hence, we can adopt
the SSA form to facilitate DFA. Therefore, a graph constructed by DATAC is a
customized data flow graph in SSA form.

4.2.3 Assumptions and Scope

Obviously, there are many aspects that have to be taken into account when analyzing
a cipher implementation. It would be a daunting task to make a general-purpose
analyzer that could work on unrestricted space of programs and fault analysis
methods. Therefore, in the following we specify the scope for the tool usage and
the rationale behind the design and implementation.

• As most of the DFA proposals, our method assumes known-ciphertext model and
a single fault adversary (i.e., injecting one fault per encryption).
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• We assume the implementation is available to the user and he can add annotations
to the assembly code for the purpose of distinguishing different rounds, round
keys, ciphertext words, etc.

• Majority of DFA proposals assume either bit-flip or random byte fault models.
Additionally, some works utilize a powerful instruction skip model that can
change the program flow in a way that some operations are avoided completely,
resulting into a trivial cryptanalysis [29]. Therefore, we assume these three fault
models in our analysis.

• The analysis automates the process of DFA that focuses on finding the vulnerable
spot in the program and creating the difference equations.

• The set of vulnerable nodes that are outputs from the analysis is dependent on
parameters that are set by the user. These are referred to as the output criteria.
While we give some suggestions on tuning these so that the user can get readily
exploitable outputs, in the future there might be more efficient DFA methods
available that would require different parameters. By defining these as an input
variable, it makes it easy in the future to adjust the tool to these new attacks
without rebuilding the analysis subsystem.

• While the program outputs the difference equations, the final step of the analysis
has to be done manually. One of the reasons for this is that our tool does not
operate on concrete values, only on dependencies between the variables.

• For the analysis in this chapter, we have chosen Atmel AVR instruction set.1

However, for analyzing different instruction sets, only the parsing subsystem of
the analyzer has to be redefined (AsmFileReader class stated in the class
diagram in Fig. 4.8).

We would like to point out that the analysis is done on unrolled implementations.
The main reason for this is that fault attack can always exploit a jump/branch
operation in a way to render the computation vulnerable to DFA [46]. For example,
if a round counter is tampered with, attacker can easily change the number of rounds
to 1, making it trivial to recover the key. Or, if cipher operations are implemented as
macros, one can skip the jump to such macro [23].

4.2.4 Formalization of Fault Attack

Definition 4.1 We define a program to be an ordered sequence of assembly
instructions F = (f0, f1, . . . , fNF −1). NF is called the number of instruc-
tions for the program. For each instruction f ∈ F , we associate f with a
4-tuple (f seq, f mn, f io, f do), where f seq is the sequence number and f mn is the
mnemonic of f . f io is the set of input operands of f , which can be registers,

1http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf.

http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf.
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Table 4.1 Assembly code Fex for a sample cipher

# Instruction # Instruction # Instruction

//round_1 5 EOR r1 r3 10 LD r3 key2+

0 LD r0 X+ 6 ANDI r0 0x0F 11 EOR r0 r2

1 LD r1 X+ 7 ANDI r1 0xF0 12 EOR r1 r3

2 LD r2 key1+ 8 OR r0 r1 //store_ciphertext

3 LD r3 key1+ //round_2 13 ST x+ r0

4 EOR r0 r2 9 LD r2 key2+ 14 ST x+ r1

constant values, or pointers to memory addresses. f do is the set of destination
(output) operands of f , which can be registers or pointers to memory addresses.

Example The assembly implementation Fex of a simple sample cipher in Table 4.1
has NFex

= 15 instructions. Instruction f6 = ANDI r0 0x0F has input operands
r0 and 0x0F, destination operand r0. Thus f6 is associated with the 4-tuple
(6,ANDI, {r0,0x0F}, {r0}).

We note that for an instruction f = ADD r0 r1, the output operands of f

are actually r0 and carry, where carry is a flag, usually represented by a bit
in the status register of a microcontroller. The carry itself does not appear in the
assembly code directly; however, we consider it in our analysis as a standalone
operand.

Fault attack is an intentional change of the original data value into a different
value. This change can either happen in a register/memory, on the data path, or
directly in ALU. In general, there are two main fault models to be considered—
program flow disturbances and data flow disturbances. The first one is achieved by
disturbing the instruction execution process that can result in changing or skipping
the instruction currently being executed. The second one is achieved either by
directly changing the data values in storage units or by changing the data on the
data paths or inside ALU.

Formally, we define a fault injection in a program F = {f0, f1, . . . , fNF −1} to
be a function ϑi : F �→ F ′, where 0 ≤ i < NF and F ′ is a program obtained from
F with the instruction fi being tampered. Thus ϑi represents a fault injection on the
instruction with sequence number i in F . There are different possible fault models,
we focus on the following:

• Instruction skip: ϑi(F ) = F \fi , i.e., instruction i is skipped.
• Bit flip: ϑi(F ) = {f0, f1, . . . , fi, f

′
i+1, f

′
i+2, . . . , f

′
NF −1, f

′
NF

} such that

f ′
j+1 = fj for i < j < NF and f ′

i+1 = r xor �, where r ∈ f do
i ∪ f io

i

is either a destination operand or an input operand of instruction fi and � is a
pre-defined value which is called a fault mask. In the case f do

i = ∅, f ′
i+1 = NOP.

• Random byte fault: ϑi(F ) = {f0, f1, . . . , fi, f
′
i+1, f

′
i+2, . . . , f

′
NF −1, f

′
NF

}
such that f ′

j+1 = fj for i < j < NF and f ′
i+1 = r xor �, where

r ∈ f do
i ∪ f io

i and � is a random value. In the case f do
i = ∅, f ′

i+1 =NOP.
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In the rest of this chapter we assume that the attacker has the knowledge of the fault
model for the differential fault analysis.

4.3 Automated Assembly Code Analysis

In Sect. 4.3.1, we first provide an overview of the internal working of DATAC. Then,
we explain the methodology used in DATAC in detail, following the same logical
flow as the actual analysis. Section 4.3.2 defines the specifics of our customized data
flow graph. Output criteria parameters are elaborated in Sect. 4.3.3. Subgraph and
equation constructions are illustrated in Sects. 4.3.4 and 4.3.5, respectively.

4.3.1 Overview

The main goal of DATAC is to analyze the assembly code and find vulnerable spots
w.r.t. DFA attack. This can be a challenging task, since the same instruction can be
vulnerable in one part of the code, but secure in the other part, depending on the
context.

For our purposes, we have to capture the following details when transforming the
assembly code:

• Memory units holding the data (registers, RAM, flash, etc.) as well as direct
operands (constants)—these will be represented as nodes.

• Transitions between the nodes.
• Operations (instructions) in the program—represented as edges.
• Properties of operations (linear/non-linear).
• Ability to distinguish important nodes, such as round keys and ciphertext.

Our evaluation method is depicted in Fig. 4.1. First, an assembly code is fetched
as the input. Based on its structure, a data flow graph is created. Depending on the
output criteria, vulnerable nodes are identified. Then, a subgraph is created for each
vulnerable node—it specifies a propagation pattern of the fault from the vulnerable
node to the ciphertext. Together with it, fault analysis equations are generated—
based on them, a fault attack can be executed. In the rest of this section, we provide
details on how our approach works.

4.3.2 From Assembly to Data Flow Graph

Given a program F = (f0, f1, . . . , fNF −1), a data flow graph is a directed graph
GF ,f ull = (V ,E), where the set of nodes V = A ∪ B is the union of two sets
of labeled nodes. A consists of labeled nodes with labels “x (i)” such that x is
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Fig. 4.1 Our evaluation
method for analyzing
assembly code w.r.t. fault
injection vulnerabilities

a destination operand (also called output operand) of instruction i. B consists of
labeled nodes with labels “y (i)” such that y is an input operand of instruction i and
y is not a destination operand of any instruction.

• A = {“x (i)” : x ∈ f do
i for some 0 ≤ i < NF };

• B = {“y (i)” : y ∈ f io
i for some 0 ≤ i < NF and y /∈ f do

j for any 0 ≤ j <

NF }.
We draw an edge from node a = “y (i)” to node b = “x (j)” if and only if the

following conditions are satisfied:

• i ≤ j ,
• x is a destination operand of instruction j ,
• y is an input operand of instruction j ,
• y is not an output operand for any instruction between instruction i and

instruction j , which means the value in y is not changed between instructions
i and j .

Formally, an edge (a, b) ∈ E for a = “y (i)”, b = “x (j)” ∈ V iff i ≤ j ,
x ∈ f do

j , y ∈ f io
j and “y (k)” /∈ V ∀i < k < j . Furthermore, we label such an

edge with “f mn
j (j)” and we say that this edge is associated with instruction fj .

We also refer to a as an input node of fj and b as an output node of fj . Following
the terminologies from graph theory, a is called the tail of the edge (a, b) and b is
called the head of (a, b).

Example The data flow graph GFex ,f ull corresponding to the assembly program Fex

in Table 4.1 is shown in Fig. 4.2. Instruction f6 has input operands r0 and 0x0F,
where r0 is the output operand of f4 and 0x0F is not an output operand of any
instruction. The output operand of f6 is r0. Hence f6 has two input nodes: “r0
(4),” “0x0F (6)” and one output node “r0 (6)”. Furthermore, f6 is related to two
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load_plaintext

round_1

round_2

store_ciphertext

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

eor (4)

r1 (5)

eor (5)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

eor (4)eor (5)

r0 (6)

andi (6)

r1 (7)

andi (7)

0x0F (6)

andi (6)

r0 (8)

or (8)

0xF0 (7)

andi (7)

or (8)

r1 (12)

eor (12)

r0 (11)

eor (11)

key2+ (9)

r2 (9)

ld (9)

r3 (10)

ld (10)

eor (11) eor (12)

x+ (13)

st (13)

x+ (14)

st (14)

Fig. 4.2 Data flow graph GFex ,f ull corresponding to the assembly program Fex in Table 4.1
constructed by DATAC

edges in the graph, both labeled “ANDI (6).” Both edges have head “r0 (6),” one
with tail “r0 (4)” and one with tail “0x0F (6)” (see the nodes and edges highlighted
in gray).

Since we are dealing with implementations of ciphers, we highlight the round
keys as well as the ciphertext in the graphs. As shown in Fig. 4.2, the node that
corresponds to round key in round i will be denoted by “keyi+ (j),” where j is
the sequence number of the first instruction that loads key values to registers in this
round. Furthermore, the output nodes of those key loading instructions are called
key word nodes. Depending on which word is loaded first, they are more specifically
called the first key word node, the second key word node, etc.2

2We note that this is only a naming convention to make the analysis consistent. In special cases,
where the actual order of the key words is different from their loading sequence, user has to
rearrange the key words after the analysis.
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Table 4.2 Assembly code
snippet 1

# Instruction

0 LD r0 key0+

1 EOR r1 r0

2 ST x+ r1

Table 4.3 Assembly code
snippet 2

# Instruction

0 LD r0 key0+

1 AND r1 r0

2 ST x+ r1

Example In Fig. 4.2, “r2 (2)” is the first key word node of round key for round
one. “r3 (10)” is the second key word node of round key for round two.

The nodes representing output operands that give us different words of the
ciphertext are labeled “x+ (j),” where “x+ (j)” is an output node of instruction
fj , i.e., j is the sequence number of the instruction that stores this word. We refer
to them as the words of the ciphertext. For example, in Fig. 4.2, “x+ (13)” and “x+
(14)” are the words of the ciphertext.

4.3.3 Output Criteria

For a directed graph G, a directed path from node v to node u is a sequence of edges
e1, e2, . . . , ek such that e1 = (v, x1), e2 = (x1, x2), e3 = (x2, x3), . . . , ek−1 =
(xk−2, xk−1), ek = (xk−1, u). For any pair of nodes v and u, if there exists a directed
path from v to u, we say u is a Gchild of v and v is a Gparent of u. For any edge e

which appears in the sequence, we say e belongs to this directed path from v to u.
Now let us look at the following two simple scenarios in Tables 4.2 and 4.3.

1. In Table 4.2, let us assume a fault is injected at f1 such that some bits in r1 are
flipped before the execution of EOR. Then the exact same bits will be changed
in ciphertext x+. Knowing how r1 is changed and values of ciphertext with and
without fault injection will not give us any information about r0.

2. In Table 4.3, we assume a fault is injected in f1 such that some bits in register r1
are flipped before the execution of AND. For example, suppose the first bit of r1
is changed. Then we look at the first bit of the ciphertext x+. If the first bit of the
ciphertext is also changed, we know that the first bit of the key is 1, otherwise, it
is 0.

In view of the above, we say an instruction f is linear if the following conditions
are satisfied: Let n be the register size in bits. For any pair a, b (a ∈ f io, b ∈ f do),
and for any � ∈ F

n
2, if a is changed to a′ = a ⊕ �, then b will be changed to

b′ = b ⊕ �. Thus the linearity of an instruction f is determined by its mnemonics
f mn. For example, the following commonly used mnemonics correspond to linear
instructions: EOR, LD, MV, ST. And we say an edge e is non-linear if the
instruction associated with e is non-linear.
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For a pair of nodes v and u such that u is a Gchild of v, the Gdistance between
v and u, denoted by Gdistance(v,u), is defined to be the cardinality of the following
set:

{e : e belongs to a directed path from v to u and e is non-linear}.

Example In Fig. 4.2, “x+ (13)” is a Gchild of “r0 (6)” with distance 1. “r0 (8)” is
a Gchild of “key1+ (2)” with distance 4.

For each node a = “x (i),” we define CTGchild of a to be the set of ciphertext
words which are Gchildren of a. Thus if a fault is injected in node a, the fault will
be propagated to the ciphertext words that are in the set CTGchild of a.

To analyze the fault propagation that is useful, we need to focus on the nodes that
are related to the key. We say a node a is related to a key word node b of a round key
if b is not a Gparent of a and at least one of the Gchildren, say ch, of a is a Gchild
of b with Gdistance(b, ch) = 0. The distance condition specifies that we are only
looking at nodes that are linearly related to the key. The parent condition excludes
nodes that would be related to several key words in a way that would combine these
words linearly and therefore, making it impossible to recover the secret information.
And we say a is related to a round key key if it is related to at least one key word
node of key.

For a given node a which is to be examined, several possible parameters have to
be specified. We refer to them as to output criteria, and they include the following:

• minAffectedCT: |CTGchild| ≥ minAffectedCT, i.e., the number of nodes
in CTGchild is bigger or equal than minAffectedCT;

• minDist: the number of nodes in CTGchild with Gdistance at least minDist
from a is at least minAffectedCT, |{ch : ch ∈ CTGchild, and Gdistance(a, ch)

≥ minDist}| ≥ minAffectedCT;
• maxDist: Gdistance(a, ch) ≤ maxDist ∀ch ∈Gchild, i.e., the Gdistance

between any Gchild and a should be at most maxDist;
• maxKey: the number of the round keys, counting from the last round key, that

are related to node a is at most maxKey;
• minKeyWords: there exists at least one round key such that the number of its

corresponding key word nodes related to a is at least minKeyWords.

DATAC takes a data flow graph G and an output criteria as input, then iterates
through all the nodes in G and outputs the nodes of G that satisfy the output criteria.
Recall, we assume that the information available to the attacker is the fault model,
the correct and faulty ciphertext.

Below, we explain that the output criteria defined are necessary for DFA and are
independent of the analyzed cipher. On the other hand, the choice of their values is
dependent on the analyzed implementation.
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4.3.3.1 Why Are the Output Criteria Mandatory

For DFA attack, minAffectedCT specifies how many words of the ciphertext
are faulted after the fault injection. This value should be at least 1 so that the
ciphertext values can be used. minDist reflects on how many non-linear operations
are involved between the faulted node and the ciphertext. For DFA, minDist
should be at least 1 so that there are non-linear operations involved and hence
some information can be drawn. maxDist is an upper bound on how many non-
linear operations are involved in the calculations. maxDist and minDist together
restrict the number of non-linear operations to be solved for DFA. maxKey restricts
which round key(s) are to be attacked. In most DFA attacks, the attacker focuses
on the last round key (maxKey= 1) or the second last round key (maxKey= 2).
minKeyWords is able to exclude nodes which are related to only small number of
key words.

Remark 4.1 The choice of output criteria is essential to DFA, which is the scope
of this chapter. In case a different fault analysis method is considered, the output
criteria should be changed accordingly.

4.3.3.2 Choosing the Output Criteria Values

We note that the values of output criteria are closely related to each other and are
highly dependent on the actual assembly program being analyzed. For example, if
the program makes use of a high number of non-linear instructions right before
storing the ciphertext, maxDist should be set higher so that there are actually key
words related to the faulted node. On the other hand, maxKey should not be too
big, otherwise some nodes in the output will be associated with too many round
keys, making the analysis harder. Accordingly, minKeyWords should be set to a
small value, but for obvious reasons, should be at least 1. Or, if the user would like
to have all the ciphertext words being affected, i.e., setting minAffectedCT=
the number of ciphertext words, the other conditions should be loosened. For
example, for the data flow graph GFex ,f ull in Fig. 4.2, with an output criteria
(minAffectedCT, minDist, maxDist, maxKey, minKeyWords) =
(2, 1, 1, 1, 1) we cannot get any output from DATAC.

For the data flow graph in Fig. 4.2, with an output criteria (minAffectedCT,
minDist, maxDist, maxKey, minKeyWords)= (1, 1, 1, 1, 1), we get
two nodes “r0 (6)” and “r1 (7)”. For illustration purpose, we will focus on node
“r0 (6)” in the following.

4.3.4 Subgraph Construction

For a full cipher assembly implementation, the corresponding data flow graph
involves plenty of nodes and edges. It is not easy to see the fault propagation
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r0 (6)
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r1 (7)

or (8)
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r3 (10)

ld (10)
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x+ (13)

st (13)

a

b

Fig. 4.3 Subgraph constructed from node “r0 (6)” of data flow graph in Fig. 4.2 with depth (a) 0
and (b) 1

properties from the full data flow graph. Thus we would like to construct a subgraph
which shows the fault propagation clearly.

Given a data flow graph GF ,f ull for an assembly program F and node a in
GF ,f ull , we construct a graph Ga which is a subgraph of GF ,f ull = (V ,E), i.e.,
Ga = (Va, Ea) is a pair such that Va ⊆ V and Ea ⊆ E.

Sometimes, knowing how the faulted node relates to previous instructions will
also help with the fault analysis. Keeping this in mind, we define a parameter called
depth for the construction of the graph Ga .

We define KNGchild to be the set of key word nodes that are related to a. Then

Va =
(⋃depth

i=0 Ui

) ⋃ (⋃4
j=1 Vj

)
, where

• U0 = {b : b is an input node of an instruction f for which a is an input node}
• For 1 ≤ i ≤ depth, Ui = {b : b is an input node for an instruction f such that v

is an output node of f for some v ∈ Ui−1}
• V1 = {b : b is a child of a}
• V2 = {k : k is a round key that is related to a}
• V3 = {b : b is a key word node for a key k ∈ V2}
• V4 = {b : b is a child of a node v ∈ KNGchild and b is a parent of a child of a}.

Let V ′ = (Va\(V2 ∪ V3)) ∪ KNGchild. Then Ea = E1 ∪ E2, where E1 = {e :
both the head and the tail of e are in V ′} and E2 = {(k, b) : k ∈ V2, b ∈ V3}.
Example In Fig. 4.3a, b we present the subgraphs constructed from node “r0 (6)”
of the data flow graph GFex ,f ull (Fig. 4.2) with depths equal to 0 and 1, respectively.
For this case, we have

– U0 = {“r0 (6)”, “r1 (7)”}
– U1 = {“r1 (5)”, “0xF0 (7)”, “r0 (4)”, “0x0F (6)”}
– V1 = {“r0 (8)”, “r0 (11)”, “x+ (13)”}
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– V2 = {“key2+ (9)”}
– V3 = {“r2 (9)”, “r3 (10)”}
– V4 = {“r0 (11)”}

From Fig. 4.3, we can see that with depth = 1, we do get extra useful
information: the two edges with label “andi (6)” show that the first four bits of
“r0 (6)” are 0.

4.3.5 Equation Construction

Having the subgraph, constructed from a potentially vulnerable node, we would like
to construct equations out of the subgraph to connect different input/output nodes,
which can be easily analyzed by algebraic methods.

Given any subgraph Ga = (Va, Ea) ⊆ GF ,f ull , where GF ,f ull is the data flow
graph of an assembly program F , we take all the instructions in F that are related
to at least one edge e ∈ Ea . Next, we order these instructions according to their
sequence numbers. The equations are then constructed according to the input/output
nodes and the edges associated with the corresponding instructions.

In Table 4.4 we show some representations of equations for different mnemon-
ics. Here, the symbol “|” represents concatenation. For example, take f =
MUL r2 r3, it calculates the product of values in registers r2 and r3, then the
high byte of the product is stored in r1 and the low byte of the product is stored in
r0. Hence the product in the equation is represented as a concatenation of r1 and
r0: r1 | r0.

In case the equation is related to an instruction that loads a round key, DATAC
is designed to indicate which key word node is involved in the equation (see
Remark 4.2).

Now let us look at the assembly program Fex for our sample cipher from
Table 4.1. Fex and output criteria (1, 1, 1, 1, 1) (see Sect. 4.3.3) were given as

Table 4.4 Construction of equations from assembly instructions

Instruction Equation

ADD r2 r3 carry | r2 = r2 + r3

ADC r2 r3 carry | r2 = r2 + r3 + carry

EOR r2 r3 r2 = r2 ⊕ r3

AND r2 r3 r2 = r2 ∧ r3

OR r2 r3 r2 = r2 ∨ r3

MUL r2 r3 r1 | r0 = r2 × r3

LD/MOV/ST r2 r3 r2 = r3

ROL r2 carry | r2 = r2 | carry

LSL r2 carry | r2 = r2 | 0

LPM r2 Z r2 = TableLookUp(ZH | ZL)
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input to DATAC. The data flow graph GFex ,f ull for this sample cipher is in Fig. 4.2.
DATAC outputs two vulnerable nodes: “r0 (6)” and “r1 (7)”. The subgraphs with
depths 0 and 1, constructed from “r0 (6)”, are shown in Fig. 4.3. As we pointed out
in Sect. 4.3.4, the subgraph with depth 1 gives some additional useful information,
compared to the one with depth 0.

The equations obtained by using DATAC from the subgraph with depth 1,
constructed from “r0 (6)” (Fig. 4.3b), are as follows:

“r0 (6)” = “r0 (4)” ∧ “0x0F (6)” (4.1)

“r1 (7)” = “r1 (5)” ∧ “0xF0 (7)” (4.2)

“r0 (8)” = “r0 (6)” ∨ “r1 (7)” (4.3)

“r2 (9)” = key2[0] (4.4)

“r0 (11)” = “r0 (8)” ⊕ “r2 (9)” (4.5)

“x+ (13)” = “r0 (11)”. (4.6)

Equation (4.1) shows “r0 (6)” = 0000b4b5b6b7 for some bj ∈ {0, 1} (j =
4, 5, 6, 7). Equation (4.3) shows that if we skip instruction 8, the result of Eq. (4.1)
will be used instead of the result of Eq. (4.3) in instruction 11, which corresponds
to Eq. (4.5). Together with the information from Eqs. (4.4) and (4.6), the instruction
skip attack on instruction 8 would result in the first four bits of key2[0] to appear
as the first four bits of the faulted ciphertext.

Remark 4.2 The index [0] in the right hand of Eq. (4.4) indicates that the node
“r2 (9)” is the first key word node of key2, i.e., the value in “r2 (9)” is the first
byte of the second round key.

4.4 Implementation

DATAC was implemented in Java programming language, to support multi-platform
environments and provide efficient running times. In this section, we provide
implementation details of DATAC. Section 4.4.1 specifies the input format of
the assembly code file. Section 4.4.2 outlines the execution steps of DATAC.
Section 4.4.3 provides instructions on the usage of DATAC.

4.4.1 Assembly Code Properties

DATAC assumes the assembly code to be written in a text file, one instruction
per line. Some annotations are also required, as well as naming conventions for
important variables. These are stated in Table 4.5.
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Table 4.5 List of assembly code annotations and variable names required for DATAC

Action/variable name DATAC format

Loading plaintext //load_plaintext

Start of round i //round_i

Storing ciphertext //store_ciphertext

Name of key variable pointer i keyi

Name of ciphertext variable pointer x

Another requirement for the code is that it should be unrolled. It would have been
possible to add a loop and function dependency analysis into DATAC; however, it
was shown before that loops and function calls can be easily disturbed by fault
injection (e.g., in [39]) and therefore, it would make more sense to just skip the
whole portion of the program instead of trying to analyze it with DFA.

4.4.2 Analysis Steps

In the following, we will outline the steps of the analysis that are being executed
each time DATAC is run:
Input: assembly code text file, output criteria, depth.

Step 1: Read the assembly file and construct an array of instructions.
When DATAC reads an instruction, it first recognizes the mnemonics.

Based on the type, it reads the operands that follow after the mnemonics.
These are stored together with the sequence number.

Some operands are put explicitly, e.g., LDI r0 0x01 has two
operands—input operand is 0x01, and the output operand is r0. In some
cases, the operands are implicit, e.g., MUL r5 r6 has four operands—
input operands r5, r6 are explicit and there are two implicit output
operands: r0 and r1. The same holds for instructions that use a carry bit,
for example, ADC, ROL—in these cases, the carry is treated as input or/and
output operand, since a fault in a carry can cause changes in later values.

Step 2: Construct the data flow graph of the program.
DATAC iterates through the array of instructions and analyzes both the

operations and operands. Operands are represented as nodes and operations
are represented as edges.

To allow tracing the behavior under fault, cross-dependencies between
edges and nodes are also stored—each node has a set of input/output edges,
and each edge has its head (output node) and tail (input node).

Some operands involve pointers to memory use pre-/post-increment or
decrement operators (+/-). In this case, an array of consecutive memory
values is used by the program, normally either for loading plaintext and key
or for storing ciphertext. In the case of storing ciphertext, we treat different
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entries of the array separately, since it is important to know which word
is affected by the fault. Since a fault injection in a memory cell can cause
the same data disturbance as a fault on the data bus or register directly, we
do not differentiate particular memory cells in case of loading the values.
Therefore, such array would appear in the data flow graph as a single
variable from which other variables are being loaded.

Step 3: For each node, record the following sets of nodes: Gparent, Gchild,
CTGchild, related key words. For each Gchild of the node, calculate
Gdistance between the node and this Gchild.

DATAC iterates through each edge. The head of an edge, say v, is a
Gchild of the tail of this edge, say u. The Gchildren of v are assigned as
Gchildren of u. Furthermore, Gchildren of v are also assigned as Gchildren
of the Gparents of u.

Step 4: Select the nodes that satisfy the output criteria, based on the information
from the previous step. These are the vulnerable nodes.

Step 5: Generate subgraph for each vulnerable node.
Step 6: Generate one set of equations for each subgraph.

Output: data flow graph, subgraphs, and difference equations for each node that
satisfies the output criteria.

4.4.3 Usage of DATAC

Together with the assembly code file, user has to specify the output criteria as an
input. We suggest to use relatively tight values of output criteria as a preliminary
test to see whether all the key words can be recovered, then loosen the criteria to
find possible vulnerable nodes. We would like to point out that it is also possible
to automate finding of the optimal values in order to get the desired number of
vulnerable nodes. One can start with tight values and then loosen chosen parameters
until this number is above some threshold.

Another user-specified parameter is the depth. One can get a good understanding
about a usefulness of this parameter by observing Figs. 4.5 and 4.6 from Sect. 4.5.
While both vulnerable nodes are related to the same round key, their analysis
requires usage of different depths in order to get information about the respective
key words. We suggest user to start with higher values of this parameter (e.g., 5) and
lower them after each iteration in case there are nodes in the subgraph that are not
useful in the analysis.

DATAC is capable of analyzing any microcontroller instruction set, after speci-
fying this set as a subclass of the Mnemonics class and specifying instruction prop-
erties (linearity, table look-up, etc.) in a subclass of the MnemonicRecognizer
class.

Also, the relation of the vulnerable node to the key can be adjusted in
case some other analysis instead of DFA is required. This can be done in the
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analyzeFaultedNodes() method of the FaultAnalyzer class. The class
diagram of DATAC is provided in Appendix.

4.5 Case Study

In this section, we will describe a DFA attack on PRESENT that was automat-
ically generated by DATAC. Section 4.5.1 gives the specifications of PRESENT.
Section 4.5.2 details the DFA attack we found using DATAC. This DFA attack is
new and it requires 16 faults to recover the last round key.

We would like to point out that while all the fault attacks proposed on this cipher
so far exploit the differential characteristics of the Sbox (e.g., [13, 21, 31, 33, 34]),
our tool was able to find the vulnerable spots in the program that are implementation
dependent, easily exploitable, and yet not trivial to find in the assembly code by a
manual inspection.

4.5.1 PRESENT Cipher

For the case study, we have chosen a lightweight cipher PRESENT [12]. It is a
symmetric block cipher, designed as a substitution-permutation network (SPN).
Block length is 64 bits and key length can be either 128 bits or 80 bits (denoted
as PRESENT-128 and PRESENT-80, respectively). A round function consists of
three operations: xor of the state with the round key, followed by a substitution
by 4-bit Sbox, and finally, a bitwise permutation. After 31 rounds, there is one
more addRoundKey, used for post-whitening. The encryption process is depicted
in Fig. 4.4. Because of its lightweight character, PRESENT-80 is usually used,
therefore we focus on this variant in this section.

Fig. 4.4 High-level
algorithmic overview of
PRESENT cipher

Plaintext

Ciphertext

31x
addRoundKey

sBoxLayer

pLayer

addRoundKey
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Fig. 4.5 Subgraph with depth 1 generated by DATAC from the assembly implementation of
PRESENT, corresponding to vulnerable node “r23 (4546)”

As a target, we chose a speed-optimized assembly implementation for 8-bit AVR
from Verstegen and Papagiannopoulos, publicly available on GitHub.3 We note that
we did not use the key schedule for our analysis, since we were targeting the main
encryption routine.

4.5.2 Fault Analysis

In order to get the vulnerable nodes from the cipher implementation, we have
chosen our output criteria to be (minAffectedCT, minDist, maxDist,
maxKey, minKeyWords)= (1, 1, 1, 1, 1). With this output criteria, DATAC
outputs 16 vulnerable nodes, out of the total 4712 nodes. We will explain the fault
attack procedure on one of these nodes—“r23 (4546)”. Subgraph for “r23 (4546)”
with depth 1 is stated in Fig. 4.5.

Equations generated for the subgraph with depth 1 from “r23 (4546)” are as
follows:

“r22 (4538)” = “r22 (4529)” ∨ “r23 (4537)” (4.7)

“r23 (4546)” = “r23 (4545)” ∧ “0x03 (4244)” (4.8)

“r22 (4547)” = “r22 (4538)” ∨ “r23 (4546)” (4.9)

“r1 (4648)” = key32[1] (4.10)

“r1 (4656)” = “r1 (4648)” ⊕ “r22 (4547)” (4.11)

“x+ (4664)” = “r1 (4656)”. (4.12)

3https://github.com/kostaspap88/PRESENT_speed_implementation.

https://github.com/kostaspap88/PRESENT_speed_implementation
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Equation (4.8) shows “r23 (4545)” = 000000b6b7 for some b6, b7 ∈ {0, 1}.
Together with the other equations we get

“x+ (4664)” = key32[1]⊕ (“r22 (4538)” ∨ 000000b6b7). (4.13)

Consider a bit-flip fault injection with fault mask � = 11111100 in “r23 (4546)”
right before the execution of instruction 4547, which corresponds to Eq. (4.9), then
Eq. (4.13) becomes:

“x+ (4664)” = key32[1]⊕ (“r22 (4538)” ∨ 111111b6b7), (4.14)

where “x+ (4664)”′ denotes the faulted output. Let δ = δ0δ1δ2δ3δ4δ5δ6δ7 =
“x+ (4664)”′ ⊕ “x+ (4664)” and let “r22 (4538)” = a0a1a2a3a4a5a6a7. Since
both ⊕ and ∨ are bitwise operations, together with Eqs. (4.13) and (4.14) we have

δ0δ1δ2δ3δ4δ5 = (a0a1a2a3a4a5 ∨ 000000) ⊕ (a0a1a2a3a4a5 ∨ 111111)

= a0a1a2a3a4a5 ⊕ 111111 �⇒ a0a1a2a3a4a5 = δ0δ1δ2δ3δ4δ5 ⊕ 111111.

Since the value of δ is known and the value of “x+ (4664)” is also known, together
with Eq. (4.13), we have

the first 6 bits of key32[1] = first 6 bits of “x+ (4664)”⊕δ0δ1δ2δ3δ4δ5⊕111111,

which gives the first 6 bits of the last round key.
With a subgraph constructed from “r22 (4538)” a similar fault analysis helps us

to recover the last 2 bits of key32[1]. This is the case where we have to utilize
the depth parameter of DATAC to get enough information about the faulted node.
The subgraph for the node “r22 (4538)” is stated in Fig. 4.6. As can be seen in
this subgraph to see the constants, three layers above the vulnerable node have to be
revealed.
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Fig. 4.6 Subgraph with depth 3 generated by DATAC from the assembly implementation of
PRESENT, corresponding to vulnerable node “r22 (4538)”
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Table 4.6 Assembly code of
a table look-up for PRESENT
implementation

# Instruction

0 LDI ZH 0x06

1 MOV ZL r0

2 LPM r21 Z

3 ANDI r21 0x0C

4 LDI ZH 0x07

5 MOV ZL r1

6 LPM r2 Z

7 ANDI r23 0x03

8 OR r21 r23

The same analysis can be carried out for the remaining 14 nodes to get all the
bits of the last round key.

To understand the found vulnerability, we examined the assembly code and
provide an explanation below on why the cipher implementation contains the
exploitable operations output by DATAC. This implementation combines the
pLayer with the sBoxLayer in the form of 5 look-up tables. We will explain
how this procedure works on a simple example. Table 4.6 contains the code for two
table look-ups, which results into one nibble output. First, a table index is loaded
into higher byte of register Z (instructions 0 and 4)—this decides which table will
be used. Then, the intermediate state is loaded into lower byte of register Z—it
contains two nibbles of data, therefore, we expect to get 2 bits of data back after
the Sbox and the bit permutation is applied. To clear the remaining 6 bits, ANDI
instruction is used (instructions 3 and 7). Finally, we combine the values of these
two look-ups into a nibble with an OR instruction. The attack exploits the properties
of this combined layer as well as merging of the bits of the intermediate results
together into a single register.

4.6 Discussion

This part discusses various aspects of our work. In Sect. 4.6.1, we discuss the
output criteria in details, by showing the DATAC analysis results of assembly
implementations of SIMON, SPECK, and AES ciphers and compare the results to
PRESENT. The scalability of DATAC is discussed in Sect. 4.6.2, where we show
analysis results on AES with various number of rounds. Possibilities of extending
DATAC to other ciphers and devices are elaborated in Sect. 4.6.3. In Sect. 4.6.4, we
discuss possible countermeasures against fault attacks on software implementations
and their selection. Finally, in Sect. 4.6.5 we give a remark on security verification
of cryptographic software and its relation to our work.
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4.6.1 Output Criteria

To test our DATAC tool and give more insight into effect of output criteria,
we analyzed two more lightweight ciphers: SIMON and SPECK [10], together
with AES [20] as a reference. For SIMON and SPECK, we used assembly
implementations for 8-bit AVR from Luo Peng, available from GitHub4 (the
implementation is based on the proposal from the authors of SIMON and SPECK,
specified in [9]). More specifically, we tested SIMON 64/128 and SPECK 64/128,
both high-throughput implementations. AES implementation, written by Francesco
Regazzoni [27], is available from Ecrypt II project website.5

Results are shown in Fig. 4.7, which plots numbers of vulnerable nodes for
various output criteria values. When looking at SIMON and SPECK, because of
the structure of these ciphers, where only half of the state is directly related to one
round key, the number of vulnerable nodes is lower compared to PRESENT-80 and
AES-128 in most of the cases.

Recall that maxDist specifies the maximum number of non-linear operations
between the vulnerable node and the ciphertext. To attack nodes in earlier compu-
tations, the user needs to set maxDist to higher value. Thus, when maxDist is
set to a bigger value, more nodes would satisfy the output criteria. This can be seen
from Fig. 4.7a—when the value of maxDist parameter increases, we obtain more
vulnerable nodes.

maxKey restricts the round keys to be attacked. To attack earlier round keys,
the user needs bigger values of maxKey. Hence, when this value increases, the
number of vulnerable nodes will increase, as shown in Fig. 4.7b. In this case, we
set the maxDist to a very high number because otherwise the restriction from this
parameter would be too tight such that not that many rounds can be involved in the
analysis.

Plot depicted in Fig. 4.7c varies the minKeyWords parameter. In this case,
we set the maxKey to 1 to restrict the analysis to the last round key, hence only
nodes related to last round key are considered. The graph shows that when the value
of minKeyWords increases, the number of vulnerable nodes decreases rapidly.
For minKeyWords value of 1, the number of vulnerable nodes for PRESENT is
relatively high. It is because the PRESENT implementation combines sBoxLayer
and pLayer, where multiple operations have to be executed to merge particular
bits after this layer, resulting in more nodes in the graph.

In Fig. 4.7d we vary the value of minAffectedCT parameter, which is the
minimum number of ciphertext words related to vulnerable node. PRESENT and
AES have much higher number of nodes per round compared to SPECK and
SIMON, therefore the initial number of vulnerable nodes is high for these two
ciphers. However, it is uncommon for a node to relate to too many ciphertext nodes,
therefore there is a significant drop when the minAffectedCT increases from 1.

4https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR.
5https://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES.asm.

https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR
https://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES.asm
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Fig. 4.7 Comparison of different output criteria on different ciphers. Plot (a) varies the
maxDist parameter, while the other parameters are (minAffectedCT, minDist,
maxKey, minKeyWords) = (1, 1, 2, 1). Plot (b) varies the maxKey parameter, while
the other parameters are (minAffectedCT, maxDist, minDist, minKeyWords) =
(1, 200, 1, 1). Plot (c) varies the minKeyWords parameter, while the other parameters are
(minAffectedCT, maxDist, minDist, maxKey) = (1, 200, 1, 1). Plot (d) varies
the minAffectedCT parameter, while the other parameters are (maxDist, minDist,
maxKey, minKeyWords) = (200, 1, 2, 1)

The results show that DATAC is capable of finding the vulnerable spots
automatically in different implementations, without additional knowledge of the
internal cipher structure (only annotations from Sect. 4.4.1 are required). Also, the
running times show that our approach is scalable.

4.6.1.1 Vulnerable Nodes and Exploitability

It is not guaranteed that every vulnerable node is exploitable by DFA. For example,
for the PRESENT implementation in the case study (Sect. 4.5), the maximum
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Table 4.7 Scalability of DATAC tested on AES with different number of rounds

# of rounds of AES 1 10 30 50

# of nodes 281 2060 6300 10,540

# of edges 415 3209 9909 16,609

# of instructions 259 1901 5801 9701

Time (s) 0.07 0.87 5.11 38.89

Average time per round (s) 0.07 0.09 0.17 0.78

Memory (MB) 3 19 170 500

distance between a node used in the last round and its CTGchild is 5. Thus for
an extreme example, if we set the output criteria to be (minAffectedCT,
minDist, maxDist, maxKey, minKeyWords)= (0, 0, 5, 1, 0), we get
150 vulnerable nodes, which involve all the nodes that are related to the last
round key. Or for a more reasonable example, if we set output criteria to be
(minAffectedCT, minDist, maxDist, maxKey, minKeyWords)=
(1, 1, 5, 1, 1), we get 133 vulnerable nodes, which involve all the nodes that
satisfy the following: affect at least 1 ciphertext node; have at least distance 1
from at least one ciphertext node; are related to the last round key. By an easy
analysis, not all such nodes are exploitable. On the other hand, with output criteria
(minAffectedCT, minDist, maxDist, maxKey, minKeyWords)=
(1, 1, 1, 1, 1), we get 16 nodes, which are all exploitable as explained in Sect. 4.5.

As stated in Sect. 4.4.3, we suggest the user to start with relatively tight values
for output criteria, analyze the resulting vulnerable nodes. If no exploitable node
can be found, then loosen the values of output criteria to get more vulnerable nodes.

4.6.2 Scalability of DATAC

Table 4.7 shows the time for analyzing implementations with different number
of rounds of AES using DATAC. The results show that DATAC is capable of
handling heavy algorithms in reasonable time, while using a laptop computer with
average computing power (mobile Intel Haswell family CORE i7 processor with
8 GB RAM). For 50 rounds AES, DATAC needs less than 40 s, with memory
consumption of 500 MB. Given the number of instructions in AES, this shows
DATAC is capable of evaluating all current block ciphers. The same holds
for countermeasures—50 rounds of AES can be considered as a 5× instruction
redundancy compared to standard AES-128, while the usual overheads in literature
rarely go over 2× the original [36].

We would like to point out that DATAC aims at DFA, where most of the attacks
target the last three rounds of the cipher (e.g., [34, 44, 45]). Therefore, for a practical
usage of DATAC, it would be sufficient to analyze three rounds of a target block
cipher implementation.
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4.6.3 Extension to Other Ciphers and Devices

As already mentioned in the introduction, DATAC can be used for analysis of
current state-of-the-art block ciphers. We are not aware of any restrictions on
the cipher design or structure—since the data propagation is always captured in
the assembly implementation, the customized DFG will identify all the necessary
information needed for DFA. We have tested DATAC on various cipher designs,
including SPN with MDS matrix (AES), SPN with bit permutation (PRESENT),
and Feistel with bit shifting (SIMON and SPECK). Round functions of these ciphers
encompass different non-linear elements, such as 4-bit and 8-bit Sbox, modular
addition, and binary AND.

Our case studies were done on 8-bit AVR assembly code. When it comes to
different device architectures, identification of vulnerable nodes, construction of
subgraphs, and generation of fault analysis equations do not need any change
(see Fig. 4.1). Only the parsing subsystem, responsible for analyzing the assem-
bly code and converting it to DFG, has to be adjusted. More specifically, the
AsmFileReader class (full class diagram is stated in Fig. 4.8) has to be changed
so that nodes are properly identified. For example, for AVR assembly code AND
r0, r1, the input nodes are r0 and r1, the output node is r0. For ARM assembly
code AND r0, r1, r2, the input nodes are r1 and r2, the output node is r0.
We would like to point out that we aim at single fault injection. Thus we assume the
attacker has an ability to perform a single fault even for pipelined architectures.

4.6.4 Countermeasures

After identifying the vulnerable nodes, a natural question for the implementer would
be: How to avoid these vulnerabilities?

Over the time, several approaches to thwart fault attacks in software have
emerged. They are often based on instruction duplication/triplication or parity
checks [4, 40]. However, as shown in [46], these instruction-level countermeasures
can be easily broken by a simple clock-glitch. Especially, the instruction skip protec-
tion provided by duplication can be simply overcome by targeting two instructions
at once. Therefore, one has to look at proposals offering more guarantees, such as
coding theory-based countermeasures [14, 17] or redundancy methods that spread
the data across several instructions [38, 43]. Another approach is a technique called
infective countermeasure that tries to distribute the fault evenly to the whole cipher
state so that the attacker does not get any usable information about the secret
key [42].

Each of these countermeasures has some assumptions, e.g., fault model, number
of faults, fault precision, or number of flipped bits. Since DATAC is capable of
analyzing instruction skips and bit-level faults, it can evaluate countermeasures
that claim protection against these. However, if breaking the protection technique
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requires several faults to be injected during a single encryption, such model falls
out of the current scope of DATAC. In the future, we would like to enhance the tool
capability to include these more sophisticated techniques.

4.6.5 Security Verification

We would like to emphasize that while our approach introduces new methods that
can be used in the direction of security verification, it cannot be used to guarantee
the security of the underlying implementation directly. To an extent, DATAC works
in a similar way to Sleuth [8], proposed to verify software implementations against
side-channel attacks. Sleuth, as a verification tool, provides an analysis of three
specific countermeasures against a user-defined leakage model—Boolean masking,
arithmetic masking, and random precharging. While it is able to point out the
weaknesses of the implementation, it does not guarantee the implementation is
secure against all the SCA techniques. In the same way, DATAC is able to detect
DFA-vulnerable parts and provide the analyst with the information on weaknesses
in the code. However, when no vulnerable nodes can be found, it does not mean the
code cannot be broken by utilizing different fault analysis methods, especially since
some of them might not be known at the time of analysis.

4.7 Chapter Summary

We have proposed a methodology capable of finding spots vulnerable to DFA in
software implementations of cryptographic algorithms. Following our approach, we
have created the DATAC tool, which takes an assembly implementation and a user-
specified output criteria as an input. It outputs subgraphs for vulnerable nodes in
the code, together with equations that can be directly used for DFA on the cipher
implementation.

We have presented a detailed DFA attack on PRESENT-80, exploiting imple-
mentation weaknesses found by DATAC. Our results show that by using DATAC,
it is possible to find fault injection vulnerabilities that are not visible from
observing the cipher structure and are hard to find from an assembly code that
is normally hundreds to thousands lines long. To further prove its capabilities,
we tested another two lightweight cipher implementations, SPECK 64/128 and
SIMON 64/128, together with current NIST symmetric key standard, AES-128. All
the implementations that we analyzed are publicly available programs. The only
adjustment was to add several annotations (and unroll the loops in some cases). The
results show that DATAC is scalable and can analyze current algorithms efficiently.
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Appendix: Class Diagram of DATAC

See Fig. 4.8.

equation

parser

graph

renderer

data

analyzer

«Class»
graph::SubgraphConstructor

~subNodes: List<Node>
~subEdges: List<Edge>

«Class»
graph::Node

-nodeLabel: Operand
-outputEdges: List<Edge>
-inputEdges: List<Edge>
-parents: List<Node>
-children: List<Child>
-ctChildren: List<Child>
-keyBytesMap: List<Map<Integer,Node> >

«Class»
renderer::GraphRenderer

+GV_COLORS: String[]
+writeGV(String, List<Node>, List<Edge>, boolean, Node): void
+execDot(String, String): void
-- creates a GraphViz file
-- executes GraphViz and creates a pdf file

«Class»
graph::GraphConstructor

+constructGraph(): void

«Class»
graph::Edge

-instruction: Instruction
-head: Node
-tail: Node

«Class»
graph::Child

-node: Node
-distance: List<Edge>
-isLinear(Edge): boolean

«Class»
parser::AsmFileReader

-terminating: boolean
+readFile(String): void
-- reads a text file with instructions and creates List of Instruction(s)

«Class»
data::DataProvider

{singleton}
-instance: DataProvider
-instructions: List<Instruction>
-operands: List<Operand>
-nodes: List<Node>
-terminatingNodes: List<Node>
-zeroDistanceKeyNodes: List<Node>
-keyNodes: List<Node>
-edges: List<Edge>
-multiEdges: List<MultiEdge>
-multiNodes: List<Node>

«Class»
analyzer::Operand

-name: String
-lastInstruction: int

«Class»
graph::MultiEdge

-edge: Edge
-oldEdges: List<Edge>

«Class»
analyzer::MnemonicsRecognizer

+isMovingTwoRegisters(Instruction): boolean
+isOneInput(analyzer.Instruction): boolean
+isMul(Instruction): boolean
+isAddWithCarry(Instruction): boolean
+isAddWithoutCarry(Instruction): boolean
+isShiftWithCarry(Instruction): boolean
+isShiftWithoutCarry(Instruction): boolean
+isSboxLookup(Instruction): boolean
+isLinear(Instruction): boolean
+isLdMvSt(Instruction): boolean

«Enum»
analyzer::Mnemonics

+LD: Mnemonics
+LDI: Mnemonics
+ST: Mnemonics
+EOR: Mnemonics
...

«Class»
analyzer::Instruction

-inputOperands: List<Operand>
-outputOperands: List<Operand>
-inputNodes: List<Node>
-outputNodes: List<Node>
-mnemonics: Mnemonics
-sequenceNum: int
-blockName: String
-terminating: boolean

«Class»
analyzer::FaultAnalyzer

+analyzePropagation(): void
+isRelatedToKey(Node, Node): boolean
+keyLinkedBytes(Node, Node): Map<Integer, Node>
+analyzeFaultedNodes(): void
+isOutputCriteriaMet(Node, int, int, int, int, int): boolean

«Class»
equation::Expression

-operands: List<String>
-operations: List<String>
+formulateExpression(): String

«Class»
equation::EquationGenerator

+generateEquation(Instruction, Node): Equation
+generateDfaEquations(List<Node>, List<Edge>, Node): List<Equation>
+writeLatexEquations(List<Equation>): String

«Class»
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Fig. 4.8 Class diagram of DATAC. Some details were omitted, such as getters/setters and helper
methods. Colors represent different packages
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Chapter 5
An Automated Framework for Analysis
and Evaluation of Algebraic Fault
Attacks on Lightweight Block Ciphers
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5.1 Introduction

This section will make a brief introduction about the background of the lightweight
block ciphers, fault attacks, and the algebraic fault attacks. Besides, why this
research matters compared to previous works is discussed concisely. Finally, the
main work and the organization of this chapter are also summarized.
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5.1.1 Background

5.1.1.1 Lightweight Block Ciphers

Data security gets more demanding under resource-constrained environments.
Lightweight block ciphers are a cutting-edge technology to provide an efficient
and power-saving solution. Frequently used lightweight block ciphers include
PRESENT, Piccolo, LED, and LBlock. Most of these ciphers can be implemented
with less than 3000 gate equivalents. The complexity of traditional cryptanalysis
increases exponentially with the number of rounds. From a theoretical point of view,
these ciphers are deemed secure if the number of rounds is sufficiently high.

5.1.1.2 Fault Attacks and Algebraic Fault Attacks

Fault attack can retrieve secret information by actively injecting faults into the
cryptosystem. Faults can be generated by changing the power supply voltage,
changing the frequency of the external clock, varying the temperature, or exposing
the circuits to lasers during the computation [1]. The idea was first reported on RSA-
CRT by Biham et al. in 1996 [2]. Later, Biham and Shamir proposed a differential
fault analysis (DFA) attack on the block cipher DES, which combines a fault
attack with differential cryptanalysis [2]. Since then, DFA has been used to break
various block ciphers. Traditionally, DFA on block ciphers is mostly conducted
through manual analysis. When facing fault injection in a deep round, the fault
propagation paths will overlap. The complexity of the analysis among overlapping
paths increases exponentially, which is very difficult for the further manual analysis.
This also happens when the number of flipped bits is large. A large size is easy for
the injections, but it increases the difficulty of the analysis.

To overcome the difficulty of DFA, recent work [8] shows that algebraic
cryptanalysis [7] can be combined with fault analysis. A machine solver can be used
to automatically recover the secret key. This technique is referred to as algebraic
fault analysis (AFA). AFA was proposed by Courtois et al. [8] in 2010. They
showed that if 24 key bits are known and two bits in the 13th round are altered,
DES can be broken with a single fault injection in 0.01 h. The full attack requires
about 219 h and works ten times as fast as the brute force attack. Considering their
design principles, cryptographic devices with lightweight block ciphers are more
vulnerable to fault attacks. Moreover, it is less complicated to solve the algebraic
equations for lightweight block ciphers due to their relatively simple structure,
making fault exploitations much easier. Zhao et al. [21] and Jovanovic et al. [12]
extended AFA to lightweight block ciphers, such as LED. In [21], they used only
one fault injection to recover the master key of LED in 1 min with a PC. In 2013,
Zhang et al. [19] proposed an improved AFA, which showed that the secret key of
Piccolo can be recovered with only one fault injection. Zhao et al. [22] also got a
more precise estimation of the LED key search space using AFA.
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5.1.2 Why This Research Matters

Previous AFA mostly focused on one particular block cipher. The motivation of this
chapter is to standardize the process of AFA and provide a generic framework to
analyze fault attacks on different block ciphers, especially on the lightweight ones.
In practice, many situations are more challenging. Usually, faults are injected into
a state before the linear layer that will bring the diffusion. For example in AES,
a fault can be injected into the output of the key addition or substitution, as long
as the place for the injection is before the MixColumn layer. However from the
adversary’s point of view, it is straightforward to ask the question: where else can
I inject a fault during the encryption? A smart attacker may jump out of the box at
a specific state and focus on a local index variable referred to as the round counter.
Lightweight ciphers have a simple structure for efficiency reasons, but require more
rounds to guarantee security. We aim to investigate how fault injections can modify
the number of rounds, and how leakages could be used in algebraic fault attacks.
The extended case of injecting faults both inside and outside the encryption module
therefore requires a thorough study.

5.1.3 Chapter Summary

In this chapter, an algebraic fault attacks framework on block ciphers is comprehen-
sively studied, which can be summarized below:

• A generic description of algebraic fault analysis framework on block ciphers
is introduced first. AFA can be described from three levels: the target, the
adversary, and the evaluator. At the target level, the design and implementation of
cryptographic schemes are considered from three aspects. At the adversary level,
the capability of an adversary in four parts is described. At the evaluator level,
two metrics are considered: the approximate information metric and the actual
security metric. These metrics can help us to answer two types of questions:
for adversaries, What faults should I inject and how? For cipher designers
and industrial engineers, How secure is my design? and How secure is my
implementation?

• To verify the feasibility of the proposed framework, a comprehensive study
of AFA on an ultra-lightweight block cipher called LBlock [18] is performed.
LBlock and related fault attacks are described first. Then, this chapter presents
how to build the algebraic equation set and provides the strategies on how to
solve the equation set. Finally, three scenarios of different applications of AFA to
LBlock including fault injection to encryptions, fault injection to key scheduling,
and fault injection for round modification are studied in detail, respectively.
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5.1.4 Organization

Section 5.2 proposes a generic framework for AFA including three levels: the target,
the adversary, and the evaluator. Section 5.3 discusses LBlock and its resilience
against fault attacks. Section 5.4 evaluates LBlock against fault injections in the
encryption procedures. Section 5.5 conducts fault attacks on the key scheduling of
LBlock, inspired by previous work [6, 9]. Section 5.6 investigates four cases where
faults are injected to a round number or a round counter for round modification.
Under each case, our best results show that the key can be recovered with only one
fault injection. Section 5.7 concludes the chapter and lists some future work.

5.2 Proposed AFA Framework

In order to overcome the disadvantage of DFA, we propose a generic framework for
AFA, which considers three levels: the target, the adversary and the evaluator. The
framework tries to standardize the process of AFA and provides a unified solution
which could evaluate different targets and adversaries.

5.2.1 The Target Level

The target level covers two aspects: design and implementation. The cryptographic
design refers to the cipher which utilizes some ideal functions to solve cryptographic
problems. For example, LBlock [18] is a cipher. The cryptographic implementation
includes two parts: code and device. The cryptographic device refers to the hardware
platform to implement the encryption/decryption functions of the cipher. For
example, a smart card running the LBlock algorithm can be a target device. The
cryptographic code comprehends the engineering effort of converting the theoretical
cipher into practical programming code running on the device. For example, LBlock
has size-optimized and speed-optimized versions in terms of programming code.
The target level depicts how a cryptographic code is implemented on a specific
device.

Possible targets include block ciphers, stream ciphers, hash functions, message
authentication codes (MACs), etc. For this chapter, we carefully choose a block
cipher—LBlock [18] as an example, besides, DES [15], PRESENT [3], and
Twofish [16] are planned to be researched in our future work. LBlock, DES, and
Twofish have a Feistel structure, while PRESENT has an SPN structure. LBlock
is quite new but efficient. There is not much work known about it. DES is quite
old but well known. Twofish requires some complicated operations such as modulo
addition, key-dependent S-Boxes, and the Pseudo-Hadamard Transform (PHT ),
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which makes fault attacks difficult. PRESENT is one of the most famous lightweight
block ciphers with an SPN structure. Both LBlock and PRESENT are lightweight.
The large number of applications to the LBlock focused in this chapter demonstrates
the universality of our framework.

5.2.2 The Adversary Level

In our framework, an adversary’s capability is characterized by four factors: the
cipher describer, the fault model describer, the fault injector, and the machine
solver. The cipher describer refers to its capability of giving the formalizations of
the cryptographic codes. The fault model describer depicts the attributes of faults to
be injected. Both describers are implemented as public interfaces and supported by
equation builders which automatically transfer those from describers into algebraic
equations. The fault injector is in charge of injecting the fault into the device [1].
Finally, the machine solver takes the equations as inputs and solves them using
mathematical automata.

There are three important stages at this level: 1© Fault Injection, 2© Equation
Building, and 3© Equation Solving, which are performed by the fault injector, the
describer/builder, and the machine solver in Fig. 5.1, respectively. Figure 5.2 shows
the details of how the adversary level works.

Cipher Code Device

Describer

Machine Sol

Conditional Entropy Computational 
Restrictions Success Rate

 

Fig. 5.1 The proposed framework for AFA
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Fig. 5.2 The adversary level of AFA framework

5.2.2.1 The Fault Injector

In Fig. 5.2, Stage 1©, i.e., Fault Injection, indicates where the fault is injected.
Previous work focused on the injections in encryptions. It is possible to extend the
scenarios. Inside the encryption, the fault, denoted as f , could be injected into an
intermediate state for different linear or nonlinear operations, or a state for storing
the total number of rounds, or an instant state called round counter. Outside the
encryption, f might also be induced to other components such as key scheduling.

There are many practical methods to inject faults, such as optical radiation, clock
glitch, critical temperature change, and electromagnetic emission. How to inject
faults is discussed in [1], which is out of the scope of this chapter. We focus here on
three fault models (bit-based, nibble-based, and byte-based) and conduct injections
with simulations.

5.2.2.2 The Fault Model Describer and Its Equation Builder

In Stage 2©, i.e., Equations Building, the adversary needs to build the equations for
the faults.

A formal model F describes what the fault is and how it is related to the cipher.
Here, X is an intermediate state. Xi is a unit of X, which determines how X is
organized. f is the injected fault. w is the width of f . The fault width w is the
maximal number of bits affected by one fault. The value of w might be 1, 4, and 8,
which refers to bit-based, nibble-based, and byte-based fault models, respectively.
X∗ is a faulty state where faults are injected. r is the index for a specific round. rmax

is the round number, i.e., the total number of rounds. X has different meanings. It
can be a state in r-th round of the key scheduling or encryption, thus X is written
as Xks

r or Xen
r . It can also be a state referred to as the round counter, thus X can be

depicted as Xks
rc or Xen

rc , respectively.
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Two terms are used throughout this chapter. Position, denoted by X, is the state
where the fault is situated. It refers to the round in most of the cases. Location,
denoted by t , is the place where the fault is located inside a state. As in most previous
fault attacks [2], we assume that only one unit of X, i.e., Xt , is erroneous with
a single fault injection in this chapter. This usually happens in fault attacks to the
software implementations of block ciphers. For hardware implementations, multiple
units of X might become faulty after a single fault injection. In general, λ, the size
of the state, is larger than w. Thus, there are m possible locations for f where
m = λ/w. m denotes the maximal value for the number of possible locations for
fault injection. t can be known or unknown depending on the scenarios.

A formal fault model can be described as a tuple of five elements F(X, λ,w, t, f ).
Basically, it tells us that a fault with value f and width w is injected at location t

with respect to a state (or position) X having λ bits.
The injected faults are also represented with algebraic equations. Different

parameters such as width w and location t should be considered. The equation
set for the faults can be merged with the one for the entire encryption, which can
significantly reduce the computation complexity. There is an option to build an
additional equation set for verification purposes. It is based on the correct full round
encryption of a known plaintext Pv , resulting in a corresponding ciphertext Cv . This
equation set enforces the number of solutions to be one.

5.2.2.3 The Cipher Describer and Its Equation Builder

Stage 2©, i.e., Equations Building, specifies how to construct the equation sets for
the cipher. Enc stands for the encryption function. The plaintext, the ciphertext, the
master key, and the state are denoted by P,C,K, and X, respectively. On the one
hand, the building work has to include all the major components in both encryption
and key scheduling. On the other hand, it should represent every operation. The most
difficult part is how to represent the nonlinear operations such as S-Box and modulo
addition. More details can be found in [23]. In order to accelerate the solving speed,
different strategies can be applied to the solver. For example, as to AFA on block
ciphers with SPN structure, it is better to use the pair of correct and faulty ciphertexts
to build the equations reversely [22]. In Fig. 5.2, a fault is injected to X in the r-th
round. The equation set is built for the last (rmax − r + 1) rounds.

5.2.2.4 The Machine Solver

Stage 3©, i.e., Equation Solving, specifies how to solve the entire equation set. Many
automatic tools, such as Gröbner basis-based [19] and SAT-based [18] solver, can
be leveraged. The adversary could choose his own according to his skill set.
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5.2.3 The Evaluator Level

The evaluator level takes the output of machine solvers and evaluates two metrics:
the approximate information metric and the actual security metric. The evaluator
answers two types of questions: for adversaries, What faults should I inject and
how? For cipher designers and industrial engineers, How secure is my design? and
How secure is my implementation?

5.2.3.1 Actual Security Metric

There are two types of security metrics. One is the computational restrictions. The
possible criteria of the restrictions can be time complexity (such as the threshold for
the timeout and the entire solving time, denote by tout and tsol , respectively), the data
complexity (such as the number of fault injections, denoted by N ), and the space
complexity (such as the memory cost). The other is the success rate (denoted by
SR) for extracting the master key. All these objective metrics are either measurable
or computable, and thus they can be used to evaluate and compare different factors
that may affect algebraic fault attacks.

5.2.3.2 Approximate Information Metric

The information metric refers to the conditional entropy of the secret key after
N fault injections. It is denoted by φ(K). In traditional DFAs, the adversary
cannot analyze deeper rounds due to the overlap among propagation paths. The full
utilization of all faults can be easily done in our AFA framework. The remaining key
search space (denoted by 2φ(K)) is equivalent to the number of satisfiable solutions if
the multiple solution output is supported. Note that if the number of fault injections
is small or the fault position is deep, the number of solutions might be too big
to search them all. In this case, we can feed κ guessed bits of the secret key into
the equation set. As opposed to [17], our information metric actually calculates an
approximation to the theoretical complexity of the key search, which can serve as
an additional criterion to conduct the evaluations.

5.3 Preliminaries of AFA on LBlock

LBlock [18] is an ultra-lightweight block cipher presented by Wu et al. in CANS
2011. It uses a 32-round Feistel structure with a block size of 64 bits and a
key size of 80 bits. The design of LBlock well-balances the trade-off between
security and performance. On the one hand, only 1320 gate equivalents and 3955
clock cycles are required for hardware and software implementation respectively,
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which is outperforming many proposed lightweight block ciphers under mainstream
architectures [4, 10]. The good efficiency makes it very suitable for resource-
constrained environments. On the other hand, LBlock remains still secure under
modern cryptanalysis. It is worth taking a comprehensive investigation to its security
features. We are interested in its resilience against fault attacks.

In this section, we first provide the design of LBlock and list those cryptanalyses
that are related. Then, the general representations of the equation set for both LBlock
and the faults are described.

5.3.1 The Cipher of LBlock

Algorithm 1 shows the encryption of LBlock. Let P = X1‖X0 denote the 64-bit
plaintext and C = X32‖X33 denote the ciphertext, where Xi is 32 bits. rmax = 32
is the total number of rounds. rc is the round counter.

Algorithm 1: The encryption of LBlock

1 rmax = 32 ;
2 P = X1‖X0 ;
3 for rc = 0; rc < rmax ; rc++ do
4 Xrc+2 = F (Xrc+1,Krc+1) + (Xrc <<< 8) ;

5 C = X32‖X33 ;

The round function F is a nonlinear function with a 32-bit input. It consists
of Key Addition (AK), Substitution (SB), and Linear Permutation (PM). F =
PM(SB(AK(X,Ki))).

• AK: the leftmost 32 bits of F function input are bitwise exclusive-ORed with a
round key.

• SB: the substitution uses every four bits of the exclusive-OR results as index for
eight different 4-bit S-Boxes, s0, s1, . . . , s7.

• PM: a permutation of eight 4-bit words Z (Z = Z7||Z6|| . . . ||Z0) to U (U =
U7||U6|| . . . ||U0), and it can be illustrated as the following equations:

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5,

U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1
(5.1)

Algorithm 2 shows the key scheduling of LBlock. The master key is denoted by
K = k79||k78|| . . . ||k0. The leftmost 32 bits of K are used as the first round key
K1. Left32(L) denotes a function to get the leftmost 32 bits of L, where L is a state
register of 80 bits. li is one bit of L. The other round keys Ki+1 (i = 1, 2 . . . 31) are
generated according to Algorithm 2.
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Algorithm 2: The key scheduling of LBlock

1 rmax = 32 ;
2 L = K ;
3 K1 = Left32(L) ;
4 for rc = 1; rc < rmax ; rc++ do
5 L <<< 29 ;
6 [l79‖l78‖l77‖l76] = s9[l79‖l78‖l77‖l76] ;
7 [l75‖l74‖l73‖l72] = s8[l75‖l74‖l73‖l72] ;
8 [k50‖k49‖k48‖k47‖k46] ⊕ [rc] ;
9 Krc+1 = Left32(L) ;

LBlock has two software implementations [18]. In the size-optimized imple-
mentation, eight 4-bit S-Boxes and 4-bit word permutations are used. In the
speed-optimized implementation, the eight S-Boxes and the permutations can be
implemented as four 8-bit lookup tables. No additional permutation is required.
In the rest of this chapter, we mainly focus on fault attacks on the software
implementation of LBlock.

5.3.2 Related Fault Attacks on LBlock

Regarding the fault attacks, Zhao et al. [20] proposed the first fault attack on LBlock
with DFA. Their best results showed that if a single-bit fault is injected into any
round between the 24th and the 31st round, at least eight fault injections are required
to extract the master key. In 2013, Jeong et al. [11] presented an improved DFA
on LBlock under nibble-based fault model. It requires five fault injections into the
left input register of the 29th round, or seven injections into the one of the 30th
round. Chen and Fan [5] built eight 8-round integral distinguishers of LBlock and
proposed several integral-based fault attacks. When faults are induced into the right
part at the end of the 24th round under random nibble fault model, 24 fault injections
are required to recover the master key of LBlock. When faults are induced into the
right part at the end of the 23rd round under semi-random nibble model, 32 fault
injections are required. Li et al. [14] presented the first AFA on LBlock. Under
nibble-based fault model in the 27th round, two fault injections are enough to
recover the 80-bit master key.

5.3.3 Building the Equation Set for LBlock

5.3.3.1 Representing the Overall Encryption

The equations for the overall encryption have already been listed in Algorithm 1
(Line 4) where 0 ≤ i ≤ 31.

Xi+2 = F (Xi+1,Ki+1) + (Xi <<< 8) (5.2)
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5.3.3.2 Representing AK

Suppose X = (x1, x2, . . . , x32) and Y = (y1, y2, . . . , y32) are the two 32-bit inputs
to the AK of LBlock. Z = (z1, z2, . . . , z32) is the output. AK can be represented as:

xi + yi + zi = 0, 1 ≤ i ≤ 32 (5.3)

Note that the XOR operation in key scheduling (Line 8 in Algorithm 2) can also
be represented with Eq. (5.3). rc can be considered as one input whose value is
known.

5.3.3.3 Representing SB

In LBlock, eight S-Boxes s0, s1, . . . , s7 are used in encryption and the other two
s8, s9 are used in key scheduling. Let the input of S-Box be (x1‖x2‖x3‖x4) and the
output be (y1‖y2‖y3‖y4). We adopt the method in [13] and represent each S-Box
with four equations. For example, the equations for s0 can be represented as:

1 + x1x2x4 + x1 + x1x3 + x3x4 + x2x4 + y1 = 0

1 + x1x2x4 + x1x2x3 + x1 + x4 + x1x2 + x2x3 + x2x4 + x1x4 + y2 = 0

1 + x1 + x2 + x4 + x2x3 + x2x4 + y3 = 0

x1 + x2 + x3 + x4 + x1x2 + y4 = 0

(5.4)

5.3.3.4 Representing PM

Let the input and output of PM be (x1‖x2‖ . . . ‖x32) and (y1‖y2‖ . . . ‖y32),
respectively. The i-th bit of the input can be mapped to the i-th bit of the vector
M using Table 5.1.

The PM function can be expressed as:

xi + yM[i] = 0, 1 ≤ i ≤ 32 (5.5)

Table 5.1 Permutation
sector M

i 1 2 3 4 5 6 7 8

M[i] 9 10 11 12 1 2 3 4

i 9 10 11 12 13 14 15 16

M[i] 13 14 15 16 5 6 7 8

i 17 18 19 20 21 22 23 24

M[i] 25 26 27 28 17 18 19 20

i 25 26 27 28 29 30 31 32

M[i] 29 30 31 32 21 22 23 24
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5.3.3.5 Representing l-Bit Left Cyclic Shift

Suppose there is an l-bit left cyclic shift to a state register of m bits. LBlock adopts
one 8-bit left cyclic shift in encryption (l = 8,m = 32) and one 29-bit left cyclic
shift in key scheduling (l = 29,m = 80). Both can be written as the following
equation when the input is (x1‖x2‖ . . . ‖xm) and the output is (y1‖y2‖ . . . ‖ym). %
stands for a modulo operation.

x(l+i−1) % m + 1 + yi = 0, 1 ≤ i ≤ m (5.6)

Using Eqs. (5.2)–(5.6), each round of key scheduling can be represented with 196
variables and 244 CNF equations, while each round of encryption can be represented
with 304 variables and 496 CNF equations. The script size of one full LBlock
encryption is 449 KB.

5.3.4 Building the Equation Set for Faults

Let X denote the λ-bit correct data unit of LBlock. X = x1‖x2‖ . . . ‖xλ. X might
represent a 32-bit left state register in the encryption (λ = 32), or an 80-bit key
register in the key scheduling (λ = 80). Let Y denote the faulty value of X. Y =
y1‖y2‖ . . . ‖yλ. There are m possible locations for the injected faults where m =
λ/w. Let Z denote the fault difference of X and Y :

Z = z1‖z2‖ · · · ‖zλ, zi = xi + yi, 1 ≤ i ≤ λ (5.7)

Then, Z can be divided into m parts: Z1‖Z2‖ . . . ‖Zm

Zi = zw×(i−1)+1‖zw×(i−1)+2‖ · · · ‖zw×i , 1 ≤ i ≤ m (5.8)

According to whether the adversary knows the exact location t (1 ≤ t ≤ m) or
not, the algebraic equation representation of Z may have different formats.

5.3.4.1 Representing the Fault with Known t

Suppose t is known. Then, Z can be denoted as:

Zi = 0, 1 ≤ i ≤ m, i �= t (5.9)

Zt has a nonzero value of w-bits. We introduce a single bit variable ut to
represent that Zt is faulty.

ut = (1 ⊕ zw×(t−1)+1)(1 ⊕ zw×(t−1)+2) · · · (1 ⊕ zw×t ) = 0 (5.10)
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Using Eqs. (5.9) and (5.10), Z can be represented with w+1 variables and w(m+
1) + 2 CNF equations.

5.3.4.2 Representing the Fault with Unknown t

In practical attacks, the fault location t may be unknown. We introduce a variable
ui of m bits to represent whether Zi is faulty or not.

ui =
(
1 ⊕ zw×(i−1)+1

) (
1 ⊕ zw×(i−1)+2

) · · ·
(1 ⊕ zw×i ) , 1 ≤ i ≤ m

(5.11)

If ui = 0, Zi will be the variable that is associated with the w-bit fault. Assuming
that one and only one fault is injected, there should be only one zero among
u1, u2, . . . , um. This constraint can be represented as:

(1 − u1) ∨ (1 − u2) ∨ · · · ∨ (1 − um) = 1,

ui ∨ uj = 1, 1 ≤ i < j ≤ m
(5.12)

Using Eqs. (5.11) and (5.12), Z can be represented with m(w + 2) variables and
m(2w + 0.5m + 1.5) + 1 CNF equations. These equations can also be represented
when different values of w, m, and λ are given.

5.3.5 Equation Solving Strategies

In this chapter, we choose CryptoMiniSAT v2.9.6 as our equation solver. It has
two modes. Mode A works with a pair of known plaintext Pv and corresponding
ciphertext Cv , which enforces the number of solutions to be one all the time.
The purpose of this mode is to get the statistics of different solving times with
different numbers of fault injections, which is one type of the actual security metrics
mentioned in Sect. 5.2.3.1. Mode B works without (Pv, Cv). The solver is running a
multiple solution mode to estimate φ(K), the remaining entropy of the master key.
It is the approximate information metric mentioned in Sect. 5.2.3.2.

Next, we describe how to use CryptoMiniSAT to roughly estimate φ(K) given
N fault injections under Mode B. Let len denote the key length and κ denote the
number of guessed secret bits fed into the solver. To estimate φ(K), κ is usually
chosen from a larger value to a smaller one. Let η(κ) denote the number of solutions
for given κ . When the number of solution for one AFA is larger than 218, it is difficult
for CryptoMiniSAT to find out all possible solutions within affordable time. In this
case, a threshold τ for the maximal number of solutions can be set as τ = 218. The
detailed algorithm is shown in Algorithm 3.
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Algorithm 3: Estimate φ(K) under Mode B
Input : len,N, τ

Output: φ(K)

1 GenerateAFAES(N);
2 GenKnownKeySet (Sk);
3 for κ=len; κ >-1; κ − − do
4 FeedRandKeyBits(Sk) ;
5 RemoveRandKeyBit(Sk);
6 RunAFAModeB();
7 CalcSolutionCount(η(κ));
8 if η(κ) ≥ τ and κ > 0 then
9 φ(K)=κ + log2(η(κ));

10 break;

11 if η(κ) ≤ τ and κ==0 then
12 φ(K)=log2(η(κ));

In Algorithm 3, GenerateAFAES generates the equation set of the last few
rounds after the fault is injected. GenKnownKeySet generates the value of
the known key bits into set Sk . Sk is initialized to len (80 for LBlock) bits
of the secret key. FedRandKeyBits feeds the value of κ key bits in Sk to
the equation set. RemoveRandKeyBit removes one random key bit from Sk .
RunAFAModeB means using CryptoMiniSAT to solve for all possible solutions.
CalcSolutionCount represents counting the solutions of the secret key from
the output file of CryptoMiniSAT. From Algorithm 3, we can see that when η(κ) ≥
τ and κ > 0, φ(K) can be roughly estimated as κ+log2η(κ). If κ = 0 and η(κ) ≤ τ ,
the accurate value of φ(K) is log2η(κ).

5.4 Application to LBlock: Fault Injection to Encryption
(Scenario 1)

This section will make a thorough inquiry on one of the scenarios: fault injection to
the process of encryption of lightweight block ciphers.

5.4.1 Fault Model

In this scenario, the fault f is injected into Xrc+1 in LBlock encryption which is
marked with a red double box in Algorithm 4. The fault model can be described as
F(Xen

r , λ,w, t, f ). More specifically, a fault is injected into the left 32-bit register
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of the encryption (λ = 32), whose value f is unknown. We consider three cases for
the fault width (w = 1, 4, 8) and two cases for the location (t is known or unknown).

Algorithm 4: Fault injection to encryption

1 rmax = 32 ;
2 P = X1‖X0 ;
3 for rc = 0; rc < rmax ; rc++ do

4 Xrc+2 = F( f � Xrc+1 ,Krc+1) + (Xrc <<< 8);

5 C = X32‖X33 ;

5.4.2 AFA Procedure

The attack is described in Algorithm 5. Both Mode A and Mode B of CryptoMin-
iSAT are considered. We define an instance as one run of our algorithm under one
specific fault model. In one instance, the algorithm may be repeated many times,
each of which requires one pair of plaintext and ciphertext, and one fault injection.
We define N as the number of fault injections. For these N fault injections, the fault
model F is the same. As for the inputs of Algorithm 5, bt is a flag to indicate whether
the location t is known or not. r is the specific round of Xen

r . If the fault is induced
into a deeper round, the value of r is smaller. If the solver is under Mode A, the
output is the solving time tsol if it is successful. Otherwise, the algorithm stops at
a time out tout . We define a success rate SR for extracting the master key, which is
the number of instances with a successful solving within tout over the number of all
instances. If it is under Mode B, the output is the remaining key entropy φ(K).

In Algorithm 5, P and K denote the sets for plaintexts and round keys,
respectively. KS and Enc denote the key scheduling and encryption function,
respectively. RandomPT generates one or more random plaintexts. InjectFault
induces one fault. A function in Algorithm 5 will generate an equation set if its name
is prefixed with Gen and suffixed with ES. The attack can be described as follows.
The adversary A generates N pairs of plaintext/ciphertext and starts constructing
equations. First, he builds the equations for key scheduling (GenKSRdES in Line
#1). For each Pi , he will build the equation set for the correct encryption (Rr to
R32) using Ci (GenEnRdES in Line #2). For each injection, he needs to build the
equation set for the faulty encryption (Rr to R32) using C∗

i (in Line #3) together
with the one for the fault itself (GenFaultyES in Line #4). Besides that, A has to
generate the equation set for a full round encryption (in Line #5). The equation set
based on a pair of (Pv, Cv) in Line #6 is for the verification purpose under Mode
A. Finally, these combined equation sets are fed into the solver for key recovery
(RunAFA in Line #7).
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Algorithm 5: The AFA procedure of scenario 1
Input : N, r,w, bt

Output: tsol in Mode A, φ(K) in Mode B

1 RandomPT(P) ;
2 K=KS (K,L) ;
3 for rc = 1; rc < rmax ; rc++ do
4 GenKSRdES(rc,Krc+1) ; // #1

5 for i = 0; i < N ; i++ do
6 Ci=Enc(Pi,K) ;
7 for rc = r − 1; rc < rmax ; rc++ do
8 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #2

9 GenInputES(Ci) ;
10 C∗

i =InjectFault(Enc(Pi,K), Xr);
11 for rc = r − 1; rc < rmax ; rc++ do
12 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #3

13 GenInputES(C∗
i ) ;

14 GenFaultyES(f = Xr + X∗
r ) ; // #4

15 RandomPT(Pv) ;
16 Cv=Enc(Pv,K) ;
17 for rc = 0; rc < rmax ; rc++ do
18 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #5

19 GenInputES(Pv, Cv) ; // #6
20 (Tsol , φ(K)) = RunAFA() ; // #7

5.4.3 Case Study 1: Bit-Based Fault Model

Under the bit-based fault model, the different fault positions and known/unknown
locations are considered.

5.4.3.1 The Location t Is Unknown

For a specific state Xen
r , we decrease r from 30 to 24. For each r , 100 instances of

AFA are conducted under Mode A. For each instance, there are N fault injections.
The statistics of different values of (r,N ) are shown in Fig. 5.3. The horizontal axis
is the solving time in seconds. The vertical axis is the percentage.

In Fig. 5.3, the statistics seem to follow an exponential distribution. N can be
reduced when r is smaller, which means that an injection to a deeper round could
reduce the number of faults that are required. When (r,N) = (30, 10) or (29, 5),
the 80-bit master key of LBlock can be recovered within 5 min, SR = 100%. If
(r,N) = (28, 3) or (27, 2), it can be extracted in 1 min, SR = 100%.

Note that the single-bit fault model in [20] can be converted to our fault model
in this chapter. The work in [20] assumed that a single-bit fault is randomly injected
into the internal state at the end of the (r − 1)-th round. This is equivalent to our
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Fig. 5.3 Distribution of solving time under bit-based fault model, t is unknown (Mode A). (a)
r = 30, N = 10, (b) r = 29, N = 5, (c) r = 28, N = 3, (d) r = 27, N = 2

Table 5.2 The number of
injections in comparison with
previous work under random
bit-based fault model

r DFA in [20] AFA in this chapter

30 24 10

29 24 5

28 24 3

27 12 3

26 8 2

25 24 5

bit-based fault model in the r-th round, where single-bit fault is randomly injected
into the left input register of the r-th round. The comparison with [20] is shown in
Table 5.2. With our framework, we first verify the result in previous work for specific
rounds. In contrast, the efficiency and effectiveness of our work are demonstrated
when the fault is injected into the same round. Our attack requires only a few
injections. For example, two injections are enough for our AFA in R27, while about
eight injections or more are required for most cases in [20].
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Table 5.3 Bit-based fault
model, t is known (Mode A)

r N tsol (s) Success rate

30 10 7 100%

29 4 15 100%

28 3 6 100%

27 2 10 100%

26 2 15 100%

26 1 1997 92%

25 2 221 91%

24 5 321 85%

23 50 654 65%

5.4.3.2 The Location t Is Known

If t is known, we first conduct 100 AFA instances for each r under Mode A, tout =
3600 s. The results in Table 5.3 show that N becomes smaller compared to that for
the same r when t is unknown. For example, (r,N) = (29, 5) in Fig. 5.3, while
(r,N) = (29, 4) in Table 5.3. Moreover, fault injections in deeper rounds can help
retrieve the key. For instance, when r is decreased from 28 to 27, N can also be
reduced from 3 to 2.

In particular, when a single bit fault is injected into the left register in R26, it
might be possible to recover the master key. In this special case, we first try to solve
for the secret key directly under Mode A. When tout = 2 h, SR is only 18% for most
instances, which indicates that it is difficult for CryptoMiniSAT to find the solution.
To overcome this, we guess an 8-bit value of the master key and feed this value into
the solver. The attack stops when the solver finds out a satisfiable solution for one
key guess. Since there are 256 possible values, we can conduct at least 1, at most 256
(on average 128) guesses for each instance. When more guessed key variables are
fed into the solver, CryptoMiniSAT can either find a satisfiable solution or output
“unsatisfiable.” The statistics of the solving time of 100 AFA instances are listed in
Fig. 5.4. The master key can be recovered within 1997 s on average and SR = 92%
when tout = 2 h. To the best of our knowledge, this is the first time LBlock has been
attacked with only one injection under bit-based fault model.

To interpret the results in Table 5.4, we evaluate φ(K) for one fault injection
(N = 1) under Mode B. Let ψ denote the number of the faulty nibbles in the
ciphertext for one injection. Let ψ̄ denote the average of ψ where 10,000 random
instances are collected. Results of ψ , ψ̄ , and φ(K) are listed in Table 5.4.

From Table 5.4, we can see that when 28 ≤ r ≤ 30, only a few nibbles in the
ciphertext become faulty. Since r = 26, all 16 nibbles in the ciphertext are faulty.
When (r, ψ) = (26, 16), our best result of AFA shows that φ(K) can be reduced
to 17.3. Note that in Table 5.4, N = 1. When (r,N) = (30, 1), φ(K) can be
reduced to about 70.2, which means that 9.8 key bits can be recovered with a single
injection. Then, when (r,N) = (30, 10), φ(K) can be reduced to a smaller value.
This can also explain why CryptoMiniSAT can output the correct solution within a
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Fig. 5.4 Distribution of solving time with one injection to R26 under bit-based fault model
(Mode A)

Table 5.4 ψ , ψ̄ , and φ(K)

under bit-based fault model
r ψ ψ̄ Best φ(K)

30 5 5 70.2

29 8 8 61.6

28 11 ≤ ψ ≤ 12 11.81 50.4

27 12 ≤ ψ ≤ 15 14.57 32.6

26 10 ≤ ψ ≤ 16 15.21 17.3

25 9 ≤ ψ ≤ 16 14.99 18.5

24 9 ≤ ψ ≤ 16 14.99 ≤24

23 8 ≤ ψ ≤ 16 15.00 ≤40

few seconds for (r,N) = (30, 10) in Table 5.3. In particular, when (r,N) = (26, 1),
φ(K) can be reduced to about 17.3 in Table 5.4. It explains why CryptoMiniSAT
can find the secret key within affordable time under Mode A in Table 5.3.

5.4.4 Case Study 2: Nibble-Based Fault Model

In [5, 11], the adversary has to build the distinguishers manually and deduce the fault
position. Specific algorithms must be customized for each fault position. We conduct
AFA under nibble-based fault model as in [5, 11]. However, with our framework,
the solver can automatically deduce the fault position and solve for the key. The
workload for customizations can be saved.
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Table 5.5 Comparison with
previous work under
nibble-based fault model

[11] [5] This chapter
r N φ(K) N φ(K) N φ(K)

30 7 30 – – 5 23

29 5 25 – – 5 13

28 – – – – 3 7.56

27 – – – – 2 4.6

26 – – – – 2 0.1

25 – – 24 0 3 0

24 – – 32 0 5 0

We extend the faults into deeper rounds and calculate φ(K) for a given amount
of fault injections. The comparison with previous work [5, 11] under Mode B is
shown in Table 5.5. Under the same fault model, our AFA can use less injections.
For example, when r = 30, we can reduce N from 7 to 5 as compared to [11].

Our AFA can further reduce φ(K). In [11], φ(K) is 30 and 25 when (r,N) =
(30, 7) and (29, 5), respectively. As for (r,N) = (29, 5), φ(K) is 13 in our AFA,
compared to 25 in [11]. The estimation on φ(K) in [11] might not be accurate.
This is because the manual analysis may miss some faulty states in the propagation
path, while the solver fully utilizes all the faults along all paths. Each faulty state
can contribute his own entropy to reducing φ(K). As a result, our AFA can achieve
better efficiency.

Significant enhancements are achieved when the injections are to R24 or R25. In
Table 5.5, our attack requires only 3 and 5 injections, compared with 24 injections
for R25 and 32 injections for R24 in [5], respectively.

5.4.5 Case Study 3: Byte-Based Fault Model

Previous fault attacks on LBlock [5, 11, 20] are mainly under bit-based or nibble-
based model. As aforementioned in Sect. 5.3, LBlock usually adopts the size-
optimized or speed-optimized implementation on 8-bit microcontrollers. For speed-
optimized implementation, the fault width is one byte. Under byte-based fault
model, the fault propagation becomes more complicated.

We are concentrating on challenging AFA on LBlock under byte-based fault
model. We implement the speed-optimized version of LBlock. One single byte fault
is injected into the input of the big S-Box. The results under Mode B are listed in
Table 5.6 where our AFA can still reduce φ(K) to a smaller value. For example,
when (r,N) = (26, 2), φ(K) can be further reduced to 0.
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Table 5.6 AFA under
random byte-based fault
model

t is unknown t is known
r N φ(K) N φ(K)

30 5 20.8 5 16

29 3 20.4 3 13.5

28 3 15.6 2 12.4

27 – - 2 2.3

26 – - 2 0

25 – - 3 0

5.4.6 Comparisons with Previous Work

Compared with previous fault attacks on LBlock [5, 11, 14, 20], our work demon-
strates that the data complexity of previous work is not optimal and AFA can
work at much deeper rounds. Meanwhile, under different fault models, AFA can
automatically evaluate the remaining key search space. For the first time, only one
fault injection is required to recover the master key. To the best of our knowledge,
this is the best result for fault attacks on LBlock in terms of data complexity.

5.5 Application to LBlock: Fault Injection to Key Scheduling
(Scenario 2)

This section will inquire on another scenario: fault injection to the process of key
scheduling of lightweight block ciphers.

5.5.1 Fault Model

In this scenario, a state register for round keys is altered due to the injected fault.
The fault will be propagated to the remaining rounds of key scheduling. This case
is equivalent to injecting multiple faults simultaneously into multiple rounds. The
manual analysis is difficult due to the complexity. In contrast, the automatic analysis
by CryptoMiniSAT is expected to be much more efficient. This is because the more
equations that are generated, the more entropies are utilized in the same problem
solving.

In this model F(Xks
r , λ,w, t, f ), a fault is injected into the left 32-bit of the 80-bit

key register L in the r-th round key scheduling (λ = 32), as shown in Algorithm 6.
The round key Kr,Kr+1, . . . , K32 are faulty. We consider three cases for the fault
width (w = 1, 4, 8) and the location t is known.
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Algorithm 6: Fault injection to key scheduling

1 rmax = 32 ;
2 L = K ;
3 K1 = Left32(L) ;
4 for rc = 1; rc < rmax ; rc++ do

5 f � L <<< 29 ;

6 [l79‖l78‖l77‖l76] = s9[l79‖l78‖l77‖l76] ;
7 [l75‖l74‖l73‖l72] = s8[l75‖l74‖l73‖l72] ;
8 [k50‖k49‖k48‖k47‖k46] ⊕ [rc] ;
9 Krc+1 = Left32(L) ;

5.5.2 AFA Procedure

The detailed procedure is depicted by Algorithm 7 where there are only two slight
differences with Algorithm 5. In Line #3, the adversary has to build the equation set
for the faulty key scheduling (Rr to R31). In Line #4, he has to build the equation
set for the faulty encryption (Rr to R32) using the faulty round keys.

5.5.3 Case Study 1: Bit-Based Fault Model

First, we evaluate φ(K) for different r under bit-based fault model under Mode
B. ψ and ψ̄ are collected from 10,000 instances with single fault injection. φ(K)

is calculated from 100 full AFA attacks. Results of ψ , ψ̄ , and φ(K) are listed in
Table 5.7.

From Table 5.7, we can see that when 27 ≤ r ≤ 30, only a few nibbles in the
ciphertext become faulty. Since r = 25, all 16 nibbles in the ciphertext are faulty.
When (r, ψ) = (24, 16), our best result of AFA shows that φ(K) can be reduced to
16.

It is interesting to see that if r ≥ 23, φ(K) increases when r decreases. For
instance, φ(K) changes from 16 to less than 30 if the injection changes from R24
to R23 in key scheduling. Meanwhile, ψ̄ is approximately 15 for r = 23, which is
even slightly smaller than ψ̄ = 15.09 for r = 24. The reason behind is the overlap
of the faults in the last few rounds.

Note that Table 5.7 can be used to determine the optimal round position for the
injection and estimate the total number of injections that is required. From Table 5.7,
we can deduce that it is into R24 where we should inject a bit-based fault in order to
minimize φ(K).

In our attack, when r = 24, 25, 26, two single-bit fault injections (N = 2) can
reduce φ(K) to 0 under Mode B. In particular, we also conducted AFA with only
one single-bit fault injection under Mode A for r = 24, 25. As in Sect. 5.4.3, we
guess an 8-bit value of the master key and feed this value into the solver. The results
show that the full key can be recovered within 2 h where SR is about 85%.
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Algorithm 7: The AFA procedure of scenario 2
Input : N, r,w, bt

Output: tsol in Mode A, φ(K) in Mode B

1 RandomPT(P) ;
2 K=KS (K,L) ;
3 for rc = 1; rc < rmax ; rc++ do
4 GenKSRdES(rc,Krc+1) ; // #1

5 for i = 0; i < N ; i++ do
6 Ci=Enc(Pi,K) ;
7 for rc = r − 1; rc < rmax ; rc++ do
8 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #2

9 GenInputES(Ci) ;
10 K

∗=InjectFault(KS(K,L)) ;
11 for rc = r; rc < rmax ; rc++ do
12 GenKSRdES(rc,K∗

rc+1) ; // #3

13 C∗
i =Enc(Pi,K

∗) ;
14 for rc = r; rc < rmax ; rc++ do
15 GenEnRdES(Xrc+1, Xrc,K

∗
rc+1) ; // #4

16 GenInputES(C∗
i ) ;

17 GenFaultyES(f = L + L∗) ; // #5

18 RandomPT(Pv) ;
19 Cv=Enc(Pv,K) ;
20 for rc = 0; rc < rmax ; rc++ do
21 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #6

22 GenInputES(Pv, Cv) ; // #7
23 (Tsol , φ(K)) = RunAFA() ; // #8

Table 5.7 ψ̄ and φ(K)

under bit-based fault model
r ψ ψ Best φ(K)

30 2 ≤ ψ ≤ 3 2.10 74

29 3 ≤ ψ ≤ 4 3.40 71

28 4 ≤ ψ ≤ 8 6.17 62

27 5 ≤ ψ ≤ 12 9.52 42

26 8 ≤ ψ ≤ 15 12.89 28

25 9 ≤ ψ ≤ 16 14.83 20

24 9 ≤ ψ ≤ 16 15.09 16

23 10 ≤ ψ ≤ 16 15.00 ≤30

22 10 ≤ ψ ≤ 16 15.00 ≤42

5.5.4 Case Study 2: Nibble-Based Fault Model

The results under nibble-based fault model are shown in Table 5.8, where 10,000
random instances are collected. We can see that the fault propagation is faster under
this model than under bit-based model. For example, for the same r = 27, ψ̄ =
10.09 in Table 5.8, while ψ̄ = 9.52 in Table 5.7. Note that φ(K) ≤ 40 when
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Table 5.8 ψ̄ and φ(K)

under nibble-based fault
model

r ψ ψ Best φ(K)

30 2 ≤ ψ ≤ 3 2.11 75

29 3 ≤ ψ ≤ 5 3.60 66

28 3 ≤ ψ ≤ 10 6.70 62

27 4 ≤ ψ ≤ 13 10.09 38

26 5 ≤ ψ ≤ 15 13.24 32

25 8 ≤ ψ ≤ 16 14.92 20

24 10 ≤ ψ ≤ 16 15.06 ≤32

23 10 ≤ ψ ≤ 16 15.00 ≤40

22 10 ≤ ψ ≤ 16 15.00 ≤60

Table 5.9 φ(K) and ψ

under byte-based fault model
r ψ ψ Best φ(K)

30 2 ≤ ψ ≤ 5 3.98 75

29 3 ≤ ψ ≤ 9 3.65 60

28 4 ≤ ψ ≤ 14 10.45 39

27 6 ≤ ψ ≤ 15 13.32 35

26 8 ≤ ψ ≤ 16 14.92 28

25 8 ≤ ψ ≤ 16 15.02 26

24 10 ≤ ψ ≤ 16 15.01 16

23 10 ≤ ψ ≤ 16 15.00 ≤45

22 10 ≤ ψ ≤ 16 15.00 ≤65

23 ≤ r ≤ 27. Our best results show that two fault injections can recover the master
key of LBlock when 24 ≤ r ≤ 26. Similarly, it is in R25 where we should inject a
nibble-based fault in order to minimize φ(K), which could be used as an empirical
parameter to guide the physical injections if possible.

5.5.5 Case Study 3: Byte-Based Fault Model

The results under byte-based fault model are shown in Table 5.9. We can observe
that the fault propagation under byte-based model is very fast. ψ̄ is close to 4 when
r = 30. φ(K) ≤ 40 when 23 ≤ r ≤ 28. Our best results show that when 24 ≤ r ≤
28, two fault injections can recover the full key of LBlock.

5.6 Application to LBlock: Fault Injection for Round
Modification (Scenario 3)

In this section, a scenario that fault injection is for the purpose of round modification
is considered comprehensively.
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5.6.1 Fault Model

During a typical implementation, round number, denoted by rmax , is the total
number of rounds to be executed. round counter, denoted by rc, is a variable that
specifies which round it is executing. In this section, we evaluate the security of
LBlock against round modification attack (RMA). RMA can induce the misbehavior
of round operations by fault injections. A fault could be injected either into rmax or
rc. The new values are denoted by r ′max or rc′. The change in the execution of
LBlock can facilitate subsequent cryptanalysis.

In LBlock, there are 31 rounds in key scheduling. The round keys generated
from key scheduling will be further utilized in the 32-round encryption. Two round
counters are actually used for key scheduling and encryption. rmax = 32 before the
fault injection. Due to page limitation, we mainly discuss the scenario when a fault
is injected to modify the round during encryptions.

In this model F(Xen
rc , λ,w, t, f ), a fault is injected into Xen

rc in encryption. As
in previous RMA work [6, 9], we assume that both the fault value f and the fault
location t are known. λ = w = 8. We consider two cases for the fault position, as
shown in Algorithm 8.

Algorithm 8: Fault Injection to rmax or rc

1 P = X1‖X0 ;

2 f � rmax = 32;

3 for f � rc = 0 to rmax − 1 do

4 Xrc+2 = F(Xrc+1,Krc+1) + (Xrc <<< 8) ;

5 C = X32‖X33 ;

5.6.2 AFA Procedure

The detailed procedure is depicted by Algorithm 9, where there are only three slight
differences with Algorithm 5. Line #3 and Line #4 show how the adversary can
build the equation set for the faulty encryption (Rr to R31) if the fault is injected
into rmax or rc (determined by b), respectively. Line #4 in Algorithm 5 is discarded
here.
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Algorithm 9: The AFA procedure of scenario 3
Input : N, b, r, rc′, r ′max

Output: tsol in Mode A, φ(K) in Mode B

1 RandomPT(P) ;
2 K=KS (K,L) ;
3 for rc = 1; rc < rmax ; rc++ do
4 GenKSRdES(rc,Krc+1) ; // #1

5 for i = 0; i < N ; i++ do
6 Ci=Enc (Pi,K) ;
7 for rc = 0; rc < rmax ; rc++ do
8 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #2

9 GenInputES(Ci) ;
10 switch b do
11 case 0 do
12 C∗

i =InjectFault(r ′max , Enc(Pi,K)) // #3 for rc = 0;
rc < r ′max ; rc++ do

13 GenEnRdES(Xrc+1, Xrc,Krc+1)

14 GenInputES(C∗
i ) ;

15 case 1 do
16 C∗

i =InjectFault(r ,rc′,Enc(Pi,K)) // #4 btag = 0 ;
17 for rc = 0; rc < rmax ; rc++ do
18 GenEnRdES(Xrc+1, Xrc,Krc+1);
19 if rc = r − 2 and btag = 0 then
20 btag + +;
21 rc = rc′;
22 if rc > 31 then
23 break;

24 GenInputES(C∗
i ) ;

25 RandomPT(Pv) ;
26 Cv=Enc (Pv,K) ;
27 for rc = 0; rc < rmax ; rc++ do
28 GenEnRdES(Xrc+1, Xrc,Krc+1) ; // #5

29 GenInputES(Pv ,Cv) ; // #6
30 (Tsol , φ(K)) = RunAFA() ; // #7

5.6.3 Case Study 1: Injecting Faults to Modify rmax

In this case, a fault is injected into rmax in Line 2 of Algorithm 8. rmax could be
accessed at the beginning of each instance where the fault may cause an increase or
decrease in the total number of rounds.
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5.6.3.1 Case 1: r ′
max ≥ 32

In this case, LBlock will proceed (r ′max − 32) additional rounds after the normal
encryption. These extra rounds use invalid values of round keys (for instance, four
0xcc bytes observed from physical experiments) which are known to the adversary.
This case does not provide the adversary with any useful information.

5.6.3.2 Case 2: r ′
max < 32

In this case, LBlock will only proceed with the first r ′max rounds and skip the
remaining (32 − r ′max) rounds. As for the adversary, the key recovery is a reduced
(32 − r ′max) round cryptanalysis. We are interested in the cases r ′max = 28 or 29
which are difficult for previous work.

We first run 100 random AFA instances under Mode A. Time statistics for
r ′max = 28 and r ′max = 29 are shown in Fig. 5.5. The solver can output the correct
solution within 1 min for r ′max = 28 and 2 min for r ′max = 29. Under Mode B, we
also run 100 random AFA instances and calculate φ(K) for r ′max = 28 and 29. The
results show that φ(K) can be reduced to 16 ∼ 17 which could be done with a
brute force. This can also explain why the solver can recover the master key within
a limited time under Mode A.

Meanwhile, we conduct AFA on LBlock for r ′max = 3 or 4. Under unknown
plaintext scenario, since the key recovery is equivalent to analyzing the (32 − r ′max)
round LBlock, it is difficult for the solver to recover the secret key within limited
time. However, under known plaintext/ciphertext scenario, it can be converted into
the algebraic analysis of a reduced r ′max round LBlock. Under Mode A, the solver
can always solve the problem within 1 min.
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Fig. 5.5 Distribution of solving time for AFA when modifying rmax . (a) r ′max = 28 and (b)
r ′max = 29
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5.6.4 Case Study 2: Injecting Faults to Modify rc

In this case, a fault is injected to rc in Line 3 of Algorithm 8 at the beginning of Rr ,
the r-th round. Depending on the instant value of rc and the faulty value rc′, various
changes may occur during encryption, such as adding, reducing, or even repetitively
executing several rounds.

5.6.4.1 Case 1: rc′ < rc < rmax

In this case, (rc− rc′) intermediate encryption rounds can be repeated. We illustrate
a simple case where rc = 30 and rc′ = 29. The sequence of rounds during
encryption is as shown below:

R1, R2, . . . , R29, R30, R30, R31, R32 (5.13)

We can see that R30 is repeated twice. During the key recovery, two types
of equation sets are built: those for R1, . . . , R29, R30, R31, R32 with a correct
ciphertext, and those for R1, . . . , R29, R30, R30, R31, R32 with a faulty ciphertext.

Under known ciphertext scenario, we conduct 100 AFA instances. The results
show that under Mode A, the solver can finish in 2 min with 100% success rate;
under Mode B, φ(K) can be reduced to 16 ∼ 17.

5.6.4.2 Case 2: rc < rc′ < rmax

In this case, (rc′−rc) intermediate encryption rounds can be skipped. We investigate
the case when rc = 29 and rc′ = 31. The sequence of those rounds during
encryption is as shown below. R30 and R31 are skipped. The total number of rounds
actually executed is 30.

R1, R2, . . . , R29, R32 (5.14)

Then, the key recovery is converted into the algebraic analysis with two equation
sets: one for R1, R2, . . . , R29, R30, R31, R32 with a correct ciphertext, and one for
R1, R2, . . . , R29, R32 with a faulty ciphertext. Results achieved are similar to the
ones in Case 1. One fault injection is enough to recover the master key of LBlock
within 2 min.

5.6.4.3 Case 3: rc < rmax < rc′

In this case, (33 − rc) intermediate encryption rounds can be skipped. One more
example can be given for rc = 30 and rc′ = 35. The sequence is R1, R2, . . . , R29.
Note that R30, R31, R32 are skipped. This case is equivalent to our Case Study 1
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when rmax = 29. The result is similar to Case 1. One fault injection is enough to
recover the full key within 1 min.

It should be noted that AFA can also be used to recover the master key when a
fault is injected to modify the round during key scheduling. Since only the number
of rounds in key scheduling has been modified and that in the encryption is always
32, the equation sets to be built are slightly different from those in this section. Our
experiment results show that, if a single fault could be injected into either rmax or
rc in key scheduling of LBlock, φ(K) can also be reduced to 16 ∼ 17.

5.7 Conclusion and Future Work

This chapter proposes a generic framework for algebraic fault analysis on block
ciphers. The framework could be used to analyze the efficiency of different fault
attacks, to compare different scenarios, and to evaluate the factors that may
determine the solving time and the success rate.

First, we highlight a conceptual overview of the framework. The important levels
and roles are clarified, and four functional parts and three workflow stages are
depicted. Then, we select LBlock as a start point to illustrate how our framework can
work on a block cipher, especially a lightweight one. To demonstrate the flexibility
of the framework, three scenarios are exploited, which include injecting a fault to
encryption, to key scheduling, or to modify the rounds.

Future work can be derived in different directions. One possible area is to
further improve the efficiency of the framework. The current version still meets
some difficulties in AFA on deep round of extremely complicated ciphers. With an
enhanced solver, more compact equation builders, and other advanced techniques,
the AFA framework might work with more rounds of those ciphers. In addition,
the framework proposed in this chapter can be extended to other well-known
lightweight block ciphers, such as DES, PRESENT, Twofish, and so on.
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Chapter 6
Automatic Construction of Fault Attacks
on Cryptographic Hardware
Implementations

Ilia Polian, Mael Gay, Tobias Paxian, Matthias Sauer, and Bernd Becker

6.1 Introduction

Security features of today’s electronic systems are often realized by dedicated
cryptographic circuits. For example, the exponential growth in network traffic,
together with a stronger demand for encrypted and/or authenticated transmission,
may soon render software-only solution insufficient. Moreover, cryptographic mod-
ules are increasingly integrated into systems-on-a-chip (SoCs) used in a variety of
critical applications, from driving-assistance to mobile payment. System security is
determined by its weakest link, and therefore different threats must be accounted for
during system design. Historically, such threats included the use of insecure (weak,
flawed, or outdated) cryptographic algorithms, communication of data through
inadequately protected channels, their storage in insufficiently secure memories,
software-level manipulations (e.g., buffer overflow), and social engineering (e.g.,
extracting passwords from conversations in social networks, or phishing attacks).

More recently, the system hardware components shifted into the focus of attack-
ers and, consequently, system designers and security architects. Fault-injection
attacks [3], also called fault attacks, are one prominent class of hardware-related
physical attacks. This chapter focuses on fault-injection attacks on cryptographic
circuits. These attacks consist in imposing a physical disturbance (fault) during
the execution of the circuit, observing the circuit’s fault-affected behavior, and
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exploiting this information for deducing sensitive information, such as the secret
key or the plaintext.

It has to be noted that fault attacks are neither restricted to cryptographic func-
tions nor to pure hardware implementations. One attack outside the cryptographic
domain is manipulating a status bit in a microprocessor’s memory-management
unit. If successful, the attacker would gain access to data in the protected regions
of the system memory. Another example not (necessarily) involving cryptographic
functions would be manipulating the register that stores the outcome of a password
check, granting the adversary authorizations even when the check had failed.
With regard to software implementations, a cryptographic algorithm running on
a microprocessor stores data in the processor’s registers, loads them from and
stores them to caches and memories, and uses the processor’s control path for
decisions. All these components are as vulnerable to fault attacks as application-
specific circuitry.

The significance and relevance of fault-injection attacks are strengthened by
the current technology trends. On the one hand, more applications become cyber-
physical and are now found in an environment where their users have physical
access to them, making it easier for attackers to apply physical disturbances. For
example, electronic payment functions are now found in mobile phones, in cars,
but also in (publicly available) infrastructure , e.g., integrated parking systems.
On the other hand, the capabilities of fault-injection equipment improve and its
cost decreases. A decade ago, overview articles on fault attacks focused on low-
cost injection techniques such as underpowering or overclocking [2]. Today, public
research institutes have access to dual-beam laser systems capable of injecting a
fault in an encryption circuit while simultaneously disabling that circuit’s error-
detecting features [23].

After the seminal paper by Boneh et al. [5] has pointed out the vulnerability of
cryptographic procedures to fault attacks, a large number of successful attacks have
been reported [1, 6, 11, 13, 14, 26, 27]. Most of these attacks targeted a specific
cipher and made use of its (often intricate) cryptographic properties. Given a new
cipher, previous attacks were not easily transferable, and the construction of a new
attack required nontrivial contributions by a cryptographer. In the last few years,
there is a trend towards more generic approaches that aim at automatic construction
of attacks for a broader class of cryptographic functions (see Chaps. 2 and 5 of
this book). These approaches started with a functional description of the attacked
algorithm and created a set of formulae or equations to represent the effect of
the fault injection and its propagation during the execution of the algorithm. The
equations incorporated information of interest for the adversary (typically, bits of
the secret key), and solving the equations yielded these bits or restricted the set of
key candidates such that brute-force search became practical.

This chapter focuses on the question whether it is possible to automatically
construct a fault attack on a given cryptographic circuit, specified on gate or
register transfer level (RTL) in a hardware description language such as Verilog,
and how this construction works. In contrast to other frameworks for automatic or
semiautomatic fault attack construction [15, 21, 29], the methodology does not need
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an algebraic description of the cipher’s functionality (this information is derived
directly from the circuit’s description). It has the following benefits:

• The task to create a system of algebraic or Boolean equations for describing
the cipher under attack, as required by previous approaches, and to verify its
correctness, is feasible but difficult in practice. Automatic construction of an
attack directly from a circuit description is far easier, since a verified circuit
implementation is readily available.

• The descriptions are more detailed than purely functional models used in
traditional algebraic fault analysis. Not only the cipher’s state bits but also all
internal signal lines are explicitly represented, and faults can be defined on these
lines. This is useful if the attacker has the capability to target individual gates
(e.g., by high-resolution optical or electromagnetic techniques), and the effect of
the resulting fault cannot be easily mapped to failing state bits.

• The technique benefits from advances in both SAT solving (this is the case
for other algebraic attacks as well) and in SAT-based modeling techniques.
For example, recent research demonstrated efficient incorporation of a detailed
circuit timing into SAT formulae [22], and such extensions can be integrated with
the fault attack construction.

• The approach is easy to (re-)apply when a small modification to the circuit is
done (e.g., an SBox is replaced by one with a lower power consumption or better
resistance against side-channel analysis). Such seemingly trivial modification
may give rise to fault attacks which did not exist in the original design. The same
applies to modifications that aim at reducing the cipher’s cost, such as reducing
its state size or number of rounds. If the modification is done in the hardware
description, the procedure simply needs to be rerun, and no modification of the
algebraic model is required.

• It is easily possible to integrate certain types of fault attack countermeasures.
For example, if certain locations in the circuit are connected to on-chip attack
detectors (e.g., power droop sensors [4]), it is possible to suppress fault scenarios
that affect these locations, because the sensor will detect the attack and counteract
by, for instance, rekeying [17].

The procedure described in this chapter roughly follows the principles proposed
in [7] and incorporates later extensions, e.g., the support of multiple fault injections.
In contrast to [7], this chapter focuses on how to use a circuit implementation
together with fault injections to finally gain a formula readable (and hopefully
solvable) by a SAT solver. It provides underlying concepts such as the Tseitin
transform to obtain a suitable Boolean formula out of the circuit and the time-
frame expansion of sequential circuits. We avoid discussion of performance of the
presented approach in comparison to its alternatives, because: (1) performance is
a moving target that depends on solver technology and algorithmic details of the
approach not in the focus of this chapter and (2) its main distinguished feature is
the hardware-oriented modeling rather than speed. The procedure in [7] was able
to break the LED-64 block cipher using a single fault, and its extension to multiple
fault injections (described in Sect. 6.3.4.3) scales to AES-128.
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The remainder of this chapter is organized as follows. The next section explains
how to map combinational and sequential circuits to Boolean formulae using the
Tseitin transform. This approach is being used in formal verification [12] and SAT-
based test pattern generation [8] and is not restricted to cryptographic circuits.
Section 6.3 starts with the generalization of the modeling introduced so far to
cryptographic circuits which process secret information. Models of injected faults
are discussed next, before several variants of attack construction are explained.
Section 6.4 provides an overview of alternative approaches to automatic (or
semiautomatic) fault attack construction; none of them is explicitly optimized for
circuit implementations. Section 6.5 summarizes this chapter.

6.2 Modeling of Circuits by Boolean Formulae

In this section, we will first describe the mapping of combinational circuits to
Boolean formulae that can be processed by a SAT solver using the Tseitin transform.
We will then extend this approach to sequential circuits via time-frame expansion.
These steps are necessary to construct the model of the cryptographic circuit under
attack, which will be described in the next section.

6.2.1 Combinational Circuits

A combinational circuit is a directed, acyclic graph with logic gates (inverters,
AND, XOR gates, etc.) as nodes and signal lines between the gates as edges. Every
input of a gate is either connected to an output of a different gate or is a primary input
of the circuit. Similarly, an output of a gate can drive a gate input and/or be a primary
output of the circuit. It is possible to describe combinational circuits hierarchically.
For example, a combinational circuit realization of AES-1281 can be broken into ten
(almost) identical submodules corresponding to ten encryption rounds and a further
submodule for the key schedule (see Fig. 6.1). The round submodule can be further
divided into four parts according to the four AES steps; this spans a hierarchy AES-
128 → round → step → logic gate.

All submodules at any hierarchy depth, including individual logic gates, are
combinational circuits themselves. A combinational circuit C with n inputs and
m outputs implements a Boolean function fC : Bn → B

m. This function can be
represented by its function table (with 2n rows and n + m columns), a compressed
data structure such as a Boolean Decision Diagram, or by a Boolean expression [12].
The Boolean expression of a function derived from a circuit may or may not follow
the circuit’s structure; for example, the Boolean function of a circuit consisting of an

1128-bit version of the Advanced Encryption Standard [9].



6 Automatic Construction of Fault Attacks on Cryptographic Hardware. . . 155

x Shift 
Rows

Mix 
Col

Sub 
Byte

Shift 
Rows

Mix 
Col

Sub 
Byte

Shift 
Rows

Sub 
Byte y

Round 1 Round 9 Round 10

…

k k0 k1 k9 k10
Key expansion
…

Fig. 6.1 Diagram of combinational circuit realization of AES-128

XOR gate with inputs a, b and output c can be written as c = a⊕b or, equivalently,
as c = (a ∨ ¬b) ∧ (¬a ∨ b).

A Boolean expression is in conjunctive normal form (CNF, also known as POS
or product-of-sums) if it is a conjunction (AND) of clauses, where clauses are
disjunctions (OR) of literals and literals are variables or negated variables. The
Boolean satisfiability problem (SAT) aims, given a Boolean formula f : Bn → B in
CNF, at either finding an assignment of logic-0 and logic-1 values to its n variables
for which f assumes value 1 or to prove that no such assignment exists. SAT is an
NP-complete problem [12], and yet modern SAT solvers work efficiently for many
circuit-related problem instances.

Given an n-input, m-output combinational circuit C, its function fC : B
n →

B
m can be equivalently written as m functions fC,1, . . . , fC,m : B

n → B (each
representing one primary output of the circuit). It is then possible to formulate the
SAT problem for each of the function fC,j (i.e., either to find an input combination
i ∈ B

n with fC,j (i) = 1 or to prove that no such input combination exists. However,
the derivation of Boolean expressions in CNF from the circuits is, while always
possible, in general inefficient. For example, the n-input, 1-output circuit which
calculates the XOR of all its n inputs has only exponential-length CNFs. A remedy
for this problem is to use the Tseitin transform [25], which guarantees linear CNF
length at the expense of additional variables in the formula. This transform is based
on the notion of a characteristic function.

Let G be a logic gate with nG inputs i1, . . . , inG
and one output o (the extension

to multi-output gates is straightforward). Let fG be the Boolean function of G:
fG(i1, . . . , inG

) = o iff G with values i1, . . . , inG
applied to its inputs produces o at

its output. The characteristic function of G is χG : BnG+1 → B with

χG(i1, . . . , inG
, o) =

{
1, if fG(i1, . . . , inG

) = o

0, otherwise

Table 6.1 contains characteristic functions of several basic logic gates. For example,
it holds χAND(1, 1, 1) = 1 because AND(1, 1) = 1; χAND(1, 0, 0) = 1 because
AND(1, 0) = 0; but χAND(1, 0, 1) = 0 because AND(1, 0) �= 1.
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Table 6.1 Characteristic functions of basic logic gates

Logic gate Characteristic function

o = INV(i1) = ¬i1 χINV(i1, o) = (i1 ∨ ¬o) ∧ (¬i1 ∨ o)

o = AND(i1, i2) = i1 ∧ i2 χAND(i1, i2, o) = (i1 ∨ ¬o) ∧ (i2 ∨ ¬o) ∧ (¬i1 ∨ ¬i2 ∨ o)

o = OR(i1, i2) = i1 ∨ i2 χOR(i1, i2, o) = (¬i1 ∨ o) ∧ (¬i2 ∨ o) ∧ (i1 ∨ i2 ∨ ¬o)

o = XOR(i1, i2) = i1 ⊕ i2 χXOR(i1, i2, o) = (i1 ∨ i2 ∨ ¬o) ∧ (i1 ∨ ¬i2 ∨ o) ∧ (¬i1 ∨ i2 ∨ o)

∧(¬i1 ∨ ¬i2 ∨ ¬o)

s1

s2

s3

s4

s5

s6

s7

s8

G1

G2

G3

G4

Fig. 6.2 Illustration of Tseitin transform

The Tseitin transform of a combinational circuit C is a Boolean formula, in CNF,
which has one variable for each signal line of the circuit and is the conjunction of
characteristic functions of all the gates which are part of C. Figure 6.2 illustrates
the Tseitin transform for a circuit with four gates and eight signals, including four
inputs, three internal signals, and one output. Note that since the characteristic
function of each gate is in CNF, their conjunction is in CNF as well. Moreover, note
that the negated input of gate G3 is incorporated into the formula without adding
an inverter. Every gate of a certain type is represented by a fixed number of clauses
(3 for a two-input AND/OR gate, and 4 for a two-input XOR gate) and literals (7
for a two-input AND/OR gate, and 12 for a two-input XOR gate), and therefore
the length of the formula is linear in the size of the circuit. Note that the function
realized by the circuit has four variables s1, . . . , s4, whereas the Tseitin transform is
defined over eight variables.

Once the Tseitin transform is available, it can be used for solving justification
problems, i.e., finding consistent assignments to the circuit’s signal lines. It is
possible to force any signal line si to the logical value of 1 by adding the clause
(si) to the CNF (to force si to logic-0, clause (¬sj ) has to be added). For example,
one may be interested whether the lines in the circuit from Fig. 6.2 can assume
the values s5 = 1 and s6 = 0 at the same time. This task is solved by adding
clauses (s5) and (¬s6) to the formula and handing it over to a SAT solver. If it
finds a solution, the assignments to s1, . . . , s4 give the input vector which justifies
the desired values, and further variables correspond to the values in the circuit under
this input. It is also possible to formulate more complex conditions, e.g., that at least
two out of three signals s1, s6, and s8 equal 1, by representing such conditions by
one or multiple clauses and adding these clauses to the CNF. This feature will be
essential for modeling fault injections and deducing values of internal signals that
are consistent with the observed fault-affected behavior.
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Fig. 6.3 Sequential circuit (a) and its time-frame expansion (b)

6.2.2 Sequential Circuits

A (synchronous) sequential circuit2 consists of a combinational part and a clocked
memory that holds the circuit’s state. The combinational part of a circuit with n

primary inputs, m primary outputs, and s state bits computes, in each clock cycle,
two Boolean functions. The state-transition function δ : Bn+s → B

s determines
the state assumed by the circuit based on its current state and values applied to its
primary inputs. The output function λ : Bn+s → B

m defines the values produced on
the circuit’s primary outputs based on the same data.

Assume that the input sequence applied to a sequential circuit (i.e., the number t

of clock cycles and the values on the primary inputs in each cycle) and the circuit’s
initial state are known ahead of time. These assumptions are typically fulfilled in
cryptographic applications where the circuit accepts the plaintext in the first clock
cycle, sets the initial state based on this plaintext, and then performs, e.g., one round
of encryption per clock cycle. Under these assumptions, it is possible to construct
a combinational circuit that is functionally equivalent to the sequential circuit by a
process known as “unrolling” or “time-frame expansion.” For each of the t clock
cycles, one copy of the circuit’s combinational part is created; the i-th such copy
is called the i-th time frame. The outputs of time frame i which have fed the state
memory in the sequential circuit are connected to the inputs of time frame i + 1.
Figure 6.3 illustrates the construction of time-frame expansion.

Time frame i in the unrolled circuit models the i-th cycle of execution in the
original sequential circuit. Its state-transition logic would have written some state
Si into the state memory, and the circuit would read the same state Si in cycle
i + 1; in the time-frame expanded version, there is a direct connection skipping
the state memory. Consider the sequential version of AES-128 where one round
of encryption takes one clock cycle (one such round is indicated in Fig. 6.4a).
Figure 6.1 can be regarded as the time-frame expansion of that figure. For example,
the logical value at the least-significant bit of the ShiftRows operation in the 9-th
clock cycle of the circuit from Fig. 6.4a is identical to the least-significant bit of the
ShiftRows operation in “Round 9” part of Fig. 6.1.

2Asynchronous circuits have been suggested for cryptographic implementations [16] but they are
not in scope of this chapter.
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Fig. 6.4 Sequential realization of AES-128: diagram of one round (a) without and (b) with
pipelining

One important design optimization which results in sequential behavior is
pipelining. Figure 6.4b shows a pipelined version of one AES round from Fig. 6.4a,
along with a diagram comparing the execution time for processing four plain-
texts. Applying time-frame expansion to pipelined circuitry is straightforward: the
pipeline registers are simply removed from the circuit model.

Once the time-frame expansion of a sequential circuit has been constructed, it
can be treated as a combinational circuit. In particular, it is possible to apply Tseitin
transform to this circuit and solve justification problems in the same manner as
described in the previous section. Note that every signal of the original circuit is
present t times in the time-frame expansion, and therefore will be mapped to t

Boolean variables, one for its value in each considered clock cycle. The justification
problems can stretch over multiple cycles. For example, it is possible to set the
circuit’s starting state to the all-0 value and the primary output of the last (t-th)
time frame to a combination of values Q by adding single-literal clauses to the
Tseitin transform of the time-frame expansion. For instance, if the circuit has four
outputs represented by variables s11, s12, s15, s20 and Q = (1, 1, 0, 1), then the
added clauses will be (s11), (s12), (¬s15), and (s20). If the SAT solver can find a
satisfying assignment to the resulting formula’s variables, the values on the inputs
of time frames 1 through t give the sequence of t input vectors which must be
applied to the circuit to generate the output combination Q = (1, 1, 0, 1) after t

cycles, given that the circuit was initially reset into the all-0 state [19].
We now have introduced most of the concepts needed to automatically find fault

attacks on a given cryptographic implementation. In the next section, we will discuss
the modeling of secret key bits, of single and multiple fault injections, and how to
combine all these models into an integrated framework for attack construction.
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6.3 SAT Models for Fault Attacks

In this section, we will first describe the extensions of models from the last section
to cryptographic circuits which process secret information, and discuss modeling
of faults injected by adversaries. Then, we focus on the construction of the actual
attack, starting with a basic scenario. A circuit model is generated, converted into
a Boolean formula using techniques from the last section, and passed, along with
information observed during physical fault injection, to the SAT solver. Finally,
extensions of this basic scenario are discussed.

6.3.1 Modeling of Cryptographic Circuits

SAT-based circuit analysis usually assumes that the circuit’s complete functionality
is known; for instance, it is possible to predict the values on the circuit’s outputs
if its input values are given. This assumption does not hold in a cryptographic
implementation which process deterministic, but unknown, secret key bits. The
secret key can either reside on the circuit in a (protected) nonvolatile memory,
be produced by a physical unclonable function (PUF), be stored in a one-time
memory (typically, an array of fuses blown after fabrication), or be (securely)
transmitted from outside the circuit and stored in a volatile memory. However, from
the perspective of the combinational circuit, secret key bits are fed on the circuit’s
additional inputs, similar to its primary inputs and state memory outputs discussed
further above.

A cryptographic function can be (functionally) described by an equation which
includes the secret key K . For example, encryption enc can be written as C =
enc(P,K), where P is the plaintext being encrypted and C is the ciphertext. If P

and C are known (e.g., when the adversary has access to a circuit computing enc
and can apply P to the circuit’s inputs and observe C on its outputs), the secret key
is the solution of equation C = enc(P,K) after the unknown variable K . Solving
this equation in the absence of further information should not be practically feasible;
otherwise, the encryption is not sufficiently strong.

A typical fault attack consists in a repeated application of encryption (or a
different cryptographic function) by running the circuit implementing the function
with the same input in the presence and in the absence of a fault. It is assumed
that the circuit uses the same secret key K during both applications. For example,
suppose that a specific fault modifies the encryption function enc into enc′. Then,
executing the circuit with input P results in output C = enc(P,K) in the absence
of faults and in C′ = enc′(P,K) in the presence of the abovementioned faults. It is
possible to perform multiple fault injections, resulting in a number of fault-affected
outputs: C′

1 = enc′1(P,K), C′
2 = enc′2(P,K), . . . Fault attacks deduct knowledge

about (parts of) K by analyzing the relationship between the difference of observed
outputs C ⊕C′

j and the effect of the fault within the circuit. To do so, it is necessary
to establish a model of fault injection and to express it by Boolean functions.
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6.3.2 Modeling of Faults

A variety of fault-injection techniques have been proposed, and these techniques
result in different effects within the circuit [18]. In the simplest case, the result
of a fault injection is a signal line being set to a specific logical value (0 or 1),
known as (single) stuck-at fault. For example, illuminating the PMOS transistor
in an inverter with focused laser light [20] may create parasitic currents that
will switch on the transistor and force the logic-1 value on the inverter’s output.
Another useful fault model is the bit-flip fault, where an existing value on a line is
replaced by its complement. One physical mechanism with this effect is applying
an electromagnetic pulse [10] to a memory cell, perturbing its value. Stuck-at and
bit-flip faults can affect multiple signal lines, e.g., all outputs of a 4-bit register.

Some fault-injection techniques may lead to effects which are not captured by
simple fault models. For example, lowering the circuit’s clock cycle duration (by
injecting a glitch on the circuit’s clock line) will create fault effects on a subset
of the circuit’s outputs. In more detail, outputs driven by sensitized paths with a
longer delay will be affected and outputs driven by shorter paths will be not. Note
that the same path can be sensitized under some circuit inputs and not sensitized
under others. This is problematic when considering a cryptographic circuit where
path sensitization depends on the secret key and that key is unknown; for such a
circuit, it is impossible to predict precisely which outputs will fail. A further source
of uncertainty is the variability in timing stemming from the fabrication process,
environmental conditions (temperature), noise (e.g., jitter), and inaccuracies of the
fault-injection equipment.

As a consequence, most published fault attacks employ fault models that allow
uncertainty to some extent. A typical model is a byte fault where any subset of
bits within a byte can be flipped, and the adversary does not know which bits
were flipped but assumes that no bits outside this byte were affected by the fault.
Analogous models can be defined on 4-bit nibbles or further objects of certain bit
multiplicity.

6.3.3 Basic Fault Attack Construction

Let the cryptographic function under attack have Np regular (controllable) inputs
p1, . . . , pNp , Nk secret key inputs k1, . . . , kNk

, Nc outputs c1, . . . , cNc , and Ns

internal signals s1, . . . , sNs . (We use pj as in “plaintext” and cj as in “ciphertext”,
which corresponds to an encryption, but the construction is compatible with
decryption and other cryptographic functions.) Moreover, let all circuit locations
affected by faults (i.e., inputs, outputs, or signal lines where fault can be injected)
be z1, . . . , zNZ

. If the circuit is sequential, its time-frame expansion is used. Note
that it is possible to model faults during different clock cycles as multiple faults in
the unrolled version.
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Fig. 6.5 (a) An example circuit, and (b) miter circuit for fault attack using a bit-flip fault in round 3

Figure 6.5a shows a (hypothetical) example circuit with two controllable inputs
p1, p2, two secret key bits k1, k2, and two outputs c1, c2. It has been obtained by a
time-frame expansion over three rounds, and the eliminated state memories between
rounds are indicated by dashed boxes.

To mount the attack, a miter circuit is created and translated into a Boolean
formula in CNF, using the Tseitin transform. After the physical fault attack, the
adversary knows the values of P , C, and C′ and feeds them, along with the obtained
CNF, to a SAT solver. Miter circuits are often used in applications like equivalence
checking or automatic test pattern generation. They represent the fault-unaffected
and the fault-affected operation in the same circuit model. We will now describe
the creation of the miter circuit assuming a single bit-flip fault, using Fig. 6.5
for illustration (we will extend the construction to other fault models in the next
section).

First, reproduce the original circuit, with all its inputs, outputs, and internal signal
lines. Mark the fault-injection location f and duplicate all logic gates of the circuit
in f ’s transient fanout, i.e., for each gate G which is accessible from f via a path
through the circuit, add a new gate G′. Connect an inverter to f with output f ′; this
line represents the immediate effect of the fault injection. For every added gate G′,
connect its inputs as follows:

• If an input of the original G was driven by f , connect that input of G′ to f ′ (the
output of the new inverter).



162 I. Polian et al.

• If an input of G was driven by an output of gate H and H has been duplicated,
connect that input of G′ to the output of the duplicated gate H ′.

• If an input of G was driven by an output of gate H that has not been duplicated
(i.e., it is not affected by the fault), connect that input of G′ to the output of H .

Figure 6.5b depicts the miter circuit for the fault injection on the output of G3 in
the last round. The inverter modeling the single bit-flip fault is shown in red. Only
one gate, G5 from the third round, is in the transitive fanout of the fault-injection
location, and therefore only one gate duplicate, G′

5 shown in red, is added to the
circuit. This implies that the miter circuit has only one extra output c′1. One would
expect the second output c′2 to be added as well, but skipping it is correct because c2
is not affected by the fault on the output of G3 in round 3. If an adversary runs the
attack and records the values p1, p2, c1, c2, c

′
1, c

′
2, the ciphertext bits c2 and c′2 must

be equal; otherwise, the fault was not injected on the line assumed. Now, the attacker
can apply Tseitin transform to the miter circuit to obtain a CNF, add single-literal
clauses for p1, p2, c1, c2, c

′
1, and feed the formula to a SAT solver; the solution for

variables representing lines k1, k2 gives a secret key candidate.
In general, a SAT solver can produce one of the following outcomes: generation

of a solution (assignments of Boolean values to all variables of the model), report of
unsatisfiability, or timeout. If a solution has been generated, the variables describing
the secret key (kj ) are evaluated, and the secret key candidate k is produced as the
concatenation of their values. This key candidate should be simulated with a known
plaintext–ciphertext pair in order to verify that it is indeed the correct key. If this is
the case, the attack was successful. The verification step is essential, because k can
turn out to not be the correct key, in particular when the physically injected fault was
inconsistent with the fault modeled in the CNF formula.3 The same inconsistency
can lead to unsatisfiability of the formula. In such a situation, the adversary can
either rerun the analysis with a less restrictive model assumption or attempt a new
physical fault injection to obtain a new fault-affected ciphertext C′′.

6.3.4 Extensions

6.3.4.1 Reduced-Round Miter Circuit

To control the complexity of the analysis in a round-based cryptographic circuit, it
is possible to use the reduced-round miter circuit where all rounds before the fault
injection are eliminated. For example, some attacks on AES inject faults in round
8, and in this case, the first seven rounds can be excluded from the circuit. The

3In most cases, a cryptosystem’s input and output (e.g., the plaintext and the ciphertext of an
encryption) determine the secret key uniquely and there is only one consistent solution. If the
circuit under attack implements a cryptosystem where this property does not hold, it can become
necessary to search for different key candidates among the formula’s solutions (cf. Sect. 6.3.4.1).
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Fig. 6.6 Reduced-round miter circuit for a double fault attack using a bit-flip fault f1 in round 3
and an uncertain fault f2 (one or both of the outputs of G1 and G2 flip) in round 2

model becomes smaller and potentially better tractable for the SAT solver, but the
knowledge of input P can no longer be used, since the new circuit’s primary inputs
correspond to an intermediate state that cannot be derived from P without knowing
the secret key. Figure 6.6 illustrates this optimization when two fault injections
are considered: one in round 3 and one in round 2, and therefore round 1 can be
eliminated. Note that the controllable inputs of the circuit are no longer marked
p1, p2 because they represent the circuit’s intermediate state after round 1 (whereas
k1, k2 still represent the secret key).

The reduced-round model is far less restricted than the full-circuit model and
tends to have a large number of solutions. In the ideal case, the SAT solver is
capable of generating all found solutions, and if their number is reasonable (less
than around 240), then the adversary can apply brute-force search, i.e., try all key
candidates sequentially. If the SAT solver does not have such a feature and produced
a key candidate k that turned out to not be the correct key, it is possible to add
“conflict clauses” to the formula that suppress regeneration of candidate k and
attempt to solve the extended formula. This can be repeated, excluding more and
more unsuitable key candidates.

6.3.4.2 More Generic Fault Models

The circuit in the previous section assumed a single bit-flip fault represented by an
inverter. It is straightforward to model multiple bit-flips using several inverters, and
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to model stuck-at faults by constant values in the duplicated circuit. However, the
flexibility of SAT modeling allows the adversary to express far more complex fault
patterns and to represent uncertainty to some extent. Such models do not need to
be mapped to logic gates but can be arbitrary Boolean expressions. For example,
consider a byte fault on signals l1 . . . l8 in the original circuit. This means that
at least one (but possibly more, up to eight) of the signals lj can flip. Introduce
the corresponding signals l′1 . . . l′8 and duplicate all gates in the transitive fanout of
l1 . . . l8. Connect the duplicated gates as explained in the last section for the case of
the inverter output f ′. However, instead of modeling an inverter, add the condition
(l1 ⊕ l′1) ∨ · · · ∨ (l8 ⊕ l′8). This condition must be converted into CNF and added to
the overall Boolean formula obtained by Tseitin transform from the miter circuit.

6.3.4.3 Multiple Fault Injections

Some ciphers require multiple fault injections for successful cryptanalysis. This
is achieved by replicating the fault-affected part of the circuit multiple times,
according to the number of fault injections. This strategy is particularly useful
for the reduced-circuit model where combining conditions from different fault
injections can vastly reduce the number of possible key candidates and therefore
the complexity of the brute-force search. It is important to distinguish multiple
fault injections (i.e., separate experiments where more than one faulty ciphertext is
recorded) from faults affecting multiple circuit locations during one fault injection.
For example, one fault injected into a sequential circuit may flip the same location
during several consecutive clock cycles; this corresponds to a multiple bit-flip fault.

Figure 6.6 illustrates the application of two fault injections on the circuit from
Fig. 6.5a. The first injection (f1) is the same single bit-flip fault as in Fig. 6.5b, and
the second injection takes place in round 2 and affects (flips) either the output of
G1, the output of G2, or both at the same time. Instead of introducing an inverter,
f1 and f2 are functional models in CNF (the exact equations are not shown). The
resulting miter circuit models two fault injections via a “parallel construction.” It
has three sets of outputs: fault-free (c1, c2), affected by f1 (only c′1,1, as output c2 is
not affected by that fault), and affected by f2 (c′2,1, c

′
2,2). Note the different number

of gates replicated for the two modeled fault injections.

6.4 Alternative Approaches

A few automated fault attack frameworks have been proposed in recent years. In this
section, we will review some of the current approaches concerning the automatic
construction of fault attack. All of them start with an algebraic description of the
cryptosystem under attack, i.e., a system of equations that specify the system’s
functionality. This is in contrast to the procedure described in the previous sections,
which takes the circuit description as its input. We will first explain how to find
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suitable scenarios for the realization of fault attacks, which is the first step into
an automated construction, by examining the two frameworks from [15] and [21]
(cf. Chap. 2 of this book). These frameworks were specifically designed to this
extent. Further below, we will delve into algebraic fault analysis (AFA) frameworks
such as the ones presented in [28–30], which take similar but yet different approach
to the problem of automated fault attacks.

6.4.1 Fault Characterization and Key Space Evaluation

One of the first stages in fault attacks is to identify the proper position (in most cases,
the round) and location (nibble/byte) for a fault injection. This, of course, depends
on the chosen fault model, and we will discuss this choice when necessary. One of
the first approaches towards the automation of fault attack is therefore to extract the
fault-injection parameters that are the most likely to yield to a successful attack. The
XFC framework from [15] proposed a coloring-based procedure, restricted to block
ciphers, capable of characterizing such faults.

The XFC framework takes as input a block cipher specification and a fault model.
The block cipher specification focuses on its composition of linear and nonlinear
functions. By separating linear from nonlinear functions, according to the different
inputs involved, XFC generates a color-based cipher description which traces the
fault propagation (according to the chosen fault model) throughout the cipher. When
a fault is injected, still according to the chosen fault model, XFC assigns a new
color to the affected parts of the block cipher. Then, depending on the input of each
function and whether it is linear or not, XFC assigns a new color at each step of the
encryption through which the fault is propagated. The output of this step is then fed
to the next stage of XFC, which is the estimation of the key space.

XFC uses the estimated size of the key space as an indication of the attack
complexity. In order to estimate the key space size, XFC progresses backwards and
refers to the previously generated colored cipher. Each color refers to a variable
and XFC looks for specific equations related to those variables, which would lead
to a recovery of some related portions of the key. While this process is only
semiautomatic, as it needs some additional inputs, it allows for a good estimate
of the complexity of the attack. The authors applied XFC to a few block ciphers,
including AES. The offline complexity of the AES attack found by XFC (by
injecting a fault in one byte at the 8th round) is the same as for common differential
fault attacks (DFA) on AES, which supports the correctness of the framework.
The whole XFC flow replicates what is manually done for DFA and as such XFC
manages to automate this step and provides an estimation of the attack’s complexity
according to a specified fault model.

The color-based approach of XFC, while functional, has some limitations. For
instance, the authors of [21] pointed out that an impossible differential fault analysis
(IDFA) cannot be processed by XFC. As an example of this, they show how XFC
is unable to find a suitable attack scenario for a fault injection at the beginning of
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round 7 in the case of the AES. To solve this problem, the authors proposed a similar
framework to XFC. Compared with XFC, it supports more fault models and fully
automates the evaluation of the key space. The framework uses a data mining-like
approach instead of the color-based one.

Three steps are involved in the proposed framework. First, and similar to XFC,
a distinguisher for the attack needs to be identified. This is once again the key
step for any DFA. Then comes the divide and conquer stage. In this stage, the
found distinguisher is evaluated in order to verify its computability. Finally, an
automated evaluation of the key space is performed, in order to output the feasibility
of the attack. In more detail, the distinguisher identification is performed through
computation of state entropies, related to a chosen fault model, and compared to
the maximum state entropy. The measure of the entropy allows to carry information
related to the fault propagation path and the studied distinguisher. A differential
state is a distinguisher if its entropy is inferior to the maximum entropy of the same
state. The identification steps return several possible distinguishers that go through
the second stage.

In order to proceed to a divide and conquer strategy, the cipher description is
broken down into a graph, composed of subgraphs for each operation. This graph,
called cipher dependency graph, allows to evaluate the computability of the chosen
distinguisher. By searching through the graph, it is possible to identify related key
bits that can be computed from the differential distinguisher and to know which
remaining portion of the key needs to be guessed. Finally, all the distinguisher
properties deduced from the previous step are fed into the algorithm that evaluates
the key space reduction, estimating the key space size and the number of required
fault injections.

The authors evaluated their framework on the AES and PRESENT, and, for
instance, found that the key space size for a fault injection at the beginning of
round 7 in the AES was roughly 232–226. Even though the authors do not provide an
estimation of the number of fault injections required in this specific case, it should
be noted that such an attack scenario was found with this framework, which was not
possible through the use of XFC. The previous framework takes, similarly to XFC,
a functional description of the cipher and a fault model as input. But, contrary to
XFC, the fault model is not limited and can be easily extended to different kinds of
faults. While similar to XFC, it is more versatile and gives a better estimation of the
key space.

Both frameworks constitute a first step towards the automated construction of
fault attack, but they do not proceed to actually implement an actual attack and only
provide a complexity estimation of the attack at the found position and location.

6.4.2 Algebraic Fault Analysis Frameworks

Algebraic fault analysis (AFA) combines fault attacks and algebraic fault analysis.
Such attacks take as inputs a cipher description and a fault model, both converted to
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algebraic equations. One of the advantages of AFA is that they do not strictly require
manual analysis of the cipher, and can therefore be automated by using different
types of solvers, such as SAT solvers or Gröbner basis solvers.

The first step of any AFA is to provide the correct inputs. As previously
mentioned, AFA needs a set of equations and a fault model as input. The authors
from [28, 30] and [29] assume functional description of the cipher as equations.
Deriving such equations from the description of the cipher is feasible but can be
difficult and error prone in practice, especially for nonlinear functions such as
SBoxes or complicated operations such as MixColumns. While [28] assumes a
specific fault model, which could be extended, [30] and [29] are not restricted to
specific fault models.

In [28], authors propose an AFA framework for the Piccolo cipher that can be
extended to some other lightweight ciphers. The functional description of Piccolo is
converted to formulae in algebraic normal form (ANF). The chosen fault model, a
nibble-based fault in the 23rd round of Piccolo with known plaintext and ciphertext,
is also translated into ANF formulas. In order to do so, the author proposed a
method to represent the faults. They introduce new variables for each fault injection
(expressed as XORs) and variables representing the presence of the aforementioned
faults. Once all equations are available, they are fed to a SAT solver, in this case to
CryptoMiniSat [24]. The SAT solver handles the solving and returns the correct key.
The authors evaluated their framework on both the encryption and the decryption of
Piccolo. While the framework was unable to solve the algebraic equations for the
encryption, it recovered the key by attacking the decryption in 5 h on average, with
one fault, and 2 h with two faults. The authors also discuss the possible extension
of their framework to different ciphers (for which they also provide benchmarking)
and fault models.

In summary, this framework takes as input a set of ANF formulas describing the
cipher and fully automates the solving. While the equation creation step is partially
automated in [28], thanks to their method of conversion, it is still cipher and fault
model dependent. Such a method also allows for partial automation of the equation
creation as a script can automate this process for different fault positions and/or
locations.

The authors of [30] (cf. Chap. 5 of this book) suggest to use, in addition to
AFA equations, differential fault equations derived by dedicated cryptanalysis, to
improve the solving time. The improved algebraic differential fault analysis (ADFA)
proposed in [30] is focused on the cipher LED but could be extended to different
ciphers. The process is similar to the work presented in [28] but with the addition of
equations based on a DFA approach. Similar equations are created from the cipher
description but also for reverse operations, such as inverse SBoxes, since they are
needed for differential fault equations. The solving will handle going backwards
through a portion of the cipher, similarly to DFA or XFC. Finally, the fault difference
is also expressed as ANF formulas, and all sets of equations are sent as input to the
SAT solver (again CryptoMiniSat). For LED, the authors verified the effectiveness
of their framework and obtained an average of 97.2% successful key retrievals
within 10 min, assuming a nibble-based fault in the 30th round.
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While the experimental results show good performance compared to DFA and
support the possibility to add additional cryptanalytic input for better performance,
the authors also compared the key space reduction of their approach to DFA. ADFA
approach improves the reduction of the key space by almost ten orders of magnitude,
which further supports ADFA automation as an efficient method.

In a more recent work, the authors of [29] expand on the proposed framework
of [28], making it more versatile and not cipher restricted. The approach is similar
to the previous two frameworks but the authors consider various ciphers and fault
models, showcasing the versatility of their framework. The first step is similar to
other approaches. Equations are created both from the cipher description and the
fault model which will then be fed to a SAT solver (CryptoMiniSat). An interesting
feature of this framework is the two solving modes. Similarly to [28], the framework
has a mode A that can be used to solve the set of equations to retrieve the key, but
it also has a mode B that automatically estimates the key space of the considered
attack. In the second mode, no plaintext/ciphertext pair is provided and a modified
version of the SAT solver evaluates all possible solutions and returns the key space
size. As shown in [15] and [21], this is an important feature as it allows to evaluate
the feasibility of an attack with the chosen fault model.

Another important feature of the framework is the large number of possible
different inputs. Previous frameworks were limited to either few ciphers, few fault
models, or in general few different inputs, but the authors of [29] validated their
framework with several different inputs. They considered a fault injection during
the encryption, the key schedule, or even in the round counter itself. They also
considered bit-based, nibble-based, and byte-based fault models, as well as several
different ciphers (LBlock, DES, PRESENT, and Twofish). In all reported cases,
the proposed framework was capable of solving different instances with faults at
different positions and locations. This provides evidence that AFA frameworks are
extremely versatile and can support numerous ciphers and fault models, and as such
are suitable for automated construction of fault attacks.

For all AFA approaches discussed in this section, the SAT solver can be
swapped for any other solver as long as the equation input is of the correct format.
Furthermore, it is also important to note that the practicability of automating such
attacks is tied to the performance of aforementioned solvers. For instance, as
SAT solver become more and more efficient, AFA frameworks also become more
efficient.

6.5 Chapter Summary

Hardware-implemented cryptographic functions are a natural target for physical
attacks, and their vulnerability to such attacks should be assessed and, ideally,
eliminated. This chapter explained in detail how to automatically construct attacks
starting with a cryptographic circuit description. The construction leverages con-
cepts like time-frame expansion or Tseitin transform that have been in use in
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hardware domain and thus allows their combination with recent improvements in
attack construction and SAT technology. While the overall objective of the described
procedure is comparable to methods from other chapters of this book, its focus on
models derived directly from circuit descriptions simplifies their construction and
provides a foundation for direct integration of complex fault models. With respect
to performance, the described flow is still under development. The version presented
in [7] could handle lightweight 64-bit ciphers, whereas our current implementation
is applicable to 128-bit AES; this appears to be comparable with most alternative
approaches.
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Chapter 7
Automated Deployment of Software
Encoding Countermeasure

Jakub Breier and Xiaolu Hou

7.1 Introduction

As it was shown before [15], fault countermeasures often lower the implementation
resistance against side-channel attacks. Therefore, it is necessary to consider these
two classes of physical attacks together when protecting the algorithm. In this
chapter, we show how to automatically construct a code-based countermeasure
that significantly reduces the success of a fault injection attack while keeping low
information leakage via side-channels.

There are two main countermeasure classes to protect implementations against
side-channel attacks. Masking [9] is a software-level countermeasure which tries
to “mask” the relationship between the intermediate values and power leakage.
Hiding [20] tries to reduce the signal and increase noise by utilizing various
techniques—it “hides” the operations performed by the device. While masking can
make fault attacks more challenging, it does not help to prevent them. On the other
hand, some hiding techniques, such as dual-rail precharge logic (DPL), help in
preventing fault attacks by detecting faults [18].

In 2011, DPL was extended to software by Hoogvorst et al. [10], by using
balanced encoding schemes. Since then, there were several other proposals
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[6, 13, 14, 19], all of them using various coding techniques to prevent side-channel
leakage. However, it was shown that unlike hardware DPL representation, its
software counterpart is not fault resistant by default [4]. Therefore, to prevent both
attack techniques, it is necessary to design the coding scheme from the beginning
with this goal in mind.

In this chapter, we focus on approach presented in [2]. We first explain the
theoretical background necessary for designing software hiding countermeasures
that are resistant to both side-channel and fault attacks. We provide an algorithm
to automatically find optimal codes for various code distances and number of
codewords with given code length. We also provide evaluation of the codes—by
using detection and correction probabilities and by an automated fault simulator.
This simulation is done by using a general-purpose microcontroller implementation
and an instruction set simulator that is capable of injecting different fault models
into any instruction of the code. Our evaluation shows that the codes generated by
our algorithm provide a high security level with respect to both side-channel and
fault attacks.

The rest of the chapter is organized as follows: Section 7.2 provides an overview
of the related work in this field, together with necessary background on coding
theory. Section 7.3 defines the properties of codes with respect to fault attacks.
Section 7.4 details our algorithm and provides estimated and simulated results on
chosen codes. These results are further discussed in Sect. 7.5. Finally, Sect. 7.6
summarizes this chapter.

7.2 General Background

In this section we provide a necessary background on software encoding-based
side-channel countermeasures and on coding theory necessary for developing a
combined countermeasure. Section 7.2.1 overviews the related work in the field.
Section 7.2.2 provides basic definitions that are used later in this chapter.

7.2.1 Related Work

After the paper by Hoogvorst et al. [10], who presented a method to extend the DPL
to software implementations, several works were published in the area of software
hiding schemes.

Rauzy et al. [14] developed a scheme that encodes the data by using bit-slicing,
where only one bit of information is processed at a time. They claim that this kind
of protection is 250 times more resistant to power analysis attacks compared to
the unprotected implementation, while being 3 times slower. For testing, they used
PRESENT cipher, running on an 8-bit microcontroller.
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Chen et al. [6] proposed an encoding scheme that adds a complementary bit to
each bit of the processed data, resulting in a constant Hamming weight code. Their
countermeasure was implemented on a Prince cipher, using an 8-bit microcontroller.

Servant et al. [19] introduced a constant weight implementation for AES, by
using a (3,6) code. To improve the performance, they split 8-bit variables into two
4 bit words and encode them separately. This implementation was also capable
of detecting faults with 93.75% probability. Their implementation used a 16-bit
microcontroller.

Maghrebi et al. [13] proposed an encoding scheme that differs from the previous
proposals. For their case, they did not assume the Hamming weight leakage model
for register bits; therefore, they concluded that balanced codes might not be the
optimal ones to use generally. In their method, they first obtain the profile of a
device to get a vector of register bit leakages. Then they estimate leakage values for
each codeword and build a code by using codewords with the lowest leakage. Their
algorithm selects the optimal code by ranking the codes based on the difference
in power consumption between the codewords and on the power consumption
variance. Our algorithm extends this idea by adding the variance of register bits
in order to achieve better leakage characteristics and by adding conditions for error
detection and correction.

In general, none of the previous schemes has been designed for fault resistance.
Schemes proposed in [6, 14] have been analyzed with respect to fault attacks by
Breier et al. [4], concluding that without additional modifications to assembly code,
the probability of a successful fault attack is non-negligible. Therefore, in this
chapter we focus on design and automated generation of fault tolerant and side-
channel resistant coding schemes.

When it comes to combined countermeasures, in [17], Schneider et al. proposed
a hardware countermeasure based on combining threshold implementation with
linear codes. As stated in the paper, their proposal is not considered for software
targets. In the execution process, there are multiple checking steps that protect the
implementation against faults. However, in software, it would be easy to overcome
such checks by multiple fault injections [21]. Also, it would be possible to inject
faults that are impossible with hardware implementations, such as instruction
skips [3].

This chapter provides the reader with the following information:

• We specify theoretical bounds for encoding schemes with respect to fault attacks
that are necessary to be taken into account when designing a fault resistant
scheme.

• We show how to automatically design a code that is capable of protecting the
implementation against side-channel and fault attacks and we show trade-offs
between these two resistances.

• We adopt the ranking algorithm proposed in [13] and show how to improve it
for constructing side-channel resistant codes with better properties—by ranking
the codes according to the codeword with the highest leakage, and by calculating
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the register bit variance. We add the conditions for selecting the codes with the
desired error-detection/correction capabilities in an automated way.

• We analyze the codes constructed by the code generation algorithm—we calcu-
late leakages, fault detection, and correction probabilities, and we simulate the
assembly code implementing the codes on a general-purpose microcontroller.

7.2.2 Coding Theory Background

A binary code, denoted by C, is a subset of the n-dimensional vector space over
F2-Fn

2, where n is called the length of the code C. Each element c ∈ C is called
a codeword in C and each element x ∈ F

n
2 is called a word [11, p. 6]. Take two

codewords c, c′ ∈ C, the Hamming distance between c and c′, denoted by dis
(
c, c′

)
,

is defined to be the number of places at which c and c′ differ [11, p. 9]. More
precisely, if c = c1c2 . . . cn and c′ = c′1c′2 . . . c′n, then

dis
(
c, c′

) =
n∑

i=1

dis
(
ci, c

′
i

)
,

where ci and c′i are treated as binary words of length 1 and hence

dis
(
ci, c

′
i

) =
{

1 if ci �= c′i
0 if ci = c′i

.

Furthermore, for a binary code C, the (minimum) distance of C, denoted by dis (C),
is [11, p. 11]

dis (C) = min{dis
(
c, c′

) : c, c′ ∈ C, c �= c′}.

Definition 7.1 ([7, p. 75]) For a binary code C of length n, dis (C) = d, let M = |C|
denote the number of codewords in C. Then C is called an (n,M, d)-binary code.

This minimum distance of a binary code is closely related to the error-detection and
error-correction capabilities of C.

Definition 7.2 ([11, p. 12]) Let u be a positive integer. C is said to be u-error-
detecting if, whenever there is at least one but at most u errors that occur in a
codeword in C, the resulting word is not in C.

From the definition, it is easy to prove that C is u-error-detecting if and only if
dis (C) ≥ u + 1 [11, p. 12]. A common decoding method that is used is nearest
neighbor decoding, which decodes a word x ∈ F

n
2 to the codeword cx such that

dis (x, cx) = min
c∈C dis (x, c) . (7.1)
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When there are more codewords cx satisfies (7.1), the incomplete decoding rule
requires a retransmission [11, p. 10].

Definition 7.3 ([11, p. 13]) Let v be a positive integer. C is v-error correcting if
minimum distance decoding with incomplete decoding rule is applied, v or fewer
errors can be corrected.

Remark 7.1 C is v-error correcting if and only if dis (C) ≥ 2v + 1 [11, p. 13].

Definition 7.4 ([8]) An (n,M, d)-binary code C is called an equidistant code if
∀c, c′ ∈ C, dis

(
c, c′

) = dis (C).

For our purpose, we will use binary code for protecting the underlying implementa-
tion.

We propose two choices of look-up tables:

1. Correction Table: This table will treat a word x ∈ F
n
2 the same as the codeword

cx ∈ C which satisfies dis (cx, x) ≤ � d−1
2  , where d is the distance of C. Note

that this is equivalent to using bounded distance decoding [12, p. 36] and taking
the bounded distance to be � d−1

2  . To use this table we require that dis (C) ≥ 3.
2. Detection Table: This is a normal look-up table that returns a null value when

x /∈ C is accessed.

We will give a theoretical criterion to measure the bit flip fault resistant capability
of a binary code when it is used as an encoding countermeasure against fault
injection attacks in Sect. 7.3. Afterwards we propose three coding schemes. The
encoding scheme will be simulated (and implemented) and evaluated in Sect. 7.4.

Let m be a positive integer such that 1 ≤ m ≤ n, where n is the code length.

Definition 7.5 An m-bit fault is a fault injected in the codeword that flips exactly
m bits. We assume each bit has equal probability to be flipped.

Definition 7.6 When the fault is analyzed, we adopt the following terminologies:

• Corrected: Fault is detected and corrected.
• Null: Fault is detected and results into zero output.
• Invalid: Fault is detected and results into an output that is not a codeword.
• Valid: Fault is not detected and fault injection is successful, i.e., it results in the

output of a valid but incorrect codeword.

7.3 Theoretical Analysis

In this section we will first give the theoretical analysis for the fault resistant
capabilities of binary code in general. Then we propose two different coding
schemes and analyze their fault resistant probabilities.
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7.3.1 Correction Table

Definition 7.7 For an (n,M, d)-binary code C such that d ≥ 3, let

Fc,m :=
{
x ∈ F

n
2 : dis (c, x) = m and ∃c′ ∈ C such that dis

(
x, c′

) ≤
⌊

d − 1

2

⌋}
.

Then

pm,(e) :=
⎧
⎨

⎩
1 m ≤ � d−1

2  
1 − 1

M(n
m)

∑
c∈C |Fc,m| m > � d−1

2  (7.2)

is called the m-bit fault resistance probability with error correction for C.

As mentioned earlier, when a Correction Table is used, it is equivalent to using
bounded distance decoding. When m ≤ � d−1

2  bits are flipped, by Remark 7.1, the
error will be corrected and hence pm,(e) = 1. When m > � d−1

2  bits are flipped,
the fault will be valid if the resulting word is at distance at most � d−1

2  from any
codeword. Thus by Definition 7.6, 1 − pm,(e) gives the theoretical probability of a
Valid fault and the bigger the pm,(e) is, the more resistant the binary code to m-bit
fault. Furthermore, when m = 1, the fault will be corrected and most of the cases
are expected to return Corrected.

Another interesting fault model is random fault, i.e., assuming there is an equal
probability for m-bits fault to occur ∀1 ≤ m ≤ n. Taking this into account, we
define the following.

Definition 7.8 For an (n,M, d)-binary code C such that d ≥ 3, let pm,(e) be its
m-bit fault resistance probability with error for 1 ≤ m ≤ n, then

prand,(e) :=
n∑

m=1

1

n
pm,(e)

is called the overall resistance index with error correction for C.

As suggested by the name, the bigger the prand,(e) is, the more resistant the code C
is to random faults.

7.3.2 Detection Table

Now we consider Detection Table.

Definition 7.9 For an (n,M, d)-binary code C such that d ≥ 2, let

Sm :=
∑

c∈C
|{c′ ∈ C : dis

(
c′, c

) = m}|.
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Then

pm := 1 − Sm

M
(
n
m

) (7.3)

is called the m-bit fault resistance probability for C.

When an m-bit fault is injected in the codeword, if the resulting word is not a
codeword then the value will be set to Null. The only case when the fault is valid
is when after m bits are flipped, the resulting word is still a codeword. Thus by
Definition 7.6, 1 − pm gives the theoretical probability of a Valid fault. Hence, the
bigger the pm, the better the m-fault resistance of the binary code.

Remark 7.2 When m ≤ d, no codeword is at distance m from each other and hence
pm = 1.

Note that if Sn = M , i.e., for each codeword c ∈ C, there exists a c′ ∈ C such that
dis

(
c, c′

) = n, then we have

pn = 1 − M

M
(
n
n

) = 1 − 1 = 0.

That means, for this code, n-bit fault will always be injected successfully. In view
of this, we exclude these kind of codes from our selection (see Algorithm 1). In
practice, n and M are the fixed known values, from Eq. (7.3), to get bigger pm the
goal of choosing the code C is to make Sm small. There are several ways of achieving
this depending on the preference of the user:

1. For small values of m, make pm = 0: Choose code with a bigger minimum
distance d, then pm will be 1 for more values of m. Of course, there is a limit
for the minimum distance that can be achieved (see Table 7.1). This particular
scheme will be discussed in Sect. 7.3.3, where it is called Detection Scheme.

2. A certain m0-bit fault resistance is desired: Choose code such that Sm0 = 0.
3. Sacrificing one m0-bit fault resistance to achieve m-bit fault resistance for all

other values of m �= m0: This is possible by using equidistant codes. That is,
take code such that |Sm0 | = M . This particular scheme will be discussed in
Sect. 7.3.3, where it is called Equidistant Detection Scheme.

4. Making all pm almost equally large: Choose C such that Sm are similar for all
m > d. Note that

n∑

m=d+1

Sm = 2M

is always true.

Similar to last subsection, considering random fault, we define the following.
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Algorithm 1: Ranking algorithm that chooses the code with the optimal
leakage properties

Input : n: the codeword bit-length, M: number of codewords, d: minimum distance of
the code, αi : the leakage bit weights of the register, where i in [[1, n]]

Output: An (n,M, d) binary code
1 for Every set S of M words do
2 for x == 0; x < |S|; x++ do
3 for y == x + 1; y < |S|; y++ do
4 Calculate the distance dis (S[x], S[y]);
5 if dis (S[x], S[y]) < d (or dis (S[x], S[y])! = d, depends on equidistance

condition) then
6 continue with a different set S;

7 if dis (S[x], S[y]) == n then
8 ndistance++

9 if ndistance == n then
10 continue with a different set S;

11 Compute the estimated power consumption for codeword S[x] and store the
result in table A: A[S[x]] = �n

i=1αiS[x][i];
12 Compute the estimated variance for bit leakages in S[x] and store the result in

table B: B[S[x]] = �n
i=1((αiS[x][i]) − μS[x])2;

13 Compute the bit with the highest bit leakage in S[x] and store the result in table
C: C[S[x]] = max(αiS[x][i]);

14 Compute the register leakage variance for codewords in S and store the result in table

D: D[S] = �
|S|
S[x]=1(A[S[x]] − μS)2;

15 Choose the highest variance for register bit leakages for codewords in S and store the
result in table E: E[S] = max(B);

16 Choose the value of the highest register bit leakage among the codewords in S and
store the result in table F : F [S] = max(C);

17 Get the optimal candidate using the following criteria:
1. Choose the candidates with the lowest register variances from D[S];
2. From this set, choose the candidates with the lowest value of the highest leakage

according to F [S];
3. Finally, choose from the previous set, take the candidate with the lowest bit leakage variance

according to E[S];
return M codewords in case all the conditions are met, or an empty set otherwise

Table 7.1 Possible
(n,M, d)-binary codes for
n = 8, 9, 10, M = 16 and
n = 8,M = 4

n M d

8 4 2, 3, 4, 5

8 16 2, 3, 4

9 16 2, 3, 4

10 16 2, 3, 4
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Definition 7.10 For an (n,M, d)-binary code C such that d ≥ 2, let pm be its m-bit
fault resistance probability for 1 ≤ m ≤ n, then

prand :=
n∑

m=1

1

n
pm

is called the overall resistance index for C.

Note that the bigger the prand is, the more resistant the code C is to random faults.

Lemma 7.1 For an (n,M, d)-binary code C, if it is equidistant, then

pm =
⎧
⎨

⎩
1 m �= d

1 − M−1
(n
d)

m = d
, and prand = 1 − M − 1(

n
d

)
n

.

7.3.3 Coding Schemes

Here we propose two different coding schemes:

1. Detection Scheme: Using binary code which has minimum distance at least 2.
2. Correction Scheme: Using binary code which has minimum distance at least 3

with error correction enabled look-up table.

Furthermore, as will be seen from the rest of this chapter, equidistant codes
have different behaviors than codes that are not equidistant. Hence when equidistant
codes are used, we emphasize the usage by referring to the schemes as “Equidistant
detection scheme” and “Equidistant correction scheme,” respectively.

We will analyze the m-bit fault resistant probability (with error) as well as overall
resistance index (with error) for each of them using (n,M, d) binary codes for
n= 8, 9, 10 and M = 4, 16. We chose M = 4 because it is easy to analyze and
explain, and M = 16 because it can encode one nibble of the data; therefore, it is
usable in a practical scenario. To illustrate the usage of the schemes we refer the
reader to Appendix 2 for calculations of the probabilities for some specific codes as
examples.

First, we discuss the possible values of the minimum distance d. As is well known
in coding theory, fixing the length of the code n and minimum distance d, M is upper
bounded by certain value. This upper bound is tight for small values n and d and still
open for a lot of other values [7, p. 247]. In particular, for n = 8, 9, 10 and different
values of d we know the exact possible values of M . In return, the possible values
of d are known when n, M are fixed. In Table 7.1 we list the possible minimum
distances that can be achieved for n = 8, 9, 10 and M = 4 or 16. Note that the
values are taken from [7, p. 247, 248] and [5].

For equidistant binary code, we have the following constraint on d.
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Lemma 7.2 Let C be an (n,M, d) equidistant binary code such that M ≥ 3, then
d is even.

Proof Recall the Hamming weight of a word x ∈ F
n
2 denoted by wt(x) is defined to

be the number of nonzero coordinates in x [11, p. 46]. And we have the following
relation (see [11, Corollary 4.3.4 and Lemma 4.3.5]):

wt(x) + wt(y) ≡ dis (x, y) mod 2.

Take an (n,M, d) equidistant binary code C and any three distinct codewords
x, y, z ∈ C, we have

dis (x, y) + dis (y, z) + dis (z, x) ≡ 2wt(x) + 2wt(y) + 2wt(z) ≡ 0 mod 2.

Hence, d cannot be odd.

Furthermore we have M ≤ n + 1[8]. Thus we will only consider (8, 4, 2) and
(8, 4, 4) equidistant binary codes. The fact that such codes exist can be derived
from [8].

7.4 Automated Generation and Evaluation of Codes

In this section, we will utilize the findings stated in Sect. 7.3 to design the algorithm
that automatically generates codes with the optimal side-channel and fault detection
properties for a given code length. First, we present the algorithm that finds the
codes based on searching criteria in Sect. 7.4.1. Then we show properties of the
codes that were produced by the algorithm in Sect. 7.4.2. To verify our theoretical
results, we simulate fault injections into these codes, by using an automated fault
simulator which will be explained in Sect. 7.4.3. Finally, we present and discuss the
simulation results in Sect. 7.4.4.

7.4.1 Code Generation and Ranking Algorithm

When it comes to device leakage, it normally depends on the processed intermediate
values. In [13], they proposed the first encoding scheme that assumed a stochastic
leakage model over the Hamming weight model. In such model, leakage is
formulated as follows:

T (x) = L(x) + ε, (7.4)

where L is the leakage function mapping the deterministic intermediate value (x)
processed in the register to its side-channel leakage, and ε is the (assumed) mean-
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free Gaussian noise. For 8-bit microcontroller case, we can specify this function as
L(x) = α0+α1x1+· · ·α8x8, where xi is the ith bit of the intermediate value, and αi

is the ith bit weight leakage for specific register [16]. The αi values can be obtained
by using the following equation:

α = (AT A)−1AT T, (7.5)

where A is a matrix of intermediate values and T is a set of traces. After the
device profiling which obtains the α values, we can use our ranking algorithm to
select the optimal code with given inputs (Algorithm 1). Note that one can still use
the Hamming weight model—for that case, α has to be defined as unity. In the
following, we will explain how the algorithm works.

First, the inputs have to be specified—length (n), number of the codewords
(M), minimum distance (d), and leakages of the register bits (αi). Depending on
these values, the algorithm analyzes every possible set of M codewords that can
be a potential code candidate. Lines 2–3 iterate over every combination of two
codewords. Lines 4–6 test if the minimum distance condition is fulfilled. Then, lines
7–10 check, whether for each codeword there exists another codeword which is at
distance n from it—if yes, we skip this set. This condition is necessary in order to
get a code resistant against n-bit flip (we will detail such case in Sect. 7.5). Lines 11–
13 compute the 3 values that are used in order to calculate the values for the whole
code in the later phase: estimated power consumption for the codeword, stored in
table A, estimated variance for bit leakages in the codeword, stored in table B, and
the highest bit leakage value, stored in table C. Next, the codeword value is stored
in the index table I .

Lines 14–16 use the values from tables A,B,C to compute the register leakage
variance (μS[x] denotes the mean leakage for a word S[x]), highest variance for bit
leakages within registers, and value of the highest bit leakage within registers for
the set S. These values are stored in tables D,E,F , respectively, and are used in the
final evaluation.

The final evaluation is the last phase of the algorithm. First, it takes a subset of D

with the best register leakage variance (μS denotes the mean leakage for codewords
in S). It narrows this subset to candidate codes with the lowest value of the highest
bit leakage according to set E. From these, it chooses the code with the lowest bit
leakage variance using table F .

7.4.2 Properties of Generated Codes

Codes with the best side-channel and fault resistance properties according to
Algorithm 1 with 4 codewords and length 8 can be found in Table 7.2. Their detailed
properties are stated in Table 7.3. More codes with cardinality 16 and various
distances can be found in Appendix 1.
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Table 7.2 Codes used in
evaluation

Code Distance Denoted by

0x3D, 0x9D, 0xAD, 0xBC = 2 C8,4,eq2

0x0B, 0x19, 0x35, 0xA6 >= 2 C8,4,min2

0x19, 0x35, 0x8A, 0xA6 >= 3 C8,4,min3

0x55, 0x93, 0xA5, 0xC6 = 4 C8,4,eq4

0x19, 0x27, 0x8A, 0xB4 >= 4 C8,4,min4

0x19, 0x6A, 0x87, 0xF4 >= 5 C8,4,min5

For calculating the register variance, we follow the similar methodology as used
in [13], together with their generated α values, but we improved their ranking
algorithm by calculating the bit variances inside registers and by selecting the code
which has the lowest leakage value for the highest leaking codeword. First part of
Table 7.3 shows these three values, with the order of preference according to our
ranking algorithm. Second part of the table shows bit fault resistance probabilities,
denoted by pm for m-bit flips in the codeword, as well as overall resistance index,
denoted by prand for the code. The last part of the table shows the fault resistance
probabilities with error correction, denoted by pm,(e), as well as overall resistance
index with error correction, which is denoted by prand,(e). We do not consider codes
with distance 1 because such codes do not provide protection against 1-bit flips and
therefore the fault protection would be very low. However, such codes can still be
used for minimizing the side-channel leakage.

In general, if we aim for higher distance values, we get better detection and
correction capabilities, but the side-channel leakage is higher as well. That is
because if the distance is higher, it is more likely that the variance of leakage among
the codewords is bigger. Also, we can see that equidistant codes have a constant
detection probability of 1 except the case when number of bit flips is the same as
the code distance. Moreover, if we sum up the probabilities of all the bit flip faults
for non-equidistant codes, the overall detection probability is lower. However, the
side-channel leakage of equidistant codes is more than 10 times higher compared to
non-equidistant codes.

7.4.3 Automated Fault Simulation

The fault simulator we used was customized for the purpose of evaluating a
microcontroller assembly table look-up implementation of the encoding schemes
presented in this chapter. More details on this simulator are provided in [1]. This
simulator helps us to extend the theoretical results to real-world results, where one
has to use capabilities of microprocessors for computing the results.
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Instruction set simulator

Output checker

Fault simulator

LDI  r0   a
LDI  r1   b
LPM  r2   r0   r1

a b

output

-> instruction
-> fault model
-> bit position

Is output:
-> corrected 
-> valid
-> invalid
-> null

Fig. 7.1 Fault simulator operation overview

A high-level overview is given in Fig. 7.1. There are three instructions in total—
the first two LDI load the two operands into registers r0 and r1. Both of the
operands are already encoded according to one of the coding schemes. The LPM
instruction loads the data from the look-up table stored in the memory by using the
values in r0 and r1, and the result is stored to register r2. This part works as a
standard instruction set simulator. During each execution, a fault is injected into the
code. For each type of fault, we test all the possible combinations of codewords,
and we disturbed all the instructions in our code. We have tested the following fault
models:

• Bit faults: In this fault model, one to n bits in the destination register change its
value to a complementary one.

• Random byte faults: The random byte fault model changes random number of
bits in the destination register.

• Instruction skip: Instruction skip is a very powerful model that is capable of
removing some countermeasures completely. We have tested a single instruction
skip on all three instructions in the code.

• Stuck-at fault: In this fault model, the value of the destination register changes
to a certain value, usually to all zeroes. Therefore, we have tested this value in
our simulator.

After the output is produced under a faulty condition, it is analyzed by the output
checker, which decides on its classification. Outputs can be of four types (Corrected,
Valid, Invalid, and Null), and these types are described in detail in Sect. 7.2.2.

7.4.4 Simulated Results

Figure 7.2 shows plots for C8,4,min4 and C8,4,eq4, with and without the error
correction. Instruction skip faults and stuck-at faults show zero success when



7 Automated Deployment of Software Encoding Countermeasure 187

a b

c d

Fig. 7.2 Simulation results for C8,4,eq4 with equidistant detection scheme in (a) and with
equidistant correction scheme in (b); C8,4,min4 with detection scheme in (c) and with correction
scheme in (d)

attacking any of the generated codes. When it comes to bit flips, we can see that for
better fault tolerance, one should not use the error-correction capabilities, since the
properties of such codes allow changing the faulty codeword into another codeword,
depending on the number of bit flips and minimum distance of the code. When
deciding whether to choose an equidistant code or not, situation is the same as
in Table 7.3—equidistant codes have slightly better fault detection properties, but
worse side-channel leakage protection. Therefore, it depends on the implementer to
choose a compromise between those two.

7.5 Discussion

First, we would like to explain the difference between the calculated results in
Table 7.3 and the simulated results in Fig. 7.2 in equidistant code C8,4,min4. Table 7.3
shows theoretical results assuming that error happens before using the look-up table.
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a b

Fig. 7.3 Simulation results for the codes: (a) C8,16,min4 and (b) C8,16,min3

However, in a real-world setting, fault can be injected at any point of the execution,
including the table look-up, or even after obtaining the result from the table. That
is also why there are Invalid faults, despite the table always outputs Null in case of
being addressed by a word that does not correspond to any codeword. Because there
are three instructions in the assembly code, faulting the destination register of the
last one after returning the value from the table results into 1/3 of Invalid faults in
all the cases except instruction skips.

To explain the condition on lines 7–8 of Algorithm 1, we can take the code with
n = 8, M = 16, and d = 4 as an example. The simulation result for this code is
stated in Fig. 7.3a. Full results for this code are then in Table 7.5 in the appendix.
There are no codes with these parameters that could satisfy the abovementioned
condition—all 480 codes that can be constructed have the property that if any
codeword is faulted by n bit flip, it will change to other codeword. Therefore, such
codes are not suitable for protecting implementations against fault attacks. For this
reason, it is more suitable to use the C8,16,min3 code, stated in Fig. 7.3b, that does
not suffer from such property.

To summarize the evaluation results, we point out the following findings:

• Correction scheme is not suitable for fault tolerant implementations—while it can
be helpful in non-adversary environments, where it can be statistically verified,
how many bits are usually faulted, and therefore, a proper error-correction
function can be specified, in adversary-based settings, one cannot estimate the
attacker capabilities. In case of correcting 1-bit error, for example, attacker who
can flip multiple bits will have a higher probability of producing Valid faults,
compared to using detection scheme with the same code.
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• We can find an optimal code either from the fault tolerance perspective or from
side-channel tolerance perspective—if we consider both, a compromise has to
be made, depending on which attack is more likely to happen or how powerful
an attacker can be in either setting. If we sacrifice the fault tolerance, we will
normally get a code with distance 2 (e.g., side-channel resistant codes in [13] all
have distance 2 and they are not equidistant codes); therefore, such codes will be
vulnerable to 2-bit faults. On the other hand, by relaxing the power consumption
variance condition, we will be able to choose codes with bigger distance, being
able to resist higher number of bit faults.

• Both types of resistances can be improved if we sacrifice the memory and choose
codes with greater lengths.

• Equidistant detection schemes is a good option in case the implementation can
be protected against certain number of bit flips—because all the Valid faults are
achieved only if the attacker flips the same number of bits as is the distance.
However, this condition does not hold in case of equidistant correction schemes.

7.6 Chapter Summary

In this chapter, we provided a necessary background for constructing side-channel
and fault attack resistant software encoding schemes. Current encoding schemes
only cover side-channel resistance, and either do not discuss fault resistance or
only state it as a side product of the construction, such as [19]. Our work defines
theoretical bounds for fault detection and correction and provides an automated way
to construct efficient codes that are capable of protecting the underlying computation
against both physical attack classes.

To support our result with a practical case study, we designed an automated
simulator to evaluate the table look-up operation under faulty conditions, by using a
microcontroller assembly code. As expected, the codes constructed using the stated
algorithm provide robust fault resistance, while keeping the side-channel leakage at
the minimum.

Appendix 1: Generated Codes

In this section, we state the remaining codes generated by Algorithm 1, for M = 16
and n = 8, 9, 10 (Tables 7.4 and 7.5).
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Table 7.4 Codes generated by Algorithm 1

Code Length Distance Denoted by

0x0E, 0x4D, 0xF1, 0xEC, 0x2D,
0x26, 0x86, 0x8D, 0xA5, 0x46,
0xD9, 0x13, 0xD2, 0x79, 0x72,
0x5A

8 >= 2 C8,16,min2

0x4D, 0x8B, 0x96, 0x43, 0xE9,
0xE2, 0xBA, 0xD5, 0x33, 0x2E,
0x3D, 0xFC, 0xA5, 0x5A, 0x76,
0xCE

8 >= 3 C8,16,min3

0xBA, 0xD9, 0xEF, 0x73, 0x1F,
0xD6, 0x83, 0xB5, 0x26, 0x4A,
0x7C, 0x45, 0x29, 0x8C, 0xE0,
0x10

8 >= 4 C8,16,min4

0x145, 0x15A, 0x1CA, 0x95, 0xCC,
0xDA, 0xC5, 0x18C, 0x0E, 0xD3,
0x19A, 0x185, 0x07, 0x193, 0x9C,
0x153

9 >= 2 C9,16,min2

0x07, 0xF3, 0x146, 0xB5, 0xEC,
0x2E, 0x1BA, 0x165, 0x13C, 0x1D,
0x1D9, 0x5B, 0x1D4, 0x18B, 0x96,
0x185

9 >= 3 C9,16,min3

0x3B, 0x75, 0x9D, 0x14B, 0x1D4,
0x1A5, 0xEC, 0x13C, 0x1F9, 0x193,
0x07, 0xDA, 0x166, 0xB6, 0x1AA,
0xE3

9 >= 4 C9,16,min4

0x5D, 0xDC, 0x34B, 0x25C, 0x1CB,
0x359, 0xCE, 0x3CA, 0x3E6, 0x1F5,
0x1E7, 0x3F4, 0x375, 0x24E, 0x4F,
0x1D9

10 >= 2 C10,16,min2

0xA7, 0x235, 0x3C8, 0x22A, 0x14C,
0x39, 0x298, 0x3C5, 0x3B1, 0x8B,
0x1B4, 0x1C, 0x326, 0x156, 0x169,
0x353

10 >= 3 C10,16,min3

0x2D, 0x16A, 0x18C, 0x97, 0x136,
0x21A, 0x347, 0x3D4, 0x3A5,
0x159, 0x275, 0x2E6, 0xCB, 0xF8,
0x1F3, 0x24C

10 >= 4 C10,16,min4

Appendix 2: Fault Resistance Probabilities

In this section, we show the detailed theoretical calculations of fault resistance prob-
abilities and the overall resistance index (with error) for some specific examples.

Equidistant Detection Scheme
Using Lemma 7.1, we list the values of pms and prand in Table 7.6 for (8, 4, 2) and
(8, 4, 4) equidistant binary codes.
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Table 7.6 Theoretical values of pm for (n,M, d)-equidistant binary code

(n,M, d) p1 p2 p3 p4 p5 p6 p7 p8 prand

(8, 4, 2) 1 0.8929 1 1 1 1 1 1 0.9866

(8, 4, 4) 1 1 1 0.9571 1 1 1 1 0.9946

Table 7.7 Distance between
each pair of codewords in the
(8, 4, 4)-binary code
C8,4,min4

dis (·, ·) 00011001 00100111 10001010 10110100

00011001 0 5 4 5

00100111 5 0 5 4

10001010 4 5 0 5

10110100 5 4 5 0

Detection Scheme
Since we require that dis (C) ≥ 2 for Detection Scheme, for 1-bit fault, we expect
the results to be Null, which means p1 = 1. Now we give a theoretical calcu-
lation for the (8, 4, 4)-binary code C8,4,min4 = {00011001, 00100111, 10001010,

10110100}. We first list the distance between every pair of codewords in Table 7.7.
By Eq. (7.3), we can then calculate the m-bit fault resistance probabilities and

the overall resistance index for C:

p2 = p3 = 1 − 1

4
(0 + 0 + 0 + 0) = 1,

p4 = 1 − 1

4
(8

4

) (2 + 0 + 1 + 1) = 69

70
≈ 0.9857,

p5 = 1 − 1

4
(8

5

) (2 + 2 + 2 + 2) = 27

28
≈ 0.9643,

p6 = p7 = p8 = 1 − 1

4
(0 + 0 + 0 + 0) = 1, prand =

8∑

m=1

1

8
pm = 0.9938.

Correction Scheme
m-bit fault resistance probabilities with error correction for the same (8, 4, 4)-binary
code C8,4,min4 = {00011001, 00100111, 10001010, 10110100}. As dis (C) = 4, by
Remark 7.1 it is an 1-error-correcting code. By Eq. (7.2), pm,(e) = 1 for m = 1. To
calculate pm,(e) for m ≥ 2, we first list the table of cardinalities of Fc,m for c ∈ C
and m = 2, 3, . . . , 8 in Table 7.8.

By Eq. (7.2), we can then calculate the m-bit fault resistance probabilities with
error correction as well as the overall resistance index with error correction for C.
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Table 7.8 Cardinality of Fc,m for m = 2, 3, . . . , 8 and c ∈ C8,4,min4

|Fc,2| |Fc,3| |Fc,4| |Fc,5| |Fc,6| |Fc,7| |Fc,8|
00011001 0 4 11 6 6 0 0

00100111 0 4 11 6 6 0 0

10001010 0 4 11 6 6 0 0

10110100 0 4 11 6 6 0 0

p2,(e) = 1 − 1

4
(8

2

) (0 + 0 + 0 + 0) = 1,

p3,(e) = 1 − 1

4
(8

3

) (4 + 4 + 4 + 4) = 13

14
≈ 0.9286,

p4,(e) = 1 − 1

4
(8

4

) (11 + 11 + 11 + 11) = 59

70
≈ 0.8429,

p5,(e) = 1 − 1

4
(8

5

) (6 + 6 + 6 + 6) = 25

28
≈ 0.8929,

p6,(e) = 1 − 1

4
(8

6

) (6 + 6 + 6 + 6) = 11

14
≈ 0.7857,

p7,(e) = p8,(e) = 1 − 1

4
(0 + 0 + 0 + 0) = 1,

prand,(e) =
8∑

m−1

1

8
pm,(e) = 0.9313.
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Chapter 8
Idempotent Instructions to Counter Fault
Analysis Attacks

Sikhar Patranabis and Debdeep Mukhopadhyay

8.1 Introduction

Embedded systems are increasingly representing the largest segment of the con-
sumer electronic market, and are now a critical part of daily life with the growth
of smart cards, mobile devices, autonomous vehicles, sensor-based appliances and,
in a broader sense, the Internet of Things (IoT). Products such as credit cards,
smart phones, and SIM cards are heavily reliant on embedded systems, while also
storing and manipulating large volumes of customer data. This makes security
an essential component of all embedded systems, and physical attacks such as
side-channel attacks [7, 8] and fault analysis attacks [4, 5] represent a threat to
such security guarantees. Hence, embedded systems should be implemented in a
manner that resists such physical attacks. This requirement is especially applicable
in the context of embedded systems implementing cryptographic algorithms, where
implementation attacks can cause potentially devastating leakages.

Fault analysis attacks on cryptographic implementations are typically character-
ized by three major features—the fault model, the fault injection mechanism, and the
analysis technique. The fault model typically relates to the spatio-temporal nature
of the injected fault. For example, if the target is a block cipher implementation
(such as AES), the fault model could be a “single-bit” fault model, a “single-byte”
fault model, or a “multiple-byte” fault model, depending on the number of state
bites/bytes affected by the fault injection. Any fault injection is typically followed
by an analysis in an attempt to recover the secret key, and depending on such
techniques, fault attacks may be classified as “differential fault analysis” (DFA),
“differential fault intensity analysis” (DFIA), and “safe-error analysis” (SEA).
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Interestingly, in a practical attack scenario, the appropriate choice of fault model
and analysis technique to attack a target device often depends on the fault injection
mechanism. In hardware implementations built on ASICs/FPGAs, faults are often
injected via voltage/clock glitches or EM/laser pulses, but the fundamental idea in
most cases is to cause bit toggles in various registers via either setup time violations
or directed pulse injections. In software-based implementations on platforms such
as micro-controllers or embedded processors, a popular avenue of fault injection
is “instruction skips.” In this fault injection mechanism, the adversary skips one
or more assembly instructions to induce a faulty computation. Recent studies have
shown this model to be both practical and efficient on a variety of platforms [2,
10, 11] and using a variety of fault injection mechanisms [1, 6, 12]. Consequently,
instruction skips are a realistic threat to cryptographic implementations targeting
embedded processors and micro-controllers.

In this chapter, we present to the reader an instruction-level redundancy based
countermeasure to thwart instruction skip attacks. The approach is based on the
assumption that while it is easy to inject identical faults in independent executions of
an algorithm, introducing faults in two instructions separated by a few clock cycles
is significantly harder. The scheme involves rewriting each individual instruction
by a sequence of instructions that are immune to single instruction skips. To make
the analysis concrete, we illustrate the countermeasure approach using the Intel x86
processor as an example; however, in practice, this approach is applicable to a wide
class of implementations across varying architectures (ISAs).

8.2 Classifying Assembly Instructions

The first step in the study of instruction-level redundancy is to classify the assembly
instructions in any given ISA into certain sub-categories, depending on the ease
with which they may be converted into redundant instruction sequences with the
same functionality. We present here the classification proposed by Heydemann et al.
in [9].

1. Idempotent Instructions: Idempotent instructions may be duplicated any num-
ber of times without affecting the final outcome of the program. Consider, for
instance, the instruction move r1,r2, which is common across nearly all
existing ISAs. The instruction operates on two registers—a source register r1
and a destination register r2, and copies the content of r1 to r2 (the reverse may
also be the case depending on the specific conventions of a given ISA). These
instructions are thus the easiest to protect against instruction skip attacks—they
may simply be duplicated as many times as necessary.

2. Separable Instructions: These instructions are by default non-idempotent,
meaning that duplicating them does not preserve functionality. However, they
may be alternatively expressed as a functionally equivalent sequence of one or
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more idempotent instructions, which can then be made redundant via duplication.
Consider, for example, the instructions add r1,r2 and add r1,r2,r3, and
assume hypothetically that both these instructions are present in the same ISA,
with the following semantic meanings:

• The first instruction computes the sum of the contents in the registers r1 and
r2, and stores the result of this computation in r2 itself.

• The second instruction add r1,r2,r3 has a separate destination register
r3, which is distinct from both source registers.

The first instruction is not idempotent, since it does not preserve the same output
upon duplication. The second instruction, on the other hand, is idempotent. Now,
one can re-write the non-idempotent instruction add r1,r2 as the following
sequence of idempotent instructions:

• add r1,r2,r3
• mov r3, r2

This sequence now may be made fault-tolerant by repeating each instruction as
many times as necessary.

3. Specific Instructions: These are non-idempotent instructions that cannot be
directly written as a generic sequence of idempotent instructions. However,
one can construct functionally equivalent redundant instruction sequences cor-
responding to these instructions that are tolerant against single instruction skips.
These instruction sequences are typically specific to the underlying ISA. In this
chapter, we will show examples of such instructions in the Intel x86 ISA.

4. Non-Replaceable and Partially Replaceable Instructions: This is the final
class of instructions that cannot be made sufficiently redundant by any func-
tionally equivalent sequence of instructions, so as to resist instruction skip
attacks with 100% probability. However, for such instructions, one could create
a partially redundant instruction sequence, which makes it difficult but not
impossible for the adversary to precisely inflict a skip attack that affects the
eventual outcome of the program in an exploitable manner.

8.3 Examples from the x86 ISA

In this section, we discuss some examples of each class of instructions from the Intel
x86 ISA, beginning with idempotent instructions. It turns out that most assembly
instructions that are idempotent have the following common format: they have a
disjoint set of source and destination operands, and the value of the destination
operand after the execution of the instruction is determined solely by the value of
the source operands. Finally, the control flow of the program does not typically
depend on the outcome of such instructions.
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The foremost instance of an idempotent instruction is the mov instruction, which
either copies the content of one register to the other or loads/stores a certain value
from/to a given memory location to/from a register. The following is a list of ways
in which this instruction could be used as per the x86 ISA (note that the suffix “l”
at the end of the instruction indicates that each operand is a 32-bit register):

• movl %eax,%ebx (copies the contents of the register eax to the register ebx)
• movl %eax,-4(%ebp) (stores the contents of the register eax at the address

(%ebp-4))
• movl -8(%ebp),%eax (loads the value at the address (%ebp-8) to the

register eax).

The reader may observe that the each of the aforementioned assembly instruc-
tions satisfies the properties of idempotent instructions and, as such, can be made
tolerant to skip attacks via simple duplication, under the assumption that the
adversary can only skip one of the two instructions.

A second instance of an idempotent instruction from the x86 ISA is the “load
effective address” instruction, abbreviated as lea. This instruction is primarily
meant for performing memory addressing calculations without actually accessing
the memory content. The syntax of the instruction is as follows:

leal %esi, [%ebx + 8*%eax + 4]

which translates to operating on the addresses stored in the registers eax and ebx
and storing the resultant address in the register eax. Interestingly, this instruction
can be used not only for computations involving high level memory references,
but also for simple addition operations. Finally, when the destination operand is
different from the source operands, this instruction satisfies all the properties of
an idempotent instruction. As explained later, this instruction is very useful in re-
writing separable instructions as sequences of idempotent instructions.

Table 8.1 summarizes the idempotent instructions from the x86 ISA as described
above, along with their corresponding fault-tolerant replacement sequences.

Table 8.1 Fault-tolerant replacement sequences for idempotent instructions

Instruction Fault-tolerant replacement sequence

movl %eax,%ebx movl %eax,%ebx

(copies %eax to %ebx) movl %eax, %ebx

movl %eax,-4(%ebp) movl %eax,-4(%ebp)

(stores %eax at the address %ebp-4) movl %eax,-4(%ebp)

movl -8(%ebp),%eax movl -8(%ebp),%eax

(loads the value at the address %ebp-8 to %eax) movl -8(%ebp),%eax

leal %esi, [ebx + 8*eax + 4] leal %esi, [%ebx + 8*%eax + 4]

(stores (%ebx + 8*%eax + 4) in %esi) leal %esi, [%ebx + 8*%eax + 4]
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8.3.1 Separable Instructions in the x86 ISA

We now present some examples of separable instructions in the x86 ISA. Recall
that separable instructions are not by themselves idempotent; however, they can
be written as a functionally equivalent sequence of idempotent instructions. The
first example we consider of such an instruction is the add instruction, with the
following syntax:

addl %eax, %ebx

which essentially translates to adding the content of the registers eax and ebx,
and storing the outcome back in the register eax. Note that since the destination
register is also a source register, the add instruction is not idempotent. However, one
can work around this issue via a combination of idempotent instructions described
above. In particular, consider the following sequence of instructions:

movl %eax, %ecx

leal %eax, [%ebx + %ecx]

The reader may observe that this sequence of idempotent instructions has exactly
the same functional effect as the add instruction. One can now make this sequence
fault-tolerant via simple duplication.

The next instruction that we consider is the push instruction, with the following
syntax:

pushl %eax

which translates to pushing the content of the register eax to a new memory
location at the top of the stack, and updating the stack pointer register esp to
point to this new memory location. Note again that this instruction is not idempotent
since pushing some register content to the top of the stack once is not functionally
equivalent to pushing the same twice. Our aim is, however, to write it as a sequence
of idempotent instructions. To do this, we first consider the following sequence of
instructions:

subl %esp, $4

movl %eax, (%esp)

Observe that this sequence is indeed functionally equivalent to the push instruction;
however, the sub instruction is similar to the add instruction in the sense that it is
not idempotent. We work around this by assuming that there exists a designated
register rx that is pre-loaded with the binary equivalent of −4 in two’s complement
notation at the beginning of the program. Under this assumption, consider the
following sequence of instructions:
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movl %esp, %ebx

leal %esp, [%ebx + %rx]

movl %eax, (%esp)

The reader may observe that this sequence of idempotent instructions has exactly
the same functional effect as the push instruction. One can now make this sequence
fault-tolerant via simple duplication.

The final instruction we consider is the pop instruction, with the following
syntax:

popl %eax

which translates to copying the content at the top of the stack to the register eax,
and updating the stack pointer register esp to point to the next memory location,
which is the new stack-top. Now, consider the following sequence of instructions:

movl (%esp), %eax

addl %esp, $4

Observe that this sequence is indeed functionally equivalent to the pop instruction.
Now replace addl by its idempotent equivalent, such that the resulting sequence of
instructions takes the form

movl (%esp), %eax

movl $4, %ecx

leal %esp, [%bax + %ecx]

Once again, the reader may observe that this sequence of idempotent instructions
has exactly the same functional effect as the pop instruction, and once again, one
can now make this sequence fault-tolerant via simple duplication.

Table 8.2 summarizes how the aforementioned separable instructions can be
replaced by functionally equivalent fault-tolerant instruction sequences.

8.3.2 Special Instructions in the x86 ISA

In certain cases, it may not be possible to write a given instruction as a sequence
of idempotent instructions. However, this does not imply that such an instruction
cannot be made fault-tolerant. In particular, there exist certain “special instructions”
that, while not replaceable by a sequence of idempotent instructions, can still be
made fault-tolerant by choosing certain specific instruction sequences.
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Table 8.2 Fault-tolerant
replacement sequences:
separable instructions

Instruction Fault-tolerant replacement sequence

addl %eax,%ebx movl %eax, %ecx

movl %eax, %ecx

leal %eax, [%ebx + %ecx]

leal %eax, [%ebx + %ecx]

pushl %eax movl %esp, %ebx

movl %esp, %ebx

leal %esp, [%ebx + %rx]

leal %esp, [%bax + %rx]

movl %eax, (%esp)

movl %eax, (%esp)

popl %eax movl (%esp), %eax

movl (%esp), %eax

movl %esp, %ebx

movl %esp, %ebx

movl $4, %ecx

movl $4, %ecx

leal %esp, [%ebx + %ecx]

leal %esp, [%bax + %ecx]

In this subsection, we present such a special instruction from the x86 ISA, namely
the call <function> instruction. This instruction works as follows: first, the
return address is pushed onto the stack, followed by an unconditional jump of the
control to the beginning of the target function. We simulate this functionality by the
following alternative sequence of instructions:

movl <returnlabel>, %ebx

movl $1, %ecx

leal %eax, [%ebx + %ecx]

movl %esp, %ebx

leal %esp, [%ebx + %rx]

movl %eax, (%esp)

jmp <function>

returnlabel:

We provide some insight into why the aforementioned sequence simulates call
<function> instruction, although it is probably immediately evident to the
observant reader. The sequence computes the appropriate return address post-
function-execution by adding 1 to the address represented by returnlabel.
Next, the return address is pushed onto the stack (here, we use the idempotent
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Table 8.3 Fault-tolerant
replacement sequence: call
<function>

movl <returnlabel>, %ebx

movl <returnlabel>, %ebx

movl $1, %ecx

movl $1, %ecx

leal %eax, [%ebx + %ecx]

leal %eax, [%ebx + %ecx]

movl %esp, %ebx

movl %esp, %ebx

leal %esp, [%ebx + %rx]

leal %esp, [%ebx + %rx]

movl %eax, (%esp)

movl %eax, (%esp)

jmp <function>

jmp <function>

returnlabel:

sequence corresponding to the push instruction under the assumption that the
register %rx holds the constant −4 in two’s complement notation). Note that the
only instruction which is not idempotent in this sequence is the jmp (unconditional
jump) instruction. The challenge is thus to make this sequence tolerant to skip even
in the presence of such a non-idempotent instruction.

To achieve this, we use the fault-tolerant sequence of instructions presented in
Table 8.3, which basically duplicates the jmp instruction, while making sure that
only one of the original and duplicate occurrences of the instruction is executed
within a single execution of the call <function> instruction. We leave it as
an exercise to argue that this is indeed the case.

8.3.3 Non-replaceable and Partially Replaceable Instructions
in the x86 Instruction Set

Despite all the techniques described above, there remain a few instructions in nearly
every ISA that cannot be replaced by a fault-tolerant sequence of instructions. One
such example of a non-replaceable instruction in the x86 ISA is the jne (jump
if not equal) instruction. To protect such instructions against skip attacks, more
elaborate fault detection schemes appear necessary. Some other instructions may
be “partially replaceable,” meaning that they can be re-written using a combination
of several idempotent instructions and a few non-idempotent ones. This helps reduce
the probability that the adversary can skip precisely the non-idempotent instructions.
One such example in the x86 ISA is the sub instruction, as illustrated in Table 8.4.
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Table 8.4 Partially fault-tolerant replacement sequence: subl %eax,%ebx

Instruction Partially fault-tolerant replacement sequence

subl %eax,%ebx compl %eax, %rx

movl $1, %ry

movl $1, %ry

leal %rz, [%rx + %ry]

leal %rz, [%rx + %ry]

movl %eax, %ecx

movl %eax, %ecx

leal %eax, [%ecx + %rz]

leal %eax, [%ecx + %rz]

8.4 Implementation and Automation

In the aforementioned discussion, we have presented a countermeasure strategy
against fault injection via skipping of assembly instructions. Any countermeasure
idea is useful in the context of actual industrial products if it is amenable to
implementations that are both cost-efficient and resistant to errors. Manual imple-
mentations by experts incur huge costs to the industry while also being prone
to error, and are hence less desirable. A more cost-efficient and less erroneous
alternative is to automate the process of implementing such countermeasures.

In this section, we present to the reader an LLVM compiler-based approach
introduced in [3] to automate the implementation of instruction redundancy-based
countermeasures. The approach modifies certain passes of the original LLVM-
compiler and also introduces some new ones. The compiler takes as input an
unprotected implementation of the target code to be executed, and outputs a
protected binary, equipped with the instruction redundancy countermeasure.

8.4.1 Overview of Approach

The LLVM-based compilation approach proposed in [3] roughly consists of the
following steps, each of which is automated by modifying/replacing certain parts
of the LLVM compiler.

• Identifying Idempotent Instructions: Given an assembly level representation
of the target code, the automation first identifies the set of idempotent instruc-
tions. As already discussed, these instructions can be immediately duplicated
for fault tolerance. The identification may be done in various ways—either by
looking up a table of all idempotent instructions in the ISA or by checking if the
destination operand for a given instruction different from the source operand(s).
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• Replacing Non-Idempotent Instructions: The next step is to convert certain
classes of non-idempotent instructions, namely the replaceable and special
instructions, into equivalent instruction sequences composed almost entirely
of idempotent instructions. This step requires a modification to the register
allocator pass. Once the transformation is complete, each instruction in the
sequence is then duplicated for fault tolerance.

8.4.2 When to Replace Instructions?

Compiling a program using an LLVM compiler involves several stages, where each
stage is associated with a unique representation of the original code, culminat-
ing in the final target platform-dependent representation. While the intermediate
representation (IR) stage appears to be the most likely choice for instruction replace-
ment (since it allows the countermeasure to be generalized to any language and
architecture supported by the compiler), this is often difficult. As pointed out by the
authors of [3], the IR representation may contain static single assignments (SSAs),
which prevents updating a virtual register more than once in specific delimited
regions of the code (such a region may be referred to as a “basic block”). The
following example source code illustrates this scenario:

int mult(int x, int y, int z)

{

return x * y * z;

}

The corresponding byte-code in the LLVM IR looks like the following:

%temp0 = mul %x, %y

%temp1 = mul %temp0, %z

ret %temp1

As per the techniques described above, and keeping the SSA restriction in mind, a
fault-tolerant sequence corresponding to these instructions would be as follows:

%temp0 = mul %x, %y

%temp01 = mul %x, %y

%temp1 = mul %temp0, %z

%temp11 = mul %temp0, %z

ret %temp11



8 Idempotent Instructions to Counter Fault Analysis Attacks 205

Note that each register is updated exactly once inside the basic block. However, the
renamed virtual registers %temp01 and %temp11 are not used anywhere else in
the block, and hence with very high probability, will trivially be removed by the dead
code elimination (DCE) pass. Hence, the instruction replacement phase must occur
post-SSA, preferably after the actual physical registers have already been allocated.

8.4.3 Modifying the Instruction Selection Pass

The first compilation pass that needs modification is the instruction selection
pass (ISP). In this pass, the program is transformed into a low-level representation
that is typically close to the target language. This pass interfaces with the application
binary interface (ABI) to select the appropriate sequence of instructions for each
operation described by the high-level development language (HDL). For example,
upon encountering an instruction of the form

x = x*y + z;

the instruction selection pass would, by default, select the multiply and accumulate
(mla) instruction, which is typically not idempotent. This phase is thus modified
to prioritize the selection of idempotent/replaceable instructions wherever possible,
while also optimizing register usage. For example, for the aforementioned instruc-
tion, the modified instruction selection pass would choose a sequence of add and
mov instructions, which are replaceable and idempotent, respectively.

8.4.4 Modifying the Register Allocator

The register allocator is assigned the post-SSA task of optimally mapping a large
number of virtual registers to a small number of actual physical registers. This is
done through a technique called “liveness analysis,” wherein the register allocator
associates with each virtual register a “liveness interval,” denoting the period during
which this virtual register is initialized, read, and updated. Two or more virtual
registers with disjoint liveness intervals may be mapped on to the same physical
register.

Consider in isolation a post-SSA instruction of the form

add %x3, %x1, %x2

The liveness analysis phase would ascertain that the liveness intervals of the virtual
registers %x1 and %x2 intersect, since they are both used in the same instruction
simultaneously. This in turn implies that they need to be assigned to different
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physical registers. On the other hand, the liveness interval of the virtual register %x3
does not intersect with that of %x1 and %x2, meaning that it could be assigned to
the same register as either of the two.

In order to implement the instruction redundancy-based countermeasure, it is
essential to ensure that given a post-SSA virtual-register-based instruction of the
form

opcode [dest], [src1], [src2]

the register allocator allocates different physical registers for the source and
destination operands as far as possible, so that the resulting instruction sequence
can be made fault-tolerant by simple duplication.

8.4.5 Transforming Instructions

At this stage, an additional instruction transformation phase is incorporated in the
compiler to carry out the instruction transformations as described in Sect. 8.3. Note
that the ISA for LLVM is ARM Thumb2; however, in principle, the instruction
replacement methodologies outlined in [3] are conceptually very similar to the ones
we described with respect to the x86 ISA. The passes involved in this stage may be
summarized as follows:

• Replaceable Instruction Elimination Pass: In this pass, all replaceable non-
idempotent instructions, particularly push and pop, are substituted with equiv-
alent sequences of idempotent instructions.

• Special Instruction Elimination Pass: In this pass, all special instructions
such as function calls are substituted with equivalent sequences of instructions
that, while not necessarily fully idempotent, can be made fault-tolerant via
duplication.

• Partial Instruction Elimination Pass: In this pass, partially replaceable instruc-
tions are substituted with equivalent sequences consisting of many idempotent
and only few non-idempotent instructions.

• Pre-Instruction Duplication Pass: This is a collection of passes that check the
overall sequence of instructions for the presence of unprotected non-idempotent
instructions.

• Instruction Duplication Pass: Finally, in this pass, all idempotent instructions
are duplicated for fault tolerance against instruction skip attacks.

8.4.6 Scheduling Instructions

The role of an instruction scheduler is to re-arrange the order in which the different
instructions of a program are executed. The goal of this step is to reduce execution
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latency while preserving functionality, based on an economical use of the processor
pipeline. The re-arrangements are often motivated by data dependencies, individual
instruction latencies, and the amount of parallelism supported by the underlying
architecture. As mentioned by the authors of [3], it is typically advantageous to
perform instruction duplication before the scheduling, since this ensures that the
duplicated instructions are scheduled together with the original ones, which in turn
ensures a more optimal usage of the processor pipeline, and reduces overall latency.

Finally, it is important to note that instruction duplication naturally incurs latency
overheads, the exact value of which depends on the fraction of idempotent, replace-
able, and special instructions in a given program. Trade-offs between security
and efficiency may be achieved by directing the compiler to perform instruction
replacements and duplication only in the most sensitive sections of the overall
instruction sequence for a given program.

8.5 Chapter Summary

In this chapter, we presented an instruction-level redundancy-based countermeasure
strategy to prevent instruction skip attacks—a potent and popular fault injection
technique for software implementations. We described the concept of “idempotent”
instructions, which are instructions that may be duplicated without affecting the
eventual outcome of the overall program. However, not all instructions may be
simply duplicated; in this regard, we showed the reader some non-trivial conversions
of simple non-idempotent instructions into sequences of idempotent instructions
that can then be made redundant via duplication. Finally, we discussed how to
automate the process of compiling any program into a fault-tolerant sequence of
assembly instructions via a case study on a modified LLVM compiler.
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Chapter 9
Differential Fault Attack Resistant
Hardware Design Automation

Mustafa Khairallah, Jakub Breier, Shivam Bhasin,
and Anupam Chattopadhyay

9.1 Introduction

Cryptographic implementations, while mathematically secure on paper, have been
shown to be vulnerable to various implementation attacks. The same holds for
security protocols, such as PIN verification. These attacks can be non-invasive or
invasive—either they depend on passively observing the device characteristics, such
as time of the execution or power consumption, in which case they are called
side-channel attacks, or they try to alter the processed values by various fault
injection techniques, such as laser or electromagnetic pulse, namely, fault attacks.
In the era of ubiquitous computing and lightweight cryptography, security against
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both types of attacks is required. This chapter focuses on protecting against the
fault injection attacks (FIA), which pose a powerful threat to implementations on
integrated circuits.

While there are several implementation-level techniques, normally involving
redundancy to protect against fault injections, these always depend on the precision
of the attacker and his possibility to inject multiple faults. In other words, if we have
a triple redundancy, an attacker can defeat it with three precisely injected faults.
Developers of countermeasures normally rely on the fact that reproducing precise
faults is not trivial and requires a high amount of expertise together with expensive
equipment. However, equipment is getting cheaper and more automated over time,
boosting the attackers’ possibilities. It is, therefore, better to have protection on
different levels, raising the chance to detect a malicious behavior.

It was shown that physical sensors are effective against different fault injection
techniques and provide high detection rates when deployed properly. For example,
the detection of laser fault injections can reach 100% [10]. Such sensors can be
deployed on the upper layers of the chip, covering the underlying computation mod-
ules and providing the means of protection without slowing down the processing of
the data. When it comes to production, it is crucial to have automated methods
of placing a sensor when it is chosen for the protection. Manual placement and
routing techniques used in [10] take time and human errors can be involved and
could prevent some parts of the vulnerable modules to be covered by the sensor.
In this chapter, we discuss a countermeasure that can be automated using existing
commercial digital design tools.

The rest of the chapter is structured as follows. Sections 9.2 and 9.3 provide
overview of state of the art in FIA and countermeasures, respectively. Section 9.4
provides details on laser fault injection sensor that is used as a basis for the
differential fault attack resistant physical design automation (DFARPA) method,
that is introduced in Sect. 9.5. Experimental results are provided in Sect. 9.6 and the
chapter summary is stated in Sect. 9.7.

9.2 Fault Attacks: State of the Art

The most basic non-invasive technique is a clock/voltage glitch. Variations in the
clock signal normally lead to shortening the cycle length and forcing a premature
toggling of the signal [2]. This can introduce a transient fault in the algorithm
execution, by introducing the setup time-constraint violations. Clock glitches work
in a similar way, disturbing the instructions that can be either misinterpreted or
skipped completely [2]. Both techniques are low cost and relatively easy to apply.

Another popular non-invasive technique is electromagnetic (EM) fault injection.
There are two main methods: harmonic wave injection (for analog blocks) and pulse
injection (for digital blocks). The first one is effective against analog blocks that
are vulnerable to powerful harmonic waves, such as clock subsystem or random
number generators. These waves create a parasitic signal biasing the behavior of



9 Differential Fault Attack Resistant Hardware Design Automation 211

the block. On the other hand, digital blocks, such as memories, can be disturbed by
injecting a sudden and sharp EM pulse into the IC, introducing transients altering
the behavior of logic cells. Cost of EM fault injection devices and expertise required
varies with the desired precision. One can disturb an algorithm execution even by
using a spark gap generator in case fault model is relaxed. However, for precise
bit-flips, the attacker has to use expensive precise equipment and often needs an
expertise in injection probe design. Optical techniques are the natural choice when
it comes to semi-invasive fault injection. It was shown that ICs can be disturbed
even with a camera flash. However, the most popular injection device in this field,
despite its price, is a diode pulse laser. Laser fault injection is among the most
precise injection techniques, capable of producing single bit faults [11]. Normally,
the backside of the die is irradiated with (near-)infrared laser (around 1064 nm),
so that the beam can access the components directly, compared to the front-side,
where metallic layers block the light. For this purpose, a (near-)infrared laser source
has to be used (1064 nm), so that it can penetrate the silicon on the back of the
chip [4]. The precision of this technique is dependent on the quality of the source
and on the magnification lens that is attached to it. It requires a greater amount of
expertise compared to previous techniques and, depending on the precision required,
the equipment price can go up to several hundred thousand US Dollars. We leave
invasive techniques, such as focused ion beam microsurgery, out of the scope of this
chapter, since those alter the circuit behavior in a permanent way.

9.3 Fault Attack Countermeasures

The countermeasures against fault attack revolve around two principles: detection
and prevention. Any fault detection countermeasure tries to detect anomaly online
to raise an alarm. The initial fault countermeasures used detection principles from
communication theory and concurrent error detection like linear parity [13] or
nonlinear (n,k) codes, etc. Concurrent error detection adds redundancy to the
sensitive data processed, which allows detecting data modification under the given
fault model. Such countermeasures are easy to implement and incur acceptable
overhead. However, the protection is limited to specific fault models and the
countermeasure can be bypassed [11]. Operation level redundancy can also be
used for fault detection, e.g. duplicated computation-and-compare (for detection)
or triple modular redundancy for correction. It is a classical operation redundancy
technique used in fault tolerance, where fault correction is done using majority
voting from the triplicated operation, thus incurring minimum 200% hardware
overhead. Use of randomization has also been proposed to boost the security of
fault detection countermeasures [15]. Fault detection can also be done at the circuit
level, by monitoring physical conditions that can be exploited for fault injection.
This essentially involves the design of physical sensors which often work in a plug
and play configuration staying algorithm independent [10].

Fault prevention is a rather less-researched topic. Infection is one way to protect
against fault attacks. It causes deeper diffusion (or pollution) of faulty value upon
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detection such that the faulty value is no longer usable by the attacker. Some
infection approaches simply replace the faulty value by a random number. Public
key encryption schemes can profit from strong arithmetic structure to prevent
faults [8]. Otherwise, on the protocol level key, refreshing techniques are proposed
to prevent fault and side-channel attacks. The protocol updates session key every
time with a fixed master key [6, 7, 16]. Since DFA requires several correct and faulty
ciphertext pairs, the attack is prevented. Another approach is to include internal
randomness in the cipher in order to prevent encrypting the same plaintext twice [1].

9.4 LFI Sensors

As mentioned earlier, one way to detect laser fault injection (LFI) is to include
a laser detection sensor. In [12], He et al. described two requirements for the
countermeasure to be effective:

1. Spatial requirement: The sensor must cover an area larger than the area covered
by the circuit that needs to be protected.

2. Sensitivity requirement: The sensor must be able to detect laser beams of strength
lower than the strength needed to affect the circuit that needs to be protected.

The authors show that the frequency/phase of a watch-dog ring oscillator (WRO)
can be easily affected by the laser beam used to inject faults into the circuit. Hence,
using a phase-locked loop (PLL) to detect the frequency/phase of the WRO can be
used to raise an alarm signal when laser beams are detected. They implemented the
sensor on FPGA using a PLL IP and they used manual routing in order to implement
the WRO to cover the protected circuit. Their experiments showed that more than
92% of the fault injections could be detected.

9.4.1 Low-Cost Digital LFI Sensor

While the PLL-based sensor is effective in detecting laser beams, it poses two
challenges:

1. It is an analog component that requires special expertise in order to integrate into
a digital circuit, which is not a straightforward process.

2. The PLL IP can be expensive and scarce. Besides, it can incur a big area
overhead.

To address these two challenges, He et al. [10] proposed a new sensor design.
The new sensor uses an all-digital phase detector (PD) instead of the PLL. The phase
detector consists of two flip-flops (FFs) and one AND gate, as shown in Fig. 9.1. On
FPGA, it requires 2 Look Up Tables (LUTs) and 2 FFs, instead of using the PLL
IP. The experiments show that the sensor implementation considered in [10] can
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Fig. 9.1 Topology of the schemed fault injection sensor system [10]

achieve 100% detection rate when protecting only the critical FFs of the PRESENT
cipher, and 94% when protecting the whole cipher circuit. However, the authors
did not address implementing the sensor for ASIC circuits or how to automate the
design process.

The idea of the sensor is to connect the outputs of three consecutive inverters in
WRO as the inputs for the detection part, named as f1, ck, f2. Normally, the signals
will have the same frequency and a fixed phase shift, and an opposite polarity to
signal ck, w.r.t. f1 and f2. The FFs are both triggered by the falling edge of ck. In
absence of signal delay from RO to flip-flops, the sampled values for FF1 and FF2
are, respectively, 1 and 0. Noticeably, the ripples in this RO will identically affect
three frequencies, leading to no impact on the disturbance capture and thus giving
false negatives. Hence, a delay factor is added to ck, such that at the fault injection
moment, the clock used as input to the FFs is glitch free, since the glitch in ck will
be delayed.

Using the Xilinx FPGA Editor, He et al. [10] implemented the sensor using
manual routing in order to surround the registers of a PRESENT-80 [3] round based
implementation, as shown in Fig. 9.2.

9.5 DFARPA Routing Flow

The DFARPA routing flow was first introduced in [14]. It targets protection against
sophisticated fault injection methods, such as laser and EM pulse. These mecha-
nisms can be used to inject single bit faults. This scenario requires reactive counter-
measures that behave as physical sensors to detect high-energy injections like laser
beam and EM pulse [10]. Once an injection is detected, the sensitive computation
is halted. The sensor is composed of a watchdog ring oscillator (WRO) and a phase
detection (PD) circuit. High energy injections impact signal propagation delay,
which disturbs the phase of WRO. The change is detected by the PD circuit to raise
an alarm and halt sensitive computation. While [12] uses phase-locked loop (PLL)
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Fig. 9.2 Routing of the WRO sensor around the FFs in FPGA [10]

as a PD circuit, an all-digital PD is proposed in [10], allowing even higher detection
rates. Its design is independent of the underlying circuit, so it can be implemented
in a plug and play manner. This makes it also a good candidate for protecting non-
cryptographic circuits, such as ALUs, multipliers, micro-controllers, etc.

A high-level design of the sensor is depicted in Fig. 9.3. It is assumed that the
attack is performed from the front-side of the chip, backside attacks remain out-
of-scope here, as we assume a ball-grid array package. Hence, routing the WRO
on top-metal layer facilitates detection. The functioning and detection capability
of the WRO-based sensor were tested on FPGA target in [10]. The sensitivity of
top-metal layer to faults was validated on a prototype chip in [17] and the use of
top-metal layer for deploying a shield against fault attack was previously proposed
and validated on a prototype chip in [17].

9.5.1 Design Flow

The design of a custom WRO, which is the key component in the proposed
countermeasure, in an automated digital design flow, is a tricky task, as the tools
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Fig. 9.3 Ring oscillator sensor deployed on top of the protected circuit
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would optimize WRO with multiple inverters. The reason is that the front-end
synthesis tools are designed to remove logical redundancy. Specifically, these tools
consider one inverter and an odd number of inverters to be exactly the same circuit.
Consequently, a slightly modified flow is adopted, adding a new sub-flow to include
the WRO. Similar to the conventional digital design flow, the proposed sub-flow
consists of two parts, front-end and back-end. The design flow shown in Fig. 9.4
enables the implementation of the all-digital sensor, without the ring oscillator being
trimmed due to logic redundancy and without using analog/mixed-signal design
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flows. The blue boxes represent the conventional steps and the red boxes indicate
the newly adopted steps. These new steps are:

1. After the circuit is designed, the area, timing, and power information is used to
configure a generic WRO design. This WRO design uses standard-cell-based
inverters and buffers, in addition to the phase detection circuit. The designer
can control the required frequency by increasing/decreasing the number of
inverters/buffers. Besides, the overall number of inverters and buffers can be used
to control the trade-off between power consumption and sensitivity of the sensor,
which we will explain in this section.

2. The configured WRO netlist is merged with the gate-level netlist of the required
circuit.

3. After floorplanning, the WRO standard cells are placed in order to create the
sensor layout. This can be done either manually or by a user-defined script.

4. The WRO Nets are constrained to use only the top metal layers.

Figure 9.5 shows an example of the floorplanning/placement of a WRO with 38
buffers/inverters, where every square indicates one standard cell. The area covered
by the sensor is L ∗ W , and is divided into 2 ∗ L/N steps, where N is the number
of standard cells of the WRO.

9.6 Experimental Results of DFARPA Routing Flow

In order to show the overhead of implementing the sensor using the DFARPA
routing flow, we have applied it to several circuits: an implementation of the plantlet
stream cipher [14], a K-163 elliptic curve cryptography (ECC) multiplier [5], a 16-
bit integer multiplier [9], and an 8-bit μProcessor based on the 8080 architecture.1

The experiments have been done using Synopsys digital design flow and TSMC
65 nm technology Library with 9 metal layers. The implementation results are
shown in Table 9.1. Similar to the observation in [14], the main overhead parameter
is power consumption. However, it is shown that the overhead varies depending
on the circuit. For the integer multiplier, the overhead is less than 6%, while for
Plantlet it is more than 100%. Hence, the trade-off analysis has to be performed
independently for every circuit. However, it is intuitive that smaller/cheaper circuits
are harder to protect and the relative cost for protecting them is higher. An example
of how the sensor layout looks like is shown in Fig. 9.6, which shows the WRO on
top of the Plantlet circuit.

1https://opencores.org/project,sap.

https://opencores.org/project,sap
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Fig. 9.5 Example of the floorplanning of a WRO with 38 inverters/buffers

Table 9.1 Experimental results of DFARPA routing

Circuit Plantlet K163 ECC

Feature Unprotected Protected Unprotected Protected

Area (µm2) 1293 1358 (5%) 44,055.4 44,401.3 (0.7%)

Max. path delay (ns) 0.61 0.62 (1%) 0.34 0.34 (0%)

Avg. dynamic power (µW) 259.26 551.5 (112%) 1380 1676 (21.7%)

Circuit 16-bit multiplier 8-bit μprocessor

Feature Unprotected Protected Unprotected Protected

Area (µm2) 2645.3 2675.5 (1.1%) 1194.5 1236.2 (3.5%)

Max. path delay (ns) 3.39 3.42 (1%) 0.15 0.23 (53.3%)

Avg. dynamic power (µW) 789 831 (5.3%) 44.8 80.2 (79%)
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Fig. 9.6 Ring oscillator sensor deployed on top of the protected Plantlet circuit

9.7 Chapter Summary

In this chapter, we have provided an overview of automated protection of hardware
circuits. DFARPA, detailed in previous sections, places a ring oscillator based sensor
above the sensitive circuit automatically, providing reasonable overheads and good
detection coverage.
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Chapter 10
Automated Evaluation of Software
Encoding Schemes

Jakub Breier, Dirmanto Jap, and Shivam Bhasin

10.1 Introduction

In order to be able to mount a fault injection attack, the attacker needs to disturb
the device during the computation. This can be done in various ways by different
fault injection techniques. These range from very basic, inexpensive ones, such as
varying the supply voltage, to advanced techniques, requiring device de-packaging
and significant funds, such as laser fault injection (see Chap. 1 for more details).

Designing the experiment and getting plausible results is usually a long-term
process, depending on the device, the equipment, and the fault model. Therefore, it
is beneficial to model the fault behavior of the implemented algorithm to distinguish
what fault models are possible and what is the probability of a particular fault
occurrence.

The same holds for the other side—when designing a protection against these
attacks, the security analyst needs to test the implementation for vulnerabilities.
When it comes to countermeasures, there are two possible ways to protect the
implementation. Either we try to protect the device itself by adding sensor or
employing circuit-level countermeasures or by checking the software code for
vulnerable points that can be exploited and fixing these points.
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In this chapter, we focus on instruction set simulator (ISS), based on Java
programming language, able to simulate a fault behavior of encoding based
countermeasure-protected software implementations for microcontrollers. This sim-
ulator takes an assembly code as the input and checks all the possible fault models
that may occur in the device. Based on this checking, it outputs an information about
vulnerable instructions.

The case study in this chapter focuses on three software-based hiding counter-
measures, originally proposed for side-channel protection, that can also be hardened
against fault injection attacks. More specifically, it analyzes a bit-sliced software
countermeasure following the dual-rail precharge logic (DPL) [9], a balanced
encoding scheme providing constant side-channel leakage [3], and a customized
encoding scheme built according to leakage model based on stochastic profiling [8].

Section 10.2.1 provides the necessary background for our work, outlining some
works on instruction set simulation and detailing software encoding counter-
measures proposed so far. Details on the automated code analyzer are stated in
Sect. 10.3. Case studies are presented in Sect. 10.4. Experimental results are detailed
in Sect. 10.5, followed by discussion provided in Sect. 10.6. Finally, Sect. 10.7
summarizes this chapter.

10.2 Background

This section first focuses on instruction set simulators, and later it details the
encoding schemes used in the case study.

10.2.1 Instruction Set Simulators

In this part, we will provide an overview of works aiming at instruction set
simulators. By inspecting these works, we will state the requirements for our
simulator.

In [13], the authors adjust SID1 instruction set simulator to simulate effects of
time-domain electromagnetic (EM) interference in a microcontroller. They used
PIC C and PIC assembly to write their code. From the component point of view,
simulator consisted of CPU with interrupt controller and external oscillator, bus
component, and external memory. They estimated the EM emanation caused by
particular instructions and fed the simulator with these values. As a result, they
could predict different program behavior with respect to EM interference.

Authors of [6] created a high performance software framework based on multi-
level hash table to enable development of more efficient ISS. They classified the
instructions in the instruction set to construct a hash table and used a preprocessor
to map relationships between instructions and hash table elements.

In [5], the authors use their own ISS in order to simulate source code of various
cryptographic algorithms implementations on 8-bit microcontroller, allowing them
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an easy analysis and debugging. Based on these results, they could make the
implementations more efficient by utilizing various extended instruction sets.

Simulating the fault behavior of instructions was previously used in [11],
where authors implemented and analyzed 19 different strategies for fault attack
countermeasures. They created their custom ISS for simulating ARM Cortex M-
3 and performed benchmarking, allowing them to quantitatively compare the
countermeasures. However, they did not provide any details about their simulator.

10.2.2 Software Encoding Countermeasures

The first proposal of side-channel information hiding in software was made by
Hoogvorst et al. [7]. They suggested to adopt the dual-rail precharge logic (DPL) in
the software implementation to reduce the dependence of the power consumption
on the data. Their design uses a look-up table method—instead of computing
the function value, the operands are concatenated and used as an address to the
resulting value. The idea was explained on PRESENT implementation on AVR
microcontroller.

Building on the idea of the seminal work, there were three notable works
published in recent years. The rest of this section provides a short overview of each
of them since they will be later used as a case study for the evaluation method
detailed in this chapter.

10.2.2.1 Software DPL Countermeasure

In 2013, Rauzy et al. [9] published a work that follows DPL encoding by
utilizing bit-sliced technique for assembly instructions. They developed a tool that
converts various instructions to a balanced DPL, according to their design. In their
implementation, each byte is used to carry only one bit of information, encoded
either as “01” for “1” or “10” for “0.” In the proposal, bits are chosen according to
their leakage characteristics. In our work, we use the two least significant bits of the
byte. This implementation uses look-up tables with balanced addressing instead of
computing the operations directly. The assembly code we used in the code analysis
is stated in Appendix 1. For the sake of simplicity, we refer to this implementation
as to the “Static-DPL XOR” throughout the paper.

10.2.2.2 Balanced Encoding Countermeasure

Proposed in 2014 by Chen et al. [3], this work provides assembly-level protection
against side-channel attacks by balancing the number of “1”s and “0”s in each
instruction. The code proposed by the authors is aimed for 8-bit platforms and
the constant leakage is achieved by adding complementary bit to every bit of
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information being processed. Therefore, in each instruction, there are four effective
bits of information and four balancing complementary bits. Encoding structure
looks as follows: b3b̄3b2b̄2b1b̄1b0b̄0. Order of bits may vary depending on the
leakage model. For fault injection evaluation, it does not matter which format is
chosen; therefore, all the data is transformed according to the structure above. The
assembly code we used in the code analysis is stated in Appendix 2. In [3], two basic
operations are used, i.e., XOR and look-up table (LUT). For the rest of this paper,
we will refer to these operations as “Static-Encoding XOR” and “Static-Encoding
LUT.”

10.2.2.3 Device-Specific Encoding Countermeasure

In 2016, there was another encoding countermeasure proposal by Maghrebi et
al. [8]. The proposed encoding aims to balance the side-channel leakage by minimiz-
ing the variance of the encoded intermediate values. Previous encoding proposals
were based on the assumption of Hamming weight (HW) leakage model. However,
the actual leakage model often deviates from HW, which leads to reduction in
practical side-channel security of the encoding scheme. The proposal of [8] designs
the encoding scheme by taking the actual leakage model into account.

The side-channel leakage is dependent on the device, and for the microcontroller
case, each register leaks the information differently (though the paper argued that
most of the registers have more or less similar leakage pattern). In general, the
leakage normally depends on the processed intermediate value. The leakage can
be formulated as follows:

T (x) = L(x) + ε, (10.1)

where L is the leakage function that maps the deterministic intermediate value (x)
processed in the register to its side-channel leakage, and ε is the (assumed) mean-
free Gaussian noise (ε ∼ N(0, σ 2)). The commonly used leakage function used
is the n-bit representation. For example, in 8-bit microcontroller, the leakage could
be represented as L(x) = β0 + β1x1 + · · ·β8x8, where xi is the ith bit of the
intermediate value, and βi is the ith bit weight leakage for specific register [10].
For HW model, β1–β8 are considered to be unity. In reality, due to several physical
device parameters, β will deviate from unity in either polarity.

The deterministic part of the leakage can then be determined as L̃ = A ·β, where
A = (xi,j )1≤i≤N;0≤j≤n, with xi as a row element of A and N denotes the number
of measurements. We can then determine β = (βj )0≤j≤8 based on the set of traces
T, as follows:

β = (AT A)−1AT T. (10.2)

After profiling of the device to obtain the weight leakages β, the encoding function
can be calculated based on the method used in Algorithm 1.
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Algorithm 1: Selection of the optimal encoding function [8]
Input : m: the codeword bit-length, n: the sensitive variable bit-length, βi : the leakage bit

weights of the register, where i in [[1,m]]
Output: 2n codewords of m-bit length

1 for X in [[0, 2m − 1]] do
2 Compute the estimated power consumption for each codeword X and store the result

in table D: D[X] = �m
i=1βiX[i];

3 Store the corresponding value of the codeword in the index table I : I [X] = X;

4 Sort the estimated power consumption stored in table D and the index table I accordingly
5 for j in [[0, 2m − 2n]] do
6 Find the argmin of [[D[j ] − D[j + 2n]]];
7 return 2n codewords corresponding to [[I [argmin], I [argmin + 2n]]]

Thus, the main aim of the algorithm is to choose a set of encoding, represented as
a look-up table, which minimizes the variance of the estimated power leakage. This
is done by considering the leakage bit weights, which are tightly connected to the
device, specifically to its registers. Hence, for different registers, different encoding
setup has to be considered.

The assembly code with look-up tables is stated in Appendix 3. In this paper, we
will refer to this implementation as to the “Device-Specific Encoding XOR,” as the
dependence on leakage model makes the encoding specific to a device register.

10.3 The Automated Code Analyzer

Before implementing fault injection capabilities, the instruction set simulator for a
general-purpose microcontroller has to be specified. This section provides overview
on mapping of particular hardware components to object model in software. Design
of the solution used in this chapter is depicted in Fig. 10.1. Black components on
the left side are the basic components of the Harvard architecture microcontroller
[12]. On the right side, we can see a high-level class diagram of the simulator. In the
following, we will explain each entity in the diagram:

• MuC: Microcontroller class encapsulates all the other entities constituting the
device. It acts as a microcontroller itself, containing the instruction set, registers,
and data memory and allows performing operations on these.

• Instruction: It is an abstract class, defining execute() method that is further
specified by its subclasses. MuC contains a list of Instruction classes, loaded
from a text file—this file acts as a program memory.

• Instruction subclasses (MOV, ADD, . . . ): Adding new instructions can be
achieved simply by adding new subclasses of the Instruction class. This allows
to simulate different architectures by using the same ISS.
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Fig. 10.1 Microcontroller architecture mapped to an object oriented computer program. Black
parts indicate physical parts of the microcontroller, and red parts constitute a class diagram of the
program

Table 10.1 Assembly text
file example

Mnemonics Operand 1 Operand 2

LDI r16 a

LDI r17 b

EOR r16 r17

ST X r16

• Registers: Registers are simulated as an array of integers. Since the majority of
IoT devices contains chips with constrained hardware, register sizes are either 8
or 16 bits; therefore, integer variables are enough for this purpose.

• Memory: Memory is simulated as a map, so that an instruction can define a
variable name that serves as a key and links the value together with this key.

Text file contains the assembly code for the microcontroller and it is read and
analyzed by the MuC class in order to assemble a program. The same class allows
to run this code as well. An example of such file can be seen in Table 10.1. The first
instruction is LDI (load immediate) and loads the value of “a” into register r16.
The second instruction does the same with a different value and a different register.
The third instruction computes an xor of the values in those two registers and stores
the result in register r16. The last instruction stores the value in register r16 in the
memory, using the key “X” as a variable name.
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Fig. 10.2 Fault injection
methodology for ISS

10.3.1 Fault Behavior Simulation

In order to add fault simulation capabilities to the ISS, first it has to be analyzed,
what types of faults need to be simulated. Not all the faults are interesting for the
fault analysis and also, we should only include fault models that are feasible to
obtain by standard fault injection techniques.

Our fault injection methodology is depicted in Fig. 10.2. We will further explain
each component of the picture in the following:

• Input: In assembly programs, variables are usually loaded either from the
memory or as a constants (e.g., using LDI instruction as in Table 10.1). For
testing the vulnerability against faults, we often have to try all the possible inputs.
Therefore, the simulator allows to pre-load the inputs automatically in chosen
registers without having to change the assembly code.

• Faulty Output: After every testing iteration, the faulty output is tested by
the Validator. The tester can set up this component to check for certain
types of faults, depending on he is aiming for. For example, in parity check
countermeasure, it can be set up to check only the even number of bit flips in
the output in order to keep the parity scheme working, however, with a faulty
result.

• Target Assembly Code: The ultimate goal of the simulator is to test the assembly
code. This code is fed to the program as a text file and can be first checked line
by line if it works properly before it is tested.

• Fault Position: The simulator checks all the possible position for the fault to be
injected. We check every instruction and every bit in the destination register—
that ensures that all the bits used in the code will be tested.

• Fault Model: For every input and every position in the code, several fault models
are tested. We have identified following fault models as the most commonly used
in literature [1]:

– Bit flip—This is, together with the random byte fault, the most commonly
used fault model when it comes to attacking cryptographic algorithms. The
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simulator tests every bit in the destination register of an instruction, using
single and multiple bit flips, up to the number of bits used by the register.

– Random byte fault—This fault model expects flipping of random number of
bits in the destination register. Because with the previous fault model we
already test all the possible combinations, we do not have to use both tests
at the same time. However, random byte fault is a weaker assumption for fault
attacks (it is easier to achieve in a real device and it is harder to design an
attack that recovers the secret key just from a random byte flip); therefore, if
an attacker only needs this fault model, he can skip the bit flip testing in order
to save time.

– Instruction skip—This fault model is not that popular in theoretical works,
since they usually do not analyze concrete implementations of algorithms.
However, as it was shown in [2], it is relatively easy to achieve this type of
fault in microcontrollers and if used properly, this attack is very powerful.
We test both single and multiple instruction skips, depending on the settings
required by the tester.

– Stuck-at fault—This fault model changes the value in register to some specific
value. Authors of [4] have shown that with different laser energy, it is possible
to force certain memory bits either to “0’’ or to “1,” allowing precise stuck-at
faults. Again, we test all the destination registers in the target code for stuck-at
faults specified by the tester.

The Validator provides a human-readable output as a result of the code analysis.
This output is in two forms—overview and a detailed view.

Overview shows the total number of faults and this number is then further divided
by the tester’s requirements. Usually, it is desired to have the output in some special
form, e.g., specific encoding or some fault mask. The tester can then specify the
output to be divided in two subsets—one that fulfills the requirement and the other
that does not.

Detailed view provides insight on all the successful faults, i.e., only on those in
the subset that fulfill the tester’s requirements. Table 10.2 shows all the fields that
are provided by the detailed view for each fault model. Please note that the output
from faulty execution is always provided in any fault model that is selected.

Activity diagram for the whole process of code analysis is stated in Fig. 10.3.
After writing the code it is necessary to check if the instruction set used is also

Table 10.2 Fields for different fault models provided in the detailed view

Fault model Fields

Bit flip Instruction number, Instruction mnemonics, Fault mask, Number of plain-
texts affected

Random byte fault Instruction number, Instruction mnemonics, Fault mask, Number of plain-
texts affected

Instruction skip Instruction number, Instruction mnemonics, Number of plaintexts affected

Stuck-at fault Instruction number, Instruction mnemonics, Stuck-at mask, Number of
plaintexts affected
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Fig. 10.3 Activity diagram for particular steps in the code design and analysis
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implemented in the fault simulator. If not, the tester has to implement missing
instructions. The modular architecture of the framework allows adding new instruc-
tions. Afterwards, he defines which fault models he want to test the code against
and prepares a set of inputs, since in some cases it is not necessary to test all the
possible inputs. Before running the simulator, he has to specify the output format
and in some cases also a set of outputs that constitute a security risk so that the
Validator could classify the outputs correctly. After getting the results, the tester
should analyze the vulnerable instructions and propose changes in the code before
re-running the simulations again.

10.4 Case Studies

In this section, the automated evaluation method from previous part is adjusted to
evaluate the software encoding countermeasures.

10.4.1 Fault Injection Analysis

The high-level methodology from Fig. 10.2 can be adjusted to encoding counter-
measures by tailoring each part, as shown in Fig. 10.4. The middle part serves as a
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Fig. 10.4 Schematic of injecting a fault during the execution in the code analyzer
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standard instruction set simulator, taking the given input, executing the code, and
producing the output. This process is repeated for every possible combination of
inputs for every instruction and every fault model. We are analyzing resistance
against four basic fault models: bit flip, random byte fault, instruction skip, and
stuck-at fault. After the output is produced, it is analyzed by the validator which
decides whether the fault changed the resulting value and if this value is useful for
fault attack. We consider inputs and outputs already encoded, and analyzing fault
tolerance with respect to encoding/decoding is out of scope of this paper.

In the following, we will briefly describe parts of the code analyzer:

• Instruction Set Simulator: As stated previously, the assembly code is sent to
the simulator as a text file. It accepts three different data encoding formats,
according to what algorithm is currently being used. For the Static-DPL XOR,
it accepts input in the bit-sliced complement form: 000000b0b̄0; therefore, there
are 4 possible input combinations. The Static-Encoding XOR accepts four bit
complement format: b3b̄3b2b̄2b1b̄1b0b̄0, resulting in 256 input combinations.
The same number of combinations is analyzed for the Device-Specific Encoding
XOR, where the number of codewords is 16 for 8-bit code.

• Fault Injection Simulator: In order to get the information about algorithm
resistance against fault injection, we analyze four fault models. In the case of
a fault being injected into the data, we change the content of the destination
register of an instruction.

In bit flip fault model, we inject single and double bit flips into the Static
countermeasures. There is no need to test other multiple bit flips, since all of
them are just a subset of those two, because of DPL properties. Therefore, e.g.,
if an algorithm is not vulnerable against single bit flips, it will not be vulnerable
against other odd-number bit flips, and vice versa. In case of the Device-Specific
Encoding XOR, we test all possible combinations of bit flips.

Random byte fault model is a subset of bit flip fault model when it comes to
code analysis; therefore, this model is already included in the previous testing.

To analyze vulnerable parts against instruction skip attack, we skip either
one or two instructions from the code, checking all the possible combinations.
More complex instruction skip models are not considered because of the
impracticability to implement them in the real environment.

Finally, to analyze the resistance against the stuck-at-fault model, we change
the value of the destination register either to 0x00 or to 0xFF.

• Validator: The final part of the code analyzer checks the resulting output and
assigns it to one of the following pre-defined groups:

– VALID: This is the most useful type of output an attacker can get. Outputs in
this category follow the proper encoding of analyzed algorithm, but the value
deviates from the expected value with respect to given inputs. A VALID fault
can be directly exploited with fault injection attack.

– INVALID: This type of output does not follow the encoding. Therefore, it can
be easily recognized by an output checker which can then decide to discard
the value instead of further propagation.
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– NULL: This type of fault has one of the following values: 0x00 or 0xFF.
These outputs are mostly produced by look-up table implementations and can
be easily recognized as well.

10.4.2 Evaluation Methodology

To analyze different software encoding countermeasures against fault injection
attacks, and show the utility of the automated code analyzer, we have implemented
the basic operations of each previously discussed encoding scheme, i.e., Static-DPL
XOR, Static-Encoding XOR, Static-Encoding LUT, and Device-Specific Encoding
XOR implementation. The corresponding code is provided in the appendices. As the
first step, we performed a comprehensive fault analysis by putting the code under
custom designed code analyzer. Such analysis cannot be done in a practical setting
due to limited control over the injected fault model for a given equipment setting.
Albeit it is possible to inject all the discussed fault models, it is not easy to control
the fault model at will.

10.4.3 Code Analysis Results

To analyze vulnerabilities in different schemes, the basic operations were fed to the
code analyzer. The analyzer considers three different fault models, i.e., stuck-at, bit
flips, and instruction skip. Both single and multiple bit flips are possible. The first
three analyzed operations, i.e., Static-DPL XOR, Static-Encoding XOR, and Static-
Encoding LUT are a special case, where more than 2-bit flips are equivalent to
1-bit or 2-bit flips eventually. The analyzer reports the impact on the final output
in the presence of discussed fault models. This is represented as a normalized
distribution of faulty output for each considered fault models. Three outputs are
expected: VALID, INVALID, and NULL. VALID implies that final faulty output
stays within the encoding. Similarly, INVALID refers to the faulty output which is
no longer in the applied encoding. NULL faults are 0x00 or 0xFF values at the
output. While VALID faults stay within the encoding and can lead to differential
fault analysis (DFA), it is rather less likely with INVALID faults. On the other hand,
NULL deletes any data dependent information, disabling any further exploitation
by DFA. Therefore, VALID faults must be prevented at all costs, while keeping
INVALID in check and maximizing NULL faults. The analysis results for Static-
DPL XOR, Static-Encoding XOR, and Static-Encoding LUT are shown in Fig. 10.5.
We discuss each of the results in the following.

The fault distribution of Static-Encoding XOR is shown in Fig. 10.5a. This
encoded operation does not produce any VALID faults for 1-instruction skip and
1-bit flip. The percentages of VALID faults for other fault models stay between 4
and 6%. Majority of the faults (92–100%) result in INVALID faults, while only
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Fig. 10.5 Fault distributions of (a) Static-Encoding XOR, (b) Static-Encoding LUT, (c) Static-
DPL XOR code analysis

double instruction skip results in a non-negligible NULL faults (2.7%). Although
INVALID faults are more desirable than VALID faults, later we will show that
some INVALID can be exploitable in particular for Static-Encoding XOR.

The Static-Encoding LUT shows an altogether different fault resistance
(Fig. 10.5b). This encoded operation produces much more NULL faults than the
previous case, which is a desirable property. Instruction skips result in 100% NULL
faults, while stuck-at and 1-bit flips produce 50% INVALID and 50% NULL faults.
The only way to produce VALID faults in this operation is to inject 2-bit flips which
result in 14.2% VALID faults. Rest of the faults would result in INVALID or NULL
faults with equal probability.

The analysis results of Static-DPL XOR are shown in Fig. 10.5c. While no
VALID faults are possible for stuck-at and 1-bit flip, it stays below 6% for 1-
instruction skips and 2-bit flips. The worst performance is under 2-instruction
skip model, where the percentage of VALID faults is as high as 15.3%. The high
vulnerability against 2-bit flips can be explained by the fact that 2-bit flips are the
limit of the dual-rail encoding scheme. Apart from these, the other faults are more
likely to be NULL rather than INVALID, which is desirable.
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Fig. 10.6 Fault distributions of Device-Specific Encoding XOR code analysis

Finally we applied the code analysis on Device-Specific Encoding XOR operation
as shown in Fig. 10.6. The difference from previous cases is that here multi-bit flips
cannot be dealt as a subset of 1-bit and 2-bit flips. Therefore the analysis covers bit
flips from 1 bit to 8 bits, i.e., the data width of the target processor. It can be easily
observed that this encoding scheme is more likely to produce NULL faults which is
highly desirable. For the VALID faults, stuck-at model produces none, while only
<2% can be achieved by instruction skips. In case of bit flips, the percentage of
VALID faults stays between 2 and 7% with the exception of 7 and 8 bit flips.
However, for different β coefficients used in the leakage function, results on bit flips
should be slightly different, but consistent with the expectations. The total value of
VALID bit flips for all the possibilities ranges within 4.2–4.7%, but their distribution
is different, depending on used coefficient.

10.5 Experimental Evaluations on Atmel Platform

Following the code analysis, the fault resistance was experimentally verified. In this
step, the corresponding code was implemented on a real AVR microcontroller and
tested under laser fault injection. The objective of practical validation was to check
whether the simulated results correspond to what can be achieved in reality.

10.5.1 Chip Decapsulation

In order to conduct the experiments, the microcontroller had to be decapsulated.
The microcontroller was de-packaged from the backside, using a precise milling
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equipment. While performing this process, there had to be several pauses in between
the grinding sessions, to let the chip cool down. First, the epoxy layer had to be
milled down. Then, the copper substrate was thinned, so that it could be peeled
off. As the thinning process came to an end, there was still glue which is supposed
to hold the chip on the copper substrate. This was removed by hard plastic tools.
Finally, we obtained a sample ready for the experiments. One can still use more
advanced milling/polishing tools in order to thinner the silicon substrate and make
the surface even.

10.5.2 Laser Setup

The fault injection was done with a near-infrared diode pulse laser with a pulse
power of 20 W (reduced to 8 W with 20× objective). The pulse repetition rate of
the laser is 10 MHz and spot size is 30 × 12µm (15 × 3.5µm with 20× objective).
Intentional nop instructions were inserted at the beginning of each code sequence to
overcome the 100 ns delay between trigger and laser injection. The target platform
was Atmel ATmega328P microcontroller, de-packaged and mounted on Arduino
UNO development board. The surface area of the chip is 3 × 3 mm2, manufactured
in 350 nm CMOS technology. An X–Y positioning table with a step precision of
0.05µm was used to scan the chip surface and perform laser injection. The timing
of injection was synchronized with executed code using a code-generated trigger.
The injection platform along with the target is shown in Fig. 10.7.

Fig. 10.7 ATmega328P
device under a near-infrared
diode laser injection setup
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10.5.3 Laser Experiments Results

The prime difference from the previous analysis is that in the experimental
validation, we cannot precisely control the fault model. Therefore, the fault models
are not uniformly distributed. Before starting the real experiment, we performed
some profiling on the target with basic assembly code and verified that all the fault
models are possible to produce experimentally. Next, we flashed the assembly code
of the four previously discussed software encoding operations. The percentage of
VALID, INVALID, and NULL faults produced for each tested operation is stated in
Fig. 10.8.

Static-Encoding XOR shows the best consistency with the simulated analysis
previously (see Fig. 10.8a). While 93.56% of the faults are INVALID, only 5.88%
VALID were produced. Moving towards Static-Encoding LUT, we observe a
32.42% VALID faults in Fig. 10.8b. Since a VALID fault in this implementation can

a b

c d

Fig. 10.8 Fault distributions of (a) Static-Encoding XOR, (b) Static-Encoding LUT, (c) Static-
DPL XOR, and (d) Device-Specific Encoding XOR experiments
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only result from even bit flips, this infers that the fault model distribution is biased
towards multiple bit flips in our experiments. Similarly, we also observe a 22.2%
VALID faults in Static-DPL XOR (Fig. 10.8c) owing to the prevalent multiple bit
flip model.

When it comes to Device-Specific Encoding XOR (Fig. 10.8d), results show
distribution very similar to the one obtained by the code analysis. Because it is more
likely to produce bit flips when injecting faults in the microcontroller, at 13.5% an
inflated number of VALID faults can be observed in this case, with a relatively small
number of INVALID faults. As expected, NULL outputs are dominant, i.e., 82.5%,
because of the look-up table properties.

10.6 Discussion

In this section, we will discuss some important parameters of particular encoding
implementation with respect to fault injection attacks.

10.6.1 Selection of β Coefficients

We considered several parameters for the code analysis of Device-Specific Encoding
XOR. We analyzed different β values scenarios. We considered the case where the
variance of the β is relatively high (the βs might be cancelling each other), and the
case where the variance of the β is low (almost Hamming weight).

The most significant difference can be observed in the result for implementation
with β coefficients that do not follow Hamming weight leakage model (stated in
Fig. 10.9a). From the figure, it can be observed that the number of 1-bit flips is

a b

Fig. 10.9 Fault distributions of Device-Specific Encoding XOR code analysis with (a) high
variance and (b) almost Hamming weight
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inflated, compared to the almost Hamming weight case (stated in Fig. 10.9b). The
behavior of the faults shows contrast between different beta values, which is not the
case for other encoding schemes, and hence could be further investigated.

10.6.2 Fault Propagation

When considering security of different implementations, fault propagation is an
important factor that can significantly affect the possibility to mount an attack.
In case we want to prevent a successful fault attack, it is necessary to avoid the
propagation of an INVALID output when it is fed as an input to a next iteration of the
algorithm. Otherwise, this output could leak some information about the processed
data and therefore allow an attacker to use the differential fault analysis.

From this point of view, look-up table implementations have an advantage, since
every input that does not follow the encoding will be automatically converted to
NULL. Analysis results of Static-DPL XOR, Static-Encoding LUT, and Device-
Specific Encoding XOR show that if any of the inputs is either INVALID or NULL,
it will always output NULL. Situation with the Static-Encoding XOR is different
because of the algorithm design. There are several combinations of inputs that lead
to VALID faults—more specifically, any combination of:

• Two INVALID inputs,
• Two NULL inputs, and
• INVALID and NULL inputs.

Moreover, a combination of VALID and NULL inputs leaks a complete information
about the VALID input in the form v̄3v̄3v̄2v̄2v̄1v̄1v̄0v̄0, where v3v2v1v0 is the original
input.

To summarize, table look-up implementations provide solid protection against
fault attacks when it comes to fault propagation. Any other implementation that
uses standard operations performed by using ALU can be vulnerable if it is not
directly designed with such goal in mind. Therefore, when designing a fault resistant
algorithm along with the side-channel resistance, look-up tables can offer fault
propagation cancellation by default.

10.6.3 Accuracy of the Code Analyzer

After observing the experimental results, one can notice the (sometimes significant)
difference, compared to simulated results. As we already mentioned in Sect. 10.5,
when performing the experiment, the attacker often cannot precisely control the
fault model. Moreover, different fault injection techniques lead to various outcomes
on different devices under test.
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The purpose of the code analyzer is to show possible vulnerabilities with respect
to provided code. Once the probability of inducing a VALID fault into the code is
greater than zero, it means the attacker will always be able to inject a fault if he
chooses a proper fault injection equipment and uses correct settings, unless there is
some other tamper protection implemented in the device.

On the other hand, if the probability of a VALID fault is zero in the simulated
environment, it stays the same in the experimental settings, no matter what technique
the attacker uses.

10.6.4 Simulating a Pipelined Architecture

When targeting a pipelined architecture, the fault can be injected in all the
instructions in the pipeline at a current time. For example, Fig. 10.10 depicts a
4-stage pipeline, where a fault was injected at cycle 4. The fault can disturb up to
four instructions, each at a different stage; however, in this case, only the instruction
in the Execute stage was disturbed. As observed in [14], different pipeline stages can
have a different fault sensitivity. An advanced attacker may be able to determine
the sensitivity threshold by carefully profiling the device, making it possible to
precisely target each stage. Another observation in [14] is that the nature of the
fault is dependent on the stage. In the 7-stage RISC processor they used, disturbing
the first two stages can cause instruction skips, while the later stages can cause data
faults.

Crafting an analyzer with a pipeline fault simulation is possible, but it would
require a deep analysis of the target platform and the code analysis result would
be dependent on this platform. Therefore, it would not be possible to get universal
result with respect to given fault models.

Fig. 10.10 Fault injection on
a 4-stage pipelined
architecture
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10.7 Chapter Summary

This chapter presented an architecture of automated evaluation framework that can
be used for testing protected cryptographic implementations.

A case study on evaluating fault attack resistance of three software-based encod-
ing schemes that were introduced to prevent side-channel attacks was conducted to
show the usefulness of the framework.

Appendix 1: Assembly Code For Static-DPL XOR
Implementation

Table 10.3 in this section contains assembly code used for the code analysis.
Note that there are several differences in comparison to the original paper. We
precharge all the registers before the code execution; therefore, there is no need
to use precharge instructions. The other change is in instructions 7 and 8, where
we first load the operation code (can take values 01010101 for and, 10101010
for or, and 01100110 for xor) and then we execute ldd instruction using
the destination register, operation code, and value. Look-up tables are stated in
Table 10.4.

Table 10.3 Assembly code
for DPL XOR in AVR

# Instruction # Instruction

0 ldi r1 a 5 andi r2 00000011

1 ldi r2 b 6 or r1 r2

2 andi r1 00000011 7 ldi r4 operation

3 lsl r1 1 8 ldd r3 r4 r1

4 lsl r1 1 9 mov d r3

Table 10.4 Look-up tables
for and, or, and xor

index and or xor

0000-0100 00 00 00

0101 01 01 10

0110 10 01 01

0111-1000 00 00 00

1001 10 01 01

1010 01 10 10

1011-1111 00 00 00
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Appendix 2: Assembly Code for Static-Encoding XOR
Implementation

The code stated in Table 10.5 follows the originally proposed algorithm for Static-
Encoding XOR. This implementation uses several constants, either for clearing and
precharging the registers before loading the data (e.g., ldi r16 11110000) or
for changing the data to proper encoding format (e.g., ldi r17 01011010).

Appendix 3: Assembly Code for Device-Specific Encoding XOR
Implementation

In this section, we describe the code used for Device-Specific Encoding XOR.
After determining the bit leakage weights, and computing the encoding based on
Algorithm 1, several look-up tables are constructed.

According to the original paper [8], it is reasonable to split an n-bit variable
into two different halves in order to avoid holding large look-up tables in memory.
Therefore, we use two registers for processing each value.

Table 10.5 Assembly code
for Encoding XOR in AVR

# Instruction # Instruction

0 ldi r1 a 19 and r20 r1

1 ldi r2 b 20 and r21 r1

2 ldi r16 11110000 21 swap r21

3 ldi r17 11110000 22 or r20 r21

4 and r16 r1 23 ldi r22 00001111

5 and r17 r1 24 ldi r23 00001111

6 swap r17 25 and r22 r2

7 or r16 r17 26 and r23 r2

8 ldi r18 11110000 27 swap r23

9 ldi r19 11110000 28 or r22 r23

10 and r18 r2 29 ldi r21 10100101

11 and r19 r2 30 eor r20 r21

12 swap r19 31 eor r20 r22

13 or r18 r19 32 ldi r24 11110000

14 ldi r17 01011010 33 ldi r25 11110000

15 eor r16 r17 34 and r24 r16

16 eor r16 r18 35 and r25 r20

17 ldi r20 00001111 36 or r24 r25

18 ldi r21 00001111
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Table 10.6 Assembly pseudocode for Device-Specific Encoding XOR in 8-bit AVR

# Instruction # Instruction

1 ldi r1 a 12 eor r4 r4

2 ldi r2 b 13 ldd r4 lutlb r1

3 eor r3 r3 14 eor r5 r5

4 ldd r3 luthb r1 15 ldd r5 lutshift r4

5 eor r4 r4 16 eor r6 r6

6 ldd r4 lutshift r3 17 ldd r6 lutlb r2

7 eor r5 r5 18 or r5 r6

8 ldd r5 luthb r2 19 eor r4 r4

9 or r5 r4 20 ldd r4 lutop r5

10 eor r3 r3

11 ldd r3 lutop r5

In Table 10.6, the pseudocode for the encoding is presented. First, the upper
nibble is retrieved for inputs a and b (ah and bh) under the encoding format
(f (ah) and f (bh)), using the luthb table, followed by the look-up table lutop used
to perform xor operation (LUT (f (ah) << 4||f (bh)) = f (ah ⊕ bh)). Similar
procedure is done for the lower nibble, using the lutlb.
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Chapter 11
Automated Evaluation of Concurrent
Error Detection Code Protected
Hardware Implementations

Dirmanto Jap, Jakub Breier, Shivam Bhasin, and Anupam Chattopadhyay

11.1 Introduction

Security of critical devices is typically realized by deploying modern cryptogra-
phy in a form of theoretically proven algorithms and protocols. However, bad
implementation of these algorithms and protocols can eventually lead to serious
exploits. Conventional security researches have mostly neglected the hardware layer
vulnerabilities [23–25, 31]. Physical attacks which target poor implementations of
cryptography could compromise system security. Embedded devices are particularly
vulnerable against attacks directly on lower level of hardware abstractions, such
as power or EM based side-channel attack (SCA) [1, 19], hardware Trojan horses
(HTHs) [26], and fault injection attacks (FIA) [5].
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Many techniques have been proposed against the fault attacks [3, 12, 22]. Since
the embedded devices are usually restricted by the limited power supply and
insufficient computation power in the remote nodes, expensive countermeasures are
often not applicable. To protect against faults in resource-constrained environments,
the default choice for designers is concurrent error detection (CED) and correction
which stem from information theory. CED is widely used by VLSI design and
testing community for applications like memory testing [27], fault tolerance [7], etc.

The simplest form of CED is parity [8]. It has been previously proposed in the
context of fault injection attacks [28]. One of the first works, dealing with block
cipher AES, applied a single parity on the whole 128-bit block [29]. This was
further improved by using a single parity bit per byte or word [17, 18]. Moreover,
non-linear codes have also been applied in this context to achieve higher detection
coverage [14].

Later, a system-on-chip architecture was proposed [30] to detect and prevent
a hardware Trojan insertion. As Trojan can maliciously modify sensitive data, its
impact can be considered similar to fault injection [6]. Thus, the proposed solution
relies on randomized linear parity prediction to detect any data modification by a
malicious Trojan in hardware. Although the tested implementation deployed linear
CED techniques, it was claimed that randomized non-linear codes can achieve better
detection capabilities.

In a basic single bit parity as countermeasure against FIA, the protection heavily
depends on the capabilities of the adversary to trigger even number of faults in the
target device. However, while most of the previous works only assess this scheme
in theoretical setting, practical evaluation has only received little attention [10].

Thus, further evaluations of the capabilities of different CED schemes used as
an FIA countermeasure need to be conducted before the actual deployment, which
is the aim of this chapter. The provided automated method takes the fault injection
characterization of the device into account, and evaluates the success rates for a
given parity scheme. To show the practicality of such method, insights on different
characteristics of linear and non-linear randomized parity codes under fault injection
attacks are provided.

The rest of the chapter is structured as follows: Section 11.2 provides a necessary
background on concurrent error detection. Section 11.3 details the automated
evaluation method, followed by Sect. 11.4 which provided results on CED-protected
PRESENT cipher. Finally, Sect. 11.5 summarizes this chapter.

11.2 Technical Background

In this section, the technical details of several common concurrent error detection
schemes are provided.
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11.2.1 Parity-Based Concurrent Error Detection

Generally, a fault detection capability is achieved at the expense of either time or
space redundancy. In the case of time redundancy, errors are detected by repeating
the encryption process. No extra logic is required, but the throughput is reduced to
around 50%. Parity is one of the simplest solutions when it comes to error detection
based on space redundancy. It is heavily used in communication systems. When
implemented in block ciphers, it can detect abnormalities during en/decryption,
while allowing efficient hardware implementation, which makes it a good candidate
for resource-constrained systems with low computational power. Different parity
schemes have been proposed in literature, aiming at covering different fault models,
while keeping the low cost [4, 17, 18, 29].

The parity techniques can be implemented by two general approaches [9]:

• Parity-1: Only 1 parity bit is required for all the bits of datapath in each round of
the cryptographic algorithm, e.g., one parity bit checks the errors for all the bits
of the data vector, such as 1-bit parity for the 128 bits in AES-128 [29].

• Parity-n: n parity bits are employed, and each parity bit is responsible for the
error checking of a single data block in the cryptographic algorithm, e.g., Parity-
16 implements 1 parity bit per byte of AES-128 [17, 18].

Nevertheless, both of the above-mentioned schemes can only detect odd number
of faults occurred in the 128 data bits in Parity-1, or in the data word of Parity-n.
In other words, if even number of faults appears, the schemes will be compromised.
Another scheme, proposed by Karpovsky et al. [14] provides wider fault coverage,
relying on a prediction circuit comprised of linear predictor, linear compressor, and
cubic function. Despite the uniform detection of both odd and even number of faults,
the circuit overhead is too high to be applied in resource-constrained scenarios.
Considering the implementation efficiency and the fact that majority of fault models
aim at single bit-flips, we hereby focus on the Parity-1 scheme, and the conclusions
directly apply to Parity-n as well.

11.2.2 Parity-1 Detection Scheme

There are several works proposing the usage of parity for fault detection [15, 16, 28],
showing that despite not being able to detect more complex fault models, its simplic-
ity still attracts attention. Figure 11.1 depicts the parity detection scheme proposed
in [29], targeting AES. Actually it is universal to all secret key cryptography (SKC)
constructed by substitution–permutation networks (SPNs). The round inputs are
denoted as X. The round key K is added with X to produce Y. The non-linear
substitution box (Sbox) substitutes Y by Z. The linear diffusion layer permutes
the bits of Z to give U, that is, actually the input X for the next round (or the
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Fig. 11.1 Parity-based
concurrent error detection in
SPN block cipher
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ciphertext in the case of the last round). This parity prediction mainly consists
of three computations. For clarity, parity of a bit vector · is denoted as P(·). The
computation then goes as follows:

1. In key addition, the round input parity P(X) is XORed with round key parity
P(K) to get P(Y ).

2. In Sbox, P(Y ) is non-linearly changed. Since Sbox is normally fixed and public,
the Sbox output parity P(Z) can be pre-computed. To check the integrity of
the processed data, the input and output parity can be combined by calculating
P(Y ) ⊕ P(Z) and pre-computed as an extension of a standard Sbox.

3. The linear diffusion layer simply permutes the bits, so the parity is not changed
in this step.

This process is depicted in Fig. 11.1. Therefore, the computation goes as follows:

P(Y ) ⊕ (P (Y ) ⊕ P(Z)) = P(Z) = P(out). (11.1)

If no odd number of errors occurs:

P(out) = P(U). (11.2)

Otherwise,

P(Y ) ⊕ (P (Y ∗) ⊕ P(Z)) = P(out) �= P(U), (11.3)

where P(Y ∗) represents the error-infected bit vector Y. Similarly to key addition
part,
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P(Y ) = P(X) ⊕ P(K). (11.4)

Since P(X) is the P(out) of the previous round, we get

P(Y ) = P(out) ⊕ P(K). (11.5)

By checking if P(Y ) is equal with P(out)⊕P(K), we can detect the encryption
faults caused by the odd number of errors.

11.2.3 Advanced CED Techniques

To avoid the main shortcoming of the parity, which is limited fault coverage,
advanced CED techniques need to be deployed. To recall, there are many different
types of possible faults that could be injected in the hardware. To limit the scope
of our investigation, we only consider fault models that are exploitable. The most
commonly used fault model for fault analysis in the literature is the bit-flip, where
one or several bit values are inverted. It could be formulated as e = x ⊕ x∗, where
x ∈ F

n
2 is the original data, and x∗ ∈ F

n
2 is the faulty data. The number of bit-flips

could be defined as a Hamming weight-HW(e) (or number of “1”s) in e.

11.2.3.1 Linear Codes and Non-linear Codes

A linear code of length n, rank k is a linear subspace C of Fn
2, and the vectors in C

are called codewords. As a linear subspace over Fn
2, the code C sometimes could be

represented as the span of basis codewords from the rows of the generator matrix
G, which has a standard form G = [Ik|A]. This sort of coding is called systematic
encoding, and it has the original data present in the codeword. Here, Ik is a square
identity matrix with dimension k, and A is k× (n−k) matrix. Hence, any codeword
y ∈ C can be written as y = xG, where x ∈ F

k
2 is the message with dimension k.

A parity check matrix H for (n, k)-linear encoding is a matrix where

HyT = 0 ⇔ ∃x ∈ F
k
2, (11.6)

such that xG = y. If G is a generating matrix in standard form, then H can be
written as [P |Ir ] (called linear systematic code), where P = AT is a (n − k) × k

matrix and Ir is a square identity matrix with dimension r .
For non-linear codes, we consider the cubic codes proposed in [13] as well as the

inverse code proposed in [20]. As mentioned earlier, for a linear code, the codeword
y could be rewritten as

y = xG = [xI |xA] = [x|(PxT )T ]. (11.7)
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For simplicity, since it is a vector, we could write it as (x, (Px)). In [13], it is shown
that for binary code, the construction of cubic code is

CV = {(x,w)|x ∈ F
k
2, w = (Px)3 ∈ F

r
2}. (11.8)

In [20], the construction for the inverse code is

CV = {(x,w)|x ∈ F
k
2, w = (Px)−1 ∈ F

r
2} (11.9)

instead, with 0−1 = 0.

11.2.3.2 Randomized Parity Code

One example of a code is the parity code, defined as parity of a subset of the vector
of length k, i.e., y = a1x1 ⊕ · · ·⊕ akxk , where ai ∈ {0, 1}. Here, we have n = k+1.
The (n, k) parity (linear) encoding is then defined as g : x → y (x ∈ F

k
2, y ∈ F

n
2),

where n = k + r , and r is the number of parity bits.
The construction of randomized parity codes, as defined in [30], is as follows:

• From the set of all (n, k)-linear systematic parity codes Rn×k , with all rows
and columns in the parity check matrix being non-zero, we sample uniformly
at random.

• The code that has been sampled is called randomized parity code.
• The randomization is done in order to prevent the adversary from knowing the

parity check matrix, while the non-zero constraint is to prevent the zero function
as well as to ensure that each bit is included in the parity function.

The method used to obtain the randomized parity code can be described as
follows: given the dimension k and parity bit r , output the randomized parity
check matrix by choosing uniformly at random, a parity matrix H . If it satisfies
the construction described earlier, output H , otherwise repeat and choose another
parity matrix.

Figure 11.2 shows a system, proposed recently by Wu et al. [30], which is
claimed to be robust against hardware Trojans. For every internal component in the
system, the logic, memory, and the communication architecture, the corresponding
CED techniques are elaborated. In this chapter, we particularly focus on the
randomized parity encoding technique that was proposed to be a part of the memory
and communication architecture (bus) protection. In Fig. 11.3, it is shown how to
perform the selection of the bits for randomized parity [30].

It was argued that the detection rate could be higher if non-linear code is used at
the expense of additional area. For non-linear randomized code, the parity matrix H

is chosen similarly, following the construction of randomized parity code described
earlier. However, the parity matrices are based on non-linear construction instead.
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Fig. 11.2 Hardware Trojan detection based on randomized parity codes

Fig. 11.3 Bit selection for randomized parity

From the algorithmic point of view, the parity scheme can be implemented across
different bits. In this case, the parity can be calculated on either 128, 64, 32, 16,
8, or 4 bits data. As shown in the experiments later, we implemented the parity
computation over 32 bits (for AES, adjusted to the MixColumn) and 16 bits (for
PRESENT, adjusted to the pLayer). One consideration is that, for smaller bit size,
it might improve the detection rate in the case of a localized fault. However, in
this case, the area required to store the parity bits increases as well. For example,
depending on the architecture, it will require additional register(s) or memory to
store the additional parity bits (since the parity scheme is covering fewer bits, more
parity bits are required to handle the data). Moreover, for the randomized parity, it
requires randomness to select each individual parity check matrix, and thus, adds
additional cost in terms of random number generation.
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11.3 Automated Evaluation of the CED Schemes

In this section we first describe how to characterize the device to obtain the fault
models which are achievable with given fault injection equipment. Later, we propose
the automated evaluation method and show some results on several different CED
schemes.

For 1-bit parity scheme, if the adversary is able to perform fault injection faulting
even number of bits, it could bypass the parity countermeasure. This was previously
shown to be feasible by using laser fault injection attack [10]. Hence, the protection
offered is not sufficient enough.

As a more permanent and dependable solution, complex codes are a fair
alternative. The CED codes can be made robust by varying different parameters.
For instance, one can choose a longer code which is still linear in construction,
like parity, to have better detection rate but still low implementation overhead. On
the other hand, non-linear codes are more complex in construction and thus have
high implementation footprint, but they are believed to be more robust. Another
solution is to use randomization with codes to limit the fault injection capability of
the attacker. In the rest of this section we focus on advanced CED techniques.

11.3.1 Attack Model and Device Characterization

Fault models depend on the injection techniques, injection parameters, and under-
lying target. Fault injection with the given model can be practically injected or
simulated. Practical fault injection would represent non-uniformly distributed small
subset of the simulations, preventing comprehension of overall trend. In contrast,
simulation covers different fault scenarios, which could highlight the general trend;
however, in case of practical setting, this might overestimate the trend, since most
of the faults tend to be biased towards a specific model. Thus, a combination
of simulation and practical evaluation usually has to be considered for validation
purposes.

In order to operate on real-world values in the simulations, it is necessary to
perform a device characterization before the actual evaluation of the CED-protected
implementation. We provide the automated profiling method in Chap. 14 that can
provide the necessary inputs describing the device characteristics for the evaluation
in this chapter. Here, we will briefly state the results of the characterization.

For profiling purposes, we have implemented block cipher PRESENT, where
4 of the total 64 round registers reside in the target FPGA slice. Out of 10,000
experiments, we received 3918 faulty encryptions that were caused by flipping one
or more bits in the registers. Percentages representing each bit-flip fault model are
stated in Table 11.1.
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Table 11.1 Experimental
results from the FPGA slice
scan targeting four round
registers of PRESENT

Fault model % of faults

1-bit flip 57.25

2-bit flip 24.17

3-bit flip 15.19

4-bit flip 3.45

Algorithm 1: Automated simulation method for randomized parity accord-
ing to fault distribution D

Input : H: random parity matrix; r: number of faulted bits; k: number of inputs; f :
implemented function; D: fault distribution (optional).

Output : p: detection accuracy.
1 Generate k random inputs T;
2 Generate k random r-bit faults E according to distribution D. If D is not present, assume

uniform distribution.;
3 Set detected := 0;
4 for int i:= 1 to k do
5 Calculate the faulty value v = T[i] ⊕ E[i];
6 Calculate the parity parT = H(f (T[i]));
7 Calculate the parity parv = H(f (v));
8 if parT != parv then
9 detected + +;

10 Calculate the detection accuracy as p := detected
k

;
11 return: p – the detection accuracy value.

11.3.2 Automated Simulation Methodology

Algorithm 1 shows the automated method for computing the detection accuracy of
evaluated random parity. In case the evaluator possesses the fault distribution of the
target device obtained by a prior characterization, he can use these values as an input
to the algorithm in a form of variable D. Otherwise, a random distribution will be
assumed. In the rest of this chapter, we will use the values from Table 11.1. The
algorithm iterates through random inputs and random faults and checks according
to implemented function f (which can be any part of cryptographic algorithm)
whether the parity value is equal or not. At the end, the detection accuracy is
calculated.

As an alternative to Algorithm 1, in order to reduce the search space complexity
to find faults that can bypass the parity check, some evolutionary algorithms, such
as genetic algorithm, might be also employed instead of a random fault model.
However, this might come with a trade-off, requiring higher time complexity.
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Algorithm Implementation and Evaluation

Implementation of the algorithm was done in MATLAB. We varied the number of
bit-flips from 1 to n, where n is the data bit-width. A multiple bit-flip fault was
injected by performing a modulo-2 addition between the input x and a chosen fault
mask m of the same bit-width. For small bit-width n ≤ 8, combinations of x and m

were chosen exhaustively. For bigger n, both x and m were chosen randomly from
two independent uniformly distributed data for a representative number of scenarios.

We simulated the case for the randomized encoding, based on the construction
described in [30]. The length of message was 120 bits and the parity bits were
varied from 3 bits to 8 bits. We run repeated experiments (100,000×) with randomly
selected message, and for each, we randomly selected the parity check matrix for
the randomized encoding.

As shown in Fig. 11.4a, c, the linear (x, p(x)) and inverse (x, p(x)−1) encod-
ings perform similarly. For cubic (x, p(x)3) encoding (Fig. 11.4b), the detection
probability for even parity (r = 4, 6, 8) is lower for small number of errors, which
gradually improves when the number of bit-flips increases. For even parity (r = 2q),
the cubic power mapping is not bijective. The number of elements which is cube can
be calculated by

2r − 1

gcd(3, 2r − 1)
. (11.10)

For even r , 3|2r − 1, and thus, for lower number of error bits, the faulty predicted
and calculated parity could have a collision, resulting to undetected faults. As the
number of erroneous bits increases, the fault could affect the parity bit as well which
allows the detection.

In general, it can be concluded that if the designer has the liberty to use multiple
parity bits (r ≥ 5), the performance of randomized encoding with linear or non-
linear code is equivalent. For lower parity bits (r ≤ 4), inverse stays similar to linear,
while cubic can only outperform linear at a high number of bit-flips. In general, the
detection is similar across different encoding schemes. This might be attributed to
collisions due to the length of parity mapping. With longer parity, the effect of the
collision could be reduced. However, considering the implementation perspective, it
is common knowledge that non-linear encoding (cube or inverse) can be much more
resource-consuming compared to basic linear encoding [27].

To improve the detection rate, authors in [30] suggest to introduce a memory
effect. Memory effect means that instead of dealing with codewords individually,
the current or ith codeword is computed as a combination of all (i−1)th codewords.
With the memory effect, it becomes difficult for the attacker to manipulate several
stages, thus improving the detection rate in practice. The simulation results for this
scenario are shown in Fig. 11.4d–f. The detection probability was improved even for
smaller codewords (r = 3, 4). Moreover, all the parity encoding performs similarly,
supporting the linear encoding under implementation cost consideration.
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Fig. 11.4 Evaluation of randomized encodings: linear vs non-Linear. (a) linear, (b) cubic, (c)
inverse without memory effect, while (d–f) with implemented memory effect
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11.4 Case Study on PRESENT Cipher

The method from previous section was used to evaluate the fault coverage of
CED-protected PRESENT cipher. Since the block cipher rounds use the same set
of operations throughout the encryption, we simulated the fault propagation and
coverage during one round of PRESENT. Since a PRESENT round could be divided
into 4 groups of 4 nibbles (based on the properties of the SBox and permutation layer
operations), we considered 16 bits input and output vectors.

11.4.1 Uniform Fault Distribution

First, we analyzed the PRESENT implementation considering a uniform fault
distribution.

The r parity bits were varied from 2 to 8, under the memory effect, while r =
1 was ignored as it would be just a standard parity bit, for linear and non-linear
encoding. The fault was then injected during the round computation. The parity
computed over the faulty output was compared against the parity of the expected
output. A match results in detection failure.

Based on the simulation results, as shown in Fig. 11.5, we can see that the
fault detection rate for different encoding schemes is similar in all cases. Note
that in our experiments, for longer message bit length, it was not possible to
simulate all potential fault masks in a reasonable time. Hence, rather than exhaustive
simulations, we carried the simulations until the error became negligible.

11.4.2 Profiled Fault Distribution

Further investigation were done based on the previously characterized fault model.
As previously shown, a fine grain scan of the DUT allowed us to achieve fault

models shown in Table 11.1. The experiments were conducted using different parity
lengths (4, 8, and 16 bits parity). The fault caused 1–4 bit-flips on a single nibble,
randomly chosen from the 16 nibbles. The experiments were repeated 100,000×. In
Table 11.2, we show the detection accuracy of random bit-flip faults in a nibble for
different parity schemes. It can be observed that the accuracy for inverse function is
similar to the linear encoding, and the cube function is performing worse than the
others. In general, for 8-bit parity or longer, the accuracy of the achieved detection
is greater than 98%. Given that the detection capability of randomized non-linear
codes was no better than the linear counterpart (Table 11.2), we did not proceed
with a real implementation. It is known that implementation overhead of non-linear
codes is significantly higher than linear codes, with similar detection capabilities.
Therefore, linear codes stand as an obvious choice.
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Fig. 11.5 Evaluation of different CED schemes during the operations of PRESENT cipher

Table 11.2 Detection
accuracy of different
randomized parity schemes
(in %)

Parity/No. error 1 2 3 4

Linear randomized parity

r = 4 93.79 95.76 96.45 97.04

r = 8 99.62 99.75 99.76 99.82

r = 16 100.00 100.00 100.00 100.00

Cube randomized parity

r = 4 82.40 83.76 84.54 84.46

r = 8 98.81 99.07 99.09 98.95

r = 16 100.00 100.00 100.00 99.98

Inverse randomized parity

r = 4 93.57 95.61 96.02 96.40

r = 8 99.61 99.72 99.82 99.84

r = 16 99.99 100.00 100.00 100.00
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11.4.3 Discussion on Mitigation Solutions

Considering good design practices, even parity is an obvious solution. However,
it does not eradicate the problem, only shifts the issue to different parameters,
such as choice of fault injection technique or injection strength, etc. In the parity
implementation in FPGA, a single slice was targeted for the evaluation, where four
registers were used as the round registers in the PRESENT datapath. This does not
incur any loss of generality since commercial placement and routing tools deploy
the bits of the same bit vector close to each other, which is true for both ASIC and
FPGA. This is owing to the requirement of area and timing optimizations in the late
design phases. In our case, we noticed the 4 bits of a bit vector to be always located
in the same slice. As a matter of fact, multiple bit flipping in registers or similar
logics by a single laser injection is practical for the commercial chips [11].

Experimental results show that flipping an even number of bits using a single
laser injection can be done easily [10]. Fault models based on this result also
exist, such as the nibble fault model described in [2]. To circumvent these security
vulnerabilities, a special attention should be paid during the implementation. It is
highly recommended to carefully investigate the multiple bit-fault models against
a specific cipher, and swap the unrelated bits of nibbles into different slices or
deploy them far from each other during the placement phase of the FPGA or ASIC
implementation.

The simulation of advanced (linear, non-linear, and randomized parity) schemes
also shows vulnerabilities based on the attack result. Since the observations may
differ significantly under different attack scenarios, it is necessary to thoroughly
investigate the implemented devices and the possible attack vectors for choosing
the adequate parity scheme and the implementation tactics.

Moreover, the experimental results we used in this chapter were obtained by
using a relatively budget-friendly laser station (≈100k EUR). As some other works
show (e.g., [21]), by using more advanced setups, such as Hamamatsu PHEMOS-
1000, the precision of the faults can be further improved.

11.5 Chapter Summary

As a typical intrinsic countermeasure against fault injections, parity concurrent error
detection (CED) is often utilized for detecting faults in hardware [30]. Parity bit(s)
basically flag the alarm once the number of flipped bits is satisfied depending on
the used parity scheme. Generally, basic and randomized (linear and non-linear)
encodings can be employed for constructing varying parity solutions.

In this chapter, we provided an evaluation method to estimate the detection
probability of randomized parity-protected cipher. The methods take the device
characteristics into account to provide accurate results on detection coverage. To
show the applicability of such method, we detailed a case study on CED-protected
PRESENT cipher and discussed the fault coverage.
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Chapter 12
Fault Analysis Assisted by Simulation

Kais Chibani, Adrien Facon, Sylvain Guilley, Damien Marion, Yves Mathieu,
Laurent Sauvage, Youssef Souissi, and Sofiane Takarabt

12.1 Introduction

Embedded systems are based on hardware integrated circuits. Basically, any
hardware design has its own conception life cycle that starts with the algorithm
and architecture specification. In fact, the designer starts by describing sequentially
the functional part of his design based on hardware description language (HDL).
Then, we distinguish three abstraction levels in the design life cycle as follows:

• Register transfer level (RTL). It consists of specifying the logical operations and
data-flow between registers. This level involves an explicit clock to synchronize
the data-flow (clock/event accurate).
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• Post synthesis level or gate level. It describes the timing properties of logical
operations. In other words, it takes into consideration the delay propagation of
signals within the circuit gates. Hence, this netlist level is technology dependent.
Such netlist is generated by synthesis tools.

• Place route level or layout level. It comes with placed and routed cells and
more timing information. In fact it takes into account the delay propagation into
circuit’s routing.

In the context of embedded security, the designer can conduct a security analysis
hand-in-hand with the functional and timing verification. This is very useful as
the designer will be able to think about the security testing at an early stage. He
will not wait until the tapeout of a testing chip to start a security evaluation of his
implementation. Moreover, he will be able to conduct such evaluation by himself
without the need of high skills in physical security analysis. In fact, recently, the
world of EDA arsenal of tools has come with a new tool, called VIRTUALYZR R©
[9, 11] that allows for such security analysis with seamless integration within the
design life cycle as shown in Fig. 12.1. In the sequel, all the presented results
are obtained with such pre-silicon assisted verification tool that we denote by its
acronym PAVT.

12.2 Security Verification Assisted by Simulation: PAVT
Workflow

PAVT deals with both SCA and FIA. The general workflow consists of two phases
as illustrated in Fig. 12.2.

Simulation Phase During this phase the tool interacts with an HDL simulator to
generate the so-called virtual activity of the design. The obtained virtual activity
is an ideal image of the behavior of the cryptographic design during its execution.
Usually, several queries are needed to conduct SCA or FIA analysis. PAVT manages
the automatic configuration of input vectors (i.e., input parameters) based on the
testbench of the design. This testbench needs not be written specifically for the
purpose of using PAVT. It can either be the unitary testbench used for functional
verification or a testbench generated automatically by EDA frameworks (such as
Cadence Specman Elite). This phase allows for the generation of the fingerprint
of the design activity. The fingerprint is just a dataset managed and organized by
the database of the tool. At this point, the PAVT comes with two approaches to
deal with obtained dataset. The first approach is called real approach. It consists of
building one leakage trace from the overall activity of the design signals given one
fixed input (e.g., one fixed key, one variable message for an AES implementation).
This way, the tool generates a number of traces equal to the number of variable
input messages. This approach is based on a high-level modeling of the electrical
activity of the design. According to the literature [8], the basic model is composed
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Fig. 12.2 PAVT: security analysis assisted by simulation general workflow (see Algorithm 1)

of a dynamic factor reflecting the transistors activity and a static factor reflecting the
activity of the circuit while at rest. Digitally, the dynamic factor can be computed
through a toggle count and the static factor is just the actual binary value of the signal
at each simulated instant. In order to generate one trace, the sum is performed over
all signals (so-called Hamming weight leakage model). Now, the second approach
called ideal approach can be envisioned and is very fruitful in terms of security
analysis in practice. It consists of dealing with the raw state of simulation without
the need of any power consumption model. In fact, this wire-level approach allows
detecting any security anomalies regarding each signal in the design. This approach
is more complete and requires managing matrix-based traces. Besides, for both
approaches, the analysis is always conducted in the best conditions as the designer
here does not care about the impact of real factors like the measurement noise and
configuration of real equipment such as oscilloscopes and pulse generators that
require more skills and processing. Regarding fault(s) injection, erroneous values
are forced from the simulation tool. The resulting traces are also termed “virtual.”

Analysis Phase This phase consists of analyzing the obtained virtual trace for SCA
or faulty log trace for FIA. It is noteworthy that the PAVT is not a tool designed
for attackers, but rather a tool for designers. This tool allows a security analysis
checkpoint at all the design levels.

Both phases are processed in an iterative manner until the HDL design is clean
with no security violations (see Algorithm 1 and Fig. 12.2). Figure 12.3 shows
deeper details about the internal workflow of the PAVT. First, it extracts the input
design structure. Then, after having properly configured the user project, the tool
runs a couple of simulations, which will produce a database of raw results. The
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Fig. 12.3 PAVT internal workflow

Algorithm 1: Security verification and refinement of the HDL design by
PAVT (see Fig. 12.2)

1 HDL ← initial HDL design;
2 while HDL is not clean do
3 Simulation phase;
4 Analysis phase;
5 Evaluation report generation;
6 if Security violation then
7 HDL ← f ix the HDL design

8 else
9 return: HDL

PAVT workflow distinguishes raw results generation and dataset generation as two
separate operations. First, simulation results are computed and stored on a hard
drive. Once simulation results are available, it is possible to use them to generate
datasets with different properties. A dataset is associated with a given consumption
model (for real approach) and a set of probed signals used for trace generation. To
reflect this distinction, the tool uses the twin concepts of target and probe:

• A project has only one target . It is the set of signals for which we store
simulation results.

• A project can handle multiple probes. A probe is useful to study the activity of a
sub-group of signals. Probing is useful to focus on sub-modules, to spot leaking
signals, to simulate a cartography, etc.

The same notions naturally apply to fault injection simulation campaigns. In the
following, we will focus on automated fault analysis of hardware designs, which is
the main focus of this chapter.
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12.3 Fault Analysis Assisted by Simulation

Fault attacks are active attacks, which need an adversary to induce errors into the
target device, using some tampering means. This tampering can be accomplished
in several ways, as extensively discussed in literature [6]. In general, tampering
means (or fault injection techniques) are classified in two broad categories, i.e.,
global and local. Global fault injections [5] are, in general, low-cost techniques
which create disturbances on global parameters like voltage, clock, temperature,
etc. The resultant faults are more or less random in nature and the adversary might
need several injections, to find required faults. On the other hand, local techniques
(e.g., clock glitch, optical/electromagnetic injections, body bias injection [1]) are
more precise in terms of fault location and model. However, this precision comes
at the expense of costly and bespoke1 equipment. The kind of injected fault can
be defined as fault model. The fault model has two important parameters, namely
location and impact. Location means the spatial and temporal location of fault
injection during the execution of target algorithm. Depending on the type and
precision of the technique, location can be at the level of bit, variable or random.
Coming to the impact of fault, it is the effect on the target data. Commonly known
fault injection impacts on target data can cause stuck-at, bit-flip, random-byte, or
uniformly distributed random value.

12.3.1 Simulation-Based Fault Injection Evaluation

With the PAVT tool, it is possible to model the effects of several fault injection
attacks, even those that require advanced technical skills and equipment as stated
above. It is also possible to accurately analyze the intrinsic robustness of a digital
circuit against such attacks early in the design flow. In the following, we detail
two different use-cases related to local fault injection attacks on a hardware
implementation of an unprotected AES 128 bit, which needs 10 clock cycles to
perform an encryption.

12.3.1.1 Clock-Glitch Injection

The principle of the clock glitch injection consists of precisely modifying the period
of one or more clock cycles of the target design during the AES execution. When
the modified clock period is much shorter than what is expected in the normal
clock, it shall create setup violation faults [10]. These faults can be exploited
to retrieve the secret key. Since the modification of the clock frequency at RTL

1In Common Criteria parlance.
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level is meaningless, we can perform clock glitch injections only with gate-level
descriptions (i.e., post-synthesis level or place and route level). To this end, we
synthesized the AES core to the gate level using ASIC 65 nm CMOS technology
for 1.2 V supply voltage. After that, we configure the PAVT to perform clock glitch
on a specific cycle during gate-level simulations to take into account the circuit
delays (e.g., Standard Delay Format file). The configuration consists of defining
some parameters needed to set the stimuli for simulations and the clock glitch
parameters, in particular, the cycle target and the glitch duration. In our case, the
main configuration was as follows:

• Target cycle: last round of the AES execution;
• Glitch duration: from 4 to 7 ns with steps of 100 ps;
• Number of simulations: 310.

Figure 12.4 shows a cartographic view of the effects of clock glitches in terms of
erroneous bits observed in the final output (ciphertext). Based on such information,
the evaluator can easily identify the maximal glitch duration that would lead to a
final output error for a given cycle.

Fig. 12.4 Erroneous bits
according to the glitch
duration
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Simulation results can be used to apply a set of differential fault analyses (DFA)
which exploit differences between correct and faulty outputs to recover the key. The
PAVT offers a set of DFA metrics which allow to analyze fault injection results. One
example is the AES-128 DFA NUEVA (non-uniform error value analysis) metric
[7] which measures the uniformity of error values injected before the last SubBytes
operation in order to find the key. Another example is the AES-128 DFA using
Giraud metric [4]: This fault analysis requires single-bit faults at the input of the
last SubBytes operation. As shown in Fig. 12.5, the PAVT is able to recover the
entire key with only 126 simulations using DFA of Giraud. A few more simulations
are required to perform the full analysis with the NUEVA technique.

12.3.1.2 Laser Injection

Laser fault injection falls into optical fault injection methods which expose the
device to an intense light for a brief period of time. The injection can be performed
either through the front-side or the backside of the target chip. Laser attacks can
be used to inject faults characterized by high locality and timing accuracy. In the
PAVT, the laser injections can be modeled at the gate-level and functional level
(i.e., register transfer level) by configuring parameters such as the fault type (e.g.,
permanent/transient), the fault model (e.g., bit-flip, bit-set, bit-reset, stuck-at-0/1),
the fault location (e.g., wires, registers), and the fault time. When the time event
occurs and the fault injection conditions are met, it becomes the fault time, and the
fault model is injected into the fault location during simulation.

For this use-case, we have performed our analysis at RTL level with the
following configuration: fault time (last round cycle of the AES execution), fault
location (inputs of the SubBytes module), fault model (bit-flip model), number of
simulations (100). The DFA results we obtained show that all key bytes are broken
with only 10 simulations. Figure 12.6 illustrates the results of the analysis completed
using the DFA metrics already presented in the previous section. We can see that all
the key bytes are broken at the end of the simulation, in this case 10 with the DFA
based on Giraud metric.

12.3.2 Case Study: Netlist Level Leakage Fault Detection

As shown in the previous part, the attacks based on malicious injection of faults
can seriously degrade the security of a cryptosystem. Faults injected into the
cryptographic modules during the encryption (or decryption) operation will very
likely result in a number of errors in the encrypted/decrypted data. Such faults must
be detected before their spread to avoid the transmission and use of incorrect data.
Fault detection techniques represent therefore a possible countermeasure against
fault injection attacks and a desirable property for preventing malicious attacks,
aimed at extracting sensitive information from the device, like the secret key.
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For the AES block cipher, two main approaches have been proposed for
achieving fault detection. The first one is based on temporal or spatial redundancy;
in temporal redundancy, the same hardware is used to repeat the same process twice
using the same input data. This technique uses minimum hardware overhead. Yet,
it entails time overhead. In spatial redundancy, two copies of the hardware are
used concurrently to perform the same computation on the same data. After each
computation, the results are compared, and every difference is reported as a fault.
The advantage of this technique is that it can detect all kinds of faults. However,
it requires a significant hardware overhead. The second approach is concurrent
error detection using error detecting codes (EDC). It employs circuit-level coding
techniques, e.g., parity schemes, modular redundancy, etc., to produce and verify
results after each computation.

From a security point of view, designers have to verify the effectiveness of a given
implemented countermeasure and be sure that it prevents against fault analysis.
Remark that all countermeasures detect faults only to some extent (e.g., up to a
certain order, that is to say, up to a certain bit-wise multiplicity). For this purpose,
we present our results based on the countermeasure presented by Bertoni et al. [3]
which targets the datapath of the AES encryption module. This countermeasure
uses a 4 × 4 parity matrix. Each bit corresponds to the byte state, and at each
round the matrix is predicted and then compared with the computed one from the
state. This countermeasure can detect all single errors and perhaps all odd errors
and furthermore actually locate them. The hardware overhead is less than many
other countermeasures (e.g., [2]) where a computation redundancy is required (2
times overhead). We designed an AES-128 encryption module implementing this
countermeasure for the datapath. The control unit is also protected by computing
the parity of the rounds counter. Then, we perform several simulation-based fault
injection campaigns at the register transfer level (RTL) in order to evaluate the
fault coverage of the proposed parity-based EDC scheme. One hundred thousand
injections are performed using plaintexts and keys selected randomly. The fault
model is a single bit-flip at the last round of the encryption operation. The obtained
results show that the detection rate is equal to 100% as shown in [3]. Then, we
launch the logic synthesis on a Virtex-V Xilinx FPGA as technology target in order
to perform the same fault injection campaigns but at post-synthesis level (PS) (i.e.,
the post-map netlist is used during simulations). As expected, the detection rate is
equal to 100%.

Thereafter, we re-synthesize the same RTL code but with different logic synthesis
options to optimize the logic and to improve timing and design performances. As a
matter of fact, the Xilinx synthesis technology (XST) synthesis tool allows designers
to configure several options and properties that are taken into account during the
synthesis process. These options target possible optimization for area, speed, or
power consumption.

Figure 12.7 is an extract from the Xilinx synthesis settings dialog box. In our
case, we activate some options to optimize the design such as the −logic_opt

option which optimizes timing-critical connections through restructuring and re-
synthesis, followed by incremental placement and incremental timing analysis.
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Fig. 12.7 Extract from the XST synthesis options for Xilinx FPGAs

Previous injection campaigns are performed based on the obtained netlist. However,
results are not the same because the detection rate decreases from 100% to 18.75%.
More precisely, only faults injected in the AES control unit are detected. All faults
into the datapath are no longer detected due to the synthesis tool optimization, as
shown in Fig. 12.8.

The countermeasure logic on the datapath was completely removed after the
logical synthesis to optimize the design for area by reducing the total amount of
logic used for design implementation. With obviously lower number of gates, an
equivalent functionality is obtained, albeit with a lesser security. Indeed, the Sbox is
left unprotected, simply because the synthesizer has been smart enough to eliminate
some combinational schemes considered to be equivalent. Functionally speaking,
there is no alteration. However, from a security standpoint, the complete SubBytes
transformation is left unprotected.

For the optimization prevention of signal B in Fig. 12.8, we use the
DONT_TOUCH attribute. This attribute prevents optimization where signals are
either optimized or absorbed into logic blocks. It instructs the synthesis tool to keep
the signal it was placed on, and that signal is placed in the netlist. Logic synthesis
and fault injections are remade with the same options used during the previous
experimentation. Results indicate that the detection rate increases from 18.75% to
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Fig. 12.8 Total simplification of fault detection logic upon synthesis. (a) RTL, (b) PS

Fig. 12.9 Partial simplification of fault detection logic upon synthesis. (a) RTL, (b) PS

56.43%. Indeed, the synthesis tool has simplified partially the fault detection logic
as shown in Fig. 12.9 by eliminating the combinational block producing C signal.
Consequently, only faults injected in the state register are detected, which opens a
large door for successful fault injection attacks within the combinational logic.
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Table 12.1 Fault detection rate for RTL and post-synthesis levels

Level RTL PS PS PS

(default options) -logic_opt = true -logic_opt = true

-xor_collapsing = true DONT_TOUCH attribute

Detection rate 100% 100% 18.75% 56.43%

Table 12.1 summarizes the fault detection rate according to the analyzed level.
From this, we conclude that the protection can be removed altogether during logical
synthesis, thereby causing a security regression. This kind of mis-integration may
happen in real case, where designers do not check the security evolution of their
design at each stage of synthesis. Therefore, robustness of hardware cryptographic
modules against fault injection attacks should be evaluated at each abstraction level
in the design conception flow.

looseness-1Another reason for designers attention to be deflected from security
is the requirements for testability. Clearly, in Fig. 12.9a, the alarm signal is not
testable. Indeed, it is consistently equal to “0.” Therefore, in a view to achieve
DFT (Design For Test) requirements, some test logic to address independently the
registers driving signals A, B, and C shall be added. But in the meantime, the
designer might shift his focus so conscientiously that he might forget about the need
for setting DONT_TOUCH attributes. Hence the need for an independent third-party
verification tool.

12.4 Chapter Summary

SCA and FIA are serious threats to cryptographic algorithms [6]. Countermeasures
have been developed against such attacks. Still, it is non-obvious how to implement
such protections at source-code level. There are many options to configure the
synthesis. Hence exploring their combinatorics is exponential. In practice, users
select a few options. Some options can lead to total or partial simplification of the
countermeasure. Using a simulation-based methodology, we manage to detect such
alterations and we quantify the amount of degradation. In addition, we precisely
pinpoint the residual leakage samples.
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Chapter 13
Optimizing Electromagnetic Fault
Injection with Genetic Algorithms

Antun Maldini, Niels Samwel, Stjepan Picek, and Lejla Batina

13.1 Introduction

Embedded security devices such as ID or bank cards, key immobilizers, and
mobile phones are omnipresent in our lives and the threats to them directly affect
the security and privacy of our data. The attackers often target the weaknesses
of implementations rather than the algorithms running on those chips. Basically,
those so-called implementation attacks do not focus on the algorithm itself but
rather exploit some physical effects. Those effects, i.e. physical leakages become
available due to the actual implementation of the algorithms on a platform that is
typically constrained in terms of area, power, energy, etc. Two well-known types
of implementation attacks are side-channel attacks (SCAs) and fault injection (FI)
attacks. Side-channel attacks are passive, non-invasive attacks where the device
under attack operates within specified conditions and the attacker simply observes
the physical leakages produced. Fault injection attacks are, on the other hand,
active, more invasive attacks where the attacker inserts faults (e.g. by glitching some
parameters like voltage, power, clock, etc.) in order to disrupt the normal behavior
of the algorithm.
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Side-channel attacks received a lot of attention in the last few decades where
we saw successful exploitation of several side channels like timing [11], power
consumption [12], and EM emanation [25]. To use that information and deliver
powerful attacks that are even capable of recovering the secret keys, researchers
devised various strategies. Not surprisingly, many of those strategies in the last few
years are based on machine learning [14, 24] and deep learning [7].

When considering fault injection attacks, the situation is somewhat different in
terms of attack methodology and analysis techniques. In certain scenarios, just one
fault can lead to a total break of a cryptosystem as described in the first paper of
Boneh et al. [6]. While it was clear that one fault can have devastating consequences
on the security of a system, it was not immediately clear how complicated can be to
insert the faults of interest. The first work that illustrates a practical fault injection
attack on an actual RSA cryptosystem was done by Aumüller et al. [2]. They
describe the engineering efforts behind a successful fault injection and possible
countermeasures. Fault injection is often possible through glitching techniques.
There are several sources of glitches possible such as laser pulses, electrical glitches,
and electromagnetic radiation. A fault injection attack is successful if after exposing
the device under attack to a specially crafted external interference, the device shows
an unexpected behavior, i.e., a fault, which can be exploited by an attacker. Here,
the challenge lies in selecting the appropriate parameters for a fault to succeed. If
those parameters are not well chosen, the target will respond in a way that does
not permit an actual fault analysis attack. When considering various sources of
faults, we encounter different number of parameters and corresponding ranges. In
general, the search space size of possible parameter values is large and relatively
few points in the search space result in faults. Consequently, an interesting follow-
up question is: how to find suitable parameter values or intervals, or more precisely,
how to efficiently find the correct values in the search space? Surprisingly, the main
options available so far are to use either random search or some sort of exhaustive
search. This is mainly due to the fact that a complete exhaustive search is usually
not feasible so the attacker should focus on specific regions with a certain precision,
and perform a so-called grid search.

In our work, we start from this observation and turn to some well-known machine
learning strategies to deal with what is basically an optimization problem with a
large number of parameters. Another motivation comes from relevant experiences
with side-channel analysis and machine learning. In principle, if it is possible to
make SCA more powerful by using machine learning (and more generally, artificial
intelligence) one would expect the same for fault injection.

In this chapter, we shed some light on the above-mentioned questions and
observations. We discuss how one could use a special type of metaheuristics
called genetic algorithms in order to find parameter values resulting in faults for
electromagnetic fault injection. A somewhat similar research direction is followed
in several previous works [8, 22, 23] but there the authors consider power glitching,
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which is only a subset of the search space we have to deal with for EMFI. In
addition, they attack a PIN checking mechanism on a smartcard. In our research,
we use the faults obtained via a novel technique to mount an algebraic fault attack
on a SHA-3 implementation where we consider pulsed EMFI only resulting in a
total of five parameters. We emphasize that our version of search algorithm differs
significantly from previous works as detailed in the rest of this chapter. Finally, our
code is available as an open source implementation.1

13.2 Related Work

Although a vast amount of work has been done on fault injection itself, see, e.g., [1,
6, 13, 19, 20, 26], only a small fraction of it concerns parameter optimization.

In [18], the authors develop an EMFI susceptibility criterion, which they use
to rank the points of the chip surface depending on how sensitive they are
to fault injection. The underlying assumption for the criterion is the sampling
fault model, described in [21]. The criterion itself is a combination of power
spectral density (measuring emitted power at the clock frequency) and magnitude
squared incoherence (measuring how linked the emitted signal is to the data being
processed). They use a grid scan (in two spatial dimensions) to measure all the points
and rank them according to the criterion; a share α of the highest-ranking points are
kept for further scanning; the rest is thrown away. They are able to reject over 50%
of the chip surface (75% in their best case), while keeping 80% of the points causing
faults. However, by fault, they mean any perturbation of the normal behavior of the
algorithm.

In [8], the authors apply several different methods to the problem of parameter
optimization for the supply voltage (VCC) glitching. They reduce the dimension-
ality of the problem by splitting the search into two stages. In the first stage, they
look for the best (glitch voltage, glitch length) combination. In the second stage,
ten most promising (voltage, length) combinations are tried at each point in the time
range (which is discretized into 100 instants). All parameters not explicitly specified
are set as random. The methods are compared at the first stage—random search,
FastBoxing and Adaptive zoom&bound algorithms, and a genetic algorithm. This
approach is a “smart” search in 2D with a grid search in 1D.

That work is extended in [23] where the authors use a combination of a genetic
algorithm and local search (called memetic algorithm) in order to find faults even
more efficiently. The authors consider power glitching with three parameters and
are interested in a fast characterization of the search space.

1Github: https://github.com/geneticemfaults/geneticemfaults.

https://github.com/geneticemfaults/geneticemfaults
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13.3 Preliminaries

13.3.1 Genetic Algorithms

Evolutionary algorithms represent population-based metaheuristic optimization
techniques inspired by biological evolution and phenomena like mutation, recom-
bination, and selection [3, 9, 10]. The solutions in the population compete and in
that process improve their goodness as evaluated by a fitness function. Evolutionary
algorithms often perform well in many types of problems because they ideally do
not make assumptions about the underlying solutions’ landscape. Today, there are
many types of evolutionary algorithms, but probably the best known ones are genetic
algorithms (GA). An instance of a genetic algorithm maps a real optimization
problem to the natural concepts as follows:

1. The objective function (which we are optimizing) becomes the fitness function.
2. A solution (a point in the solution space) becomes an individual in the population.

The general pseudocode of an evolutionary algorithm is given in Algorithm 1.
Note that this is general enough to cover any type of evolutionary algorithm,
including genetic algorithms.

13.3.2 Keccak/SHA-3

In this work, we apply our attack on a cryptographic hash function, which is the
new SHA-3 standard [5], and also known as Keccak. The Keccak main function
is a sponge construction with a permutation as its core operation. Keccak is a
cryptographic primitive that can be used in different modes (such as keyed and
unkeyed) to compute hash values, MACs or to encrypt/decrypt data.

The core permutation named Keccak-f [b] is defined by its width b and in
our case, we use the full width where b = 1600. The permutation is described
as a sequence of operations on a state a. The state is a three-dimensional array

Algorithm 1: Evolutionary algorithm pseudocode
Input : Parameters of the algorithm
Output : Optimal solution set

1 t ← 0;
2 P(0) ← CreateInitialP opulation;
3 while T erminationCriterion do
4 t ← t + 1;
5 P ′(t) ← SelectMechanism (P (t − 1));
6 P(t) ← V ariationOperators(P ′(t));
7 return: OptimalSolutionSet (P )
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of elements in GF(2). There are 5 rows and 5 columns, each of length 64, i.e.
a[5, 5, 64]. Keccak-f [b] is an iterated permutation over 24 rounds, the round
function R is defined as follows:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

In total there are five different steps that modify the state. An omitted index implies
that the statement is valid for all values of that index.

θ : a(x, y, z) ← a(x, y, z) +
4∑

y′=0

a(x−1, y′, z) +
4∑

y′=0

a(x+1, y′, z−1),

π and ρ : a(y, 2x + 3y) ← rot(a(x, y), r(x, y)),

χ : a(x) ← a(x) + (a(x + 1) + 1) · a(x + 2),

ι : a(0, 0) ← a(0, 0) + RC

All operations are carried out in GF(2). The function rot(W, i) is a bitwise cyclic
shift operation, where the constants r(x, y) are rotation offsets. The value RC is the
round constant, there is a different value for each round. For more details, see [5].

13.4 Experimental Setup

For the target, we use a Cortex-M4 STM32F407IG (Riscure “Piñata”) board running
a C implementation of SHA-3. This implementation is taken from the WolfSSL
library.2 The board communicates with a PC by a serial interface and is powered
by an external power supply. We use a Riscure EM probe and the VCGlitcher
device that controls it. The whole setup is controlled by the code that is written
in Python 2.x. For interfacing the Riscure equipment, we use Python bindings for
the VCGlitcher C API (which is a 32-bit DLL). Figure 13.1 shows a photo of the
setup.

The on-board code provides the trigger which signals that the cryptographic
operation is in progress. This trigger is used as a reference point for injecting the
fault. In case that the board gets stuck in an illegal state after a glitch, it needs to
be reset. The only way to reliably reset this particular board is by cutting its power,
which can take a significant fraction of a second, depending on the capacitors. We
used 100 ms for this event.

2WolfSSL, an embedded SSL/TLS library. Available at: https://www.wolfssl.com/.

https://www.wolfssl.com/
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Fig. 13.1 The photo of the
setup

The physical dimensions of the chip package are 24×24 mm. Repositioning error
of our XYZ table is 0.05 mm, which gives us a spatial grid of at most 480 × 480.
Note that the limiting factor in our case is likely the size of the probe tip, which is
much larger.

13.4.1 Parameters

There are multiple parameters one can vary to affect fault probability as follows:

• the spatial position of the probe tip (there are three degrees of freedom; X, Y,Z);
• the moment when the EM pulse fires;
• the pulse intensity;
• the shape of EM probe and the angle w.r.t. the target;
• the shape of EM pulse w.r.t. time

In our experiments, we consider only a subset of those as listed below:

• We consider a position, as a pair of parameters (X, Y ). We do not vary the
distance from the board (Z), since this can be largely compensated for by a
change in intensity. These parameters are real values in [0, 1] range.

• The glitch intensity regulates the voltage of the pulse. The SDK manual suggests
it to be set to a percentage of power used. We use real values in the range [0, 1].

• We consider also time offset to be between 367 and 375 µs, because that is where
the injection point must be, for the code we are running. We encode the offset at
integer value (number of 2 ns ticks).

• A number of repetitions of the pulse is a primitive form of the pulse shape. We
set this parameter to be in the range [1, 10].
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We do not vary pulse duration, and we leave it to a fixed value of 40 ns. Similarly,
we do not vary shape and angle of the probe tip, since changing those automatically
is (for us) hard enough to make them unsuitable for automatic optimization.

13.4.2 Search Space Size

As mentioned above, it is not possible to conduct an exhaustive search when
considering fault injection with realistic targets. Hence, the question that remains
is the following: what is the search space size and how could we efficiently sample
it? When considering X and Y position, there is a 0.05 mm repositioning error and
24×24 mm chip size, which gives max resolution of 480×480. For the time offset,
with a 2 ns resolution and the range between 367 and 375µs there are in total 4000
different values. We have no good rule for determining the smallest meaningful
increment for the glitch intensity, but if we use a 1% increment, that gives us a
range of 100 values. The repetitions are selected to be a random integer value in the
range [1, 10], which gives us ten values.

The total parameter set size is therefore 480 ∗ 480 ∗ 4000 ∗ 100 ∗ 10 ≈ 1012.
At ≈ 0.16 s per point, this results in 29,203 years to conduct an exhaustive search.
Since trying the same parameters multiple times does not necessarily always yield
the same response, we conduct five measurements for each point. Even if we would
completely ignore everything except X, Y, and offset, we would still need 29.2 years
to conduct an exhaustive search.

13.5 Search Algorithm

13.5.1 Assumptions

We consider the device to be a black-box. It assumes that the objective function is
not a “golf-course-like” (i.e., to be too flat), in which case the lack of a significant
gradient in the fitness landscape means that there is no driving bias toward fitness
optimum. The reasoning behind is that a very weak EM pulse will not affect the
target at all, and we will observe the normal behavior. Conversely, a very strong
EM pulse will completely dishevel its operation and even potentially damage it.
Consequently, we expect the faulty behavior to occur somewhere between those two
extremes, i.e., along the class border. Additionally, offset ranges (min to max offset)
are set by the user, based on a rough expectation of the duration of the cryptographic
algorithm.

Usually, the objective function guides the optimization algorithm towards better
solutions, and the algorithm ends when it finds the best one. Here, we do not want
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just a single “best” solution since not every fault we find will also be exploitable, and
there are situations where more than one solution is required, so we aim to obtain
multiple solutions.

13.5.2 GA Objectives

We require our algorithm to have the following two characteristics:

1. Good coverage of the parameter space—since we do not know where the
exploitable faults are located, we need to explore the search space efficiently.

2. Speed—we require the algorithm to be fast in finding the faults, otherwise, there
is no advantage of using it when compared to random search, for instance.

These requirements are somewhat conflicting with each other. Basically, as most
of the parameter space is useless (i.e., has no faults), covering enough space to
make sure we did not miss anything important implies potentially wasting a lot of
measurements.

Next, we introduce the terminology we use when discussing the search and
possible outputs of the algorithm. A point is a distinct set of parameters, i.e., a point
in the parameter space. A measurement is the result of a single attempt at glitching
the target with those parameters.

When counting the faulty measurements, we distinguish between:

1. the total number of faulty measurements,
2. the number of distinct faulty responses (i.e., “unique faulty measurements”).

The difference is in the following: if a measurement results in a before-seen faulty
output, the second one will not count again. As an example, assume we find a set of
parameters resulting in a specific fault. Later, we find some other set of parameters
that result in the same fault but we do not count that new faulty measurement into
distinct faulty measurements. For the exploitability purposes, the second number is
more interesting as detailed in the following sections.

We classify the board response in one of the following classes:

• NORMAL: for normal behavior, meaning the board performs as if we did not do
anything.

• RESET: the board did not reply at all, requiring a reset to restore to normal
operation.

• SUCCESS: the board produces an output/ciphertext/signature/hash different than
the correct one.

• CHANGING: for each point we investigate, we perform five measurements. If
all measurements are in the same class, the point is put into one of the first three
classes; otherwise, it goes into the CHANGING class.
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Fitness values are set according to the class: SUCCESS has the highest fitness
(10), followed by the CHANGING, then RESET (5), and finally, NORMAL (2).
CHANGING points’ fitness depends on its underlying measurements: a mix of
NORMAL and RESET measurements is somewhat better than an all-RESET or
all-NORMAL point, but having individual measurements belonging to the class
SUCCESS moves the fitness closer to an all-SUCCESS point. We calculate the
fitness of a CHANGING point in the following way:

fitnessC = 4 + 1.2 ∗ NS + 0.2 ∗ NN + 0.5 ∗ NR. (13.1)

Here, NS represents the number of SUCCESS points, NR the number of RESET
points, and NN the number of NORMAL points. Finally, factors 0.2 and 0.5 are
chosen in analogy to the values for NORMAL and RESET (which are 2 and 5)
while the rest of the factors are selected for the scaling reasons. For example, 4
NORMAL and 1 RESET measurements give fitness 5.3, which is higher than the
fitness of a RESET point (with all 5 RESET measurements). Similarly, 4 SUCCESS
and 1 RESET measurements give fitness 9.3, which is lower than the fitness of a
SUCCESS point (with all 5 SUCCESS measurements).

13.5.3 Algorithm Definition

Despite the fact that we use genetic algorithms like similar to some previous
works [8, 23], our custom-made algorithm is quite different. We discuss the specifics
of our design in the following paragraphs. Our algorithm has several parameters to
be determined. We selected those values on the basis of our tuning experiments and
recommendations from [8, 23].

More in detail, our algorithm consists of two separate phases as follows:

1. The first phase is a genetic algorithm that we run for 20 generations with
population size 50.

2. Only when the genetic algorithm is done, we start with the local search, which
takes ten randomly chosen points in the neighborhood of each SUCCESS point.
Note that this is a significant difference from related works where both GA
and local search worked at the same time. We opted first to concentrate on
exploration aspect—GA (to explore various regions of the target) and only after
that on exploitability aspect—local search (to concentrate on more promising
regions). Naturally, GA itself has also exploitability component that is especially
manifested in the crossover operator but we also designed a custom-made
crossover operator that promotes exploration perspective.
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GA Phase

Our algorithm begins with a genetic algorithm that runs for N generations and has a
population of M individuals. The initial population is selected uniformly at random
within parameter ranges. We aim to maximize the fitness value, which corresponds
to having as many as possible SUCCESS points.

The first phase of a GA is selection; we use roulette-wheel selection. In roulette-
wheel selection, the fitness function assigns a fitness to possible solutions (in this
case, points in parameter-space). This fitness level is used to associate a probability
of being selected for each solution: the probability that an individual will be selected
is directly proportional to its fitness. (More precisely, it is equal to its share in the
overall fitness: for the i-th individual, Pi = fitnessi∑

k fitnessk
.)

Note that, since the selection is done randomly, it is possible that low-quality
individuals are picked. This is not troubling since a GA would not function
otherwise. However, it allows for the possibility of an excellent, hard-found solution
being accidentally lost. A common countermeasure is elitism: with elitism, a number
of best-ranking individuals (called the elite) are always chosen. We use elitism,
with the elite size equal to 1, so only the single best individual gets carried
over.

We also experimented with a 3-tournament selection as used in [8, 23] but found
it too restrictive, since it promotes a convergence too quickly, resulting in solutions
being obtained from only a small part of the search space. This went directly against
the objective of a good coverage of the search space.

After the selection phase finishes, the crossover can start. The purpose of
crossover is to combine the existing solutions to produce better ones. There are
many ways to do the crossover. When we imagine our individuals as points—or
rather, vectors—in the 5-dimensional parameter space, then each of the parameters
corresponds to one element of this vector. When combining two such individuals, a
traditional crossover might take some elements from one parent, and the rest from
the other parent. The version of crossover that we used instead picks a point in-
between the respective parents’ elements. This promotes explorability and enables
GA to traverse large parts of the search space.3 The pseudocode for this crossover
is given in Algorithm 2, and the pseudocode for the mutation in Algorithm 3. The
mutation rate p_mutation is set to 5%. In the case the parameter gets out of its
ranges, it is clipped to the edges of its range.

3The parent points define an axis-aligned parallelepiped in parameter-space; the parents are placed
on the diagonally opposite vertices. In a Hamming cube, these would be the all-zeros and all-ones
vertices. The first crossover variant corresponds to picking one of its vertices, whereas the second
crossover variant corresponds to picking a point within it.
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Algorithm 2: Crossover operator

1 for each parameter p do
2 child.p = random value in range [parent1.p, parent2.p];

Algorithm 3: Mutation operator

1 r1, r2 = unif ormly random f rom [−0.5, 0.5];
2 for param in [x, y, intensity] do
3 with probability p_mutation:
4 param = param + r1;

5 with probability p_mutation:
6 off set = off set + r2 ∗ OFFSET _RANGE;
7 with probability p_mutation:
8 repetitions = random integer f rom [1, 10];

Local Search Phase

After the GA is done, we use local search to focus on the promising parts of the
explored search space as follows: the space around the intersection points (i.e.,
places where class values change), and the space around any faults that were already
found. We define the neighborhood of a point as a cube centered in it, with edge
length equal to 0.02. By length of 0.02 in parameter space, we mean 2% of the range
of that parameter. Parameters x, y, and intensity are all within the range [0, 1]. For
offset, it’s 2% of OFFSET_RANGE (which is OFFSET_MAX - OFFSET_MIN).
To determine the distance of values, we use the Euclidean distance.

13.5.4 Practical Considerations

Commonly, optimization algorithms (and nature-inspired metaheuristics in partic-
ular) rely on a large number of iterations. Another assumption usually made is
that the evaluation of possible solution points is uniform. Here, we have expensive
measurements, where the cost of evaluation depends not only on the property of the
point itself, but also on the context of its evaluation. Although our algorithm consists
of a genetic algorithm and local search, we denote it often as a genetic algorithm but
we always consider it to have also local search phase. We do not call our technique
a memetic algorithm since the GA and local search phases are separated.

When considering EMFI, there is the probe tip, which has to physically move
to a different point. To do this with a sufficient precision requires a non-negligible
amount of time—the exact amount varies depending on the setup, but it can be up
to several seconds per measurement. In comparison, a reset requires just a fraction
of a second (for our board, ≈100 ms to do it reliably). The measurement part itself
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is even faster—30 ms or less. Thus, the order in which points are evaluated matters.
Even with an optimal routing for any batch of N points, more batches mean more
time wasted. For population-based algorithms, this translates to small population
sizes not being as efficient as large ones.

Additionally, we may want to get a glimpse of the results even before the scan
is finished, especially for long-running scans. In case of a random or grid scan,
this means splitting the scan into batches where each covers more or less the
whole parameter space, since scanning points in the optimal order results in uneven
coverage.

13.6 Results

In this section, we present our results when attacking SHA-3. First, we investigate
how well is GA able to find faults (i.e., force the algorithm to output the wrong
ciphertext) and then, whether such points can be used in order to obtain the state of
the algorithm. For this purpose, we use algebraic fault analysis (AFA), as described
in [17]. AFA eliminates the need for analysis of fault propagation as it is needed in
differential fault analysis; instead, it uses a SAT solver to recover the state bits from
a (clean output, faulty output) pair.

13.6.1 Finding Faults

The duration of GA is determined by the number of faults it finds. We conducted
five independent runs with 2074, 2343, 3353, 3606, and 5132 points, respectively.
Each individual run is different due to the stochastic nature of GA as well as
the target response. To obtain statistically meaningful results, we report averaged
values over all runs and report results in Table 13.1. For GA, on average, in
each run, there are 3301.6 points, which means we conduct 16,508 individual
measurements on average. Out of these, 9700.4 (58.8%) are faulty, and 3288.4
(19.9%) are unique/distinct. To compare, we use random search with 3302 points,
which represents 16,510 individual measurements. Out of these, 228.2 (1.3%) are
faulty, and 160.8 (1.0%) are unique/distinct.

Table 13.1 Statistical results
for GA and random search

GA Random

NORMAL 662.8 (18.9%) 2995.8 (90.7%)

RESET 496.4 (15.0%) 65.0 (2.0%)

CHANGING 375.2 (11.4%) 232.4 (7.0%)

SUCCESS 1807.2 (54.7%) 8.8 (0.3%)
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To conclude, when averaged over 5 runs, our GA algorithm gives 42.5 times
more faulty measurements, and 20.5 times more distinct faulty ones. The somewhat
lower share of distinct measurements for the GA algorithm can be explained by
many SUCCESS points being close to each other due to the local search, thus being
more likely to cause the same response.

In Table 13.2, we give results for Random search and genetic algorithms when
considering 500, 1000, and 2000 points. Observe how the results for random search
do not change significantly with more measurements. At the same time, we observe
that GA is very successful already for the smallest case where we use only 500
points and as we add more points, the percentage of SUCCESS points increases.

We depict the search space after random search and GA in Fig. 13.2a–f.
Figure 13.2a, b give results for X and Y parameters. Figure 13.2c–f also depict
intensity as a parameter. We depict both cases with and without NORMAL points
to improve the readability. The number of points for each figure is 3300 (figures not
depicting NORMAL points have fewer points).

Finally, we show the results for GA as it progresses through the evolution
process. More precisely, in Fig. 13.3a, we depict the search results for the first
500 points. We can observe that although there are several SUCCESS points,
in this phase GA mainly finds NORMAL points spread across the search space.
Figure 13.3b depicts results for 500–1000 points range. Here, we can see that
GA does not find so many NORMAL points but actually manages to find a
significant number of CHANGING and RESET points. We also see a good amount
of SUCCESS points. In Fig. 13.3c, we show the results for points between 1000 and
2343 (end of search). Here, we see a large number of SUCCESS points where there
are one large cluster and three smaller ones. CHANGING and RESET points occur
in the same large cluster as the majority of SUCCESS points. NORMAL points
occur in a number of small clusters surrounding the main cluster. To conclude, we
see that GA is able to find SUCCESS points even with a small number of examined
points but its true strength lies when there is a sufficient number of evaluations in
order to guide the convergence.

13.6.2 SHA-3 Attack in Practice

To the best of our knowledge, SHA-3 implementation has not yet been attacked in
practice. Attacks do exist, but only on simulated data such as [4]. The authors show
that differential fault analysis (DFA) can be used to recover the complete state in
around 80 faults on average if the attacker is able to inject single-bit faults in the
input of the penultimate round (i.e., θ22

i ), though they rely on brute-forcing the last
few bits. According to [16] (itself an extension of [15]), this is around 500 single-
bit random faults for the whole state. The work in [16] generalizes the attack to a
single-byte fault model, recovering the state in around 120 random faults.



294 A. Maldini et al.

Ta
bl

e
13

.2
R

an
do

m
se

ar
ch

an
d

G
A

re
su

lts
fo

r
va

ri
ou

s
se

ar
ch

st
ag

es

Po
in

ts
A

lg
or

ith
m

N
O

R
M

A
L

R
E

SE
T

C
H

A
N

G
IN

G
SU

C
C

E
SS

#F
au

lts
#D

is
tin

ct

50
0

R
an

do
m

45
2.

6
(9

0.
5%

)
9.

8
(2

.0
%

)
36

.0
(7

.2
%

)
1.

6
(0

.3
%

)
33

.4
(1

.3
%

)
22

.6
(0

.9
%

)

G
A

31
5.

2
(6

3.
0%

)
73

.4
(1

4.
7%

)
79

.0
(1

5.
8%

)
32

.4
(6

.5
%

)
26

0.
8

(1
0.

4%
)

15
8.

8
(6

.3
%

)

10
00

R
an

do
m

91
0.

4
(9

1.
0%

)
19

.6
(2

.0
%

)
67

.2
(6

.7
%

)
2.

8
(0

.3
%

)
58

.8
(1

.2
%

)
40

.4
(0

.8
%

)

G
A

38
1.

8
(3

8.
2%

)
19

8.
0

(1
9.

8%
)

16
9.

2
(1

6.
9%

)
25

1.
0

(2
5.

1%
)

15
30

.4
(3

0.
6%

)
95

6.
6

(1
9.

1%
)

20
00

R
an

do
m

18
14

.6
(9

0.
7%

)
36

.6
(1

.8
%

)
14

4.
2

(7
.2

%
)

4.
6

(0
.2

%
)

13
0.

6
(1

.3
%

)
93

.4
(0

.9
%

)

G
A

54
1.

6
(2

7.
1%

)
35

1.
2

(1
7.

6%
)

28
5.

0
(1

4.
2%

)
82

2.
2

(4
1.

1%
)

46
06

.4
(4

6.
0%

)
20

30
.4

(2
0.

3%
)



13 Optimizing Electromagnetic Fault Injection with Genetic Algorithms 295

(a) (b)

(c) (d)

(e) (f)

Fig. 13.2 Results for GA (with local search) and random search. (a) Random search in 2D. (b)
GA and local search in 2D. (c) Random search without NORMAL points. (d) GA and local search
without NORMAL points. (e) Random search. (f) GA and local search
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(a) (b)

(c)

Fig. 13.3 Results for GA with local search depicting several stages of the search process. (a)
Results for points 0–500. (b) Results for points 500–1000. (c) Results for points 1000–2343

Algebraic fault analysis (AFA) seems more promising. Luo et al. manage to bring
down the number of faults needed to recover the internal state with SHA3-512
down to under 10 with AFA and the 32-bit fault model in the progress described
in [15–17].

AFA has several advantages, besides being more efficient at recovering state, as
follows:
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• It does not require analysis of fault propagation through the algorithm, making it
much easier to abstract the internal details.

• We can easily change the fault model, by just changing the appropriate con-
straints.

• Perhaps most importantly, it works for more relaxed fault models.

The attack in [17] allows the attacker to retrieve the state by injecting multiple
faults in the input of the round 22 of Keccak. The faults are allowed to affect up to 1
unit of the state, where units are sized 8b, 16b, or 32b. As in the previous work, we
use θ22

i as the fault injection point, and χ22
i as the target state to recover. We reused

their C++ retrieval code for this purpose.
The general idea behind AFA on SHA-3/Keccak is simple: use a SAT solver to do

the work for us: we just need to provide appropriate constraints for it. We start with
1600 Boolean variables representing the state (θ22

i ) and then provide constraints:

1. Fault Model—what kind of a fault do we cause? There’s a separate set of (up to)
1600 Boolean variables (�θ22

i ) representing the induced fault. θ22
i ⊕�θ22

i is the
faulted state, before propagating through the final two rounds of the algorithm.
Depending on what the fault model is, we add constraints such as “exactly one
bit of �θ22

i is non-zero,” corresponding to a one-bit fault model, or slightly more
verbose ones for specifying things such as “we faulted a word-aligned 32-bit
word,” which would correspond to a 32-bit fault model in [17].

2. Keccak—how the (faulted) internal state propagates? For Keccak, the internal
transformations can be relatively simply encoded as Boolean expressions. This
implicitly tells the solver everything it needs to know about fault propagation,
regardless of the fault model constraints. There are two cases we consider:

H = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22
i )

where H is the correct hash output, and

H ′ = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22
i ⊕ �θ22

i )

where H ′ is the faulty hash output.
3. Outputs—which are the concrete outputs? We give the SAT solver the actual

values of H and H ′. After so constraining the SAT solver, we can let it find a
solution—an internal state satisfying all the constraints. Once it finds the first
such solution, we ban this newly found solution by adding it as an additional
constraint and let the SAT solver find another one. This process is repeated until
no new solutions can be found.
The bits of the state which are the same in all solutions are the ones we can
recover: as for those which take different values in different solutions, their
values are not entailed by the combined constraints of the fault model, the
algorithm, and the outputs (i.e., the “real” constraints).
Depending on the fault model and the version of SHA-3 (SHA3-512, SHA3-224,
etc.), these constraints may or may not be enough to recover part of the state.
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In this case, additional constraints can be introduced, such as using two faulty
hashes H ′

1 and H ′
2 at a time with a cost of extra Boolean variables and making it

harder for the SAT solver (Method II in [17]), or first recovering part of the χ23
i

bits (Method III in [17]).

We applied the 32-bit fault model from [17] and Method III. The reason for
this is a large number of potential faults to check while a short time for checking
the exploitability of the induced faults is often an important factor. We tested the
exploitability of all distinct faulty hashes obtained by our evolutionary algorithm, as
well as of all those obtained by a random scan. While the share of distinct/unique
faulty hashes depends on the size of the scan, the exploitability of a faulty hash does
not. For this reason, we calculated the share of exploitable individual faults on all
the samples we obtained (with the same hyperparameters).

The results are as follows: GA generated a total of 14,979 distinct faults (out
of 82,540 individual measurements); 106 of these were exploitable 32-bit faults,
for a share of 0.71%. Random search generated 947 distinct faults (out of 100,000
individual measurements); 110 of these were exploitable 32-bit faults, for a share
of 11.61%. When translated into exploitable faults per individual measurement, this
gives about 1.41×10−3 and 1.13×10−3 for GA and random search, respectively—
an improvement of 24.6%.

Despite the fact that GA is still significantly more successful than the random
search, we observe that actually most of the faults obtained with GA cannot be
translated into exploitable faults. This results in a decrease between the performance
difference of GA and random search. Still, such results are to be expected: since we
never added the constraint of exploitability of faults into GA, it is hard to expect that
GA will produce only such faults. Still, this could be addressed by having a fitness
function that integrates an analysis of fault exploitability.

13.7 Conclusions and Future Work

In this chapter, we investigate how genetic algorithms can be used to facilitate faster
and more powerful EMFI. When considering the search space size one needs to
investigate, it is evident that both random search and exhaustive search should not
be the methods of choice. Indeed, our custom-made algorithm is able to find more
than 40 times more faults than random search. Those results enable us almost 25%
more exploitable faults per individual measurements when considering SHA-3 and
algebraic fault attack. To the best of our knowledge, our algorithm is the most
powerful currently available technique for finding parameters for EMFI.

Since there are only a few works considering the parameter search that is leading
to faults, this opens a number of potential research directions. We believe the
following two would be the most interesting: (1) exploring laser fault injection,
and adding the notion of exploitability to the fitness function. The latter means
that, instead of running a local search on every SUCCESS point, we can first try
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to check whether it is exploitable, and only if it is, consider its neighborhood.
Naturally, this also opens a question what is a good neighborhood to consider, or
to state it differently: what is the best resolution for our search? Indeed, if all points
within a certain neighborhood would result in no extra information we can use for
exploitation, then there is no need for our algorithm to search within that region. (2)
Next, in this paper, we concentrated on AFA Method III, but it would be interesting
to investigate how our technique fares when used with Method II. Besides that,
we also plan to investigate different targets and improve the performance of our
algorithm.
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Chapter 14
Automated Profiling Method for Laser
Fault Injection in FPGAs

Jakub Breier, Wei He, Shivam Bhasin, Dirmanto Jap, Samuel Chef, Hock
Guan Ong, and Chee Lip Gan

14.1 Introduction

Before the actual fault injection attack, a thorough profiling of the device under
test has to be performed, so that the achievable fault models are known as well
as areas of interest on the chip. This process is repetitive in nature, but necessary
when targeting a new chip. Also, it takes a non-negligible amount of time, since the
whole area normally has to be scanned with varying parameters of the fault injection
device. Therefore, it is an ideal candidate for automation.

Modern field programmable gate arrays (FPGAs) and programmable systems
on chip (SoCs) come with interesting features, like rich logic resources, real-
time reconfiguration, high-density memories, clock managers, environment sensors,
etc. Owing to such features and low time-to-market, FPGAs are being deployed
in variety of applications. FPGAs also find wide applications in security-critical
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domains due to constantly evolving protection requirements, such as aerospace,
defense, etc. However, like other devices, FPGAs are also vulnerable to physical
attacks, i.e., side-channel attacks [17], fault attacks [8], and probing [3].

Laser fault injection (LFI) falls into optical fault injection methods. It is a
semi-invasive local perturbation technique, which requires decapsulation of the
target device, followed by injection of a high intensity laser. The injection can be
performed either through the frontside or the backside of the target chip. However,
because of the dense metal wires covering the active logic layer, it is highly
challenging to realize a successful fault perturbation from the frontside.

In this chapter, we provide an automated method to characterize the LFI on an
FPGA. A fault injection-based laser sensitivity profiling of the exemplary 65-nm
Virtex-5 FPGA is performed. The provided method is capable of finding areas to
perform successful data register bit flips in logic arrays. We localize interesting
logic within these blocks and sketch the laser sensitivity regions to demonstrate that
the high-precision bit-flips in fundamental logic cells of the FPGA can be found
automatically.

The entire process flow is depicted in Fig. 14.1, showing the steps required for
the full chip profiling. First, it is necessary to open the chip package—this can be

Fig. 14.1 Flow diagram of
the automated profiling
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either just a metal cover or an epoxy resin. This is followed by silicon delayering that
helps to target the laser on the chip components. After these two mechanical steps, a
testing circuit is implemented on a board, and the laser profiling scan is launched by
following an automated procedure to adjust the parameters and evaluate the results.
After the desired faults are found, the profiling finishes.

The rest of this chapter is organized as follows. Section 14.2 discusses previous
work and outlines our contributions. In Sect. 14.3, the related work about opti-
cal properties on silicon, chip preparation, and configuration are presented. The
profiling of laser sensitivity on chip and analysis methodologies are described in
Sect. 14.4. Experimental results and further discussions are detailed in Sect. 14.5.
Finally, summary is provided in Sect. 14.6.

14.2 Related Work

Many techniques have been proposed in the previous literature for disturbing
values processed and stored in ICs [1, 9, 12, 14, 22, 23]. In general, results on
microcontrollers show high degree of repeatability, mainly because of the stable
clock and a possibility to predict the instruction order. Precision depends on the
used CMOS technology and the size of the effective laser spot. Additionally to
memory disturbances, it is also relatively easy to disturb the instruction execution on
these devices, leading to instruction skip or alteration faults. Previous papers about
fault injections on FPGAs mostly aim at memory disturbances both on configuration
memory of SRAM FPGAs and data Block RAM [11, 21, 25]. Some of the works
are detailed below.

Pouget et al. [21] proposed a laser platform for evaluating the sensitivity of
SRAM-based FPGAs, where the test targets are the FPGA configuration memory
bits, instead of the algorithmic data. They successfully injected single and multiple
bit flips into configuration memory of a commercial FPGA manufactured on 1.5-µm
technology.

Canivet et al. [11] conducted an attack on a protected AES implementation by
using a laser with 20-µm spot size, targeting a 1.5-µm FPGA. Their results show
that probability to flip a “1” is greater than the probability of flipping a “0.” Also,
they stated that the most vulnerable components within the CLB are the look-up-
table (LUT) contents and the internal multiplexers.

Selmke et al. [25] presented a precise bit-level manipulations in BRAM for two
different FPGAs, with 90- and 45-nm transistor sizes. The spot size of their laser was
4µm, allowing comparatively higher precision faults on Spartan-3A and a bit lower
precision on Spartan-6, where vulnerable areas for different bits were overlapping.
Still, they could produce bit sets/resets in the latter case, only the success rate was
lower.

The fault injection into the configuration memory of SRAM FPGAs intrinsically
incurs the alterations on logic functions or routings, and hence leads to permanent
circuit malfunction until the device is reconfigured with a new bitstream. The faults
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Table 14.1 State of the art for laser fault injection

Work Platform Tech. Target Fault model Position Purpose

Dutertre et al.
[1, 14, 23]

µC 350 nm SRAM Byte Front Attack

Courbon et al.
[12]

ASIC 90 nm Flip-Flops Bit Back Attack

Breier and Jap
[9]

µC 350 nm Register Bit Back Attack

Pouget et al.
[21]

FPGA 150 nm CLB/BRAM Random Back Reliability

Canivet et al.
[11]

FPGA 150 nm Logic Random Back Attack

Selmke et al.
[25]

FPGA 90/45 nm BRAM Bit Back Attack

This work FPGA 65 nm Flip-flops Bit Back Attack

are typically found and analyzed by a readback of the bitstream from the device
after each fault injection to be compared with the unaffected golden sample [2, 16],
in order to figure out the affected tiles on the logic array. The comparison efficiency
is low and static, and furthermore, the method is becoming challenging to apply to
newer FPGAs with more obscure bitstream formats.

Lohrke et al. [18] test CPLDs manufactured with 180-nm technology by
using a high-end Hamamatsu PHEMOS-1000 laser scanning microscope. In their
experiment, they show how to localize AND and XOR gates and apply this method
in order map the location of a ring oscillator circuit. Later [27], they show how to
attack physically unclonable functions by using this method.

Another direction in disturbing FPGAs is a bitstream fault injection. Swier-
czynski et al. [26] show malicious bitstream modifications of Xilinx Spartan-6
and Virtex-5, attacking AES. However, as authors have mentioned, in newer
FPGAs, bitstream encryption has strengthened authentication, which can prevent
such bitstream fault injection. Our method, on the other hand, does not have
any assumptions on bitstream security, since it is applied directly on the logic
components.

Some previous works are summarized in Table 14.1 and compared with this
work. The comparison is drawn in terms of platform (µC, FPGA, and ASIC),
technology node (Tech.), fault target (RAM, logic, and flip-flop), chip position
(front-side, and back-side), fault precision (bit, and random), and the purpose of
the fault injection.

14.3 Chip Preparation and Device Configuration

For modern FPGAs, two package styles are typically applied to encapsulate the
naked dies. The first is the bonded-wire package in which the metal layer is placed
up and the chip substrate is facing down to the PCB board. On the contrary, flip-chip
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package places the substrate up and metal layers down. Due to the metal layer placed
above the active logic layer, laser injection can hardly affect the logic cells (active
transistor layer) below. In this work, we target a 65-nm Virtex-5 FPGA (LX50T)
with a flip-chip package on Digilent’s Genesys board. The first step to allow an
effective laser impact on the internal logic was to preprocess the FPGA chip by
thinning down the substrate layer, by using a mechanical solution. This section
explains the laser effects on silicon, sample preparation, and the description of the
device under test.

14.3.1 Pulsed Laser Interaction with Silicon

The generation of carriers in semiconductor material by photoelectric effect has
been used for decades in various fields such as failure analysis and defect localiza-
tion [20], single event effect testing for space applications [10], and, as detailed in
Sect. 14.2, security analysis.

When a pulsed laser irradiates silicon devices, two main mechanisms may
occur:

• Single photon—Linear absorption (SPA). The photons have enough energy to
induce a direct jump of the electrons from the valence band to the conduction
band. The energy of the photons is bigger than the material bandgap in that case.

• Two photons—Nonlinear absorption (TPA). The free carriers generation results
from the quasi-simultaneous absorption of two photons.

The dominant process will be qualified by the wavelength of light and the pulse
duration. Generation of free carriers by SPA requires a wavelength shorter than the
silicon bandgap (≈1100 nm with undoped silicon). TPA has a quadratic relationship
with the irradiance, meaning that a bigger number of carriers is generated compared
to SPA. In addition, it happens in smaller volumes than SPA, providing resolution
enhancement. One of the drawbacks is that triggering and detecting the effect can
be more complex. Furthermore, TPA requires high peak power pulses achieved with
a femtosecond laser which can be difficult to integrate to the test setup. More details
about SPA and TPA can be found in [10]. In silicon, with pulses of duration within
picosecond range or longer, and at the wavelengths shorter than 1100 nm, SPA will
be the dominant mechanism.

Once carriers are generated, if no electric field exists, charges will recombine
without further effect. On the other hand, when there is a high electric field, like
in a reverse bias junction, carriers surviving prompt recombination will drift and
establish a transient current. The latter can have important consequences on the
device behavior such as upsets, latch-up, etc.

In a modern integrated circuit, the density and the number of metal layers
forbids an irradiation from the frontside of the chip. When injecting photocurrent
from the backside, it is mandatory to use a wavelength that can propagate further
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enough through the substrate and reach the sensitive volume. As a consequence,
wavelengths close to the bandgap are commonly used: absorption is limited while
still triggering photoelectric effect.

Spatial resolution is another factor to consider when choosing the laser wave-
length. The spot size measured at 1/e2 of the maximum intensity is linked to the
wavelength by the following equation:

2ω0 = 4λ

πNA
, (14.1)

where ω0 is the beam waist, λ is the wavelength, and NA is the numerical aperture
of the objective. This equation shows that a smaller spot size is induced either by a
higher numerical aperture or a shorter wavelength, so the shorter the better from the
resolution point of view.

As a summary, laser wavelength needs to be shorter than bandgap wavelength
to generate free carriers but not too short to limit absorption by the substrate. For
this reason, a laser wavelength of 1064 nm is used in this work. While seeking
for resolution enhancement, backside application of visible wavelength has been
reported in other field of work [6], but it requires to thin the substrate down to few
micrometers. Such thickness is even more complex to reach using mechanical tools
when the device under test is soldered on a testboard.

14.3.2 Sample Preparation of Virtex-5

As detailed in the beginning of this section, the Virtex-5 device was mounted
on a Genesys testboard. Removing the part from the board to prepare it for the
backside analysis and then solder it again may result in damaging of the device.
Thus, it was safer to prepare it while mounted on the testboard. As it is a flip-
chip package, sample preparation from the top could be achieved. The compound
was first removed using laser decapsulation until the metal heat-sink plate was
revealed. The metal plate was then removed with tweezers to expose the silicon
substrate. Before being diced and each sample individually packaged, silicon wafers
are usually polished during the manufacturing process. The substrate surface quality
is mirror-like, enabling IR inspection from the backside.

Therefore, in sample preparation, once the device is cleaned with chemicals to
remove glue attaching the heat sink, the circuit can already be observed from the
backside. However, if the doping is high, absorption can limit the image quality.
This is also an issue for fault injection as part of the incident light is absorbed,
resulting in higher energy requirements to induce upsets. In addition, die warpage
leads to a nonuniformity of the substrate. Refraction of the light beam on nonplanar
surface induces poorer image quality.

Thinning of the substrate aims to mitigate all these issues. For this experiment,
thinning was achieved with the Ultra Tec ASAP-1 mechanical processing system
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Fig. 14.2 Ultra Tec ASAP-1
polishing machine

(Fig. 14.2). The process involves two main steps: milling, to reach the desired thick-
ness, and polishing, to achieve a mirror-like surface quality. The latter minimizes
optical losses at the silicon/air interface, providing a better image quality. Depending
on the step, tools of different material are used. For instance, the milling of the
substrate is done with a diamond tool, while polishing involves Xylem and Xybove
tools (Fig. 14.3).

Before machining, the substrate was estimated to be ≈300µm thick. After
processing, it was reduced to ≈130µm. The estimation was performed using IR
imaging and measuring the difference of focus level between the metal layers
and the substrate surface. Figure 14.4 shows difference in image quality of the
sample before and after substrate thinning, by using IR laser imaging and 50×
magnification. We can clearly see the difference in image contrast, especially in
the blocks in the top-right corner.

As mentioned before, it is possible to achieve thinner substrate but it is at
the expenses of the device reliability. Indeed, it would induce higher mechanical
constraints that can generate cracks. Such thickness is of interest for the use of high
numerical aperture lenses or shorter operating wavelengths. With the current test
setup, such objectives were not used and the laser wavelength was fixed to 1064 nm.
As a conclusion, a thickness of 130µm offered a good trade-off between energy
maximization and keeping the device functional on the board.
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Fig. 14.3 ASAP-1 tools.
From left to right: Diamond
tool, Xylem tool, and Xybove
tool

14.3.3 Device Under Test and Configuration

The target device, Virtex-5 FPGA (LX50T), consists of 12 metal layers, manu-
factured in 65-nm technology in a 1136-pin flip-chip BGA package. The device
provides 3600 CLB (7200 slices) deployed in 12 clock regions. Each slice contains
four 6-input look-up tables (LUTs) and four flip-flops. A number of BRAMs,
digital clock mangers (DCMs), phase-locked loops (PLLs), and DSPs are located in
columns of the logic resource array. A system monitor together with its temperature
and power supply sensors are situated in the center of the die. Figure 14.5 (left)
illustrates the basic architecture of the target device. The CLB structure in Xilinx
FPGA contains two slices, together with the routing channel to a switch-box, as
sketched in Fig. 14.5 (right).

The focal plane of the laser beam is critical for impacting the logic elements that
are deployed under substrate. Due to the undisclosed bottom device information and
the unknown dopant density in silicon that hinders the laser focalization, we had to
empirically calibrate the focal plane to the active CLB layer relying on the number
of generated faults, as an indicator, in a preliminary chip scan. As mentioned before,
a diode pulse laser with a wavelength of 1064 nm was selected due to its superior
penetration into silicon. The spot size of the chosen laser with a 5× lens was around
60 × 14µm2. The output power of the laser could be adjusted with an embedded
attenuator with 1% precision step from 0 to 100% of its full power strength (10 W).
The entire setup for performing fault injection experiments is depicted in Fig. 14.6.

Importantly, our experiments show that only the very central part of the laser
beam spot is powerful enough to trigger the faults (“high-energy laser core”
illustrated in Fig. 14.7), which was empirically tested to be much smaller than the
spot size at the substrate surface. This phenomenon is based on the nature of diode
laser, and the optical refraction and energy absorption through the residual substrate
(≈130µm).
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Fig. 14.4 Virtex-5 FPGA (a) before, and (b) after substrate thinning
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Fig. 14.5 Simplified architectural views of the target FPGA and CLB cell
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Fig. 14.6 Laser setup used for the experimental fault injection
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Fig. 14.7 Laser penetration through thinned silicon substrate to active transistor layer
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Fig. 14.8 Implemented PRESENT-80 cryptographic algorithm

Test Circuit

To allow automated profiling, it is necessary to select an adequate test circuit that
allows precise localization and characterization of the injected fault. Since the aim
of this chapter is to provide a profiling method for further cryptographic attacks, a
cipher circuit was chosen for this purpose.

A lightweight block cipher PRESENT-80 [7] was used for profiling the logic
array, which is a substitution–permutation network (SPN) with 64-bit block size,
80-bit key, and 31 computation rounds. Each round contains a key addition
(addRoundKey), a substitution by an SBox (sBoxLayer), and a bit permutation
(pLayer). Figure 14.8 illustrates the round-based architecture of the implemented
cipher circuit. A single PRESENT can be tailored to be implemented in a CLB
column pair. We define a CLB column pair as two adjacent CLB columns from
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two clock regions, as shown in Fig. 14.5 (left). We chose a CLB column pair as the
cipher could not fit in a single CLB column. Moreover, the chosen CLB columns
had to be vertically adjacent, as horizontally adjacent CLB columns would hinder
establishment of column boundaries during the profiling.

14.4 Automated Profiling

After the sample preparation and device configuration, it is possible to use an
automated method to scan the chip area and obtain the results for each position
of the laser beam for given laser diode parameters. The analysis of unique faults
resulting from disturbing a number of ciphers implemented in parallel allows to
identify the laser sensitivity distribution of FPGA architecture—ultimately leading
to device profiling.

14.4.1 Global Array Scan

We applied a strategy by implementing a large number of PRESENT-80 cipher
primitives into logic resource array. Each core is restricted into a specific CLB
column pair by applying the placement constraints at the implementation stage. It is
remarked that other algorithms or even a simple cascaded logic chain could be used
for this purpose as well. We have chosen a cryptographic algorithm in our work
owing to the following advantages:

• PRESENT-80 occupies almost all the logic resources for each assigned CLB
column pair, which provides a good coverage of resource occupation.

• The 31 encryption rounds provide a sufficiently large time window (31 clock
cycles) to test the laser injection with varying glitch offsets.

• The exact logic points and affected timings could be simply determined by
finding the collision round between the faulty ciphertext decryption and plaintext
encryption.

• For the bit flips in the configuration memory of SRAM, the faults change
the basic circuit configuration instead of the processed data, and it hence
leads to permanent malfunction of the design [21]. The malfunction stays for
the following encryptions until the FPGA is reconfigured with an uninfected
bitstream. Therefore, a practical algorithm (e.g., a cipher) used here shows
whether the faults are transient data bit upsets or permanent configuration bit
flips in SRAM.

All the cores encrypt the same plaintext in parallel and all the output ciphertexts
are compared at the output—a tag bit vector. The vector width is equal to the
number of the implemented ciphers, and the value of each bit represents whether
the corresponding cipher is correct or faulty (‘0’: correct; ‘1’: faulty). A fault in any
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Algorithm 1: Automatic profiling of the device under test to laser fault
injection

Input : PS : step for increasing the laser power; DS : step for increasing the laser pulse
duration; TS : step for increasing the trigger delay.

Output : R: table of resulting fault injections after successful fault occurred in one of the
test vectors. Each entry in R contains the laser parameters, together with the
coordinates and tag vector V .

1 Set laser power P := 0, laser pulse duration D := 0, and trigger delay T := 0;
2 do
3 D := D + DS ;
4 do
5 P := P + PS ;
6 do
7 T : = T + TS ;
8 for int x:= 0 to xmax do
9 for int y:= 0 to ymax do

10 for int z:= 0 to zmax do
11 Run implemented test circuits in parallel;
12 Wait for the duration of T;
13 Inject the laser pulse of power P for the duration of D;
14 Obtain and analyze the tag vector V;
15 if V != 0 then
16 Store the measurement result to table R;

17 while R is empty and T != Tmax ;
18 while R is empty and P != Pmax ;
19 while R is empty and D != Dmax ;
20 return R;

of the PRESENT cores can be identified automatically, by checking the position of
the exclusive tag bit. The scanning stage also records critical parameters, like scan
coordinates, injection power, and timing. Hence, each fault can be associated to a
particular cipher and specific location on chip.

The automated profiling method works according to Algorithm 1. First, the
laser parameters are set to minimal values and in each iteration, one of them gets
increased by a predefined step size. Then, the entire chip area is scanned with the
set parameters, performing one laser injection at one spot. We note that in some
cases, the z coordinate which specifies the distance between the laser source and
the die surface is fixed. The algorithm analyzes the tag vector V , which contains
information on whether there was any fault in one of the test circuits. In case there
was a fault, it stores the measurement result into the result table R with all the
important information—laser parameters, coordinates, and number of test circuit
that was faulted. Increasing of the parameters is done until R is empty. In case
R already contains some successful measurements after the area scan for given
parameters is finished, the algorithm outputs it so that the evaluator can decide about
the next steps.
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Since the peripheral logic (e.g., the output comparison) also occupies some
resources, it is beneficial to divide the complete die mapping into two parts: the
left plane mapping and the right plane mapping. When the right part is scanned,
peripheral logic can be deployed on the left side, and vice versa, to avoid control
interruption. In that case, the coordinate system for the automated scanning should
be adjusted accordingly.

In our case study, 48 PRESENT cores were implemented in the right region and
42 in the left side of the FPGA, corresponding to the device architecture. The results
from the fault injection according to Algorithm 1 were then merged to construct the
fault map of the entire chip. Relying on the recorded coordinates of each fault, we
provide the 2D plot in Fig. 14.9. X and Y axes are the dimensions of the thinned
chip, i.e., 12 × 12 mm2. Blue dots represent the valid faults by laser injection
(occurring in any single cipher). Red dots represent the unexpected invalid faults
that simultaneously affected multiple ciphers.

Valid fault Invalid fault

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000

X

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500
7,000
7,500
8,000
8,500
9,000
9,500

10,000
10,500
11,000
11,500
12,000

Y

I/O Logic
IO Pin B

R
A

M

D
S

P

DCM/PLL
I/O Logic

IO Pin
System Monitor B

R
A

M

I/O Logic
IO Pin

BRAM
PCIE

( 
m

ic
ro

 m
et

er
 )

4 2 8 8 44 / CLB Columns

( micro meter )

2 faults 
from 

cipher1

3 faults 
from 

cipher15

Fig. 14.9 Laser sensitivity properties of the device under test (DUT), profiled by the implemented
algorithm. The plotted faults reveal the logic resource architecture of the DUT
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According to our initial results, the faults from each cipher could be precisely
mapped w.r.t. the chip area, as depicted in Fig. 14.9. The coordinates correspond to
real dimensions of the FPGA chip in µm. Comparing the picture to the architectural
view in Fig. 14.5, dimensions of other logic resources can be estimated. It is shown
that the IO pad (IO Logic and IO Pin) and PCIE occupy a significant die space,
and the width of BRAM and DSP are roughly equal to 4 and 2 CLB columns,
respectively. Besides, there are no faults from the extreme top and bottom (gray)
regions. This indicates that the active logic array does not extend to the very edge of
the die. Due to the insufficient information, we could not determine the boundaries
on the left IO pad region and the right BRAM&PCIE region. Nevertheless, we have
clearly identified and mapped the CLB columns to the physical dimensions of the
chip. Based on this mapping, we could further continue with a fine-grained scan
within the CLB column to identify the laser sensitivity for slices.

14.4.2 Configurable Logic Block Column Scan

Laser fault experiments with a higher scan resolution were executed exclusively in
the part of the CLB column where in total 10 CLBs (e.g., 20 slices) were occupied.
In this case, the output of the FPGA was adjusted—only one PRESENT-80 was
implemented in this area, and therefore the output was the ciphertext, instead of the
tag vector. The round data registers of PRESENT-80 were implemented
into the flip-flops of these CLBs. Algorithm 1 was adjusted in a way that the analysis
part would backtrack the fault to determine where in the cipher the fault happened.
The scan matrix for Algorithm 1 was 100 × 1400, and so totally 140,000 positions
were evaluated in this CLB column, with one injection at each location. Note that
either single-bit or multiple-bit faults from 4 flip-flops of each slice are tagged with
the same color, which returns 20 different fault types, as plotted in Fig. 14.10. Hence,
the fault sensitivity distribution of the ten CLBs can be distinctly identified, and a
relative position of two slices inside each CLB can also be determined.

Figure 14.11 gives a closer view of the slice faults of CLB_6 from Fig. 14.10. The
effective laser spot can impact flip-flops from both slices in this CLB, and therefore,
Fig. 14.11 shows an overlapping region for this experiment. For most of the CLB
regions, it was only possible to disturb the two slices from the CLB; however,
the scanned regions had various sizes and different overlapping patterns. This
phenomenon is mainly due to the uneven substrate layer because of manufacturing
process variations, causing different energy levels of the laser beam at the logical
layer. The thickness variation across the 12 × 12 mm die was within 15µm.

Given the coordinates from both Figs. 14.10 and 14.11, the following important
parameters can be estimated as follows:
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Fig. 14.10 2D laser sensitivity map from a CLB column (faults from different slices are colored
differently)

• Distance between the neighboring CLBs: 60–80µm;
• Width (X) of a CLB column: 7–15µm;
• For this DUT, each clock region has 20 CLB rows. Regions are symmetrically

divided by a global-clock routing channel. In Fig. 14.10, half of the clock region
was measured, and the middle clock routing channel occupies around 700µm.
So, the height (Y) of a CLB column in a clock region (e.g., the height of the clock
region) in this Virtex-5 FPGA is estimated as: (3250−2350)∗2µm+700µm ≈
2500µm.

It should be noted that these dimensions are the laser fault sensitivity regions,
instead of the precise component sizes. However, they show the critical areas that
are sensitive to laser attacks. These parameters can help to efficiently navigate the
laser to the POIs, for performing precise bit-level fault attacks.
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Discussion on the Unexpected Faults For some CLB regions, we could observe
faults that showed a very different behavior compared to the rest of the faults that
could be easily explained. For example, fault_2 (denoted as a blue dot) is only
supposed to appear in CLB_1. However, it occurred when the laser was targeted
at CLB_3 as well. This phenomenon is mainly because the signal paths for register
bits [4–7] that were deployed in slice_2 pass the routing channel close to CLB_3,
and hence are affected by the laser while targeting CLB_3.

14.4.3 Flip-Flop Scan

After localizing particular CLBs, we could easily navigate the laser spot to a specific
slice. We focused on a particular slice where 4 out of the total 64 round registers of
PRESENT-80 were deployed. In this slice, the registers storing bits 0, 1, 2, and
3 of the intermediate state, were respectively placed in four flip-flops. The four
LUTs inside this slice were left unused. In an FPGA, LUT is actually a 6-input
ROM by nature, and any bit upset in this memory changes the implemented Boolean
function (potentially leads to computation errors), until FPGA is refreshed by a new
bitstream. Therefore, no matter whether the LUTs are used or not, it does not affect
the registers implemented in the slice. The scanning algorithm remained the same
as in the previous case, analyzing the ciphertext outputs for faults.

By scanning the interested single slice region (6 × 13µm2), we obtained the
following results. With the laser glitch length fixed to 282 ns and the laser strength
varying between 75 and 100%, we received 3918 faulty encryptions out of 10,000,
with 1 injection per each position. In total, 6462 bits were flipped in the faulty
ciphertexts, resulting in 3378 bit sets and 3084 bit resets. It shows that with the
same laser settings, we can expect roughly the same number of bit sets and bit resets
in flip-flops. If we focus on flip-flops that were affected, the majority of the faults
changed the flip-flop A, as can be seen in Table 14.2. The other three flip-flops share
almost the same proportion of faults. In Table 14.3, we can see the numbers for
different fault models that were obtained. More than one half of all the faults were
1-bit flips, following by approximately one third of 2-bit flips. 3- and 4-bit flips were
less likely to occur, however still possible to obtain. Moreover, with a high-precision
scan, we could find the POIs affecting only one slice without accidentally injecting
faults in neighboring slices.

Table 14.2 Percentages of
faults for different registers
(nonexclusive)

Register % of faults

A 66.9

B 35.5

C 35.9

D 36.2
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Table 14.3 Numbers of 1-,
2-, 3-, and 4-bit flips from the
total 3918 faults

Fault model # of faults

1-bit flip 2243

2-bit flip 947

3-bit flip 595

4-bit flip 135

Each slice in Xilinx FPGAs contains four flip-flops (FF-A, FF-B, FF-C, and FF-
D). Therefore, each injection can in fact cause multiple bit flips if the laser spot is
bigger than the flip-flop scale. We show the faults when two adjacent registers are
flipped in Fig. 14.12. The red, green, and blue points represent 2-bit flips occurred on
(FF-A, FF-B), (FF-B, FF-C), and (FF-C, FF-D), respectively, being caused by single
injection. It is clearly shown that different regions overlap in X axis, caused by the
effective laser spot size that covers two neighboring registers. More specifically,
X1 and X2 constitute the middle lines of registers (C, D) and (A, B) in X axis
(X1 ≈ 5782.4445µm, X2 ≈ 5781.9900µm). Due to the similarity of each register,
d/2 = (X2 − X1)/2 ≈ 227 nm should be roughly equal with the fault sensitive
region of a single register. It is stressed that the register structure varies for devices
manufactured with different technologies, and therefore this estimation is valid only
for the tested Virtex-5 FPGA. However, the analysis method is applicable to other
FPGA devices as well.

As mentioned before, none of the faults were found in the configuration memory.
As our laser equipment was operating at its maximum capability, we could not find
adequate parameters to inject configuration faults. This could be due to different
structure and/or layer placement for flip-flops and configuration memory.

14.4.4 Impact of Substrate Thinning

To demonstrate the impact of thinning and polishing on laser fault injection, we
repeated the experiments with another copy of the test board, where the FPGA
substrate was not thinned down. Only the metal lid over the FPGA was removed.
A global laser scan on the entire chip was repeated. The scan result has shown
that faults only occur when conducting the laser injection in the central area of the
chip, similar to the same area on a thinned sample in Fig. 14.9. The phenomenon
demonstrates that only this area of the chip is sensitive to laser without any substrate
thinning. We were not able to trigger any events in the active CLB logic array where
the ciphers were implemented, even with the maximum laser power. Thus, we can
conclude that substrate thinning is necessary in order to get exploitable transient
faults with laser. The fault mechanism of the central area will be discussed in
Sect. 14.5. Please note that the coordinates in all the following figures are preserved
with respect to Fig. 14.9.
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14.5 Discussion

In this section, we first detail some other experiments to further analyze the fault
topology and success probability. Next, we discuss the relevance of these fault
models to fault attacks on cryptographic algorithms. Finally, we shed some light
on the invalid faults found in the central region of the FPGA.

14.5.1 Success Rate

Apart from different types of faults, success rate is another important parameter. In
this part, we determine the manipulating power of the attacker for a given target. It is
important to know which laser settings are the most efficient for producing bit flips,
random byte faults, etc. The objective is to ascertain the minimum power required
for fault injection with each fault model.

The experiment was conducted by injecting laser with varying power in the range
0–100%. The injection campaign was performed on the POI of a slice region where
4-bit round data registers were implemented in the four flip-flops of this slice. 100
injections were performed per laser power, using PRESENT-80 encryption with
random plaintext and fixed key. In Fig. 14.13, it can be observed that faults started
appearing at 81% laser power. With >85% laser power, over 90% injections resulted
in faults. The fault injection success went to 100%, when laser power was over 96%.
These faults included both bit-flips and random byte/nibble.
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Fig. 14.13 Fault success rate for random byte flips
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14.5.2 Compatibility with Cryptographic Fault Attacks

The observed fault models can now be easily translated in terms of fault-based
cryptographic attacks. Proposed experiments reported laser fault injection in Virtex-
5 FPGA with single bit-flip and random byte fault models. Scanning through
the literature on differential [4, 5, 28] and algebraic [13, 30] fault attacks on
cryptographic primitives (block ciphers, stream ciphers, hash functions, etc.), we
found that majority of proposed attacks are based on these two fault models.
This means that given a detailed profiling of the target device and the underlying
algorithm, any cryptographic primitives can be exploited.

Dual-rail precharge logic (DPL) has been previously shown to be intrinsically
resistive against most fault injections [24]. DPL generally employs complementary
duplication encoding where each single logical bit is replaced by a complementary
bit pair, e.g., 1 is (0, 1) and 0 is (1, 0). Moreover, it is a recommended practice
in DPL to place complementary bit pairs in adjacent flip-flops of a slice [15]
for achieving smaller silicon process variations in order to reducing the early
propagation effect (EPE) [19]. Authors of [24] demonstrated that dual-rail logic
resists all faults except symmetric faults which flip encoded (0, 1) to (1, 0) and
vice versa. Faults which do not follow this pattern cannot be exploited for DFA or
AFA, since they inevitably break the DPL and can be easily detected. As shown in
previous experimental results, we found that 13% of random byte faults are actually
symmetric, located in adjacent flip-flops. This fault pattern shows that various fault
attacks can be practically realized in dual-rail protected cryptographic primitives,
by stealthily injecting faults without breaking the dual-rail logic compensation.
Similarly, the demonstrated fault model can also bypass error detection schemes,
such as SBox parity in [29].

14.5.3 Discussion on Central Fault Region

A dense fault region appeared in the center of the FPGA die. This region was not
an active CLB region and no user logic was implemented in this area. The nature
of injected faults in this region was also very different from the valid faults,
i.e., several cores were faulted by a single injection. Moreover, the faults started
appearing at a much lower power (18% as compared to 81% for faults in CLB
columns). To study this behavior, we have specially focused on this region with
better scanning precision using a 20× laser lens. The size of the laser spot with
this lens was 15 × 3.5µm2. The energy density of the 20× lens was higher than
that of the 5× lens. We varied the laser power from 17% to 25% of the full laser
strength. Figure 14.14 gives the fault plot after the laser scan in this section. Points in
different colors represent different laser strengths. Most faults were located in two
regions, hereafter named “Region A” and “Region B”, respectively. A very
few number of faults were seen in some remote spots. A bitstream modification was
never observed.
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Fig. 14.14 Position and strength of faults in a laser scan focused on the center of FPGA

Due to undisclosed transistor-level device information, clarifying the internal
mechanism of the faults here is challenging. Even when the cipher and its peripheral
logics were placed in a distant FPGA corner, the fault characteristic of central region
remained unchanged. Also, multiple ciphers could be faulted by a single injection,
when targeting this region. Thus, laser injection in this region causes and propagates
some global disturbance, which could affect multiple ciphers irrespective of the
placement. Deeper analysis was conducted under two assumptions:

• The faults were triggered by the global clock network. Since the clock buffer that
fans out the global clock is deployed in the die center in this FPGA, a fault on the
buffer can spread to the whole chip. To validate, we removed the clock buffer and
routed the clock system using the signal paths. However, the faults still persisted
in the new experiment.

• The faults were triggered by the system monitor. System monitor is an environ-
ment sensor system (power supply, temperature, etc.), deployed near the center of
the FPGA die. System monitor is activated by default and physically connected
to the power network that can possibly propagate the voltage disturbance induced
by laser impact. However, fresh experiments after disabling the system monitor,
by connecting all of its IO pins to GND on board, still reported similar faults in
central region.
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14.6 Chapter Summary

This chapter focused on automated profiling approach for FPGAs, with a case
study on Xilinx Virtex-5. Such approach helps in disclosing the internal device
architecture, and hence accelerating the practical fault injection attacks on sensitive
modules. The profiling was done by using a 1064-nm pulse laser, focused on the
backside of the FPGA. In order to impact the active layer under chip surface, we
relied on the mechanical solution to mill down and polish the silicon substrate. We
thoroughly discussed the optical properties of the silicon circuit under laser fault
injection, and detailed the chip preparation works. We conducted a chip-scale and
fine-grained laser scans of the FPGA. By mapping the output data, we could restore
the information about the FPGA array and defer the scale of the logic elements.

The presented algorithm helps to rapidly localize the sensitive modules and
successfully identify the critical components of an embedded security system inside
an unknown target chip.
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