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Abstract To the best of our current understanding, quantummechanics is part of the
most fundamental picture of the universe. It is natural to ask how pure and minimal
this fundamental quantum description can be. The simplest quantum ontology is that
of the Everett or Many-Worlds interpretation, based on a vector in Hilbert space and
a Hamiltonian. Typically one also relies on some classical structure, such as space
and local configuration variables within it, which then gets promoted to an algebra
of preferred observables. We argue that even such an algebra is unnecessary, and
the most basic description of the world is given by the spectrum of the Hamiltonian
(a list of energy eigenvalues) and the components of some particular vector in Hilbert
space. Everything else—including space and fields propagating on it—is emergent
from these minimal elements.

1 Taking Quantum Mechanics Seriously

The advent of modern quantum mechanics marked a profound shift in how we view
the fundamental laws of nature: it was not just a new theory, but a new kind of
theory, a dramatic shift from the prevailing Newtonian paradigm. Over nine decades
later, physicists have been extremely successful at applying the quantum rules to
make predictions about what happens in experiments, but much less successful at
deciding what quantummechanics actually is—its fundamental ontology and indeed
its relation to underlying reality, if any.

One obstacle is that, notwithstanding the enormous empirical success of quan-
tum theory, we human beings still tend to think in classical terms. Quantum theory
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describes the evolution of a state vector in a complex Hilbert space, but we populate
our theories with ideas like “spacetime,” “particles,” and “fields.” We typically con-
struct quantum theories by starting with some classical theory and then “quantizing”
it. Presumably Nature works the other way around: it is quantum-mechanical from
the start, and a classical limit emerges in the right circumstances.

In this essay we ask how far we can take the idea that the world is fundamentally
quantum, with a minimal plausible ontology: a space of quantum states (Hilbert
space)H, a particular state |ψ〉 within it, and a Hamiltonian Ĥ , which tells how the
state evolves over time. This is a version of the Everettian (Many-Worlds) approach to
quantum mechanics, in which the quantum state is the only variable and it smoothly
evolves according to the Schrödinger equation with the given Hamiltonian,

Ĥ |ψ(t)〉 = i∂t |ψ(t)〉. (1)

Our approach is distinguished by thinking of that state as a vector in Hilbert space,
without any preferred notion of “observables,” and without necessarily representing
Hilbert space in terms of particular classical variables. All of the additional elements
familiar in physical theories, we will argue, can be emergent from the state vector
(cf. [1]). We call this approach “Mad-Dog Everettianism,” to emphasize that it is as
far as we can imagine taking the program of stripping down quantum mechanics to
its most pure, minimal elements.1

2 The Role of Classical Variables

The traditional way to construct a quantum theory is to posit some classical con-
figuration space (such as the space of all possible positions of a set of particles). A
quantum state is then a wave function, which assigns a complex number to every
possible configuration, such that (ultimately) the square of that number will give the
probability of observing the system in that configuration. Hilbert spaceH is then the
space of all such (properly normalized) functions.

This gives us a representation ofH, but the Hilbert space itself is simply a vector
spacewith a norm (awayof taking the dot product between twovectors). That gives us
very little structure to work with: all Hilbert spaces of the same finite dimensionality
are isomorphic, as are infinite-dimensional ones that are separable (possessing a
countable dense subset, which implies a countable orthonormal basis). We may
therefore ask, once H is constructed, is there any remnant of the original classical
configuration space left in the theory?

The answer is “not fundamentally, no.” A given representation might be useful
for purposes of intuition or calculational convenience, but it is not necessary for
the fundamental definition of the theory. Representations are very far from unique,

1The name is inspired by philosopher Owen Flanagan’s description of his colleague Alex Rosen-
berg’s philosophy as “Mad-Dog Naturalism.”
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even if we limit our attention to representations corresponding to sensible physical
theories.

One lesson of dualities in quantum field theories is that a single quantum theory
can be thought of as describing completely different classical variables. The fun-
damental nature of the “stuff” being described by a theory can change under such
dualities, as in that between the sine-Gordon boson in 1 + 1 dimensions the theory of a
massiveThirring fermion [2]. Even the dimensionality of space can change, as iswell-
appreciated in the context of the AdS/CFT correspondence, where a single quantum
theory can be interpreted as either a conformal field theory in a fixed d-dimensional
Minkowski background or a gravitational theory in a dynamical (d + 1)-dimensional
spacetime with asymptotically anti-de Sitter boundary conditions [3].

The lesson we draw from this is that Nature at its most fundamental is simply
described by a vector in Hilbert space. Classical concepts must emerge from this
structure in an appropriate limit. The problem is that Hilbert space is relatively
featureless; given that Hilbert spaces of fixed finite or countable dimension D are all
isomorphic, it is a challenge to see precisely how a rich classical world is supposed
to emerge.

Ultimately, all we have to work with is the Hamiltonian and the specific vector
describing the universe. In the absence of any preferred basis, the Hamiltonian is
fixed by its spectrum, the list of energy eigenvalues:

{E0, E1, E2, . . .} , Ĥ |n〉 = En|n〉 , (2)

and the state is specified by its components in the energy eigenbasis,

{ψ0, ψ1, ψ2, . . .} , |ψ〉 =
∑

n

ψn|n〉. (3)

The question becomes, how do we go from such austere lists of numbers to the
fullness of the world around us?

3 The Role of Emergence

One might ask why, if the fundamental theory of everything is fixed by the spectrum
of someHamiltonian, we don’t simply imagine writing the state of the universe in the
energy eigenbasis, where its evolution is trivial? The answer is the one that applies
to any example of emergence: there might be other descriptions of the same situation
that provide useful insight or computational simplification.

Consider the classical theory of N particles moving under the influence of some
multi-particle potential in 3 dimensions of space. The corresponding phase space
is 6N -dimensional, and we could simply think of the theory as that of one point
moving in a 6N -dimensional structure. But by thinking of it as N particles moving
in a 3-dimensional space of allowed particle positions, we gain enormous intuition;
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for example, it could become clear that particles influence each other when they are
nearby in space, which in turn suggests a natural way to coarse-grain the theory.
Similarly, writing an abstract vector in Hilbert space as a wave function over some
classical variables can provide crucial insight into the most efficient and insightful
way to think of what is happening to the system.

4 Local Finite-Dimensionality

The Hilbert spaces considered by physicists are often infinite-dimensional, from a
simple harmonic oscillator to quantumfield theories.However, there are good reasons
from quantum gravity to think that the true Hilbert space of the universe is “locally
finite-dimensional” [4]. That is, we can decomposeH into a (possibly infinite) tensor
product of finite-dimensional factors,

H =
⊗

α

Hα, (4)

where for each α we have dim(Hα) < ∞. If we have factored the Hilbert space into
the smallest possible pieces, we will call these “micro-factors.” The idea is that if
we specify some region of space and ask how many states could possibly occupy
the region inside, the answer is finite, since eventually the energy associated with
would-be states becomes large enough to create a black hole the size of the region
[5]. Similarly, our universe seems to be evolving toward a de Sitter phase dominated
by vacuum energy; a horizon-sized patch of such a spacetime is a maximum-entropy
thermal state [6] with a finite entropy and a corresponding finite number of degrees
of freedom [7, 8].

There are subtleties involved with trying to map collections of factors in (4)
directly to regions of space, including the fact that “a region of space” R might not
bewell-defined across different branches of the quantum-gravitationalwave function.
All that matters for us, however, is the existence of a decomposition of this form, and
the idea that everything happening in one particular region of space on a particular
branch is described by a finite-dimensional factor of Hilbert space HR that can be
constructed as a finite tensor product of micro-factors Hα . Given some overall pure
state |ψ〉 ∈ H, physics within this region is described by the reduced density operator

ρR = TrR̄ |ψ〉〈ψ |. (5)

In that case, there is no issue of specifying the correct algebra of observables: the
algebra is simply “all Hermitian operators acting onHR.” Any further structuremust
emerge from the spectrum of the Hamiltonian and the quantum state.
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5 Spacetime from Hilbert Space

Fortunately, we are guided in our quest by the fact that we know a great deal about
what an appropriate emergent description should look like—a local effective field
theory defined on a semiclassical four-dimensional dynamical spacetime. The first
step is to choose a decomposition of theHilbert spaceHR (representing, for example,
the interior of our cosmic horizon) into finite-dimensional micro-factors. We can say
that the Hamiltonian is “local” with respect to such a decomposition if, for some
small integer k, the Hamiltonian connects any specific factor Hα∗ to no more than k
other factors; intuitively, this corresponds to the idea that degrees of freedom at one
location only interact with other degrees of freedom nearby.

It turns out that a generic Hamiltonian will not be local with respect to any decom-
position, and for the special Hamiltonians that can be written in a local form, the
decomposition in which that works is essentially unique [9]. In other words, for the
right kind of Hamiltonian, there is a natural decomposition of Hilbert space in which
physics looks local, which is fixed by the spectrum alone. From the empirical success
of local quantum field theory, we will henceforth assume that the Hamiltonian of the
world is of this type, at least for low-lying states near the vacuum.

This preferred local decomposition naturally defines a graph structure on the space
of Hilbert-space factors, where each node corresponds to a factor and two nodes are
connected by an edge if they have a nonzero interaction in the Hamiltonian. To
go from this topological structure to a geometric one, we need to look beyond the
Hamiltonian to the specifics of an individual low-lying state. Given any factor of
Hilbert space constructed from a collection of smaller factors, we can construct its
density matrix and entropy,

ρA = Tr Ā ρR , SA = −Tr ρA log ρA, (6)

and given any two such factorsHA and HB we can define their mutual information

I (A : B) = SA + SB − SAB . (7)

Guided againbywhatweknowabout quantumfield theory,weconsider “redundancy-
constrained” states, which capture the notion that nearby degrees of freedom are
highly entangled, while faraway ones are unentangled. In that case the entropy of ρA

can be written as the sum of mutual informations between micro-factors inside and
outside HA,

SA = 1

2

∑

α∈A,β∈ Ā

I (α :β). (8)

The mutual information allows us to assign weights to the various edges in our
Hilbert-space-factor graph. With an appropriate choice of weighting, these weights
can be interpreted as distances, with large mutual information corresponding to short
distances [10]. That gives our graph an emergent spatial geometry, from which we
can find a best-fit smooth manifold using multidimensional scaling (Alternatively,
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the entropy across a surface can be associated with the surface’s area, and the emer-
gent geometry defined using a Radon transform [11]). As the quantum state evolves
with time according to the Schrödinger equation, the spatial geometry does as well;
interpreting these surfaces as spacelike slices with zero extrinsic curvature yields an
entire spacetime with a well-defined geometry.

6 Emergent Classicality

A factorization of Hilbert space into local micro-factors is not quite the entire story.
To make contact with the classical world as part of an emergent description, we
need to further factorize the degrees of freedom within some region into macro-
scopic “systems” and a surrounding “environment,” and define a preferred basis of
“pointer states” for each system. This procedure is crucial to the Everettian program,
where the interaction of systems with their environment leads to decoherence and
branching of the wave function. To describe quantum measurement, one typically
considers a quantum objectHq , an apparatusHa , and an environmentHe. Branching
occurs when an initially unentangled state evolves first to entangle the object with
the apparatus (measurement), and then the apparatus with orthogonal environment
states (decoherence), for example:

|ψ〉 = (α|+〉q + β|−〉q) ⊗ |0〉a ⊗ |0〉e (9)

→ (α|+〉q |+〉a + β|−〉q |−〉a) ⊗ |0〉e (10)

→ α|+〉q |+〉a|+〉e + β|−〉q |−〉a|−〉e. (11)

The Born Rule for probabilities, p(i) = |ψi |2, isn’t assumed as part of the theory; it
can be derived using techniques such as decision theory [12] or self-locating uncer-
tainty [13].

Two things do get assumed: an initially unentangled state, and a particular fac-
torization into object/apparatus/environment. The former condition is ultimately
cosmological—the universe started in a low-entropy state, which we won’t discuss
here. The factorization, on the other hand, should be based on local dynamics. While
this factorization is usually done based on our quasi-classical intuition, there exists
an infinite unitary freedom in the choice of our system and environment. We seek
an algorithm for choosing this factorization that leads to approximately classical
behavior on individual branches of the wave function.

This question remains murky at the present time, but substantial progress is being
made. The essential observation is that, if quantum behavior is distinguished from
classical behavior by the presence of entanglement, classical behavior may be said
to arise when entanglement is relatively unimportant. In the case of pointer states,
this criterion is operationalized by the idea that such states are the ones that remain
robust under being monitored by the environment [14]. For a planet orbiting the Sun
in the solar system, for example, such states are highly localized around classical
trajectories with definite positions and momenta.
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A similar criterion may be used to define the system/environment split in the
first place [15, 16]. Consider a fixed Hamiltonian and some Hilbert-space factoriza-
tion into subsystems A and B. Generically, if we start with an unentangled (tensor-
product) state in that factorization, the amount of entanglementwill growvery rapidly.
However, we can seek the factorization in which there exist low-entropy states for
which entanglement grows at a minimum rate. That will be the factorization in which
it is useful to define robust pointer states in one of the subsystems, while treating the
other as the environment.

This kind of procedure for factorizingHilbert space is, in largemeasure, the origin
of our notion of preferred classical variables. Given a quantum system in a finite-
dimensional part of Hilbert space, in principle we are able to treat any Hermitian
operator as representing an observable. But given the overall Hamiltonian, there will
be certain specific interaction terms that define what is being measured when some
other system interacts with our original system. We think of quantum systems as
representing objects with positions and momenta because those are the operators
that are most readily measured by real devices, given the actual Hamiltonian of the
universe. We think of ourselves as living in position space, rather than in momentum
space, because those are the variables in terms of which the Hamiltonian appears
local.

7 Gravitation from Entanglement

We have argued that the geometry of spacetime can be thought of as arising from the
entanglement structure of the quantum state in an appropriate factorization. Tomatch
our empirical experience of the world, this emergent spacetime should respond to
emergent energy-momentum through Einstein’s equation of general relativity.While
we can’t do full justice to this problem in this essay, we can mention that there are
indications that such behavior is quite natural.

The basic insight is Jacobson’s notion of “entanglement equilibrium” [17],
extended to the case where spacetime itself is emergent rather than postulated [11].
Consider a subsystem in Hilbert space, in a situation where the overall quantum state
is in the vacuum. It is then reasonable to imagine that the subsystem is in entangle-
ment equilibrium: a small perturbation leaves the entropy of the region unchanged
to first order. If we divide the entanglement into a small-scale ultraviolet term that
determines the spacetime geometry, and a longer-scale infrared term characterizing
matter fields propagating within that geometry, the change in one kind of entropy
must be compensated for by a corresponding change in the other,

δSUV = −δSI R . (12)

Here the left-hand side represents a change in geometry, and can be related directly to
the spacetime curvature. The right-hand side represents a matter perturbation, which
can be related to the modular Hamiltonian of an emergent effective field theory on
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the background. At the linearized level (the weak-field limit), it can be shown that
this relation turns into the 00 component of Einstein’s equation in the synchronous
gauge,

δG00 = 8πGδT00. (13)

If the overall dynamics are approximately Lorentz invariant (which they must be
for this program to work, although it’s unclear how to achieve this at this time),
demanding that this equation hold in any frame implies the full linearized Einstein’s
equation, δGμν = 8πGδTμν .

There are a number of assumptions at work here, but it seems plausible that the
spacetime dynamics familiar from general relativity can arise in an emergent space-
time purely from generic features of the entanglement structure of the quantum state.
Following our quantum-first philosophy, this would be an example of finding gravity
within quantum mechanics, rather than quantizing a classical model for gravitation.

8 The Problem(s) of Time

Given our ambition to find the most minimal fundamental description of reality, it
is natural to ask whether time as well as space could be emergent from the wave
function. The Wheeler-deWitt equation of canonical quantum gravity takes the form

Ĥ |ψ〉 = 0, (14)

for some particular form of Ĥ in a particular set of variables. In this case time
dependence is absent, but one may hope to recover an emergent notion of time by
factorizing Hilbert space into a “clock” subsystem and the rest of the universe,

H = HU ⊗ HC , (15)

then constructing an effective Hamiltonian describing evolution of the universe with
respect to the clock.

Given our discussion thus far, the problem with such a procedure should be clear:
what determines the decomposition (15)? In the Schrödinger case we can have data
in the form of the spectrum of the Hamiltonian, but in the Wheeler-deWitt case the
universe is in a single eigenstate; no other features of the Hamiltonian, including its
other energy eigenvalues, can be relevant. This problem has been dubbed the “clock
ambiguity” [18].

Onepotential escapewould be to imagine that the fundamental state of the universe
is described not by a vector in Hilbert space, but by a density operator acting on it.
Then we have an alternative set of data to appeal to: the eigenvalues of that density
matrix. These can be used to compute a modular Hamiltonian (given by the negative
of the logarithm of the density operator), which in turn can yield an effective notion
of time evolution, a proposal known as the “thermal time hypothesis” [19]. Thus it
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is conceivable that time as well as space could be emergent, at the cost of positing a
fundamental density operator describing the state of the universe.2

9 Prospects and Puzzles

The program outlined here is both ambitious and highly speculative.We find it attrac-
tive as a way of deriving most of the familiar structure of the world from a minimal
set of truly quantum ingredients. In particular, we derive rather than postulating such
notions as space, fields, and particles. The fact that our Hilbert space is locally finite-
dimensional suggests an escape from the famous problems of ultraviolet divergences
in quantum field theory, and the emergence of spacetime geometry from quantum
entanglement is an interesting angle on the perennial problems of quantum gravity.

Numerous questions remain; we will highlight just two. One is the emergence of
local Lorentz-invariant dynamics. There are no unitary representations of the Lorentz
group on a finite-dimensional factor of Hilbert space. This might seem to imply that
Lorentz symmetry would be at best approximate, a possibility that is experimentally
intriguing but already highly constrained. It would be interesting to understand how
numerically large any deviations from perfect Lorentz invariance would have to be
in this framework, and indeed if they have to exist at all.

The other issue is the emergence of an effective field theory in curved spacetime
that could describe matter fields in our geometric background.We have posited that a
field theory might be identified with infrared degrees of freedom while the geometry
is determined by ultraviolet degrees of freedom, but there is much to be done to make
this suggestion more concrete. A promising idea is to invoke the idea of a quantum
error-correcting code [11, 21]. Such codes imagine identifying a “code subspace”
within the larger physical Hilbert space, such that the quantum information in the
code can be redundantly stored in the physical Hilbert space. There is a natural way to
associate the code subspace with the infrared degrees of freedom of the matter fields,
with the rest of the physical Hilbert space providing the ultraviolet entanglement
that defines the emergent geometry. Once again, this is a highly speculative but a
promising line of investigation.

We are optimistic that this minimal approach to the ontology of quantummechan-
ics is sufficient, given an appropriate Hamiltonian and quantum state, to recover all
of the richness of the world as we know it. It would be a profound realization to
ultimately conclude that what is fundamental does not directly involve spacetime or
propagating quantum fields, but simply a vector moving smoothly through a very
large-dimensional Hilbert space. Further investigation will be needed to determine
whether such optimism is warranted, or whether we have just gone mad.

2If time is fundamental rather than emergent, there is a very good reason to believe that the entirety
of Hilbert space is infinite-dimensional, even if the factor describing our local region is finite-
dimensional; otherwise the dynamics would be subject to recurrences and Boltzmann-brain fluctu-
ations [20].
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