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Abstract
The Pyrenean Orogenic system formed by the contrac-
tional deformation of the North Iberian margin from late
Santonian to Middle Miocene times as a result of the
collision between the Iberian and European plates. The
Iberian lithosphere subducted underneath the European
one. The structural style of the Pyrenees has been mainly
controlled by the reactivation of the segmented rift system
that formed at Late Jurassic-Early Cretaceous times
connecting the Atlantic with the Alpine Tethys along
the Bay of Biscay and Pyrenean domains, as well as by
the distribution of the Triassic salt. Preserved syntectonic
sediments in the adjacent foreland basins and piggy-back
basins combined with thermochronological data allow
constraining the evolution of the orogen.

9.1 Introduction

The Pyrenees is the orogenic system that runs along the
boundary between the Iberian and European plates
(Fig. 9.1). The Pyrenean orogen can be followed beyond the
present Pyrenees mountain range. It continues eastward in
the Alps along Provence in southern France, and westward
along the southern Bay of Biscay into the Atlantic (Fig. 9.1).
The Pyrenean orogen formed as the result of the collision
between the Iberian and European plates from Late Creta-
ceous to Miocene times (Roest and Srivastava 1991;
Rosenbaum et al. 2002). It is an asymmetric doubly vergent
orogenic wedge that formed above the subduction of the
Iberian lithospheric mantle and lower crust under the Euro-
pean plate (Fig. 9.2) (Choukroune and ECORS Team 1989;
Muñoz 1992; Pedreira 2003; Campanyà et al. 2012; Chevrot

et al. 2015). The Pyrenean orogen resulted from the inver-
sion of the rift system and related passive margin (Northern
Iberian Margin) that developed during the Late Jurassic-
Early Cretaceous all along the northern Iberian plate con-
necting the Atlantic with the Alpine Tethys realms (Stampfli
and Hochard 2009; Tugend et al. 2014). Before this exten-
sional event, Triassic rifting, Stephano-Permian late Var-
iscan tectonics, involving strike slip and extensional
deformation, and Variscan and pre-Variscan tectono-
metamorphic events also affected the Pyrenean domain.

Structural style and related tectono-sedimentary evolution
changes significantly along strike. These changes are mainly
expressed by differences in: width, asymmetry of the double
wedge, thrust kinematics, involvement of basement and
topography, among others (Figs. 9.1 and 9.2). Differences in
basement involvement and topography are so strong that
different physiographic units formed receiving distinct
names such as Cantabrian and Pyrenean Ranges. Moreover,
lower relief areas in between the ranges were not initially
considered parts of the orogen and have been geologically
referred as basins, regardless they are part of the orogenic
system. As a result, different names have been proposed to
refer to the entire system or parts of it and there is a con-
fusing nomenclature with a mixture of geographical and
geological names (see Barnolas and Pujalte 2004 for a
review). Herein, the term Pyrenean orogen (Pyrenees s.l.)
will be used to refer to the entire system. Local names of
parts of this orogen, such as the Cantabrian Mountains, will
be preserved for historical reasons and avoid confusion.

The main factors controlling the Pyrenean structural style
are the inversion of the inherited extensional structures and
the distribution of the Triassic salt. Other factors, such as the
weakness of the inherited Variscan crust and the lithospheric
thermal state, have also contributed to the structural evolu-
tion (Jammes and Huismans 2012; Jammes et al. 2014; Clerc
and Lagabrielle 2014). The Triassic salt has resulted into
decoupling of the Mezozoic cover succession and a
thin-skinned style in the Pyrenean fold and thrust belt.
Inversion of the Early Cretaceous extensional system and the
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weaker parts of the Variscan crust have promoted basement
involvement and thick-skinned structural style. Areas with
absence of Triassic salt and a relatively weak basement, such
as the Cantabrian Mountains, are characterize by a thick-
skinned structural style (Alonso et al. 1996), while areas
with a thick Triassic salt, such as the Basque-Cantabrian
Pyrenees and the central Pyrenees are characterize by
thin-skinned geometries (Carola et al. 2015; Muñoz 1992).
In the thin-skinned areas, basement is involved in the
retro-wedge and can be involved as well in the pro-wedge
underneath the detached cover, depending on the inherited
rift system (Fig. 9.2). Thus, the Pyrenean fold and thrust belt
exhibits both thin- and thick-tectonic style in different seg-
ments of the orogenic system as many other fold and thrust
belts in the planet (Lacombe and Bellahsen 2016) and cannot
be assigned to a single structural style as recently proposed
(Mouthereau et al. 2013).

Constraints on the temporal and spatial evolution of the
Pyrenees are provided by the preservation of syntectonic
sediments since the early stages of the convergence.

Shortening estimates based on construction of crustal scale
balanced cross-sections are reasonable provided the moder-
ate amount of deformation and the absence of ductile
deformation and related metamorphic processes during the
convergence.

9.2 Geodynamic Setting

Structures and sedimentary record of the Mesozoic, Paleo-
gene and Lower Neogene successions in the Pyrenees are
related with the kinematics of the Iberian plate that in its turn
is the result of the successive stages of the opening of the
Atlantic Ocean. There is a strong debate about the evolution
of Iberia during the Mesozoic and there are several published
plate models (Olivet 1996; Sibuet et al. 2004; Vissers and
Meijer 2012, among others). See Barnett-Moore et al. (2016)
for a recent compilation and discussion. This current unre-
solved debate is an indication of the ambiguities associated
with defining clear oceanic crust along the West Iberia and

Fig. 9.1 Structural map of the Pyrenean orogen. Modified from Carola et al. (2013)
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Fig. 9.2 Seriated crustal cross-sections of the Pyrenees depicting the
main structural changes along the orogen. 1: ECORS–Pyrenees (from
Muñoz 2002); 2: ECORS–Arzaq (modified from Teixell 1998); 3:

Basque–Parentis (from Pedreira 2004 and Ferrer et al. 2008); 4:
Cantabrian–Armorican Margin (modified from Pulgar et al. 1996 and
Álvarez-Marrón et al. 1997)
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Newfoundland margins as well as knowing the nature and
origin of the magnetic anomalies used for the reconstruction
of the Iberian plate motion (Bronner et al. 2011; Nirren-
garten et al. 2016).

Opening of the Central Atlantic progressed from south to
north. South of the Newfoundland-Azores-Gibraltar Fracture
Zone (NAGFZ) oceanic crust formed at Middle Jurassic
times connecting the Atlantic with the Ligurian-Tethys along
the Gulf of Cádiz and Betics (Stampfli and Hochard 2009).
North of the NAGFZ, plate separation between Iberia and
Newfoundland and crustal thinning to exhume the mantle
occurred at latest Jurassic to Early Cretaceous times. Mag-
netic anomalies older than M3 (ca. 127 Ma) that were con-
sidered before as recording oceanic crust (M3 to M20,
127-147 Ma) have been reinterpreted as exhumed conti-
nental mantle (Sibuet et al. 2007). Oceanic crust formed
during Aptian times (between 125 Ma and 112 Ma) west of
Iberia from south to north (Sibuet et al. 2007; Bronner et al.
2011; Tucholke and Sibuet 2012; Nirrengarten et al. 2016)
and, accordingly, it progressed into the western part of the
Bay of Biscay most probably during Albian times. Anti-
clockwise rotation of the Iberian plate has been related with
the opening of the Bay of Biscay and dated as Aptian in age
from paleomagnetic data in Cretaceous Pyrenean basins
(Dinarès-Turell and García-Senz 2000; Gong et al. 2008).
Thus, this vertical axis rotation could be related with mantle
exhumation during hyperextension between Iberia and Eur-
ope more than oceanic accretion. Nevertheless, the reliability
of the available paleomagnetic data has been questioned
(Neres et al. 2013).

Following reconstruction of different magnetic anomalies,
such as the J anomaly, two end-member plate models have
been proposed: (i) reconstructions with an Early Cretaceous
ocean all along the Pyrenean domain and a separation
between Iberia and Europe of up to 600 km (Srivastava et al.
2000; Sibuet et al. 2004; Vissers and Meijer 2012); (ii) re-
constructions with a separation between Iberia and Europe of
no more of 200 km along a N-S direction and with oceanic
crust restricted to the western Bay of Biscay (Klitgord and
Schouten 1986; Olivet 1996; Jammes et al. 2009, among
others). The other difference between the proposed plate
models for Iberia concerns about the magnitude and timing
for the eastward movement of Iberia with respect to Europe.
All the proposed models agree that Iberia experienced a
left-lateral strike-slip motion along the Northern Iberian
Margin, as the Northern Atlantic oceanic crust propagated
northwards, although, the proposed amount of left-lateral
strike-slip varies from 100 km to several hundreds. How-
ever, there is not agreement about the timing. In the sev-
enties and until recently, it was believed that the left-lateral
displacement of Iberia along the North Pyrenean Fault
mainly occurred during the Albian and Cenomanian and
subsequently this fault acted as the main plate boundary

during the Pyrenean orogeny (Le Pichon and Sibuet 1971;
Choukroune and Mattauer 1978; Olivet 1996). In that case
strike-slip motion would have been synchronous (transten-
sional motion) to younger than the main extensional event in
the Northern Iberian Margin and the anticlockwise rotation
of Iberia. On the contrary, recent reconstructions propose
that the transtensional motion occurred until the Aptian and
then it was followed by orthogonal extension between Iberia
and Eurasia (Jammes et al. 2009).

The existence of an Early Cretaceous oceanic crust all
along the Pyrenean domain, subsequently subducted during
the Aptian and Albian (Vissers and Meijer 2012; Vissers
et al. 2016) contradicts with all the Pyrenean geological data
and recently acquired high-resolution tomography models
(Chevrot et al. 2014, 2015; Barnett-Moore et al. 2016).

Discrepancies in the plate models are mainly related with
the Jurassic-Cretaceous evolution, but it is widely accepted
that by late Santonian times (ca. 83 Ma) a major shift in
plate boundary forces between Africa, Iberia and Eurasia
triggered a compressive regime in the Northern Iberian
Margin, lasting until the Miocene and forming the
present-day Pyrenees (Rosenbaum et al. 2002).

9.3 Geophysical Data and Lithospheric
Structure

The crustal and lithospheric structure of the Pyrenees has
been constrained by different geophysical techniques (deep
reflection and refraction seismic profiles, gravity, magne-
totellurics, magnetic anomalies, tomography, heat flow).
There is not any other orogen with such an amount and
quality of geophysical data as it is available in the Pyrenees.
Moreover, recent progresses in deep imaging, such as new
seismic tomographic techniques and magnetotelluric mod-
elling have considerably improved our understanding of the
lithospheric structure of the Pyrenees (Campanyà et al. 2012;
Chevrot et al. 2015; Wang et al. 2016).

The available geophysical data provide clear and definite
evidence for the subduction of the Iberian continental
lithosphere underneath the European plate (Fig. 9.2). This
was already shown by the ECORS profile in the Central
Pyrenees (Choukroune and ECORS Team 1989; Muñoz
1992) and has been confirmed also to exist in the
Basque-Cantabrian Pyrenees by the ESCIN-2 reflection
profile (Pulgar et al. 1996), the wide-angle refraction surveys
(Fernández-Viejo et al. 2000) and the seismic data acquired
during the MARCONI experiment in the Bay of Biscay
(Roca et al. 2011; Ruiz et al. 2017). In the easternmost
Pyrenees the subducted Iberian crust is not observed (Gallart
et al. 2001; Campanyà et al. 2017), as the crustal thinning
related with the opening of the Western Mediterranean has
been superimposed on the previously thickened lithosphere.
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Westward, in the western Cantabrian Mountains an abrupt
transition from the Pyrenean thickened crust to the Variscan
crust with a 30–32 km thickness of the Iberian Massif is
observed (Pérez-Estaún et al. 1994; Fernández-Viejo et al.
2000). This transition trends NW-SE and coincides with
oblique faults at surface, such as the Ventaniella Fault
(Muñoz 2002). The subducted Iberian crust has reached a
depth of up to 60–70 km in most of the studied Pyrenean
transects. The subducted Iberian slab mostly corresponds
with the lower part of the crust with a thickness varying
between 15 km in the western Pyrenees to 25 km in the
central Pyrenees (Fig. 9.2, Muñoz 1992; Gallastegui et al.
2002; Chevrot et al. 2015; Pedreira et al. 2015; Wang et al.
2016). A deeper depth for the subducted Iberian lower crust
as suggested by crustal balanced cross-sections (Beaumont
et al. 2000) would be also compatible with geophysical data
(Pedreira et al. 2015). The subducted lower crust could have
been experienced either partial melting to account for the
conductivity anomalies (Glover et al. 2000) or an eclogitic
metamorphism with water release to better fit with the pro-
posed 3D density models of the Pyrenean deep structure
(Vacher and Souriau 2001).

In recent years there is growing evidence that the Bay of
Biscay-Pyrenean domains experienced hyperextension dur-
ing the Early Cretaceous rifting that occurred between the
Iberian and European plates (Jammes et al. 2009; Lagabrielle
et al. 2010; Roca et al. 2011; Clerc et al. 2012; Masini et al.
2014; Tugend et al. 2014). In this rift system the oceanic
domain was restricted to the western Bay of Biscay, west-
ward of 6–8 W (Fig. 9.1) as evidenced by the ocean floor
magnetic anomalies recorded symmetrically at both sides of
the spreading centre (Srivastava et al. 1990; Sibuet et al.
2004). There the youngest identified anomaly A33o dates
the end of seafloor spreading at *80 Ma, which coincides
with the onset of contractional deformation in the Pyrenees.
East of this spreading centre, the abyssal plain of the Bay of
Biscay is floored by a basement characterized by a
high-velocity lower crust (*7.20–7.30 km s−1) on top of a
low-velocity upper mantle (*7.7–7.9 km s−1) (Fernán-
dez-Viejo et al. 1998; Gallart et al. 1997; Ruiz et al.
2017). These anomalous velocities can be explained either
by upper mantle hydration/serpentinization (Roca et al.
2011; Pedreira et al. 2015) and/or by transitional continental
crust, highly stretched and thinned, lying on top of serpen-
tinized mantle and intruded by gabbroic igneous rocks (Ruiz
et al. 2017). Exhumed mantle would have also rimmed the
oceanic crust in the western Bay of Biscay although it would
have been subducted in the Cantabrian margin (Tugend et al.
2014). Eastwards, exhumed mantle along the Pyrenean rift
axis continued as far as the eastern Pyrenees (Clerc and
Lagabrielle 2014).

Apart from the geophysical characteristics of the Bay of
Biscay lithosphere and the outcropping bodies of lherzolites

as well as sediments sourced by exhumed mantle along the
Pyrenean chain, other evidences of mantle exhumation come
from the presence of strong positive Bouguer anomalies
along the core of the chain (Bilbao, Mauléon and Sant
Gaudens anomalies, Casas et al. 1997). The strong positive
Bouguer anomaly of the Mauléon basin has been recently
interpreted as a continuous mantle wedge lying on top of the
subducted Iberian plate reaching the bottom of the basin
during the pre-compressional hyperextension (Wang et al.
2016). This mantle wedge would explain why the Pyrenees
appear isostatically over-compensated, and why the deep
crustal roots are shifted 50 km northward with respect to the
topographic highs (Wang et al. 2016).

Several different interpretations of the crustal structure of
the Pyrenees have been given on the basis of the combined
geological and geophysical data (Roure et al. 1989; Muñoz
1992; Teixell 1998; Pedreira et al. 2015; Wang et al. 2016).
Recent geophysical data and modelling rule out the inter-
pretation of a Pyrenean crustal structure driven by the
North-Pyrenean Fault (Choukroune and Mattauer 1978;
Mattauer 1990). The crustal structure that best integrates all
the available data in the Pyrenees ss. and the Basque Pyre-
nees is that of an asymmetric orogenic double-wedge
involving only upper crustal rocks of the Northern Iberian
margin south of the hyperextended rift domain (southern
wedge). The extensional detachment system that thinned out
the crust and exhumed the mantle would have been reacti-
vated and the transition to the narrow northern wedge is
located in its hangingwall (Roca et al. 2011). Apparently, the
Iberian crust was decoupled and the lower crust, below the
upper crustal double-wedge, was subducted (together with
the lithospheric mantle) into the mantle (Beaumont et al.
2000).

Thus, the Pyrenean lithospheric structure is strongly
controlled by the inversion of the previous segmented
hyperextended rift system (Roca et al. 2011; Tugend et al.
2014). For a given realm of the Pyrenean system, previous
rift domains controlled the localization of the deformation,
the geometry and structural style of the orogenic
double-wedge (Tugend et al. 2014), whereas along strike
changes have been determined by the transfer zones that
segmented the rift system (Roca et al. 2011).

A debate still exists about the crustal structure of the
westernmost part of the Pyrenean orogenic system, the realm
facing the oceanic crust of the Bay of Biscay (Fig. 9.1).
Boillot and Capdevila (1977) proposed the subduction of the
oceanic crust southwards underneath the Iberian plate at the
Cantabrian margin, as also suggested by the asymmetry of
the magnetic anomalies recorded in the western Bay of
Biscay (Sibuet et al. 2004). The hypothesis of the southward
subduction of the Bay of Biscay oceanic crust would imply a
change in the polarity of subduction with respect to the
central Pyrenees that was interpreted to occur across a flip
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zone coinciding with the Pamplona transfer zone (Engeser
and Shwentke 1986). Nevertheless, several seismic profiles
of the ESCIN and MARCONI programmes and related
projects (wide-angle reflection seismic data and wide-angle
phases recorded by the OBS and land seismic stations
deployed at the MARCONI N-S profiles) showed that the
Iberian continental crust is subducting to the north along the
Cantabrian margin. Such configuration has been interpreted
as a result of the southward displacement and underthrusting
of the Bay of Biscay lower crust, indenting into the Iberian
crust (Pulgar et al. 1996; Fernández-Viejo et al. 1998, 2000;
Gallastegui et al. 2002; Pedreira et al. 2015). These authors
emphasize that there are not any geophysical evidences for
an oceanic slab below the Cantabrian margin and consider
that the Bay of Biscay oceanic crust has not been subducted
southwards. Instead, it has been underthrust underneath the
Cantabrian accretionary prism (Ruiz et al. 2017). Regardless
the terminology used, the oceanic crust of the western Bay of
Biscay together with the exhumed mantle or the extremely
thinned continental crust that rimmed the oceanic one have
been subducted/underthrust underneath the former distal
Cantabrian rift domain (Fig. 9.1, Tugend et al. 2014).
A change of the polarity of the extensional system that
exhumed the mantle across the Santander transfer zone
would explain the differences of the crustal structure once
the Pyrenean rift system was inverted (Roca et al. 2011).
There was not any change in the polarity either of the
extensional system or the subduction of the Iberian crust
across the Pamplona transfer zone as previously suggested.

Factors controlling the deformation style of orogens
involving crustal subduction, and particularly for the case of
the Pyrenees, have been analysed by numerical modelling
(Beaumont and Quinlan 1994; Beaumont et al. 2000; Jammes
and Huismans 2012; Jammes et al. 2014). These authors
concluded that simple models involving lower crustal sub-
duction together with the mantle best explain the observed
features. The initial simple models have refined to include the
geodynamic evolution as deduced from the geological record
(Beaumont et al. 2000) as well as the inversion of the rift
system (Jammes and Huismans 2012) and the inherited
Variscan crustal features (Jammes et al. 2014). The lateral
variation in crustal strength attributed to inherited Variscan
crustal composition accentuated during Mesozoic rifting
explains the variation in structural style observed during
Pyrenean mountain building (Jammes et al. 2014). Accordion
models illustrate the localization of the contractional defor-
mation in the centre of the rift system where the mantle was
exhumed, the subsequent reactivation of the extensional
system and the propagation of the deformation into the
proximal rift domains or areas non previously stretched when
the European crust was indented into the delaminated Iberian
crust (Jammes and Huismans 2012; Jammes et al. 2014).

9.4 Main Structural Features

Understanding the main structural features of the Pyrenees
requires not only the knowledge of the structural evolution
along well-constrained cross-sections but also knowing the
along strike changes and the factors controlling them.

9.4.1 The ECORS Cross-Section of the Central
Pyrenees

The most constrained section from geological and geo-
physical data is the central Pyrenees cross-section along the
ECORS seismic profile (Choukroune et ECORS Team 1989;
Muñoz 1992; Fitzgerald et al. 1999; Beaumont et al. 2000;
Campanyà et al. 2012; Mouthereau et al. 2014; Chevrot et al.
2015).

The ECORS cross-section shows the geometry of the
Pyrenean asymmetric orogenic double-wedge dominated by
a central antiformal stack of basement-involved thrust sheets,
classically referred as the Axial Zone (Figs. 9.3, 9.4 and 9.5,
Muñoz 1992, 2002). These thrust sheets have been trans-
ported to the south and deformed progressively by
underthrusting of the lower and younger units. They are
mainly three thrust sheets, which from top to bottom are:
Nogueres, Orri and Rialp (Fig. 9.5, Muñoz 1992). The
northern limb of the antiformal stack occupies most the Axial
Zone and is characterized by a moderately-dipping to
steeply-dipping Variscan main foliation which was deformed
by back-tilting. The southern limb is relatively narrow and is
characterized by downward facing folds involving upper
Paleozoic rocks and Permian to Lower Triassic red beds of
the Nogueres Zone (Fig. 9.4, Dalloni 1913; Séguret 1972).

The basement has been decoupled from the cover South
Pyrenean thrust sheets along the Triassic evaporites. These
thrust sheets are from north to south: Bóixols, Montsec and
Serres Marginals (Figs. 9.3, 9.4 and 9.5). They have
involved different parts of Mesozoic and Paleogene basins
with distinct significances and they have initially developed
following a forward propagating thrust sequence from Late
Cretaceous to Oligocene.

The Bóixols thrust sheet resulted from the inversion of the
Lower Cretaceous basins at the southern margin of the Pyre-
nean rift system (Berastegui et al. 1990). Contractional
deformation started at late Santonian and continued during the
Late Cretaceous (MacClay et al. 2004; López-Mir et al. 2014).

The Montsec thrust sheet involved the northern part of the
Upper Cretaceous foreland basin characterised by a strong
subsident turbiditic trough at the footwall of the Bóixols
thrust. These turbidites grade southward into a carbonatic
platform that constitutes the backbone of the Montsec
Range. The Montsec thrust sheet developed from the
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Paleocene to the Early Eocene as recorded by continental to
shallow marine sediments deposited in its footwall (Ager
basin) as well as in the Tremp-Graus piggy-back basin
(Fig. 9.4).

The Serres Marginals thrust sheet is characterised by an
incomplete and thin Mesozoic-Paleocene succession, which
progressively reduces southwards. The synorogenic Upper
Cretaceous carbonates are represented in all the Serres

Fig. 9.3 Structural map of the central and eastern Pyrenees showing the main structural units. See location in Fig. 9.1

Fig. 9.4 Cross-sections across the central and eastern Pyrenees. The
upper cross-section follows the ECORS seismic profile and has been
modified from Berástegui et al. (1993). The lower section across the

Pedraforca thrust sheets of the eastern Pyrenees has been modified from
Vergés (1993) and Casas et al. (2015). See location in Fig. 9.3
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Marginals imbricates with a thickness varying from few
hundred meters in the northern ones to few tens of meters in
the most frontal imbricates (Fig. 9.4). These Upper Creta-
ceous sediments unconformably overlie the Jurassic car-
bonates that were tilted northwards and removed by erosion
at the forebulge of the Upper Cretaceous foreland basin. The
southern edge of the Triassic evaporites preserved by erosion
at the northern limb of the forebulge controlled the location
of the thrust front. Triassic evaporites also controlled the
internal structure of the Serres Marginals thrust sheets. These
evaporites were inflated by evacuation from the bottom of
the Montsec thrust sheet and together with the thin Mesozoic
succession favoured the development of detachment anti-
clines and diapirs (Santolaria 2015; Santolaria et al. 2015).

The Serres Marginals and Montsec thrust sheets are at
present above and autochthonous succession of Paleocene
and Eocene sediments in continuation with the Ebro foreland
basin as evidenced by well and seismic data (Fig. 9.4). The
detachment is located in the Upper Eocene salts giving a
minimum displacement for the South Pyrenean thrust sheets
during the Late Eocene and Oligocene of more than 40 km.
The northern cut-off of these autochthonous sediments, in
the footwall of the sole thrust, is not constrained, but for the
Upper Eocene sediments should be located close to the
northern edge of the Montsec thrust sheet with an approxi-
mate E-W trend as clearly evidenced by seismic data tight to
the Comiols and Isona wells, and contrary to recent inter-
pretations which tend to minimize thrust displacement
(Mouthereau et al. 2014). The South-Pyrenean thrust sheets
were reactivated by a break back thrust sequence during the
sedimentation of the Upper Eocene-Oligocene conglomer-
ates once the Ebro basin became endorheic and filled by a
thick succession of syntectonic sediments (Vergés and

Muñoz 1990; Burbank et al. 1992a; Coney et al. 1996;
Meigs and Burbank 1997; Muñoz et al. 1997; Fillon et al.
2013). The break-back reactivation of the thrust system
previously developed by a piggy-back sequence was coeval
with both the displacement of all the cover thrust sheets
above the Upper Eocene salt and the significant increase of
the uplift rate and denudation of the basement thrust sheets
of the Axial Zone (Fitzgerald et al. 1999; Beamud et al.
2011).

The Northern Pyrenees (North Pyrenean Zone, Chouk-
roune 1976) are significantly narrower (25–35 km) than the
Southern Pyrenees and constitute the retrowedge of the
Pyrenean double-wedge (Fig. 9.5). The North Pyrenean
thrust system inverted the Lower Cretaceous basins that
developed in the hyperextended rift domain in the hang-
ingwall (northwards) of the sole extensional detachment,
which at present corresponds to the North Pyrenean Fault
(Fig. 9.5, Mouthereau et al. 2014). During the Early Creta-
ceous continental stretching crustal boudins surrounding the
exhumed mantle rocks and the Lower Cretaceous basins
developed in a hot-regime (Clerc and Lagabrielle 2014).
These crustal blocks form at present the North-Pyrenean
massifs. Synrift Lower Cretaceous deep-water sediments and
prerift Jurassic carbonates were affected by HT-LP meta-
morphism between 110 Ma (Albian) and 85 Ma (Santo-
nian). Metamorphism occurred synchronously and
afterwards the mantle exhumation but spatially and tempo-
rally related to the crustal attenuation predating the con-
tractional deformation (Albarède and Michard-Vitrac 1978;
Golberg et al. 1986; Montigny et al. 1986). The North
Pyrenean frontal thrust resulted from the inversion of the
extensional faults at the northern margin of the rift system
(Baby et al. 1988; Déramond et al. 1990). In its footwall the

Fig. 9.5 ECORS balanced and restored cross-sections. The restored
cross-section has been modified from Beaumont et al. (2000) and
Muñoz (2002) to include the exhumation of the lithospheric mantle in

the central part of the Pyrenean rift system at the end of the Early
Cretaceous rifting. See location in Fig. 9.3
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retroforeland basin is filled up by a thick (5 km) mainly
clastic succession consisting in two main subsiding
shallowing-up cycles: a first deep-water late Santonian-
Paleocene succession and a second shallow marine to con-
tinental Paleocene-Oligocene one (Ford et al. 2016).

9.4.2 The Eastern Pyrenees

The main structural units above explained for the Central
Pyrenees continue along strike into the eastern Pyrenees,
east of the Segre valley (Fig. 9.3). However, there are sig-
nificant structural differences between the two realms of the
orogen, mainly in the southern Pyrenees. The most obvious
one is the thrust re-entrant geometry depicted by the main
thrusts that connect with the central Pyrenees along an
oblique thrust system (Fig. 9.3). The Bóixols, Montsec and
Serres Marginals thrust sheets are piled one on top of the
other and constitute the Pedraforca thrust sheets (Figs. 9.3
and 9.4, Solé-Sugrañes 1971; Séguret 1972; Vergés 1993;
Vergés et al. 1995). As a result, the Eastern Pyrenees shows
the narrowest areal extension of the entire system. The
Pedraforca thrust sheets lie on top of the Eocene syntectonic
sediments of the Cadí thrust sheet and altogether form a
synform in the hangingwall of the Vallfogona frontal thrust,
southwards of the Axial Zone antiformal stack (Fig. 9.4,
Muñoz et al. 1986; Vergés 1993). The Cadí thrust sheet
involves Upper Paleozoic rocks underneath a thick succes-
sion, up to 6 km thick, of Paleocene and Eocene sediments.
Mesozoic rocks are only restricted to a thin succession of
Triassic red beds and carbonates and Upper Cretaceous
carbonates and sandstones only represented in the western
part of the Cadí trust sheet. The Cadi thrust sheet is the
structural equivalent of the Nogueres thrust sheet in the
Central Pyrenees (Muñoz et al. 1986). It supports the Ripoll
piggy-back basin characterized by a Lower Eocene
deep-water sedimentary trough that was deposited syn-
chronously to the emplacement of the lower Pedraforca
thrust sheets and a Middle Eocene-Oligocene shallow water
to continental succession coeval with the emergence of the
Vallfogona frontal thrust and the underthrusting of
basement-involved thrust sheets (Figs. 9.3 and 9.4, Muñoz
et al. 1986; Puigdefàbregas et al. 1986; Burbank et al.
1992b). Above the turbiditic trough a salt unit was deposited
(Beuda Fm). It has acted as a main detachment in the eastern
Pyrenees and controlled the late stages of the structural
evolution.

There is a regional westward plunge of the Pyrenean
structures. As a result, the deepest structural levels are
cropping out in the Eastern Pyrenees and allow us to com-
plete the structural picture observed in the Central Pyrenees.
The deep structural exposures show the antiformal stack
geometry of the basement-involved thrust sheets, as revealed

by vertically stacked tectonic windows (Muñoz et al. 1986).
The structural culmination of the southern Pyrenees is
located in the easternmost Pyrenees. From there, an eastward
structural plunge towards the Mediterranean coast allows us
to observe upper thrust sheets involving Mesozoic sediments
detached on Triassic evaporites (Fig. 9.3, Pujadas et al.
1989; Tassone et al. 1994). The uppermost of these thrust
sheets, the Figueres thrust sheet, involves a complete
Mesozoic sequence, including synrift Lower Cretaceous
carbonates (Fig. 9.3). It developed out-of-sequence on top of
Middle Eocene continental sediments and the amount of
thrust displacement as well as its restored position is still
unknown (Pujadas et al. 1989).

Another distinct feature of the Eastern Pyrenees with
respect the Central Pyrenees is the width of the deformed
Ebro foreland basin (Fig. 9.3). South of the Vallfogona
frontal thrust a wide area is characterized by different trends
of detachment anticlines which have been detached above
three distinct salt horizons, which from north to south are the
Beuda, Cardona and Barbastro evaporitic units (Figs. 9.3
and 9.4, Vergés et al. 1992).

9.4.3 The Central Pyrenees and the Transition
to the Western Pyrenees

The Bóixols, Montsec and Serres Marginals thrust sheets
form the most prominent thrust salient in the Pyrenees
(Figs. 9.1, 9.3 and 9.6). It was named South Pyrenean
Central Unit and it was considered as a primary curvature
inherited from the geometry of Mesozoic basins (Séguret
1972; Soto et al. 2002). However, it has been demonstrated
by the integration of structural, stratigraphic and paleo-
magnetic data that this thrust salient developed by a pro-
gressive curvature with a divergent thrust transport direction
from Middle Eocene to Oligocene during the formation of
the Serres Marginals thrust sheets and its western continu-
ation into the Gavarnie thrust sheet (Sussman et al. 2004;
Muñoz et al. 2013). The amount of clockwise vertical
rotation, up to 70° in the Ainsa basin and related N-S
trending folds, and the areal extension of the rotated area
resulted from a thrust displacement gradient of about 50 km
that relates with the uneven distribution of the Upper Tri-
assic salt (Muñoz et al. 2013). The amount of the displace-
ment gradient is in agreement with the existence of an
autochthonous Paleogene succession underneath the Serres
Marginals and Montsec thrust sheets.

A major structural change does occur between the central
and the west central southern Pyrenees (Fig. 9.2). In the west
central Pyrenees the Upper Cretaceous carbonates uncon-
formably overlie the Paleozoic rocks of the Axial Zone. The
absence of Triassic evaporites has resulted in the coupling of
the Mesozoic and Paleogene successions to the basement.
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Basement thrust sheets are mostly imbricated (Cámara and
Klimowitz 1985; Teixell 1996, 1998; Labaume et al. 2016)
instead of piled one on top of the other as observed in the
antiformal stack of the central Pyrenees (Muñoz 1992). The
change in thrust geometry in turn leads to a more distributed
structural relief in the west central Pyrenees (Fig. 9.2). As
basement thrust sheets are located further south in the west
central than in the central Pyrenees, the cover thrust sheets
are widely exhumed in the west. In addition, the floor thrusts
of the Cotiella and Peña Montañesa thrust sheets climb up
section westwards (Muñoz et al. 2013). Thus, the western
lateral equivalents of the Peña Montañesa-Montsec and
Cotiella–Bóixols thrusts sheets have been uplifted and ero-
ded, whereas the Gavarnie thrust sheet occupies a wide area
(Fig. 9.6). This change of the structural style was accom-
panied by an increase of the western plunge of the Axial
Zone antiformal stack, the decrease of the structural relief in
the central part of the orogen and the western termination of
basement rocks at outcrop. All of them had a strong influ-
ence in the routing systems of the synorogenic sediments.

The Gavarnie thrust sheet is characterized by a wide, up
to 200 km long synclinorium, which supports the Jaca Basin
filled up by Eocene and Oligocene synorogenic sediments
(Figs. 9.6 and 9.7). The southern limb of the synclinorium
consists of several imbricates of Mesozoic and Paleogene
rocks in the hangingwall of the emergent south Pyrenean
frontal thrust. These imbricates have been detached on the
Triassic evaporites and are referred as Sierras Exteriores
(Almela and Ríos 1951; Puigdefàbregas 1975; Millán et al.
1995, 2000). Similarly to the frontal imbricates of the Serres
Marginals thrust sheet, the Sierras Exteriores imbricates
involve a relatively thin (up to few hundred metres thick)
Mesozoic succession of synorogenic Upper Cretaceous
shallow marine limestones, unconformably overlying Tri-
assic evaporites, and a thicker Paleogene sequence charac-
terized by the Middle Eocene limestones of the Guara Fm
(Puigdefàbregas 1975; Millán et al. 1994). One of the
peculiarities of the External Sierras is the presence of a set of
irregularly spaced transverse NW-SE to N-S anticlines in
continuation with the N-S trending anticlines of the Ainsa
Basin at the eastern edge of the Gavarnie thrust sheet
(Fig. 9.6). These N-S anticlines become younger westward
and their growth was synchronous with the deposition of the
Middle-Upper Eocene sediments and the development of the
Gavarnie thrust sheet (Fig. 9.7, Millán et al. 1994; Poblet
and Hardy 1995). The oldest of this transverse system of
folds are the Mediano and Añisclo anticlines at the eastern
edge of the Ainsa Basin, which started to develop at early
Lutetian times (Poblet et al. 1998; Fernández et al. 2012;
Muñoz et al. 2013). These folds experienced a vertical axial
clockwise rotation as they progressively developed (Pueyo
et al. 2002; Soto et al. 2006; Muñoz et al. 2013). Vertical
axis rotations have been recorded all along the Sierras

Exteriores structures (Oliva-Urcia et al. 2012; Ramón et al.
2012; Pueyo-Anchuela et al. 2012). Further west, in the
western Pyrenees, no significant vertical axis rotations have
been recorded by paleomagnetic data (Larrasoaña et al.
2003), defining a western limit for vertical axis rotation at
the termination of the Santo Domingo anticline (Pueyo et al.
2002). The amount of vertical axial rotation decreases
westward as the age of the onset of folding does.

The northern limb of the Jaca Basin synclinorium (also
referred as Guarga synclinorium) consists of a fold and
thrust belt that affects the Upper Cretaceous to Paleogene
succession (Fig. 9.7). They are located above a tilted panel
of basement that in detail constitutes an imbricated system of
basement-involved thrust sheets merging upwards at the
bottom of the Mesozoic succession (Cámara and Klimowitz
1985; Teixell 1996; Labaume et al. 2016). The southern tip
of the lowermost of these thrust sheets (Guarga thrust sheet)
defines the position and trend of the Guarga syncline along
the axis of the Jaca synclinorium (Labaume et al. 2016) and
can be followed as far as the eastern edge of the Ainsa Basin
(Fernández et al. 2012). In between the Guarga thrust and
the Gavarnie one different thrusts involving the Variscan
basement have been described by different authors from the
interpretation of available seismic data (Fig. 9.7). There is
not a consensus about the number of thrusts and the given
names for each individual thrust but it is widely accepted
that they branch upwards into the detachment at the bottom
of the Mesozoic succession of the Gavarnie thrust sheet
(Cámara and Klimowitz 1985; Millán et al. 2006; Muñoz
et al. 2013; Labaume et al. 2016). Seismic data do not rule
out that some of these thrusts may breach through this
detachment and deform the overlying Mesozoic and Paleo-
gene sediments.

South of the basement of the Gavarnie thrust sheet at the
southern edge of the Axial Zone the Upper
Cretaceous-Paleogene series are deformed by the Monte
Perdido-Larra fold and thrust system, which constitutes the
highest structural relief of the so called Sierras Interiores
(Teixell 1996). The Monte Perdido system is located in the
footwall of the Peña Montañesa-Montsec thrust sheet and is
tilted at the northern limb of the Añisclo anticline. So, these
relationships constrain the uppermost Ypresian to lowermost
Lutetian age for the Monte Perdido system (Muñoz et al.
2013). The Monte Perdido-Larra fold and thrust system
continues around the western termination of the Axial Zone
and branches with the Lakhora thrust (Teixell 1996, 1998).
Thus, this thrust has the same structural position as the Peña
Montañesa-Montsec thrust and would have been most
probably active during the Early Eocene. In the hangingwall
of the Lakhora thrust another south-directed thrust system
would be the result of the inversion of the Lower Cretaceous
basins that developed in the hyperextended rift domain and
above an exhumed mantle (Lagabrielle et al. 2010; Masini
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Fig. 9.6 Structural map of the transition from the central to the western Pyrenees. This transition is located at the western edge of the Central
Pyrenean thrust salient, which is characterized by N-S trending folds. Modified from Muñoz et al. (2013)
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et al. 2014). It would have developed during the Late Cre-
taceous, synchronously with the displacement on the North
Pyrenean frontal thrust.

The Paleogene of the northern limb of the Jaca syncli-
norium is characterized by a 4 km thick succession of the
Ypresian-Lutetian turbidites of the Hecho Group (Mutti et al.
1988). These turbidites are in continuation with the slope
turbiditic systems of the Ainsa Basin and were fed axially
from the Tremp-Graus and Ager basins (Mutti et al. 1988;
Muñoz et al. 2013). The Ypresian lower part of the turbidites
developed in a foreland trough in front of the Peña Mon-
tañesa-Montsec thrust sheet and most probably in the foot-
wall of its western continuation into the Lakhora thrust,
whereas the Lutetian upper part of the turbiditic succession
were deposited piggyback above the Gavarnie thrust sheet as
it developed westwards synchronously with fold growing
of the at present N-S trending Ainsa-Sierras Exteriores
fold system described above (Arbués et al. 2011; Muñoz
et al. 2013). The turbidites onlap southward the coeval
Lower-Middle Eocene platform limestones cropping out in
the Sierras Exteriores (Fig. 9.7, Puigdefàbregas 1975;
Labaume et al. 1985; Barnolas and Teixell 1994; Muñoz
et al. 2013). From Bartonian to early Priabonian times, the
turbiditic basin was progressively filled by southward and
westward prograding deltaic complexes (Puigdefábregas
1975; Dreyer et al. 1999) and by a thick continental suc-
cession, Upper Eocene-Lower Miocene in age, once the
Ebro foreland basin became endorheic. Their accumulation
was associated with a southward migration of the Jaca Basin
depocenter with respect to the turbiditic stage, syn-
chronously to basement underthrusting below the northern
limb of the Jaca synclinorium and emergence of the frontal
thrust system at Sierras Exteriores (Hogan and Burbank
1996; Teixell 1996; Labaume et al. 2016).

9.4.4 The Basque-Cantabrian Pyrenees

The Pyrenean orogenic system shows a significant structural
change across the Pamplona transfer fault (Fig. 9.1). The
Pamplona is an inherited transfer zone of the Early Creta-
ceous rift system. The overall extension of the hyperex-
tended rift system was transferred across this fault from the
Mauléon basin in the east to the Basque-Cantabrian basin in
the west (Roca et al. 2011; Masini et al. 2014; Tugend et al.
2014). The Pamplona fault was probably inherited from the
Variscan orogeny and not only segmented the Early Creta-
ceous rift system but also affected the entire orogenic system
during the contractional deformation. Nonetheless, it is
revealed at surface as a diffuse zone of deformation with
different structures. In the south it has been interpreted as a
hangingwall drop fault resulting from accommodation of
the different thickness of Mesozoic sequences during

southwards displacement above the south Pyrenean frontal
thrust (Larrasoaña et al. 2003). Diapirs aligned along the
Pamplona transfer zone would have been developed during
the Early Cretaceous and reactivated during the Cenozoic
deformation. In the north, the Paleozoic Basque massifs crop
out on both sides of the Pamplona transfer zone (Fig. 9.1).
The Cinco Villas massif is the westernmost and largest of the
Basque massifs. It is involved in the northern directed thrust
sheets of the Basque Pyrenees and shows a pop-up structure
between inverted Lower Cretaceous basins. South of the
Cinco Villas massif, the Leiza fault follows a narrow strip of
lower crustal and mantle rocks as well as metamorphic
Mesozoic rocks (Martínez-Torres 1989). It was considered
as the western continuation of the North Pyrenean fault into
the Basque Pyrenees (Choukroune and Mattauer 1978; Rat
1988) but, following the new ideas on the hyperextended
non-volcanic margins, the Leiza fault has been recently
interpreted as the inverted extensional detachment that pro-
duced the mantle exhumation in the Basque-Cantabrian
basin (DeFelipe et al. 2017).

There is not a consensus about the terminology used by
different authors to refer to the realm of the Pyrenean oro-
genic system located westward of the Pamplona transfer
fault. Recent papers on the area refer to such realm as the
Basque-Cantabrian basin (Abalos 2016; DeFelipe et al.
2017) in order to respect this widely used term in the old
literature (Rat 1988) or to avoid the use of the adjective
Pyrenean. This is a confusing terminology, as the area
deformed by the Pyrenean structures involves a stratigraphic
record from the Paleozoic to the Miocene with sedimentary
units that were deposited in different basins with different
aerial distribution (some of them exceeding its limits and
others being more reduced) and having distinct tectonic
significance. Herein, the term Basque-Cantabrian basin is
used only to refer to the Lower Cretaceous extensional basin
that formed as a result of the Bay of Biscay-Pyrenean rifting
at the North Iberian margin.

The structure of the Basque Pyrenees is dominated by the
north-verging Bilbao anticlinorium, a more than 100 km
long structure located in the central part of the orogenic
double wedge, above the Iberian subducted slab (Figs. 9.8
and 9.9, Pedreira 2004; Ferrer et al. 2008; Quintana et al.
2015). The anticline resulted from the inversion of the
extensional faults that bounded to the north the depocentre
of the deepest Lower Cretaceous basin of the
Basque-Cantabrian basin. The southern limb of the Bilbao
anticline is a southward tilted panel involving a thick suc-
cession of Cretaceous sediments, up to 15 km thick, that
connects with a flat lying panel and the northern limb of the
Miranda–Urbasa syncline and its westward continuation in
the Villarcayo syncline (Figs. 9.8 and 9.9). This syncline is
another main structural feature of the Basque-Cantabrian
Pyrenees. It has a structural continuity with the Jaca
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synclinorium across the Pamplona transfer fault and it is
cored by Oligocene-Lower Miocene fluvial sediments
showing growth geometries at its both limbs (Riba and
Jurado 1992)

The southern limb of the Miranda-Urbasa syncline con-
sists of several imbricates in the hangingwall of the Sierra de
Cantabria frontal thrust, characterized by a relatively thin
Mesozoic succession that reduces southwards, as observed
in the western and central Pyrenees along the Sierras Exte-
riores and Serres Marginals thrust sheets. The frontal
imbricates involve Upper Cretaceous carbonates, and Upper
Albian sandstones (Utrillas Fm) at the bottom, uncon-
formably overlying the Triassic evaporites. Thus, a succes-
sion characteristic of the North Iberian margin south of the
Pyrenean rift system. These imbricates as well as the
Miranda-Urbasa syncline lie on top of an autochthonous
Paleogene and Upper Cretaceous succession of the Ebro
basin as evidenced by seismic data (Carola et al. 2013).

North of the Bilbao anticlinorium a north directed thrust
system involves the Mesozoic and Paleogene rocks
(Fig. 9.9). This thrust system and related structures of the
Basque Pyrenees are referred as the Basque Arc (Feuillée
and Rat 1971) because of their concave geometry in map
view (Fig. 9.8). This arc is delineated by different structures,
which from south to north and apart from the Bilbao anti-
cline include: the Biscay Synclinorium, the North-Biscay
Anticlinorium and the Guipúzcoa Monocline (Abalos 2016).
The northernmost Basque thrust sheets are thrust on top of
the Tertiary rocks of the Landes High, which was an uplift
area during the Early Cretaceous between the Parentis basin
in the north and the Basque-Cantabrian basin southwards
(Ferrer et al. 2008).

The transition to the Cantabrian part of the Pyrenean
orogenic system occurs across the Santander transfer fault

system and related accommodation zone that was inherited
from the Early Cretaceous rift system (Roca et al. 2011;
Carola et al. 2015). Offshore, this transfer zone is aligned
with the western edge of the Landes High and the Parentis
basin and their transition to the Bay of Biscay abyssal basin
(Fig. 9.1). The transfer zone follows distinct N-S trending
topographic features in the Cantabrian slope (Torrelavega
and Santander canyons) and produces a shift on the location
of the North Pyrenean frontal thrust of more than 100 km. In
the Basque Pyrenees it follows the slope close to the coast
line, whereas in the Cantabrian Pyrenees, west of the San-
tander transfer zone, it is located further to the north in the
abyssal plain (Fig. 9.1). Onshore, the N-S trending Ramales
fault represents the boundary between the north-vergent
structures of the Bilbao anticlinorium and the south-vergent
structures of the Cantabrian Pyrenees at Santander (Cámara
1997).

Along the coast, between Santander and Oviedo, south-
ward–directed thrusts involve basement and cover rocks and
result from the reactivation of extensional Early Cretaceous
faults. These thrusts are bracketed between the NW-SE
trending Ventaniella fault westwards and the N-S trending
Ramales fault eastwards (Fig. 9.8, Cámara 1989). This south
directed thrust system continues into the Cantabrian platform
where it incorporates the Tertiary Ribadesella basin (Sán-
chez 1991). The edge of the Cantabrian platform is charac-
terized by north vergent thrusts and folds affecting the
Mesozoic succession of the Danois basin and the basement
rocks at the slope (Boillot et al. 1979; Álvarez-Marrón et al.
1995).

The Cantabrian Pyrenees are characterized by an accre-
tionary prism deforming Tertiary and Mesozoic sediments of
the Bay of Biscay oceanic basin in front of the Cantabrian
slope (Fig. 9.2, Roca et al. 2011). The accretionary prism is

Fig. 9.8 Structural map of the Basque-Cantabrian Pyrenees
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60 km wide in the east (Fig. 9.1) but reduces in width
westwards (20 km) changing also its internal structure and
morphology (Álvarez-Marrón et al. 1997).

The asymmetry of the Cantabrian realm of the Pyrenean
orogenic double-wedge changes again with respect the
Basque Pyrenees. Southward directed structures predomi-
nate onshore, whereas northward directed ones are mainly
restricted to the accretionary prism in the Bay of Biscay
abyssal plain.

The Cantabrian Mountains are characterized by a
thick-skinned structural style. Upper Albian-Upper Creta-
ceous sediments unconformably overlie Paleozoic rocks and
the absence of Triassic evaporites has determined the cou-
pling of the basement with the cover succession. Pyrenean
contractional deformation caused the reactivation of the
Variscan faults and the tightening and steepening of previ-
ously developed folds (Pérez-Estaún et al. 1988; Alonso
et al. 1996; Pulgar et al. 1999; Alonso et al. 2009). These
structures have been interpreted to lay in the hangingwall of
a shallow north-dipping intracrustal sole thrust, which at
surface corresponds to the fold propagation fold and related
frontal thrust at the northern boundary of the Duero basin
(Fig. 9.2, Alonso et al. 1996; Pulgar et al. 1999; Gallastegui
et al. 2002; Martín-González and Heredia 2011). The
thick-skinned style of the Cantabrian Mountains is also
evidenced by the syncline geometry of the Duero basin
which contrasts with the northward tilted floor of the Ebro
foreland basin in front and underneath the Pyrenean thrust
front. The Paleozoic rocks of the Cantabrian Mountains
show an eastern termination at surface as a result of the
regional easterly plunge of the structures. Thus, the map
gives us a cross-sectional view of the transition of the
Cantabrian Mountains to the Basque-Cantabrian Pyrenees
(Tavani et al. 2013). There, a system of WNW-ESE faults

(i.e. Cabuérniga, Rumaceo and Golobar faults) involve the
basement and the cover and have a right-lateral strike-slip
component (Carola et al. 2013; Tavani et al. 2013; Tavani
and Granado 2014). They formed during the Permo-Triassic
and were reactivated during the Late Jurassic-Early Creta-
ceous rift event before the contractional deformation (Espina
et al. 2004; Tavani and Muñoz 2012).

The high-angle faults with a reverse and right-lateral
kinematics produced an eastward lateral extrusion of the
basement-involved structural units (Tavani et al. 2013).
However, there is not a consensus about the structural style
at the transition between the Cantabrian Mountains and the
Basque Pyrenees. Different proposed models differ about the
involvement of the basement of the frontal structures and
consequently the degree of coupling between the basement
rocks and the Mesozoic succession and the fault kinematics
(See Carola et al. 2015 for a summary of different models).
A thick-skinned structural model, either with dominant
strike-slip kinematics (Tavani and Granado 2014) or with
dip-slip kinematics (Quintana et al. 2015), has been inter-
preted to occur along the Plataforma Burgalesa as far east as
the Sierra de Cantabria thrust front (Fig. 9.8). Nonetheless,
seismic data demonstrate that the Mesozoic succession was
decoupled from the basement in the areas were the Triassic
salt layer was thick enough, both during the Late
Jurassic-Early Cretaceous extensional deformation and the
subsequent Pyrenean tectonic inversion. This is revealed by
the onlap attitude of the synrift sediments above the Pre-rift
Jurassic carbonates.

Thus, the transitional area between thick- and thin -
skinned tectonics and from a strike-slip to a dip-slip
framework, and the region accommodating the lateral
extrusion of the Cantabrian area, coincides with the southern
prolongation of the Santander Mesozoic Transfer Zone

Fig. 9.9 Crustal cross-section across the Basque-Cantabrian Pyrenees. Surface geology based on Quintana et al. (2015) and Carola et al. (2015).
See Fig. 9.8 for location
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(Figs. 9.1 and 9.8). This transitional area is a first order
discontinuity in terms of the style of the deformation in the
Pyrenean Orogen at the western limit of the Triassic
evaporites.

The Basque-Cantabrian Pyrenees are characterized by salt
structures involving Triassic salt (Cámara 2017). These
structures are nicely preserved in the southern fold and thrust
belt. There, diapirs have been moderately reactivated and
even have not squeezed, suggesting the decoupling of the
Mesozoic succession from the basement during the con-
tractional deformation. On the contrary, in the northern
wedge along the Basque Arc, salt structures have been sig-
nificantly squeezed during the reactivation of the
basement-involved faults (Fig. 9.9).
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