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Abstract

The Permian-Triassic rifting represents the first of the two
Mesozoic rifting stages recorded in the Iberian Peninsula.
Its first phases of development started during the Early
Permian, and were linked to the beginning of the break-up
of Pangea, the large, unique and rheologically unstable
supercontinent that mainly resulted from the collision of
Gondwana and Laurussia. This chapter analyzes this first

rifting stage in Iberia in two separate phases, an initial or
tectonic phase, and a later mature phase. This analysis
focuses on the main Permian-Triassic basins of the Iberian
Peninsula: the Pyrenean, Iberian, Catalan, Ebro and Betic
basins, as well as the basins located in the present-day
Balearic Islands. In order to achieve a better understanding
of the analyses of these basins, a multidisciplinary
approach has been carried out by 48 researchers, including
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studies of tectonics, sedimentology, magmatism, mineral-
ogy, geochemistry and paleontology.

3.1 Introduction

Lépez-Gomez J

The Permian-Triassic rifting stage represents the first of the
two Mesozoic rifting stages in the Iberian Peninsula. Its first
phases of development started during the Early Permian, and
were linked to the beginning of the break-up of Pangea, the
big, unique and rheologically unstable supercontinent that
mainly resulted from the collision of Gondwana and Lau-
russia. This chapter analyzes this first rifting stage in the
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different basins of Iberia in two separate phases, an initial or
tectonic phase, and a later mature phase.

3.1.1 From Initial to Mature Rifting Phase

Gretter N, Arche A, Ronchi A, Lépez-Gomez J
and De la Horra R

Towards the end of the Paleozoic era, the southwestern
European sector experienced the progressive waning of the
Variscan orogenic cycle. The global geodynamic picture was
affected by the final stages of Pangea amalgamation,
resulting from the collision of Gondwana, Laurussia and
several microplates (Pastor Galan et al. 2015 and references
therein) (Fig. 3.1a). Rather quickly, a new geodynamic
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configuration developed and the compressive tectonics
definitively gave way to a large-scale transtensional and
extensional regime, and the initial, or tectonic phase, of
many basins in different microplates, including Iberia. These
new conditions finally brought to continental break-up, the
north-directed subduction of the Paleotethys oceanic ridge
beneath Eurasia (Stampfli and Borel 2002; Stampfli et al.
2013; Druguet et al. 2014), and the opening and westward
expansion of the Neotethyan ocean (Angiolini et al. 2013
and references therein) (Fig. 3.1b). More broadly, the latest
Carboniferous-Early Permian extension was marked by the
development of a lateral mega shear system connecting the
Alleghanian Orogen to the Urals, through a “middle earth”
intra-Pangea wrench zone, most likely located between the
Iberian Peninsula and the Bohemian massif (e.g. Arthaud
and Matte 1977; Gutiérrez-Alonso et al. 2011; Murphy et al.
2009, 2010; Scotese 1984, 2003; Aubele et al. 2012). The
onset, the evolution and development of the Late Paleozoic
rifting phases produced several small extensional sub-basins,
filled by terrestrial sediments: it was the local response to the
progressive collapse and dismantling of the Variscan belt, in
late to post-orogenic extension, wrenching and thinning of
the orogenic lithosphere (Burg et al. 1990; Faure and Pons
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1991; Faure et al. 2002; Van Den Driessche and Brun 1989;
Von Raumer et al. 2013). Such tectonic activity controlled
both the subsidence and the post-orogenic magmatism (ca.
310295 Ma) affecting SW Europe (e.g. Arche and
Loépez-Goémez 1996; Bruguier et al. 2003; Cassinis et al.
2003; Cortesogno et al. 1998; Dallagiovanna et al. 2009;
Decarlis et al. 2013; Fernandez-Suarez et al. 2000; Gutiér-
rez-Alonso et al. 2011; Maino et al. 2012; Pereira et al.
2014; Ronchi et al. 2008; Valle Aguado et al. 2005).

A first generalized subsidence stage, still with tectonic
influence, would indicate the beginning of a mature phase in
the rifting evolution of the basins, i.e. the transition from tec-
tonic to thermal subsidence (Van Wees et al. 1998; McCann
et al. 2006; Murphy et al. 2009). This transitional stage was
associated to the first marine incursions, although still without
covering the whole basins (Ziegler and Stampfli 2001). Marine
incursions were first into narrow corridors and later sur-
rounding the highest areas of the flanks (Allen and Allen 2005;
Vargas et al. 2009; Escudero-Mozo et al. 2015). The evolution
of these basins during the rifting stage normally shows
important interruptions in the sedimentary record, as it will be
shown later in the case of the Iberian Basin. A later generalized
subsidence represented by extensive marine platforms devel-
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Fig. 3.1 Paleogeographical
maps of Iberia of the western
Europe for a the Late
Carboniferous-Early Permian and
b Late Permian-Early Triassic
times, inspired on Matte (2001)
and Domeier et al. (2012). Insets
detail the southwestern European
sector. The main strike—slip
structures are sketched in the little
marginal box (Faure et al. 2009;
De Vicente et al. 2009): Cé:
Cévennes Fault; NPF: North
Pyrenean Fault; PNF: Permian
Nuoro Fault; SH: Sillon-Houiller
Fault. OMSZ: Ossa—Morena
Zone. Major basins and localities:
Ar.B.: Aragonese Branch; Au:
Autun Basin; Bal: Balearic
Islands; C: Calabria; Cas.B.:
Castilian Branch; CCR: Catalan
Coastal Ranges; CM: Central
Massif; IR: Iberian Ranges; K:

l Early Permian

iAu
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o 4
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opment was mainly related to the thermal activity in the basins
(thermal subsidence), and represents the postrift or passive
margin stage (dealt with in Chap. 4.2.2), which extended from
latemost Triassic to Middle Jurassic times.

3.2 The Pyrenean Basin

Lopez-Gomez J, De La Horra R, Ronchi A, Gretter N,
Barrenechea J, Lloret J, Arche A, Borruel-Abadia V,
Heredia Carballo N, Martin-Gonzalez F, Suarez-Ro-
driguez A, Cadenas P, Fernandez-Viejo G, Sopeifia A,

Galan-Abellan B, Sanchez-Moya Y, Diez JB, Rodri-
guez-Méndez L, Cuevas J, Tubia JM, Martin-Chivelet J,
Escudero-Mozo MJ, Orti F, Pérez-Lopez A, Lago M,
Galé C, Ubide T, Valero Garcés B and Gisbert Aguilar J

The present-day Pyrenean Ranges, extending E-W from the
Mediterranean Sea, in the Catalonian coast, to the
Basque-Cantabrian Cordillera, or western Pyrenees, is the
result of around 84 Ma of progressive inversion and defor-
mation of previous Mesozoic basins (Capote et al. 2002;
Barnolas and Pujalte 2004). These previous Mesozoic basins
were Permian to Cretaceous extensional to transtensional rift
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systems, and were developed in two main rift—postrift
cycles: Permian—Late Jurassic and Late Jurassic—Late Cre-
taceous, although later Cenozoic deformation masked the
original rifting structure of these basins. The geodynamic
development of the Permian-Triassic initial rifting phase is
described here following the two structural units of Mufioz’s
(2002) configuration of the Pyrenees: Basque-Cantabrian
Pyrenees, and Aragonese-Catalan Pyrenees (Fig. 3.2). The
limit between both main units is represented by the Pam-
plona fault (also called Estella-Dax or Navarre Diapirs Line),
a structure representing an important transtensional
displacement (Vergés 2003; Larrasoaiia et al. 2003).

3.2.1 The Initial (Tectonic) Rifting Phase

Gretter N, De La Horra R, Lloret J, Arche A, Ronchi A,
Lopez-Gomez J, Barrenechea J

In the Pyreneean basin, the extensional regime in response to
the progressive collapse and dismantling of the Variscan

belt, progressively acquired a transcurrent component,
leading to a more transtensional regime, along Early Permian
times. The direct result of such tectonics was the develop-
ment of a series of elongate half-graben intramontane basins
(Arche and Lopez-Goémez 1996; Lopez-Gomez et al. 2002;
McCann et al. 2006; Pereira et al. 2014; Valero-Garcés
1993). These troughs were filled not only with alluvial fan
slope breccias and, towards the depocenters, with
fluvio-lacustrine sediments, but also with various kinds of
volcanic and volcaniclastic products. In fact, the Late Car-
boniferous calc-alkaline volcanic activity (e.g. Bixel 1984;
Lago et al. 2004a, b; Galé 2005; Pereira et al. 2014) played
an important role and accompanied the birth and evolution
of every Pyrenean Late Paleozoic basin. For this reason the
thick volcaniclastic deposits at the base of the basin infill,
justifies the presence of faults, deep enough to reach the
asthenosphere, providing conduits to these important out-
pourings. The following progressive declining of the
calc-alkaline magmatism in most of the southern Variscides
and the consequent mid-Permian magmatic gap (e.g. Deroin
and Bonin 2003; Muttoni et al. 2003; Gutiérrez-Alonso et al.

P Y R

E N E E 5

Basque-Cantabrian Pyrenees

Aragonese-Catalan Pyrenees

Cantabrian Pyrenees [ Basque Pyrenees

Western- ‘

Central l Eastern

Central

>
N

" & N { Zagaroza \

. A , s \
_tm Cenozoic I:! Ir::?;g;?alﬁéai:: Pe'"‘""”"\ Paleozoic \‘

(Al | B1 L €& g e O | E2 | F1 | F2 |F3;G1|

\ |D1D2D3 E1

Cantabrian Sea

4n La Camocha

l:l Jurassic-Cenozoic
- Permian-Triassic
E Paleozoic 0 0

Y i T T | — ™

Pamplona
Ebro Basin
Jurassic-Cenozoic
Permian-Triassic
Paleozoic

Fig. 3.2 The Pyrenees. Location of the Permian and Triassic outcrops
and scheme of the described lithological units in the main represen-
tative sections in the different subdivided areas (Main lithological areas

based on Barnolas and Pujalte 2004). Subdivision zones in the Pyrenees
based on Mufoz (2002). Sectors Al to G1 are here subdivided as those
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2008a, b; Angiolini et al. 2013) has been related to the main
phase of a general strike-slip tectonic event, which probably
led to an intra Pangea reorganization. A renewed Late Early
to Late Permian extension, marked by clastic sedimentation
of extensive red beds in the European domain, together with
an alkaline magmatism, continued in Triassic times. Although
this configuration affected most sectors of Paleoeurope, in the
Pyrenees and eastern Iberian plate this regime led to the
development of symmetric basins bounded by lystric faults,
probably as the response to dextral strike-slip movements at
the margins of the Iberian Microplate and the crustal collapse
of the overthickened roots of the Variscan orogen (Arche and
Lépez-Goémez 1996; de Vicente et al. 2009). Here the
extension was not accompanied by volcanic activity; as a
matter of fact, the late Paleozoic volcanism, whose paroxysm
extended from the latest Carboniferous to the Early Permian,
seems to stop by the middle Guadalupian epoch. Moreover, a
recovery of the isotherms occurred at the same time and
general subsidence rates were moderate to low, decreasing
with time in all enlarged sedimentary basins.

3.2.2 Sedimentation During
the Permian-Triassic Initial Rifting Phase

Lopez-Gomez J, De La Horra R, Ronchi A, Arche A,
Gretter N, Barrenechea J, Lloret J and Borruel-Abadia V

The beginning of the Permian-Triassic small basins in the
Pyrenees, as in the rest of Iberia, was related to the fragmen-
tation of southern Variscan Europe and western Tethys as a
result of the initial break-up of Pangea (Lopez-Goémez et al.
2002). Although most of the Permian-Triassic rift basins in the
Pyrenees followed a similar development, some structural
differences allow distinguishing the Basque-Cantabrian and
the Aragonese-Catalan Pyrenean basins as separate sub-basins.
As a consequence of the initial tectonic control in basin
development and the later Cenozoic deformation, the outcrops
of these basins show today a distribution related to seven main
areas (Figs. 3.2 and 3.3a): A to D in the Basque-Cantabrian
zone, and E to G in the Aragonese-Catalan zone.

Figure 3.3a allows recognition of the main sedimentary
pulses and the intervening uplifting-erosion periods during
the Permian-Triassic time interval. A remarkable character-
istic is that similar time-equivalent sedimentation and ero-
sion intervals are broadly recognized in most of the Pyrenean
basin areas indicating a common geodynamic response
(Lopez-Gomez et al. 2019). It resulted from complex mul-
tistage process as the result of both the Variscan and the
Pyrenean/Alpine? orogenic cycles. So, depending on the
authors, the estimated ages and differentiated stratigraphical
units, and the different observed areas, up to four main
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sedimentary pulses, separated by interruption/erosion stages,
can broadly be identified in this first rift (synrift) period:
(1) Latest Carboniferous to Early Permian (Sakmarian?),
(ii) Early Permian (Artinskian to Kungurian?), (iii) late Early
Permian (Kungurian?) but expanding to Middle Permian
(Wordian?) or even Late Permian (Wuchiapingian?) times,
and (iv) Triassic (from late Olenekian to Norian). This latter
one surely also interrupted by pulses without sedimentation
and erosion, but the absence of precise-age determinations of
the rocks can not confirm or refuse this idea.

These sedimentary pulses preserve the signatures of the
late Paleozoic Pangea break-up during the progressive dis-
mantling of the Variscan chain up to the Triassic diffused
extension. These pulses are separated by unconformities
representing periods of tectonic activity, uplift, interruption
in sedimentation and erosion. As it is discussed later, they are
also included in different TSU and transpression, transtension
and extension tectonic events. The first three sedimentary
pulses record volcanic episodes that allow a precise dating of
the events in different areas of the Pyrenean basin (e.g. Bixel
1987; Briqueu and Innocent 1993; Lago et al. 2002; Rodri-
guez-Méndez et al. 2014; Denéle et al. 2012; Pereira et al.
2014; Gretter et al. 2015). It is also important to indicate that
the Basque-Cantabrian Pyrenees area shows some different
stratigraphic successions when they are compared with the
rest of the Pyrenean Basin areas. As discussed later, this is
probably due to erroneous interpretations related to the lack
of precise-age determinations in the Cantabrian area.

In the end of the last episode (Olenekian to Norian), the
basins were inter-connected during the mature phases of the
rifting, during the beginning of the transition from tectonic
to thermal subsidence that lasted until the Late Triassic,
when large dolomitic and evaporitic deposits were accu-
mulated (Calvet et al. 1993; Orti et al. 1996; Espina et al.
2004). This stage of beginning of thermal subsidence con-
tinued through the Jurassic, when shallow water marine
deposits formed the dominant facies in the basins completing
the first Mesozoic synrift-postrift phase.

3.2.2.1 Basque-Cantabrian Pyrenees

The Variscan Heritage

Heredia Carballo N, Martin-Gonzilez F and Suar-
ez-Rodriguez A

The Variscan orogenic belt that crops out in the western
Iberian Peninsula forms the Iberian Massif (Figs. 3.2 and
3.4). In the northwestern sector of this massif (the external
Cantabrian Zone), the Variscan orogeny finished in Late
Carboniferous (Gzelian)-Early Permian (Asselian) times,
developing a characteristic arc shaped orogen (Asturian Arc)
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Fig. 3.3 a The most representative Permian and Triassic selected
sectors and sections in the Pyrenees. Type sections: Al—Gamonedo;
A2—ILa Camocha—La Collada; B1—Caravia—Villaviciosa; Cl—
Sotres; C2—Pefia Sagra; D1—Maya; D2—Valcarlos; D3—Gulina; E1
—Aragon—Bearn; E2—Castejon; F1—FErill-Castell-Malpas; F2—La
Seu d'Urgell-La Trava; F3—Catellar de n’Hug-Camprodén; G1—
Banys D’Arles—Massarac. See Fig. 3.2 for location of the sections.
Selected references for the type sections: 1—Martinez Garcia (1999); 2
—Martinez Garcia (1991); 3—Pieren et al. (1995); 4—Manjon et al.
(1992); 5—Martinez Garcia (1999); 6—Sopeia et al. (2009); 7—Juncal
et al. (2016a, b); 8—Gervilla et al. (1978); 9—Garcia-Mondejar et al.
(1989); 10—Maas (1974); 11—Gand et al. (1997); 12—Robles and
Pujalte (2004); 13—Calvet el al. (1993); 14—Den¢le et al. (2012); 15
—Lasheras et al. (1999); 16—Miiller (1973); 17—Valero-Garcés
(1994); 18—Valero (1974); 19—(Valero Garcés and Gisbert Aguilar

(Merino-Tome et al. 2009; Gutiérrez-Alonso et al. 2011)
(Fig. 3.4). Shortly after, this orogen collapsed and the related
extensional tectonics allowed the development of
post-orogenic Permian basins and the emplacement of the
last calc-alkaline Variscan magmas in upper crustal levels.
These magmas even reached the earth surface, like in the
Villaviciosa basin, where volcanic intercalations are abun-
dant (Suarez-Rodriguez 1988; Valverde-Vaquero 1992) (B
in Fig. 3.4). This post-orogenic magmatism can be observed
in the eastern Cantabrian Zone, where the small plutons of

1992); 20—Pereira et al. (2014); 21—Lago et al. (20044, b); 22—Voigt
and Haubold (2015); 23—Fréchengues and Peybernés (1991); 24—
Gisbert (1983); 25—Lloret et al. (2016); 26—Mujal et al. (2016a); 27
—Gisbert et al. (1985); 28—Miiller (1969); 29—Gretter et al. (2015);
30—Bixel and Lucas (1987); 31—Marti and Barrachina (1986)—
(1987); 32—Mey et al. (1968); 33—Martinez Garcia et al. (1998); 34—
Fréchenges et al. (1990); 35-Lopez-Gomez et al. (2019). The subdi-
vided areas (from Al to G1) correspond to the ones indicated in
Fig. 4.9. Other symbols: Ca—Cabranes Fm., b.c.u—Basal Conglom-
eratic Unit, Ar—Arroyo Fm, Pa—Paraes Fm., La—La Cuesta Fm., GU
—Grey Unit, TU—Transition Unit, LRU—Lower Red Unit, URU—
Upper Red Unit. b A new stratigraphic organization proposed by
Lépez-Gomez et al. (2019) for the Permian and Triassic sedimentary
record of the Cantabrian Pyrenees by . It includes new
tecto-sedimentary and lithostratigraphic units

Pena Prieta, Pico Jano, Pico Ijan and the igneous complex of
Infiesto were emplaced (Fig. 3.4). This magmatism took
place between 297 and 292 Ma (Asselian-Sakmarian)
(Gallastegui et al. 2004). In late Early Permian times, the
volcanism decreases and the basin infill is mainly sedi-
mentary with source areas located in nearby areas. Related to
this collapse a subhorizontal cleavage is formed, which
offset the Variscan structures, being better developed in the
Carboniferous slate formations of the inner part of the
Asturian Arc (Pisuerga-Carrion Region) (Aller et al. 2004).
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The Variscan and late-Variscan structures of the Asturian
Arc control the main Permian normal faults and therefore the
related Permian basins. In Fig. 4.12 the probable extension
of the Permian basins is shown, located under Mesozoic
rocks in the western end of the Basque-Cantabrian Region of
the Alpine Pyrenean Orogen (Martin-Gonzalez and Heredia
2011). Noticeably, the Villaviciosa and La Justa-Aramil
basins, among others, located in the central part of the
Cantabrian Zone, have a predominant NE-SW orientation
(A and B in Fig. 3.4) parallel to Variscan thrusts; while
those located at the easternmost part, such as those on the
Picos de Europa Region and the northern part of the
Pisuerga-Carrion Region (Sotres-Pandébano, Cueto Turis,
Peiia Sagra and Pefia Labra basins) have E-W (C in Fig. 3.4)
to NW-SE trends (D, E and F in Fig. 3.4), related to Var-
iscan thrusts and late-Variscan faults respectively (Lopez--
Gomez et al. 2019).

Extensional tectonics during the Early Permian was not
generalized in the Cantabrian Zone, giving rise to narrow
and isolated continental basins with very local very local
depocenters. This extensional tectonics became generalized
during the Triassic, related to the Pangea fragmentation,
occupying the sedimentary basins wider areas.

A Geodynamic Approach
Cadenas P and Fernandez-Viejo G

From latest Carboniferous to Early Permian, a dextral trans-
lation of Africa relative to Europe gave rise to the develop-
ment of a conjugate shear system that transected the Variscan
fold belt and its northern foreland, leading to the beginning of
the break-up of Pangea (Arthaud and Matte 1977). Collapse
of the Variscan orogen was accompanied by regional uplift,
subsidence of an array of transtensional and pull-apart basins,
and widespread magmatism (Ziegler and Stampfli 2001).
Once the tectonic and magmatic activity abated in the Var-
iscan domain during the Late Permian and the Triassic, the
thermal subsidence of the lithosphere and the southwestward
propagation of the preexisting Norwegian-Greenland and
Tethys rifts dominated the evolution of the Variscan domain
during the Late Triassic (Fig. 3.5a, b). Those rifts, together
with the formation of an ESE trending rift system connecting
both, initiated the future Iberian-Eurasian plate boundary
(Ziegler 1990; Garcia-Mondéjar 1989). Within this context,
Western and Central Europe, including the Variscan domain
of Iberia, were transected during the Triassic by a complex

Iberian Peninsula

Fig. 3.4 Geological sketch map of the eastern Cantabrian Zone and
surroundings. This sketch only shows the location of the basins
containing exposed and well-dated Permian rocks and its related

Cantabrian Sea
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b.Buried Permian basins
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b.Buried Permian basins
Paleozoic

> Late and post
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San Vicente
de la Barquera

post-Variscan normal faults. Variscan, late Variscan and/or Alpine
faults and the main outcrops of Lower Permian post-orogenic plutonic
rocks are also shown
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and multidirectional rift system, with some elements super-
imposed on Permo-Carboniferous fractures (Ziegler 1990;
Stampfli 1991) (Fig. 3.5b). The Bay of Biscay rift and the
Iberian rifts initiated as part of this extensional system in the
Middle Triassic (Ziegler 1990; Salas et al. 2001) (Fig. 3.5b).

Early extensional stages started in the Permian, leading to
the development of several small-scale basins in the western
area of the current Pyrenean-Cantabrian domain, whose
patchy remnants (Fig. 3.5¢c, d) recorded a continental rifting
lasting for 90 Ma. It predates the main Lower Cretaceous
hyperextensional event, during which major rift basins
within the Bay of Biscay rift system developed (Tugend
et al. 2014), evolving to lithospheric breakup and a

short-lived seafloor spreading period in the Bay of Biscay
(Sibuet et al. 2004; Vissers and Meijer 2012). Some rem-
nants of the initial Permo-Triassic rift event can be found
within the two major Mesozoic basins in the western
Pyrenean-Cantabrian area, the Asturian Basin and the
Basque-Cantabrian Basin (Fig. 3.5¢). Recent studies into the
continental platform of the North Iberian margin (Cadenas
et al. 2018) also indicate that syncline basins developed off
the Galicia coast (Fig. 3.6). Borehole Galicia B2 (Lanaja
1987), drilled at the westernmost part of the Cantabrian
platform (Fig. 3.6), shows these minor troughs as infilled by
a syn-rift unit, including Triassic deposits, and a post-rift
unit, including Aptian deposits.
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Fig. 3.5 a, b Geodynamic context in the Late Permian and the Middle
Triassic, respectively, showing the location of the Bay of Biscay rift (from
Ziegler 1988a, b). AM: Armorican Massif, AQ: Aquitaine Basin, EH:
Ebro High, FC: Flemish Cap, GB: Grand Banks, GLB: Galicia Bank,
IBM: Iberia Meseta, TAP: Tagus Abyssal Plain, WA: Western
Approaches Trough; ¢ geotectonic map of the Asturian and Basque-

Cantabrian domains displaying the main outcrops of the Permo-Triassic
successions within the Asturian and the Basque-Cantabrian basins, taken
from Alvaro et al. (1995). The red square delineates the area displayed in
detail in D; d geological map of the Asturian-Cantabrian and westernmost
part of the Basque domains showing in detail the Permo-Triassic rocks
(modified from Pulgar et al. 1999)
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Fig. 3.6 Time migrated seismic reflection profile crossing the west-
ernmost part of the Cantabrian platform. The figure shows a syncline
rift basins located in Seismic Moho from Fernandez-Viejo et al. (1998)
and Ruiz (2007). In the lower left, the location of the seismic line
within the reflection dataset used to interpret structural and stratigraphic
features across the North Iberian margin. Refraction profiles used to

The offshore Asturian Basin sits on a depressed area
formed between Le Danois Bank and the Cantabrian conti-
nental platform (Cadenas and Fernandez-Viejo 2017;
Loépez-Gomez et al. 2019) (Fig. 3.5¢). The presence of
diapirs and halokynetic-related structures affecting the seis-
mic sequences has been attributed to the rise of Triassic
evaporites (Boillot et al. 1979; Cadenas and Fernandez--
Viejo 2017). Some Permo-Triassic remnants are preserved
onshore, close to the Asturian coast (Fig. 3.5¢, d). These
outcrops include Late Stephanian, Permian and Triassic
successions unconformably overlain by Jurassic red beds
(Martinez-Garcia 1981). In the eastern sector, the structure is
dominated by a set of NE-SW and NW-SE syn-sedimentary
normal faults (Suarez-Rodriguez 1988). Relying on an iso-
pach map, Sudrez-Rodriguez (1988) inferred that the thick-
ness of the trough increases towards the NW. Two NE-SW

define the seismic Moho in the western corner are traced in green.
Galicia B2 is posted as a blue star. Its stratigraphic section borehole
report, evidencing the presence of Triassic rocks, and the interpreted
tectonic units, are shown in the lower right corner. CF: Cantabrian
Fault, and SP: Splay fault, have been taken from Fernandez-Viejo et al.
(2014)

depressions have been recognized, whit intensive volcanism
and the syn-sedimentary activity indicating a transtensive
continental rifting. Three faults systems, formed during the
late Variscan orogeny, have been recognized affecting
Mesozoic sediments within the Asturian area: (i) a NE-SW
trending fault system, (ii) NW-SE structures, including the
Cantabrian or Ventaniella fault (Julivert 1960; Martinez-
Alvarez 1968) (Fig. 3.5¢, d), and (iii) an ENE-WSW to
ESE-WNW fault system, including the Llanera fault
(Fig. 3.5d). All show evidences of a distinctive reactivation
to various extents during the subsequent Late Jurassic to
Late Cretaceous extension and during Cenozoic compres-
sional tectonic events.

The Basque-Cantabrian Basin crops out extensively west
of the Pyrenees (Figs. 3.2 and 3.5c). The evidences of
Permo-Triassic extension are found in the western area
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where normal faults and syn-sedimentary activity, including
great sedimentary thickness variations, have been recognized
displaying horst-graben configurations (Espina 1997; Suar-
ez-Rodriguez 1988; Lepvrier and Martinez-Garcia 1990).

Tectonically speaking, both basins can be considered to
have a late Hercynian heritage, because they developed
along late Variscan lineaments (Arche and Lopez-Goémez
1996). This intracontinental Permo-Triassic rift episode
seems to have been a low magnitude rift. Minor segmented
troughs were structured by NE-SW bounding faults devel-
oped during a transtensional period which was accompanied
by bimodal volcanic rocks. Intense volcanism of alkaline
type supports the interpretation of a continental rift setting
(Martinez-Garcia and Tejerina 1985).

The same context has been proposed for the Iberian Range
basins (De Vicente et al. 1996). With a high degree of
mechanical coupling between the brittle and the ductile parts of
the crust, small basins developed in what has been referred to
as “proximal domain” in terms of architectural rift classification
(Tugend et al. 2014). It can be highlighted that the main
direction of extension at this period would be aproximately
NE-SW (Cadenas et al. 2018). It was probably a limited rift
zone trending NW-SE with a low strain rate accommodated by
brittle deformation and stretching of the crust. Later, with the
advance of the Atlantic rifting and reactivation of these earliest
weakness zones, mayor rift basins developed during the sub-
sequent rifting periods that evolved to lithospheric breakup and
seafloor spreading in the Bay of Biscay.

The Beginning of Sedimentation in the
Basque-Cantabrian Pyrenees

Lopez-Gomez J, De La Horra R, Ronchi A, Arche A,
Gretter N, Barrenechea J, Sopeiia A, Lloret J,
Borruel-Abadia V, Galan-Abellan B, Sanchez-Moya Y
and Diez JB

The beginning of sedimentation in the Basque-Cantabrian
Pyrenean Basin (Al to D3 areas in Fig. 3.2) took place on a
very irregular topography with a relief up to 500 m between
troughs and swells (Garcia-Mondejar et al. 1989; Espina
1994). This initial configuration and the later activity of the
faults allowed irregular sedimentation in the isolated Late
Carboniferous and Permian basins. As a result, some areas of
the western Basque-Cantabrian Basin were active during the
Late Carboniferous but did not record Permian or even
Triassic sediments, and vice versa. Although the main sed-
imentary pulses are well recognized not only in the
Basque-Cantabrian zone, but also in the Aragonian-Catalan
zone of the Pyrenean Basin (Fig. 3.3a), some of these cycles
are very incomplete, and even not recorded in this realm.
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There are not many detailed stratigraphical works about
Permian and Triassic rocks in the Basque-Cantabrian basin.
Unfortunately, some of these works even induce to confusion
due to the absence of precise ages to locate some units in time
and space. Some stratigraphic review works (Martinez-Garcia
1991; Calvet et al. 1993; Lopez-Gomez et al. 2002; Sopefia and
Sanchez-Moya 2004; Robles and Pujalte 2004; Espina et al.
2004) have tried to organize the complex mosaic of units,
sometimes with numerous local names, but still without a pre-
cise stratigraphical frame. Figure 3.3a (A1-D3) shows a classi-
cal stratigraphical synthesis of the Permian-Triassic record in the
Basque-Cantabrian Pyrenees based on tens of works. However,
a recent effort based on new chronostratigraphic data (Lopez--
Gomez et al. 2019) has allowed to define a new stratigraphic
succession for the Cantabrian area. Fig. 3.3b shows a compar-
ison between this new and the classical stratigraphic succession.

Present-day main faults in the Basque-Cantabrian Basin
trend WNW-ESE. They were initially related to the exten-
sional collapse phase of the Variscan orogeny, during the
Late Carboniferous-Early Permian (Fig. 3.2). During that
time, intermontane terrestrial basins were developed in the
northern border of the Iberian plate in response to tectonic
readjustments to transtensional faulting in the Chedabucto-
Gibraltar and Bay of Biscay areas (Lopez-Gomez et al.
2002). Current sedimentation mainly consisted in slope
breccias, alluvial fans, and lacustrine deposits associated
with volcaniclastic rocks of calc-alkaline affinities (Dencle
et al. 2012) (e.g. San Tirso and Demues formations, or Grey
and Transition units in the Cantabrian and Basque areas,
respectively) (Fig. 3.3a, A1-D3). Transtensional activity
finally ceased and it was followed by a period of uplift,
tilting and erosion. An extensional cycle of sedimentation
started during the Kungurian (e.g. Sotres Fm, Juncal et al.
20164, b, in the Cantabrian area, and Lower Red Unit, in the
Basque area) (Robles et al. 1987; Garcia-Mondéjar et al.
1989; Mamet and Martinez-Garcia 1995; Gand et al. 1997).
After a period of uplift, tilting and erosion, a new cycle of
sedimentation started during the Middle Triassic.

This first Mesozoic record is represented by the
Buntsandstein facies, consisting of conglomerates, sand-
stones and siltstones, related to alluvial deposition (Fig. 3.3,
Al1-D3). It may reach 400-900 m in thickness (Carreras
et al. 1979; Garcia-Mondéjar et al. 1989; Robles and Pujalte
2004), although Alpine tectonics may have contributed to
local erroneous thickness estimations. This sedimentary
record was accumulated in extensional basins with a main
E-W orientation. The succession, when complete, shows
two parts. The lower one begins with homogeneous and
well-rounded conglomerates, 10-90 m in thickness, and
grade upwards into cross-bedded, coarse-grained sandstones.
The upper part consists of red fine-grained sandstone, silts
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and mudstones. Although this continental succession shows
similar lithology, it is important to remark that the age of the
upper part of this sedimentary record in the Basque area is
Anisian (Calvet et al. 1993), while in the Cantabrian area it
is late Ladinian-early Carnian (Sopefia et al. 2009), that is,
they belong to different sedimentary cycles.

3.2.2.2 Aragonese-Catalan Pyrenees

The Aragonese-Catalan Pyrenean sector represents the
eastern area of the two structural units of Mufioz’s (2002)
configuration of the Pyrenees (Fig. 3.2). In turn, this struc-
tural unit is also subdivided into three
Western-Central, Central and Eastern. In some of these
areas, isolated sub-basins are also described here due to their
particular development and paleogeographic significance.

areas:

The Western-Central Area
Rodriguez-Méndez L, Cuevas J and Tubia JM

The fading of Variscan compressional tectonics in the
Western-Central area of the Aragonese-Catalan Pyrenees
resulted in the onset of a new extensional tectonic regime that
led to the formation of Stephanian-Permian basins, mainly
scattered along the southern border of the Axial Zone. They are
small isolated continental basins that trend parallel to the
east-west elongation of the belt. Although they are little known
in detail, a general common structure is recognized, in which 2
or 3 sub-basins connected by a paleohigh constitute each basin.
Two main basins are distinguished in the Western-Central
Pyrenees: the Aragén-Bearn (E1) in the west and the Caste-
jon-Laspaules basin (E2) to the east (Figs. 3.2 and 3.3). The
Aragon-Bearn basin is generally divided in the Oza and Anayet
sub-basins, to the west and east respectively (Fig. 3.7). Locally
derived continental successions fill the basins, which renders
difficult the correlation even within a basin. Nevertheless, four
main lithostratigraphic units are distinguished for the
Stephanian-Permian of this area of the Pyrenees: the Grey Unit,
the Transition Unit, the Lower Red Unit and the Upper Red
Unit, from base to top respectively (Gisbert 1984).

In the Castejon-Laspatles basin, the Upper Red Unit is
absent and the Transition Unit appears as discontinuous out-
crops, whereas the Aragon-Bearn basin preserves one of the
most complete sedimentary records, with the four stratigraphic
units well developed (Fig. 3.7). As previously stated, one of the
main questions regarding the stratigraphic evolution of the
Stephanian-Permian basins is the deficient correlation between
the biostratigraphic and the absolute ages in the interlayered
volcanic rocks. In this regard, Rodriguez-Méndez et al. (2016)
have reported differences of at least 17 Ma between the
paleontology-based and the absolute ages in the Aragén-Bearn
basin.

J. Lopez-Gémez et al.

The Grey Unit is a volcano-sedimentary complex formed
by shales, coal and brecciated conglomerates with interlay-
ered volcanic flows. It shows a diachronic base and a lateritic
roof. Plant-bearing limestones from the eastern part of the
Aragon-Bearn basin (Anayet sub-basin) yield an upper
Stephanian to Autunian age (Rios et al. 1987). U-Pb ages of
278 £ 5 and 272 + 3 Ma (Cisuralian-Kungurian) have
been reported for rhyolites and dacites interlayered in the
Anayet sub-basin (Briqueu and Innocent 1993).

The Transition Unit is composed by alternating layers of
shales, sandstones and oolitic limestones of grey colours.
The Grey and Transition units crop out only in the east-
ernmost part of the Aragon-Bearn basin (Anayet sub-basin)
with 50-200 m of maximum thickness (Rodriguez-Méndez
et al. 2016). In the Castejon-Laspaules basin the Grey and
Transition units reach a maximum thickness of 550 m
(Valero Garcés and Gisbert Aguilar 2004).

The Lower Red Unit consists of well-stratified,
cross-bedded red sandstones, and occasionally conglomer-
ates. Lava flows, dykes and laccoliths crop out interbedded
within this unit in the Aragon-Bearn basin. “Saxonian” to
“Thiiringian” ages are proposed for this unit (Lago et al.
2004a). The Lower Red Unit shows a thickness of around
200-250 m in both basins (Rodriguez-Méndez et al. 2016;
Garcia Senz and Ramirez Merino 2009), although it even-
tually reaches 400 m (Teixell et al. 1994).

The Upper Red Unit is formed by three thinning-upwards
megasequences of red conglomerates, sandstones and minor
shales that crop out only in the Aragon-Bearn basin. Alka-
line basalts are interbedded within this unit (Fig. 3.7). The
Upper Red Unit exhibits the biggest sedimentary record,
with a maximum thickness of 1500 m in the Oza sub-basin
(Teixell et al. 1994). The Upper Red Unit is absent in the
Castejon-Laspatiles basin, where a Triassic continental suc-
cession cover unconformably the Lower Red Unit (Mey
1968) (Fig. 3.3). The Triassic deposits comprise basal
coarse-grained sandstones and conglomerates, black, red or
green mudstones, containing veins of gypsum, siltstones and
yellowish dolomitic marls (Buntsandstein facies). The total
succession can be represented by two fining-upwards
megasequences with important thickness changes. In some
areas of the Western-Central Pyrenees, the lower sequence,
or B1 (Gisbert 1983) of the Buntsandstein facies, is not
present, suggesting a structural high, but a precise paleo-
geographic reconstruction is still not clear (Loépez-Gomez
et al. 2002). A rapid, normal vertical transition to calcareous
Muschelkalk facies is a common stratigraphic characteristic
in this area.

The Aragon-Bearn and the Castejon-Laspatles
sub-basins were inverted during the Late Cretaceous to
Tertiary Pyrenean compression (Fig. 3.8a, b). The Caste-
jon-Laspatles basin was transported towards the south and
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strongly deformed by frontal, thrust-related folds of an
antiformal stack, the so-called “tétes plongéants™ (Seguret
1972), where the Paleozoic basement is also involved
(Fig. 3.8b). In contrast, the Aragén-Bearn basin shows a less
severe deformation, dominated by south vergent WNW-—
ESE angular folds of kilometric wavelength with axial plane
cleavage (Rodriguez-Méndez et al. 2016; Teixell et al. 1994,
Teixell and Garcia-Sansegundo 1994). Despite the marked
influence of the Pyrenean inversion in the present configu-
ration of the Anayet sub-basin, detailed mapping of the area
still allows a pull-apart geometry to be identified for the
basin opening (Fig. 3.7). The Anayet sub-basin shows a
lozenge-shaped geometry with a WNW-ESE elongation that
might be considered as an inherited structural feature from
the former basin margin faults (Fig. 3.9). The northern
margin fault is poorly exposed but its location is underlined
by a WNW-ESE alignment of volcanic rocks interlayered
with the Permian sediments (Fig. 3.7). N 50° E-trending
transverse faults divide the basin and determine the existence
of several paleo-highs and depocenters (Figs. 3.7 and 3.9).
The western paleo-high constitutes the limit between the
Anayet and Oza basins. The central fault was sealed by the
deposition of the Lower Red Unit and the western one by the
Upper Red Unit. The eastern transverse fault is the sole
extensional fault, as indicated by the presence of the oldest
units in the sedimentological record (Fig. 3.9). The orien-
tation of the transverse normal faults at right angles to the
expected extensional fractures in a strike-slip system, sug-
gests that the intrabasinal faults were Variscan fractures
reactivated during the opening of the basin. Moreover, a
dextral movement of the edge wrench fault is supported by
the westward migration of the depocenters. The Grey Unit

for the opening of the basin are indicated. The Grey and Transition
units are here represented together

shows increasing thickness towards the north (see the cross
section in Fig. 3.9), which indicates that the opening of the
Anayet sub-basin started under transtensional conditions.

Stephanian and Permian Lakes in the Aragon-Bearn
Basin

Valero Garcés B and Gisbert Aguilar J

Reactivation of Variscan faults during the Stephanian
transtensional phase originated the late Variscan basins in
the Pyrenees (Bixel and Lucas 1983, 1987) that were filled
with thick volcanoclastic and volcanic material, and alluvial
fan and lacustrine sediments (Gisbert 1981, 1983, 1984;
Gisbert et al. 1985; Lucas 1985, 1989; Lucas et al. 1996;
Valero Garcés and Gisbert Aguilar 1992, 1994, 2004).
Although lacustrine formations are spatially and temporally
restricted, they have special significance in the geotectonic
evolution of these basins. The Aragén-Bearn basin (El in
Figs. 3.2 and 3.3a) provides the best examples for lake
variability in transtensional settings during late Variscan
times in the Pyrenees. This basin was composed of two
sub-basins  (Oza-Baralet, Fig. 3.7, and Campo de
Troya-Midi d’Ossau), both asymmetrical, with preferential
subsidence on their eastern side (Lucas 1985; Valero Garcés
1991, 1993) (Fig. 3.7). During the compressive cycle, a
thick volcanic and volcaniclastic sequence was deposited
(Valero Garcés 1991, 1994). Lake environments including
carbonate, swamps and clastic deposition occurred in the
lower member of the Transition Unit, TU (late
Stephanian-Early Permian). Lakes are absent in the lower
red clastic series (the Lower Red Unit, LRU). A change from



SSW NNE

Jurassic, Cretaceous
& Eocene

D Upper Triassic
D Buntsandstein Facies

D Grey & Transition Units

D Paleozoic Basement

Fig. 3.8 Cross sections showing the main structural features in: the
upper part the eastern part of the Anayet basin (from Rodriguez-Mén-
dez et al. 2016), and in the lower part the Castejon-Laspaules basin
(from Seguret 1972). The section of the E Anayet area is located as XA
in Fig. 3.7

a main E-W dextral shear during the Stephanian to a sinistral
shear over a set of faults oriented NNE-SSW and ENE-WSW
during the Permian, would be responsible for a gradual change
toward an extensional setting during Late Early-Middle-(?)
Late Permian (Fig. 3.3). This extensional cycle is represented
by three fining-upward alluvial megasequences (that constitute
the Upper Red Unit, URU), with some intercalated lava flows,
sills and intrusive bodies with alkaline affinities (Bixel 1984).
Numerous thin calcareous pedogenic horizons and seven

Cross Section

J. Lopez-Gémez et al.

decameter-thick units with carbonate are present in these
megasequences. The limestone layers (up to 40 m thick) are
the most widespread, and crop out at the top of the first
megasequence and at the bottom of the second megasequence.
A gypsum unit (ca. 50 m thick) appears at the top of the first
megasequence in the northwestern area of the basin, while
dolostone units appear at the top of the second megasequence
towards the easte of the basin.

The Central Area

Gretter N, Arche A, Lloret J, De la Horra R, Ronchi A,
Lépez-Gomez J and Barrenechea J

The stratigraphic subdivision of the Late Paleozoic continental
succession filling the Central and Eastern Pyrenean basins
(Figs. 3.2 and 3.3) has been a matter of discussion over the last
few decades (e.g. Arche and Lopez Gomez 1996; Lopez Gomez
et al. 2005; Van Wees et al. 1998; Vargas et al. 2009). The latest
syntheses followed the approach that has proven to be valuable in
the rest of Western Europe: the tectono-stratigraphic subdivision.
This view is based on a number of well differentiated
“tectono-stratigraphic units” (TSUy), as emphasized by many
authors (e.g. Virgili et al. 2006; Cassinis et al. 2008, 2012; Gretter
et al. 2013) and, more broadly, strenghthened by: (i) radiometric
age data, (ii) paleontological investigations (macrofloras,
microfloras and tetrapod footprints), and (iii) tectono-
stratigraphical arguments and correlations. Although applying
this perspective to the Central and Eastern Pyrenees areas is not
easy, it is possible to distinguish three main TSUs, separated by
marked unconformities and gaps of as yet uncertain duration (see
Bourquin et al. 2011; Cassinis et al. 1995, 2012; Virgili et al.
2006 and references therein) (Fig. 3.10).

The lower TSU, (Late Carboniferous—Middle Permian p.p.,
sensu Cassinis et al. 2012; Virgili et al. 2006) is mainly char-
acterized by fine-to-coarse fluvio-lacustrine and volcanic
deposits of calc-alkaline acidic to intermediate composition,
lying unconformably over the Variscan basement. Its archi-
tecture involves four lithostratigraphic units; from oldest to
youngest (nomenclature of Gisbert 1981):

Fig. 3.9 Pull-apart model responsible for the opening of the Anayet sub-basin. The NS cross-section shows the role of the northern margin fault

of the basin as the feeding channel for the volcanic rocks
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(1) Grey unit (GU): this represents the first deposits defined
primarily on its lithological characteristics and partly on
paleobotanical contents. It is mostly made up of volcanic
and volcaniclastic rocks. This unit shows polygenic slope
breccias at the base (Aguiré Fm. of Mey et al. 1968 and
Nagtegaal 1969), grey sandstones and conglomerates
characterizing the apical part of alluvial fans bodies, with
laminated lacustrine sediments. These facies are laterally
interspaced by volcaniclastic and pyroclastic bodies
(dacitic to rhyolitic in composition), together with several
andesitic and rhyolitic lavas (Erill Castell Fm of Mey
et al. 1968). It rests unconformably over the basement
and, on the basis of fossil floras, is Stephanian B-C
(Gzhelian) in age. New radiometric age determinations
on intrusive and extrusive rocks by Pereira et al. (2014)
provided a late Kasimovian-early Gzhelian age
(307.4 =+ 1.4 Ma — 301.5 £ 1.9 Ma).

(2) The Transition Unit (TU) (“Permien alternant” by Broutin
et al. 1994) may correspond to the upper part of the Erill
Castell Fm and the Malpas Fm of Mey et al. (1968) and
Nagtegaal (1969). It is mostly characterized by a detrital
succession of volcanic and volcanoclastic sequences,
grading upwards to grey sandstones and microconglom-
erates alternating with grey and reddish siltstones.
Reddish/greenish coarse-grained siltstones, with thin
levels of carbonate nodules, can also be found at the top
of this succession. Unlike other areas, in the Seu d"Urgell
zone, the TU rests conformably over the underlying GU.
Owing to the poor macrofloristic content, the age of the
TU is still the subject of uncertainty. However its attri-
bution to the early-Middle Autunian (Broutin and Gisbert
1985), or better to the Latest Gzhelian-late Asselian, is
not only very plausible but also emphasized by the
297.2 + 3.3 Ma age recently obtained from the Erill
Castell ignimbrites (Pereira et al. 2014).

(3) The Lower Red unit (LRU) is probably equivalent to
the Peranera Fm described by Mey et al. (1968),
Nagtegaal (1969) and Roger (1965) in the Western-
Central Pyrenees. It is dominated by alluvial fan sedi-
ments and meandering river flood-plain deposits,
including channels, overbank fines and paleosols. This
succession generally constitutes a fining upwards
sequence and characterizes the lower part of the unit,
which grades upwards to red debris flow and stream
flood deposits (Lloret et al 2018). Volcaniclastic bodies
commonly occur at the base of the unit. Inferred age is
Autunian to post Autunian (i.e. Sakmarian—Artinskian—
Kungurian). Floras and plant remains confirm an Early
Permian age (Dalloni 1930; Virgili 1958; Roger 1965),
and the so-called “Flora of Gotarta” (Broutin and
Gisbert, 1985), but also tetrapod ichnoassociations as
well as several invertebrate trace fossils suggest an
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Artinskian age for the lower part of the LRU (Mujal
et al. 2016a, b, c). In addition, recent radiometric age
determinations on ignimbritic samples collected in
Castellar de n’Hug area (Fig. 3.3) yielded an Artinskian
age (290.0 £ 1.2 Ma and 285.6 £ 1.5 Ma; Pereira
et al. 2014) Above the LRU, the onset of the Upper Red
Unit (URU) is defined by an angular unconformity
sealing a gap of uncertain duration (Gisbert 1981, 1983;
Gretter et al. 2015). The biostratigraphic data and the
absolute age determinations in this region of the Pyre-
nees are apparently contradictory in some cases, which
remain to be solved.

(4) The Upper Red Unit (URU) is mainly composed of red
conglomerates, sandstones and siltstones with carbonate
nodules and lacustrine deposits, arranged in two fining
upwards megasequences with a number of interbedded
volcanic bodies in the lower part (Gisbert 1983; Gretter
et al. 2015). On the basis of vertebrate remains and
regional correlations, its age could be referred to a
generic Middle Permian, possibly Wordian (Mujal et al.
2016a). As it is bounded by two unconformities, the
URU could be considered as a sequence in itself.
Actually, it is quite likely to consider it lying between
the upper TSU; and TSU,. Up to now, however, neither
the biostratigraphical nor the tecto-sedimentary data can
decide if the URU belongs to the TSU, or represents the
base of the TSU,.

The TSU, (Late Middle?-Late Permian, sensu Cassinis
et al. 2012) is apparently missing in the Pyrenees. In the rest
of SW Europe it begins with prevalently fluvial detritic red
beds marked again by a stratigraphical discontinuity. It is
mostly dominated by alluvial deposits and almost every-
where in SW Europe completely devoid of volcanics (Cas-
sinis et al. 2012).

The TSU; (Lower—Middle Triassic) rests unconformably
over the underlying older Permian rocks and can be directly
correlated to the Germanic Buntsandstein. On top of the
URU, the fluvial Buntsandstein facies (Bunter Formation of
Mey et al. 1968) started with a coarse-grained oligomictic
quartz-rich conglomerate, followed by sandstones and shales
in a fining upwards sequence. The lowermost facies of the
Buntsandstein (e.g. the Iguerri member of Nagtegaal 1969)
shows a deeply erosive base and sandstones of gravel brai-
ded fluvial systems and channel sand-sheets (Gretter et al.
2015; Lloret et al. 2018). The dark red fine clastics above
this first coarse unit are composed of reddish sandstones,
bioturbated mudstones and siltstones of a playa lake envi-
ronment. Near the top, siltstones and claystones locally
change into dark red fine levels until the contact with the
Muschelkalk sequence. The contact between the upper fine
deposits and dolomites of the first marine incursion probably
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Fig. 3.10 Synthetic Late Paleozoic-Early Mesozoic lithostratigraphic
scheme based on Gisbert (1981), Mey et al. (1968), Nagtegaal (1969)
and Gretter et al. (2015). Magmatic episodes are taken from Bixel
(1984). Radiometric age assessment in the central-eastern Pyrenees
comes from both intrusive (red circles) and volcanic (yellow circles)
rocks (Pereira et al. 2014); from oldest to youngest: 307.4 + 1.4 Ma,
302.6 £ 2.6 Ma, 301.5 + 1.9 Ma, 298.6 £ 2.5 Ma, 297.2 + 3.3 Ma,

represents a hiatus that lasts until the late Anisian
(Escudero-Mozo et al. 2014). Although palynological data,
together with other palynomorph assemblages from the basal
part of the coarse fluvial Buntsandstein deposits have been
attributed to a “Thuringian age” (e.g. Broutin et al. 1988;
Calvet et al. 1993; Diez 2000; Diez et al. 2005), new dif-
ferent types of spores and pollens allow correlating this
associations with the Early Triassic levels (i.e. late Olene-
kian, Mujal et al. 2016a).

The complex interplay of tectonics and sedimentation in
the transtensional sub-basins of the Central Pyrenees area
(F1-F3 in Figs. 3.2 and 3.3), strongly influenced the depo-
sition and architecture of syn-extensional sediments. In fact,
the Late Carboniferous-Early Permian strike-slip sub-basins,
here represented by the FErill-Castell, Estac, Gramoés and
Castellar de n’Hug-Camprodon troughs, formed under the
general extensional regime and transtensional faulting in the

290.0 £ 1.2 Ma, 285.6 = 1.5 Ma, 279.6 £ 3.0 Ma, 266.7 £+ 3.1 Ma.
The five starred points in the relative age column, mark the paleofloras
as from (1) Broutin et al. (1988), (2) Broutin and Gisbert (1985) and
(3) Dalloni (1930). In particular, from oldest to youngest: “Gerri de la
Sal” flora (3), “Gotarta” flora (2), “Castellar de n’Hug” flora (2),
“Palanca de Noves” microflora (1) “Baro” microflora (1). Tectonic
events are taken from Carreras and Druguet (2014)

range of the first post-Variscan rifting (Saura and Teixell
2006) (Fig. 3.11a—d). The restored structural sections (e.g.
Hartevelt 1970; Poblet 1991; Saura 2004; Saura and Teixell
2006; Teixell 1992, 1998) revealed that most of these
sub-basins formed initially as grabens or half-grabens elon-
gated along an E-W direction (see Saura and Teixell 2006).
The southern basin-bordering faults exhibit normal slicken-
sides that were active during Stephanian-Early Permian
times, and reactivated as the present-day thrusts in the
Cenozoic. Unfortunately, the Cenozoic deformations par-
tially tampered with the primary features of the late Variscan
structures, during the most recent polyphase reactivation
during the Pyrenean folding phases (Eocene) and the
post-Pyrenean deformations (Oligocene-Miocene) (e.g.
Hartevelt 1970; Saura and Teixell 2006; Sibuet et al. 2004).
Two of the most important of these sub-basins are described
below.
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The Erill Castell Sub-basin
The Erill Castell sub-basin in the Malpas-Sort area (Figs. 3.3
and 3.11b) has been defined as a half-graben trough (e.g.
Mey 1968; Poblet 1991; Saura and Teixell 2006), produced
by the continental extension occurred in Late Carbonifer-
ous—Early Permian times. The Stephanian-Permian conti-
nental succession, as defined by the depositional units of
Gisbert (1981), reaches considerable thicknesses (up to
1000 m) and is unconformably covered by the Buntsand-
stein facies, during the Early Triassic (Lloret et al. 2018).
Also in this particular case, the entire succession is rather
complex due to the interplay of tectonism, volcanism and
clastic sedimentation. Deposition and erosion processes were
controlled by alternating periods of tectonic activity, cul-
minating with extended erosive events marked by angular
unconformities.

The most important stratigraphic features are, from base
to top:

— The Grey Unit (up to 500 m thick) is mostly character-
ized by clastic sedimentation with coal levels affected by
an intense volcanic activity, mostly represented by
andesites that crop out in the central-western part of this
sub-basin. The GU also includes collapse breccias, con-
glomerates, coarse sandstones, in addition to the
interbedded volcanic tuffs and ashes.

— The Transition Unit reaches 146 m in this area and
consists of greenish/greyish sandstones, conglomerates,
coal levels, dark siltstones and fresh-water lacustrine
limestones, organized in thin levels. Coal seams are only
present in the western sector of the basin. The TU gets
thinner to the east (only 16 m thick in La Mola d’Amunt
sector). A 20 m thick coarse conglomerate level, first
described by Lloret et al. (2018), characterizes the upper
portion of the TU. An erosive base and a weak positive
sequence to the top characterize this level in the Castel-
lars sector.

— In the Lower Red Unit (lower Permian) the sedimentary
record changes radically to reddish conglomerates,
sandstones and siltstones of fluvial origin. In the west
side of the Erill Castell sub-basin (Fig. 3.11b) the vertical
succession is continuous with an average of 80 m in
thickness (Gotarta and Malpas sectors). In the central
sector the LRU disappears due to the presence of a
basement structural high. Finally, the LRU becomes
thicker to the east, reaching 481 m.

— The Upper Red Unit does not apparently appear in this
sub-basin.

The sedimentary fill ends with the Buntsandstein facies
(Lower-Middle Triassic), up to 290 m thick in the central
sector. This unit is separated by an unconformity from older
units and is composed of coarse-to-fine fluvial (at the base)
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and playa-lake deposits (at the top). The thicknesses of LRU
and the Buntsandstein are strongly variable due to the
angular relationship between them.

The stratigraphic succession of the Erill Castell sub-basin
(Fig. 3.11b) records different paleoenvironments and pale-
oclimates. The evolution starts with a humid period (coal
levels in the GU), passing through a semi-humid interval,
evidenced by the extensive fluvial system of the LRU, to
more arid conditions, as inferred by the playa-lake deposits
of the Buntsandstein facies.

The Gramés Sub-basin

According to the most recent structural reconstructions
(Hartevelt 1970; Teixell 1998; Saura and Teixell 2006;
Gretter et al. 2015), the Gramo6s sub-basin, (Figs. 3.3F2 and
3.11c) sets out to be an asymmetric graben, bounded by
extensional normal faults (Fig. 3.11d). The main synsedi-
mentary structure, active during the deposition of the TSU;
and defining the southern margin of the basin, probably
corresponded to the present-day Orri thrust. Accordingly, the
related complex structural network controlled the sedimen-
tation of the Stephanian-Permian succession. In particular,
the Late Carboniferous-Early Permian sequence uncon-
formably rests over the Variscan basement through a clear
angular unconformity. During this period, sedimentation
took place in volcanic, alluvial, lacustrine and playa-lake
environments. The volcano-sedimentary record of the GU
and TU, representing the base of the TSU; (Fig. 3.10), was
thus deposited as a consequence of increasing subsidence
associated with crustal faulting. The main structural linea-
ments, besides controlling the lateral changes in thickness,
facilitated the rise of hot igneous materials from the
asthenosphere, considered as the source of the coeval
calc-alkaline volcanism, testifying an active syn-sedimentary
tectonic regime. Volcanic activity, mostly represented in the
form of interbedded pyroclastic deposits, lasted from these
basal units up to the base of the URU, though decreasing in
frequence upwards. Several minor internal erosive surfaces
affect the TSU,. These surfaces can probably be attributed to
minor alternating stages of tectonic activity; the most
important one marks the passage from the LRU to the URU.
Accordingly, debris flow bodies at the base of the URU,
suggest deposition in proximal areas of alluvial fan systems.
Their deposition was controlled by structural factors close to
the footwall slope area. Steepening of gradients as a con-
sequence of a new minor tectonic pulse would result in
erosion of the upper part of the LRU (angular unconformity)
followed by supply of clastics (debris flows) sealing the
unconformity. In particular these facies commonly occur in
the western sector of the Gramods sub-basin. There, the
normal fault network probably created a scarp system, sev-
eral tens of metres high. It is also clear that this sector
experienced increasing subsidence from the Early to Middle
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Permian, which implies high deformation rates. A progres-
sive reduction in tectonic activity probably affected the
deposition of the URU; a meandering river fluvial system
followed a braided one and thick playa deposits finally
closed this sedimentary cycle.

From the Latest Carboniferous to the Middle—Late (?) Per-
mian, the subsidence of the Gramds sub-basin probably shifted
clockwise to the southwest (Gretter et al. 2015). On a smaller
scale, this fact may reflect a coeval regional rotation of blocks,
taking place in the wider transtensional regime. A modern
analogue example can be found in the San Andreas system
(California) (e.g. Allen and Allen 2005; Dibblee 1977; Nichol-
son et al. 1986), where rotation of blocks near the intersection of
the two most important faults, controls the shape of areas
experiencing extension, paleodrainage and evolution of subsi-
dence in a similar manner to that observed in the studied area.

In Late Permian—Early Triassic times a new extensional
tectonic phase led to the development of symmetric basins
filled by alluvial-fan conglomerates followed by sandy braided
rivers deposits (Buntsandstein facies) (Fig. 3.10). Therefore,
above the TSUj, a hiatus whose duration is difficult to estimate
represents a major erosional surface that characterizes the base
of the Buntsandstein facies and the onset of the TSUj;. In the
Catalan Pyrenees, the Late Permian sediments or a part of them
(corresponding to the TSU; in other western European sectors)
seems not to be preserved, totally or partly eroded together with
the Lowermost Triassic deposits or not deposited at all. More
broadly this event has been explained in the earliest Triassic as
a period of by-pass (Bourquin et al. 2011). The top of the
Permian is characterized by an unconformity overlain by
braided river sediments, deposited under an arid climate. At the
scale of western and southwestern Europe, this arid episode
could be attributed to the Early Olenekian (Smithian) (Durand
2008; Bourquin et al. 2007), where a break in sedimentation of
Late Olenekian-Early Anisian duration is often observed.

The Eastern Area
Arche A and Lépez-Gomez J

The Permian-Triassic rifting phase is only partially repre-
sented in this area of the Pyrenean Basin. It was probably an
elevated area where Permian sediments were not deposited.
Most representative sections are located around Massarac
and Banys d’Arles sections (G1 in Figs. 3.2 and 3.3a). The
first Mesozoic sedimentary record is probably of Anisian
age, and represents the youngest sediments of this rifting
phase. They consist of red siltstones, sandstones and some
intercalated conglomerate levels (Calvet and Anglada 1987).
They lie on weathered granitic basament with a thin basal
breccia and their upper part may reach an early Ladinian age,
so included in the B1 or upper Buntsandstein sedimentary
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cycle of Gisbert’s (1983) nomenclature. A 8-18 m thick unit
of variegated marls and thin stromatolitic layers marks the
transition to the Muschelkalk facies.

3.2.3 The Middle-Late Triassic Mature Rift
Phase in the Pyrenean Basin

Lopez-Gomez J, Martin-Chivelet J, Escudero-Mozo MJ,
Orti F and Pérez-Lopez A

A new period of subsidence covering most of the Middle and
Late Triassic defined a phase of mature rifting in the Pyrenean
Basin. The subsidence affected broader areas in comparison to
the previous initial rifting phase (Garcia-Mondejar et al. 1989;
Calvet et al. 1993, 2004) and determined the entrance of
marine waters into the basin from the Tethys Sea (i.e. from the
East). This marine transgression gave rise the installation of
the Middle Triassic carbonate ramps (Muschelkalk facies) and
the later development of Upper Triassic marl-evaporite shab-
kha systems (Keuper facies). The sea waters invaded the area
in the early Ladinian (i.e. notably later than in other basins of
Iberia, Escudero-Mozo et al. 2014) and the development of the
carbonate ramp was limited to the eastern and central parts of
the basin (the Aragonese-Catalan and the Basque Pyrenean
sectors), being absent in the Cantabrian area (Fig. 3.3a).
3.2.3.1 The Middle Triassic Carbonate Ramps
(Muschelkalk Facies) in the Pyrenean
Basin

Lopez-Gomez J, Martin-Chivelet J and Escudero-Mozo
MJ

The Muschelkalk facies in the Pyrenean basin is represented
by a single carbonate ramp of Ladinian-earliest Carnian age
(Calvet et al. 1993, 2004). This is a remarkable difference in
relation to other areas of Iberia, such as the Catalan Ranges
and the Iberian Basin, where another older ramp system,
Anisian in age, exists. The carbonate ramp was developed on
the Catalan—Aragonese and the Basque sectors, but not in
most of the Cantabrian one (Fig. 3.3a). From west to east,
three main outcrop zones exist: Basque Pyrenees, Mal-
pas-Pedraforca-Nogueres-Cadi area, and Eastern Pyrenees
(Fig. 3.3a, D1-D3, FI1-F3 and G1, respectively).

In the Basque Pyrenees this carbonate unit reaches 70 m
in thickness and is constituted by three different lithologies,
from bottom to top: marly dolomites, gray limestones, and
thin-bedded limestones and dolomites (Miiller 1973; Calvet
and Anglada 1987; Calvet et al. 1993; Calvet and Marzo
1994). Sedimentological studies indicate subtidal-supratidal
environments (Calvet et al. 2004). Based on foraminifera,
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conodont and pollen associations a Ladinian-early Carnian
age has been proposed for this unit (Calvet et al. 1993;
Calvet and Tucker 1995).

In the Malpéas-Pedraforca—Nogueres—Cadi area, this car-
bonate unit is basically represented by gray limestones in the
lower part and gray limestones and dolomites in the upper part,
and reaches up to 80 m in thickness (Roger 1965; Robles and
Llompart 1987) (Fig. 3.12). Sedimentological studies indicate
subtidal-supratidal deposional environments for this unit
(Calvet and Anglada 1987; Calvet and Marzo 1994). Sections
in this area are strongly affected by post-sedimentary tectonics
related to the Pyrenean orogeny. As result, these sections are
usually incomplete, especially in its lower part. Data obtained
from palynological assemblages (Calvet and Marzo 1994),
foraminifera (Fréchengues et al. 1990; Marquez et al. 1990;
Fréchengues and Peybernés 1991; Calvetand Marzo 1994) and
conodonts (Calvet and Anglada 1987; March 1991) indicate a
Ladinian age for this carbonate unit.

The Eastern Pyrenees sector shows few and incomplete
sections basically constituted by dolomites and gray limestones
that mostly indicate tidal flat environment sedimentation (Fré-
chengues et al. 1990). Based on conodont studies, these sec-
tions are considered Ladinian in age (Calvet and Marzo 1994).

3.2.3.2 The Upper Triassic (Keuper) Sedimentary
Record

Orti F and Pérez-Lopez A

The general successions of the Keuper facies (lower, middle,
and upper Keuper) were initially described in eastern Iberia
(Orti 1974). However, these successions are relatively similar in
all the Triassic basins of the Iberian plate (Fig. 3.13). They are
mainly formed by a lower evaporitic succession (lower Keuper
unit, K1 unit) and an upper evaporitic succession (upper Keuper
units, K4 and K5 units), all of them of marine origin (Utrilla
etal. 1992; Orti etal. 2014). A major difference, however, is the
intercalation in some basins of a non-evaporitic, clastic series
(middle Keuper units, K2 and K3 units) between the two
evaporitic ones. This intercalation only occurs in the basins
surrounding the present reliefs of the Iberian Massif
(Prebetic-Subbetic basin, central and southern sectors of the
Iberian basin, and partly in the Basque-Cantabrian basin),
whereas it is absent in the basins located far from the Iberian
Massif (Catalan, Ebro, Pyrenean and Balearic basins, and
eastern part of the Iberian basin) (Orti et al. 2017).

Age attributions of the Keuper facies in the Pyrenean
basin have been based on palynological assemblages, indi-
cating a Carnian to Norian, or Carnian to Rhaetian age
(Calvet et al. 1993). This age is younger than in the other
Triassic basins in eastern Iberia, so the possibility that a
stratigraphic gap (Carnian pro parte and/or Norian pro
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parte) affects the stratigraphic record of the Keuper facies in
the northern basins of Iberia is open to debate.

The Keuper succession in the Aragonese-Catalan sector of
the Pyrenean Basin (Fig. 3.2) crops out in the External Sierras
and the Nogueres structural units. From base to top, the
Keuper succession is formed by the Canelles Fm, the Boix
Fm and the Avellanes Fm in the External Sierras, and by the
Adons Fm, the Boix Fm, the Senterada Fm and the Avellanes
Fm in the Nogueres Unit (Salvany and Bastida 2004)
(Fig. 3.14). The correlation of all these units with those of the
Catalan basin is as follows according to Salvany and Bastida
(2004): the Canelles Fm and the Adons Fm correlate with the
Miravet Fm; the Boix Fm correlates with the Molar Fm; and
the assemblage of the Senterada Fm and the Avellanes Fm
correlates with the Gallicant Fm (Fig. 3.14).

The Canelles Fm, up to 45 m thick, is formed by laminated
gypsum beds with some carbonate interbeds. The Adons Fm, up
to 100 m thick, is composed of green claystone layers and
carbonate beds grading upward into variegated, red claystones
and minor carbonate. The Boix Fm, less than 100 m thick in the
External Sierras but some hundred metres thick in the Nogueres
Unit, is characterized by red to variegated claystones, laminated
gypsum beds and reddish masses of gypsum breccias
(Fig. 3.15). At the subsurface, this unit intercalates salt masses as
suggested by borehole data in the External Sierras, in the South
Pyrenean Zone. The thickness of this saline unit is close to
430 m. Klimowitz and Torrescusa (1990), however, attributed
this unit to the lower Keuper. The Senterada Fm, of 50-250 m
thick, is composed of white layers of laminated gypsum bearing
some dolomitic intercalations (Nogueres Unit). The Avellanes
Fm, of up to 100 m thick, is composed of marls and carbonates.

No sure Keuper succession appears to exist in the
Basque-Cantabrian basin. However, a number of outcrops
including those of Aguilar de Campoo and Reinosa show
alternations of clay and gypsum layers which are similar to the
cycles characterizing the K1 unit of the Iberian basin. Moreover,
units very similar to the K3, K4 and K5 units of the Iberian
basin crop out in the Poza de La Sal diapir, where the top (K5)
unit of this succession is overlain by the Imén Fm (Salvany
1990; Gomez et al. 2007), which is equivalent to the Isdbena
Fm in the Eastern Pyrenees (Arnal et al. 1994). In other diapirs
of this basin, some opencast workings of thick gypsum units
again suggest the presence of the K5 unit of the Iberian basin.

3.2.4 Permian-Triassic Magmatism
in the Pyrenean Basin
Lago M, Galé C, Ubide T and Gretter N

Since the end of the Paleozoic to the end of the Mesozoic,
three main tectono-magmatic cycles have been identified in the
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Fig. 3.12 The Middle Triassic carbonate platform (Muschelkalk) in the Malpas area (centre of the picture), Aragonese-Catalan Pyrenean Basin.
Upper Buntsandstein facies in the right side of the lower part of the picture

Pyrenees: Late Carboniferous—Permian, Late Triassic-Early
Jurassic, and Cretaceous (Albian-Santonian) (Fig. 3.16).
The first magmatic cycle in SW Europe was associated to a
period of widespread basin formation in SW Europe (e.g.
Dallagiovanna et al. 2009; Galé 2005; Lago et al. 2004a, b;
Maino et al. 2012, 2013; McCann et al. 2006). It was related to
the end of the Variscan Orogeny, which induced a generalized
strike-slip tectonic regime in the Pyrenees (i.e. Ziegler 1982,
1988a, b), and probably also generated mantle upwelling
leading to partial melting of the thickened lithosphere or the
asthenosphere (Cebria et al. 2000; Lago et al. 2004a, b). The
strike-slip regime favoured the development of W-E trending
small basins infilled with continental detrital deposits and
coeval volcanics during the Pennsylvanian and the Permian
(Arthaud and Matte 1977; Ziegler 1988a, b; Cassinis et al.
2000). The influence of the regional tectonics in the devel-
opment of this cycle is evidenced by the composition and
origin of the associated magmatism. The Permian
tectono-magmatic cycle is defined by two compositionally

different and temporally consecutive magmatic episodes. First,
a calc-alkaline and evolved magmatism (andesites to rhyolites)
took place during the Pennsylvanian to Cisuralian interval still
under syn-orogenic conditions (Lago et al. 2004a, b; Pereira
et al. 2014). The origin of this magmatism is ascribed to
melting of lithospheric material (Lago et al. 2004a, b). After-
wards, the magmatism switched to transitional and alkaline
affinities, and less evolved compositions (trachyandesites,
basalts and dolerites). Sourced from an asthenospheric source,
this event benefitted from the transtensional tectonic regime
prevailing from the Guadalupian to the Lopingian (Lago et al.
2004a, b; Galé¢ 2005). The increasing influence of astheno-
spheric melts during this cycle is related to a shift towards
extensional tectonics, thinning of the crust and upwelling and
partial melting of the mantle beneath the Pyrenees at the end of
the Paleozoic (Lago et al. 20044, b; Galé 2005).

In detail, at the Aragonese-Catalan Pyrenean scale,
extensive volcanism and dyke emplacement into the intra-
montane sub-basins took place in five episodes (from Late
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Carboniferous to Middle (?) Permian). Magmatism covered
a wide range of rock types, ranging from calc-alkaline
pyroclastic rocks of rhyolitic-andesitic composition to alka-
line basalts. Recent age determinations revealed that mag-
matism was active from ca. 307 Ma to ca. 266 Ma and was
affected by a complex and prolonged history of melt crys-
tallization (Pereira et al. 2014). In particular, the earliest
phase of volcanic activity (Ist volcanic episode, Bixel 1984,
1987) occurred in the Upper Carboniferous, when extrusives
included pyroclastic rocks of rhyolitic composition andbasic
calc-alkaline of potassic andesitic lavas interbedded in the
Grey Unit. Hyperpotassic, calc-alkaline acid andesites and
dacites are considered to affect the basal Autunian (early
Cisuralian) and represent the 2nd volcanic episode of Bixel
(1984, 1987). The hyperpotassic character is mostly due to
assimilation of peraluminous material by the calc-alkaline
potassic magma (Debon et al. 1995). The 3rd volcanic epi-
sode, of Autunian age (here interpreted as
Artinskian-Kungurian), is mainly composed of peralumi-
nous potassic rhyolites bearing sanidine and almandine.
Calc-alkaline andesites of the 4th volcanic episode (Bixel
1984, 1987) bear minerals of alkaline affinity, such as
chromiferous diopside and edenite-pargasitic amphibole
(Debon et al. 1995). This transitional volcanic episode may
range between the “upper Autunian and lower Saxonian”
(over the Cisuralian-Guadalupian boundary). The final 5th
volcanic episode, emplaced under the basal conglomerates
of the Buntsandstein facies is exclusively composed of

l:’ Sandstone, claystone

Claystone, gypsum/anhydrite,
halite, carbonate

alkaline basalts bearing olivine and titanium-rich augite
(Lago et al. 2004a, b; Galé 2005).

3.3 The Catalan Basin

Loépez-Gomez J, Barrenechea J, Galan-Abellan B, De La
Horra R, Arche A, Marzo M, Borruel-Abadia V,
Escudero-Mozo MJ, Martin-Chivelet J, Mercedes-
Martin R, Salas R, UbideT, Galé C and Lago M

As most of its coetaneous basins in the Iberian plate, the
Catalan Basin records the change from a Pangean configu-
ration and compressive tectonic regime inherited from the
Variscan orogeny, to a Mesozoic general extensional tec-
tonic setting accompanied by continental break-up and
westward expansion of the Tethys ocean (Lopez-Gdémez
et al. 2002). Later, during the Cenozoic, a Paleogene
topography generated by thrusting was offset by erosion and
isostatic subsidence resulting in a high mountain range.
However, its present-day configuration is the outcome of
Neogene tectonic subsidence, surface erosion and sedimen-
tation (Lopez-Blanco et al. 2000; Gaspar-Escribano et al.
2004). As a result, the Catalan Coastal Ranges and Catalan
Margin, which corresponds to the northeastern part of the
extensional margin bounding the Valencia Trough, is a NE-
SW structure dominated by longitudinal, near vertical
basement faults trending NE-SW to ENE-WSW and by a
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Fig. 3.16 Evolution of the
composition of the magmatisms
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set of strike-slip faults trending NW-SE (Anadén et al.
1979; Guimera 1984, 1988; Bartrina et al. 1992; Roca et al.
1999) (Fig. 3.17a, b).

At the end of the Permian and throughout the Triassic, the
Catalan basin was situated in the southernmost area of the
ancient megacontinent of Laurasia. This basin started its
development during the Middle-Late Permian due to wide-
spread extension in that plate (Galdn-Abellan et al. 2013)
and evolved as a NE-SW oriented rift basin with conjugate
NW-SE fault systems. This elongated structure was sepa-
rated from neighboring basins by the Girona, Lleida and
Montalban-Oropesa highs (Calvet and Tucker 1988; Calvet
and Marzo 1994; Morad et al. 1995; see also Ebro Basin in
Sect. 3.5).

Mainly during the Permian but also in the Triassic, the
sedimentary filling of the Catalan Basin was controlled by
the development of grabens separated by Paleozoic highs.
During this time, the activity of the NW-SE fault system
divided the basin into different paleogeographic domains or
sub-basins (from SW to NE): Priorat-Baix Ebre, Prades and
Gaia-Garraf, and Montseny domains (Marzo 1980; Marzo
and Calvet 1985) (Fig. 3.18). Subsidence in these grabens
was not coetaneous causing thickness differences in the
sedimentary record (Marzo 1980; Calvet and Marzo 1994).
Presence of substantial sedimentation discontinuities in the
graben during the Permian-Triassic time-interval indicates
repeated periods of tectonic activity (Galan-Abelldn et al.
2013). Five sedimentary cycles, mainly based on these dis-
continuities, separate different periods of rift evolution:
cycles 1 to 3 represent Permian—Early Triassic continental
syn-rift sedimentation, and cycles 4 and 5 record the
Middle-Late Triassic westward incursion of the Tethys sea
in the basin, represented by the sedimentary record of the
so-called Muschelkalk and Keuper facies. This latter, or
mature phase, indicates the transition to a thermal subsidence
of rift development affecting more extensive areas.

3.3.1 Sedimentation During

the Permian-Triassic Initial Rifting Phase

Lopez-Gomez J, Barrenechea J, Galan-Abellan B, De La
Horra R, Arche A, Marzo M and Borruel-Abadia V

This phase of Catalan basin evolution is mostly represented
in the Prades and Garraf sub-basins, while practically absent
in the Montseny sub-basin (Figs. 3.17, 3.18). The three
sedimentary cycles that filled these sub-basins were of ter-
restrial origin. Detailed sedimentological analyses of these
rocks can be found in Marzo and Anadoén (1977), Anadon
et al. (1979), Marzo (1980, 1986), Calvet and Marzo (1994),
and Galan-Abellan et al. (2013). Further published works are
the palynological studies of Solé de Porta et al. (1987) and
Diez et al. (2012), the detailed petrological study of
Gomez-Gras (1993), and the magnetostratigraphy study of
Dinar¢s-Turell et al. (2005).

Basic stratigraphic nomenclature was initially estab-
lished by Marzo (1980), and later complemented by
Galan-Abellan et al. (2013), as summarized in Fig. 3.18.
The three Permian—Early Triassic sedimentary cycles of
this syn-rift phase represent relatively short periods of
sedimentation related to subsidence pulses and separated
by partially quiescent periods. Both situations were com-
mon in the Prades and Garraf sub-basins, but differences
are observed in the Montseny sub-basin, where the first
cycle was not recorded.

The beginning of sedimentation unconformably lies on a
folded Devonian-Carboniferous basement (Colodrén et al.
1979). It mostly consists of gravels and sandstones related
to alluvial fans and superimposed braided fluvial systems
indicating marked control of basin border faults (Marzo
1980). A low-angle unconformity separates these rocks
from the second Early Triassic sedimentary cycle
(Figs. 3.18 and 3.19). This new cycle of sedimentation
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clearly reflects both climate and tectonic controls on sed-
imentation of the Catalan basin. The globally arid and
semi-arid Early Triassic climate in NE Iberia
(Borruel-Abadia et al. 2015) and the still active local tec-
tonic control gave rise to the different sedimentary char-
acteristics of the three main sub-basins (Figs. 3.18 and
3.20). Sedimentation of this cycle broadly represents the
development of braided fluvial systems in the central
Garraf sub-basin and aeolian dune fields with isolated
braided fluvial systems in the Prades sub-basin, while the
Montseny sub-basin was basically elevated and shows a
reduced sedimentary record (Galan-Abellan et al. 2013).

After a period of interruption, a third cycle of conti-
nental sedimentation took place in the early Anisian. This
sedimentary record, mostly representing distal fluvial sys-
tems (ASM and FSM in Fig. 3.18), was progressively
related to low topographic reliefs in the Catalan basin,
without clear subsidence rate differentiation. This new
tectonic characteristic in the basin provided the necessary
conditions for the first incursion of the Tethys Sea in
Iberia, represented in sedimentary terms by the Muschel-
kalk facies.

Horizontal distance (Km) SKm
3.3.2 Middle Triassic Carbonate Ramps
in the Catalan Basin

Escudero-Mozo MJ, Martin-Chivelet J, Lopez-Gomez J
and Marzo M

During Anisian, new tectonic conditions determined a
broader and more homogeneous subsidence in the Catalan
basin, despite local fault movements still controlling
depocenters. Under these conditions (and favoured by them)
marine waters invaded the basin in a generalized trans-
gressive episode. That episode was going to drastically
change the paleogeography and the sedimentation of the
basin, thence becoming dominated by shallow marine
environments within vast carbonate platforms. These con-
ditions broadly prevailed for ten million years, during which
two thick carbonate rock bodies, corresponding to the
Muschelkalk facies accumulated in the basin: lower
Muschelkalk and upper Muschelkalk units, respectively.
This interval of carbonate deposition was: (1) heralded by a
period of evaporite-carbonate-lutite deposition (Rot facies)
that reflects the progressive incoming of the sea during the
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Fig. 3.18 Scheme of the
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middle Anisian; (2) interrupted by a new period of mixed
sedimentation in the latest Anisian (the so-called middle
Muschelkalk); and (3) postdated in the early Carnian by the
development of the large evaporitic systems represented by
the Keuper facies (Virgili 1958; Calvet et al. 1990; Calvet
and Marzo 1994; Mercedes-Martin et al. 2013;
Escudero-Mozo et al. 2015).

During the middle Anisian to earliest Carnian interval
two major transgressive-regressive cycles took place in the
basin (Fig. 3.21). The first one occurred during the middle to
late Anisian and is recorded by the Rot facies, the lower
Muschelkalk and part of the middle Muschelkalk units. The
second cycle, latest Anisian—early Carnian in age, is rep-
resented by the upper part of the middle Muschelkalk, the
upper Muschelkalk and the lower part of the Keuper facies.

The first transgressive episode, which occurred in the
middle Anisian (Pelsonian), allowed the development of a
wide ramp, dominated by shallow environments corre-
sponding to the inner to middle ramp. Depositional
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conditions were quite uniform in the entire basin and the
thickness of the carbonate body ranges from 70 m in the
Gaia-Montseny area to 120 m in the Baix-Ebre
(Fig. 3.21).

This transgression was limited to the north by a NE-SW
fault system that defined the border of the subsiding basin.
However, it was open towards the NE, connected to the
Paleotethys, constituting the seaward corridor of the Iberian
Basin (Escudero-Mozo et al. 2015) (Fig. 3.22). Sedimentary
and sequence stratigraphy analyses indicate that the Catalan
basin acted as a single basin during the Anisian with a main
depocenter located in the Baix-Ebre area, where the deepest
facies and the thickest successions were accumulated. Sub-
sidence was still locally controlled by main faults, but
thermal relaxation also allowed the beginning of a new
flexural subsidence, the mature rifting phase, previous to the
general post-rift subsidence during the Jurassic.

During the late Anisian, a rapid regressive episode pro-
gressively marked the final evolution of the lower
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Fig. 3.19 Permian and continental Lower-Middle Triassic units in the Mont-Roig section (Prades subbasin). The unconformity between PLC and
PUC (cycles 1 and 2) is shown in the inset. See figure 3.18 for the nomenclature of the units

SECTOR - A SECTOR-B SECTOR-C
(Prades ) (Garraf) (Montseny )
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Fig. 3.20 Sketch reconstruction of the grabens and highs in the
Catalan basin and their sedimentary environments during the Spathian
(Late Early Triassic). Location of the differentiated subbasins and
sectors are indicated. River systems flow from the northern elevated

Muschelkalk carbonate ramp and permitted the deposition of
the mixed facies of the middle Muschelkalk. This sedi-
mentary record is divided in four units showing different
evaporite-coastal to fluvial environments along the basin.
The presence of alluvial fan deposits in the NE and some
volcanic deposits to the SW suggest a tectonic reactivation
of the basin during this period (Mitjalva and Marti 1986;
Loépez-Gomez et al. 1998; Sanz et al. 2012).

The second transgressive-regressive cycle started in the
late Anisian, with a rapid trasgressive event that determined
the installation of a new carbonate ramp (upper Muschel-
kalk, late Anisian to earliest Carinan in age). This marine

areas towards the south, but most of them were interrupted by aeolian
dune fields, mainly in the southern areas. Paleozoic highs constituted
barriers between the areas of subsidence in the three subbasins.
Modified from Galan-Abellan et al. (2013)

transgression could be related to the opening of the Neo-
tethys (Escudero-Mozo et al. 2015). Five different members
have been described in the upper Muschelkalk. The first two
members (late Anisian) and the last one (late Ladinian-early
Carnian) show similar lithological and stratigraphic features
throughout the basin, whereas the middle members (Ladi-
nian) show important differences regarding facies and
thickness (Escudero-Mozo et al. 2015).

Three main evolutive phases can be differentiated during
the end of the Anisian and the beginning of the Ladinian.
A first one was characterized by the installation of a shallow
carbonate ramp, with high microbial carbonate production in
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Fig. 3.21 Lithostratigraphical I CATALAN COASTAL RANGES
units defined for the Middle
Triassic carbonate ramps in the SO NE
Catalan Coastal Ranges (Calvet BAIX EBRE-PRIORAT PRADES GAIA-MONTSENY
and Ramon 1987; Ramoén and
Calvet 1987; Calvet et al. 1990) = g
related to the three main o|5 :‘]c:j oA AR R PR AR AR A
paleogeographical areas in which % O AA AN P AAANN
the basin is subdivided =) Capafons Member
Ml e e = a
2 i i
O |2 Querol Member | i
2|8 Thsss Mattbec Pedra d'Alcover I :
© = TSNS [ ]
— 3 ? T 1
LElc|3 | i
o|8|= i i
- HH RN Morebes La Collbats Member | |
1
E = Riba Member ! !
1 1
] 1
v | — — : — l *
—— Rojals Member i
= EMM A A A A A A AAAAAAANAANAANAANAANANAANANAN
A4S |2 Vilella Baixa Member
7 -
é EER Olesa Member _
£]= i ElBrull Member
Wk “Lutite, Carbonate, Evaporite unit”
s = ' "
@ | @ Upper Prades Sandstones L,f\raag:lclj %ir;nlies;ones F|gaar?1dS:rTglset§nes
* Drowning 77 Volcanic event.

the subsiding areas of the basin during the late Anisian. The
second represents a period of a rapid subsidence, controlled
by NW-SE faults, mainly developed during the latest Ani-
sian. These faults compartmentalized the Catalan basin
generating three sub-basins with different subsidence rates
(Mercedes-Martin et al. 2013). This tectonic subsidence
episode extended until the latest Ladinian, when the wide-
spread deposition in tidal flats environments of the Capafons
Member and the Keuper facies throughout the whole basin
represented a homogenization of the basin and a deceleration
of the subsidence rates in this area. During the latest Anisian
the Baix-Ebre and Prades domains represented a single basin
controlled mainly by tectonic subsidence with a depocenter
located in the Prades domain (Fig. 3.17a). The third phase
took place during the Anisian-Ladinian transition and was
characterized by a new tectonic reactivation of the basin,
represented by the separation of the Baix-Ebre and Prades
domains (Mercedes-Martin et al. 2014a) and by a rapid
sea-level rise that in the Baix—Ebre domain caused the
drowning of the previous carbonate setting and the instal-
lation of the deepest marine conditions in this area. The
regional character of this event suggests that it was linked to
the main paleogeographic changes that were occurring in the
western Tethys (Escudero-Mozo et al. 2015).

The Gaia-Montseny (northern domain) represents the less
subsident domain of the Catalan basin (Fig. 3.17a). As in the
other domains, its development was controlled by fault activity,

which started later in this domain, during the latest Anisian.
Notably, although this domain has been traditionally considered
as a single one, recent studies indicate that the Gaia-Montseny
domain could be subdivided into two different sub-basins with
different subsidence rates (Mercedes-Martin et al. 2013).

3.3.3 Ladinian Rifting Accommodation
and Microbialite Development
in the Catalan Basin

Mercedes-Martin R and Salas R

The evolution of subsidence during the Triassic strongly
advocates that the Ladinian stage was a period of widespread
and rapid syn-rift subsidence in the eastern part of the Iberian
plate where extensive carbonate successions deposited at this
time (Tucker et al. 1993; Mercedes-Martin et al. 2014b).

In the Triassic Catalan basin, the second carbonate unit
(Ladinian) of the Muschelkalk facies was subdivided by
Mercedes-Martin et al. (2014b) into two transgressive-
regressive sequences (T-Rs) corresponding to two low-angle,
microbial-dominated carbonate ramps (Fig. 3.23). T-Rsl1 is
characterised by stromatolite deposits (at least 7 m thick)
developed in the inner ramp setting, and thrombolites
(averaging 40 m in thickness) accumulated in the
middle-outer ramp environments (Mercedes-Martin et al.
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Fig. 3.22 Paleogeographic reconstruction of the westernmost Tethys realm for the Anisian (Pelsonian). Modified from Escudero-Mozo et al.

(2015)

2013; 2014a, b). The second T-Rs, or T-Rs2, is mainly
characterised by the occurrence of ooidal-muddy laminites
(up to 3 m thick) in the inner ramp environment, and internal
shoals and sheltered lagoons of coarse-grained to muddy
carbonates in the middle ramp. Both T-Rs are bounded by a
regional subaerial unconformity whose origin was attributed
to a prominent sea-level drop of at least 50 m (Calvet and
Tucker 1995; Mercedes-Martin et al. 2014b). This uncon-
formity is characterised by deep paleo-valley incisions (up to
60 m), karst features and common collapse breccia fillings.

According to subsidence analysis carried out over strati-
graphic sections from three different domains of the Triassic
Catalan basin, a rapid total subsidence attaining 470 m was
recorded during the Ladinian (Mercedes-Martin et al. 2014b).
Fault-controlled half-graben development particularly affected
the middle-outer ramp environments producing rapid pulses
of syn-rift subsidence and increased gains in accommodation

space collectively controlling the architecture of the microbial
deposits (Mercedes-Martin et al. 2014a, b). Domed stroma-
tolites and mounded thrombolite bodies developed during
stages of increasing accommodation rates, whereas stratiform
stromatolites and biostromal thrombolite morphologies grew
in association with periods of low accommodation rates.

The total subsidence evaluation of Mercedes-Martin et al.
(2014b) is in agreement with the quantitative subsidence
analysis previously performed by Vargas (2002) and Vargas
et al. (2009) for the Triassic deposits of the areas of the
Iberian and Ebro basins. Although the syn-rift compart-
mentalisation of the Ladinian basin played a crucial role
governing the macro-scale morphology of microbial reefs, it
was hypothesised that hydrothermal fault-controlled fluid
circulation and episodic conditions of dysoxia/anoxia
could have favored microbial carbonate precipitation
(Mercedes-Martin et al. 2014a).
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3.3.4 The Keuper Facies in the Catalan Basin

Orti F and Pérez-Lépez A

The sedimentary record of the Keuper facies in the Catalan
basin is only partially represented when it is compared with
the one recorded in the SE Iberian microplate (Fig. 3.15).
The sedimentary record in the Catalan basin is constituted by
the Miravet Fm at the base (equivalent to the K1 unit of the
Iberian Basin), the Molar Fm (equivalent to the K4 unit) and
the Gallicant Fm (equivalent to the K5 unit) (Salvany and
Orti 1987) (Fig. 3.24). The Miravet Fm, up to 90-100 m in
thickness, is comprised of an alternation of grey claystone
beds and laminated and nodular gypsum beds. In some
paleohighs, however, only thin successions of claystone,
marls and carbonate are present. The Molar Fm is charac-
terized by abundant gypsum layers (mainly laminated

J. Lopez-Gémez et al.

gypsum, but nodular gypsum also) in association with red
claystones. A pyroclastic layer (1 m thick) forms the base of
the unit. The Gallicant Fm is constituted by claystones,
carbonates and minor nodular gypsum (Figs. 3.15 and 3.24).

3.3.5 The Triassic Alkaline Magmatism
of the Catalan Coastal Ranges: Insights
into the Opening of the Neotethys Ocean

Ubide T, Galé C and Lago M

In the Catalan Coastal Ranges the onset of the Tethyan rift
was accompanied by intraplate alkaline volcanism (Mitjavila
and Marti 1986; Lago et al. 1996; Sanz et al. 2012)
emplaced into basins controlled by two main fault systems:
SW-NE and N-S (Calvet and Ramé6n 1987; Bourquin et al.
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Fig. 3.23 Lateral evolution of accommodation space during the
Ladinian in the Catalan basin. a Map of Iberia showing the location
of the Triassic Catalan basin in the red square. b Detail of A displaying
the major structural features. Red solid line shows the profile in (c).
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widely across the inner and middle ramp settings
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2011 and references therein). Lago et al. (1996) included this
volcanism into a Triassic alkaline magmatic province related
to the opening of the Neo-Tethys sea in SW Europe. This
province was also linked to magmas of similar age in the
Iberian Ranges and the Northern Range of Majorca in Spain,
and Corbiéres and Ecrins-Pelvoux in France.

This volcanism is represented by isolated outcrops that
occur in three geographic sectors. The Beceite thrust and the
Baix Ebre and Burgar faults, delineate the western and the
central sectors respectively (Fig. 3.17a, b). In both sectors
the volcanic rocks were emplaced between the top of the
Middle Triassic, or upper Muschelkalk (M3 Unit) of late
Ladinian-early Carnian age (Escudero-Mozo et al. 2015),
and the Upper Triassic deposits (Sanz et al. 2012). In the
eastern sector the sill of Vandellos-Tivissa intrudes the
middle part of the Middle Triassic deposits, or middle
Muschelkalk (M2 Unit) (Mitjavila and Marti 1986; Sanz
et al. 2012).

Two volcanic stages are identified in the western and central
sectors. The oldest has been interpreted as a hydromagmatic
event, with associated volcanic structures like maars and ring
and tuff cones (Sanz et al. 2012). This stage comprises lapilli
tuffs crosscut by lava flows, dikes and sills. From a stratigraphic
point of view, these volcanics overlay the top of the Middle
Triassic deposits (M3 Unit) and are probably coeval with the
deposition of the Miravet Fm (Carnian) (Fig. 3.21). The second
stage is mainly composed of sills intruding the Upper Triassic

Fig. 3.24 Stratigraphy of the
Keuper units in the Catalan basin.

SwW
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sequences (Miravet, Molar and Gallicant Fms) that could
eventually reach the surface generating lapillistone deposits.
These volcanics have been interpreted as the result of strom-
bolian activity coeval with the deposit of the Molar and Galli-
cant Fms (Norian) (Sanz et al. 2012).

The rocks have primitive composition and alkaline
affinity, and they include mantle xenoliths of lherzolite and
websterite. Sanz et al. (2012) proposed an origin related to
low degrees of partial melting of the asthenospheric mantle.
This hypothesis suggests local upwelling and melting of the
mantle during the Late Triassic in this area, probably in
response to the extensional tectonic regime generated by the
opening of the Neo-Tethys sea.

3.4 The Balearic Basins

Lopez-Gomez J, Barrenechea J, De La Horra R,
Arche A, Ronchi A, Marzo M, Borruel-Abadia V,
Ramos E, Bourquin S, Arribas J, Goémez-Gras D,
Escudero-Mozo MJ, Martin-Chivelet J, Goy A, Orti F
and Pérez-Lopez A

The present-day location of the Balearic promontory has
been related to the development of the Valencia Trough
during the Oligocene and Middle Miocene (Bourrouilh
1973; Pomar 1979; Sabat et al. 1988; Roca and Guimera
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<« Fig. 3.25 Sketch of the Permian and Lower-Middle Triassic silici-
clastic (Buntsandstein facies) sedimentary record in the Balearic
Islands. 1—Goémez-Gras and Alonso-Zarza (2003); 2—Broutin et al.
(1992); 3—Bercovici et al. (2009); 4—Bourquin et al. (2011); 5—Linol
et al. (2009); 6—Rosell et al. (1988); 7—Goy (1995); 8—Rodriguez--
Perea et al. (1987); 9—Escudero-Mozo et al. (2014); 10—Hirsch

1992; Bartrina et al. 1992). This promontory represents the
northeastern prolongation of the Betic Cordillera (Gelabert
et al. 1992; Baron et al. 2004), and forms the eastern border
of the Valencia Trough Basin, an almost symmetrical
domain to the Catalan-Valencia domain, which represents
the western border (Fontboté et al. 1990; Roca 1992). Since
the 1970s, the Cenozoic tectonic development of the
Balearic Islands has been described in detail and is also
presented later in this book. However, we lack detailed
descriptions of the location and development of the first
post-Variscan basins shaped by Permian-Triassic rifting.

3.4.1 Sedimentation During

the Permian-Triassic Initial Rifting Phase

Lépez-Gomez J, De La Horra R, Barrenechea JF,
Arche A, Ronchi A, Marzo M, Borruel-Abadia V,
Bourquin S and Ramos E

The Late Carboniferous configuration of the equatorial west-
ernmost Tethys domain at the eastern border of Pangea was the
consequence of a succession of compression and extension
motions associated with strike-slip faulting and block rota-
tions (Matte 1991; Franke 2000; Edel et al. 2014). Later,
Permian-Triassic extension during the first steps of the
break-up of Pangea gave rise to horsts and graben in the
Balearic islands area that were initially infilled with clastic
sediments of continental origin (Rodriguez-Perea et al. 1987,
Calafat 1988; Rosell and Elizaga 1989; Ramos 1995; Bour-
quin etal. 2011). Sediment thickness variations in these basins
contribute significantly to locating and understanding
detachment levels of later thrust systems during the Alpine
orogeny (Gelabert et al. 1992). However, the different orien-
tations of ancient fault systems on the islands point to different
initial structures, mainly in Minorca (Maillard et al. 1992).
Despite the supposed similar initial development of these
basins, most outcrops in Minorca and Majorca islands show
clear differences in their infill during Permian and Triassic
rift evolution. These characteristics suggest the different
durations of some tectono-sedimentary stages in the basins,
or even non coetaneous stages, perhaps as the consequence
of different paleogeographic evolution in each case. Despite
being evident in the Permian-Triassic continental record,
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(1977); 11—Go6mez-Gras (1993); 12—Ramos (1995); 13—Ramos and
Doubinger (1989); 14—Grauvogel-Stamm and Alvarez-Ramis (1995);
15—Alvarez-Ramis et al. (1995); 16—Bouza (1981); 17—Lépez-Go-
mez et al. (2017); 18—Lago et al. (1988); 19—Boutet et al. (1982); 20
—Calafat et al. (1986-87); 21—Rangheard (1972)

these paleogeographic differences also appear in the first
Mesozoic transgression of the Tethys sea in the Balearic
island basins during the Middle Triassic, represented by the
Muschelkalk facies (Escudero-Mozo et al. 2014).

In Fig. 3.25 we provide a synthetic sketch of the Permian
and Triassic sedimentary record of Minorca, Majorca and
Ibiza, indicating main common tectonic events and sea-level
changes. These data were obtained in different studies
including our own work. A first observation is the lack of
outcrops of Permian age in Ibiza, while the Permian sedi-
mentary record of Minorca and Majorca is well represented
in the northern part of the islands. These records show rocks
of Guadalupian-Lopingian age, probably of the
Wordian-Wuchiapingian time-interval (Ramos and Doub-
inger 1989; Broutin et al. 1992; Bercovici et al. 2009). The
sedimentary record of these rocks has been mainly examined
during the second half of the last century, but only a few
works have detailed their sedimentary characteristics. These
sedimentary studies of Permian rocks in Majorca (Bour-
rouilh 1973; Calafat 1988; Gomez-Gras 1993; Ramos 1995;
Arche et al. 2002) have revealed the alternating development
of braided and meandering fluvial systems. Substantial lat-
eral thickness variations exist in this island, with a double
sedimentary record compared to the Minorca basins (Rosell
et al. 1988; Arribas et al. 1990; Gbémez-Gras and
Alonso-Zarza 2003; Linol et al. 2009; Bourquin et al. 2011).

The Lower-Middle Triassic continental sedimentary
record, or Buntsandstein facies (Rodriguez-Perea et al. 1987)
of the Balearic Islands again lacks outcrops in Ibiza
(Rangheard 1972). The age of the rocks is Olenekian-early
Anisian (Bourrouilh 1973; Alvarez-Ramis et al. 1995:
Alvarez-Ramis and Grauvogel-Stamm 1996; Juarez-Ruiz
and Wachtler 2015). These sediments were deposited in the
Majorca and Minorca basins following a long period of
tectonic activity and erosion. They basically consist of red
sandstones in the lower part, and mudstones with interca-
lated sandstone levels at the top, and have been interpreted in
both islands as braided fluvial systems evolving to distal
alluvial sedimentation in the upper part (Rodriguez-Perea
et al. 1987; Rosell et al. 1988; Calafat 1988; Brandes and
Tiedt 1991; Gomez-Gras 1993; Ramos 1995; Bourquin et al.
2011). These sedimentation processes were the prelude to
the first incursions of the Tethys in the islands, represented
by different units of the Muschelkalk facies.
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3.4.1.1 Composition of the Permian Sandstones
in Minorca and Its Geodynamic
Significance

Arribas J and Gémez-Gras D

As manifested in other areas of Iberia (i.e. Iberian Ranges;
Arribas 1985), sandstone composition of the Permian record
in Minorca is characterized by sedimentoclastic petrofacies
(quartzoarenites and sublithoarenites) (Fig. 3.26a) outlining
recycling processes from the Paleozoic substratum and sug-
gesting a “recycled orogen” geotectonic provenance (Rosell
et al. 1988; Gomez-Gras 1993). In addition, the overlying
Buntsandstein facies maintain this recycled character at the
base of the sequence, with a quartzoarenitic composition,
suggesting greater maturation of sediments by recycling of
Upper Permian deposits (Fig. 3.26b). In the upper part of the
Buntsandstein facies, a progressive influence of plutonic
sources can be deduced by a progressive increment of feldspar
grains in framework sandstones (subarkoses) (Fig. 3.26b).
This fact denotes an important change towards a “basement
uplift” geotectonic provenance type. An important feature in
the Minorca record is that the change in composition (i.e.
sources) between Late Permian and Lower-Middle Triassic is
retarded and occurs during deposition of the upper part of the
second cycle (Rosell et al. 1988; Gomez-Gras 1993). How-
ever, in the Iberian Basin this change occurs in the lower part
of the upper sedimentary cycle.

3.4.2 The Middle-Late Triassic in the Balearic
Islands

Escudero-Mozo MJ, Martin-Chivelet J, Lopez-Gémez J,
Goy A, Orti F and Pérez-Lépez A

During the Late Middle and Late Triassic time interval, the
Balearic Islands spanned together with the rest of the Iberian
plate the latitudes 8°N to 15°N (Perri et al. 2013). The exact
paleogeographic location of these islands is however still a
matter of debate, although they were close to the rest of
Iberia and probably connected with its basins (Edel et al.
2014). General plate reorganization involved syndeposi-
tional extensional tectonics and frequent sea-level oscilla-
tions during that time affecting the Early Mesozoic
sedimentation in Western and Central Europe (Biddle 1984;
Brandner 1984; Gianolla and Jacquin 1998). As a result, the
Tethys sea advanced westwards during the late
Anisian-Ladinian in different incursions to encircle the Ibe-
rian Massif and covering the eastern area of the Iberian plate
and the surrounding areas as the present-day Balearic
Islands, Corsica and Sardinia (Ziegler and Stampfli 2001).
These first marine sediments resulted in carbonate ramps
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(Muschelkalk facies) development (Escudero-Mozo et al.
2014). They were interrupted during the early Carnian
(Julian) when sporadic continental fluxes, arising during
humid stages from the elevated areas of the Iberian Massif,
may have crossed different subsiding trough systems in the E
Iberian plate reaching the Balearic Islands (Fig. 3.27). This
humid pulse, related to the Carnian Pluvial Event (CPE),
was correlated with the sedimentary record of the same event
occurred in the Iberian plate (Lopez-Gomez et al. 2017) and
defined by Arche and Lopez-Gémez (2014). This pulse was
however short, and again during new periods of falling
sea-level and desiccation, “Keuper salts” were deposited in
areas of rapid subsidence during the Carnian and Norian.
3.4.2.1 Middle Triassic Carbonate Ramps
in the Balearic Islands

Escudero-Mozo MJ, Martin-Chivelet J, Lopez-Gomez J
and Goy A

Middle Triassic outcrops exist in the three main islands:
Majorca, Minorca and Ibiza, although in the latter they are
restricted to the easternmost part of the island and show a
very incomplete and fragmentary record, strongly affected
by later tectonics. This structural complexity is not only
limited to Ibiza, but also exists in the other two islands
(Gelabert et al. 1992), making difficult the reconstruction of
the Middle Triassic carbonate ramps sedimentary record. In
spite of it, very interesting works that created the basis of the
present-day knowledge were published in the past century
(Darder 1914; Virgili 1952; Bourrouilh 1973; Colom 1975;
Rodriguez-Perea et al. 1987; Llompart et al. 1987).

Despite their present-day proximity, Majorca and Min-
orca show remarkably different sedimentary successions for
the late Anisian to early Carnian interval (Fig. 3.25). The
Minorca succession is characterized by the lack of a middle

Fig. 3.26 Sandstone composition plotted in a QFR diagram (quartz,
feldspar and rock fragments, based on Pettijohn et al. 1973) from the
Permian and Lower-Middle Triassic siliciclastic (Buntsandstein facies)
sedimentary record of Minorca. Modified after Rosell et al. (1988)



3 Permian-Triassic Rifting Stage

63

Fontanelles

Sa Punta d'es Vernis
Monte Toro

Stages

Fontanelles fm.

Slaged

Stage3
S'Arenlla fm.

Stage2
¥

HEHHHHH

y/

Stage1
Monte Toro fm.

High energy subtidal

Inner ramp

10I
Om

Low energy shallow subtidal

- Middle ramp settings

- Bioclastic grainstone, High Fe content.
Guide level (Middle ramp settings)

S'arenal d’en Castell

SE

Turdonell de Dalt

z|2
Llw
e|lZ2]|Z
/ 2 % ©
v 3 [=
\/ Vo s|S|z
I =5
A 1
- ..-:
. g
- T i s
B 1 -]
Z H : 2
= I g -
s
= e S
= 5
- {.f'\._ %
z M e
| [ w
= | | = ]
(i s 3 <
|8 |&] |z
| & [
] w
p |
- — o
=]
=
@
2 |z
]
z
A )

i
- Outer ramp settings Depositional

N sequences
|| Tidal flat environments e

Fig. 3.27 Sequence stratigraphy of the Middle Triassic carbonate succession (Muschelkalk facies) of Minorca. Modified from Escudero-Mozo

et al. (2014)

Anisian carbonate ramp, and by a prominent latest Anisian
to earliest Carnian ramp, similarly to some areas of the
Iberian Basin (the so-called “Levantine-Balearic Muschel-
kalk” by Lopez-Gomez et al. 1998). However, in Minorca
there was a third carbonate ramp of early Carnian (Julian)
age that did not develop in the Iberian basin.

Based on sequence stratigraphy analysis the Muschelkalk
facies succession of Minorca has been recently studied in
detail by Escudero-Mozo et al. (2014). A total of five depo-
sitional sequences represent the whole succession that, in
some cases, these authors compare with similar third order
sequences defined in other basins of the western Tethys realm
(Fig. 3.28). Sedimentary characteristics of the sequences
include an evolution from shoal to inner and middle ramp
environments, from base to top respectively. This latter
sequence is capped by an unconformity and karst with sili-
ciclastic input. This input is lower Carnian (Julian) in age and
corresponds to a global humid episode described as Carnian
Pluvial Event (CPE) by Simms and Ruffell (1989) or Carnian
Humid Episode (Ruffell et al. 2016). In the Balearic Islands it

was recently recognized by Lopez-Gomez et al. (2017), who
related this event with a continental (fluvial) equivalent in the
Iberian plate.

The Muschelkalk facies rocks of Minorca have to date the
richest ammonoid faunas of the same interval in Spain (Vir-
gili 1952; Llompart et al. 1987; Rodriguez-Perea et al. 1987;
Goy 1995; among others), and a detailed revision has been
described in Escudero-Mozo et al. (2014). This fossil content
indicates a late Anisian to early Carnian age for these rocks
and allows detailed correlations with other areas (Fig. 3.27).

The Majorca succession shows two carbonate ramps, late
Anisian and latest Anisian to Ladinian in age, and thus has a
comparable record to those of the Catalan Ranges and the
central part of the Iberian Ranges (Escudero-Mozo el al.
2014), areas traditionally framed within the “Mediterranean
Muschelkalk type” of Lopez-Gomez et al. (1998).

There are very few modern studies on the Majorca
Muschelkalk. Rodriguez-Perea et al. (1987) described sev-
eral outcrops and compared them with well-known sections
of the Catalan Coastal Ranges. Later, Alvaro et al. (1991)
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subdivided this carbonate succession in four subunits that
broadly considered equivalent to the Muschelkalk record of
Minorca. The sections of northern Majorca (Tramuntana
area) show the thickest sedimentary record of the Muschel-
kalk in the Balearic Islands.

In that area, the contact with the Keuper facies is transitional
(Alvaro 1987). In the lower part of this latter facies it is possible
to recognize the above mentioned CPE, however, in this island
this event was recorded by continental sediments with interca-
lated volcanic rocks (Lopez-Gomez et al. 2017). The Majorca
record represents the transition from clear fluvial systems
developed in E Iberia, represented by the K2 Unit defined by
Orti (1974), to a carbonate platform subaerial exposure, and
pervasive karstification in Minorca during the CPE. In a later
episode, represented by the K3 Unit (Orti 1974), a marine
evaporite succession expanded again westwards covering both
exposed and continental areas (Fig. 3.28). Therefore, E Iberia
and the Balearic Islands represented a continental-marine tran-
sition during the short, but global, CPE.

Iberia

3.4.2.2 The End of the Mature Rifting Phase: The
Keuper

Orti F and Pérez-Lépez A

The Triassic rocks in the Balearic Islands display similar
Germanic facies as in the Iberian Peninsula (Rodriguez-Perea
et al. 1987). However, the small dimensions of the outcrops
and the complex tectonics make it difficult to characterize the
Keuper facies and to correlate them with the Iberian units.
The Keuper facies consists of lutites, sandstones and
evaporites of late Carnian-Norian age (Boutet et al. 1982;
Escudero et al. 2014), with some intercalated volcanogenic
rocks (Navidad and Alvaro 1985). In the Keuper facies of
Majorca, basaltic and volcanoclastic rocks with lutitic
intercalations are common (Fig. 3.25). Rodriguez-Perea
et al. (1987) described a succession, almost 300 m thick,
of red lutites and marls with siltstones or fined-grained
sandstones and laminated gypsum beds in the upper part.

Majorca Minorca
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Fig. 3.28 Early Carnian (Julian) sketch of the continental-marine sedimentary record connection during the Carnian Pluvial Episode (CPE) in the
Iberia, Majorca and Minorca realms. Modified from Lopez-Gémez et al. (2017)
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The Keuper facies successions of Ibiza (80 m thick) and
Minorca (100 m thick) are similar, although thinner than
those of Majorca. These Keuper deposits were referred as the
“Upper Pelitic Unit” by Rodriguez-Perea et al. (1987) and
have been interpreted as supratidal, intertidal coastal envi-
ronments, shallow lagoons and continental deposits. The
sedimentation of these deposits was interrupted by volcanic
episodes.

3.4.3 The Triassic Alkaline Magmatism
in the Balearic Islands

Lago M, Galé C and Ubide T

In the Balearic Islands, the onset of the Tethyan rift was
accompanied by intraplate alkaline volcanism (Lago et al.
1996). This volcanism can be linked to magmas of similar
age in the Iberian Ranges and Catalonian Coastal Ranges in
Spain, and Corbicres and Ecrins-Pelvoux in France. Most
outcrops are located in the Northern Range of Majorca
(Navidad and Alvaro 1985:; Rodriguez-Perea et al. 1987;
Lago et al. 1996; Lopez-Gomez et al. 2017) but isolated
outcrops are also found in the islands of Minorca (Bour-
rouilh 1973) and Ibiza (Beausigneur and Rangheard 1968)
(Fig. 3.25).

In the Northern Range of Majorca island, two Triassic
magmatic units were described by Sanz et al. (2013). Most
magmatic rocks belong to the main unit which consists of
lava flows, pyroclastic deposits and hypovolcanic sills
emplaced within Carnian-Norian sediments (Keuper facies).
The lava flows and sills are alkali basalts and show
fine-grained holocrystalline microporphyritic  textures,
defined by scarce microphenocrysts of olivine and
titanium-rich augite, embedded in a doleritic groundmass
composed of plagioclase, titanoaugite, olivine, titanomag-
netite and accessory apatite. Ultramafic cm-sized xenoliths
are common in these rocks. The xenoliths have a medium- to
coarse-grained granoblastic texture composed of olivine an
spinel (Lago et al. 1996; Lopez-Gomez et al. 2017). The top
of this unit includes tuff deposits linked to a general erosive
event (Sanz et al. 2013). This unit shares common lithos-
tratigraphic and compositional features with contemporary
outcrops located in the NW margin of the Iberian Chain and
the Catalonian Coastal Ranges and represents a pluriepisodic
continental volcanism of Carnian-Norian age (Sanz et al.
2012, 2013).

The second unit comprises three hypovolcanic sills
emplaced within the Felanitx Fm, at Cala Tuent. These sills
show evidence of magma interaction with the host shallow
marine sequence, suggesting that magma emplaced into
unconsolidated sediments and therefore can be considered
geologically coeval with the host rocks (e.g. Lago et al.
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2012), i.e. of Norian age (Sanz et al. 2013). The composition
of this unit is more evolved than the previous one, with
higher contents of silica and potassium in bulk rock, and
higher modal proportions of plagioclase (Navidad and
Alvaro 1985). In addition, Enrique (2012) described a
teschenite sill intruding the Upper Triassic limestones and
there are reports of dykes of uncertain origin and age
cross-cutting the Buntsandstein facies (Anisian) or even the
Mal Pas Fm (Hettangian) (Sanz et al. 2013).

In Minorca Island, only one dolerite dyke has been found
to intrude the Buntsandstein facies (Bourrouilh 1973). There
are also irregular masses of volcanic rocks interbedded with
the red siltstone levels of the Muschelkalk facies (Rosell
et al. 1989). These rocks have not been studied yet and their
relationship with the Triassic volcanic rocks of Majorca or
Ibiza is unclear.

Finally, the Triassic magmatic rocks of Ibiza Island
consist of lava flows and hypovolcanic sills emplaced within
Keuper facies (Carnian-Norian). Their composition ranges
between alkali basalts and andesites (Beauseigneur and
Rangheard 1968) and could be equivalent to the main
magmatic unit described in Majorca.

The primitive composition and alkaline affinity of the
Triassic magmatism in the Balearic Islands, together with the
occurrence of ultramafic xenoliths, suggest that this vol-
canism is related to the Triassic alkaline magmatism of the
Catalonian Coastal Ranges. Furthermore, the lithostrati-
graphic features and age of emplacement of both magma-
tisms are equivalent. These similarities suggest a common
origin for the magmas, related to local upwelling and melt-
ing of the asthenospheric mantle, as proposed by Lago et al.
(1996 and references therein) and Sanz et al. (2012).

3.5 The Ebro Basin

Arche A, Lopez-Gomez J, Arribas J, Vargas H,
Gaspar-Escribano J, Martin-Chivelet J and
Escudero-Mozo MJ

The Permian-Triassic Ebro basin was a structure located in
NE Iberia (Fig. 3.29) that initiated its development during
the Middle—Late (?) Permian and was completed by Triassic
times (Vargas et al. 2009). In this section it is referred to as
the Ebro basin and is not to be mistaken for the Cenozoic
Ebro basin superimposed on the older basin as a much
younger Alpine structure. This Permian-Triassic Ebro basin
was bounded by Paleozoic highs along its northern margin
(Pyrenean high), eastern margin (Girona-Catalan high) and
southwestern margin (Ateca-Montalban high). It was a
semi-enclosed basin connected to the adjacent Iberian and
South Catalonian basins via a narrow passage in its south-
eastern corner, in the Maestrat-Priorat region.
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Nowadays, its Permian-Triassic infill only crops out
along the Aragonian Branch of the Alpine Iberian Ranges,
NE of the Ateca-Montalban-Maestrat high (Fig. 3.29). It
mostly lies under Cenozoic Ebro basin sediments and it is
only recognized in exploratory wells and electric logs (Jur-
ado 1989, 1990). The original configuration of the basin is
now distorted by intense compressive Alpine deformation
along its borders.

During the Early and Middle Triassic evolution of the
Ebro basin it was not connected to the Iberian basin and
sediment fluxes to these basins came from different source
areas. By Late-Middle Triassic (Ladinian) times, the
Girona-Catalan and Ateca-Montalban highs were almost
totally drowned by a marine transgression of the Neo-Tethys
Sea and the NE and Central Iberia basins were unified
(Escudero-Mozo et al. 2015).

The oldest sediments of the Ebro Basin have been located
near its SE corner in the Caspe-1 exploratory well (Vargas
et al. 2009) and are of Early Permian age. Coeval sediments
may be present in other exploratory wells but, if this is the
case, they were deposited in isolated, small basins as their
counterparts in the Iberian basin (Lopez-Gdémez et al. 2002)
(Fig. 3.30).

Middle-Late(?) Permian sediments are found lying
unconformably on the Paleozoic basement in the central part
of the Ebro basin, east of a lineament running NE-SW from
Bujaraloz-1 to Sarifiena-1 wells (Figs. 3.29 and 3.30). These
sediments consist of conglomerates and red lutites, probably
deposited in one or more narrow graben basins during an

J. Lopez-Gémez et al.

extensional period, but a differentiated Ebro basin had not
yet developed. Along the Aragonian Branch of the Iberian
Ranges, conglomerate bodies of limited lateral extension
crop out in the troughs of an energetic paleorelief carved on
the Paleozoic basement. Overlying red siltstones are missing
as the result of either erosion or non-deposition. The latter
branch comprises the Feliciana Fm, described by Marin
(1974) in the Montalban region, and the Araviana Fm (DS1
of Arribas 1984, 1985) in the Moncayo region, and are
interpreted as proximal alluvial fan deposits.

After several periods with different duration of uplift,
tilting and partial erosion in each domain of the Ebro basin
(Figs. 3.29 and 3.30), continental sedimentation restarted in
the SE of the basin independently of the Iberian basin to the
south. The first marine transgression commenced in the
middle Anisian, during the beginning of the mature rifting
phase. Marine sediments consisted of two major
transgression-regression cycles made of carbonate, evaporite
and siltstone deposits, including the Ebro basin in the
Mediterranean Triassic sedimentary record type (two car-
bonate levels of Anisian and Ladinian age) (Sopefia et al.
1988; Munoz et al. 1995; Lopez-Gomez et al. 1998;
Escudero-Mozo et al. 2014). Upper Triassic (Carnian-Norian)
evaporite sediments, or Keuper facies, are present only in the
central part of the Ebro basin and consist of a lower interval of
halite and anhydrite, a middle one of siltstones and an upper
one of anhydrite (Jurado 1989, 1990).

The Ebro basin was clearly differentiated since Late Early
Triassic (Olenekian) times as part of a general extension

Fig. 3.29 The Ebro Basin at the . N
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Fig. 3.30 Correlation between the lithostratigraphical units of the
Iberian, Ebro and Catalan basins. Permian units: EL—Ermita Layers,
LHGC—*Lower” Hoz de Gallo Conglomerates; MB—Montesoro
Beds, VSC—Volcano-Sedimentary Complex, TMS—Tormén Mud-
stones and Sandstones, AMS—AIlcotas Mudstones and Sandstones, AV
—Araviana (Tb—Tabuenca, Mc—Moncayo), PLC—Lower Prades
Conglomerates. Triassic Units: UHGC—Upper” Hoz de Gallo
Conglomerates, RGS—Rillo de Gallo Sandstones, PB—Prades Beds,
AS—Arandilla Sandstones, RMS—Rillo Lutites and Sandstones, To—
Torete Mudstones and Sandstones, Tra—Tramacastilla Dolomites, Ro
—Royuela Dolomites, Marls and Limestones, Ro—Royuela Dolo-
mites, Marls and Limestones, K—Keuper, TMG—Tramacastilla Mud-
stones and Gypsum, ADM—Albarracin Dolomites and Marls, Va—

process in the Iberian microplate. It was a complex rift basin
bounded by normal faults dipping towards the SW along its
SW margin and poorly defined normal fault systems along

Valdemeca Conglomerates, Caz—Caiizar Sandstones, Es—Eslida
Sandstones and Mudstones, Mar—Marines Clays, Marls and Mud-
stones, La—Landete Dolomites, Mas—Mas Sandstones, Marls and
Gypsum, Ca—Cafiete Dolomites and Limestones, Ti-Tierga Sand-
stones and Mudstones (Members: A—Aranda, C—Carcalejos,
R-Rané), ill—Illueca Dolomites, Tbs—Trasobares Mudstones and
Marls, CG—Carbonate Group, B1—“Lower unit of the Buntsand-
stein”, B2—“Upper unit of the Buntsandstein”, M1—"“Lower Muschel-
kalk”, K2—“Middle Muschelkalk”, K3—“Upper Muschelkalk”, Rot
—“Rét facies”, PUC—Prades Upper Conglomerates, PUS—Prades
Upper Sandstones, ASM—Aragall Sandstones and Mudstones,
ULCEC—Upper Lutitic, Carbonatic, Evaporitic Complex. See
Fig. 3.28 for their location

its NE (Girona-Catalan high) and N (Pyrenean high)
margins, both of them obscured by intense alpine
deformation.
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3.5.1 Sedimentation During
the Permian-Triassic Initial Rifting Phase

Arche A, Lépez-Gomez J, Arribas J, Vargas H and
Gaspar-Escribano J

The oldest Triassic sediments in the Ebro Basin were
deposited around a depocenter in its central part (Caspe-1,
Ballobar-1 and Fraga-1 wells, in Figs. 3.29 and 3.30),
thinning out towards the north and northwest and being
absent along the Catalan high. These sediments consist of
red sandstones and siltstones with complex amalgamated
units of sandy braided river origin. Towards the SE corner of
the basin, aeolian sediments have been identified at this level
in the Montalban region (Soria et al. 2011) and in the La
Zaida-1, Caspe-1 and Monegrillo-1 wells (our interpretation)
(Figs. 3.29 and 3.30). Aeolian-fluvial associations have been
identified at this level in the adjacent South Catalan basin
(Baix Ebre and Prades sub-basins, in Fig. 4.25) (Marzo
1986; Galan-Abellan et al. 2013) and in the SE Iberian Basin
(Lopez-Gomez et al. 2012).

A new stage of extension marked by a basal erosive
surface led to the deposition of alternations of red sandstones
and siltstones of fluvial origin in a basin showing differential
subsidence (Vargas et al. 2009). The depocenter shifted to
the north along the Pyrenean border and a secondary one
developed in the Moncayo region. This cycle has been ter-
med Tierga Fm in the Aragonian branch (DS2 of Arribas
1984, 1985) and can be correlated with the Eslida Fm of the
Iberian basin (Arche and Lopez-Gomez 1999a, b)
(Figs. 3.29 and 3.30). It has been dated as Anisian according
to macroflora and palynological assemblages found near the
top of the formation in the Aragonian branch (Diez et al.
1996, 2007). The Tierga Fm (lateral equivalent to Eslida Fm)
has been identified across the subsurface of the Cenozoic
Ebro basin through electric logs of exploratory wells.

3.5.1.1 Composition and Origin of Sediments
The first depositional sequence (DS1, conglomerates and
lutites of Araviana Fm) unconformably overlies an Early
Paleozoic succession (mainly Cambrian) (Fig. 3.30). It is
characterized by a basal conglomeratic unit that suddenly
evolves to lutitic deposits with paleosols and minor sand-
stone levels. The following depositional sequence (DS2,
Tierga Sandstones Fm) rests with an apparent conformity
over the previous depositional sequence, and it is constituted
mainly by a succession of coarse- to medium-grained
channelized sandstones with interbedded lutitic intervals.
Composition of coarse-grained sediments (conglomerates
and sandstones) drastically differs between these two
sequences (Arribas 1984, 1985; Arribas et al. 2007; Ochoa
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et al. 2007). DS1 has a quartzolithic character, its sediments
constituted by local supplies from the erosion of metasedi-
ments (Late Paleozoic). Recycled quartz grains and
metasedimentary rock fragments are the main clastic com-
ponents. Framework in sandstones from DS2 and successive
sequences is quartzofeldespathic, with a clear dominance of
monomineralic clasts (quartz plus feldspar). The amount of
feldspar increases towards the top of the Permo-Triassic
succession. This fact is interpreted as the consequence of
new supplies from the erosion of crystalline rocks (plu-
tonites) diluting local metamorphiclastic supplies.

The great difference in composition between DS1 and the
rest of overlying DSs (Fig. 3.31) has been used to interpret
DS1 as equivalent to the Upper Permian “Saxonian facies”
outcropping in the Castilian branch (Arribas 1984, 1985),
and representing the start of the Alpine sedimentation cycle
in the Iberian Range (Arribas et al. 2007).

3.5.2 Sedimentation During the Triassic Mature
Rifting Phase

Arche A, Lopez-Gomez J, Vargas H, Martin-Chivelet J,
Escudero-Mozo MJ and Gaspar-Escribano J

Continental sedimentation in the Ebro basin ended in middle
Anisian times and a shallow marine-coastal sedimentary
cycle (loosely termed Rot facies) started. This new cycle
shows a main depocenter in the center and northern parts of
the Permo-Triassic Ebro basin and a secondary one along the
Aragonian branch, separated by an elongated area across the
SW and NE parts of the basin, where fluvial sediments of the
Tierga Fm are directly covered by the marine carbonates, or
Muschelkalk facies, as in wells Zuera-1, Senant-1,
Guisona-1, Sanahuja-1 Castelfullit-1, La Zaida-1 and
Lopin-1 (Figs. 3.29 and 3.30). In the Aragonian branch this
sedimentary record has been termed Calcena Fm (Arribas
1984, 1985) and can be correlated with the Marines Fm of
the Iberian Ranges (Lopez-Gémez and Arche 1992) and the
Upper Lutitic-Evaporitic complex of Marzo (1980), or
Boundary clays of Virgili (1958), both in the Southern
Catalan basin. Siltstones and variegated clays are found in
the Aragonian branch depocenter while anhydrite, halite and
red clays dominate the more subsiding central-northern Ebro
basin depocenter.

Above these shallow marine deposits, during the begin-
ning of the Pelsonian (middle Anisian), a definitive west-
ward transgression of the Tethys sea covered the Ebro basin
following wide corridors linked with the open sea across the
central-south Catalan basin (Fig. 3.22). It was represented
by carbonates of shallow marine ramps, so-called M-1 Unit
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Fig. 3.31 Sandstone composition petrofacies from Permo-Triassic
deposits in the Aragonese branch of the Iberian Ranges. DS1: Araviana
Conglomerates and Silstones Fm; DS2a: Lower part of Tierga
Sandstones Fm; DS2b: Upper part of Tierga Sandstones Fm. Fields
defined by Dickinson (1985): 1—Stable Craton; 2—Recycled Orogen;
3—Magmatic Arc; 4—Basement Uplift. Qm: monocrystalline quartz;
F: feldspars; Lt: lithic fragments

or lower Muschelkalk facies in the Catalan basin (Virgili
1958; Calvet and Marzo 1994). Present-day outcrops of this
Middle Triassic marine episode in the Ebro basin are only
located in the southernmost area of the basin, in the NE of the
Aragonian branch (Fig. 3.29). This carbonate unit and the
undelying Rot facies would constitute the first transgressive-
regressive cycle (T.R.-1) defined by Escudero-Mozo et al.
(2015) in neighbour basins. After a progressive retreat of the
Tethys Sea and the incoming of continental fluxes in the
western areas of the basin, represented by the so-called middle
Muschelkalk (lutites, carbonates and evaporitic facies), a new
transgression of the Tethys Sea began at the end of the
Illyrian. The new record of carbonate sediments is probably
related with a general re-configuration of the Tethys Sea with
an important propagation of the Neotethys due to the sudden
northward displacement of Cimmeria (cf. Escudero-Mozo
et al. 2014) (Fig. 3.22). Those carbonates are represented by
the upper Muschelkalk or M-3 Unit. An abrupt and intense
relative  sea-level rise that occurred during the
Anisian-Ladinian transition caused partial drowning of the
carbonate ramps and led to deposition of the deepest facies
(outer ramp) of the Middle Triassic in the basin. After this
episode, carbonate production was recovered and the evolu-
tion of the carbonate ramps continued, within a slow and
multi-episodic shallowing-up trend, until the Ladinian to
Carnian transition, when carbonate deposition was replaced,
after about 5.5 my by the mainly evaporitic sedimentation of
the Keuper facies (Fig. 3.15). The upper limit of the second
transgressive-regressive cycle (T.R.-2) can be located above
this drastic sedimentological change (Escudero-Mozo et al.
2015). Those evaporitic marine conditions dominated sedi-
mentation during the rest of the Carnian and the Norian
(Keuper facies).
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3.6 The Iberian Basin

De La Horra R, Lopez-Gémez J, Arche A, Bar-
renechea J, Borruel-Abadia V, Galan-Abellan B, Sopeiia
A, Sanchez-Moya Y, Vargas H, Escudero-Mozo MJ,
Martin-Chivelet J, Orti F, Pérez-Lopez A, Lago M, Galé
C, Ubide T, Luque J, Alonso-Azcarate J, Marquez-
Aliaga A, Goy A, Marquez L and Gaspar-Escribano J

The present-day Iberian Chain is a wide zone of intraplate
deformation that records the tectonic inversion produced
during the Pyrenean orogeny of the basins previously
developed during the initial Alpine cycle extensional phase
(Arche and Lopez-Gomez 1996; Salas et al. 2001; Sopena
and Sanchez-Moya 2004; de Vicente et al. 2009). This
Permian-Mesozoic extensional regime is generally associ-
ated with the break-up of Pangea and the multiphase
destruction of the Variscan orogen. As a result, the Iberian
basin evolution is deeply influenced by the pre-extension
structure inherited from the late Variscan orogeny (Sopefia
et al. 1988; Vargas et al. 2009; de Vicente et al. 2009).

3.6.1 Tectonics and Sedimentation During

the Beginning of the Basin

De La Horra R, Arche A, Lopez-Gémez J, Sopeiia A,
Sanchez-Moya Y, Barrenechea JF, Galan-Abellan B,
Borruel-Abadia V and Vargas H

Many aspects of the geodynamic situation of the Variscan
orogen during the Carboniferous and its transition to the
Permian are still controversial and out of the scope of this
chapter. Still under debate are the origin and evolution of the
Ibero-Armorican orocline (Martinez-Catalan et al. 2007,
Gutiérrez-Alonso et al. 2008a, b), the identification of the
intra-Pangea shear zone separating Gondwana from Laurasia
that could explain a Pangea B configuration (Weil et al.
2001; Muttoni et al. 2009; Domeier et al. 2012; Aubele et al.
2012), and the nature of the transition between the end of the
Variscan orogeny and the beginning of the extension that
later produced the break-up of Pangea (Lopez-Gomez et al.
2002; Sopefia and Séanchez-Moya 2004; Franke 2006;
Wagner and Alvarez 2010).

More widely investigated and accepted is the evolution of
the Iberian basin, which can be explained by two major
rifting cycles followed by post-rift periods of thermal sub-
sidence (Sopefia et al. 1988; Arche and Lopez Goémez 1996;
Van Wees et al. 1998; Vargas et al. 2009). The first main rift
cycle took place from the Early Permian to the Middle
Triassic (Sopefia and Sanchez-Moya 1997; Vargas et al.
2009). The second main cycle spanned the Late Jurassic to
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Early Cretaceous and has been linked to the separation of
Africa from Europe and the simultaneous anticlockwise
rotation of the Iberian Plate (Sdnchez Moya and Sopefia
2004; Rosenbaum et al. 2002). We will focus here on the
first of the main rift cycles which, based on the age of the
sedimentary filling, tectonic setting and geometries of the
basins, magmatic manifestations and sedimentologic char-
acteristics, has been subdivided into three tecto-sedimentary
phases: (A) Latest Carboniferous to Early Permian,
(B) Middle-Late Permian, and (C) Lower to Middle Triassic
(Fig. 3.32).

SEDIMENTARY RECORD

3.6.1.1 Latest Carboniferous-Early Permian

It is most widely accepted that a regime of oblique collision
between Gondwana and Laurasia during the Late Paleozoic
was responsible for the Variscan orogeny, dominated by
dextral transpression (Arthaud and Matte 1977; Marti-
nez-Catalan et al. 2007). This situation produced the west-
ward displacement of Gondwana relative to Laurussia and
favored the opening of the Paleotethys (Ziegler 1988a, b;
Stampfli et al. 2001; Franke 2006; Martinez Catalan et al.
2007). Such transpressional conditions persisted during the
last stages of the Carboniferous and until the Sakmarian
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Fig. 3.32 Permian-Triassic sedimentary record at the beginning of the
break-up of Pangea. Igneous activity, age constrains, and inferred
tectonic regimes are also included. See text for references and Fig. 3.33
for a paleogeographical interpretation of each tectosedimentary phase.
Units: (1) Andesites of Cafamares, Volcanic-volcanoclastic complex of
Palmaces, Ermita Fm, (2) Palmaces sandstones Fm, Palmaces mud-
stones Fm, Retiendas sandstones Fm, Tabarrefia breccias Fm,

(3) Boniches conglomerates Fm, (4) Alcotas and Montesoro siltstones
Fms, Noviales Mudstones, Sandstones and Conglomerates Fm, Hoz del
Gallo Conglomerates Fm, (5) Chequilla and Valdemeca units,
(6) Cafizar and Rillo de Gallo Fms, (7) Cercadillo, Arandilla, and
Eslida Fms, (8) Marines Fm, (9) Albarracin and Landete Fms,
(10) Torete Siltstones Fm, El Mas Fm, (11) Caiiete, Tramacastilla,
and Royuela Fms
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(Lower Permian) in northwestern areas of Iberia. In this
region, a compressive NNE-SSW paleostress field has been
inferred from paleomagnetic data (Weil et al. 2001; Domeier
et al. 2012). However, for the Iberian Ranges, there are still
doubts about when the change occurred from the compres-
sive tectonic regime inherited from the Variscan orogeny to
the extensional Alpine rifting that subsequently gave rise to
the Iberian basin. Some authors still relate the latest
Carboniferous-Early Permian stage to the end of the Var-
iscan cycle representing the collapse of the Variscan orogen
(Doblas et al. 1994; Capote et al. 2002). According to others,
instead, the basins created during this period are best
assigned to the beginning of an Alpine cycle of extensional
tectonics (Lopez-Gomez et al. 2002). The present-day con-
figuration of these basins and the lack of precision in age
assignation based on its paleontological record make it dif-
ficult to resolve these controversies. The small basin of
Henarejos is a good example of this dilemma (Sopena and
Sénchez-Moya 2004; Arche et al. 2007; Wagner and Alvarez
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2010). Certainly, the Late Carboniferous-Permian transition
needs re-assessment through new structural and paleonto-
logical reviews. This section offers an overview of the main
features of the basins created during this period.

In the Iberian Range area, continental deposits lying
unconformably on the folded Variscan basement filled-up
isolated and small basins preferentially preserved at the SE
margin of the Central System and in the northwestern and
central areas of the Castilian and Aragonese branches
(Fig. 3.33). These new basins were small (2—10 km long),
sometimes rhomb-shaped, and bounded by deep normal
faults. Their continental sedimentary record is variable,
sometimes thick (more than 1000 m), and highly heteroge-
neous, including slope breccias, alluvial fan, fluvial and
lacustrine deposits.

The age of these deposits has been established as Autu-
nian (Early Permian) in some basins based on conchostraca
and macro- and microflora data (Sopefia et al. 1977; Wagner
et al. 1985; Broutin et al. 1999). Most important is the
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presence of an extensive record of short-lived volcanic epi-
sodes that produced thick andesitic lava flows and pyro-
clastic rocks. Absolute ages of these deposits indicate a
maximum age interval of 299-275 Ma (Lago et al. 2005).
Such calc-alkaline volcanism dated as Stephanian-Early
Permian shows two stages: (i) a first stage whose hypovol-
canic magmatism and explosive eruptions are characterized
by amphibolic andesites incorporating deep crust xenoliths
and indicating existence of crustal-scale faults (Lago et al.
2005); and (ii) a second stage represented by the intrusion of
sills and dykes of a more basic composition (pyroxenic
andesites and basalts) and a minor presence of xenoliths
(Fig. 3.32).

The geographically aligned basins (Fig. 3.33), their geo-
metric characteristics, intense subsidence, deep border faults,
and type of volcanism, likely point to a relationship with
strike-slip tectonics closely linked to the crustal roots of the
Variscan orogen (Lopez-Gomez et al. 2002; Sopena and
Sénchez-Moya 2004). Pull-apart basins at releasing bends
are the best tectonic configuration to explain these features
(de Vicente et al. 2009). A still open question is whether
these basins were created under a regional transpressional or
transtensional regime. However, if we consider paleomag-
netic indicators, oblique transpressional conditions are not to
be discarded definitely (Weil et al. 2001).

3.6.1.2 Middle-Late Permian

A marked change in tectonic regime is observed in the
Middle-Late Permian interval. Under a clear extensional
regime, larger basins related to normal faults and half-graben
geometries accommodated continental deposits (Arche and
Lopez-Gomez 1996; Vargas et al. 2009; Lopez-Gomez et al.
2002; Sopefia and Sanchez-Moya 2004). The vertical
development of this infill in most of the basins starts with
transverse alluvial fans and ends with fluvial systems
developed into extensive floodplains with intercalated
lacustrine environments (Sopefia et al. 1988; Lopez-Goémez
et al. 2002). Lying unconformably on the Variscan basement
or, locally, on Early Permian rocks, alluvial fan deposits are
composed of clast-supported conglomerates of mainly
well-rounded, quartzite clasts that transitionally change to
red mudstones and siltstones, with intercalated red to pink
sandstones beds, conglomerate lenses, and paleosol levels, in
a sandy or mixed braided and meandering fluvial system
developed on wide floodplains (Arche and Lépez-Gomez
2005; De la Horra et al. 2008, 2012).

The age of this stage was established through palyno-
logical assemblages as Thiiringian (Doubinger et al. 1990;
Sopefia et al. 1995; De la Horra et al. 2012). This imprecise
time unit can be broadly correlated with the Capitanian
(Middle Permian) and Wuchiapingian (Late Permian).
Magmatic manifestations are practically absent. Only some
intercalated sills of basaltic andesites have been described in
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the southeastern area (Fig. 3.33). Due to their alteration,
radiometric dating of the sills has not been possible but a
Middle-Late Permian age has been inferred. Further, field
data suggest that emplacement took place shortly after sed-
imentation of the continental deposits and the geochemical
affinity of the sills is similar to that of other Middle-Late
Permian magmatism rocks in the western Tethys, e.g. those
from the Pyrenees (Lago et al. 2012).

A widespread extensional regime of this period is clear.
Middle-Late Permian deposits are geographically distributed
throughout the Iberian basin, which at that moment was
subdivided by SW-NE alignments into sub-basins, 25—
65 km long, controlled by NW-SE fault systems. These
merge laterally, show arcuate geometries (Fig. 3.33), and
have been interpreted as listric boundary faults controlling
asymmetric half-graben (Arche and Lopez-Gomez 1996).

As in all western and central European basins, Permian
and Triassic rocks are clearly separated by a sedimentary
hiatus that corresponds at least to the late Lopingian, and
probably lasted until Olenekian times (Bourquin et al. 2007).
In the Iberian basin, this hiatus is represented by an angular
unconformity.

3.6.1.3 Early to Middle Triassic

The Triassic rocks of the Iberian Basin contain the three
facies broadly corresponding to the three Germanic type
units: Buntsandstein, Muschelkalk and Keuper. However,
these divisions lack chronostratigraphic value. Here, we
focus on the Buntsandstein facies, represented by siliciclastic
units of continental origin. These units have been exten-
sively investigated since the 1970s and classified into for-
mation categories according to lithostratigraphic criteria (see
reviews by Sopefia et al. 1988; Lopez-Gomez et al. 2002;
Sopefia and Sanchez-Moya 2004; Arche and Lopez-Gomez
2006).

During this phase, the extensional development of the rift
is indicated by widespread NW-SE faults that have been
interpreted as listric boundary faults controlling the hang-
ingwall geometry and sedimentation type. In selected areas,
field mapping reveals well developed listric basin-boundary
faults and complex synthetic and antithetic rollover structures
(Arche and Lopez-Gomez 1996; Sopena and Sanchez-Moya
1997). A similar situation may be observed in the present-day
rifts of East Africa, with half-graben infilled by deposits of
fluvial systems, lakes, and alluvial fans (Ebinger 1989).
Examples of these boundary faults are the Somolinos fault
and the Serrania de Cuenca fault (Sopefia and Sanchez-Moya
1997; Arche and Lopez-Goémez 1996; de Vicente et al. 2009).

At the base of the Triassic sequences it is common to find
sandy, matrix- and clast-supported, subrounded to suban-
gular quartzite conglomerates and interbedded sandstones
(Ramos 1979). In the different sub-basins, the base of these
deposits shows a drainage system crosswise to the basin
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margin with a rather radial pattern. However, at the top,
paleocurrents parallel the basin axis and point SE. These
continental deposits were initially interpreted as alluvial fans
and gravelly braided fluvial systems (Ramos 1979). How-
ever, it is important to note the presence of sandstone beds of
very well-rounded grains and isolated ventifacts that, along
with other sedimentological evidence, has been related to
markedly arid climate conditions contrasting with the sea-
sonal and humid climate of the previous stage (Bourquin
et al. 2007; De la Horra et al. 2011; Lépez-Gomez et al.
2012; Borruel-Abadia et al. 2015). In the absence of direct
age data, their stratigraphic location points to the lower
Olenekian (Lower Triassic), a time of arid climate conditions
at the scale of western Europe.

On top of the basal conglomerates, a sandy unit is most
representative of the continental Triassic in the Iberian basin
due to its spectacular outcrops. Although its name changes
from one geographic area to another (Rillo de Gallo Fm,
Caifiizar Fm) its basic sedimentary features are consistent and
allow lithostratigraphic correlations (Lopez-Gomez et al.
2012). These rocks lie unconformably on the Variscan
basement and on Permian rocks, or otherwise conformably
on the conglomerate deposits. Thickness ranges from 80 to
140 m and is mainly composed of red sandstones (sub-
arkoses) of different grain size, and scarce subrounded
quartzite clasts. The rocks have been interpreted as deposited
by sandy braided fluvial systems showing punctate aeolian
reworking (Lopez-Goémez et al. 2012). However, at the SW
Ebro basin margin (Montalban area), most deposits are of
aeolian origin (Soria et al. 2011). In the SE Iberian basin, a
pollen and spore assemblage recovered from the top of this
succession suggests an early Anisian age (Doubinger et al.
1990). Thus, most of the unit may be assigned to the Late
Olenekian although the age is considered Late Smithian by
Lopez-Gomez et al. (2012). As reported in earlier studies,
lateral facies changes between units indicating different
lithologies and environments are a common feature in the
Iberian Basin (Sopefia et al. 1988).

Transitionally on top of these sandy units there are other
continental deposits which, again, have been given as dif-
ferent formation names (e.g. Arandilla Fm, Cercadillo Fm,
Eslida Fm) depending on their geographical location (Arche
and Loépez-Gomez 2006; Lopez-Goémez et al 2002). In
contrast with the older sandy units, these rocks consist of
alternating red sandstones and thick beds of siltstones. The
sandstones are fine- to coarse-grained arkoses and sub-
arkoses (Alonso-Azcarate et al. 1997). Siltstones contain
insects, abundant bioturbation, root prints and paleosols,
vertebrate footprints and plant remains (Béthoux et al. 2009;
Gand et al. 2010; Borruel-Abadia et al. 2014). Formation
thickness ranges from a few meters to >600 m in different
depocenters. These rocks have been interpreted as sandy
braided and meandering fluvial systems crossing wide
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floodplains with small lakes and ponds (Ramos 1979; Arche
and Lopez-Gomez 1999a, b). At the SW Ebro basin margin
(Montalban area), some sequences show aeolian deposits.
Plant remains and vertebrate footprints point to an Anisian
age but a mid-Anisian palynological association has recently
offered a precise datation (Juncal et al. 2016a, b).

Semigraben compartmentalization of the Iberian basin is
indicated by generalized subsidence of Early to Middle
Triassic stage sub-basins, the widening of their sedimenta-
tion areas, their variable thicknesses, the asymmetric shape
of isopac maps, and their geometric characteristics (Van
Wees et al. 1998; Sopefia and Sanchez-Moya 2004; Vargas
et al. 2009). Under conditions of simple-shear extension,
active extension prograded away from the original boundary
faults and younger continental units were deposited away
from the center of the basin (Vargas et al. 2009). The
combination of dextral E-W shear with main NW-SE faults
produced a main ENE-WSW stretching (Garcia-Lasanta
et al. 2015). At the end of this stage, branches of previous
rift systems became finally connected (e.g., Catalan, Ebro
and Iberian basins) allowing fauna migrations along thou-
sands of km across the European plate. The stage of maxi-
mum widening of the rift basins, or mature stage of rifting,
started with the incursion of the Tethys Sea in the Iberian
basin (Escudero-Mozo et al. 2014).

The evolution of the first rifting cycle until the first
marine incursion can be summarized by the following
tectono-sedimentary features: (i) short-duration syn-rift
stages between long hiatuses in the sedimentary record,;
(ii) an Early Permian initial stage of late Variscan strike-slip
faults reactivation characterized by small basins (10 km),
rapid subsidence, and volcanism of calc-alkaline affinity;
(iii) a Middle-late Permian stage of lateral extension and
alluvial to fluvial sedimentation in medium-sized basins
(£25-65 km) with very local volcanism of alkaline affinity;
(iv) a Late Early to Middle Triassic extensional phase of
diachronic filling of fluvial-aeolian deposits in larger basins
of different rift systems that became finally interconnected,;
and (v) a post-rift stage of rapid Middle Triassic marine
transgression of the Tethys sea following corridors between
the still elevated areas.

3.6.2 Middle-Late Triassic Mature Rifting Phase
in the Iberian Basin

Escudero-Mozo MJ, Martin-Chivelet J, Lopez-Gémez J,
Arche A, Pérez-Lopez A, Orti F, Marquez-Aliaga A,
Goy A and Marquez L

The mature rifting phase in the Iberian basin started during
the Anisian (Middle Triassic) and prolonged until almost the
end of the Late Triassic. This phase was characterized by an
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enlargement of the sedimentation area due to the beginning
of subsidence of the rift flanks (Van Wees et al. 1998).
Therefore, this mature phase was affected by the onset of
thermal subsidence, but still under the tectonic control of the
main faults (Arche and Lopez-Gomez 1996). It was basically
represented by the westward marine transgression of the
Tethys affecting the eastern half of the Iberian plate. As a
result, a succession of carbonate deposits, or Muschelkalk
facies, was recorded in this area until the end of the Middle
Triassic, when a generalized and prolonged regressive event
allowed Keuper facies deposition. This event extended until
the beginning of the postrift stage at the end of the Triassic,
when dynamics of the basin started to be controlled by
thermal subsidence (Vargas et al. 2009).

3.6.2.1 The Middle Triassic Carbonate Ramps
(Muschelklak) in the Iberian Basin

Escudero-Mozo MJ, Martin-Chivelet J, Lopez-Gémez J,
Arche A, Maiarquez-Aliaga A, Goy A, Marquez L,
Plasencia P and Sanchez-Fernandez D

The middle Anisian to early Carnian time interval in the Iberian
basin was characterized by the installation of extensive shallow
marine settings in response to the combined effect of a gener-
alized regional subsidence and a sea level-rise. The high relative
sea-level together with the climatic conditions favoured the
development of shallow marine settings with carbonate depo-
sition, for which carbonate microbial production had a very
significant role. That accumulation of carbonate deposits con-
forms the Muschelkalk facies which, in the SE Iberian basin, is
represented by two carbonate units, the Landete Fm and the
Catiete Fm (Lopez-Gomez et al. 1993), middle-upper Anisian
and upper Anisian-Ladinian in age, respectively (Escudero
Mozo et al. 2015, Fig. 3.34). These two units are stratigraphi-
cally separated by a mixed siliciclastic-evaporite unit (Mas Fm
of Lopez-Gémez et al. 1993). Abundant stratigraphic and
sedimentological work on these units has allowed reaching the
current knowledge of these units (e.g. Pérez-Arlucea and
Sopefia 1985; Arribas 1985; Arche and Lopez-Gomez 1996;
Sopefia et al. 1988; Sopefia and Sanchez-Moya 2004; Gar-
cia-Gil 1990; Pérez-Arlucea 1992; Lopez-Goémez et al. 1993,
1998; Escudero-Mozo et al. 2015). These units, together with
the uppermost part of the Buntsandstein facies and the lower
part of the Keuper facies, represent two major transgressive-
regressive cycles (in the sense of Escudero-Mozo et al. 2015),
each of them defined by the installation, development and
demise of a vast carbonate ramp.

The first carbonate ramp (Landete Fm) developed in the
central part of the Iberian basin (Fig. 3.34). It reaches a
thickness of 60 m and pinched out towards the basin
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margins. It mainly consists of shoal calcarenite facies, sub-
tidal bioturbated muds and peritidal microbial facies, all
affected by an intense and pervasive dolomitisation. The
marine transgression was rapid and from the NE through a
narrow NE-SW corridor across the Catalan and Ebro basins
(Escudero-Mozo et al. 2015) (Fig. 3.22). The marine car-
bonates onlap over older units including different
Buntsandstein units (Fig. 3.34). The exception is the north-
ern basin areas, where a transitional lower contact exists over
the Buntsandstein facies, defined by a mixed lutite-
evaporite-carbonate unit (R6t facies). The carbonate ramp
recorded two depositional sequences (Escudero-Mozo et al.
2015) until the late Anisian (Illyrian), when a rapid regres-
sive episode determined its demise and replacement by
continental to coastal settings with siliciclastic and evaporitic
sedimentation, these represented in the lower part of the Mas
Fm (Fig. 3.34).

The second carbonate ramp, represented by the Cafiete
Fm (Figs. 3.34 and 3.35), consists of severely dolomitised
carbonate deposits, including outer, middle and inner ramp
(lagoon to tidal flat) facies (Lopez-Gomez et al. 1993, 1998;
Escudero-Mozo et al. 2014, 2015). The initiation of the
ramp resulted from a new generalized transgression that
started in the late Anisian. It was more extensive than the
former, covering all the areas of the previous ramp but also
others that had prevailed emerged until now, and onlaps on
older units reaching the Paleozoic basement westward of the
basin (Lopez-Gomez et al. 1998). Interestingly, this trans-
gressive pulse derived during the Anisian-Ladinian transi-
tion in an abrupt deepening event, which caused local
drowning and widespread deposition of open marine (mid-
dle to outer ramp) facies. After this rapid relative sea-level
rise, a much slower and progressive shallowing episode took
place. This trend lasted more than 4 my and was punctuated
by two additional transgressive pulses, which allow defining
three successive depositional sequences (Figs. 3.34 and
3.35). Carbonate deposition finished with the demise of the
carbonate ramp and gradual but rapid change into the
hypersaline conditions that led to Keuper facies deposition,
starting at the Ladinian-Carnian transition. The evolution of
this ramp has been related to the progressive opening of the
Neotethys and the paleogeographic changes that occurred in
the western Tethys domain during the late Anisian to early
Carnian interval (Escudero-Mozo et al. 2015). The integra-
tion of biostratigraphical studies, which allowed to recog-
nize the FEoprotrachyceras curionni, E.vilanovai and E.
hispanicum biozones (Goy 1995; Escudero-Mozo et al.
2015), and sequence stratigraphy, lead to precise
inter-basinal correlations between the Iberian Ranges,
Catalan Coastal Ranges and Minorca (Escudero-Mozo et al.
2014, 2015) (Fig. 3.34).
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Fig. 3.34 Depositional sequences of the Muschelkalk facies sedimen-
tary record and the Iberian basin and the Catalan and Minorca basins.
Modified from Escudero-Mozo et al. (2015). Laterally equivalent units:

3.6.2.2 Evolution of the Keuper Evaporites
Orti F and Pérez-Lépez A

The SE domain of the Iberian microplate records the most
complete succession of Keuper facies sedimentation and is
taken here as reference for the successions in the other basins
(Fig. 3.13). The Keuper facies in eastern Iberia belong to
two 3rd-order depositional sequences. The most commonly
accepted arrangement of units in these sequences is that of
Pérez-Lopez (1996): the older sequence is formed by the
lower Keuper (K1 unit) and the younger sequence is formed
by the assemblage of the other Keuper units (K2, K3, K4,
K5 units) and also by the base of the dolomitic, shallow
marine Iméon Fm, of late Norian age (Fig. 3.14), already
considered to mark the beginning of the postrift stage.

Ro—Royuela Dolomites, Marls and Limestones, Tra—Tramacastilla
Dolomites and Marls (Pérez-Arlucea 1992); CCSM—Cuesta del
Castillo Sandstones and Mudstones (Garcia-Gil 1990)

A different unit arrangement was assumed by Suarez (2007),
to whom the older sequence is formed by the K1, K2 and K3
units, and the younger one is comprised of the K4 and K5
units and the Imén Fm at the top.

The lower Keuper unit (K1 unit in the Iberian basin and
the equivalent units in the other basins) represents a mosaic
of shallow-water chloride ponds and sulfate salinas irregu-
larly distributed in an evaporitic mudflat. The predominant
host sediment in this evaporitic mudflat was grey claystone.

The middle Keuper units (K2 and K3 units in the basins
surrounding the Iberian Massif) represent a fluvial, silici-
clastic intercalation in the platform, which interrupted
evaporite sedimentation. The paleoclimatic meaning of the
siliciclastic episode represented by the K2 unit, of middle
Carnian age, has been explained by Arche and Lopez-Go-
mez (2014) as a short-lived (>1 Ma) humid event, the
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“Carnian Pluvial Event” (CPE) or “Carnian Humid Episode”
(see Chap. 3.6.2.3.). In association with the episode, other
events such as rifting reactivation, sea-level (eustatic) fall,
intense volcanic activity, and doming of the Iberian Massif
also occurred in Iberia (Arche and Lopez-Gémez 2014;
Lépez-Gomez et al. 2017).

The upper Keuper units (K4 and K5 units in the Iberian
basin, and the equivalent units in the other basins) represent
a renewed evaporitic platform. Sedimentation in this plat-
form again began as an evaporitic mudflat (K4 units), which
evolved into sulfate lagoons at the platform scale (K5 units).
The evaporitic sedimentation ended with the shallow marine
carbonatic platform represented by the Imén Fm.

It is interesting to consider the maximum thicknesses
reached by the Keuper evaporite units in the Triassic basins
of eastern Iberia (Fig. 3.15). For the lower Keuper evaporites
(K1 and equivalent units) it was almost 400 m in La Mancha
sector of the Iberian basin and about 450 m in the Ebro
basin. For the K4 unit and equivalent units of the upper
Keuper it was 550 m in La Mancha sector of the Iberian
basin and 430 m in the External Sierras of the Pyrenean
basin. For the K5 unit and equivalent units of the upper
Keuper it was over 250 m in the Nogueres structural unit of
the Pyrenean basin (Fig. 3.15). These values are consider-
ably thicker than the maximum values (<200 m in general;
commonly 100-150 m) of the three Triassic carbonatic units
(lower and upper Muschelkalk units, and Imén Fm) which
alternated with the evaporitic ones during the Middle-Late
Triassic (Orti et al. 2017, 2018). High maximum values are
also known for the other Triassic evaporite units in eastern
Iberia. These values reach up to 600 m for the middle
Muschelkalk unit (Mas Fm; Anisian) in the Maestrat sector
of the Iberian basin, and for the “Anhydrite Zone” (or Lécera
Fm; Rhaetian-Hettangian) that reaches 500 m in the Ebro
basin and 1000 m in La Mancha sector of the Iberian basin.
All these values indicate that the Triassic evaporite units in
eastern Iberia, including the Keuper ones, were controlled
mainly by reactivation pulses of the Triassic rifting. Also the
clastic K2 unit of the middle Keuper, which is almost 300 m
thick in the La Mancha sector of the Iberian basin, seems to
belong to this category of subsident units. These reactivation
pulses alternated with deceleration pulses of the extensional
activity. During these deceleration pulses, the carbonatic
units were sedimented on the Iberian platform.

The reference succession of the Keuper facies units,
which is dated Carnian-Norian, corresponds to the Valencia
and southern La Mancha sectors (Figs. 3.15 and 3.36). In
the outcrops of the Valencia sector, the succession is
composed of the lower Keuper unit (Jarafuel Fm or evap-
oritic K1 unit), the middle Keuper units (Manuel Fm or
detrital K2 unit; Cofrentes Fm or detrital K3 unit), and the
upper Keuper (Quesa Fm or evaporitic K4 unit; Ayora Fm
or evaporitic K5 unit) (Orti 1974, 1982—83). The carbonatic
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Imoén Fm (Norian) overlies de K5 unit. At the subsurface of
the southern La Mancha sector, this Keuper succession, up
to 700 m thick, was firstly mentioned by Castillo (1974)
and then described in detail by Suarez (2007) by means of
wireline studies in deep boreholes. At the subsurface of the
eastern sector of the basin, i.e. the Maestrat sector, several
deep boreholes show a complete, little disturbed Keuper
succession formed by three units with a total thickness of
280 m. These units are the lower saline unit (K1), the
intermediate claystone unit (K4), and the upper anhydritic
unit (KS5), (Lanaja 1987; Bartrina and Herndndez 1990)
(Fig. 3.14). Probably, no record of the K2 and K3 units
exists in this Maestrat sector.

The lower Keuper unit (K1) is characterized in the outcrops
of the Valencia sector by monotonous alternations of lami-
nated gypsum beds and grey claystone beds. These alterna-
tions also intercalate irregularly some layers of sandstones,
marls and carbonates (Orti 1974). At the subsurface of the
southern La Mancha sector, the K1 unit is a bedded halite unit
formed by 4th- or Sth-order shallowing upwards sequences,
about 5-25 m thick, with a total thickness up to 380 m (Suarez
2007). These sequences are formed by clay-halite cycles at the
metre-scale and the decametre-scale. Scarce sulfate is
observed in association with these cycles.

The K2 unit (Manuel Fm) is formed in the southern
sectors of the basin by a succession of claystones and
channelled fluvial sediments, which are derived from the
Iberian Massif to the west (Orti 1974; Arche and Lopez
Goémez 2014). At the subsurface, the unit reaches up to
280 m in thickness (Suéarez 2007). The age of this unit is
early Carnian/Julian (Arche and Lopez-Gomez 2014).

The K3 unit (Cofrentes Fm) is formed by red-coloured,
massive claystones and some carbonate beds. The thickness
of the unit is relatively homogeneous both at the surface (up
to 50 m) and the subsurface (up to 80 m; Suarez 2007).

The K4 unit, 60-70 m thick in the outcrops of the
Valencia sector, is a poorly stratified assemblage of mas-
sive, red claystones bearing abundant nodular gypsum
beds. At the subsurface of the southern La Mancha sector,
this unit intercalates salt layers and reaches up to 550 m in
thickness (Suarez 2007). The unit was subdivided in three
subunits by Suarez (2007): basal (K4a) and top (K4c)
subunits, which are formed by claystone layers and anhy-
drite layers; and central (K4b) subunit, which is mainly
composed of salt. The three subunits show cycles at the
metre-scale and the decametre-scale, which are clay-halite
cycles in the K4a subunit and clay-anhydrite cycles in the
other two subunits.

The K5 unit is characterized mainly by white, bedded
gypsum, although some claystone and carbonate beds can be
found interbedded in the sulfates of this unit. The thickness
of the unit, up to 50 m, is relatively homogeneous both in
outcrop and at the subsurface.
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In the SE Margin of the Iberian Massif (so-called Stable
Meseta) (Figs. 3.13, 3.14 and 3.15), the Keuper succession
is formed by the ‘Lower red mudstones and sandstones unit’
(Lrms) at the base, which is equivalent to the K1 unit, by the
Red Sandstone unit (Rs), equivalent to the K2 unit, and by
the other units of the Iberian basin, i.e. the K3, K4 and K5
units (Arche and Lopez-Gomez 2014). The basal Lrms unit
lies unconformably and onlaps on the Paleozoic basement.

Age attributions of the Keuper facies units in eastern
Iberia have been based almost exclusively on palynological
associations found in some units. The majority of the paly-
nological assemblages in the Prebetic-Subbetic, Iberian,
Catalan, and Ebro basins are characterized by Camer-
osporites secatus accompanied by Vallasporites ignacii,
Pseudoenzonalasporites summus, and the genus Paracir-
culina (Solé de Porta and Orti 1982; De Torres and San-
chez1990; Arche and Lopez-Gomez 2014). This assemblage
belongs to the “Camerosporites secatus phase” of Visscher
and Krystyn (1978), and specifically to the secatus-densus
palynological zone, which dates the middle-late Carnian
according to Besems (1981a, b). In domains located to the

~ Lower Buntsandstein

west and southwest of the Iberian basin, however, some
palynological assemblages of the upper Keuper units have
been dated as Norian, as in the NE Central System (Her-
nando 1977), and also in the Stable Meseta in SE Spain
(Besems 1981a, b). Thus, it is commonly assumed that in the
Prebetic-Subbetic and the Iberian basins, the lower and
middle Keuper units are Carnian in age, and the upper
Keuper units are Norian (Arche and Lopez-Gomez 2014).

All the evaporite units forming the Keuper successions in
eastern Iberia have a marine origin, which is supported by
the isotopic compositions of sulfur, oxygen and strontium
(8*Scors 8"0smow, *Sr/*°Sr) in sulfates (Utrilla et al.
1992; Orti et al. 2014; 2017), and on the bromine content in
chlorides (Orti et al. 1996). These units were accumulated as
platform evaporites in settings such as chloride ponds, sul-
fate salinas, sulfate lagoons, and sabkhas. At the scale of the
whole platform, these settings constituted either
claystone-rich evaporitic mudflats (K1 and K4 units) or
sulfate salterns bearing carbonate (K5 unit). The terms
‘evaporitic mudflat’ and °‘saltern’ are used sensu Warren
(2006).
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3.6.2.3 The Carnian Pluvial Episode

Arche A, Lopez-Gémez J, Martin-Chivelet ],
Barrenechea JF, De la Horra R and Escudero-Mozo MJ

The Triassic period was marked by the different geodynamic
processes related to the break-up of the Pangea supercontinent.
Among these processes, igneous activity was a key factor. It is
well-known that intense volcanic activity related to Siberian
traps during the Permian-Triassic transition marked one of the
most significant changes of the Phanerozoic, including global
climate and ecosystem changes that led to the notorious mass
extinction (Benton 2003; Erwin 1993; Galfetti et al. 2007,
Payne and Krump 2007; Sun et al. 2012; Hochuli and Frank
2006). However, other igneous episodes during the Triassic
such as the emplacement of the Wrangelia igneous province
could have also provoked drastic changes on Earth (Nakada
et al. 2014; Ruffell et al. 2016; Mueller et al. 2016, among
others). Emplacement of the Wrangelia igneous province took
place during the Julian-Tuvalian interval (early Carnian), and
may have been the trigger for abrupt carbon dioxide-induced
warming and associated increased rainfall. Notwithstanding, its
duration, global impacts and relatively rapid termination are not
fully understood and require further intercalibrated terrestrial
and marine data (Wignall 2015).

As a consequence of this episode, regional basins experi-
enced dramatic changes reflected in their sedimentary records.
Carbonate platforms developing in the tropics were abruptly
interrupted, while river systems occupied vast surfaces on
land and left widespread sand-rich levels across coastal
regions (Berra 2012). This humid episode was initially
described by Simms and Ruffell (1989, 1990) as the Carnian
Pluvial Episode (CPE), and later coined as Carnian Humid
Episode (CHE) by Ruffell et al. (2016). Synchronicity
between the Wrangelia igneous province and the CPE was
noted by Xu et al. (2014). In addition, Dal Corso et al. (2012)
specifically related the carbon isotope excursion of Carnian
age to the Wrangellia event. The CPE is therefore considered
today a global event and has been described in many different
basins (Mutti and Weissert 1995; Rigo et al. 2017; Preto et al.
2010; Kozur and Bachmann 2010; Roghi et al. 2010; Bialik
et al. 2013; Arche and Lopez-Gomez 2014).

In the Iberian microplate, the CPE has been described by
Arche and Lopez-Gomez (2014). The sedimentary record of
this humid episode broadly corresponds to the Manuel Fm n
described by Orti (1974) in E and SE Spain. This is one of
the five formations comprising the so-called Valencia
Group, equivalent to the Keuper facies, and is also described
as part of this facies in the chapters of this book dealing with
the Iberian and Betic basins (see Chap. 3.6.2.2.). Sedimen-
tary studies of the Manuel Fm by Fernandez (1977), Fer-
nandez and Dabrio (1978), De Torres and Sanchez (1990),
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Fernandez et al. (2005) and Arche and Lopez-Gomez
(2014), among others, related this unit to the development of
mostly braided and meandering fluvial systems, and with
some aeolian reworking in its uppermost part (Arche and
Loépez-Gomez 2014). River systems point east, towards the
Tethys Sea (Fig. 3.37), and in river head areas, they directly
cut into the Paleozoic basement (Fig. 3.38).

This humid episode is probably not recorded as a single
pulse. In both marine and continental environments, some
authors (Breda et al. 2009; Stefani et al. 2010;
Kolar-Jurkovsek and Jurkovsec 2010; Roghi et al. 2010;
Arche and Lopez-Gomez 2014) have described the episode as
indicated by three or four separate humid fluctuations.
Although details are still not fully understood, there is a clear
relationship between this event and the tectonic reorganization
of the Tethys domain, including closure of the Paleotethys
(Ziegler 1988a, b), a sea-level fall (Haq and Al-Qahtani 2005),
and the general development of rift branches related to the
break-up of Pangea (Ziegler and Stampfli 2001).

In a recent work, Lopez-Gomez et al. (2017) establish
correlations in the continental-marine sedimentary record for
this Late Triassic CPE in E Iberia and Majorca and Minorca
Islands. This study was focused on facies analysis and
identified allogenic controls on both continental and marine
records. In this transition, the east of Iberia shows a terres-
trial (mainly fluvial) sedimentary record, while its lateral
equivalent record in Majorca is represented by distal fluvial
environments with volcanic intervals. In a more distal area,
in Minorca, this event is represented by an exposed and
karstified marine carbonate surface (see Fig. 3.28). Tectonic
activity developed NNE-SSW and NW-SE conjugate fault
lineaments in eastern Iberia. Sedimentation in this area was
controlled by this tectonic episode allowing volcanic activity
at the fault lineaments junction, in the Majorca area. As a
result, a paleogeography of elevated and subsiding blocks,
which controlled both continental and marine sedimentation,
was shaped (Fig. 3.39).

3.6.3 Permian and Triassic Magmatism
in the Iberian Basin

Lago M, Galé C and Ubide T

The intense crustal stretching that accompanied the break-up
of Pangea at the end of the Paleozoic, favoured magma
ascent of magmas through the crust. During the Permian,
rising magmas intruded and infilled half-graben basins
developed in what would later constitute the Iberian Chain
(Lago et al. 2004a, b, 2005).

The Permian magmatism in the Iberian basin is really
well recorded with more than 500 outcrops of magmatic
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Fig. 3.37 Elevated massifs and
sedimentary basins around Iberia
during the deposition of the
Manuel Fm. and coeval units in
Portugal. Black arrows indicate
average paleocurrent
measurements. White arrows
represent inferred feeder systems
in the elevated Iberian Massif.
Modified from Arche and
Lopez-Gomez (2014) Lusitanian /
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rocks along the entire belt. This magmatism comprises
hypovolcanic intrusions, lava flows and volcanoclastic
deposits. Rock compositions range from gabbro to rhyolite,
and are most commonly andesite. The geochemical affinity is
subalkaline (calc-alkaline) (Lago et al. 2004a, b, 2005;
Majarena et al. 2017). Pluriepisodic events have been recog-
nized but the age of emplacement of those episodes has not
been established yet (Lago et al. 2004a, b, 2005). Available
radiometric ages range between 287 + 12 and 283 + 2.5 Ma
(Cisuralian) and have been obtained in representative outcrops
with different radiometric methods. Namely, at Atienza
(whole-rock K-Ar, Hernando et al. 1980), Loscos (K-Ar in
biotite, Lago et al. 1991; Ar/Ar in biotite, Perini and Timer-
mann 2008), Fombuena (K-Ar in biotite, Conte et al. 1987)
and Sierra de Pardos (U-Pb zircon geochronology, Majarena
et al. 2017). The influence of assimilation processes and
lithospheric melts in the origin of these magmas is evidenced
by their geochemical composition (cf. Lago et al. 2004a, b).
The common presence of xenoliths of metapelites and gran-
itoids, and inherited minerals of crustal origin (Lago et al.
2004a, b, 2005; Majarena et al. 2015, 2017) supports the
hypothesis of crustal assimilation.

—» Paleocurrent

Prebetic-Subbetic

Main feeder
Basin e system
Iberian ~—— Keuper Keuper
Massif / facies facies
emerged with without
land Manuel Fm. Manuel Fm

or equivalent units

Lago et al. (2012) reported, for the first time, the occur-
rence of volcanic rocks in the Middle-Late Permian sequences
(Guadalupian-Lopingian) of the Iberian Ranges. These com-
prise a hypovolcanic intrusion of basic to intermediate alka-
line magma in the Alcotas Fm. The enriched mantle
geochemical signature of these rocks is not shared by other
Middle-Upper Permian igneous rocks in the western Tethys
and is also different from the crustal signature of the Lower
Permian magmatism in the Iberian Ranges (Lago et al. 2012).

In summary, a widespread subalkaline magmatism of
lithospheric origin was emplaced during the Cisuralian (Lower
Permian) in the Iberian Ranges, followed by a very scarce
alkaline magmatism of enriched mantle origin emplaced during
the Guadalupian-Lopingian (Middle-Late Permian).

Alkaline magmatic rocks were emplaced in the SE part of
the Iberian Ranges during the Late Triassic (Lago et al.
1996, 2000). This magmatism comprises more than 100
outcrops of hypovolcanic bodies exposed following a NW—
SE regional direction, from Villel (Teruel) to Altura (Cas-
tellon). Some of these bodies belong to individual sills,
separated into segments due to Alpine tectonics. Most sills
intrude Keuper facies rocks (K1 to K4 members) although
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Fig. 3.38 The Manuel Fm (or K2) lying unconformably on the
Paleozoic basement in central-eastern Spain, near Albaladejo, in the
so-called Stable Meseta. This area was near the main feeder system of

some examples were emplaced into Buntsandstein facies
deposits (i.e. Pina de Montalgrao and Albentosa outcrops).
These outcropsare composed of dolerites which usually
show fluidal structures in the top of the sills and also low
grade contact metamorphism of the host rock (i.e. Lago et al.
1996, 2000). The composition of these alkaline dolerites is
basaltic and they have a geochemical signature similar to an
enriched lithospheric mantle (Lago et al. 2000). Crustal
xenoliths of granitoids, metapelites and granulites are com-
mon in these sills, suggesting that magmas ascended through
a fracture system related to an extensional tectonic regime
that affected different levels of the lithosphere (Lago et al.
2000). The alignment of magmatic outcrops is related to the
reactivation of Late Variscan deep faults that favoured the
upwelling and partial melting of the underlying mantle.
The magmatic activity in the SE sector of the Iberian
Ranges was reactivated during the Jurassic (Gomez 1979;
Martinez et al. 1998 and references therein). It consists of
multiepisodic volcanism emplaced into the calcareous units
of the Lower and Middle Jurassic (Martinez et al. 1998).
Like the Triassic magmatism, the Jurassic episodes have
basaltic composition and alkaline affinity. However, the

Manuel Fm

these continental deposits related to the Carnian Humid Episode (CPE).
Modified from Arche and Lopez-Gomez (2014)

geochemical signature of the Jurassic magmas indicates an
asthenopheric mantle source. The composition of the mag-
matism in the Iberian Ranges was closely related to the onset
and development of the Neoethys rifting Martinez et al.
1998) as summarized in Fig. 3.40.

3.6.4 A Comparison of the Iberian and Ebro
Basins During the Permian and Triassic

Arche A, Lépez-Gomez J, Vargas H and Gaspar-
Escribano J

The Permian and Triassic basins of the Iberian microplate
were developed on a folded and thrusted basement intruded
by granitic bodies. This was the result of a continent-
continent collision between Laurussia and Gondwana at the
end of the Carboniferous that created the Variscan Orogen
(Arthaud and Matte 1977; Dewey and Burke 1973; Matte
1988), a region characterized by overthickened lithosphere,
considerable shortening, deep crustal roots and high topo-
graphic relief.
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1: Shallow marine exposed or depositional
areas; 2: Continental (mostly fluvial); 3: Saline
Lakes and floodplains; 4: Land masses.

Am- Armorica;C- Corsica;EM-EasternMeseta;

FC- Flemish Cap; G- Grand Banks;|B- Iberia;
IR- Ireland; Lu- Lusitania; Ma- Majorca;

Mi- Minorca; MM- Mesomediterranean High;

P- Porcupine Bank; SC- Scotland; W- Wales.

3 - Volcanic activity

Fig. 3.39 Julian paleogeographic reconstruction in the western Tethys
domain showing the deposition area of the Manuel Fm (K-2), which
represents the Carnian Pluvial Episode (CPE). Modified from
Lopez-Goémez et al. (2017)

High relief and thick crust are stable while compression
lasts at the edges of the orogen, but folding and thrusting
ceased in most of southern Europe by Late Carboniferous
times (Malavielle et al. 1990; Seranne 1992). Following its
cessation, gravitational instability starts after 15-20 my
(England 1982; Houseman et al. 1981) and the lithospheric
roots of the collision chain collapse. This process led to a
period of extensional tectonics and high heat flux during
which a series of linear rift basins (half-graben and graben)
developed in Central and NE Iberia (Arche and Lopez-Go-
mez 1992, 1996, 1999b, 2005; Doblas et al. 1994; Van Wees
et al. 1998; Vargas et al. 2009; Lopez-Gomez et al. 2012;
Galan-Abellan et al. 2013).

Periods of Ebro and Iberian Basins
Evolution and Their Comparison

The sedimentary record of Permian and Triassic age of the
Iberian and Ebro basins is subdivided by angular uncon-
formities that indicate energetic syn-sedimentary tectonics.
Thick wedges of terrestrial sediments were accumulated in
basins bounded by normal faults during the Permian and the

3.6.4.1

J. Lopez-Gémez et al.

Early-Middle Triassic. Calc-alkaline volcanic rocks associ-
ated with the Early Permian sediments are abundant in the
Iberian basin, the Ateca-Montalban-Maestrat high and the
SW Ebro basin (Sopefia et al. 1988; Arche and Lopez-Go-
mez 1999a, b; Lago et al. 2004a, b).

The first phase of rifting, or initial tectonically-driven
rifting, had a first episode in the Early Permian when a series
of small, isolated half-graben basins were created in both
areas, most of them underfilled by alluvial fan sediments,
that eventually evolved into permanent lakes such as in the
Molina de Aragén area or the Caspe-1 well (Fig. 3.41)
(Ramos 1979; Arche et al. 2007). This episode is coeval with
a volcanic and thermal event (Lago et al. 2004a, b) that is
recorded all over the Iberian microplate.

The second episode of the initial-tectonic rifting phase, of
Late Middle Permian-Late Permian age, created more
extensive half-graben linked axially and a basin boundary
fault system along the SW margin of the Iberian basin.
Upper Permian sediments are present in the central Ebro
basin (Jurado 1989, 1990) but there are insufficient subsur-
face data to delineate the rift basins in this domain.

At the beginning of this episode, the Iberian basin was
filled by transverse alluvial fans fed directly from the
upifting footwall block. As rifting progressed, new accom-
modation space was created, which led to a reorganization of
the basin geometry, a migration of the depocentre to the NE,
the creation of antithetic normal faults in the hanging wall
and the creation of full-graben. Drainage shifted to an
axially-fed fluvial network sourced in the NW corner of the
basin (Arche and Lopez-Gomez 1999b).

The third episode of extension during the initial or tec-
tonic rifting phase, of Early-Middle Triassic age, had a more
complex evolution and represented the transition to the
mature rifting stage in the Iberian microplate. Extension
progressed to the NE, but accommodation rate slowed down,
leading to overfilling of the fluvial basins during the Early
Triassic. Complex amalgamated braided fluvial deposits
filled the basins and partially overlapped the Paleozoic
highs. Renewed extension during the Early Middle Triassic
led to substantial differential subsidence in the Iberian and
Ebro basins, asymmetric distribution of active fluvial chan-
nels and large migrations of the depocentres (Arche and
Loépez-Gomez 1999b).

The basin boundary faults for the Iberian and Ebro basins
have been partially reconstructed using balanced sections
affected by alpine deformation and isopach maps for each
period of extension. They consist of arcuate segments, lat-
erally linked and offset by transversal fault systems trending
at high angles. They are interpreted (Arche and Lopez-Go-
mez 1996) as simple shear, listric fault systems (Fig. 3.41)
becoming horizontal at a depth of 12—-15 km, close to the
extensional models of Wernicke (1981) and Wernicke and
Burchfield (1982) for the Basin and Range province.
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Fig. 3.40 Composition of the AGE MAGMATISM TECTONIC REGIME
Early Permian-Middle Jurassic Nature Xenoliths
magmatism in the Iberian Chain Pliensbachian- Alkaline/ Extensional
Bajocian Astenospheric Rift third stage
(Lower-Middle mantle source
Jurassic)
Upper Triassic Alkaline/ Crustal: Extensional
Sublithospheric granitoids Rift second stage
mantle source granulites,
metapelites
Guadalupian- Transitional to scarce Extensional
Lopingian alkaline/ Rift first stage
Astenospheric
mantle source
Cisuralian Calc-alkaline/ Crustal:
(287-283 Ma) Lithospheric granitoids,
melts and metapelites
assimilation
processes

Folding in the hanging wall block of these extensional
structures (roll-over anticline of Gibbs 1984) led to the
formation of antithetic and synthetic fault fans, isolating a
non-deformed basement high in between extending basins.
This structural evolution can explain the formation of the
Ateca-Montalban-Maestrat high and the linked evolution of
the Iberian and Ebro basins during the Triassic.

In Anisian times, the SW basin boundary fault system
(Serrania de Cuenca fault system) became inactive, sedi-
mentation ceased along large tracts of the Iberian basin and
subsidence and sedimentation shifted to its NE margin at
the newly created Ebro basin (Arche and Lopez-Gémez
1996).

The mature rifting phase started in Central and NE Iberia
during the middle-late Anisian, indicating that the litho-
sphere was stable after the collapse of the Variscan Belt, and
cooling and contraction started to be the dominant processes.

The onlapping of the Tethys Sea on the eastern part of the
Iberian basin started when cooling brought this part of the
Variscan basement below sea level and a transgression pulse
prograding from east to west occupied the newly created
accommodation space. Four successive episodes or
transgressive-regressive cycles developed during the mature
rift period, covering wider areas than the sediments of the
preceding syn-rift period: two of Anisian-Ladinian age,
composed of shallow-water carbonates and evaporites
(Muschelkalk Facies), and another two of Carnian-Norian
age, composed of marine evaporites and mudstones (Keuper
Facies), just before the beginning of the post-rift event.

Each cycle onlapped on wider areas of the eastern Iberian
microplate than the preceding one as a consequence of the
progressive cooling of the lithosphere that created larger
subsiding areas with time (Arche and Lopez-Gémez 1992).
The Ateca-Montalban-Maestrat high was drowned and
flooded by marine sediments during the early Ladinian. Most

of the similar Paleozoic highs also disappeared in this per-
iod, and the Iberian, Ebro and Catalan basins were inter-
connected in a single one (Escudero-Mozo et al. 2015).

3.6.4.2 The Nature of Subsidence During

the Permian and Triassic in the Central

and NE Iberian Microplate
Quantitative subsidence studies by Gaspar-Escribano et al.
(2001) for the Ebro basin, Van Wees et al. (1998) and
Vargas et al. (2009) for the Iberian and Ebro basins using
back-stripping methods have yielded details on the creation
and evolution of these basins beyond the classic paleogeo-
graphic studies. Forward modeling using both one-layer and
two-layer configurations of the lithosphere (Vargas et al.
2009) has demonstrated that the latter always provides the
best fit between predicted and observed data (Fig. 3.42). As
a consequence, the simple shear, arcuate listric fault model
of extension proposed by Arche and Lopez-Gomez (1992,
1996) is favored against others proposing deep seated, rec-
tilinear basin boundary faults.

Another fact revealed by this kind of analyses is that the
rifting episodes can be subdivided into a rapid, initial rifting
pulse followed by a period of slow subsidence associated to
stratigraphic gaps and angular unconformities, lasting 5—
10 Ma (Fig. 3.43) (Vargas et al. 2009).

The fluvial architecture of the Permian-Triassic alluvial
deposits of the Iberian and Ebro Basins is controlled by the
interaction of subsidence rates and changes in regional base
levels (Lopez-Gomez et al. 2010), specially lateral tilting of
floodplain surfaces. Extension rates and its temporal and
spatial variations in the upper part of the lithospheric plate (&
and P stretching factors) exerted a first-order control on the
fluvial styles: amalgamated with low rates and complex with
high rates. The changes in extension rates in the lower
lithospheric layer show no relation to the fluvial styles.
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Fig. 3.41 Comparison of
subsidence values in the Iberian
and Ebro basins during the
Permian. Numbers represent
sections: 1-Caiete (Ca), 2—
Chelva (Che), 3—Chovar-Eslida
(Cho-Es), 4—Teruel (Ter), 5—
Alhama (Alh), 6—Caspe 1, 7—
Bujaraloz 1 (Buj-1), 8—
Monegrillo 1 (Moneg-1), 9—
Ebro 2, 10—Monzo6n 1 (Monz-1).
FP—*“Fixed Point”. Geographical
locations in Figs. 3.29 and 3.33.
Modified from Van Wees et al.
(1998)
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The sedimentary record of the Permian-Triassic basins of
Central and NE Iberia show an evolution from the stage of
collapse of a thickened lithosphere after the Hercynian
orogeny to another of crustal extension of a thinned litho-
sphere and finally to one of cooling and contraction that
brought part of the Hercynian basement below sea-level by
Mid-Triassic times. This process has been interpreted by
Menard and Molnar (1988) in the French Alps and the
Massif Central as an evolution from a thickened Tibet-type
hercynian chain into a thinned Basin-and-Range province in

3.6.5 Mineralogical and Geochemical Indicators
of the Biotic Crisis in the Iberian Basin
During the Break-up of Pangea

Barrenechea JF, Galian-Abellin B, Borruel-Abadia V,
Luque J, Alonso-Azcarate J, De la Horra R and
Loépez-Gomez J

As mentioned before, the development of the Iberian basin
during Permian-Triassic times was related to successive

about 60 Ma; our data in Iberia agree with this rifting episodes (Arche and Lopez-Gomez 1996) in the
interpretation. context of the break-up of Pangea. During this period of
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Fig. 3.42 Comparison between two-layer and one-layer stretching
models in two selected sections of the Iberian and Ebro basins. It can be
deduced how the two-layer modelling fits much better for the sections
of the Iberian basin, whilst differences between both modelling

methods are not so evident for the Ebro basin selected wells.
Geographical locations in Figs. 3.29 and 3.33. Modified from Vargas
et al. (2009)
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Fig. 3.43 Forward modelling curves and 3 and & values for selected sections of the Iberian Ranges. Geographical locations in Figs. 3.29 and 3.33.
Modified from Vargas et al. (2009)
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widespread extension there were different biotic crisis events
on a global scale, including the end Guadalupian extinction
(Zhou et al. 2002; Jost et al. 2014) and the largely known
End Permian Mass Extinction (EPME), which killed off
most forms of marine and terrestrial life (Benton 2003;
Erwin 2006). The causes of the EPME are still debated, but
there is broad acceptance of its relation with Siberian Traps
volcanism, that would have increased CO, and CH, emis-
sions leading to enhanced global warming and acidity
(Payne and Kump 2007; Algeo et al. 2011; Romano et al.
2013). The damaged environmental conditions were inter-
mittently extended until the Smithian-Spathian (end of Early
Triassic) life crisis (Galfetti et al. 2007; Sun et al. 2015), thus
resulting in a delayed recovery of life.

The Permian-Triassic transition is not detectable in the
sedimentary record of the Iberian basin (or in most coeval
continental successions in SW Europe). However, the effects
of the biotic crisis on these emerged areas of the western
Tethys can be envisaged from the detailed multidisciplinary
study of several sections across these units. The character-
istics of the Middle-Late Permian (Alcotas Fm) and
Early-Middle Triassic (Cafiizar and Eslida Fms) sedimentary
rocks have been described in previous sections (see
Fig. 3.32). The most remarkable feature is the lack of any
record of organic activity (bioturbation, plant and fossil
remnants, presence of paleosols, etc.) in the basal part of the
Cafiizar Fm (C1-C4 in Fig. 3.44). The distributions and
relative thicknesses of these units were controlled by com-
plex interaction between NE-SW boundary faults and a
subordinate system of NNE-SSW faults (Arche and
Lopez-Gomez 1996; Van Wees et al. 1998).

Recently, the mineralogical and geochemical characteri-
zation of these units has revealed the presence of Sr-rich
aluminum phosphate-sulfate minerals (APS), a rather scarce
constituent of sedimentary rocks (Dill 2001). These APS
were first reported in the Iberian basin by Benito et al.
(2005). Several studies have shown that these
phosphate-sulfate minerals are stable at low pH and rela-
tively oxidizing conditions (Vieillard et al. 1979; Stoffregen
and Alpers 1987; Gaboreau et al. 2005). Therefore, if the
timing of APS formation is close to the sedimentation pro-
cess, they can be used as paleoenvironmental markers of
such acidic and oxidizing conditions.

APS minerals occur as tiny (1-5 um) disseminated,
euhedral, pseudocubic crystals or as polycrystalline
aggregates (up to 300 pm) that replace metapelite frag-
ments (Galan-Abellan et al. 2013) in mudstone, siltstone
and sandstones. Their idiomorphic nature and delicate
stepped faces allow discarding a detrital origin. Textural
relationships show that APS minerals predate the precipi-
tation of diagenetic quartz and illite cements, and that the
replacement of metamorphic rock fragments and detrital
micas occurred before the main compaction of the
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sedimentary pile. Accordingly, Galdn-Abellan et al. (2013)
concluded that the formation of APS minerals took place
during early diagenetic stages, shortly after sedimentation
and most probably under the influence of acid meteoric
waters.

Based on element mapping of randomly selected areas in
thin sections using an electron microprobe, Borruel-Abadia
et al. (2016) proposed a method to quantify the relative
abundance of these APS minerals. Their results are plotted in
Fig. 3.44 and show that in all the sections examined there is
a notable increase in APS minerals contents at the base
(subunits C1-C4) of the Caiizar Formation (Early-Middle
Triassic), relative to contents in underlying (Alcotas Fm.)
and overlying (C5-C6 subunits and Eslida Fm.) rocks. This
homogeneous distribution pattern of APS abundance across
the basin suggests stratigraphic control of their formation. It
should also be highlighted that APS occurred in all the
samples analyzed, although their proportions in Permian and
middle Triassic rocks are low. According to Borruel-Abadia
et al. (2016) relative APS proportions reflect the duration
and intensity of the acidification process, because once they
precipitate these mineral phases are highly insoluble. Thus,
the variation curves in Fig. 3.44 support the hypothesis of
enhanced acidic environmental conditions during sedimen-
tation of the basal part of the Cafiizar Fm, where low-pH
ground waters would promote the dissolution of detrital
phosphates and precipitation of APS minerals. The lack of
any record of organic activity in these units strongly sug-
gests that APS can act as indicators of the damaged envi-
ronmental conditions that produced the delayed recovery of
life after the EPME event. In the underlying and overlying
units, these acidic conditions would have been much less
marked.

The ultimate causes of increased acidification remain
unclear. However, the most likely explanation so far attri-
butes this to the environmental effects of volcanic aerosols in
a context of active rifting and extensional tectonic activity.
According to Lopez-Gomez et al. (2012), the transition from
subunits C4 to C5 (Cafiizar Fm) corresponds to the
Spathian-Anisian transition and could be related to the
coeval Hardegsen unconformity of central-western Europe.
This change in the Iberian Range is marked by lower APS
contents and by the first signs of biotic recovery, including
bioturbation, paleosol development and plant remains
(Béthoux et al. 2009; Gand et al. 2010; Borruel-Abadia et al.
2014). It also reflects climate change from an arid to a
sub-humid period (Borruel-Abadia et al. 2015), and even a
change in provenance as indicated by U-Pb detrital zircon
geochronology (Sanchez-Martinez et al. 2012). Hence, the
tectonic reactivation associated with this unconformity
seems to have controlled both the development of highs and
corridors, and the environmental and climate evolution of
the basin.
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indicators  (bioturbation, paleosols and plant remains) and

3.7 The Betic Basin

Pérez-Lopez A, Martin-Algarra A, Pérez-Valera F,
Pérez-Valera JA and Viseras C

3.7.1 Triassic Tectonic Context of the Betic

External Zones

A wide variety of Triassic facies exists in the Betic Cordil-
lera (Fig. 3.45), with epicontinental Germanic and marine
Alpine facies along with continental facies related to both of
them (Blumenthal 1927; Schmidt 1935; Fallot 1948; Simon
and Kozur 1977; Busnardo 1975; Roep 1972; Fernandez
1977; Delgado et al. 1981, 2004; Martin-Algarra 1987;
Pérez-Lopez 2000; Pérez-Lopez and Pérez-Valera 2007).
This facies variety is recorded by different lithofacies and

paleoenvironmental reconstruction of these formations. Geographical
locations in Figs. 3.29 and 3.33. Modified from Borruel-Abadia et al.
(2016)

thickness of the successions, which were controlled by
variable subsidence rates in the different internal vs. external
tectonostratigraphic terranes of the Betic orogen and by their
proximal to distal relations with respect to the open marine
areas of the Neotethys.

In Triassic time, the different tectonostratigraphic terranes
occupied distinct paleogeographic locations within subsiding
graben closer to, or farther from rising faulted continental
areas around them. The main continental areas conditioning
the paleogeography of the Triassic Betic basin were the
Iberian Variscan Massif and the Mesomediterranean
Microcontinent (Pérez-Lopez and Pérez-Valera 2007), both
being isolated by faulting from Pangea, which finally dis-
integrated in independent plates in Jurassic-Cretaceous time
(Fig. 3.46).

The sediments deposited in the Triassic Betic basins
mainly formed on an epicontinental shallow to moderately
deep sea affected by alternating episodes of subsidence
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Fig. 3.45 Geological sketch
map of the different tectonic units
in the Betic Cordillera (S Spain).
Modified from Pérez-Lopez and
Pérez-Valera (2007)
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during the rifting phase. The extensional regime in SE Iberia
existed since at least the Early Triassic. Extension pro-
gressed from E to W over time, in connection to younger
antithetic normal faults that were created along the
South-Iberian margin of the Iberian Massif. During the
Permian-Late Triassic (early Norian), sedimentation took
place in synrift terrestrial basins and, consequently, the Betic
epicontinental platform was compartmentalised by fault
systems which conditioned strong subsidence changes in
different graben. Finally, from the Jurassic onwards, oceanic
crust appeared locally (Vera 2001), thus defining the two
continental margins that limited the Betic basin. These
margins evolved differently to give rise to the South-Iberian
paleomargin (now constituting part of the present-day Betic
External Domain) and the Mesomediterranean paleomargin
(now constituting part of the present-day Internal Domain).

INTERNAL ZONES |l Frontal Units

Nevadofilabride Complex
I Alpujarride Complex
(M Malaguide Complex

ry
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The Triassic sediments predating the formation of both
margins were quite different. Those deposited on the South
Iberian crust were related to the other Permian-Triassic
basins of Iberia, and show epicontinental facies with many
common stratigraphic and geodynamic evolutionary
features.

The Triassic sediments related to the South-Iberian
paleomargin, called “Southiberian Triassic” (Pérez-Lopez
and Pérez-Valera 2007), consist of two main facies belts,
proximal and distal. The proximal facies belt is exclusively
made of continental redbeds, defined as Hesperian Triassic
by Sopefia et al. (1983) for the whole of Iberia. The distal
facies belt consists of the epicontinental or Germanic facies
that are now present in the External Zones (Prebetic and
Subbetic), with the threefold classic division in: Buntsand-
stein (rarely exposed due to tectonics, Pérez-Valera et al.
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Fig. 3.46 Three-steps
development of the Betic basin.
A: Initial rifting and
sedimentation stage of the
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2000), representing the initial or tectonic rifting phase, and
Muschelkalk and Keuper that constitute the mature rifting
phase.

3.7.2 From Initial to Mature Rifting Phases

The Hesperian Triassic comprises Buntsandstein and Keuper
facies but lack completely the carbonate Muschelkalk facies
(Fernandez et al. 1994). It crops out widely north of the
central sector of the Betic Cordillera along the southeastern
edge of the Variscan Iberian Massif, forming its unfolded
sedimentary cover, the so-called “Tabular Cover”, therefore
properly outside of the Betic orogen. It is mentioned in
recent publications by the name of TIBEM (“Triassic of the

_—_‘;,—:-:;.T\‘____\;

Mesomediterranean plate
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30 km
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Iberian Meseta”, Viseras et al. 2011; Henares et al. 2014,
2016). Fernandez et al. (1994), Pérez-Lopez and Pér-
ez-Valera (2007), Arche and Lopez-Gomez (2014) made a
correlation between these redbeds and the Keuper facies
units in the Prebetic Domain of the External Zones
(Fig. 3.47). An important lateral increase in thickness has
been well reported from the Tabular Cover to the Prebetic,
where deep wells have cores of more than 1000 m of almost
undisturbed Keuper facies (Carcelén and El Salobral wells,
Orti et al. 1996). Towards the S, the vast outcrops of Sub-
betic Triassic rocks clearly reveal enormous original strati-
graphic thickness, especially in the Keuper facies.
Pérez-Lopez (1991, 2000), Pérez-Valera (2005) and
Pérez-Valera and Pérez-Lopez (2008) synthesized the
Triassic  stratigraphy of the Prebetic and Subbetic
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tectonostratigraphic units by distinguishing (Fig. 3.48): one
package of Muschelkalk carbonates, which is defined by two
formations (Cehegin Fm and Siles Fm, Fig. 3.49); five
detrital and evaporitic formations constituting the Jaen
Keuper Group; and finally, one upper carbonate formation of
Norian age (Zamoranos Fm). This general stratigraphic
frame can be maintained with only few variations up to the
tectonic units lying close to the front of the Internal Zones.
Nonetheless, there exist important lateral changes in sedi-
ment thickness, and a general trend of facies change towards
more open marine environments southwards and eastwards
in the Triassic Betic basin, showing progressively more
pronounced Alpine influences.

The Muschelkalk carbonates, which are absent in the
Hesperian Triassic, are already present in the outermost
Prebetic tectonic imbricate units, showing a gradual increase
in thickness towards the interior of the basin. They also
show slightly more proximal features in the Prebetic (Siles
Fm) than in the External and Medium Subbetic (Cehegin
Fm), where they are much thicker although display the same
sequential evolution (Fig. 3.49).

Towards the innermost part of the Subbetic domains a
marked reduction of stratigraphic thickness is recorded in
moderately disturbed Keuper successions of some tectonic
units of the southernmost part of the western Medium
Subbetic (Boyar) or the Penibetic, where the whole Keuper
units’ stratigraphy is preserved in ca. 100 m of succession.
In some units close to the Internal-External zones’ boundary
(Tariquides of Los Pastores-Gibraltar: Durand-Delga et al.

E Claystone/Marl
Siltstone and claystone

Sandstone

Conglomerate

2007), the Keuper facies are progressively replaced by
dolomitic Alpine-like facies of Hauptdolomit type during the
latest Carnian to Norian, including some alternance of
marly-limy beds of Rhaetian age (Martin-Algarra et al.
1993). Muschelkalk facies are usually absent in inner Sub-
betic units due to tectonic causes but, when present, like in
the westernmost Internal Subbetic (or Penibetic: Meleguetin
Fm, Martin-Algarra 1987), their thickness is the greatest
(sometimes over 200 m) and some of its facies display
resemblances with the so-called Alpine Muschelkalk of the
Alps and, in particular, with the Reifling Fm (H.J. Gawlick,
pers. com. to AMA in 2004). Clearly, facies variability is
due to differential subsidence in each of the sub-basins,
while occupying different positions with respect to the open
sea.
3.7.2.1 Storm Deposits in a Complex
Epicontinental Platform

The Muschelkalk carbonates of the Betic basin were depos-
ited during the late Anisian to the Ladinian in an epiconti-
nental platform showing a transgressive-regressive
megasequence evolution (Pérez-Valera and Pérez-Lopez
2008). Most sediments formed in coastal and shallow-marine
environments that were scattered across a wide platform with
a complex paleogeography, with lagoons and restricted
inland seas rapidly evolving in time due to changing wave
energies related to currents and storm effects (Pérez-Lopez
et al. 2011). The most widespread sediment was originally
lime mud, although bioclastic deposits are also common.
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Microbial carbonates characterize the lower stratigraphic
units and change upwards to bioclastic beds (occasionally
bearing algae) as the most significant lithofacies of the upper
units. According to available facies models (Pérez-Valera
and Pérez-Lopez 2008) there is no evidence of a seaward reef
or an oolitic-bioclastic sandy barrier, and muddy sediments
grade from deep-water to intertidal environments. It is evi-
dent that there were emerged areas or supratidal zones within
this complex epicontinental platform. This context defines
the variability of sedimentary environments like a mosaic of
extensive lagoons and tidal flats.

In addition, the Triassic Betic basin was located at pale-
olatitudes where hurricanes were certainly common (Pér-
ez-Lopez and Pérez-Valera 2012). Platform evolution is now
reflected in storm deposits, which are frequent and the most
significant high-energy deposits in the epicontinental car-
bonate platform. Nonetheless, storm deposits are not present
in all sections due to the complex paleogeography of the
basin and to tectonic disturbances of the original succession.

The lithofacies, thickness and type of tempestites present
in different sections help to understand the sea level evolution
and subsidence changes during the transgressive-regressive
megasequence evolution mentioned above. These features are
more variable in the lower part of the carbonate sections than
in the upper one. Besides, there was a rifting phase pulse
during the deposition of these lower carbonates, which
accounted accordingly for a bypass-zone tempestite model:
pot and gutter casts related to storms developed during the
transgressive stage, when siliciclastic coastal flats were floo-
ded and transformed in wide carbonate ramps with a
well-defined profile at the edge of the epicontinental basin
(Fig. 3.49). In the subsequent highstand stage, the typical
graded tempestite beds with laminations were deposited in
shoreface zones. In this latter stage, stratigraphic successions
display shallowing-upward sequences in which storm deposits
are scarce towards the top. The presence of protected envi-
ronments conditioned the sedimentation of the winnowed
storm deposits that define the winnowed tempestite model
(Pérez-Lopez and Pérez-Valera 2012). Frequently these
restricted lagoons or inland seas were interconnected to the
open ocean, since cephalopods appear in some successions in
upper stratigraphic positions.

The sediments of the highstand phase were deposited
when the platform started to compartmentalize into lagoons,
perhaps forming a “mosaic” of lagoons or inland seas. This
shallow and complex paleogeography was related to differ-
ential subsidence, which lead to a shallow depth of the
platform over a long time span. Subsidence permitted sta-
bilization of shallow environments in time but not space.
Finally, a fall in sea level conditioned the deposition of
Keuper coastal facies across the entire region.
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3.7.3 Eustatic and Tectonic Control During
the End of the Mature Rifting Phase
of Keuper Facies Sedimentation

The lower Keuper unit (K1 unit) shows thicknesses in the
order of hundreds of meters and is made entirely of
interbedded facies deposited in a coastal-plain depositional
system where a metastable equilibrium existed between sea
level change, sediment supply and subsidence related to
tectonics. This unit consists of a multi-coloured clayey
succession with thin intercalations of carbonates, gypsum
and fine-grained sandstones (Figs. 3.48 and 3.50). Locally,
lignite beds appear higher in this unit; dark clay horizons
bearing Carnian pollen are sometimes present and also rare
thin levels of oolitic limestone and sandy/bioclastic lime-
stone with Carnian bivalves (e.g. Martin-Algarra et al. 1993,
1995). The thickest packages of gypsum, which occur in the
lower Keuper unit, have intercalations of layered carbonates

ok
rd
iy, B

with evaporitic pseudomorphs. Locally, extremely thin (10—
20 cm) sand layers have horizontal or ripple lamination. In
some places, thicker sand packages (from 1 to 5 m) show
erosive bases, cross-stratification and horizontal bedding or
ripples towards the top of the sequences. Finally, associated
with the sediments of this unit, halite deposits also exist that,
despite not crop out, can be inferred from the many saline
springs and gullies frequently draining these deposits, which
make evident that the seawater was never far from the Kl
unit depositional environment.

This variability in the lower Keuper sediments does not
display a clear trend of facies evolution, preventing sequence
to be applied. They can be very thick monotonous alterna-
tions of claystone, gypsum, sandstone, carbonate and mixed
facies beds, but no regular cyclicity can be ascertained.
Subsidence was significant but sea level was more or less
locally constant, which produced frequent spatial variations
of sedimentary environments. These deposits were

Fig. 3.50 K1 unit outcrop characterized by alternations of beds of different nature, with variegated colour (picture taken at the southern Jaen

province)
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expansive because they reached the western edge of the
basin, where they were deposited above the first continental
sediments over the Variscan basement (Stable Meseta).

The base of the K2 unit regionally corresponds to an
erosional surface that is interpreted as a major discontinuity.
Above this surface, the succession shows mainly the fol-
lowing facies trend (Fig. 3.48): sandstone, red clay and
gypsum to the top. The deposition of K2 was certainly
related to a major sequence boundary which was probably
associated with a combination of eustatic and climatic phe-
nomena related to the Carnian Pluvial Event (Arche and
Loépez-Gomez 2014). This allowed widespread deposition of
fluvial sandstone in and around the Iberian continent, also at
its southern margin.

The major sediment storage occurred during the trans-
gressive phase related to the deposition of the K3 unit
(constituted mainly by red clay). This was due to an increase
in accommodation space associated with a relatively rapid
rise in the base level (Pérez-Lopez 1996). In the lowstand

and highstand phases, the eustatic movements were masked
by local tectonic factors, which to some degree more directly
controlled the sedimentation in these phases.

The upper Keuper facies sediments consist mainly of
claystone with nodular gypsum (K4 unit) and laminated
gypsums to the top (K5 unit). The presence of evaporites, as
significant facies in the upper part of the Keuper facies units,
is interpreted as evidence of a marine influence in this
coastal depositional system during the Norian, due to a rel-
ative rise in the sea level (Fig. 3.51). This evaporitic facies
are correlatable to other Triassic basins in the Iberian
Peninsula (Orti et al. 2017).

3.7.4 Neotethys Opening and Development
of the New Sephardic Province

The epicontinental basins with Germanic facies of the Ibe-
rian Peninsula were at some time in their history connected

Fig. 3.51 Gypsum, as the main lithology of the Keuper facies successions, marks the marine influence in all basins due to a relative sea level rise

(picture from the southern Jaen province)
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to the Tethys, as demonstrated by the fossils found in the
Muschelkalk carbonates and, locally, in the lower part of
some Keuper sections (Martin-Algarra et al. 1995). Sopefia
et al. (1983) observed in some of the Muschelkalk facies
outcrops in Catalufia, Valencia, Castellon and Teruel a
particular biofacies, other than the Germanic with Alpine
influence. Previously, Hirsch (1972, 1975, 1977) coined the
term “Sephardic province” to distinguish a vast paleogeo-
graphic area comprising many sectors of the Iberian Penin-
sula and the E Mediterranean regions (Fig. 3.52). This

author found an “evolution autonomy” of species, which
was independent with respect to that of the Tethyan regions
but with some Alpine influence in its fauna, as well as a
diachronic migration of bivalves from the Middle East to the
“circummediterranean terrains” (Hirsch and Marquez-Aliaga
1988; Marquez 2005). It seems reasonable to assume that the
endemic fauna of the Sephardic province reached the Iberian
central-eastern platforms via the Betic basin during trans-
gressive stages and, actually, the faunal assemblages of
different shallow platforms of the Betic basin were probably

Fig. 3.52 Paleogeographical
reconstruction of the westernmost
Tethys area for the Middle
Triassic. Faunal movements are
indicated with arrows. AM:
Armorican Massif; BM:
Bohemian Massif; CM: French
Central Massif; Ebr: Ebro Massif;
MM: Mesomediterranean Massif;
ACP: Apennine Carbonate
Platform. Main Sources
Marquez-Aliaga and Hirch
(1988), Decourt et al. (1993),
Pérez-Lopez et al. (2003),
Martin-Algarra and Vera (2004),
Marquez (2005) and Pérez-Valera
(2015)
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not so different to each other, as Ladinian fossils character-
istic of the Sephardic province have been collected in dif-
ferent Betic domains, either external (Prebetic, Subbetic) or
internal (Alpujarride, Malaguide).

Presence of the foraminifers Lamelliconus ventroplanus
(Oberhauser), Lamelliconus cordevolicus (Oberhauser),
Lamelliconus procerus (Liebus), in the lower Ladinian car-
bonates of the Betic Cordillera (Pérez-Lopez et al. 2005),
suggests the arrival of these fauna from similar assemblages
of the Sephardic domain, which in Israel appear in levels
dated as “late Fassanian” (early Ladinian) (Benjamini 1988).
These species were to become very important in Alpine
basins by the late Ladinian (Marquez 2005). At the end of
the Ladinian, before the regression related to the develop-
ment of the Keuper facies, a wide shallow platform became
established allowing a generalized colonization by bivalve
faunas typical of the Sephardic province, including: Costa-
toria kiliani (Schmidt), Pseudoplacunopsis teruelensis
(Wurm), Gervillia joleaudi (Schmidt), among other species
(Mérquez-Aliaga and Ros 2003).

Cephalopod assemblages (ammonoids and nautiloids)
found in the Betic External Zones have recently allowed the
construction of a biostratigraphical framework for the

Ladinian stage (Pérez-Valera 2015; Pérez-Valera et al.
2016). The species are mostly from the Sephardic province,
as Gevanites epigonus, Protrachyceras hispanicum and
Picardiceras picardi, although also ammonoids of broader
geographical distribution appear, e.g. Eoprotrachyceras
curionii and nautiloids as Germanonautilus bidorsatus.
These fossil associations indicate that the opening of the
Neotethys, and the associated sea level rise, caused the
development of the Sephardic southern platform and other
platforms with their endemisms. Thus, during the Ladinian,
the Southiberian area was a paleogeographical region open
to faunal exchange between the Germanic, Tethyan and
Sephardic provinces (Fig. 3.52).

3.7.5 Magmatism and Tectonic Signatures
in the Sediments

The study of several sections reveals that subsidence con-
trolled by tectonics varied across hundreds of kilometres in
southern Spain according to thickness variations in strati-
graphic successions. These variations are especially evident
in the Muschelkalk carbonate units of the Subbetic Zone,

Fig. 3.53 Load structure probably caused by seismic shaking (Muschelkalk facies carbonates at the lower part of the Cehegin Fm)
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although the influence of the tectonics is recorded also in the
different thickness of the Keuper facies units. Besides, sev-
eral features are present in the Triassic successions that
indicate tectonic activity as magmatism and sedimentary
structures related to earthquakes.

Muschelkalk carbonates harbour signatures of tectonically
controlled sedimentation. Many syndepositional deforma-
tional structures such as slumps, slide planes or parallel shear
surfaces induced by earthquakes were recognised in the lower
member of the Cehegin Fm (Muschelkalk facies). Internal
breccias associated with these structures were also detected,
which were deposited in what was a muddy carbonate ramp
context that developed during the transgressive stage of
Ladinian age. Bioclastic limestone beds with soft-sediment
deformational structures are also present in the lower member
of the Cehegin Fm, as load structures or ball-and-pillow
structures that could have a tectonic origin (Fig. 3.53). The
latter structures are thus interpreted as seismites.

In the tempestites of the Muschelkalk carbonates, some
bioclastic grainstones, floatstones or rudstones display fea-
tures of dewatering processes, which can be related to
tsunamites and seismic activity. Despite this, sometimes
their primary origin is not easy to recognize. When exam-
ining supposed storm deposits, tsunamites and seismites
cannot be ruled out. The different subsidence of each area
and these peculiar syndepositional deformational structures
of the Muschelkalk carbonates point to tectonic activity,
associated with the rifting phase, in the Triassic epiconti-
nental platform during the Ladinian of the Betic basin.

The rifting phase is also recognized by the presence of
volcanic rocks, specially in the upper part of the Keuper
facies deposits (K3 unit). Numerous outcrops of subvolcanic
rocks appear in siliciclastic sediments. Morata (1990)
described some intrusions of magma in red clays with sig-
nificant water content. Whole-rock geochemical character-
istics and primary mineralogical compositions allow
defining a tholeiitic affinity for the Triassic magmatism,
although some bodies are transitional to alkaline (Morata
et al. 1997). Tholeiitic magmatism was generated during this
Triassic extensional stage. After this magmatic event, and as
a consequence of an increment of the extensional regime
with important continental lithosphere thinning, transitional
alkaline magmatism occurred (Portugal-Ferreira et al. 1995).

Magma genesis was plausibly triggered by extensional
tectonic activity, marking the onset of a tectono-magmatic
cycle that from the post-Variscan rifting phase progressively
evolved, by ascent of the asthenosphere, toward continental
breakup and opening of the Neotethys and the Atlantic and
Alpine Tethys oceans, accompanied by intrusion/extrusion
of basic magmas along their continental margins (Puga et al.
2010).

J. Lopez-Gémez et al.
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