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Abstract In this chapter, we simulate and analyze the impact of financial reg-
ulations concerning the collateralization of derivative trades on systemic risk—a
topic that has been vigorously discussed since the financial crisis in 2007/08.
Experts often disagree on the efficacy of these regulations. Compounding this
problem, banks regard their trade data required for a full analysis as proprietary.
We adapt a simulation technology combining advances in graph theory to randomly
generate entire financial systems sampled from realistic distributions with a novel
open-source risk engine to compute risks in financial systems under different
regulations. This allows us to consistently evaluate, predict, and optimize the impact
of financial regulations on all levels—from a single trade to systemic risk—before
it is implemented. The resulting data set is accessible to contemporary data science
techniques like data mining, anomaly detection, and visualization. We find that
collateralization reduces the costs of resolving a financial system in crisis, yet it does
not change the distribution of those costs and can have adverse effects on individual
participants in extreme situations.
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1 Introduction

Counterparty credit risk (CCR) is the risk of suffering a loss when a contracting
party defaults before satisfying its obligations. While banks and financial institu-
tions have been well aware of the CCR in classical business lines like loans for
centuries, the credit risk component in derivative trades has gained recent attention.
Since the 2008 crisis, markets can no longer assume that the credit risk in a
derivative with a bank is zero—even if it is AAA rated. As the volume of the over-
the-counter (OTC) derivative business alone exceeds $20,701 billions of the US
dollars,1 it has been suggested that the inherent credit risk now poses a significant
threat to the system. Indeed, a number of financial regulations have been enacted
aimed at reducing this credit risk. A key feature of these regulations is that they
provide strong incentives (and increasingly the obligation) to collateralize derivative
trades, i.e., post and receive capital.

It is obvious that a counterparty2 that receives collateral for its derivative trades
has a lower CCR exposure than a counterparty that does not. However, it is less
obvious to show that the introduction of collateralization reduces the systemic risk
in a financial system as a whole. Since the turmoil following the collapse of Lehman
Brothers in the 07/08 crisis, there has been a vibrant discussion on how to improve
financial regulation to avoid another crisis in the future. This crisis has not only
questioned the soundness of the current regulation but also the process on how to
decide what regulations to implement. Although a decade has passed by now, there
is still little consensus on how to evaluate, predict, and optimize financial regulation,
that is:

1. Evaluate: Has the regulation implemented since the financial crises reduced
systemic risk or not?

2. Predict: How can we predict the impact of a financial regulation before it is
implemented on the real financial system?

3. Optimize: How can we find the best possible financial regulation?

Data science provides new solutions to measuring and predicting systemic risk
in financial systems. It is the aim of this article to use these new technologies to
develop a framework in which these questions can be answered quantitatively and
systematically and to apply this technology to prominent regulations regarding the
collateralization of derivative trades.

The rest of this chapter is organized as follows: In Sect. 2, we provide a
framework to coherently extend enterprise-level risk metrics to a systemic level
using a graph model, in which the nodes represent individual banks and the links
represent trade relations. We present a purely graph theoretic technique on how

1The corresponding outstanding notional amount of all contracts in 2016 was $544,052 billions
of the US dollars. See Bank of International Settlements, Global OTC Derivatives Market Semi-
Annual Statistics, March 6, 2017. http://stats.bis.org/statx/srs/table/d5.1.
2In this chapter, we assume all our counterparties to be banks.

http://stats.bis.org/statx/srs/table/d5.1
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to aggregate the risks arising in those trades to a counterparty and to a systemic
level employing a weighted multivariate version of the in/out degree. In Sect. 3,
we present in detail our data science approach to predict the impact of a regulation
on systemic risk using recent advances in random graph generation and a novel
open-source risk engine (ORE). We present our results in Sect. 4 and conclude with
further research plans in Sect. 5.

The analysis validates that collateralization does indeed reduce systemic risk;
it does not, however, change the distribution of risk in a system. The analysis also
illustrates that validation depends on the metric chosen to quantify systemic risk. We
find that while on a macro-level, the impact of collateralization is unambiguously
risk reducing, and it can increase the risk stemming from individual netting sets in
extreme cases.

1.1 State of the Art

One of the main methods currently used to evaluate financial regulation is expert
judgment (of course based on quantitative studies providing a snapshot of data of the
current financial system). The main disadvantage of expert judgment is that different
experts have different opinions. If experts do not even agree in their judgment on
whether or not the changes in regulations so far are improvements, there is little
hope to answer the question of how to find an optimal financial regulation with that
method.

Data science and ultimately machine learning offer a viable alternative by
tackling some of the root causes why experts fail to agree:

1. Micro- vs. Macro-regulation: In financial economics, the impact of a financial
regulation is currently studied either on the micro-prudential level, which
considers only a single individual bank with its trades in all its detail, but
ignores systemic effects, or on the macro-prudential level, which considers
only systemic effects, but ignores most of the implications on individual banks,
see Fig. 1. As financial regulations heavily affect the financial system on both
levels—sometimes in opposite ways—this gap makes it very difficult to arrive at
consistent answers.

2. Inconsistent metrics and unclear definitions: This gap is particularly visible when
reviewing risk metrics. On the micro-prudential level, there are very well-defined
types of risk, for instance market risk (suffering a loss due to adverse market
movements), counterparty credit risk (suffering a loss due to a default of a
business partner), liquidity risk (running out of money), or model risk (models
used to quantify any of the previous risks are wrong). Furthermore, there are
standardized metrics to measure them like Value-at-Risk, Effectivized Expected
Positive Exposure (EEPE), Liquidity Coverage Ratio, or a Basel Traffic Light
Test. Not only are these metrics standardized, their use is enforced globally by
regulators.
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Fig. 1 Using data science to close the gap between micro- and macro-prudential regulation

On the macro-prudential level, there is not even a clear definition on what
systemic risk means or how it should be measured. In [7], the US Office for
Financial Research discusses 31 metrics of systemic risk. Most of these metrics
focus on the analysis of market data like housing prices or government bonds and
their correlations. For instance, [6] use principal components analysis (PCA) and
Granger causality to study the correlations between the returns of banks, asset
managers, and insurances. Unfortunately, most of those macro-prudential metrics
are unsuited to guide decision-making bodies or regulatory interventions—
precisely because their micro-prudential nature remains unclear (with CoVaR,
which relies on a quantile of correlated asset losses, being a notable exception,
see [1]).

This incoherence in metrics yields to incompatible views when evaluating
the impact of financial regulations. One of the key strengths of a data science
approach is that it enforces a consistent quantification of features and transparent
evaluation metrics.

3. Lack of Data: While macro-economic data of the financial markets is easily
available, even macro-economic data on the financial system is often not publicly
available, Cont et al. were able to obtain macro-level data of aggregate interbank
exposures of the Brazilian banking system during 2007/08 from the Brazilian
Central Bank and adopt a graph model to describe the interconnectedness of the
system and to estimate the impact that an increase in capital requirements has on
those interbank exposures, see [10].

While those analyses are very interesting on a macro-prudential level, they
cannot predict the impact of financial regulations on a micro-prudential level,
because their impacts depend on a banks’ individual trades. However, all banks
regard their trade data as proprietary.
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1.2 Method and Approach

The lack of data is a nontrivial practical problem for the calibration and backtesting
of any model of systemic risk. Notice that even if one would obtain the trade data
of the entire financial system as of today and test the impact of a regulation with
the aim of guiding a decision-making process, this would still not guarantee that
its implementation has the desired effects. The regulations regarding Initial Margin
are a consequence of the financial crisis in 2007/08, but the last phase-in date for
Initial Margin is currently set at 2020. A lot of the trades that existed in 2007 will
have matured in 2020. Therefore, it is imperative to make sure that the regulation is
future proof and has the desired effect not only on the current financial system but
ideally also on all possible future versions of it.

Our approach is to randomly generate financial systems sampled from realistic
distributions and simulate their future evolution under different regulatory regimes.
The key tool is a systemic risk engine, which combines a novel open-source risk
engine with graph theoretic models. This allows us to consistently calculate the risks
of all individual banks and the system as a whole, hence bridging the gap between
micro- and macro-prudential economics.3

The systemic risk engine uses the following key components and steps, see also
Fig. 2:

1. Graph Model—Trade Relations: Any financial system at a fixed point in time can
be modeled using an undirected graph, where the nodes represent the banks and
the links represent the trade relations between them, see Definition 1 for details
and Fig. 3 for a simplified example.4

2. Graph Model—Risk Metrics: The exposures stemming from the trade relations
in a financial system can be represented as a directed graph where the nodes
again represent the same banks and the arrows represent the risk induced from
the tail to the head, see Definition 2 for the details and Fig. 4 for an example.
The standardized micro-prudential metrics give rise to weight functions on the
arrows, which quantify the risks stemming from the trade relations, for instance
EEPE for counterparty credit risk. These can then be aggregated consistently
to systemic versions using weighted in and out degrees, see Definition 3 and
Definition 4 for details.

3. Financial System Generation: We randomly generate trade relation graphs
G1, . . . ,Gs , of financial systems sampling from the distributions found in [10],
see Fig. 5 for an example. This is achieved using the configuration erase model
from the Python library networkx based on [5, 8, 16], see component I in
Fig. 2.

3In an earlier paper, see [18], we examined a case study that analyzed a single financial system
under varying regulatory regimes, see also.
4In reality, these graphs are significantly more complex. According to an analysis carried out in
[10] based on central bank data, the Brazilian financial system for example has about 2400 banks
heavily interconnected via 20,000 links.
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Fig. 5 A randomly generated trade relation graph

4. Systemic Risk Engine: In order to compute the individual risks in each banks’
portfolio, we propose to use ORE, a novel open-source risk engine, see [19],
which is based on QuantLib and implemented in C++. We extend this to a
systemic risk engine, which computes not only the risk of any individual bank
in the system but also aggregated systemic risk metrics, see component IV in
Fig. 2. The main task is to automate entering all the generated financial systems
into OREs XML configuration files, which is done using the Python library lxml.

5. Risk Graph Generation: Technically, a financial regulation can be implemented
into the systemic risk engine as part of its input configuration, see component
III of Fig. 2. Therefore, we can simulate the impact of a proposed financial
regulation Rprop compared to a base regulation Rbase by running the systemic
risk engine on each of the financial systems G1, . . . ,Gs under regulation Rbase
as well as Rprop, see components IV and V of Fig. 2.

6. Classification, Data Mining, and Visualization: In a last step, we aggregate the
generated data to allow hypothesis testing on whether or not the impact of Rprop
over Rbase has reduced systemic risk, see component VI of Fig. 2. In addition,
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we use this raw data for data mining techniques such as anomaly detection to
identify corner cases, in which Rprop has adverse effects or fails.

It seems obvious to bridge the gap between micro- and macro-prudential
regulation by understanding the macro-prudential impact of a financial regulation
via an aggregation of all the micro-prudential impacts on all banks, see again Fig. 1.
The complexity of the system and of each of its banks as well as the large number of
banks has made such an approach intractable for the traditional methods in financial
economics. We believe that the current level of data science and risk management
technology makes this bottom-up approach feasible for the first time. The approach
has the advantage that it allows to understand the micro-prudential impact not only
on one entity but on all of them simultaneously and systematically.

Notice that bridging a gap between a micro-perspective and a macro-perspective
using data science to understand the macro-perspective as an aggregation of all
micro-perspectives and organizing them in a graph model could in principle be
applied to other domains as well, for instance payment systems, elections, or
sentiment analysis.

2 A Graph Model of Financial Systems and Systemic Risk
Metrics

A financial system can be modeled as a graph,5 where the nodes represent the
counterparties. Two counterparties are connected by an (undirected) edge if and only
if they are conducting business with each other. The nodes as well as the edges can
be enriched with additional data regarding the counterparties or the trade relations.

2.1 Trade Relation Graph

We capture this by the following formal definition, see Fig. 3.

Definition 1 (Financial System) A financial system FS = (B, T , τ ) is an
undirected graph G = (B, T ) called trade relation graph together with a trade
data function τ , where:

• B is the set of nodes in the graph representing the banks.
• T is the set of (undirected) edges in the graph representing the trade relations

between the banks. Two banks b1 ∈ B and b2 ∈ B are connected by an edge if
and only if they have at least one trade with each other.

5See [4] for an overview of graph theoretic modeling of large-scale networks.
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• τ : T → Y is a trade data function, which to each trade relation t assigns
additional trade relation data τ(t) (for instance a list of trade IDs) in some data
space Y .

Optionally, this can be enriched to (B, T , β, τ ), where:

• β : B → X is a node data function, which assigns each bank b ∈ B additional
data β(b) (for instance its core capital) in some data space X.

In Fig. 3, we see an example of a financial system, where six banks (labeled A–F

here) are trading bilaterally with each other in five trade relations. The trade data
function τ assigns to each trade relation t the ID of a trade (IRS1 for instance
stands for an Interest Rate Swap). While in this example, every trade relation only
consists of one trade, banks often have many trades with each other.6 While it is
possible (both mathematically and technically) to assign more data than just a list
of trade IDs to a trade relation, we stick to this simple trade data function for now.
Optionally, one can supply this example with a node data function β, which is not
shown in Fig. 3. A meaningful example of a function β is to assign to each bank b

its core capital (or core capital ratio).

2.2 Risk Graph

Each trade in a trade relation imposes various types of risks (as well as rewards)
on potentially both banks, which can be computed in various metrics by means of
mathematical finance. By computing a fixed set of risk metrics for all trade relations
in a trade relation graph, we obtain a graph that captures the risks between all the
various banks in the system, see Fig. 4. Formally, we define this as follows:

Definition 2 (Risk Graph) Let FS = (B, T , τ ) be a financial system as in
Definition 1 (optionally enriched by a node data function β). A weighted directed
graph RG = (B,A,w) is called a risk graph associated to FS, where:

• B is the set of nodes in the graph representing the banks (i.e., FS and RG have
identical nodes).

• A is the set of directed edges (often called arrows) in the graph RG. We add an
arrow from a bank b1 ∈ B to a bank b2 ∈ B if and only if b2 is exposed to some
form of risk from b1 as a consequence of their trades.

• w : A → R
k is a multivariate weight function on the arrows quantifying the risks

attached to each arrow measured in k metrics.

6A way to capture this technically is to give all trades in the financial system a globally unique
ID. The trade relation function is then a function τ : T → Pf (N), where Pf (N) denotes the set
of finite subsets of N (assuming each trade ID is a natural number). For instance, if the trades in
Fig. 3 where enumerated by 0, 1, 2, . . . , 4 and IRS1 corresponds to 0, then for the trade relation t

between bank A and B, we would have τ(t) = {0}.
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While the nodes in the trade relation graph and in the risk graph are the same,
the edges are not. Each undirected edge in FS gives rise to one or two edges in RG.
This is because there are trades like Interest Rate Swaps that induce risk from one
counterparty to another and vice versa. In this case, we see two arrows between the
counterparties that go in opposite directions, which in Fig. 4 is the case for all trade
relations. Notice that there are also trades like FX Options where risk is induced in
one direction only. On the arrows in Fig. 4, we only see one number, so k = 1, and
the weight function chosen here is w(a) := EEPE(a) ∈ R, i.e., if a = (b1, b2),
then w(a) denotes the EEPE that b2 receives from b1. Another example could be
the PFE over a certain time horizon at a fixed quantile α (analogous to the US stress
testing). Here, EEPE stands for Effectivized Expected Positive Exposure and PFE
for Potential Future Exposure. These are standardized metrics to express risks in
derivative portfolios, see [17, Sect. III] for a detailed discussion.

The weight function w in the risk graph associates a weight to the arrows. As
banks often trade with many counterparties, we want to aggregate this information
into a weight function on the nodes, i.e., the banks themselves. There is a purely
graph theoretic procedure that extends a weight function on arrows to a weight
function on nodes. As this method is less standard, we give the following definition.

Definition 3 (Weighted In/Out Degree) Let G = (V ,E,w) be a directed graph
with nodes V , edges E, and a weight function w : E → R

k . In case k = 1, for each
vertex v ∈ V , the quantities:

w−(v) :=
∑

e∈E
e ends at v

w(e), w+(v) :=
∑

e∈E
e starts at v

w(e) (1)

are called the weighted in/out degree. Let w(G) := ∑
e∈E w(e) be the total weight

in the system. The quantities:

ρ−(v) := w−(v)

w(G)
, ρ+(v) := w+(v)

w(G)
, (2)

are called weighted relative in/out degree. In case the weight function w : E → R
k

is multivariate, the weighted in/out degree w : V → R
k and the relative weighted

in/out degree ρ : V → R
k are defined using Eqs. (1) and (2) in each component.

Intuitively, w±(v) is the total weight received respectively induced by v into the
graph G. Notice that in case k = 1 and w ≡ 1, we have w±(v) = deg±(v), i.e., the
weighted in/out degree is the ordinary in/out degree, which just counts the number
of incoming respectively outgoing edges. Any of the quantities:

w(G), max
v∈V

w+(v), max
v∈V

ρ+(v) (3)

are R
k-real-valued metrics that capture the total amount of weight in the graph and

its concentration.
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2.3 Systemic Risk

Applying these graph theoretic concepts to systemic risk is straightforward.

Definition 4 (Systemic Risk) Let RG = (B,A,w) be a risk graph as in
Definition 2. Extend the weight function w : A → R

k on the arrows to a weight
function w± : B → R

k using the weighted in/out degree from Eq. (1). We also
define ρ : B → R

k via Eq. (2). We regard any of the quantities in Eq. (3) as a metric
of systemic risk.

As any metric that measures risk in a trade relation between two counterparties
can be used as a weight function in a risk graph, we have produced a general
procedure how to construct a systemic risk metric from that.

An example for such a metric is w = EEPE. In that case for each bank b, the
quantity EEPE+(b) can be thought of as the cost of resolution if b defaults (like a
loss given failure, but not a probability of failure). The quantities ρ+(b) are a metric
that quantifies the concentration of these costs of resolution in the system.

3 Simulation Technology

In order to predict the impact of a financial regulation on systemic risk, we randomly
generate financial systems as trade relation graphs, like the one shown in Fig. 3.
For all netting sets containing all the trades in all the financial systems, we then
compute risk metrics under different regulations. Using this data, we populate risk
graphs like Fig. 4 for each regulation. Finally, we aggregate all these graphs to come
to a conclusion on how a regulation impacts systemic risk. An overview of the
technologies used in these various steps and their interactions is shown in Fig. 2.
We will discuss the key challenges in this section.

3.1 Generation of Random Trade Relation Graphs

In order to generate random trade relation graphs like Fig. 3, various distributional
choices have to be made.

3.1.1 Nodes

Generating the number of nodes is straightforward by choosing either a fixed value
or drawing from a uniform distribution between an upper and lower bound.
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3.1.2 Edges

How to randomly generate the edges such that the resulting trade relation graph
forms a realistic financial system? Ideally, one should sample those from empirical
data, but the trade relations in the real financial system are top secret. However, in
[10] a statistical analysis of the macro-exposures in the Brazilian banking system has
been performed using aggregated anonymized data provided by the Brazilian central
bank. Due to this analysis, it is known that the degrees of the nodes in the trade
relation graph follow approximately a Pareto distribution. Therefore, the problem
can be split up into sampling a Pareto distributed sequence {d1, . . . , dn}, where n

is the number of nodes in the graph, and second by creating a graph out of this
sequence. While the first step is straightforward, the second is not.

Generating random graphs with a degree sequence prescribed from a given
distribution is a hard problem in discrete mathematics. For Poisson distributed
degree sequences, a solution has been developed by Erdős and Rényi in the 1960, see
[12, 13]. With the advances of the WWW and social networks, generating random
graphs with degree sequence sampled from an arbitrary given distribution became a
useful tool. Therefore, substantial theoretical work as well as the search for efficient
algorithms has been invested into this problem. We use the erased configuration
model as implemented in the Python library networkx and described in [16].
Further details can also be found in [5, 8]. For random number generation, we use
the Python library numpy.random.

3.1.3 Trades

Once a trade relation has been generated, the portfolio between the banks attached to
this relation has to be populated with trades. For the purpose of this text, we keep it
simple and choose a number k of trades, uniformly distributed between a fixed upper
and lower bound, and then draw k times without replacement from a list of trade
IDs. To generate the trades behind these IDs, we start with an FX Forward (EUR vs.
USD) with a uniformly distributed maturity of up to 5 years, a uniformly distributed
domestic amount between 100k and 100mn and a log-normally distributed strike
rate, and also with an Interest Rate Swap (fixed vs. floating) with a uniformly
distributed maturity of up to 10 years, a uniformly distributed notional between
100k and 100mn, and a uniformly distributed fixed rate between 0.01% and 5%.
The choice between a Forward and the Swap as well as the sides of the trades are
Bernoulli distributed with probability 0.5. We assume that all trades between two
counterparties are in precisely one netting set.
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3.2 The Open-Source Risk Engine (ORE)

Computing the exposure in even in just a single netting set of derivative trades is
a hard problem in mathematical finance. The risk department of a bank invests
substantial resources into developing and maintaining a risk management system
capable of computing the banks exposure—in particular, if the bank chooses to use
its own internal models. As those risk management systems are proprietary, they
cannot be used for the purpose of this text.

Therefore, we use the Open-Source Risk Engine (ORE), an open-source software,
which performs risk management computations like a production system in a bank.
It has been released by Quaternion Risk Management in 2015 as part of the Open-
Source Risk initiative, see [19]. ORE models the risk in a derivative trade from the
perspective of a single bank. Given the banks’ portfolio, market data, and some
additional configuration files, it projects the value of the trades into the future using
a Monte Carlo simulation based on complex stochastic modeling of the risk factors.
A detailed description of these risk factor models can be found in [14]. In case of a
collateralized netting set, ORE also consumes parameters that specify the details of
a netting agreement and simulates the value of collateral. This is a nontrivial matter.
In particular, forecasting the IM is still subject to current research, see [3, 9, 11, 15].

3.3 Configuration and Aggregation

Each generated trade relation graph and each regulation has to be entered into OREs
XML configuration before a run can be kicked off. This is realized via a Python
script using lxml. After the run, OREs output consists of csv files containing all
the risk metrics. We use pandas to extract those from the files and populate the
risk graphs like Fig. 4. This puts us in a position to compute statistics on the risk
metrics in the various graphs under various regulations.

4 Results: Impact of Collateralization on Systemic Risk

In this section, we apply the simulation technology described in Sect. 3 to study
the impact of various collateralization regulations on systemic risk. The value of
a derivative contract stems from future cashflows, which are not yet settled. If
no collateral is exchanged, both parties are fully exposed to each other’s credit
risk (REG_1). To mitigate that risk, parties can exchange Variation Margin (VM)
to cover the current exposure, i.e., the immediate loss suffered by the surviving
counterparty on default (REG_3). This still does not reduce the exposure to zero
as the surviving counterparty will need some time to close out the position. To
mitigate the potential exposure caused by this gap, parties can exchange Initial
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Margin (IM) on top of the Variation Margin (REG_4). A detailed description of
these three regulatory regimes can be found in [17, Sect. II].

In [17, Sect. V], we presented a case study, which analyzes the impact of
these three different regulatory regimes on the financial system with the structure
depicted in Fig. 3. We found while increasing collateralization decreases systemic
risk measured in EEPE (respectively, EEPE +, see Definition 3), i.e., the total cost
of resolving a failed system decreases with the amount of collateral. However,
collateralization has only little effect on the concentration of these costs (i.e., the
associated ρ+ does not change much).

We now use the simulation technology described in Sect. 3.1 to generate
10 financial systems with 30–50 counterparties and trade relations, which are
approximately Pareto distributed. This results in 2360 trades in total. These are faced
from two sides, which yields 4720 technical trades in 1378 netting sets in ORE. We
compute the EEPE under the regulatory regimes 1), 3), and 4) using 500 Monte
Carlo paths. Regulatory regime 2) is omitted, because if one sets a global threshold,
the result would depend on an arbitrary choice on whether or not the netting set
exposures are distributed above or below that threshold, which is unrealistic. In
Fig. 6, we can see that under regime 3), i.e., the full VM collateralization, the
total EEPE reduction is at about 71%, and under regime 4), i.e., the VM & IM
collateralization, the reduction is at about 93%. The average does not exhibit any
outliers among the 10 financial systems analyzed, see Fig. 7.

On a macro-level, these numbers confirm unambiguously that the impact of any
collateralization yields to a reduction in risk. As a byproduct of the simulation, we
obtain exposure data of 1378 netting sets, which we can now mine to gain insight
into all micro-impacts of the various regulations.
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Fig. 7 Average relative
reduction of total EEPE in the
various financial systems

FS VM IM & VM
0 –78.00% –97.22%
1 –74.63% –94.72%
2 –75.97% –96.86%
3 –71.47% –94.45%
4 –70.23% –93.16%
5 –72.89% –94.45%
6 –73.88% –94.16%
7 –75.46% –96.31%
8 –74.44% –95.04%
9 –71.43% –91.95%

Fig. 8 Histogram of relative reduction in EEPE over all netting sets (197 out of 1378 have
more than 150% increase and are not shown, 29 of those have zero uncollateralized EEPE).
Mean:−57.42%, SD: 38.33%

In Fig. 8, we see the distribution of relative reductions in EEPE of the various
netting sets when comparing REG_1 (uncollateralized) with REG_3 (VM collat-
eralized). While most of the netting sets show a significant relative reduction in
exposure, we can see that some of them also show a significant relative increase
in exposure. The explanation for this is as follows: Assume that bank A has trades
in a netting set with bank B. These trades are deeply out of the money for bank A,
meaning that the markets have moved into bank B’s favor. Then, the uncollateralized
exposure for bank A is very low.7 Under VM collateralization however, as the trades
are deeply in the money for bank B, bank B will call bank A for variation margin.

7Due to the finite number of Monte Carlo paths, it is sometimes even numerically zero in the
simulation.
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Fig. 9 Histogram of relative reduction in EEPE over all netting sets (0 out of 1378 have more than
150% increase and are not shown, 0 of those have zero VM collateralized EEPE). Mean: −85.78%,
SD: 20.76%

Bank A will then pay the variation margin to bank B, where it is exposed to the
default risk of B, because B might rehypothecate this variation margin. In some
situations, this is resulting in higher exposure under VM collateralization than under
no collateralization. We see that on a micro-level, VM collateralization can have an
adverse effect in rare cases of netting sets, which are deeply out of the money.

Initial Margin cannot be rehypothecated and therefore, posted Initial Margin is
not treated as being at risk.8 In Fig. 9, we see the relative reductions in EEPE of
the various netting sets when comparing REG_3 (VM collateralization) vs. REG_4
(VM & IM collateralization). Here, we can see that the effect of the additional IM
overcollateralization unambiguously reduces the exposure further.

When comparing REG_1 (uncollateralized) vs. REG_4 (VM & IM collateral-
ization) directly, we can see in Fig. 10 that the reduction in exposure is larger and
distributed more narrowly compared with just the VM collateralization, see Fig. 8.
There are still some netting sets left, which show an increase which is due to posted
variation margin. However, this increase is smaller as under REG_3 as it is mitigated
by the additional IM collateral.

8It should be highlighted that in our simulation we model the bilateral trading between various
banks, where Initial Margin is posted into segregated accounts. Derivatives that are cleared through
a central counterparty (CCP) or exchange traded derivatives (ETDs) are not in scope of this
simulation.
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Fig. 10 Histogram of relative reduction in EEPE over all netting sets (69 out of 1378 have more
than 150% increase and are not shown, 29 of those have zero uncollateralized EEPE). Mean:
−83.83%, SD: 34.44%
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Fig. 11 Total increases and decreases in EEPE of all netting sets between the various regimes

It should be noted that while the increases in exposure we see in Figs. 8 and 10
are large in relative terms, they are actually quite small in absolute terms, see Fig. 11,
where we compute the total increases and decreases in EEPE of all the netting sets
separately.
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Fig. 12 Visualization of data outputted from systemic risk engine in Jupyter notebook dashboard.
Depicts trade relations and risk graphs for various financial systems/regimes (top left) along with
impact on risk within system (top right) and on individual counterparties measured in absolute
terms (bottom left) and relative terms (bottom right). Can be configured and visualized with
different regulations imposed

4.1 Jupyter Dashboard

To interactively explore the above results further, we developed a Jupyter dash-
board,9 see Fig. 12, using the jupyter_dashboards extension. Data on various
financial systems and effects from various collateralization regulations outputted
from the systemic risk engine is imported using pandas. The data is manipulated
into proper forms for graphing purposes primarily using pandas and numpy. The
trade relations and risk graphs are assembled using the erased configuration model
from networkx and visualized using the visJS2jupyter module. The size of
each node corresponds to the share of risk induced by the counterparty, while the
width of the in-edges and out-edges quantifies the risk received respectively induced
by the counterparty.

The remaining graphs are plotted using bqplot. The interactive menu is created
using elements from the ipywidgets module that interact directly with elements
within the notebook. The various financial systems and regulations can be chosen
using dropdown menus with the option to switch between the trade relation and
risk graphs. Javascript is employed to allow for dynamic execution of cells
within the notebook and recreation of the graphs. Animations built into bqplot
allow for seamless transitions across configurations, while the networkx graphs
are regenerated upon each execution.

9Will be made available on http://fintech.datascience.columbia.edu/.

http://fintech.datascience.columbia.edu/
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5 Synopsis

Our results can be summarized as follows:

1. Collateralization reduces the costs of resolution drastically,10 see Fig. 6. In that
sense, it reduces systemic risk.

2. The case study however suggests that collateralization does not change the
distribution of these costs in the system, see [17, Sect. V].

3. The data mining exercise makes visible that in rare cases of netting sets, which
are deeply out of the money, VM collateralization can actually cause an increase
in exposure, which can be large in relative terms, but is small in absolute terms,
see Figs. 8 and 11.

Notice that these results are an interplay of the aggregated macro-exposures and
a systematic analysis of all micro-exposures, which would not be possible outside
of the present framework.

Regarding practical applicability of this research, any bank b knows its own
EEPE−(b) and has to report this quantity to the regulator. It is reasonable to assume
that it also knows its EEPE(b, b′) for any other counterparty b′ it does business
with. (Especially for large complex banks, it is reasonable to assume that they
can compute their own EEPE+(b) as well.) A regulator who would collect this
information from all banks in the system could actually compute a graph like Fig. 4
representing the exposures in the real financial system as of today.

The research outlined in this chapter can be expanded into several directions.

Large-Scale Simulation The results from Sect. 4 we obtained by running the
simulation technology described in Sect. 3 on a client desktop machine. We plan
to deploy this on a cold environment and run a larger-scale simulation.

Capitalization and Central Clearing The EEPE+(b) of a bank b should be thought
of as a measure of loss given failure, not a probability of failure. A bank with a large
EEPE+(b) can actually still be very safe, if it has also large capital reserves. The key
to take this into account is to add a capital adequacy ratio function CR : B → R as a
node data function in Definition 1 and to add RWA as an additional risk metric to the
edges of the risk graph in Definition 2 (and then also to the nodes via the procedure
described in Definition 4). The core capital of each bank can then be computed from
that. This allows us to model a bank failure due to market risk, for instance by using
the criterion:

CC(b) < VaRq(b), (4)

10The question to what extent exactly Initial Margin reduces exposure to CCR is subject to debate
even when considering only one counterparty. In [2], the authors argue that when taking time lags
between trade payments and margin reposting into account, the reduction is much smaller.
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where VaRq is the Value at Risk at some confidence level q. It also allows us to
model a bank failure due to credit risk, for instance using the criterion:

CC(b1) < EEPE((b1, b2)). (5)

By increasing the confidence level q further and further and labeling a bank as
defaulted if either Eqs. (4) or (5) is satisfied, one can study the collapse of the whole
system. In particular, one can study how a default of one counterparty causes chain
reaction of defaults. The values of q at which default events occur can be interpreted
as p-values of the hypothesis that the system is safe. We believe this framework to
be particularly suited to study the regulation around central clearing in a similar
fashion.

Agents-Based Creation of Trade Relation Graphs Recall from Sect. 3.1 that we
are currently generating the trade relations such that the degrees are approximately
Pareto distributed, because this is in line with empirical data from [10]. If we
prescribe the degrees, we obviously cannot get any insight into why those trade
relations are formed. Therefore, we propose to enhance this by adding a trading
strategy to the node data in Definition 1 for each bank. During the simulation,
the banks would then trade based on that strategy and the evolution of the market
and form those trade relations dynamically. It would be interesting to study under
what conditions this produces Pareto distributed trade relations. As a byproduct, this
enables studying the systemic market risks in trading strategies. What happens for
example if everybody is trend following?

Derivative Market vs. Money Market In the current example, only the derivative
business is considered. However, there is also an inherent credit risk in the classical
money market. The financial regulation on collateralization has a significant impact
on the interplay between the two: Unlike Variation Margin, the Initial Margin cannot
usually be rehypothecated (that means you cannot reuse the Initial Margin you
receive from one counterparty to post your Initial Margin to another). Raising the
necessary funds to post Initial Margin will increase the business in the money
markets and it would be interesting to test the hypothesis that this increases the
systemic credit risk in the money market in a similar fashion. In that case the trade-
off between the reduction of credit risk in the derivative market and the increase
of credit risk in the money market should be further examined. Imagine a situation
where a counterparty A hedges a trade it has sold to counterparty B by buying a
reversed trade from counterparty C. Although A has zero market risk, it has to post
Initial Margin twice, namely to B and C. If A borrows this Initial Margin directly or
indirectly from B or C, the reduction in overall credit risk across both markets will
be a lot lower.

Initial Margin and Funding Costs The reduction in EEPE in the derivative business
comes at the cost of funding the collateral, in particular the Initial Margin. It is to
be expected that these costs will be significant. On the other hand, the reduction
in EEPE yields to a reduction in RWA, which yields to a reduction in the cost
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of capital. Therefore, it would be interesting to study the trade-off between the
reduction in the cost of capital and the increase in funding costs. There are already
various standardized metrics, called XVAs, to measure funding costs. In particular,
the Margin Value Adjustment (MVA), which captures the additional funding costs
due to Initial Margin, contributes significantly. Studying the levels, evolution, and
distribution of Variation Margin and Initial Margin and the associated XVAs as part
of a case study as well as systemic versions of that would enable a quantitative
evaluation of the trade-off.

Credit Risk vs. Liquidity Risk vs. Market Risk vs. Model Risk While the reduction
of credit risk in Fig. 6 is very convincing, one should keep in mind that EEPE,
the metric we use to quantify systemic risk, is a metric that captures Counterparty
Credit Risk only. However, this is not the only source of risk in a financial system.
Therefore, it would be more precise to say that collateralization reduces systemic
credit risk. It is very reasonable to assume that pulling large amounts of money out
of a financial system due to Initial Margin increases the liquidity risk in that system.
Therefore, testing the hypothesis that collateralization increases systemic liquidity
risk in a similar fashion and again study the trade-off between the two would be
enlightening. We believe that the key to understand the link between credit risk and
liquidity risk lies in a detailed analysis of the XVAs. While quantifying liquidity
risk is difficult, it should be pointed out that value at risk (VaR), a standard metric
to measure market risk—the most obvious source of risk—has a systemic analogue,
namely CoVaR, see [1]. Finally, model risk can be added as well. This would allow
us to study if for instance the increasing standardization of models increases or
decreases the risk of system-wide model failures. What happens if everybody uses
the same model and there exists a market condition under which it fails at one bank?
It would be prudent to have a comprehensive simulation that studies the impact of
collateralization on all these sources of risk and systemic risk.
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