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Abstract Community detection in networks has gained a lot of attention especially
after emergence of online social networks. Community detection methods in
networks can be classified into two domains: global methods and local methods.
Global methods need the whole information of the network, whereas the local ones
need information of a certain area of the network where they want to discover
communities. Real-world social networks are typically very large, making the global
community detection methods impractical due to the computation expenses. There-
fore, local community detection algorithms, which are requiring less computation
and space, have met with renewed interest. In this research two derivative-based
methods for finding and tracking local communities are proposed. Mapping the
concepts of derivatives into graph space in a practical manner poses few challenges.
For instance, in Euclidean space, every point has three dimensions, whereas in graph
space the dimension (or degree) of every node can be different. Firstly, we propose
a general framework for finding derivatives in graph space. This mentioned frame-
work enables us to bring derivative-based methods into graph theory. Secondly,
inspired by the active contour algorithm in computer vision domain, we propose
a local derivative-based community detection method. The proposed method is built
upon concepts of curvature and gradient of the community’s boundary. Curvature
and gradient comprise a velocity function to determine whether the boundary should
expand to include a candidate node in its vicinity. Finally, based on derivative-based
concept of surface tension in chemistry, we propose a model for tracking local
communities in dynamic networks where new nodes/edges are added in a stream
of atomic changes. The binding forces between the molecules of the same liquid
substance give them shape with the minimum surface tension. That is to say, if
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molecules of the same substance are added to the community, the surface tension
should not increase. In the network context, if a node can be added to a community
it reduces the surface tension of the community. Experimental results validate the
superiority of the proposed methods.

Keywords Local community detection · Tracking community · Derivatives in
networks · Surface tension

1 Introduction

One phenomenon in nature that scientist through the history tried to explain and
predict is the community. Analysing communities is a principal topic in sociology.
There exist many systems in the world that can be represented with networks where
connections, or links, show relationships between entities, or nodes, of the system.
Some examples of such systems are the Internet, social networks, and World Wide
Web. In the last decade social networks have attracted immense attention in research
and industry.

Community detection is a fundamental concept in various fields of science
like sociology, biology, computer science, etc. For example, human communities
have been studied in social sciences for decades [8, 19]. In biology, for instance,
researchers analysed communities in protein interaction networks to find some
specific actions in cells [6, 30]. Community detection has also been extensively used
in clustering web clients, to provide better services for World Wide Web clients [20].

Community detection approaches can be classified into global and local methods.
While global approaches require all information of the entire network, local methods
try to find community patterns in subsets of a graph without considering the entire
information, resulting in less computation and being more practical, especially when
they are applied to large social networks. The main drawback of global methods is
that they have to extract pairwise information for all pairs of nodes in the entire
graph. Such information might be very expensive to be extracted and impractical
for real-world applications. On top of computation expenses, the information of
the entire network is not always available, posing another difficulty for global
approaches. On the other hand, local community detection is mostly designed based
on finding a community surrounding a starting node without exploring the entire
network. As couple examples, HITS [18] and PageRank [39] are popular ranking
algorithms which can be seen as local community detections in the network of the
web.

This paper is the extension of our previous research [29] in which we briefly
introduced a framework for approximating derivatives in graphs and then we
proposed the derivate-based community detection (DCD). The method was inspired
by geometric active contours [5], an object detection algorithm extensively used in
the field of computer vision [12, 13]. The analogy between the discovery of shapes
in images and the detection of communities in graphs suggests that an application of
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the active contours to graph spaces might provide an efficient alternative to existing
community detection techniques. In more details, in geometric active contour, an
arbitrary curve is evolved until it accurately delineates an object boundary, locations
where image intensities change significantly. From this perspective, object boundary
can be defined in terms of gradient and curvature, both of which are computed from
the derivate of image intensities. The same principle can be translated into graph
space provided we can determine the derivatives of a function in graph space.

In this paper, we extend our approach [29] for approximating derivatives in
graph space along with mapping few concepts such as gradient and curvature
from differential geometry into graph space. In addition, we, also, introduce a
novel derivative-based approach based on the concept of surface tension from
chemistry in order to track local communities in dynamic networks. We aim to
understand and explain communities and their evolution using surface tension, a
natural phenomenon which has been comprehensively investigated in chemistry. We
know from chemistry that the binding forces between the molecules of a liquid draw
the molecules of the substance into a shape that has the least surface area. Putting
it differently, a community of similar liquid molecules tends to shape themselves
in a way that surface tension is minimised. In an analogues manner, binding forces
between nodes of a community inside a network lead to particular patterns for the
community.

We modeled surface tension of communities in networks and showed that our
model can be used for tracking local communities in networks. We use surface
tension as an objective for local communities. To show the surface tension of
a community in an acceptable representative of the community’s quality, we
compared the surface tension of several communities against the conductance, a
well-known and widely accepted quality measure for communities [24]. When
molecules of the same substance are added to a liquid, the liquid changes its shape
so that the surface tension is again minimised. Therefore, surface tension provides
a unique ability for tracking local communities in dynamic networks in which
new nodes are added over time. In other words, when a node is a candidate of
inclusion in a local community, it will be included only if the surface tension of
the community is reduced or remains unchanged. Our competitive results on finding
local communities using DCD and tracking local communities using surface tension
with ground truth datasets show the practicality of the proposed approaches and,
more importantly, the usefulness of the concepts derivatives in graph space.

2 Related Work

There are only a few studies on the derivatives in networks. Friedman and Tillich
[14] extended some concepts from calculus to networks. They mapped the concepts
such as differentiable functions, boundary, and gradient over the graph in order
to create a wave equation to investigate the changes in the connectivity of the
nodes in a given graph. In another research, Diao et al. [10] explored a bounded
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symmetric function defined over the edges of a finite labeled graph called graphon
space. They proposed a general theory of differentiation over this space. As this
space is not a vector space, the authors refined Gateaux derivative to make it
appropriate for graphon space. Both of these studies proposed partial differential
equations (PDEs) over a continuous topology given on a graph. In an attempt to
avoid complex differential theory and to take advantage of finite dimensional linear
algebra, an alternative approach is to formulate derivatives on the original discrete
graph space. In addition, when it comes to finding higher order derivatives (second
or higher) Solomon’s framework is computationally unfeasible since it needs to
solve an exponential combinatorial problem, whereas the time complexity of the
proposed framework is polynomial. The proposed framework finds the derivatives
by solving systems of linear equations which is considerably faster than Solomon’s
exponential approach [34]. The proposed approach also does not deal with the
mathematical difficulty and limitations of Friedman and Tillich [14] and Diao et al.
[10] approaches. In another study, Van Gennip et al. proposed and derived a graph
curvature, analogous to mean curvature in continuous domain. Since the curvature
of a vector in continuum is defined as the divergence of normal vector field, the
authors first derived the normal of a vertex and then defined the curvature at that
vertex by taking the divergence of the normal vector. Their approach is valid for
unidirectional graphs and was assumed that no isolated node or self-loop exists.
Another study closely related to differentiation over graph space has been done in
image processing domain by Ta et al. [37]. They defined the directional derivative of
a function at vertex along an edge analogous to continuous domain. Similar to our
approach they derived the derivative from a numerical point of view, where it has
been approximated by difference function. Although their definition satisfies basic
derivative properties, but it only relies on inspiration from continuous. However, our
approach to extract derivatives in discrete domain follows up Taylor expansion and
satisfies many properties in continuous derivatives like additive and multiplicative
properties.

In local community detection, most algorithms try to find a community sur-
rounding a node or a seed. There exist several local community detection methods;
however, due to limited space, only the most relevant approaches are discussed.
Many algorithms in this category are extensions of global community detection
algorithms. In local modularity, one defines a quality function for one community,
and then, in an agglomerative procedure, adds nodes to the community [7, 21]. In
this class of algorithm, at each step the candidate node which has the highest quality
(based on local modularity) is added to the community until the maximum size of
community is reached. Mahoney et al. [25] proposed local spectral clustering (LSP).
Spectral clustering uses the eigenvectors of the Laplacian adjacency matrices of
graphs as a basis of a clustering algorithm such as hierarchical or K-means in order
to cluster vertices into communities [26, 28]. Andersen and Lang [2] used random
walks in order to find local communities. When random walks start with a small
number of steps from an initial seed node, the random walks are more likely to be
trapped in the same community rather than traveling to other communities.
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There are two main approaches for tracking communities in dynamic networks:
snapshot model and temporal smoothness. In snapshot model, using evolutionary
methods, one takes different snapshots of network, finds communities in each
snapshot with a static clustering model, and, then, interprets their change over time
[42]. In temporal smoothness, the goal is to derive the communities over time given
a stream of changes. A change can be the addition or removal of a node or edge.

Falkowski [11] use Girvan–Newman modularity-based community detection
for both finding and tracking communities. Tong et al. [38] suggested low rank
approximation for detecting dynamic networks; however, their research lacks
evaluation. Xu et al. [41] used a hidden Markov model to address dynamic networks.
In vertex-centered methods [4], which have similar concept as K-means clustering
algorithm, evolving leaders and, therefore, the communities around leaders are
found in each time step. Leskovec et al. [23] used the clique percolation method
(CPM) to identify communities at each time step, and then match them with
community evolution methods. MONIC, a framework for modeling and monitoring
clusters transitions over time, was suggested by Spiliopoulou et al. [35]. Graphscope
[36] is a parameter-free algorithm which mines time evolving graphs in order to find
communities, and their change over time. Nguyen et al. [27] developed a framework
for identifying and tracking overlapping communities by defining a global objective
function which is summation of a set of local communities. Samie and Hamzeh [31]
developed a two-phased model that is comprised of a global and local method. In
the first phase, they find global communities and, in the second phase, they find and
track local communities in the detected clusters using the global approach. Shang
et al. [32] proposed a learning based approach for tracking global communities in
dynamic networks. They train and use a classifier in order to find and inspect the
vertices that are more likely to change their community after the network is changed.

3 Derivatives in Graph Space

To facilitate the understanding of these concepts in graph space, a few definitions
are provided.

Definition 1 (Graph Space) Graph space is the world that defines the graph
G(V,E). It consists of a set edges (E), and a set of nodes (V ).

Definition 2 (Dimension of a Node in the Graph Space) The degree of a node
represents the dimension of the node in the graph space. Any point in Euclidean
space has three dimensions, whereas any node in graph space has its own number
of dimensions. In Euclidean space, the three dimensions are x, y, and z, whereas in
graph space a node with ten neighbours has a dimension of ten and a node with two
neighbours has only two dimensions.

Definition 3 (A Shape in Graph) In Euclidean geometry, a shape is an object that
is limited by an external boundary, or surface. In graph G(V,E), shape χ(ν, ξ)
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Fig. 1 Examples of shapes in
graphs

consists of set of nodes ν that are connected with the edges ξ , (ν ⊆ V, ξ ⊆ E). A
shape can also be seen as a connected subgraph. Each shape in graph space has its
own boundary.

Definition 4 (Boundary of a Shape in Graph Space) The boundary of a shape
in a graph is the set of nodes that belong to the shape and have common edge(s)
with nodes outside the shape, formally a node vi is on the boundary of shape χ if
∃eij ∈ E|vi ∈ ν∧vj ∈ V ∧vj /∈ ν. In other words, if a node has a neighbour outside
of the shape, it is on the boundary, or the edge, of the shape. Figure 1 demonstrates
two shapes in two different graphs. In Fig. 1a, the nodes in red colour compose a
shape which consists of only two nodes. Figure 1b shows a shape that is comprised
of four nodes. Nodes v2 and v4 in Fig. 1b are considered the external boundary of
the shape.

Definition 5 (Functions in Graph Space) A function defines a relation between
an input set and an output set where each input is related to exactly one output. A
function has its domain and codomain which is showed with expression f : X → Y .
In Euclidean space, the derivative of function f shows the rate of change of f at a
given point in space.

In graph space, derivative of a function shows the rate of change of the function
at a given node. More precisely, in a graph, the derivative is defined as the rate of
change of function F(v) at a given node v. The set of nodes V should appear in
the domain for the functions in the graph space. Codomain varies depending on the
definition of the function F . By adding the time dimension, rates of changes can
be tracked with respect to two criteria: structure and time. As a result, two partial
derivatives can be defined for a given node. For example, for a function F , which

returns the degree of a given node,
∂F

∂v
represents the rate of change of the degree

with respect to the structure, and
∂F

∂t
represents the rate of change of the degree of

a node with respect to time.
Mapping the concepts of derivative to graph space enables us to use varieties

of derivative-based tools in the graph space. Graphs are discrete by nature, and
like many discretised problems, to extend continuous mathematics to the graphs,
numerical analysis tools should be considered. In this section, a novel approach
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to determine derivatives of function in graph space, which is similar to the finite
difference methods, is proposed.

3.1 Discretisation and Finite Difference

Discretisation, a term in numerical analysis which was introduced by Ames [1] in
1965, is the process that converts continuous functions to discrete ones. Continuous
functions have a continuous domain. In the discretisation process, the function’s
domain is reduced to a set of finite values. Analytical solutions for finding
derivatives of a given function require the continuity of the function in their domain.
Numerical solutions find derivatives by using only discrete points of the domain.
That is to say to use numerical solutions, the functions must be either discrete by
nature or to be discretised. The task of discretisation and approximating derivatives
is called finite difference method.

Finite difference methods provide straightforward ways for finding derivatives
and solving differential equations by replacing partial derivatives with suitable
algebraic difference quotient. This results into algebraic system of equations.
Approximated derivatives are solutions of the systems of equations. Such systems of
equations can be easily solved by computers. This explains the rapid growth of finite
difference applications in the last few decades. Finite difference methods are used
when a space or a function is discrete by nature such as graph space. To briefly
explain how finite difference works, an example will be used. Finite difference
methods approximate derivatives by using Taylor series [9] in Eq. (1)

f (x + Δx) = f (x) + (Δx)f ′(x) + · · · + (Δx)i

i! f i(x) + · · · (1)

In Fig. 2a, the goal is to find the derivative, or rate of change, of f (x) at point x. To
find the derivative of f at point x using analytical methods, both the equation of f

and the value of x are required.

Fig. 2 (a) Approximating derivative of f at x, (b) discretising f into three points: x −Δx, x, and
x + Δx
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In contrast, numerical methods, first, discretise the domain into finite number of
points; then, they approximate the derivative of f at x. The discretisation of f into
three points is shown in Fig. 2b.

Since function f is known, the values of f (x−Δx), f (x), and f (x+Δx) are also
known. In many real-world applications, f is not properly defined. For example, it
can be assumed that three sensors are located at x −Δx, x, and x +Δx. Each sensor
reports the temperature of that point, and the goal is to approximate the rate of
change of the temperature, or the derivative of temperature, at x using the collected
data from sensors and sensors’ locations. This means the derivative of temperature
can be calculated even though there is no clear definition for temperature’s equation.

According to the Taylor series [9], the numerical approximation of the first-order
derivative for a function f (x) is

f ′
forward(x) = f (x + Δx) − f (x)

Δx
+ O(Δx) (2)

O(Δx) refers to the omitted elements of the Taylor expansion. Similarly, the first-
order backward derivative is

f ′
backward(x) = f (x) − f (x − Δx)

Δx
+ O(Δx) (3)

Alternatively, values of f in all x − Δx, x, and x + Δx can be considered for
approximating derivative of f at point x:

f (x + Δx) = f (x) + (Δx)f ′(x) + · · · (4)

f (x − Δx) = f (x) − (Δx)f ′(x) + · · · (5)

By deducting Eq. (5) from Eq. (4), the second-order first derivative can be
approximated as follows:

f ′
central(x) = f (x + Δx) − f (x − Δx)

2Δx
+ O(Δx)2 (6)

The terms O(Δx) and O(Δx)2 in Eq. (2) and Eq. (6) are called truncation error
and represent the remaining parts on the right side of Eq. (1) which are neglected
if one wishes to approximate derivatives. Figure 3 illustrates the approximated
solutions for derivative of f at x using first-order backward, first-order forward,
and second-order central derivative approximations.
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Fig. 3 Approximating the derivative of f (x) using Taylor series

3.2 Approximating Derivatives in Graph Space

Figure 2b, which represents discretisation in Euclidean space, can be extended to
graph space. This can be seen in Fig. 4a. The first noticeable difference between the
proposed framework here and normal finite difference method is the dissimilarity
between Δx and the distances d1 and d2 in graph space. While a continuous space
can be easily discretised into regular intervals, the interval or distances between
different nodes in graph space are not necessarily regular. For instance, the distance
between people in a social network can be represented by their profile differences,
and, since individuals differ, the distance between individuals is not regular.

By extending Eq. (2) and Eq. (6) to graphs, first-order derivative of F at node
vi is

F ′
v(vi) = F(vi+1) − F(vi)

vi+1 − vi

(7)

where vi+1 − vi shows the distance, or dissimilarity, between these two nodes and
is equal to d1.

Following the same logic, the second-order first derivative is

F ′
v(vi) = F(vi+1) − 2F(vi) + F(vi−1)

d1 + d2
(8)

Fig. 4 (a) Example graph with three nodes, (b) derivatives of f at vc which has two neighbours
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where d1 = vi−vi−1 and d2 = vi+1−vi . di , in general, show the difference between
the nodes in the graph. Applying this model to weighted graphs is straightforward.

If the weight of the edge that connects vi to vi−1 is w, then di(w) = di

w
.

The second derivative according to the Taylor series:

f (x + Δx) = f (x) + Δxf ′(x) + (Δx)2

2! f ′′(x) + O(Δx)3 (9)

In the rest of this section, after analysing two examples, a general model for finding
the derivatives of a given function F(v) is proposed.

Example 5 Finding first and second derivative of F at node vc with two neighbours
(Fig. 4b).

The following equations can be extracted from Taylor expansion:

F(vc + d1) = F(v1) = F(vc) + d1F
′
v(vc) + d2

1

2
F ′′

v (vc) (10)

F(vc + d2) = F(v2) = F(vc) + d2F
′
v(vc) + d2

2

2
F ′′

v (vc) (11)

This can be shown and solved as a linear system with two equations and two
unknowns:

⎡
⎢⎢⎢⎢⎣

d1
d2

1

2

d2
d2

2

2

⎤
⎥⎥⎥⎥⎦

⎡
⎣

F ′(C)

F ′′(C)

⎤
⎦ =

⎡
⎣

F(V1) − F(C)

F (V2) − F(C)

⎤
⎦ (12)

In Eq. (10), only three first elements of Taylor expansion Eq. (1) are used. The
omitted elements contribute to error of the approximation which will be extensively
discussed.

Example 6 The current node vc (the subscript c stands for the current) has three
neighbours in Fig. 5a and the goal is to approximate first and second derivatives of
F at vc.

Following equations can be extracted from Fig. 5a by expanding Taylor series up
to three elements for each neighbour of vc:

F(vc + d1) = F(v1) = F(vc) + d1F
′
v(vc) + d2

1

2
F ′′

v (vc) (13)

F(vc + d2) = F(v2) = F(vc) + d2F
′
v(vc) + d2

2

2
F ′′

v (vc) (14)
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Fig. 5 (a) Approximating derivatives of F at vc which has three neighbours, (b) non-central nodes

F(vc + d3) = F(v3) = F(vc) + d3F
′
v(vc) + d2

3

2
F ′′

v (vc) (15)

Accordingly, the system of equations is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2

1

2

d2
d2

2

2

d3
d3

2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

F ′(vc)

F ′′(vc)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

F (v2) − F(vc)

F (v3) − F(vc)

⎤
⎥⎥⎥⎥⎥⎦

(16)

This is an overdetermined system with three equations and two unknowns. Overde-
termined systems are usually inconsistent and have no unique solution. In this
case, one way of solving the problem of overdetermination is to convert an
overdetermined system to a determined one by adding more unknowns in the form
of higher derivatives, of course at the cost of additional complexity. Alternatively,
and preferably least squares approximation methods, which are discussed later, can
be used for solving overdetermined systems.

Although Example 6 did not need for higher derivatives, at the price of higher
computations, by expanding one more element of Taylor series for each neighbour
of vc and adding the third derivatives to the unknowns, the overdetermined system
is converted to a determined system.

The resulting system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2

1

2

d3
1

3!

d2
d2

2

2

d3
2

3!

d3
d3

2

2

d3
3

3!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

F ′(vc)

F ′′(vc)

F ′′′(vc)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

F (v2) − F(vc)

F (v3) − F(vc)

⎤
⎥⎥⎥⎥⎥⎦

(17)
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In both Examples 5 and 6, node vc was located between multiple nodes. A new
challenge is posed when derivatives at a node with only one neighbour are desired.
Approximating the derivatives of F at v3 in Fig. 5a is such an example. It will be
shown that derivatives of such nodes are also calculable. However, before that two
new definitions need to be provided.

Definition 6 (Central Node) A node is called central node, if it has more than one
neighbour; nodes vc in Figs. 4b and 5a are examples of central nodes. This definition
has no relation with the degree of centrality.

Definition 7 (Non-central Node) A node is non-central, if it is not located
between at least to other nodes. Putting differently, a non-central node has only
one neighbour.

Example 7 illustrates the approach for approximating derivative of a function at
a non-central node.

Example 7 The goal is to find first, second, and third derivatives of F at the current
node vc in Fig. 5b. Node vc is a non-central node and has only one neighbour v1. This
example shows how by using Taylor series and values of F at v2 and v3 (neighbours
of the non-central node’s neighbour).

Writing Taylor expansion for node v1 is straightforward

F(vc + m) = F(v1) = F(vc) + mF ′
v(vc) + m2

2
F ′′

v (vc) + m3

3! F ′′′
v (vc) (18)

A slightly different approach is taken to write Taylor expansions of F at nodes
v2 and v3. The Taylor expansions of F at v2 and v3 are as follows:

F(vc + m + d1) = F(v2) = F(vc) + (m + d1)F
′
v(vc)

+ (m + d1)
2

2
F ′′

v (vc) + (m + d1)
3

3! F ′′′
v (vc) (19)

F(vc + m + d2) = F(v3) = F(vc) + (m + d2)F
′
v(vc)

+ (m + d2)
2

2
F ′′

v (vc) + (m + d2)
3

3! F ′′′
v (vc) (20)

Subsequently, first, second, and third derivatives can be approximated by solving
the following system of equations:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
m2

2

m3

3!

(m + d1)
(m + d1)

2

2

(m + d1)
3

3!

(m + d2)
(m + d2)

2

2

(m + d2)
3

3!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

F ′(vc)

F ′′(vc)

F ′′′(vc)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

F (v2) − F(vc)

F (v3) − F(vc)

⎤
⎥⎥⎥⎥⎥⎦

(21)

A General Framework for Approximating Derivatives of a Function in Graph
Space The approximation of the derivatives of a function at a given node in graph
space depends on the following factors:

– Position of the node: A node can central or non-central (Definitions 6 and 7).
– Number of neighbours: For a central node with n neighbours derivatives one

to n can be approximated. For a non-central node where its only neighbour has
n − 1 nodes, derivatives one to n can be approximated.

– Desired order of derivative: A general framework must answer different users’
requirements. In some cases, users may only need up to second derivative, and in
some other cases, they may need up to higher derivatives.

Based on the first factor, position of the node, the general framework is broken into
two categories. Two remaining factors, number of neighbours and desired order of
derivatives, are analysed in each category.

Derivatives at Central Nodes Figure 6a shows a central node vc that has n

neighbours. This means derivatives one to n are available for this node.
Taylor series equation for the ith (1 ≤ i ≤ n) neighbouring node of vc is

F(vc + di) = F(vi) = F(vc) + diF
1
v (vc) + · · · + dn

i

n! Fn
v (vc) (22)

Fig. 6 (a) Approximating derivative of F at node vc with n neighbours, (b) approximating
derivative of F at the non-central node vc
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These equations result into the following system of equation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1 . . .
dn

1

n!
. . .

dn . . .
dn
n

n!

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

F 1(vc)

. . .

F n(vc)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

. . .

F (vn) − F(vc)

⎤
⎥⎥⎥⎥⎥⎦

(23)

Equation (23) is a system of linear equations with n equations and n unknowns.
This system of equations calculates first to nth derivatives of F at node vc. However,
in some applications, the higher orders of derivatives are not necessary. For example,
determining the curvature of shape at given node in graph space requires only first
and second derivatives. In other words, some applications only need up to mth
derivative (1 ≤ m ≤ n). In such cases, approximating n − m extra unknowns
is unnecessary. Considering extra unknowns becomes particularly challenging or
computationally expensive when m is a large number. In such cases, the number
of unknowns is reduced to m. This can be done by modifying Eq. (22) so that it
incorporates only m elements in expansion of Taylor series for each neighbouring
node. This resulting equation is

F(vc + di) = F(vi) = F(vc) + diF
1
v (vc) + · · · + dm

n

m! F
m
v (vc) (24)

where i (1 ≤ i ≤ n) represents an equation for each neighbour of vc, and m (1 ≤
m ≤ n) is a constant that represents the desired order of derivatives. Equation (24)
represents n equations where each equation has j unknowns. The unknowns are
determined by solving the following overdetermined systems of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1 . . .
dm

1

m!
. . .

dn . . .
dm
n

m!

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

F 1(vc)

. . .

Fm(vc)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

. . .

F (vn) − F(vc)

⎤
⎥⎥⎥⎥⎥⎦

(25)

In Eq. (25), the number of unknowns is less than number of equations. In such
cases, the least square approximation method is used to find the answers of Eq. (25).
Reduced QR factorisation [16] and singular value decomposition (SVD) [22] are
two well-known methods for approximating the least square solutions. While SVD
method is more accurate, QR method is faster.

In general terms of linear algebra, a system of equations is expressed as Af = b.
A system has no solution if the determinant of A is equal to zero. Considering the
constraint matrix in Eq. (23) or Eq. (25), the determinant is zero when there exist i

and j , (1 ≤ i ≤ n), (1 ≤ j ≤ n), and i 	= j . In other words, there are i and j
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in the first matrix of Eq. (23) so that di = dj . That means node vc has exactly the
same distance to two of its neighbours vi and vj . Putting it differently, vi and vj

are equivalent to vc. For instance, in social network context, this implies that the
difference between profiles of vc and vi is exactly equal to profile difference of vc

and vj . In case of such occurrences, the approach here is to alternatively omit vi and
vj to make system of equation solvable. If the difference between two alternative
approximations is more than a given threshold (i.e., noticeable), then a new meta-

node vx is created and replaces both vi and vj , and F(vx) = F(vi)+F(vj )

2 .

Derivatives at Non-central Nodes Figure 6b shows one of the peripheral nodes as
the current node vc for which the derivative is approximated. The neighbour of the
current vc is always a central node unless it is part of a two-node component of the
graph, in which case it is only possible to calculate the first derivative.

In this case, vn has several neighbours; therefore, the derivatives of F(vc) are
approximated by solving the following system of equations:

F(vc + m) = F(vn) = F(vc) + mF ′
v(vc) + · · · + mn

n! Fn
v (vc) (26)

All other nodes vi where 1 ≤ i ≤ n − 1 have the following equation:

F(vc + m + di) = F(vi) = F(vc) + (m + di)F
′
v(vc) + · · ·

+ (m + di)
n

n! Fn
v (vc) (27)

4 Community Detection Using Derivatives

4.1 Geometric Active Contours

In the field of image processing, the problem of object detection has been addressed
in many different ways. Active contours is a method devised first in 1988 [5]. A
related approach, based on differential geometry, was devised in 1997. Due to its
efficiency, autonomy, and unsupervised nature geometric active contours [5] is used
extensively for detecting object in 2D images in the field of machine vision. In
this method, an initial contour deforms and evolves in order to find the boundary
of an object. In an image, shapes distinguish themselves from the background by
boundaries characterised by pixels whose properties are very different from those
of the adjacent pixels which form part of the background.

Initially, a curve is created at a random location of the image with the goal
of finding the boundary of an object. The curve evolves based on two concepts:
curvature and gradient. The curvature of a function f (x), defined in Eq. (28),
describes how fast the curve changes its tangent or direction
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κ = f ′′(x)

(1 + f ′2(x))
3
2

(28)

f ′(x) and f ′′(x) are the first and second derivatives. The vector differential operator
∇ has the following definition:

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k (29)

Assuming three-dimensional Euclidean space, the gradient of f (x, y, z) is obtained
by applying the vector operator ∇ to the scalar function f (x, y, z) as defined in
Eq. (30)

∇f (x, y, z) = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k (30)

In geometric active contours, the curve evolves in the direction that is perpendicular
to the curve. The curve is considered the current boundary, and an adjacent pixel
on the movement direction of the boundary is evaluated for inclusion based on the
magnitude of the gradient between the pixel on the boundary and the neighbouring
pixel at that direction. In images, gradient is obtained by subtraction of gray values
of neighbouring pixels. A second criterion for the inclusion of a neighbouring
pixel is the curvature of the current boundary. A straight line has a curvature
of zero. A curve that ‘recedes’ inward towards the shape has a high curvature.
Intuitively, an object is likely to strive to include ‘inserts’ into its area. Hence an
increased curvature favours the inclusion of pixels on the outside of the boundary. In
combination, gradient and curvature result in the velocity s of the curve, expressed
in Eq. (31). The velocity decides the likelihood of a pixel being included in the shape

s = gκn − (∇gn)n, where g = 1

1 + |∇I |2 (31)

where n denotes the normal direction and I the pixel values in an image with |∇I |
as the magnitude of the gradient between two pixels [5]. A community can be seen
as a shape in a graph whose nodes are highly connected while their connections to
nodes outside the shape are sparse. Since the velocity and its components gradient
and curvature are based on derivatives which use the connections between a node on
the boundary and its neighbours inside the shape as a basis for deciding the inclusion
of a candidate node outside the shape, the approach can be expected to detect good
boundaries of shapes.
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4.2 Finding Local Communities

Image processing is a data-intensive process which benefits from localised methods
like active contours. Graphs as encountered in social networks are similarly
demanding because of the potential sizes of graphs and their high dimensionality.

The analogy between the discovery of shapes in images and the detection
of communities in graphs suggests that an application of the active contours
method to graph spaces might provide an efficient alternative to existing clustering
techniques. Mapping the relevant concepts from Euclidean to graph space poses a
few challenges. While in image processing, the goal is to identify shapes with an
external boundary, communities in graphs are defined as sets of nodes that share
more properties with other nodes within the same community than they do with
nodes outside the community. Unlike images, where the number of dimensions
is uniform across the pixels, each node in a graph can have different numbers of
neighbours, giving rise to high fluctuations in dimensionality. An image has a clearly
defined boundary, whereas it is hard even to define the boundary of an entire graph.
As a consequence of the non-uniform dimensions of a graph, most matrix operations
used in machine vision cannot be applied to graphs.

Before describing the algorithm we need to define a proper F function. F(vi, vj )

represents the distance between vi and vj . Any suitable distance measure can be
chosen for it. The criterion used for F(vi, vj ) in this research is the structural
equivalence. Nodes are structurally equivalent if they are in the same area of the
graph and have the same neighbours. So F(vi, vj ) is defined as

F(vi, vj ) = 1 − |N(vi) ∩ N(vj )|
|N(vi) ∪ N(vj )| (32)

where N(vi) is the set of neighbours of node vi and
|N(vi) ∩ N(vj )|
|N(vi) ∪ N(vj )| , or the

structural similarity, shows the proportion of the common neighbours.
The algorithm starts from a single node which is assumed to be part of the

shape. Initially, the seed node vi is considered the current boundary of the shape. A
second node vj , which has the minimal distance F(vi, vj ), is chosen for inclusion
in the shape. As the calculation of the second derivative requires the presence of
at least three nodes, a hypothetical node, with the maximum distance of one from
the other two nodes, is added, assumed to be part of the shape. This procedure is
represented by the line initialise community in Algorithm 1. The shape χ initially
comprises these three nodes, from which it expands through the inclusion of nodes
adjacent to the boundary. Nodes adjacent to the boundary on the outside of the
shape are candidates considered for inclusion. Each node vi on the boundary which
is connected to the candidate node vp considers its inclusion based on the velocity
function Eq. (33)



96 M. A. Rigi et al.

s(vi, vp) = κ(vi, vp)

1 + α|∇F(vi, vp)|2 − arctan(|F ′(vi, vp)|) (33)

In Eq. (33), the curvature is represented by κ(vi, vp), which is defined in Eq. (34).
The magnitude of the gradient |∇F(vi, vp)| describes the difference between vi and
the candidate node vp. The parameter α moderates the difference between nodes.
The larger the alpha, the stricter the criterion for the inclusion of a node. The term
arctan(|F ′(vi, vp)|) has been added to map the value of |F ′(vi, vp)| to a value
between zero and one with the purpose of achieving a negative impact to sudden
changes in the derivative of the distance function in order to reduce noise

κ(vi, vp) = F ′′(vi, vp)
(

1 + (
F ′(vi, vp)

)2
) 3

2

(34)

As shown in Eq. (34), curvature uses first and second derivatives of the distance
function from node vi on the boundary to the candidate vp. While the gradient
bases the decision of an inclusion of node vp on the difference between vp and
the boundary node vi , curvature represents the curve of the boundary at vp—
essentially, ‘concave’ boundaries are more likely to include a node vp, because,
loosely speaking, it could be seen as ‘enclosed’ by that boundary. In Fig. 5, values
of curvature and gradient for two simple graphs are shown. Using the Eq. (33), the
velocity from v5 towards vp is −0.06 in Fig. 5a; thus, vp will not be included in
the community. In Fig. 5b, the velocity value towards vp is positive for all v3, v4,
and v5; therefore, the first one which, according to Algorithm 1, has the chance to
include vp, will include it and curvature and gradient for the rest of them will not be
computed (Fig. 7).

Algorithm 1 Derivative-based community detection
Input: seed, α

Queue Boundary = seed

Set C ← InitialiseCommunity(seed)
Boolean switch = false
while switch 	= true do

switch = true
Node vx ← Deque(Boundary)
candidate_list ← OutsideNeighbours(vx )
for every vp in candidate_list do

if Velocity(vx, vp, α) > 0 then
C ← C ∪ {vp}
Boundary ← UpdateBoundary()
switch = false

end if
end for

end while
return C
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Fig. 7 In both (a) and (b), shape χ consists of v1, v2, v3, v4, and v5 and vp is the candidate for
the inclusion. In (a), values of curvature and gradient from v5 towards vp are shown. In (b), values
of curvature and gradient from v3, v4, and v5 towards vp are shown

Starting from a given seed node, the boundary of a shape moves until the velocity
function s no longer warrants the inclusion of further nodes. Candidate nodes are
evaluated from all nodes on the boundary they are connected to, but the evaluation
stops as soon as one of the boundary nodes favours the inclusion of the node.
This means that most of the time, the algorithm achieves a significantly better run
time than required by its worst case complexity. Figure 8 shows an example of the
proposed algorithm.

In Eq. (33), the velocity function has only one parameter, α. To give the user
control over size and quality of the desired communities α is added to the inclusion
criteria. The larger the α is, the stronger the effect of the gradient, and therefore the
sharper the edge.

5 Tracking Local Communities Using Surface Tension

To track communities, we use structural similarity defined in Eq. (32). The structural
similarity shows the proportion of the common neighbours. In investigating local
communities, a node has one of the following situations: outside of the boundary
of a community, on the boundary of a community, or inside a community (without
any neighbours in outside). This is illustrated in Fig. 9. As it is shown in Fig. 9,
two binding forces are affecting a node on the boundary. We simulated the inside
and outside pressures on the surface of a community using these pressures (binding
forces). Poutside and Pinside are modeled by structural similarity of the nodes on the
boundary of the community to the nodes inside and outside of the community

K =
n∑

i=1

κ(vi, C) (35)
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Fig. 8 The red nodes show the current community and the green nodes are candidates for
inclusion. The number on the edges shows the velocity from a node to the candidate. When the
velocity towards all neighbouring nodes is negative, the algorithm stops

Poutside =
n∑

i=1

m∑
j=1

similarity(vi, outside_neighbourj (vi)) (36)

Pintside =
n∑

i=1

m∑
j=1

similarity(vi, inside_neighbourj (vi)) (37)

where n is the number of nodes on the surface of a community and m represents the
number of inside or outside neighbours for the ith node on the surface. In our model,
we use the radius of curvature towards inside the community. Thus, the surface
tension of a community can be represented in Eq. (38).
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Fig. 9 Surface of a
community and its binding
forces

γ = (Poutside − Pinside)K (38)

where κ was defined in (34). Substances are shaped in a way that the tension on their
surface in minimised. Following a similar logic, a node is added to a community
if surface tension of the community is reduced or it remained unchanged. Our
method is able to track local communities with temporal smoothness changes in
a network. In temporal smoothness, there is a stream of atomic changes. The
community updates itself triggered by a change. The criteria for adding a new node
to community is

γnew − γold ≤ α (39)

α, which is a non-negative value, is the tolerance threshold. Small values of α allow
inclusion of nodes which may slightly increase community’s surface tension and,
therefore, community’s quality. Our experiments show α = 0 is a very strict criteria
and does not allow inclusion of the nodes which their impact on worsening the
quality of community is negligible and close to zero. Because of the tolerance
threshold, some nodes may decrease the community’s quality, but the quality is
expected to increase again when new nodes are added. In other words, exclusion
of the nodes that may slightly decrease the quality (or increase the surface tension)
prevents the inclusion of some nodes which can increase the quality considerably.

As stated in Eq. (38), to track a community of three vectors keep curvature of
boundary nodes towards community, similarity to outside neighbours, and similarity
to inside neighbours. One approach is to recalculate the surface tension whenever a
new node, based on Eq. (39), is added. However, in a more efficient approach, once
a new node is added to boundary, new values for the necessary areas of the three
mentioned vectors need to be recalculated.
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6 Experimental Evaluation

6.1 Community Detection

Comparing the outcome of local spectral clustering (LSP) [25] and derivative-
based community detection (DCD) has its challenges because both methods depend
on a parameter which leads to different combinations of quality and size in the
communities detected. The teleportation parameter of LSP defines the type of
community being developed. In the experiments, we ran LSP with teleportation set
to 20 equally spaced values as explained by Jeub et al. [17]. The parameter α in
DCD defines the stringency of the inclusion criterion, with larger values being more
restrictive. Unlike LSP, DCD stops when according to Eq. (33), no further candidate
nodes qualify for inclusion.

Some of the most widely known measures for determining the quality of local
communities are intra-cluster density, relative density, and conductance. Intra-
cluster density is the fraction of the number of edges inside the community to total
number of edges in network. Relative density is the ratio between the number of
intra-cluster edges and the number of edges that connect the community to the rest
of the graph. Conductance is defined as

Conductance(C) = vol(C, C̄)

min
(
vol(C,G), vol(C̄,G)

) (40)

In Eq. (40), C is the set of nodes which comprise the community, C̄ = V −C denotes
the nodes in the graph which are not in C, and vol(C1, C2) = ∑

i∈C1

∑
j∈C2

Aij ,
where A is the adjacency matrix. Conductance(C) has a lower value when the
community is loosely connected to the rest of the graph. Therefore, the lower the
conductance, the higher the quality of the community. Following the practice of a
number of recent studies of significance [17, 24, 25], we choose conductance as a
standard quality measure.

The graphs used in the experimentation are Facebook graph FB-JHK of John
Hopkins University with 5180 nodes and 186,572 edges, and FB-CALTC of
California Institute of Technology with 769 nodes and 33,312 edges, both captured
in September 2005 and are part of the FACEBOOK100 dataset [40].

In Fig. 10, we included the progress of the one among the 20 LSP instances that
produced the community with the best conductance (regardless of the size of the
community) for the JHK-FB network. Local geodesic spreading (LGS) [3], which
is based on PageRank, has no parameters except the seed node, hence there is no
choice in the result to include. Because of the variation in the parameter α, we
included two result graphs for DCD. Figure 10a–d represent trials starting from four
different seed nodes and were chosen because they are representative of the different
behaviours of the algorithms. Figure 10a shows a case where LSP outperforms all
others except DCD with α = 2.5 when the community has a size of around 200
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Fig. 10 Conductance plot for different methods and different starting nodes in FB-JHK. Initial
seed: (a) 2645, (b) 3229, (c) 3554, and (d) 3718

nodes. In Fig. 10b the smaller communities found by LSP are of slightly better
quality than those of DCD, but DCD with α = 1.5 discovers a community with
around 330 nodes with better conductance. In Fig. 10c, the performances of LSP and
DCD are almost equivalent—in most cases, DCD with α = 2.5 produces slightly
better quality than LSP, but all three algorithms produce similar results. In Fig. 10d,
DCD with α = 2.5 produces considerably better quality for smaller communities,
while DCD with α = 1.5 shows better conductance for larger communities. LGS
is not a competitive algorithm in any of the cases examined. The results shown in
Fig. 10 illustrate the difference in performance of DCD that the parameter α entails.
This raises the question how to identify the best setting for α. Further investigations,
illustrated in Fig. 11a, show that smaller values of α lead to the detection of larger
communities, while larger values of α discover small-size communities. Because
larger values of α restrict the inclusion of new nodes earlier, the algorithm stops
at a smaller community size. Table 1 shows the average sizes of the communities
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Fig. 11 (a) Effect of α on finding local communities around a seed node in FB-JHK, (b)
conductance of the different detected communities in FB-JHK where α = 1.5

Table 1 Effect of α on the size of detected communities in FB-JHK for 20 different initial random
seeds

α 1.5 2 2.5

Average size 588.2 242.8 173.1

Fig. 12 (a) Average conductances of the communities in FB-JHK, (b) average conductances of
the communities in FB-CALTC

detected with different values of α. The quality of the community found, large or
small, depends on the initial seed. This property is common to DCD and most other
methods, including LSP and LGS.

Figure 12a, b compare the average conductances achieved by the different
algorithms for a community of a particular size starting from 20 different random
seeds. The size is dictated by the number of nodes included by DCD with the value
of α given. Since several restarts were used, the size is not exactly identical in each
of the restarts, but for each restart, the community with an equivalent size produced
by LSP and LGS was chosen to calculate the average conductivity. For LSP, the
trials were repeated with each of the 25 parameters for teleportation and the average
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is reported. Figure 12a, b show the conductance of the detected communities for
DCD, LSP, and LGS for the 20 random seeds in FB-JHK and FB-CALTC. As it
can be seen, DCD has the best performance followed closely by LSP and then with
some margin is the LGS.

6.2 Community Tracking

Community tracking evaluation has two sections. In the first section, we will
show why surface tension of a community represents its quality by comparing
it to conductance, a very well-known and widely accepted quality measure for
communities. In the second section, the effectiveness of the surface tension as local
community tracking tool is demonstrated.

6.2.1 Analysing Surface Tension of Communities

To demonstrate the potentiality of surface tension as a local objective or quality
measure, we compared it with the conductance for more than 200 communities.
These communities were detected by some well-known global and local methods on
different networks. All networks in this section are part of FACEBOOK100 dataset
[40].

We show the correlation between surface tension of a community and its
conductance for several communities in different networks. To find communities,
we applied one of the best known global community detection methods, which is
proposed by Sobolevsky et al. [33], to FB-Caltech, FB-Trinity, FB-Yale, and FB-
Simmon, and then found the correlation between surface tension and conductance
of the detected communities. The specification of the mentioned networks is
presented in Table 2 and the correlations between surface tension and conductance
are presented in Table 3. In another experiment, we calculated the correlation of
conductance and surface tension of communities for 100 local communities in FB-
UCF and another 100 communities in FB-DUKE. We used local spectral method
[25] with different random initial seed for finding these 200 communities in these
two networks. The specifications of the networks can be seen in Table 2.

Considering the fact that surface tension is a local concept and only uses the
local information of a community, whereas conductance is a global notion and

Table 2 Datasets’ details

Networks FB-Caltech FB-Trinity FB-Yale FB-Simmon

Nodes 669 2613 8578 1518

Edges 33,253 111,996 405,450 65,976

Average degree 43.39 85.72 94.5 86.92
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Table 3 The correlation between surface tension and conductance of detected communities by
Sobolevsky et al. [33] method

Networks FB-Caltech FB-Trinity FB-Yale FB-Simmon

Number of communities 10 6 7 6

Correlation 0.7311 0.8768 0.7635 0.8404

Table 4 The correlation between surface tension and conductance of detected communities by
local spectral method [25] method.

Networks FB-UCFA FB-DUKE

Number of communities 100 100

Correlation 0.9465 0.9286

needs network’s entire information, the high correlation between them suggests that
surface tension can be seen as a local quality objective (Table 4).

6.2.2 Tracking Local Communities

To evaluate our model for tracking communities, the dynamic community network
generator by Görke et al. [15] is used. The benefit of their clustered network
generator is its capability to create communities in a dynamic network with an
atomic change stream where ground truth is known. The stream of atomic changes
is generated in a way that the community label of every newly added node is known.
The ground truth data can be compared against our method’s result. We compared
surface tension model against the ground truth data. In this experiment, several
networks with 1000 nodes and five communities with different intra-cluster and
inter-cluster edge probabilities are generated. More intra-cluster and less the inter-
cluster probabilities lead to higher quality communities. In the next step, 200 nodes
are added to the network through a stream of atomic changes. Our model tracks and
maintains each of the communities. Since it is known a priori which cluster every
newly added node belongs to, we report precision, recall, and F1 score for different
scenarios.

To test the performance of our model for tracking local communities, seven
different scenarios with ground truth dynamic communities were generated. Each
network initially has 1000 nodes with an average degree of 30. Then, 200 nodes
are successively added to the network. The seven experiments differ in their
probabilities of inter-cluster and intra-cluster edges. Experiments are labeled in
alphabetical order. Their parameterisations are shown in Table 5.

The precision, recall, and F1 scores for each of the experiments are shown in
Fig. 13. As the probability of edges within clusters decreases and the probability of
edges between clusters increases, tracking communities becomes more difficult and
the accuracy decreases. For well-defined communities, it performs better.
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Table 5 Different
parameterisation for
intra-cluster (Pin) and
inter-cluster (Pout)
probabilities

Scenarios

A B C D E F G

Pin 0.8 0.8 0.8 0.7 0.7 0.6 0.5

Pout 0.1 0.3 0.2 0.2 0.3 0.3 0.3

Fig. 13 Precision, recall, and F1 score for each scenario in Table 5

7 Conclusion and Future Works

In this study we have extended the definition of derivatives to graph and approx-
imated derivatives over graph domain. Inspired by geometric active contours, we
proposed a method (DCD) that has shown comparable performance to a well-
known local community detection algorithm (LSP [25]). While both methods have
similar computational complexity, DCD offers more desirable stopping criteria,
where unlike LSP it will stop automatically once all qualified nodes have been
included in the community. Moreover, we introduced the concept of surface tension,
a natural phenomenon which is heavily investigated in chemistry, into networks.
According to chemistry, the binding forces between the molecules of a liquid draw
the molecules of the substance into a shape that has the least surface area. That
is to say, a community of similar liquid molecules tends to shape themselves in a
way that surface tension is minimised. Likewise, the binding forces between nodes
of a community inside a network lead to particular patterns for a community. A
pattern or shape in which the surface tension of community is minimised. We used
surface tension as an objective for tracking local communities in dynamic networks.
Surface tension provides a unique ability for tracking local communities in dynamic
networks in which new nodes are added over time. In other words, when a node is
a candidate of inclusion in a local community, it will be included only if the surface
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tension of the community is reduced or remains unchanged. Our experiments show
the effectiveness of the proposed approaches to find and track communities as well
as the proposed framework for finding derivatives in graph space.
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