®

Check for
updates

Small Faults Grow Up - Verification
of Error Masking Robustness
in Arithmetically Encoded Programs

Anja F. Karl'®) | Robert Schilling!?, Roderick Bloem®, and Stefan Mangard®

! Graz University of Technology, Inffeldgasse 16A, 8010 Graz, Austria
{anja.karl,robert.schilling,roderick.bloem,stefan.mangard}@iaik.tugraz.at
2 Know-Center GmbH, Inffeldgasse 13/6, 8010 Graz, Austria

Abstract. The increasing prevalence of soft errors and security concerns
due to recent attacks like rowhammer have caused increased interest in
the robustness of software against bit flips.

Arithmetic codes can be used as a protection mechanism to detect
small errors injected in the program’s data. However, the accumulation
of propagated errors can increase the number of bits flips in a variable -
possibly up to an undetectable level.

The effect of error masking can occur: An error weight exceeds the lim-
itations of the code and a new, valid, but incorrect code word is formed.
Masked errors are undetectable, and it is crucial to check variables for
bit flips before error masking can occur.

In this paper, we develop a theory of provably robust arithmetic pro-
grams. We focus on the interaction of bit flips that can happen at differ-
ent locations in the program and the propagation and possible masking
of errors. We show how this interaction can be formally modeled and
how off-the-shelf model checkers can be used to show correctness. We
evaluate our approach based on prominent and security relevant algo-
rithms and show that even multiple faults injected at any time into any
variables can be handled by our method.

Keywords: Formal verification + Fault injection
Error detection codes - Arithmetic codes + Error masking

This project has received funding from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation programme (grant agree-
ment No. 681402), by the Austrian Science Fund (FWF) through the research network
RiSE (S11406-N23), and by the Austrian Research Promotion Agency (FFG) via the
competence center Know-Center, which is funded in the context of COMET Com-
petence Centers for Excellent Technologies by BMVIT, BMWFW, and Styria. The
authors would like to especially thank Karin Greiml and Bettina Konighofer for their
support.

© Springer Nature Switzerland AG 2019

C. Enea and R. Piskac (Eds.): VMCAI 2019, LNCS 11388, pp. 183-204, 2019.
https://doi.org/10.1007/978-3-030-11245-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11245-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-11245-5_9

184 A. F. Karl et al.

1 Introduction

A typical assumption when writing software is that registers and memory content
do not change unless the software performs a write operation on these locations.
However, in practice, this assumption is challenged in several ways. On the one
hand, the feature size of transistors in processors and memories keeps shrinking
and shrinking, which allows natural phenomena like cosmic radiation to sporad-
ically flip bits in memories and processors [4]. On the other hand, there exist
attack techniques that aim at overcoming security mechanisms of systems by
inducing targeted faults into a system. There is a wide range of publications on
how to induce faults in systems using for example voltage glitches [3] or lasers
[29]. The rowhammer effect [15] even allows attackers to cause bit flips remotely
without any physical access to the target device.

Independent of whether a fault is caused by a natural phenomenon or an
attacker, we refer to any change of a system state that is not caused by the
software itself as a fault. Faults have huge implications on the security and safety
of a system. Even a single bit flip, can lead to a critical system failure or reveal
secret cryptographic keys (e.g. [1,7]). Consequently, appropriate mechanisms for
detecting and handling faults are necessary.

The first error detection codes have been invented by Golay [13] and Ham-
ming [14]. They proposed to add redundancy to every number, to increase the
Hamming Distance [14] between encoded numbers. The higher the size of redun-
dancy, the more bit flips can be detected. In the subsequent years, a special
form of error detection codes have been discovered: Arithmetic codes do not
only detect up to a fixed number of bit flips, the code words also remain valid
over a certain set of arithmetic operations, e.g. encode(a) +¢n. encode(b) =
encode(a + b). The number of detectable bit flips depends on the minimum
arithmetic distance between valid code words [17], referred to as dyn. Examples
for arithmetic error detection codes are AN, AN+B and residue codes [9,10,22].

1.1 Error Masking

In this work, we build up on the theory of arithmetic distance between arithmetic
code words [17] and extend it to describe the propagation of errors and their
arithmetic weights over an arithmetic program.

Listing 1.1. Copy of an invalid code word, resulting in two faulted variables a and b.

1|a := encode (0)
2la := flip(a, 0™ bit)
3lb := a

Every typical program contains data dependencies. If a value depends on a
faulted one, it is influenced by that fault and is unlikely to be correct — the error
propagated to the new variable. Listing 1.1 shows a simple example of an error
propagating from one faulted variable to another one.

Small Faults Grow Up 185

Listing 1.2. The sum of two invalid code words a and b, yields a faulted code word ¢
containing two flipped bits.

1| a encode (0)

2la := flip(a, 0™ bit)
3|b := a + a

4|c := a + b

As soon as an instruction has two faulted operands, the arithmetic weight of
the errors can accumulate, and as a result the new error’s weight can exceed the
detection limit d,y,;, of the code. In Listing 1.2, the flip of the 0" bit in a results
in a flip of the 1% bit in b. Both errors accumulate to two bit flips in c.

Definition 1 (Error Masking). Error masking is the effect of a new, valid,
but incorrect code word emerging from an operation with two faulted operands.

Listing 1.3. The injected fault is detected before errors can accumulate.

1| a encode (0)

2la := flip(a, 0™ bit)
3lb := a + a

4| check (b)

5/c := a + b

A countermeasure for error masking is to check variables for errors at inter-
mediate program locations, like in the example in Listing1.3. However, it is
non-trivial to determine where to place these checks: on the one hand, too many
checks increase the run time of a program significantly, on the other hand, miss-
ing checks can lead to error masking.

1.2 Contribution

Within this work, we present a technique to prove that a program is robust
against error masking. The following three points summarize our contribution:

1. We introduce the theory behind the effect of error masking based on the
concept of error propagation over arithmetically encoded programs.

2. We use these insights to define the property of error masking robustness
and present a novel technique to prove that the checks inside a program are
sufficient to prevent error masking.

3. We demonstrate the capabilities of our approach based on real world pro-
grams. We were able to detect error masking vulnerabilities in cryptography
algorithms and propose verifiable robust adaptions of these algorithms con-
taining intermediate checks.

The core idea of our proposed method is the translation of an input program
into a model of its worst-case error propagation, and to evaluate the model using
an off-the-shelf model checker. With our method, we are not limited to detect
robustness violations, but also receive indications of the problematic statements.

186 A. F. Karl et al.

Furthermore, our approach is generic for all arithmetic encoding schemes, as long
as there is a minimum arithmetic distance d,,;, between valid code words.

The flexibility of the technique allows us to use fault specifications of varying
complexity. In contrast to other approaches, our method allows us to evaluate a
program in the presence of multiple faults distributed over all possible locations!

1.3 Outline

The remainder of this paper is organized as follows: First, Sect. 2 describes the
state of the art and related work. Next, Sect.3 states the preliminaries and
explains the concept of arithmetic codes and its most prominent examples. Our
proposed approach to detect error masking is presented in Sects. 4 and 5: Sect. 4
describes the input language and the fault model, and Sect. 5 states the process
to create a verifiable abstraction of the program under verification. Following,
we prove the correctness of our approach in Sect. 6 and present our experimental
results in Sect. 7. Finally, we conclude with a discussion of (dis-)advantages of
our approach in Sect.8 and a summary in Sect. 9.

2 Related Work

The first papers on arithmetic codes can be dated back to the 1950’s and
1960’s [9,10,17,22]. They describe a class of error detection codes that natively
supports arithmetic operations without decoding the code word. While arith-
metic codes have been developed to detect and correct bit flips during data
transmission, they turned out to be also well suited as protection mechanism
against a more recent concern: Using modern technology, adversaries are able
to intentionally inject faults during program execution and thus reveal secret
information [18].

In the recent years, researchers developed methods to automatically encode
programs at compile time [11,25,26]. Although some of the required checks can
be inserted automatically, they are insufficient for the prevention of error mask-
ing, and the user needs to specify further check locations himself. However, there
is currently no exact theory to decide where necessary checks are required. This
paper addresses this problem by introducing a method to automatically evaluate
the placement of checks inside a program.

The idea of applying formal methods to verify the robustness of programs
against faults is shared with multiple related papers: Pattabiraman et al. [21]
and Larsson and Héhnle [16] both propose to use symbolic execution. The first
of these two papers describes a method, where registers and memory locations
are symbolically tagged with an err label, and error propagation is modelled
through duplication of this label. The framework runs user defined error detec-
tors to identify and report problems. However, the authors do not consider the
exact number of bit flips on a variable, which prevents the tool from identify-
ing error masking. The second publication focuses on the symbolic injection of
multiple bit flips at fixed fault locations. In contrast to our work, it proposes

Small Faults Grow Up 187

a method tailored to the principle of code duplication as countermeasure. This
method compares the result of two versions of the same code, where one is based
on faulted data. The effectiveness of code multiplication requires a strict inde-
pendence of all redundant data paths. Walker et al. [31] introduce a method to
identify such dependencies inside programs.

The idea of using LLVM bitcode transformations to add explicit fault injec-
tions to the source code is shared with the papers [30] and [12]. The idea of [30]
is to execute two versions of a program - the original and a faulted version - and
to evaluate user defined predicates. Every combination of the program counter
and the state of these predicates form a node in a transition diagram. If an exe-
cution ever reaches a node unreachable in the fault-free transition diagram their
tool reports an error. In the second paper, mutated binaries are model checked
against a given specification. The results are then compared with the results of
a fault-free verification run to identify differences. All those papers share simi-
larities with our work, but they apply to different countermeasures and are not
designed to detect error masking.

On the side of formal verification of programs using error detection codes, as
to our knowledge, only few publications exist so far. Meola [20] formally proved
the robustness of a small encoded program using Hoare Logic, and Schiffel [27]
investigates the soundness and completeness of arithmetic codes using formal
methods. Schiffel posits that the formal verification of AN-encoded programs
using model checkers is impossible due to the exponential increase of verification
time. We address this challenge by creating an abstraction of the program, only
considering the error’s weight instead of a variable’s value.

3 Arithmetic Error Detecting Codes

Error detecting codes are a well-known way to detect errors during storage or
computation. They can be divided into multiple sub-classes, among them the
class of arithmetic error detection codes. These codes do not only guarantee a
detection of all errors with an arithmetic weight smaller a constant d,,;,, they
also remain valid over certain arithmetic operations, like additions.

3.1 Examples for Arithmetic Codes

One prominent example for an arithmetic code is the AN-code [9,10,26].
All valid AN code words are multiples of an user-defined constant A, with
encode(x) = x - A. To check a code word for validity, the remainder of the code
word divided by A is calculated. For all valid code words, this remainder must be
0, otherwise the check detects an error and aborts execution. In the case of AN
codes the check aborts, if a code word is not a multiple of A, vare,. mod A # 0.

A second class of arithmetic codes are residue codes [17]. A residue code
word is defined by = concatenated with x mod M, given a constant modulus M,
encode(z) = (z | x mod M). This code separates the redundancy part from the
functional value z, thus the name separate code. Although the robustness of the

188 A. F. Karl et al.

code is defined by the modulus M, residue codes only guarantee detection of a
single bit flip. To overcome this limitation, the redundancy part can be increased
by using more than one residue [23,24], yielding a multi-residue code.

3.2 Arithmetic Weight and Distance

Both, AN-codes and (multi-) residue codes use the arithmetic weight and the
arithmetic distance to quantify the robustness of the instantiated code. These
properties are similar to the Hamming weight and Hamming distance [14] used
for binary linear codes. The arithmetic weight W (|z|) of the integer value x
is defined as the minimum number of non-zero coefficients in the signed digit
representation of x.

W (|z|) = min {Z bi| | b € {~1,0,1}, z = ZW}
i=0 1=0

The arithmetic distance d(z1,2z2) between the two integers z; and x5 is equal
to the arithmetic weight of the absolute difference between x; and xs.

d(z1,12) = W(|z1 — 22)

The constant d,,;, is the only information about the encoding our method
requires. It is defined as the minimum arithmetic distance between any two valid
code words Zeper and Zepeo. All errors with a weight up to d,,i, are guaranteed
to be detected by a properly implemented check. This property is essential to
verify the error masking robustness, as described in the subsequent sections.

Amin = min d(xencl , mean)
TenclZTenc2

4 Error Masking Robust Programs

In this section, we first describe the input program’s language and define the fault
model considered in our approach. Next, we explain, how to derive a program
Py containing explicit fault injections. Finally, we present a formal definition of
robustness against error masking based on an explicitly faulted program Pj.

4.1 Programs

Our robustness verification method is applicable for arithmetic programs of the
following form.

Definition 2 (Input Programs). An input program P is a directed graph P =
(V, E, X\, v, Var), where V is a set of vertices, E C V x V is a set of edges,
AV — S is a mapping of vertices to statements, vy € V is a start vertex, and
Var = Var'® U Var®? is a set of local variables and program arguments.

Small Faults Grow Up 189

All variables var € Var and constants constene € Constene = {encode(n) |
n € N} are arithmetically encoded natural numbers. All statements s € S are
either arithmetic instructions s € Sy, or control-flow directives s € S¢p; i.e.,
S = Sarith U S¢r. Arithmetic instructions s € Serin can either be assignments
of constants s € Sqssign, additions s € Sqqar U Sadaz, or subtractions s € Sgup.
We distinguish between additions with the same variable for both operands,
s € Sgqd1, and additions with different variables, s € S,442. Formally, we have
Sam’th = Sassig'n U Saddl U Sadd2 U Ssuba with

Sassign = {var := conste,. | var € Var, constep. € Constepc},
Saddr = {var := vary + vary | var,var, € Var},
Saddz = {var := vary + vary | var,vary, vary € Var}, and

Ssup = {var := vary — vary | var, vary, vars € Var}.

Control-flow directives s € S include direct jumps s € Sjump, conditional
branches s € Scpranch, checks s € Scpecr and terminators s € S,e;. We have
Scf = Sjump) Scbranch U Scheck U S'ret7 with

Sjump = {goto v | v € V},
Sebranch = {if (¢) goto v1 else goto vy | v1,v2 € V,c € C},
Scheck = {check (var) | var € Var}, and

Sret = {return var | var € Var}.

Boolean conditions ¢ € C are either comparisons val; op valy, with valy, valy €
Consten.U Var and op € {<,<,=,#, >, >}, or boolean combinations of compar-
isons. In the fault-free case, conditional branches continue with the first target
vertex, if the condition ¢ evaluates to true, and with the second vertex other-
wise. Every conditional branch performs an implicit check on all operands in c.
To avoid flipping the boolean value of c itself, we propose to use branch protec-
tion algorithms like [28]. The execution of a conditional branch can fall into one
of three cases: (1) Every operand is correct and the execution jumps to the cor-
rect vertex. (2) Any operand in the condition is faulted, but contains a detectable
fault. In this case, the conditional branch statement aborts execution and enters
a safe state. (3) The error weight on the compared operands exceeds dyin — 1,
and the branch protection mechanism can miss the fault. The statement con-
tinues with either of both goto statements and executes a possibly invalid path.
This behavior is a consequence of error masking and will be detected by our
method.

A runtime assertion check (var) checks a code word wvar for validity, aborts
execution and enters a safe state if it detects a fault on this variable. However,
checks are not able to detect masked errors and only guarantee to disclose errors
with a maximum arithmetic weight of d,,;, — 1. The actual implementation of
a check depends on the encoding scheme of the program and is both possible in
hardware and in software.

Every vertex v; with a statement A(v;) € Sarith U Scheeck U Sjump has
exactly one successor v;y1. If A(v;) = goto v, the destination vertex v; must

190 A. F. Karl et al.

be the single successor of v;. All vertices v; with conditional branch statements
A(vi) = if (c) goto v; else goto vj have exactly two outgoing edges to v; and
v}, and all vertices v; with return statements A(v;) € Sy..; have zero successors.

Our method requires the whole program to be encoded using the same encod-
ing scheme and the same encoding constants. As a consequence, there is a value
dmin > 1, which is smaller or equal to the arithmetic distance of any two valid
code words. The constant d,,;,, — 1 forms the upper limit for the number of guar-
anteed detectable bit flips and needs to be known in order to evaluate a program
using our method. The programmer is responsible for choosing an appropriate
encoding scheme, such that all operations in the program are possible in the
encoded domain and no overflows can occur.

Listing 1.4. Running example.

1l toy O):

2 a := encode (0)
3 b := a + a

4 check (b)

5 c := a + b

6 return c

As running example we use our small toy program from Listings1.2 and
1.3. The f1ip in both programs was not intended and occurred due to either
an attacker or environmental influences during execution. Listing 1.4 shows the
original program, as it was written by the programmer.

4.2 Fault Model

This work focuses on faults in memory, where bits of variable values are flipped.
Every fault consists of a (possibly negative) error Err of an arithmetic weight
W (| Err|) < dmn added to a variable var at any point in time during program
execution. A special case of faults are bit flips. A single bit flip in the i* bit
corresponds to an error Err = b;2¢, with b; = 1 if the flip sets the bit, and b; = —1
otherwise. Therefore, the arithmetic weight of a single bit flip is W (| Err|) = 1.
All faults injected into a variable var remain present until a new value is assigned
to var and overwrites the fault. In this work, we do not consider control-flow
attacks as there are already promising countermeasures [28,32] to protect this
attack vector. We assume that an integrity mechanism is present such that all
instructions as well as the control-flow of the program are protected.

4.3 Explicitly Faulted Programs

In order to verify the robustness of a program, we need to make faults in the input
program visible to the model checker. Therefore, we define a derived program
with explicit fault injections. The derived program contains a copy of every
vertex v € V called v; with the same statement; i.e., Ay (v}) = A(v). Additionally,
we add a vertex v}’ before every v}. The statement of U}’ injects faults explicitly
into the operands of the statement Az(v}). Formally, we define Py as:

Small Faults Grow Up 191

Definition 3 (Explicitly Faulted Program Pj). Let P = (V,E, A, vy, Var)
be a program, let Vi =V x {1} and Vi’ =V x {2} be two copies of V, and
let Vi = VJZ U V(. The explicitly faulted program Py = (Vy, Ey, Ay, voz, Vary)
s a graph, wlhere Ey = Ey, U Ey, is the set of edges with Ey, = {(v},v}) |
v = (v,2),0f = (v,1),v € V} and Ep, = {(vi,,v5,) | v, = (v1,1),v3, =
(v2,2), (v1,v2) € EY}, and Vary = Var is the set of variables. The start vertex
vos is defined by vor = (vo,2) and the statement function Ay as

A(v) if i=1
var := var+ Err, if i=2and A(v) = return var
Ae((v,1)) = < wary := var, + Errl
7((v,9)) ! ! Y if ¢=2and A\(v) = var:= var, £ var
vars 1= vars + Err2,

€ else.

In this formula, Err, denotes the error injected before execution of the state-
ment of v into its operand. In the case of two operands, the FErri, is the error
injected into the first operand and FErr2, is the error injected into the second
operand. If A(v) has no operands, the statement A¢((v,2)) is empty. The explic-
itly faulted version of our toy example is depicted in Listing 1.5.

Listing 1.5. Ps of the running example in Listing 1.4.

1 toy () :

2 a := encode (0)
4 a := a + Errl,
5 a := a + Err2,
6 b := a + a

8 check (b)

10 a := a + Errl,,
11 b := b + Err2,
12 c := a + b

14 c = c + Erry,
15 return c

4.4 Robustness Condition

The explicit faults in Pf allow us to name the errors on every variable during exe-
cution. Therefore, we can introduce the following terms and define the condition
for robustness of a program against error masking.

Definition 4 (Execution Path). A path m = «[0],...,7[n] is a sequence of
n + 1 wvertices with 7[i] € V, where the program graph P has a directed edge
between any two subsequent elements (w(i], w[i +1]) € E.

192 A. F. Karl et al.

Definition 5 (Execution Trace). An execution trace m**¢ = r[0],...,w[n] of
a program P is an execution path through the program starting at w[0] = v and
ending with a vertex w[n], with A(w[n]) € Syes-

Definition 6 (Feasible Execution Trace). An execution path 7 is contained
in an execution trace w°*°¢, if all elements of ™ are also included in ™ and
their order is preserved. An execution trace w*° of a program P is feasible in
an explicitly faulted program Py, iff there is an execution trace e, such that

TETEC 4s contained in W?“C,

Definition 7 (Fault-Free Program). Given a program Py, the fault-free pro-
gram PJQ is defined as Py with no errors injected at any vertex, i.e. for allv € V
it holds that Err, =0, Errl, =0, and Err2, =0.

Definition 8 (Program State). Given a deterministic, explicitly faulted pro-
gram Py and fizved values for every program argument and injected errors, there
is only one feasible execution trace 7. We define the program state II[t] of ™ as
the mapping from all variables to their value at execution step t. The function
[1I[t] | var] returns the value of the variable var in this execution state, and
[I[t]]x returns the execution path w[0], ..., w[t] up to w[t].

Definition 9 (Error on a variable). Given an execution state Iy of Py and
the corresponding ewecution state 11} of P, the error [II;[t] | Err(var)] on a
variable var is the difference between [IT¢[t] | var] and [IT}[t] | var].

Definition 10 (Robustness of an explicitly faulted program). A faulted
program Py is error masking robust if every feasible execution trace is also feasible
in the fault-free program P)? and all its executions return either a fault-free value
[1I¢[k] | Err(var)] = 0 or any fault on the returned value [II¢[k] | var] is smaller
than dpin and therefore guaranteed detectable.

Definition 11 (Robustness of an program). A program P is robust against
error masking iff the explicitly faulted program Py is robust against error masking.

To guarantee the robustness against error masking, the properties stated
in Definition 10 are required to hold on the explicitly faulted program. The first
condition can be ensured by preventing error masking on any variables compared
in a branch condition, while the latter requires the absence of error masking on
the return value. Both problems are detected by the method described in the
next section.

5 Proving a Program Robust Against Error Masking

This section describes the verification of the error masking robustness of a pro-
gram, as defined in Sect. 4. Figure 1 depicts the verification process: starting from
an input program P, we create the explicitly faulted program P; and derive an
abstract model of the worst case error weight propagation P,. This model is

Small Faults Grow Up 193

Model /
Pf Checker

Improve

X+CEX
)

Fig. 1. The work flow of the verification process.

then model checked for error masking robustness. In the case of error masking
possibilities, the model checker generates a counterexample, which can be used
to improve P by inserting additional checks. If the model checker reports no
errors, the program is guaranteed to be error masking robust.

The main idea behind our method is to track the maximum error weight on
each variable and to ensure this error weight never exceeds d,,;, — 1. In this
case, errors can never mask each other and are always detectable. Our technique
to prove error masking robustness involves three main steps: (1) We derive the
explicitly faulted program P ~» Pr from the input program P, as described in
Sect. 4. (2) We transforms the faulted program Py into an error weight counting
program Py ~» P,. The program P, is a model of the worst case error weight
propagation and contains assertions for ensuring P to be robust. (3) We apply an
off-the-shelf model checker to evaluate the new program P,,. The model checker
proves the absence of error masking or provides a counterexample in case of any
violations of the robustness assertions.

In order to define the error weight counting program P,,, we first introduce
the concept of fault specifications and afterwards explain the language of P,
and its construction.

5.1 Fault Specification

The fault specification FS constraints the maximum arithmetic weight of any
injected error and is provided by the user.

Definition 12 (Maximum Injected Error Weight). The mazimum injected
error weight W,, denotes the maximum weight of errors injected over all visits to
a vertex v into the operand of A(v). In the case of two operands, W1, and W2,
are the mazimum injected error weights of the first and the second operand.

Definition 13 (Fault Specification). A fault specification F'S is a Boolean
expression over predicates Y (W,) op n, with op € {<,<,=,>,>,#} and a
constant n < dpin, such that F'S restricts every injected error weight to an
upper limit of dpmin — 1

A simple example for a fault specification is to limit the sum of all maximum
injected error weights to a constant n < dpn; 1.0 > Wy+> W1, +> W2, < n.

194 A. F. Karl et al.

5.2 Adaption of the Input Language

The language of P, is defined as follows. Let Var, be a copy of all variables of
Var. For every node v € V we have an error weight injection variable W,, for each
operand of A\(v). Similar to the statements S of P, we define the statements Sy, of
P, as combination of arithmetic instructions Sgpitn, and control-flow directives
Scfw. In the case of P,, the arithmetic statements include the initialization
of an error weight inject Sinisinj, , the deletion of an error weight S.ero,,, the
duplication of an error weight Sgyp —and the addition of two error weights
Sadd, - Formally, these statements are defined as:

Sinit_ing, = {Wo :=x|v eV},
Szero, = {vary, =0 | vary, € Vary},
Saupt, = {vary := vary, | vary, vary, € Var,}, and

Sadd, = {vary = vary, + vary, | Vary, Var1y, Vary, € Vary,}.

Control-flow directives S, include jumps Sjump,, , conditional branches
Scbranchy,, terminators Sy, , assertions Sgssert,, and assumptions Sgssume, s 1-€-
Scfw = Sjumpw U Scbranchw) Sretw) Sassertw) Sassumew~ Let Vw be the set of
vertices in P,, Var, a set of variables, and fs a fault specification. We can
define the different kinds of control-flow directives of P,, as:

Sjumpw = {goto vy | vy € Vi },

Scbmnchw = {if (*) goto V1, else goto Vgy | V1w, V2w € Vw},
Spret, = {return},

Sassert,, = 1assert (vary, < dmi) | var, € Vary,}, and

Sassume, = {assume (var, == 0) | var, € Var,} U {assume (F'S)}

In this syntax, the * symbol denotes non-deterministic value. The task of the
model checker is to prove that for any value as * the assertions inside P, are
never violated, given that all assumptions are fulfilled.

5.3 Translation of the Explicitly Faulted Program into a Weight
Counting Program

The error weight counting program P, can be derived from an explicitly faulted
program P, via the transformation Py ~» P,. P, is an abstraction of the program
Py, which stores only the upper bound of the error weight on the corresponding
variables’ value. Therefore, P, contains one error weight counter var,, € Var,
for every variable of Vary. All error weight counters in Var,, = Var; are unsigned
variables, which are initialized to zero. In addition to the two copies of V in P,
P, contains a third copy V.’ =V x {3}, where assertions are added. Further-
more, P, starts with multiple initialization vertices, namely v¢®-init o W-init
and vf®. The vertex v<%-"" is the first vertex of the program with the following
statements:

Ao (VE-EY = Lyary, == 0 | var, € Vary,}.

Small Faults Grow Up 195
Next, within the node vV-" every maximum injected error weight W, is set
to a non-deterministic, positive integer:

AoVt = (W, =% |v e VIU{Wl, =% |ve VIU{W2,:=x|veV}L

As final initialization step, the node v/* limits the maximum injected error
weights according to the fault specification:

Aw(v7¥) = assume(fs).

Let v} be a vertex in Vi, and v;, be the corresponding copy in V. Fur-
thermore, let each var,, be the error weight counter for the variable vary. Every
arithmetic statement Ay (v}) € Sarith 1s transformed into a new statement Ay, (v),)
by the following rules:

vary, =0 if Af(v ar := constene

VAT = VAT14 if Af(v ar = vary + vary

Aw (U:u> =

(
(

VaTy 1= VAT + vary,, i Ap(v ar := var, + vary
(

VAT = VaT1y + vara, if Ap(v ar := var, — vary

Assigning a constant to a variable vary is equivalent to erasing the error that
was stored in vary before execution of the assignment. Therefore, the error weigh
counter is erased. When the same variable is added to itself, the error itself is
multiplied by two, but its weight remains the same. Therefore, the addition of
the same variables var := var; + var; is the same as copying the error weight
counter vary, to wvar,. Finally, every addition and subtraction has the worst
case error propagation var,, := vari,, + vara,, as modelled by the last two cases.

Let ¢;y be all operands of a condition c. Similarly to Af (v}) € Surith, every
control-flow directive A¢(v}) € S¢f is translated according to

goto V14 if)\f(v}) = goto Vif
assume (Cj,y = 0)

if (%) goto v, if)\f(v}) =
else goto Uéw

if (c) goto 'Ullf
else goto véf

assume (vary,, = 0) if Af(v}) = check (var)

assert (vary < dmin)

. N
return if)‘f ('Uf) = return vary

Every unconditional jump in Py corresponds to the same jump in P,,. However,
every conditional branch is transformed into a non-deterministic branch, regard-
less of the previous branch condition. This transformation guarantees indepen-
dence of actual variable values and brings along both advantages and restrictions.
These matters are further discussed in Sect. 8. As all variables accessed by ¢ are

196 A. F. Karl et al.

implicitly checked by a branch protection algorithm as described in Subsect. 4.1,
the new statement begins with the assumptions that all ¢;,, are fault-free. When
a check(var) statement of Py is executed, exactly one of the following cases must

apply:

1. 0 < var < dpn: In this case, an error is detected for sure and the execution is
aborted. There cannot be any further error masking and therefore this case
can be neglected.

2. var > dppn: In this case the program could either be terminated or continued.
This case violates the robustness property and is reported by the assertion
assert(vary < dpin)-

3. war = 0: The only remaining case is the error free case, which can be assumed,
once the robustness assertion has been passed.

Eventually, a return statement quits execution of a program and no further error
masking can occur. Every return in P corresponds to a return in P,.

Like in Py, all fault injections are explicit. A fault injection in P, is repre-
sented by an increment of the error weight counter by the maximum injectable
error weight. After the error has been injected, there are no bit flips left for this
location and the remaining error weight is set to 0.

VAT 1= VaTy + Wy

)\w " —
u) =g

if \f(vf) = vary == vary + Brr,

Finally, a model checker requires a definition of the correctness for a program.
As defined in Definition 10, the correctness of the program can be guaranteed if
all variables’ error weights remain below d,,;,. If there is any chance this property
is ever violated, the model checker should prompt a warning and give a violating
counterexample. Within the program P,, the correctness is assured by calls to
the assert function. Let v!// € V' be a node of the third vertex copy of V', and
var,, be the error weight counter modified by A, (vl). Then A, (v!”) is given as

Aw (V) = assert (vary < dpin | vary, € Vary).

Given the previously defined construction, we can define P,, as follows.

Definition 14 (Error Weight Counting Program P,). Let V,, =
{pew-init gy Weinit fsh g VU V2 U V" be a set of wertices and E, =
{(og-mt, o=t (o=t o)} U {(vg,0,) | v € Vid U{(vl,0)) | vy €
Vit U070 v5) | 010 = (v1,3), 05, = (v2,2),(v1,v2) € Ef} a set of edge
between the nodes. Then P, is defined as Py, = Vi, Fw, Aw, Vow, Vary), with
Vow = - and Var, = Var.

After performing the steps described above, the transformation is complete.
The resulting program P, models the worst case error propagation and any
potential error masking in P is present as an assertion violation in P,

Small Faults Grow Up 197

Listing 1.6. P, of the toy example.

1 toy () :

2 a, b, ¢ := 0

3 Wiy, W2y, Wiy, W2y, W' := *
4 assume (Wl,, + W2, + Wi, + W2, + W™ < 2)
6 a := 0

7 assert (a < dpin)

9 a = a + Wi,

10 a = a + W2,

11 b := a

12 assert (b < dpin)

14 assume (b = 0)

16 a = a + Wi,

17 b i= b + W2,

18 c :=a+ b

19 assert (¢ < dpin)

21 c = c + Wy,

22 assert (c < dpin)

23 return

The weight counting program of our toy example can be seen in Listing 1.6.
Within the first line, it sets every error weight counter (a, b, and c) to zero.
The next line initializes all error weight injections to arbitrary values before they
are restricted according to the fault specification, in this case to at most two bit
flips in total. The next lines (lines 6-22) consist of each the injection of the error
weight into the operands, followed by the error propagation and the robustness
assertions. The check on b in the middle of the program has been transformed
to an assume and finally P, ends with the transformed return statement.

5.4 Applying a Model Checker to Prove Correctness

As third step, we use a model checker to verify the resulting program P,. For
our running example, we are able to verify its error masking robustness, giving
the fault specification Y (W,) < 2 with d:, = 3. However, without the line
check(b), the model checker successfully reports a vulnerability within the
instruction ¢ := a + b, if a contains an error of weight 2. This result corresponds
to the expected outcome as illustrated in Sect. 1.

The next section will give a proof of correctness of our method, followed by
an evaluation of the method using real world examples.

6 Proof of Correctness

We can show that for every potential error masking in P, P,, contains an assertion
violation. For this, we use the following definitions.

198 A. F. Karl et al.

Definition 15 (Mapping of a Program State). Given a program state II;[t]
of the explicitly faulted program Py, we define IL,(IIf[t]) as the corresponding
program state of P, where for all Err, it holds that W (|[II¢[0] | Err,]|) =
[I1.,(II¢[0]) | Wy] and [I1,(I1f[t])]~ is the smallest execution trace containing

[T ¢[t]] -

Theorem 1. Let II¢[t] be a program state, where every variable is smaller or
equal to its corresponding error weight counter in II,,(IIf[t]). After any state-
ment Af(vy) € Sarith, the error of the variable vary modified by Ay(vy) is smaller
or equal to the error weight counter vary, belonging to this variable.

Proof. All arithmetic statements fall into one of the following cases: (1) In
the case of Af(vf) = wvary := encode(c), a variable is set to a encoded
constant, which originally contains no fault. W (|Err(encode(c))]) = 0 —
var, = 0 > W(|Err(vars)]). (2) In the case of addition of the same
variable with itself, A;(vy) = wvary := wvarp + vary, we get D(vary +
eruvm% + Ua'r(])‘l) = W(|2ETT(Uan1)|) - W(|ETT(Uan1)|)7 such that var, =
W (|Err(varg,)|) = W(|Err(vars)|). (3) If two different variables are added
or subtracted, Af(vy) = wvary := vary, £ vary,, the new error weight fulfills
the following inequality: D(vary, + vary,,var'} + vary) = W(|Err(vary,) —
Err(varg,)|) < W(|Err(vary,)|) + W(|Err(varg,)]). Therefore it holds that
vary, = W(|Err(vary,)|) + W(|Err(varg,)|) > W (| Err(vary)|).

Theorem 2. In any program state II¢[t] of Py with IT,(IIf[t]) fulfilling all
assumed conditions, the error of a variable [II¢[t] | Err(vars)] has at most the
arithmetic weight stored in the corresponding error weight variable, i.e., vary,
[11¢[t) | Err(varg)] < [T (If[t]) | vary].

Proof. Every execution trace my starts with the same vertex 7¢[0] = vo,, where
no errors could have been injected yet. Therefore, it is correct to assume that all
variable’s error weight are 0. Suppose all error weights in every program state
IT,,(I1;[i]) with i < t are correct. Vi < t.NYvar;[II;[i] | Err(vary)] < [IL,(II;[d]) |
vary]. We can show that after any further step with m¢[t + 1] = vy, the variable
modified by Af(vy) has an error weight [IT¢[t+1] | Err(vary)] < [IT,(I[t+1]) |
vary|: The statement A¢(vs) can be either an arithmetic statement, an control-
flow directive or an error injection. Theorem 1 proves that this property is fulfilled
for every statement Ar(vy) € Sgrin. In contrast to that, control-flow directives
do not modify the error weights directly. As long as the execution follows the
same path through the program V¢II;[t] = w(IIf[t]), the control-flow directives
will not influence any error weights. Finally, given Definition 15 defines that all
for all E, it holds that W (|[Z1£[0] | E,]|) = [{1w(11£[0]) | W,]. This guarantees
that [II¢[t + 1] | Err(vary)] < [I,(ITf[t 4 1]) | vary].

This shows, that the weight of the error on all variables remains smaller or
equal the value of the corresponding weight variables.

Theorem 3 (Transformation of Checks). Every passed check(vary) either
implies a violation of the assertion assert(vary, < dmin) or that Err(vary) = 0.

Small Faults Grow Up 199

Proof. There are three cases for the execution of every check:

1. 0 < W(|Err(vary)|) < dmin: In this case, the check is not passed and the
execution is aborted. No further error masking can occur.

2. W(|Err(vars)|) > dmin: If the error weight exceeds the minimum arithmetic
distance, Theorem 2 proves that var,, > W (|Err(vary)|), and the assertion
assert(vary, < dmp) is violated.

3. W(|Err(vars)|) = 0: The only remaining case is the error free case, which
can be assumed, once the robustness assertion has been passed.

Theorem 4. Given a program P, containing loops, where all error weights are
injected in the first iteration, and a program P), abstracting the same program
P, with all error weight injections distributed over all infinite loop iterations, it
is always true that if P, is correct, then P! also is correct.

Proof. The value of an error weight counter in a program state IT,,[t] can be
represented as the sum of multiple error weight injections. [II,[t] | var,] =
> ieo kuld]Wy[j], where the factor k, indicates the number of times the injected
error weight has accumulated in an error weight counter, and W,[j] is the
error weight injected in loop iteration j. In the case of P,, W,[0] = W, and
Vi > 0 : W,[j] = 0, while all W,[j] of P), are smaller or equal those of P,.
Furthermore, Vj > 0 : k,[0] = 0V k,[0] > k,[j], therefore, the only way that
[I1,[t] | vary] < [II,,[t] | vary] can be achieved is, if var, is overwritten after
injecting W,[0] (k,[0] = 0), and j is the current loop iteration. However, in the
next loop iteration, this error weight will be overwritten again (k,[j] = 0). The
maximum value during the first loop iteration will never be exceeded.

Theorem 5 (Correctness of P,). If P, is correct, Py is correct and P is
robust against error masking.

Proof. Assume P is incorrect. Let IT;[k] be the last execution state of a pro-
gram run violating the correctness of Py, and vary.: be the returned value. A
program run II; can violate the correctness condition in two ways: (1) The
return value is a faulted code word [II7[k] | varre] # [IT}[k] | var,e], with its
error weight undetectable [I1¢[k] | W (|Err(varye:)|)] > dmin, or (2), an invalid
path through the program is taken. In case (1), Theorem 2 provides a proof, that
[s[k], Err(varrer)] > dmin — [Hw(IIf[k]) | varyret] > dmin. Therefore, at least
the last assertion in P, is violated and P, is incorrect. Case (2) can only be
caused, if the execution of a statement of the form if (cond) goto vy, else goto
v, continues with the wrong branch. An appropriate branch protection mecha-
nism will abort execution as long as it detects any fault in either the compared
operands or in the comparison result. This leaves the remaining situations where
(2) is possible, as those, where a fault on the comparison operands contains a
masked error. However, Theorem 2 proves that the assertions in P,, detect this
case as well, and therefore P, is incorrect in this case too. This shows, that any
violation of Py will always result in a violation of P,, and if P, is correct, that
implies that P is robust.

200 A. F. Karl et al.

Theorem 6 (Decidability). The correctness of every error counting program
P, is decidable, even in the case of an extended version with recursive function
calls.

Every possible value range of the error counting variables is limited by the con-
stant d,;,. After all modifications of all error counting variables, the model
checker evaluates the correctness assertions and returns a counterexample in the
case of a violation. Therefore, in every program P, no variable value ever exceeds
2+ (dmin — 1). The domain of all variables is finite. Therefore, the resulting pro-
grams are effectively Boolean programs and the problem is reducible to solving
a Boolean program. According to Ball and Rajamani [2], Boolean programs are
equivalent to push-down automatons and therefore decidable [8].

7 Evaluation

The former sections described our method to verify the error masking robustness
of encoded programs. Using this technique, we were able to identify real error
masking vulnerabilities of real world, security relevant algorithms. Our set of
algorithms under verification contains (among others) the following algorithms,
which we want to describe in further detail: (1) Fibonacci Number Generator, (2)
Euclidean Algorithm, (3) Extended Euclidean Algorithm, (4) Square & Multiply
Exponentiation Algorithm and (5) Exponentiation in Z,. All of these iterative
algorithms can be expressed in our toy language, with multiplication, division
and modulo replaced by repeated addition and all function calls inlined. For
further details on the algorithms, we refer to [19].

In our experiments, we used algorithms in the form of C source code, compiled
them to LLVM bitcode, and generated the weight counting programs using a tool
based on the LLVM compiler framework. Afterwards, we evaluated both a check-
less version and a version containing correctly placed checks using the model
checker CPAChecker [6]. Table 1 shows the verification time given different fault
specifications. As configuration, we choose an iterative bounded model checking
approach, where the loop bound is incremented if no error was found up to a
limit of 5 loop iterations. This allowed us to calculate the exact loop bound where
error masking occurs for the given specification. If the result is still unsound
after a bounded model checking with an unroll bound of 5, we run a predicate
analysis [5] algorithm to conclude the evaluation. Table 1 shows the verification
time of the first algorithm with a sound result, on a machine with up to 16
threads running in parallel.

Table1 shows that the complexity of the evaluation depends less on the
number of injected bit flips, but more on the number of loop iterations necessary
until error masking occurs, as well as the complexity (number and depth of nested
loops) of P. Especially in the case of the last fault specification, d,,;, was greater
than three times the maximum injectable error weight. In practise such a ratio
and therefore this problem is quite unlikely, because a high d,,;, is costly (more
redundant bits are necessary) and will not be chosen as protection against the
injection of a way smaller number of bit flips.

Small Faults Grow Up

201

Table 1. Verification times for different fault specifications.

dmin | FaultSpec Program Without checks With correct checks
Ver. time |Iter.| Robust? | Ver. time |Robust?
2 > WP <1 |(1) Fibonacci 1s 2 X 1s v
(2) Euclid 1s - |V - -
(3) Extended Euclid |8s 2 X 241s v
(4) Square & Multiply |16 s 2 X 152 v
(5) Exp in Znp 53s 2 X 43s v
20 |[>- WP <10 |(1) Fibonacci 1s 2 X 1s v
(2) Euclid 1s - v -
(3) Extended Euclid |11s 2 X 271s v
(4) Square & Multiply |11s 2 X 159 v
(5) Exp in Znp 48s 2 X 43s v
300 |>- WP <100|(1) Fibonacci 1s 3 X 1s v
(2) Euclid 1s - v -
(3) Extended Euclid |70s 3 X 1497 s v
(4) Square & Multiply | 161s 3 X 547s v
(5) Exp in Znp t/o 1800s|? ? 28s v
40 |> WP <10 (1) Fibonacci 2s 4 X 1s v
(2) Euclid 1s - v - -
(3) Extended Euclid |1528s 4 X t/o (1800s) | ?
(4) Square & Multiply | 1043 s 3 X 561s v
(5) Exp in Zn t/o 1800s|? ? 28's v
Table 2. Comparison of evaluated programs.
Program # Checks P | # Instr. P | # W' in Pycights | # Instr. Pyeignts
(1) Fibonacci 1 70 12 219
(2) Buclid 0 68 11 186
(3) Extended Euclid |5 162 61 943
(4) Square & Multiply | 2 136 51 765
(5) Exp in Znp, 2 211 78 1126

Therefore, more iterations were necessary to detect error masking and the
verification task was more difficult. More details about the programs under test
can be found in Table 2.

As the results show, the complexity of the verification depends less on the
number of injected bit flips, than on the complexity of the programs. The high
number of bit flips is possible through abstracting the concrete variable values
away and comes with advantages and drawbacks alike. The next section further
discusses these challenges and gives ideas for future work.

202 A. F. Karl et al.

8 Discussion and Future Work

Our technique to prove the absence of error masking brings along advantages
but also holds potential for future work. Most important is the fact, that we
evaluate abstraction of the original program. There are two main drawbacks of
this: (1) Not every error with an arithmetic weight > d,,;, automatically allows
to form a new valid code word, this also depends on the actual encoded data.
(2) Due to the discarded branch conditions, we might report spurious errors on
infeasible paths through the program.

Nevertheless, there are important reasons and advantages of this decision:
First, the abstraction gives us independence of the program argument’s values.
Therefore the search space for variable values is way smaller. Second, by storing
the weights instead of the exact errors, the model checker does not need to
calculate any arithmetic weight. This significantly reduces the complexity of
the verification problem. Furthermore, the abstraction of the branch condition
reduces the length of the path conditions and the algorithm Predicate Analysis
solves the tasks independently of loop iterations. All these advantages help to
decrease the verification effort.

However, this method just builds one step towards complete verification of
robustness against injected faults. Both, the language and the fault model can
be further extended. Including pointers and support for other encoding schemes
(e.g. linear codes) may introduce new challenges and poses an interesting problem
for the future.

9 Conclusion

In this article, we presented a novel method to verify the robustness against error
masking of arithmetically encoded programs. This property guarantees that all
faults according to the predefined fault model are detectable. The described
technique applies formal methods to either prove the absence of error mask-
ing or calculate a counterexample. We provided a proof for the correctness of
our approach and evaluated it using the model checker CPAChecker. Finally,
a demonstration based on a real-world example multiplication algorithm shows
the feasibility of our method.

References

1. Ali, S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards
reaching its limits. J. Cryptogr. Eng. 3, 73-97 (2013). https://doi.org/10.1007/
$13389-012-0046-y

2. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113-130. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468_7

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94, 370-382 (2006). https://doi.org/
10.1109/JPROC.2005.862424

https://doi.org/10.1007/s13389-012-0046-y
https://doi.org/10.1007/s13389-012-0046-y
https://doi.org/10.1007/10722468_7
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Small Faults Grow Up 203

Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor tech-
nologies. IEEE Trans. Device Mater. Reliab. 5(3), 305-316 (2005)

Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. Autom. Reason. 60(3), 299-335 (2018)

Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184-190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
116

Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14, 101-119 (2001). https://doi.org/
10.1007/s001450010016

Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135-150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0_-10

Brown, D.T.: Error detecting and correcting binary codes for arithmetic operations.
IRE Trans. Electron. Comput. 9, 333-337 (1960). https://doi.org/10.1109/TEC.
1960.5219855

Diamond, J.M.: Checking codes for digital computers. Proc. IRE 43(4), 483-490
(1955). https://doi.org/10.1109/JRPROC.1955.277858

Fetzer, C., Schiffel, U., Stulkraut, M.: AN-encoding compiler: building safety-
critical systems with commodity hardware. In: Buth, B., Rabe, G., Seyfarth, T.
(eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 283-296. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04468-7_23

Given-Wilson, T., Heuser, A., Jafri, N., Lanet, J.L., Legay, A.: An automated
and scalable formal process for detecting fault injection vulnerabilities in binaries
(2017). https://hal.inria.fr/hal-01629135, working paper or preprint

Golay, M.: Notes on digital coding. Proc. IRE 37(6), 657-657 (1949). https://doi.
org/10.1109/JRPROC.1949.233620

Hamming, R.W.: Error detecting and error correcting codes. Bell Labs Tech. J.
29(2), 147-160 (1950)

Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: International Symposium on Computer
Architecture — ISCA 2014, pp. 361-372 (2014)

Larsson, D., Hahnle, R.: Symbolic fault injection. In: Beckert, B. (ed.) Proceedings
of 4th International Verification Workshop in connection with CADE-21. CEUR
Workshop Proceedings, Bremen, Germany, 15-16 July 2007, vol. 259. CEUR-
WS.org (2007). http://ceur-ws.org/Vol-259/paper09.pdf

Massey, J.L.: Survey of residue coding for arithmetic errors. Int. Comput. Cent.
Bull. 3(4), 3-17 (1964)

Medwed, M., Schmidt, J.-M.: Coding schemes for arithmetic and logic operations
- how robust are they? In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol.
5932, pp. 51-65. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10838-9_5

Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

Meola, M.L., Walker, D.: Faulty logic: reasoning about fault tolerant programs. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 468-487. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6_25

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s001450010016
https://doi.org/10.1007/s001450010016
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1109/TEC.1960.5219855
https://doi.org/10.1109/TEC.1960.5219855
https://doi.org/10.1109/JRPROC.1955.277858
https://doi.org/10.1007/978-3-642-04468-7_23
https://hal.inria.fr/hal-01629135
https://doi.org/10.1109/JRPROC.1949.233620
https://doi.org/10.1109/JRPROC.1949.233620
http://ceur-ws.org/Vol-259/paper09.pdf
https://doi.org/10.1007/978-3-642-10838-9_5
https://doi.org/10.1007/978-3-642-10838-9_5
https://doi.org/10.1007/978-3-642-11957-6_25

204

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. F. Karl et al.

Pattabiraman, K., Nakka, N., Kalbarczyk, Z.T., Iyer, R.K.: SymPLFIED: symbolic
program-level fault injection and error detection framework. IEEE Trans. Comput.
62(11), 2292-2307 (2013). https://doi.org/10.1109/TC.2012.219

Peterson, W.W.: Error-Correcting Codes. MIT Press, Cambridge (1961)

Rao, T.R.N.: Biresidue error-correcting codes for computer arithmetic. IEEE
Trans. Comput. 19(5), 398402 (1970)

Rao, T.R.N., Garcia, O.N.: Cyclic and multiresidue codes for arithmetic operations.
IEEE Trans. Inf. Theory 17(1), 85-91 (1971)

Rink, N.A., Castrillén, J.: Extending a compiler backend for complete memory
error detection. In: Dencker, P., Klenk, H., Keller, H.B., Plodereder, E. (eds.) Auto-
motive - Safety and Security 2017 - Sicherheit und Zuverlassigkeit fiir automobile
Informations technik. LNI, Stuttgart, Germany, 30-31 Mai 2017, vol. P-269, pp.
61-74. Gesellschaft fiir Informatik, Bonn (2017). https://dl.gi.de/20.500.12116,/147
Schiffel, U.: Hardware error detection using AN-codes. Ph.D. thesis, Dresden Uni-
versity of Technology (2011). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-
69872

Schiffel, U.: Safety transformations: sound and complete? In: Bitsch, F., Guiochet,
J., Kaaniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 190—201. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2_18

Schilling, R., Werner, M., Mangard, S.: Securing conditional branches in the pres-
ence of fault attacks. In: Design, Automation and Test in Europe Conference and
Exhibition — DATE 2018, pp. 1586-1591 (2018)

Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into
90 nm and 45 nm SRAM-cells. In: Homma, N., Medwed, M. (eds.) CARDIS 2015.
LNCS, vol. 9514, pp. 193-205. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31271-2_12

Sharma, V.C., Haran, A., Rakamaric, Z., Gopalakrishnan, G.: Towards formal
approaches to system resilience. In: IEEE 19th Pacific Rim International Sym-
posium on Dependable Computing, PRDC 2013, Vancouver, BC, Canada, 2—4
December 2013, pp. 41-50. IEEE Computer Society (2013). https://doi.org/10.
1109/PRDC.2013.14

Walker, D., Mackey, L.W., Ligatti, J., Reis, G.A., August, D.I.: Static typing for
a faulty lambda calculus. In: Reppy, J.H., Lawall, J.L. (eds.) Proceedings of the
11th ACM SIGPLAN International Conference on Functional Programming, ICFP
2006, Portland, Oregon, USA, 16-21 September 2006, pp. 38-49. ACM (2006).
https://doi.org/10.1145,/1159803.1159809

Werner, M., Unterluggauer, T., Schaffenrath, D., Mangard, S.: Sponge-based
control-flow protection for IoT devices. CoRR abs/1802.06691 (2018). http://arxiv.
org/abs/1802.06691

https://doi.org/10.1109/TC.2012.219
https://dl.gi.de/20.500.12116/147
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69872
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-69872
https://doi.org/10.1007/978-3-642-40793-2_18
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1109/PRDC.2013.14
https://doi.org/10.1109/PRDC.2013.14
https://doi.org/10.1145/1159803.1159809
http://arxiv.org/abs/1802.06691
http://arxiv.org/abs/1802.06691

	Small Faults Grow Up - Verification of Error Masking Robustness in Arithmetically Encoded Programs
	1 Introduction
	1.1 Error Masking
	1.2 Contribution
	1.3 Outline

	2 Related Work
	3 Arithmetic Error Detecting Codes
	3.1 Examples for Arithmetic Codes
	3.2 Arithmetic Weight and Distance

	4 Error Masking Robust Programs
	4.1 Programs
	4.2 Fault Model
	4.3 Explicitly Faulted Programs
	4.4 Robustness Condition

	5 Proving a Program Robust Against Error Masking
	5.1 Fault Specification
	5.2 Adaption of the Input Language
	5.3 Translation of the Explicitly Faulted Program into a Weight Counting Program
	5.4 Applying a Model Checker to Prove Correctness

	6 Proof of Correctness
	7 Evaluation
	8 Discussion and Future Work
	9 Conclusion
	References

