
Disjunctive Relational Abstract
Interpretation for Interprocedural

Program Analysis

Rémy Boutonnet(B) and Nicolas Halbwachs

University of Grenoble Alpes, CNRS, Grenoble INP
(Institute of Engineering Univ. Grenoble Alpes), VERIMAG,

38000 Grenoble, France
{remy.boutonnet,nicolas.halbwachs}@univ-grenoble-alpes.fr

Abstract. Program analysis by abstract interpretation using relational
abstract domains—like polyhedra or octagons—easily extends from state
analysis (construction of reachable states) to relational analysis (con-
struction of input-output relations). In this paper, we exploit this exten-
sion to enable interprocedural program analysis, by constructing rela-
tional summaries of procedures. In order to improve the accuracy of
procedure summaries, we propose a method to refine them into disjunc-
tions of relations, these disjunctions being directed by preconditions on
input parameters.

1 Introduction

Linear Relation Analysis (LRA [17])—or polyhedral abstract interpretation—is
a classical method for discovering invariant linear inequalities among the numer-
ical variables of a program. This method is still one of the most powerful numer-
ical program analysis techniques, because of the expressivity of the discovered
properties. However, it is not applicable to large monolithic programs, because
of its prohibitive complexity, in terms of number of involved variables—in spite
of recent progress in polyhedra algorithmics [22,37,49]. An obvious solution con-
sists in using it in a modular way: the analysis of reasonably small procedures can
provide, once and for all, a summary as an input-output relation; this summary
can be reused in the analysis of programs calling the procedure. The relational
nature of LRA is, of course, beneficial in this process.

On the other hand, the numerous works on interprocedural analysis, often
concluded that such a “bottom-up” approach—where a procedure is analyzed
before its callers—generally results in very imprecise summaries, because the
procedure is considered independently of its calling context. One can object that

This work has been partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agree-
ment nr. 306595 “STATOR0”.

c© Springer Nature Switzerland AG 2019
C. Enea and R. Piskac (Eds.): VMCAI 2019, LNCS 11388, pp. 136–159, 2019.
https://doi.org/10.1007/978-3-030-11245-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11245-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-11245-5_7

Disjunctive Relational Abstract Interpretation 137

this imprecision can be also due to the poor expressivity of the used domains,
in particular those commonly used in compilers (e.g., data-flow analysis [32]).

So interprocedural analysis can provide a solution to the prohibitive cost of
LRA, which, in turn, can provide a convenient expressive power for expressing
more accurate procedure summaries.

This idea of using LRA to synthesize input-output relations is quite straight-
forward and not new. In particular, it is systematically applied in the tool
PIPS [3,23], which considers each basic statement as an elementary relation,
and synthesizes the input-output relation of a full program by composing these
relations bottom-up. In this paper, we specialize the approach to the synthesis of
procedure summaries. An easy way for building a relational summary of a pro-
cedure consists in duplicating the parameters to record their initial value, then
performing a standard LRA of the body, which provides the summary as the
least upper bound (convex hull) of the results at return points of the procedure.

However, it appears that conjunctions of linear constraints, i.e., convex poly-
hedral relations, are too restrictive. Obviously, procedures may exhibit very dif-
ferent and irregular behaviors according to the values of conditions appearing in
tests. For instance,

– in many cases, whether an outermost loop is entered at least once or not is
very relevant for the global behavior of the procedure;

– when a procedure has several return points, they are likely to correspond to
quite different behaviors;

– for a simple recursive procedure, the base case(s) should be distinguished
from those which involve recursive calls.

So it is natural to look for summaries that are disjunctions of polyhedral rela-
tions. However, algorithms for manipulating polyhedra do not extend easily
to general disjunctions of polyhedra. A solution consists in using trace parti-
tioning [9,28,38,47]. This solution is used in [24,26], where the partitioning is
directed by formulas on Boolean variables. Here, we will propose such a parti-
tioning directed by well-chosen preconditions on input parameters.

Contributions: While being mainly interested in LRA, we consider a more gen-
eral framework. We provide a general formalization of relational abstract inter-
pretation, that we didn’t find elsewhere. As its use for computing procedure
summaries often provides too rough results, we propose an approach to build
disjunctive summaries, based on precondition partitioning. The choice of parti-
tions is a heuristic process. We propose a method based on successive partition
refinements, guided, on one hand, by the reachability of control points, and
on the other hand, by the partitioning of summaries of called procedures. The
method has been implemented in a prototype analyzer. Our experiments give
encouraging results.

The paper is organized as follows. To situate our work, we first survey the
abundant literature on interprocedural program analysis (Sect. 2). Since our app-
roach can be applied in a more general context than LRA, we will develop each
aspect in a stratified fashion: first, we consider the very general framework,
then we present a specialization to LRA, before an application on a running

138 R. Boutonnet and N. Halbwachs

example. Section 3 is concerned with concrete relational semantics of programs,
and introduces the notations in the general framework and for numerical pro-
grams, together with our running example. Sections 4 and 5 deal with relational
abstract interpretation and its use for building procedure summaries relative to
a precondition. In view of the results on our example, in Sect. 6, we propose
to compute disjunctive summaries directed by a partition of preconditions. In
Sect. 7, we present a way of partitioning preconditions by successive refinements.
The application of our method to recursive procedures is illustrated in Sect. 8.
Section 9 briefly presents our prototype implementation, and some experiments
are described in Sect. 10. Section 11 gives the conclusion and sketches some future
work.

2 Related Work

Interprocedural analysis originated in side-effects analysis, from works of
Spillman [51], Allen [1,2] and Barth [6].

Interprocedural analyses can be distinguished according to the order in which
procedures are traversed. In top-down analyses, procedures are analyzed follow-
ing their invocation order [2], from callers to callees, while in bottom-up analy-
ses, procedures are analyzed according to the inverse invocation order, from the
callees up to the callers, by computing procedure summaries. Hybrid analyses
[53] combine top-down and bottom-up analyses. We are interested in bottom-up
approaches since each procedure is analyzed only once, regardless of the calling
contexts, in possibly much smaller variable environments, thereby allowing a
modular analysis with potential scalability improvements for numerical analyses
such as LRA.

Sharir and Pnueli [48] introduced the functional approach and the call strings
approach for distributive data flow frameworks. The functional approach com-
putes procedure summaries, either from the bottom-up composition of individual
propagation functions or by propagating data flow properties in a top-down fash-
ion and by tabulating properties obtained at the exit node of a procedure with
the associated property at entry. In the call strings approach, data flow proper-
ties are tagged by a finite string which encodes the procedure calls encountered
during propagation. Call strings are managed as stacks and updated during
propagation through a procedure call or return.

Reps et al. [46] proposed an algorithm belonging to the family of functional
approaches to solve data flow problems with finite semilattices and distributive
propagation functions in polynomial time, by recasting these data flow prob-
lems into graph reachability problems. Jeannet et al. [30,50] proposed a method
reminiscent of the call strings approach, for the relational numerical analysis of
programs with recursive procedures and pointers to the stack. It is a top-down
approach based on an abstraction of the stack. An implementation is available
in the Interproc tool [25]. Abstract states are partitioned according to Boolean
conditions, but not according to possible input abstract states of a procedure.
Yorsh et al. [52] proposed a bottom-up approach for finite distributive data flow
properties and described how precise summaries for this class of properties can
be constructed by composition of summaries of individual statements.

Disjunctive Relational Abstract Interpretation 139

A relational abstraction of sets of functions for shape analysis is proposed in
[27], considering functions of signature D1 → D2, provided that abstractions A1

of P(D1) and A2 of P(D2) exist, and that A1 is of finite cardinality. This abstrac-
tion is relational since it is able to express relations between images of abstract
elements mapped by a set of functions, but the abstraction A1 is required to be
of finite cardinality, thus excluding numerical abstract domains such as convex
polyhedra.

Gulwani et al. [20] proposed a backward analysis to compute procedure sum-
maries as constraints that must be satisfied to guarantee that some generic
assertion holds at the end of a procedure. A generic assertion is an assertion
with context variables which can be instantiated by symbols of a given the-
ory. Procedure summaries are obtained by computing weakest preconditions of
generic assertions. These generic assertions must be given prior to the analysis,
thus forbidding the automatic discovery of procedure properties.

Cousot and Cousot [15,16] describe the symbolic relational separate analy-
sis for abstract interpretation, which uses relational domains, relational seman-
tics and symbolic names to represent initial values of variables modified by a
procedure. When instantiated with the convex polyhedra abstract domain, this
approach computes procedure summaries which are input-output relations rep-
resented by a single convex polyhedron, with no ability to capture disjunctive
behaviors in procedures. Recursive procedures are supported, as presented earlier
in [13,14,21].

Müller-Olm et al. [40,42] proposed an interprocedural bottom-up analysis
to discover all Herbrand equalities between program variables in polynomial
time. This approach was extended to linear two-variables equalities [18] and
to affine relations [41]. This approach considers only abstracted programs with
affine assignments, ignoring conditions on branches and dealing conservatively
with other assignments. We are proposing a more general approach, which is
also able to capture some disjunctive behaviors.

In the PIPS tool [3,23], statements are abstracted by affine transformers
[35,36] which are input-output relations represented by convex polyhedra. The
summary of a whole procedure is obtained from the composition of statement
transformers, in a bottom-up fashion. Recursive procedures are not supported
and each procedure summary is a single affine input-output relation, preventing
the expression of disjunctive behaviors.

Popeea et al. [43–45] presented an analysis to both prove user-supplied safety
properties and to find bugs by deriving conditions leading either to success or
failure in each procedure. Disjunctive numerical properties are handled by a
complete decision procedure for linear arithmetic provided by the Omega Test
[31]. Our approach is able to discover automatically some disjunctive behaviors
of procedures without requiring user-provided assertions.

Kranz et al. [33] proposed a modular analysis of executables based on Heyting
completion [19]. Unfortunately, in the convex polyhedra abstract domain, the
pseudo-complement a ⇒ b = �{d | a � d � b} of a relative to b is not available
in general.

140 R. Boutonnet and N. Halbwachs

3 Concrete Relational Semantics

3.1 General Framework

In our general framework, a program or a procedure is just a transition system.
We introduce below a few definitions and notations.

States and Relations: Let S be a set of states. Let 2S be the powerset of S. Let
R = 2S×S be the set of binary relations on S.

– We define src, tgt the projection functions R �→ 2S such that: ∀r ∈ R,

src(r) = {s0 ∈ S | ∃s1 ∈ S, (s0, s1) ∈ r}, tgt(r) = {s1 ∈ S | ∃s0 ∈ S, (s0, s1) ∈ r}
– If U ⊆ S, we define IdU the relation {(s, s) | s ∈ U}.
– If r1, r2 ∈ R, we denote by r1 ◦ r2 their composition:

r1 ◦ r2 = {(s, s′) | ∃s′′, (s, s′′) ∈ r1 and (s′′, s′) ∈ r2}
Forward, Backward Relational Semantic Equations: Let ρ ∈ R be a transition
relation on S. We are interested in computing an upper approximation of its
transitive closure ρ∗, which can be defined as a least fixpoint:

ρ∗ = μr.IdS ∪ (r ◦ ρ) (forward equation)
= μr.IdS ∪ (ρ ◦ r) (backward equation)

Trace Partitioning: We use the classical “trace partitioning” technique [38,47].
Assume that the set S is finitely partitioned: S = S1 ⊕ S2 ⊕ . . . ⊕ Sn. This par-
titioning can reflect the control points in a program or a control-flow graph, but
it can also be more “semantic”, and express state properties, like preconditions.
If r ∈ R, for each i, j ∈ {1, . . . , n}, we define r(Si, Sj) = r ∩ (Si × Sj).

With these notations, the relations ρ∗(Si, Sj) can be defined by the following
system of fixpoint equations (henceforth, we consider only forward computation,
backward computation is symmetrical):

∀j �= i, ρ∗(Si, Sj) =
n⋃

k=1

ρ∗(Si, Sk) ◦ ρ(Sk, Sj)

ρ∗(Si, Si) = IdSi
∪

n⋃

k=1

ρ∗(Si, Sk) ◦ ρ(Sk, Si)

Concrete Relational Summaries: Let p be a procedure, S, ρ, I, E , respectively, its
set of states, its transition relation, its sets of initial states (global precondition)
and exit states. We assume that S is partitioned, and that I, E belong to the
partition. The concrete relational summary of p is σp = ρ∗(I, E). So, for the
forward computation of the summary, we are concerned with the computation
of ρ∗(I, Sj), j = 1...n, according to the equations

ρ∗(I, Sj) =

(
n⋃

k=1

ρ∗(I, Sk) ◦ ρ(Sk, Sj)

)
∪

{
IdI if Sj = I
∅ otherwise

}

Disjunctive Relational Abstract Interpretation 141

Concrete Semantics of Procedure Calls: Let S be the set of states of a proce-
dure p, T be the set of states of a program calling p. For a given call to p, let
us write π the mapping ∈ 2S×S �→ 2T×T representing the parameter passing
mechanism (generally, a renaming of formal parameters into actual ones). Then,
if Ti (resp. Tj) represents the sets of states just before (resp., just after) the call,
the elementary relation corresponding to the call is ρ(Ti, Tj) = π(σp).

3.2 Numerical Programs and Procedures

Procedures: For simplicity, and without loss of generality, the following assump-
tions are taken:

– All procedure parameters are supposed to be passed by reference. However,
we are not concerned with pointer manipulation, and we entrust existing
analyses to detect aliasing problems.

– Global variables are dealt with as additional parameters.
– For clarity, we will consider that all variables are parameters, since local

variables don’t raise any problem, but complicate the presentation.

In LRA, only numerical variables—taking their values in a numerical domain
N (= Z or Q)—are considered. A state of a numerical procedure with n variables
is thus a pair (c, V), where c ∈ C is a control point (a line, a statement, a block
in a control-flow graph, . . .), and V = (v1, ..., vn) ∈ N n is a vector of numerical
values. Control points provide a natural partitioning of such a set of states:
Sc = {(c, V) | V ∈ N n}. The set of initial states I of a procedure with entry
point cI is such an ScI , possibly restricted by a precondition AI ⊆ N n on
parameter values: I = {(cI , V) | V ∈ AI}.

From State to Relational Collecting Semantics: Given such a partition {Sc | c ∈
C}, the usual collecting semantics defines the set Ac of reachable variable val-
uations in each Sc, such that Ac = {V | (c, V) is a reachable state from I}, as
the least solution of a system of fixpoint equations:

Ac = Fc ({Ac′ | c′ ∈ C}) ∪
{

AI if c = cI
∅ otherwise

where the semantic function Fc expresses how the states in Sc depends on the
states at other control points. This state semantics can be straightforwardly
extended to relational semantics as follows: for each variable vi, a new variable
v0

i is introduced to record the initial value of vi. The new set of states is thus
C × N 2n, and the new initial state is

I = {(cI , (v0
1 , . . . v

0
n, v1, . . . , vn)) | (v0

1 , . . . , v
0
n) ∈ AI ∧ vi = v0

i , i = 1...n}

The relational semantics is equivalent to the state semantics of the same proce-
dure, initialized with the assignments v0

i = vi for each i = 1...n.

142 R. Boutonnet and N. Halbwachs

Concrete Relational Summary: Let E ⊂ C be the set of exit points of the pro-
cedure. Then,

⋃
c∈E Ac is the concrete summary of the procedure. In presence

of local variables, they should be eliminated from this expression by existential
quantification.

3.3 A Very Simple Example

Our example program is the classical Euclidean division, shown below with its
relational semantic equations:

void div (int a, b, *q, *r){
assume (a ≥ 0 && b ≥ 1);

1 *q=0; *r=a;
2 while
3 (*r ≥ b) {
4 *r = *r-b; *q = *q+1;
5 }
6 }

A1 = {(a0, b0, q0, r0, a, b, q, r) |
a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0∧
b = b0 ∧ q = q0 ∧ r = r0}

A2 = A1[q ← 0][r ← a]
A3 = A2 ∪ A5

A4 = A3 ∩ (r ≥ b)
A5 = A4[r ← r − b][q ← q + 1]
A6 = A3 ∩ (r ≤ b − 1)

The least solution for A6, the unique exit point, is the concrete summary of the
procedure: a = a0 ∧ b = b0 ∧ a = bq + r ∧ q ≥ 0 ∧ b − 1 ≥ r ≥ 0. Notice that
it contains a non linear relation, so it cannot be precisely obtained by LRA.
For simplicity, we pretended to duplicate all parameters. Of course, in practice,
pure input parameters (“value” parameters, whose value is not changed in the
procedure) as well as pure output parameters (“result” parameters, whose initial
value is not used in the procedure) don’t need to be duplicated.

4 Relational Abstract Interpretation

4.1 General Framework

Relational Abstract Domains: A relational abstract domain is a complete lattice
(R�,�,⊥,�,�,�) related to R by a Galois connection, i.e., a pair of increasing
functions: αR : R �→ R� (abstraction), γR : R� �→ R (concretization), such that
∀r ∈ R, r� ∈ R�, α(r) � r� ⇔ r ⊆ γ(r�).

If U ⊆ S, we denote by Id �
U the abstract relation αR(IdU). If r�

1, r
�
2 ∈ R�,

we define r�
1 ◦ r�

2 their composition as αR(γR(r�
1) ◦γR(r�

2)). A relational abstract
domain induces two abstract domains, S�

→ and S�
← on 2S :

∀U ⊆ S, αS→(U) = αR(U × S), αS←(U) = αR(S × U)

Notice that both S�
→ and S�

← are included in R�. We can define the abstract
projections src� : R� �→ S�

→ and tgt� : R� �→ S�
← by:

src�(r�) = αS→(src(γR(r�))), tgt�(r�) = αS←(tgt(γR(r�)))

Disjunctive Relational Abstract Interpretation 143

Relational Abstract Analysis: Let ρ be a transition relation, and ρ� be an upper
bound of its abstraction. We assume the availability of both a widening and a
narrowing operation ∇,Δ : R� × R� �→ R�. Classically [12], an upper approx-
imation of ρ�∗ can be obtained by computing the limit r�∇ of an increasing
approximation sequence:

r�
0 = ⊥, r�

n+1 = r�
n∇(r�

n ◦ ρ�)

then the limit r�∇Δ of a decreasing sequence:

r′�
0 = r�∇, r′�

n+1 = r′�
nΔ(r′�

n ◦ ρ�)

The result r�∇Δ is an abstract approximation of ρ∗, i.e., ρ∗ ⊆ γ(r�∇Δ).

Abstract Partition: For ↔∈ {←,→}, we define an abstract partition of S�
↔ as a

finite set {S�
0, ..., S

�
n} ⊆ S�

↔, such that {Si = γS↔(S�
i) | i = 1...n} is a partition

of S. More generally, if U ⊆ S, an abstract partition of U �
↔ = αS↔(U) is a finite

set {U �
0 , ..., U

�
n} ⊆ U �

↔, such that {Ui = γS↔(U �
i) | i = 1...n} is a partition of U .

Partitioned Relational Abstract Analysis: Let {Si = γ(S�
i) | i = 1...n} be a par-

tition of S, let ρ be a transition relation, ρ(Si, Sj) be defined as before for
i, j = 1...n, and ρ�(S�

i , S
�
j) be (an upper bound of) the abstraction of ρ(Si, Sj).

An upper approximation of the vector {ρ�∗(S�
i , S

�
j) | i, j = 1...n} can be obtained

as the limit of (vectorial) increasing-decreasing sequences corresponding to the
system of fixpoint equations:

∀i = 1...n, ∀j �= i, ρ�∗(S�
i , S

�
j) =

n⊔

k=1

ρ�∗(S�
i , S

�
k) ◦ ρ�(S�

k, S�
j)

ρ�∗(S�
i , S

�
i) = Id �

S�
i

�
n⊔

k=1

ρ�∗(S�
i , S

�
k) ◦ ρ�(S�

k, S�
i)

Abstract Summary and Abstract Effect of a Procedure Call: Let p be a pro-
cedure, I, E its set of initial and exit states. The abstract summary of p is
σ�

p = ρ�∗(I�, E�). The abstract effect of a call to p, with parameter passing π,
situated between T �

i and T �
j is ρ�(T �

i , T �
j) = π(σ�

p).

4.2 Building Summaries Using LRA

LRA makes use of the lattice of convex polyhedra [5,17]. It abstracts a set of
numerical vectors by its convex hull (i.e., its least convex superset). Notice that
the convex hull of an infinite set of vectors is not necessarily a polyhedron, but
the finiteness of the analysis—thanks to the use of a widening operation—ensures
that all the computed approximations are polyhedra, i.e., sets of solutions of a
finite system of affine inequalities.

Intersection (P1 � P2), convex hull (P1 � P2), projection (∃X.P), effect of
variable assignment (P [x ← exp], widening (P1∇P2), test for inclusion (P1 � P2)

144 R. Boutonnet and N. Halbwachs

and emptiness (P = ∅) are available. Instead of using a narrowing operator to
ensure the finiteness of the decreasing sequence, a limited number of iterations
of the abstract function is generally applied.

Polyhedra can be used for representing input-output relations, as an abstrac-
tion of the relational semantics described in Sect. 3.2. We write P (X0,X) a
polyhedron involving initial values X0 and current values X. Notice that the
source and the target of the relation r expressed by P (X0,X) can be obtained
by polyhedron projections:

src�(r) = ∃X.P (X0,X), tgt�(r) = ∃X0.P (X0,X)

4.3 Example

Let us apply LRA to our Euclidean division example. The abstract equations
are as follows:

P1 = (a0 ≥ 0, b0 ≥ 1, a = a0, b = b0, q = q0, r = r0)
P2 = P1[q ← 0][r ← a] P4 = P3 � (r ≥ b)
P3 = P2 � P5 P5 = P4[r ← r − b][q ← q + 1]
P6 = P3 � (r ≤ b − 1)

P6 corresponds to the unique exit point of the procedure, so it is the sum-
mary. The standard analysis—where the widening is applied on P3 during the
increasing sequence, and the decreasing sequence is limited to 2 steps—provides:

P6 = (a = a0 , b = b0, r ≥ 0, q ≥ 0 , b ≥ r + 1)

It is a rather weak summary, all the more as the precondition a0 ≥ 0 has been
lost. This suggests that preconditions should be considered more carefully.

5 Preconditions

For closed programs, the initial state is generally not relevant, since, normally,
the variables are explicitly assigned an initial value before being used. When
considering procedures, the initial state is implicitly defined by the initial values
of parameters. Therefore, it is essential to take it into account. In particular, the
correct behavior of a procedure often depends on (user-defined) preconditions
on parameter values. We will call global precondition the abstraction of the set
of legal initial states of a procedure: I�

p = αS→(Ip). Notice that we already took
into account the global precondition a ≥ 0, b ≥ 1 in our example. Such global
precondition may be given by the user, or deduced from another analysis of the
calling contexts, or simply �.

Moreover, preconditions can be used to differentiate cases of input values
(calling contexts) that should be considered separately. These preconditions will
be obtained by refining the global precondition. This is the way we intend to
build disjunctive summaries.

Disjunctive Relational Abstract Interpretation 145

Widening under a Precondition: In relational analysis, a precondition provides
an obvious invariant: a procedure may not change its initial state, so any concrete
relation ρ∗(Ip, Si) has its source within Ip. However, it is not as obvious with
abstract analysis: because of the use of widening, it may happen that the result
r�∇Δ does not satisfy this invariant, i.e., γR(r�∇Δ) is not included in Ip × S.
This is what happened in our example (Sect. 4.3). As a consequence, it is sound
and interesting to make use of a “limited widening” when computing r�∇: we
define this more precise widening by r∇I�

p
r′ = (r∇r′) � I�

p.

Example: Coming back to our example in Sect. 4.3, the widening is performed on
P3. Instead of applying the widening classically, i.e., computing P3 = P3∇(P2 �
P5), we limit it with the precondition, i.e., compute P3 = (P3∇(P2�P5))�(a0 ≥
0, b0 ≥ 1). The summary we obtain

P6 = (a = a0, b = b0, r ≥ 0 , q ≥ 0 , b ≥ r + 1 , a ≥ q + r)

recovers more than just the precondition. Instead of gaining just a ≥ 0, we get
the stronger a ≥ q + r.

6 Disjunctive Summaries

Up to now, we described the classical analysis by abstract interpretation, with
an emphasis on relational analysis, use of trace partitioning, and taking care of
preconditions. In this section, we propose to refine the partitioning by distin-
guishing the calling contexts of a procedure, defined as preconditions.

Abstract domains are generally not closed under disjunction (in some sense,
it is the essence of abstraction). In order to build more precise procedure sum-
maries, it is natural to consider disjunctions of abstract relations. However, some
restrictions must be applied to be able to compute on such disjunctions. More-
over, in order to be able to exploit such a disjunctive procedure summary when
using it on a procedure call, the values of the actual parameters should deter-
mine which disjunct must apply. Thus, different disjuncts should have disjoint
sources.

6.1 Disjunctive Refinements of an Abstract Relation

If p is a procedure with global precondition I, a disjunctive refinement of the
abstract relation ρ�∗(I�, S�

i) will be a finite set r�∗
1 , ..., r�∗

m of abstract relations,
such that

(1) ∀k = 1...m, r�∗
k � ρ�∗(I�, S�

i)
(2) ∀k1, k2 = 1...m, k1 �= k2 ⇒ γ(src�(r�∗

k1
)) ∩ γ(src�(r�∗

k2
)) = ∅

(3)
m⋃

k=1

γ(src�(r�∗
k)) = γ(I�)

146 R. Boutonnet and N. Halbwachs

In other words, {src�(r�∗
k)}k=1...m forms an abstract partition of I�. Notice

that, with this definition, the disjunctive summary of a procedure can also be
seen as a conjunction of implications:

m∨

k=1

r�∗
k ⇐⇒

m∧

k=1

(
src�(r�∗

k) ⇒ r�∗
k

)

emphasizing the fact that the partitioning is directed by properties of input
parameters. Conversely, given an abstract partition {I�

k}k=1...m of I�, one can
compute a disjunctive refinement of the abstract relation ρ�∗(I�, S�

i) simply by
computing r�∗

k = ρ�∗(I�
k, S�

i) for each k = 1...m.

6.2 Disjunctive Abstract Summary and Abstract Effect of a Call

Given a disjunctive refinement {r�∗
k }k=1...m of an abstract relation, the corre-

sponding abstract summary of a procedure is a set of disjuncts:

{σ�
k = r�∗

k (I�
p, E�

p)}k=1...m

Given such a disjunctive summary, the abstract effect of a call to p, with param-
eter passing π, situated between T �

i and T �
j is

ρ�(T �
i , T �

j) =
m⊔

k=1

π(σ�
k)

6.3 Application to LRA

Disjunctive Polyhedral Summaries: Let p be a procedure, X be its vector of
variables, and I� be its polyhedral global precondition. A disjunctive polyhedral
summary of p is a disjunction of input-output relations expressed by a set of
polyhedra {R1, ..., Rm}, and such that, if we define I�

k = src�(Rk) = ∃X.Rk (k =
1...m), the set {I�

k}k=1...m forms an abstract partition of I�.

Polyhedron Transformer of a Procedure Call: With the same notations con-
cerning the procedure p and its disjunctive polyhedral summary, assume that
X = (x1, . . . , xn) is the list of formal parameters. Let q be a caller to p,
A = (a1, . . . , an) be the actual parameters of a call to p situated between control
points c and c′ in q. Let Qc be the polyhedron associated with c in q. Then the
polyhedron associated with the return point c′ is

Qc′ =
m⊔

k=1

(∃A1.Qc[A/A1] � Rk[X0/A1][X/A]
)

where

– Qc[A/A1] is the result of renaming, in Qc, each variable ai as a1
i

Disjunctive Relational Abstract Interpretation 147

– Rk[X0/A1][X/A] is the result of renaming, in Rk, each variable x0
i as a1

i ,
and each variable xi as ai (this term is what we wrote π(σ�

k) in the general
framework Sect. 6.2).

In other words, the auxiliary variables A1 = (a1
1, . . . , a

1
n) represent the values of

actual parameters before the call, so they are substituted for A in the calling
context Qc and to X0 in the summary; the values A of the actual parameters
after the call, are substituted for X in the summary.

7 Partition Refinement

7.1 General Framework

Given an abstract partition of the global precondition of a procedure, we know
how to compute and use a disjunctive summary based on this partition. In this
section, we propose a heuristic method to choose the abstract partition.

Complementable Abstract Values: An abstract value r� is said to be com-
plementable, if there exists an abstract value r� (its complement) such that
r� � r� = ⊥ and γ(r�) ∪ γ(r�) = R. For instance, complementable convex
polyhedra are half-spaces, i.e., polyhedra defined by a single inequality.

Refinement According to Local Reachability: Let {r�∇Δ(I�, S�
i)}i=1...n be the

result of a classic analysis from a precondition I�. For a given i ∈ {1...n},
I�

i = src�(r�∇Δ(I�, S�
i)) is a necessary condition for S�

i to be reachable. As a
consequence, if s� is a complementable abstract value such that

– I�
i � s�

– I ′� = I� � s� �= ⊥ and I ′′� = I� � s� �= ⊥
then (I ′�, I ′′�) is a good candidate for refining the precondition I�. As a matter
of fact, I ′′� is a sufficient precondition for S�

i to be unreachable.

Refinement According to the Summary of a Called Procedure: The effect of a call
to a procedure with a partitioned summary {σ�

k}k=1...m (as defined in Sect. 6.2)
involves a least upper bound

⊔m
k=1 π(σ�

k), which is likely to lose precision. So
it is interesting to refine the partition in the caller in order to split this least
upper bound. Let us denote by J �

k = π(src�(σ�
k)), i.e., the condition on actual

parameters for σ�
k to be applicable. Then, in the caller, I�

k = src�(r�∇Δ(I�,J �
k)),

is a necessary precondition for J �
k to be satisfiable. As a consequence, if s� is a

complementable abstract value such that

– I�
k � s�

– I ′� = I� � s� �= ⊥ and I ′′� = I� � s� �= ⊥
then (I ′�, I ′′�) is a good candidate for refining the precondition I�. As a matter
of fact, I ′′� is a sufficient precondition for J �

k to be unsatisfiable at the call.

148 R. Boutonnet and N. Halbwachs

Iterative Refinements: Our proposal is to build the summary of a procedure as
the result of a sequence of analyses, working on more and more refined parti-
tions. We define P(�) = {I�(�)

k }k=1...m�
the partition of abstract preconditions

considered at �-th analysis. Starting with P(0) = {I�} (the singleton made of
the global precondition of the procedure), for each �, we compute from P(�)

the corresponding disjunctive abstract relation {r
�(�)
k }k=1...m�

, which is used to
refine P(�) into P(�+1), using one of the refinement techniques presented above.
This process is not guaranteed to terminate, but may be stopped at any step.
In practice, the size of the partition will be limited by a constant parameter of
the analysis.

Ensuring the Monotonicity of the Refinement: Refining a precondition is
intended to provide a more precise summary. However, this is not guaranteed
because of the non-monotonicity of the widening operator. So at step �, when
precondition I�(�)

k has been split into a pair (I�(�+1)
k′ , I�(�+1)

k′′) of new precondi-
tions, the analyses performed at step � + 1 from these new preconditions should
use a widening limited by r

�(�)
k . The monotonicity of the refinement is especially

important when dealing with recursive procedures, and avoids the difficulties
tackled by [4].

7.2 Application to LRA

Complementable Polyhedra: As said before, complementable polyhedra are those
defined by a single inequality. So any polyhedron is the intersection of a finite
number of complementable polyhedra. The complement of “aX ≤ b” is obtained
either with the converse strict inequality “aX > b” (strict inequalities are han-
dled in the PPL [5,8] and in Apron [29]), or, in case of integer variables, by the
inequality “aX ≥ b + 1”.

Precondition Refinement: From a precondition I�, a standard analysis by LRA
provides, at each control point c of the program, a polyhedron Pc(I�). From
these solutions, we can try to refine the precondition:

– For each control point c, let Qc = ∃X.Pc(I�) be the projection of Pc(I�) on
initial variables. Then, if Qc �= I�, any constraint χ of Qc not satisfied by I�

can be used to separate I� into I�
1 = I� ∩ χ and I�

2 = I� ∩ χ , since the point
c is unreachable by any execution starting in I�

2. Obviously, this should be
tried on control points following a test, and especially those corresponding to
loop conditions.

– For each control point c corresponding to a call to a procedure, say p(A),
let {R1, ..., Rm} be the polyhedral summary of p, and for each k = 1...m,
J �

k (p) = src�(Rk)[X0/A] (i.e., J �
k (p) is the precondition of Rk, expressed on

actual parameters). Then, let Qc,k = ∃X.Pc(I�) � J �
k (p) be the projection

of Pc(I�) � J �
k (p) on the initial variables of the caller. Then, as before, if

Qc,k �= I�, any constraint χ of Qc,k not satisfied by I� can be used to separate

Disjunctive Relational Abstract Interpretation 149

I� into I�
1 = I� ∩ χ and I�

2 = I� ∩ χ , and it is interesting since starting the
caller in I�

2 makes empty the precondition J �
k (p).

Notice that, in both cases, the choice of the constraint χ is arbitrary, and that
several such constraints can be used in turn. So the fact that the refinement is
done according to one single constraint is not a limitation.

7.3 Example

The analysis of the example in Sect. 4.3, from the precondition I�(0) = (a0 ≥
0, b0 ≥ 1), as done in Sect. 5, provides, on the branches of the loop condition
(r ≥ b), the solutions:

P4(I�(0)) = (a0 = a, b0 = b, r ≥ b, q ≥ 0, b ≥ 1, a ≥ q + r)
P6(I�(0)) = (a0 = a, b0 = b, r ≥ 0, q ≥ 0, b ≥ r + 1, a ≥ q + r)

The projections of these solutions on the initial values are:

src�(P4(I�(0))) = (a0 ≥ b0 ≥ 1) src�(P6(I�(0))) = (a0 ≥ 0, b0 ≥ 1)

src�(P6(I�(0))) = I(0), so it does not induce any refinement. However,
src�(P4(I�(0))) �= I�(0), since I�(0) does not imply a0 ≥ b0. We can refine I�(0)

into
I�(1)
1 = (a0 ≥ b0 ≥ 1) and I�(1)

2 = (b0 − 1 ≥ a0 ≥ 0)

i.e., separate the cases where the loop is entered at least once or not. New
analyses from these refined preconditions provide:

P4(I�(1)
1) = (a0 = a, b0 = b, r ≥ b, q ≥ 0, b ≥ 1, a ≥ q + r)

P6(I�(1)
1) = (a0 = a, b0 = b, r ≥ 0, q ≥ 0, q + r >= 1, b ≥ r + 1,

a + 1 ≥ b + q, a ≥ b)
P4(I�(1)

2) = ⊥
P6(I�(1)

2) = (a0 = a, b0 = b, b − 1 ≥ a ≥ 0, q = 0, r = a)

The projections of these solutions on the initial values are:

src�(P4(I�(1)
1)) = (a0 ≥ b0 ≥ 1) = I�(1)

1)
src�(P6(I�(1)

1)) = (a0 ≥ b0 ≥ 1) = I�(1)
1)

src�(P4(I�(1)
2)) = ⊥

src�(P6(I�(1)
2)) = (b0 − 1 ≥ a0 ≥ 0) = I�(1)

2

so, according to our criteria, the preconditions cannot be further refined, and we
get the summary

R1 =
(
a0 = a, b0 = b, a0 ≥ b0 ≥ 1,
r ≥ 0, q ≥ 0, q + r >= 1, b ≥ r + 1, a + 1 ≥ b + q)

R2 =
(
a0 = a, b0 = b, b0 − 1 ≥ a0 ≥ 0, q = 0, r = a

)

directed by input conditions R0
1 = (a0 ≥ b0 ≥ 1) and R0

2 = (b0 − 1 ≥ a0 ≥ 0).

150 R. Boutonnet and N. Halbwachs

7.4 A Last Improvement: Postponing Loop Feedback

The previous example shows a weakness of the analysis: the summary has been
partitioned according to whether the loop is entered at least once (R1) or not
(R2). However, in the former case, since the loop body is executed at least once,
we should obtain q ≥ 1, a fact which is missed by the analysis. We could recover
this fact by systematically unrolling once each loop that gives raise to such a
partitioning. We propose another, cheaper solution. The problem comes from
the least upper bound computed at loop entry (P3 = P2 � P5 in the abstract
equations of Sect. 4.3), before the test on the loop condition (P6 = P3 � (r ≤
b − 1)). The solution consists in permuting the least upper bound and the test,
computing instead P6 = (P2 � (r ≤ b − 1)) � (P5 � (r ≤ b − 1))1.

Back to the Example: Computing R1 = P6(I�(1)
1) with this new equation, since

P2 � (r ≤ b − 1) = ⊥, we get

R1 =
(
a0 = a, b0 = b, a0 ≥ b0 ≥ 1, r ≥ 0, q ≥ 1, b ≥ r + 1, a + 1 ≥ b + q + r

)

Once again, we recover more precision than expected, since, in addition to finding
q ≥ 1, a + 1 ≥ b + q is strengthened into a + 1 ≥ b + q + r.

8 Recursive Procedures

The relational abstract interpretation of recursive procedures was proposed a
long time ago [13,15,21]. It involves the use of widening, since the summary of
a recursive procedure depends on itself. Moreover, a group of mutually recursive
procedures must be analyzed jointly, with widening applied on a cutset of their
call graph. In this section, we only show a simple example of how our technique
can be applied to build a disjunctive summary of a recursive procedure. It will
also illustrate the refinement according to the summary of a called procedure.

void f91 (int x,*y) {
int z, t ;

1 if (x > 100) *y = x -10 ;
2
3 else { z = x + 11 ;
4 f91 (z, &t) ;
5 f91 (t, y) ;
6 }
}

Example: McCarthy’s 91 Function. The oppo-
site procedure is the well-known “91 function”
defined by John McCarthy. For simplicity, we
don’t duplicate parameters, knowing that x is
a value parameter and y is a result parameter.
The polyhedral summary of the procedure can
be defined by the following equations:

R(x, y) = P2 � P7

P2 = (x ≥ 101, y = x − 10)
P7 = (x ≤ 100 � (∃t.R(x + 11, t) � R(t, y)))

1 This change in the abstract equations could also be obtained by transforming each
loop “while c do B” into “if c {do B while c}”, a transformation called “loop inver-
sion” often applied by compilers.

Disjunctive Relational Abstract Interpretation 151

A first, standard analysis, without partitioning, reaches the following fixpoint
after one widening step:

P2 = (x ≥ 101, y = x − 10), P6 = (x ≤ 100, y + 9 ≥ x, y ≥ 91)
R(0) = (x ≤ y + 10, y ≥ 91)

Since src�(P2) = (x ≥ 101) splits the global precondition I� = �, we refine the
precondition into I�(1)

1 = (x ≥ 101) and I�(1)
2 = (x ≤ 100). From this (obvious)

partition, the results are not much better:

P2(I�(1)
1) = (x ≥ 101, y = x − 10), P2(I�(1)

2) = ⊥
P6(I�(1)

1) = ⊥, P6(I�(1)
2) = (x ≤ 100, y ≥ 91)

R(1)(I�(1)
1) = (x ≥ 101, y = x − 10), R(1)(I�(1)

2) = (x ≤ 100, y ≥ 91)

But now, the partitioned precondition involves a refinement of I�(1)
2 at the first

recursive call, according to the condition x + 11 ≥ 101. We get I�(2)
1 = (90 ≤

x ≤ 100) and I�(2)
2 = (x ≤ 89). The final result is

R(1)(I�(1)
1) = (x ≥ 101, y = x − 10)

R(2)(I�(2)
1) = (90 ≤ x ≤ 100, y = 91)

R(2)(I�(2)
2) = (x ≤ 89, y = 91)

which is the most precise summary.

9 Implementation

This approach has been implemented in a prototype static analyzer . Organized
as a collection of tools, the analyzer computes numerical invariants on programs
written in a significant subset of C. A front-end tool based on Clang [34] and
LibTooling translates the abstract syntax tree of a C program into an intermedi-
ate representation. The analyzer tool then computes numerical invariants on the
intermediate representation. Abstract domains, such as convex polyhedra, are
provided by the Apron [29] library. The analyzer can either consider an inlined
version of the program, or construct and use procedure summaries as described
in the paper, with some restrictions: for the time being, recursive procedures are
not yet taken into account, and postponing the loop feedback is not performed
as described in Sect. 7.4, but makes use of “loop inversion”.

Procedures are analyzed only once, regardless of the number of call sites, in
a bottom-up fashion according to the inverse invocation order, with respect to
the dependencies induced by the program call graph.

In order to limit the number of additional variables, the tool does not dupli-
cate all procedure parameters, but applies a simple dataflow analysis before
summary construction to identify procedure parameters which are either pure
input parameters or pure output parameters, and thus which do not need to be
duplicated.

152 R. Boutonnet and N. Halbwachs

Refinement according to local reachability is performed by the analyzer only
at direct successors of test nodes and particularly at loop entry and loop exit.
Candidate nodes for refinement are examined during each refinement step using
a breadth-first traversal of the program graph. For practical reasons, in order
to guarantee the termination of the refinement process and to limit procedure
summaries to a reasonable size, an upper-bound θ on the refinement depth for a
given procedure is set to θ = 2. This limits procedure summaries to a maximum
size of 4.

10 Experiments

Up to now, to illustrate our approach, we presented only tiny exam-
ples, for which the precondition partitioning is obvious. However, in pres-
ence of more complex control structures—nested and/or successive loops—
and when preconditions result from more involved invariants, the useful-
ness of our method for discovering relevant preconditions is more convinc-
ing. Several more complex ad-hoc examples can be found on the repository
github.com/programexamples/programexamples.

More thorough experiments are necessary to validate our approach, and in
particular to answer the following questions:

– Since we analyze a procedure several times to construct its summary, it is
likely to be time-consuming. So it is interesting to measure the cost of sum-
mary construction with respect to the time hopefully saved by using the
summary.

– Precondition partitioning is a heuristic process, so it is important to evalu-
ate the precision lost or gained by using a disjunctive summary instead of
analyzing again the procedure for each calling context.

So our experiments consists in comparing our bottom-up approach with an anal-
ysis of inlined programs, both with respect to the analysis time and the precision
of results. Several difficulties must be addressed first:
– Most public benchmarks are not usable, since they contain very few numer-

ical programs with procedures. For instance, in the SV-COMP benchmark2,
most numerical examples are inlined; the ALICe benchmark3 also contains
only monolithic programs. For our assessment, we used the benchmark of the
Mälardalen4 WCET research group, which contains various small and middle-
sized programs, such as sorts, matrix computations, fft, etc. Moreover, some
programs of this benchmark were sometimes extended with auxiliary vari-
ables counting the number of executions of each block to help the evaluation
of the execution time [10]; these extensions—the name of which are prefixed
with “cnt ” below—are interesting for us, since they contains more numeric
variables.

2 sv-comp.sosy-lab.org/2018/benchmarks.php.
3 alice.cri.mines-paristech.fr/models.html.
4 www.mrtc.mdh.se/projects/wcet/benchmarks.html.

https://github.com/programexamples/programexamples
https://sv-comp.sosy-lab.org/2018/benchmarks.php
http://alice.cri.mines-paristech.fr/models.html
www.mrtc.mdh.se/projects/wcet/benchmarks.html

Disjunctive Relational Abstract Interpretation 153

– The comparison of polyhedral results is not straightforward:
• On one hand, we must decide which polyhedra to compare. The correspon-

dence of control points between the inlined program and the structured
one is not easy to preserve. In our experiments, we only compared the
results at the end of the main program. Of course, for the comparison to
be meaningful, the results on the inlined program must be first projected
on the variables of the main program.

• On the other hand, while a qualitative comparison of two polyhedra is
easy—by checking their inclusion in both directions—, a quantitative
comparison is more difficult: it could be precisely achieved by compar-
ing their volumes—algorithms are available for that [7,11]—but it is only
possible for bounded polyhedra. In our assessment, besides a qualitative
comparison, we only compared the number of constraints.

All our experiments are done using the convex polyhedra abstract domain.
Widening is never delayed and decreasing sequences are limited to 7 terms. The
analysis times are those obtained on an Intel Xeon E5-2630 v3 2.40 Ghz machine
with 32 GB of RAM and 20MB of L3 cache running Linux.

Table 1 compares our method with a standard LRA on inlined programs, in
terms of analysis time, qualitative precision and number of constraints of results
found at the exit points of the main procedures. The “# procs” column gives
the number of procedures in each program and the “max. # calls” column gives
the maximum number of call sites per procedure in a program. We define:
– til (resp. tip) the time (in seconds) for analyzing the inlined program (resp.

the time for interprocedural analysis)
– Pil (resp. Pip) the polyhedron result of the inlined analysis (resp., of the

interprocedural analysis)
– Cil (resp. Cip) the number of constraints of Pil (resp. of Pip).
The qualitative results comparison is shown by column “cmp. res.” which indi-
cates whether the result Pip is better (�), worse (�), equal (=) or incompara-
ble (<>) w.r.t. Pil. The S column gives for each program the speedup of our
method defined as S = til/tip. Our method is significantly faster than standard
LRA using inlining for 13 over 19 programs (≈ 68% of programs), with an aver-
age speedup of 2.9. The loss of precision is very moderate since only 1 over 19
programs, namely minver, has a less precise convex polyhedra at the exit node
of the main procedure.

Interestingly, our method also leads to precision improvements for some pro-
grams, such as janne complex, my sin and cnt minver, due to the use of
disjunction, enabling a more accurate analysis of procedure behaviors. More-
over, those precision improvements are not necessarily obtained at the expense
of analysis time, since the janne complex program has a more precise convex
polyhedra at the exit of the main procedure, with a 60% increase in the number
of constraints and has also the highest speedup with S = 15.34.

Table 2 reports the computation times of the summary of each procedure in
each program. The τc column gives the fraction of the analysis time using our
method spent during the computation of each procedure summary, defined as
τc = Procedure summary comp. time/Program analysis time using rel. summ.

154 R. Boutonnet and N. Halbwachs

Table 1. Experimental results.

Program # procs max.
calls

Inlining Interprocedural cmp.
res.

S

til Cil tip Cip

fabs 2 1 0.013 4 0.015 4 = 0.87

fdct 2 1 0.084 0 0.069 0 = 1.22

fft1 6 3 0.742 4 0.465 3 <> 1.59

fir 2 1 0.040 1 0.072 1 = 0.55

janne complex 2 1 0.948 5 0.062 8 � 15.34

minver 4 2 0.155 1 0.686 2 � 0.23

my sin 2 1 0.032 1 0.028 5 � 1.14

jfdctint 2 1 0.082 3 0.060 3 = 1.38

ludcmp 3 1 0.074 3 0.102 3 = 0.73

ns 2 1 0.057 0 0.051 0 = 1.13

qurt 4 1 0.057 1 0.028 1 = 2.06

select 2 1 0.097 0 0.057 0 = 1.69

ud 2 1 0.093 3 0.118 3 = 0.79

cnt fdct 2 1 0.098 1 0.075 1 = 1.31

cnt fft1 6 3 33.417 5 2.646 3 <> 12.63

cnt jfdctint 2 1 0.102 5 0.070 5 = 1.46

cnt ns 2 1 0.085 0 0.067 0 = 1.25

cnt qurt 4 1 0.601 2 0.063 2 = 9.54

cnt minver 4 2 1.008 1 3.424 6 � 0.29

The summary construction time for small utility procedures, such as the
my fabs, my sin, my cos and my log procedures, in the fft1 and cnt fft1
programs, are very small (lower than 4 ms) and often individually negligible with
respect to the analysis time of the entire program (with τc often lower than 1%).
This suggests that our method could be particularly beneficial, in terms of anal-
ysis performance, for programs built on top of a collection of utility procedures
or a library of such procedures, each procedure summary being computed only
once and possibly used in many call contexts.

Our last experiment concerns the speedup
of our interprocedural analysis with respect
to the number of calls. Notice that the
Mälardalen benchmark is not very favorable in
this respect, since most procedures are called
only once. Our analysis on the cnt ns pro-
gram has a moderate speedup of 1.25. In order
to observe the evolution of the speedup with
the number of calls, we increase the number
of calls to the foo procedure in the main pro-
cedure of the cnt ns program. The opposite

Disjunctive Relational Abstract Interpretation 155

Table 2. Summaries computation times.

Program Function Time (s) τc
fabs fabs 0.001 0.067
fdct fdct 0.050 0.588
fft1 my fabs < 0.001 0.001

my sin 0.002 0.004
my cos < 0.001 0.001
my log < 0.001 < 0.001
fft1 0.350 0.753

fir fir 0.019 0.267
janne janne 0.037 0.602
minver mmul 0.047 0.069

minver fabs < 0.001 < 0.001
minver 0.616 0.897

my sin my sin 0.003 0.098
jfdctint jpeg fdct islow 0.031 0.528
ludcmp fabs < 0.001 0.002

ludcmp 0.055 0.540
ns foo 0.011 0.215

qurt qurt fabs < 0.001 0.007
qurt sqrt 0.004 0.138
qurt 0.002 0.066

select select 0.042 0.730
ud ludcmp 0.050 0.425
cnt fdct fdct 0.070 0.941
cnt fft1 my fabs 0.001 < 0.001

my sin 0.004 0.001
my cos < 0.001 < 0.001
my log < 0.001 < 0.001
fft1 1.750 0.661

cnt jfdctint jpeg fdct islow 0.035 0.500
cnt ns foo 0.026 0.382
cnt qurt qurt fabs 0.001 0.010

qurt sqrt 0.019 0.308
qurt 0.003 0.047

cnt minver mmul 0.126 0.037
minver fabs < 0.001 < 0.001
minver 2.925 0.854

graphic shows the evolution of the analysis times of these successive versions,
comparing our analysis with respect to standard LRA with inlining.

The analysis of the cnt ns program using our disjunctive relational sum-
maries analysis becomes significantly faster than standard LRA with inlining
when there are more than 2 calls to the foo procedure in the main procedure.

11 Conclusion and Future Work

In this paper, we proposed a method for interprocedural analysis as a solution
to the cost of using expressive relational abstract domains in program analysis.
An analysis using a relational domain can be straightforwardly transformed into
a relational analysis, computing an input-output relation. Such relations can be
used as procedure summaries, computed once and for all, and used bottom-up
to compute the effect of procedure calls. Applying this idea with linear relation
analysis, we concluded that the obtained polyhedral summaries are not precise
enough, and deserve to be refined disjunctively. The main ideas of the paper are
as follows. First, we used precondition partitioning as a basis of disjunctive sum-
maries. Then, we proposed a heuristic method for refining a summary according
to reachability of control points or calling contexts of called procedures. We also
identified some technical improvements, like widening limited by preconditions
and previously computed relations, and more precise computation of results at
loop exit points. Our experiments show that using summaries built in this way
can significantly reduce the analysis time, especially for procedures used sev-
eral times. On the other hand, the precision of the results is not dramatically
damaged, and can even be improved, due to disjunctive analysis.

156 R. Boutonnet and N. Halbwachs

Future work should be devoted to applying the method with other rela-
tional domains. In particular, octagons [39] would be interesting since they per-
mit a better quantitative comparison of results: apart from infinite bounds, two
octagons on the same variables can be precisely compared by comparing their
constant vectors. Another, longer-term, perspective is to use disjunctive rela-
tional summaries for procedures acting on remanent memories, like methods
in object-oriented programming or reaction functions in reactive programming.
Our precondition partitioning could result in partitioning memory states, and
allow disjunctive memory invariants to be constructed modularly.

References

1. Allen, F.E.: Interprocedural analysis and the information derived by it. In: Hackl,
C.E. (ed.) IBM 1974. LNCS, vol. 23, pp. 291–321. Springer, Heidelberg (1975).
https://doi.org/10.1007/3-540-07131-8 31

2. Allen, F.E.: Interprocedural data flow analysis. In: IFIP Congress, pp. 398–402
(1974)

3. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to affine
loop invariants detection. Electron. Notes Theor. Comput. Sci. 267(1), 3–16 (2010)

4. Apinis, K., Seidl, H., Vojdani, V.: How to combine widening and narrowing for non-
monotonic systems of equations. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2013, Seattle, WA, pp. 377–386, June
2013

5. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45789-5 17

6. Barth, J.M.: An interprocedural data flow analysis algorithm. In: Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pp. 119–131. ACM (1977)

7. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhe-
dra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994). https://
doi.org/10.1287/moor.19.4.769. https://doi.org/10.1287/moor.19.4.769

8. Becchi, A., Zaffanella, E.: An efficient abstract domain for not necessarily closed
polyhedra. In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 146–165.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99725-4 11

9. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct. Pro-
gram. 2(4), 407–435 (1992)

10. Boutonnet, R., Asavoae, M.: The WCET analysis using counters - a preliminary
assessment. In: Proceedings of 8th JRWRTC, in Conjunction with RTNS14, Ver-
sailles, France, October 2014

11. Clauss, P.: Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: applications to analyze and transform scientific programs. In: Pro-
ceedings of the 10th International Conference on Supercomputing, ICS 1996,
Philadelphia, PA, USA, 25–28 May 1996, pp. 278–285 (1996). http://doi.acm.org/
10.1145/237578.237617

https://doi.org/10.1007/3-540-07131-8_31
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1007/978-3-319-99725-4_11
http://doi.acm.org/10.1145/237578.237617
http://doi.acm.org/10.1145/237578.237617

Disjunctive Relational Abstract Interpretation 157

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Languages, POPL 1977, Los Angeles,
January 1977

13. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: IFIP Conference on Formal Description of Programming Concepts,
St. Andrews, NB, Canada. North-Holland Publishing Company (1977)

14. Cousot, P., Cousot, R.: Relational abstract interpretation of higher order func-
tional programs (extended abstract). In: Proceedings of Actes JTASPEFL 1991
(Bordeaux), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Octo-
ber 1991, pp. 33–36 (1991)

15. Cousot, P., Cousot, R.: Compositional separate modular static analysis of programs
by abstract interpretation. In: Proceedings of SSGRR, pp. 6–10 (2001)

16. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 13

17. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 84–96. ACM (1978)

18. Flexeder, A., Müller-Olm, M., Petter, M., Seidl, H.: Fast interprocedural linear
two-variable equalities. ACM Trans. Programm. Lang. Syst. (TOPLAS) 33(6), 21
(2011)

19. Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM
Trans. Programm. Lang. Syst. (TOPLAS) 20(5), 1067–1109 (1998)

20. Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural anal-
ysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 18

21. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. Ph.D. thesis, Université Scientifique et Médicale de
Grenoble (1979)

22. Howe, J.M., King, A.: Polyhedral analysis using parametric objectives. In: Miné,
A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 41–57. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33125-1 6

23. Irigoin, F., Jouvelot, P., Triolet, R.: Semantical interprocedural parallelization: an
overview of the pips project. In: ACM International Conference on Supercomputing
25th Anniversary Volume, pp. 143–150. ACM (2014)

24. Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the
verification of reactive systems. Formal Methods Syst. Des. 23(1), 5–37 (2003)

25. Jeannet, B.: INTERPROC analyzer for recursive programs with numerical vari-
ables. INRIA. http://pop-art.inrialpes.fr/interproc/interprocweb.cgi. Accessed 06
Nov 2010

26. Jeannet, B.: Relational interprocedural verification of concurrent programs. Softw.
Syst. Model. 12(2), 285–306 (2013)

27. Jeannet, B., Gopan, D., Reps, T.: A relational abstraction for functions. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 186–202. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 14

28. Jeannet, B., Halbwachs, N., Raymond, P.: Dynamic partitioning in analyses of
numerical properties. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 39–50. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48294-6 3

https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/978-3-540-71316-6_18
https://doi.org/10.1007/978-3-642-33125-1_6
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://doi.org/10.1007/11547662_14
https://doi.org/10.1007/3-540-48294-6_3

158 R. Boutonnet and N. Halbwachs

29. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

30. Jeannet, B., Serwe, W.: Abstracting call-stacks for interprocedural verification of
imperative programs. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST
2004. LNCS, vol. 3116, pp. 258–273. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27815-3 22

31. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
Omega calculator and library, version 1.1. 0. College Park, MD 20742, 18 (1996)

32. Khedker, U., Sanyal, A., Sathe, B.: Data Flow Analysis: Theory and Practice. CRC
Press, Boca Raton (2009)

33. Kranz, J., Simon, A.: Modular analysis of executables using on-demand heyting
completion. Verification, Model Checking, and Abstract Interpretation. LNCS, vol.
10747, pp. 291–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73721-8 14

34. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California, March
2004

35. Maisonneuve, V.: Convex invariant refinement by control node splitting: a heuristic
approach. Electron. Notes Theor. Comput. Sci. 288, 49–59 (2012)

36. Maisonneuve, V., Hermant, O., Irigoin, F.: Computing invariants with transform-
ers: experimental scalability and accuracy. Electron. Notes Theor. Comput. Sci.
307, 17–31 (2014)

37. Maréchal, A., Monniaux, D., Périn, M.: Scalable minimizing-operators on polyhe-
dra via parametric linear programming. In: Ranzato, F. (ed.) SAS 2017. LNCS,
vol. 10422, pp. 212–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66706-5 11

38. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 2

39. Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001, pp. 310–319.
IEEE/IEEE CS Press, October 2001

40. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 79–96. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 6

41. Müller-Olm, M., Seidl, H.: Computing interprocedurally valid relations in affine
programs. Princ. Prog. Lang. (2004)

42. Müller-Olm, M., Seidl, H., Steffen, B.: Interprocedural analysis (almost) for free.
Univ. Dekanat Informatik (2004)

43. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77505-8 26

44. Popeea, C., Chin, W.N.: Dual analysis for proving safety and finding bugs. In:
Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 2137–2143.
ACM (2010)

45. Popeea, C., Chin, W.N.: Dual analysis for proving safety and finding bugs. Sci.
Comput. Program. 78(4), 390–411 (2013)

46. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49–61. ACM (1995)

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-27815-3_22
https://doi.org/10.1007/978-3-540-27815-3_22
https://doi.org/10.1007/978-3-319-73721-8_14
https://doi.org/10.1007/978-3-319-73721-8_14
https://doi.org/10.1007/978-3-319-66706-5_11
https://doi.org/10.1007/978-3-319-66706-5_11
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/978-3-540-30579-8_6
https://doi.org/10.1007/978-3-540-77505-8_26

Disjunctive Relational Abstract Interpretation 159

47. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. (TOPLAS) 29(5), 26 (2007)

48. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New
York University, Courant Institute of Mathematical Sciences, Computer Science
Department (1978)

49. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In: POPL,
pp. 46–59 (2017)

50. Sotin, P., Jeannet, B.: Precise interprocedural analysis in the presence of pointers to
the stack. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 459–479. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-5 24

51. Spillman, T.C.: Exposing side-effects in a PL/I optimizing compiler. In: IFIP
Congress, vol. 1, pp. 376–381 (1971)

52. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: ACM SIGPLAN Notices, vol. 43, pp. 221–234. ACM (2008)

53. Zhang, X., Mangal, R., Naik, M., Yang, H.: Hybrid top-down and bottom-up inter-
procedural analysis. In: ACM SIGPLAN Notices, vol. 49, pp. 249–258. ACM (2014)

https://doi.org/10.1007/978-3-642-19718-5_24

	Disjunctive Relational Abstract Interpretation for Interprocedural Program Analysis
	1 Introduction
	2 Related Work
	3 Concrete Relational Semantics
	3.1 General Framework
	3.2 Numerical Programs and Procedures
	3.3 A Very Simple Example

	4 Relational Abstract Interpretation
	4.1 General Framework
	4.2 Building Summaries Using LRA
	4.3 Example

	5 Preconditions
	6 Disjunctive Summaries
	6.1 Disjunctive Refinements of an Abstract Relation
	6.2 Disjunctive Abstract Summary and Abstract Effect of a Call
	6.3 Application to LRA

	7 Partition Refinement
	7.1 General Framework
	7.2 Application to LRA
	7.3 Example
	7.4 A Last Improvement: Postponing Loop Feedback

	8 Recursive Procedures
	9 Implementation
	10 Experiments
	11 Conclusion and Future Work
	References

