
Relatively Complete Pushdown Analysis
of Escape Continuations

Kimball Germane1(B) and Matthew Might2

1 Brigham Young University, Provo, USA
kimball@cs.byu.edu

2 University of Alabama, Birmingham, USA

Abstract. Escape continuations are weaker than full, first-class contin-
uations but nevertheless can express many common control operators.
Although language and compiler designs profitably leverage escape con-
tinuations, all previous approaches to analyze them statically in a higher-
order setting have been ad hoc or imprecise. We present MCCFA2, a
generalization of CFA2 that analyzes them with pushdown precision in
their most-general form. In particular, the summarization algorithm of
MCCFA2 is both sound and complete with respect to a conservative
extension of CFA2’s abstract semantics. We also present an continuation
age analysis as a client of MCCFA2 that reveals critical function call
optimizations.

1 Introduction

Continuations are a powerful tool in the hands of programmers, whether handled
as a naked reference provided by call/cc or through the veneer of the excep-
tional raise, the logical fail, the cooperative yield, or the primitive longjmp.1

On the other side of the language, compiler writers unify their implementations
of these and other control constructs by expressing them directly via continua-
tions [1,2,9]. While this unification has the effect of simplifying the compiler, it
also amplifies the effect the compiler’s power to reason about continuations has
on the quality of the code it generates. Here, static analysis tools that provide
maximal insight into a program’s continuation use become critical.

CFA2 [19] was the first abstract interpretation of higher-order programs
to model the continuation with a pushdown automaton, allowing it to pre-
cisely match calls and returns. Compared to that of finite-state models as in
k-CFA [13,15], this choice of model greatly increased the precision with which
continuation use could be reasoned, but at the cost of the ability to reason about
any non-trivial continuation use—including any of the control constructs men-
tioned above. Vardoulakis and Shivers [21] extend CFA2 to soundly reason about
call/cc but their technique sacrifices completeness w.r.t. the abstract seman-
tics (a point we discuss further in Sect. 8.4). Vardoulakis and Shivers [21] also
1 Of course, even return calls the current continuation, but we consider such uses

essentially trivial.

c© Springer Nature Switzerland AG 2019
C. Enea and R. Piskac (Eds.): VMCAI 2019, LNCS 11388, pp. 205–225, 2019.
https://doi.org/10.1007/978-3-030-11245-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11245-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-11245-5_10

206 K. Germane and M. Might

propose two ad-hoc extensions to CFA2 to reason about exceptions. Integrat-
ing either of these proposals unduly complicates the summarization algorithm.
In contrast, our approach subsumes and generalizes these proposals and yields
a simpler and more coherent summarization algorithm relative to CFA2. We
discuss the details of our relationship to these proposals in Sect. 11.

Although call/cc is a highly-expressive control construct, the power of
the first-class continuations it furnishes isn’t always necessary: many uses of
continuations require only second-class escape continuations, of which raise,
fail, longjmp, and others are thinly-masked expressions. This paper presents
MCCFA2, an alternative extension to CFA2 that can reason about escape con-
tinuations both soundly and completely w.r.t. the abstract semantics and in a
general, principled way.

MCCFA2 extends each of CFA2’s three stages: the core language and concrete
semantics, the abstract semantics, and the summarization algorithm.

1. CFA2 operates over a CPS λ-calculus statically restricted to preclude any
non-trivial continuation behavior (let alone call/cc). We conservatively
extend [4] this language to allow function calls to provide and procedures to
receive and bind multiple continuations. This capability allows the language
to express escape continuations generally but so regulates their lifetimes that
they can be allocated on the stack [20]. To underscore this fact, our concrete
semantics allocates continuations on a stack rather than a heap.

2. CFA2’s abstract semantics is sound but not complete w.r.t. its concrete
semantics. We extend CFA2’s abstract semantics to accommodate multiple
continuations. This extended abstract semantics is sound w.r.t. the extended
concrete and, again, conservatively extends CFA2’s. That is, MCCFA2’s
abstract semantics of a program in CFA2’s core language are exactly as pre-
cise as CFA2’s. The primary distinction between the two abstract semantics is
that MCCFA2’s walks the stack at each call to find the return point whereas
CFA2’s can determine the return point by the syntactic form of the continu-
ation at the call site.

3. CFA2’s summarization algorithm is both sound and complete w.r.t. its
abstract semantics. Similarly, MCCFA2’s summarization algorithm is both
sound and complete w.r.t. its abstract semantics. To accommodate multi-
ple continuations, MCCFA2’s algorithm unifies and generalizes CFA2’s by
treating every continuation call as a potential escape: continuation calls that
represent local returns are immediately identified as such, while those that
represent non-local returns (escapes) are discovered as the algorithm walks
the abstract stack.

In summary, MCCFA2 offers sound and relatively complete account of escape
continuations in a general, higher-order setting. Additionally, MCCFA2 can be
combined with Vardoulakis and Shivers’ extension to handle first-class control
which yields an analysis that forfeits precision only when continuations are used
in a genuinely first-class way (Sect. 8.4).

In the next section, we discuss the MCCFA2 extension in more depth.
We then establish notation (Sect. 3) and proceed to formally introduce MCPS

Relatively Complete Pushdown Analysis of Escape Continuations 207

(Sect. 4) and its concrete (Sect. 5) and abstract (Sect. 6) semantics, connected by
a sound abstraction (Sect. 7). We then present summarization (Sect. 8), by way
of an algorithm (Sect. 8.2) and its correctness (Sect. 8.5). We then walk through
an example MCPS program analysis (Sect. 9). Finally, we sketch how to integrate
Vardoulakis and Shivers’ technique to handle first-class control into MCCFA2
(Sect. 8.4) and compare MCCFA2 to other proposals to handle exceptions, as
well as other related work (Sect. 11).

2 Overview

In this section, we overview MCCFA2 and discuss some significant aspects of its
design.

2.1 Core Language

CFA2 considers programs to have originated in some direct-style source lan-
guage before CPS conversion into its core language. Accordingly, CFA2 oper-
ates over a CPS λ-calculus partitioned into user-world and continuation-world
terms [20,21]. User-world terms are those that have a direct correspondent in the
source program whereas continuation-world terms are those introduced directly
by the CPS transform. For instance, for a continuation reference k, the CPS
term (f x k) is a user-world call as it directly corresponds to the call (f x) in
the source program, whereas the CPS term (k x) is a continuation-world call as
it was synthesized from the tail-position appearance of the reference x in the
source program. This static partition allows CFA2 to distinguish source-level
uses of the continuation from regular function calls and thereby model such uses
more precisely. CFA2’s core language includes the additional restriction that
continuation references may not appear free under a user-world λ-term, making
it impossible to encode any control construct that interacts non-trivially with
its context, let alone call/cc.

CFA2 is able to so precisely model the continuation behavior of the programs
in its core language in part because its core language is statically limited to offer
no interesting continuation behavior. MCCFA2 extends the CFA2’s core lan-
guage of the CPS λ-calculus to the multiple continuation-passing style (MCPS)
λ-calculus in which function calls can provide and procedures can receive and
bind multiple continuations. This ability allows the MCPS λ-calculus (or simply
MCPS) to express escape continuations generally. MCPS retains the restriction
that continuation references may not appear free under a user-world λ-term,
which precludes it from encoding call/cc.

MCPS is a conservative extension [4] of single CPS that can be found
in several continuation-aware compilers. For instance, MCPS limited to two
continuations—“double-barreled” CPS—has been used frequently to encode
exceptions and other control constructs [2,9–11,17]. MCPS is also the inter-
mediate language of the multi-return λ-calculus (MRLC) [16] (which we revisit
in Sect. 9).

208 K. Germane and M. Might

The static restriction of MCPS on where continuation references may occur
regulates continuation lifetimes to strictly follow a stack discipline. Thus, MCPS
offers compiler writers an efficient implementation of continuations allocated on
the run-time stack [7,20]. We underscore this fact by stack-allocating continua-
tions in MCCFA2’s concrete semantics (Sect. 5), deviating from CFA2’s concrete
semantics which heap-allocates them.

2.2 Summarization Algorithm

As it runs, CFA2’s summarization algorithm records summaries of the form
(entry , exit) which expresses that the entry state entry reaches the correspond-
ing exit state. In the presence of multiple continuations, this form of summary
doesn’t adequately capture the flow of entry and exit as exit applies one of
the multiple continuations that may be in scope at entry . To accommodate
this fact, the summarization algorithm of MCCFA2 uses summaries of the form
(entry , exit , n) which include the index of the continuation (w.r.t. entry) called
in exit .

In CFA2’s core language, proper and tail calls in the source program are syn-
tactically distinguished by the form of continuation: a user-world call which con-
structs a continuation (via a continuation-world λ-term) is a proper call whereas
a user-world call which references the continuation is a tail call. CFA2’s summa-
rization algorithm exploits this knowledge by separately tracking proper callers
and tail callers. When a procedure calls its continuation (i.e. returns in the source
program), the tail callers are used to extend summaries and the proper callers
are used as return points. In the presence of multiple continuations, proper and
tail calls cannot in general be distinguished at the time of the call since, for the
purposes of extending summaries or offering return points, the type of call is not
known until the continuation is called. To accommodate this fact, the summa-
rization algorithm of MCCFA2 (1) does not separately track proper and tail calls
and (2) treats every continuation call as a potential escape. Accordingly, each
continuation call instigates a phase of the algorithm which walks the abstract
stack in search of return points, extending summaries as it goes.

Altogether, these changes simplify and generalize the summarization algo-
rithm of CFA2.

3 Notation

We leverage metavariables heavily and try to be extremely careful in their use.
For an arbitrary metavariable x, a bolded metavariable x represents a vector of x
and a bolded, superscripted metavariable x+ represents a non-empty vector of x.
The quantity πi(x) is the ith element of x indexed from 1. Vectors will sometimes
be treated as sets and functions will sometimes be lifted over vectors. For a multi-
argument function of vectors and scalars, the scalars are lifted appropriately as
well. For example, f(x, y) = 〈f(x1, y), . . . , f(xn, y)〉 for x = 〈x1, . . . , xn〉. The

Relatively Complete Pushdown Analysis of Escape Continuations 209

empty vector is denoted 〈〉. We often use head–tail notation both to construct
and deconstruct vectors, writing 〈x1, x2, . . . , xn〉 as x1 :: 〈x2, . . . , xn〉.

Throughout the paper, a definition’s left side is a pattern which deconstructs
and binds subvalues of the value of the expression on its right.

4 Partitioned CPS λ-Calculus

We view MCPS programs as being obtained by a CPS transformation of a direct-
style source program. Hence, we maintain a distinction between user-world and
continuation-world terms where a user-world term directly corresponds to a term
in the source program and a continuation-world term is introduced by the CPS
transformation. Both worlds contain λ terms, calls, and variable references. A
user-world λ term ulam has a user parameter vector u, a non-empty continu-
ation parameter vector k, and a call call . Given lam or call , the continuation
parameter function CP retrieves the vector k of the innermost-enclosing ulam
of lam or call (where a ulam encloses itself for this definition). A user-world
call ucall has a user operator expression f , an argument expression vector e,
and a non-empty continuation expression vector q. The continuation argument
function LC retrieves the vector q of a given ucall or the surrounding q of a
given clam. A user-world variable u will be bound only to user-world values. A
continuation-world λ term clam has a user parameter vector u and a call call .
A continuation-world call ccall has a continuation operator expression q and an
argument expression vector e. A continuation-world variable k will be bound
only to continuations (Fig. 1).

All λ terms and calls are labelled uniquely in a given program to distinguish
otherwise identical terms. We will sometimes identify a term with its label but
the meaning should be clear from context.

Programs are closed ulams with a single continuation parameter and contin-
uation variables may not appear free within a ulam term.

Fig. 1. Partitioned CPS λ-calculus syntax

210 K. Germane and M. Might

5 Concrete Semantics

We start by defining an abstract machine to evaluate MCPS programs which
will serve as the ground truth of evaluation. Like many real-world runtimes,
this machine uses a stack to house both local environments and return-point
information. (A stack is not necessary however; an MCPS machine that heap-
allocates continuations works as well.) A value environment serves as a heap and
all values are heap-allocated.

Fig. 2. Concrete state space

Figure 2 presents the concrete state space State of this machine. Each state
in State has a stack st , a value environment ve serving as the heap, and a times-
tamp t. State is partitioned into two domains, Eval and Apply . An Eval state
focuses on a call call in the context of a user environment βu and continuation
environment βk. Apply is further partitioned into the user domain UApply and
continuation domain CApply . A UApply state holds a procedure proc ready to
apply to an argument vector d and non-empty continuation vector c. A CApply
state, on the other hand, holds a code pointer cp and result vector d. We also
make finer distinctions between states: an Eval state with a user call is a UEval
state, denoted ue; a Eval state with a continuation call with a CVar operator
is a CEvalExit state, denoted cee, and a CLam operator is a CEvalInner state,
denoted cei.

Figure 3 presents the concrete machine’s evaluation relation → as the union of
four relations. The side conditions of each relation are divided so that user-world
conditions are on the left and continuation-world on the right. (An overarching,
implicit side condition is that, when a function is lifted over two different vec-
tors, those vectors must have the same length.) The concrete machine evaluates
programs by alternating between two modes: evaluating operators/arguments
and applying an evaluated operator to its arguments, corresponding precisely to
Eval and Apply states.

Relatively Complete Pushdown Analysis of Escape Continuations 211

Fig. 3. The concrete semantics

For Eval states, the metafunction Au evaluates atomic user-world expres-
sions, dereferencing variables and constructing closures. Likewise, Ak evaluates
continuation expressions, dereferencing variables and constructing code–frame
pointer pairs. As part of each call—user or continuation—the evaluated continu-
ations are used to determine the youngest live frame on the stack. If a call doesn’t

212 K. Germane and M. Might

reference some continuations in scope, the frames unique to them become dead.
The pop metafunction discards all such frames that reside at the top of the stack
as part of the transition (where the notation st |fp indicates the oldest fp frames
of st). Hence, arbitrarily many frames may be popped when a call is made. This
stack management policy follows Might and Shivers’ generalization [14] of the
stack management policy of the Orbit compiler [1].

Apply states precipitate the procedure entry or re-entry, depending on
whether a user procedure or continuation is applied. Application of a user pro-
cedure proc extends its environment βu with bindings for the arguments and the
heap ve with their values, as well as constructing a continuation environment
βk. New user bindings use the timestamp t′ to ensure freshness; in this work,
this is the sole use of timestamps. Continuation application entails popping the
stack to c’s frame pointer fp, jumping to c’s code pointer cp, and extending the
local environment βu with bindings and the heap ve with the result values.

A program pr and its arguments d are injected into a UApply state with a
single halt continuation pointing to the base of the stack, empty stack, empty
value environment, and epoch time.

6 Abstract Semantics

The next stage of MCCFA2 is the definition of an abstract semantics. The
abstract state space ̂State, seen in Fig. 4, is partitioned identically to State. How-
ever, abstract states themselves and their components differ nontrivially from
their concrete counterparts. Following CFA2, abstract states lack timestamps,

Fig. 4. Abstract state space

Relatively Complete Pushdown Analysis of Escape Continuations 213

Fig. 5. The abstract semantics

an abstract denotable d̂ is a superposition of procedures p̂roc; and closures no
longer include an environment.2

MCCFA2 summarization crucially relies on a non-standard abstraction for
continuation environments: the syntax map. A syntax map is a finite mapping
from continuation variables to continuation expression syntax, i.e., the syntax
of the continuation arguments in a call expression. Each stack frame houses a
syntax map and a stack of these frames comprises the program’s control linkage
information. The particular maintenance of this stack, which we describe shortly,
allows us to omit frame pointers from continuations—they consist of merely a
code pointer.

2 Deviating from CFA2, we omit environments from stack frames as well. This is only
to simplify the presentation; they can be reintroduced without difficulty.

214 K. Germane and M. Might

We define the abstract semantics as a union of the four relations defined in
Fig. 5. Once again, user-world conditions are sequestered to the left column and
continuation-world to the right. Because multiple procedure values may be in
superposition as a call’s operator, the target procedure is chosen nondetermin-
istically. Just as in the concrete semantics, the stack is popped at both user
and continuation calls according to the generalized Orbit policy. However, the
mechanism by which this policy is upheld is significantly different.

When a user call is made, the p̂op metafunction uses the call’s continuation
expressions q and the stack ̂st to determine the dead frames (if any) to pop from
the stack. If there is some clam within q, then the caller frame is live (since a
nested call may return to it) and no dead frames can be popped. On the other
hand, if q = k for some k, the call is a tail call and at least one dead frame
(the caller’s) can be popped. Thus, each step of p̂op determines whether the top
frame of the provided stack is dead and, if so, pops it. It may be that such a
step results in some syntax vector k′ which indicates that the newly-revealed top
frame is dead also, a situation that occurs when a call doesn’t reference the only
continuations on which multiple frames atop the stack depend. For this reason,
p̂op is recursive and can pop arbitrarily-many frames in a given transition.

The p̂op metafunction is used to implement continuation calls as well. When
used in this way, the continuation operator q is provided to p̂op along with
the stack. If q ∈ CLam, the call represents a let-continuation, a local binding
construct in the source program. In this case, p̂op correctly determines that the
top frame is live and preserves the stack. If q ∈ CVar , the call represents a return
to some continuation in scope. In this case, the recursive definition of p̂op effects
the popping of the stack and discovery of the return point.

The Î metafunction injects a program and abstract argument vector into an
initial machine state.

7 Abstraction

With machines for both the concrete and abstract semantics defined, we need to
ensure that the abstract semantics simulates the concrete semantics. To obtain
this assurance, we first need to establish a correspondence between their state
spaces and introduce a notion of precision into the abstract state space. Figure 6
presents this correspondence via the concrete–abstract abstraction map | · |ca
and the abstraction refinement relation �.

The bulk of | · |ca is contained in the mutually-inductive metafunctions
reconstruct and reconstruct∗ which reconstruct an abstract stack and continua-
tions from a concrete stack and continuations. If the stack st given to reconstruct∗

is empty, the given argument vector c must be halt and the result is its abstrac-
tion halt paired with the empty stack. Otherwise, the code pointer clam of the
height-maximum continuation c is determined and the continuation argument
syntax vector q in which it’s found is paired with the reconstruct ion of the con-
tinuation parameter vector k of its enclosing λ-term and the rest of the stack.
The reconstruct metafunction uses reconstruct∗ to reconstruct all but the top

Relatively Complete Pushdown Analysis of Escape Continuations 215

Fig. 6. Abstraction map and refinement relation

frame of the stack. It uses the given continuation parameter vector k and the
resultant continuation argument syntax vector q̂ to build the top frame.

The abstraction refinement relation � is standard.

Theorem 1 (Simulation).
If ς → ς ′ and |ς|ca � ς̂, then there exists ς̂ ′ such that ς̂ � ς̂ ′ and |ς ′|ca � ς̂ ′.

The soundness of the Eval–Apply transitions are non-trivial as they must
establish that equivalent frames are popped from the stack in the transitions.
To establish it, we use the following lemma.

Lemma 1. Suppose |ue|ca � ûe where ue = ((f e q+)γ , βu, βk, st , ve, t). If k =
CP(γ), Ak(q, βu, st) = c, reconstruct(k, βk, st) = ̂st, and pop(c, (βu, βk) :: st) =
st ′, then reconstruct∗(c, st ′) = p̂op(q, ̂st).

This lemma establishes that pop and p̂op commute with reconstruct and
reconstruct∗. That is, given a concrete stack st , one can reconstruct an abstract
stack ̂st and p̂op it to ̂st

′
or pop it to st ′ and reconstruct∗ to obtain ̂st

′
. This

lemma is established by proving that reconstruct/reconstruct∗ yield stacks that
preserve the behavior of pop in p̂op. A proof is given in a technical report [5].

216 K. Germane and M. Might

Fig. 7. Local state space

8 Summarization

Because abstract stacks are unbounded, the abstract state space is infinite.
Hence, we can’t perform abstract interpretation simply by enumerating the
states reachable from the program entry state. Instead, we’ll perform it using a
summarization algorithm similar to that of CFA2.

Summarization algorithms are so-called because they discover and summarize
reachability facts between system states. CFA2’s summarization algorithm sum-
marizes the fact that exit is reachable from entry in a stack-respecting way with
a pair (entry , exit). This form of summary is inadequate for MCPS. Instead, we
use a summary (entry , exit , n) to record the fact that both exit is reachable from
entry in a stack-respecting way and exit is returning to the nth continuation of
entry .

In Sect. 8.5, we show that the summarization algorithm inherently respects
the stack. Consequently, the stack component of abstract states is unnecessary
and the summarization algorithm operates over the local semantics, the stack-
free residue of the abstract semantics.

Fig. 8. The local semantics

8.1 Local Semantics

The local semantics describes segments of evaluation that don’t require the
return-point information of the stack. Figure 7 contains the local state space,
which is simply the abstract state space with stacks excised. Accordingly, the
local abstraction map | · |al merely performs the excision:

Relatively Complete Pushdown Analysis of Escape Continuations 217

Fig. 9. The summarization algorithm

|(ulam, d̂, q̂, ̂st , h)|al = (ulam, d̂, h)

|(clam, d̂, ̂st , h)|al = (clam, d̂, h)

|(call , ̂st , h)|al = (call , h)

We define the local semantics as the union of four relations over local states,
seen in Fig. 8. This semantics is similar to the abstract semantics except that it
is not defined over continuation calls that exit the procedure, which requires the
return-point information of the stack. The summarization algorithm is tasked
with linking exits to their return points.

The local successors succ(ς̃) of a state ς̃ is defined succ(ς̃) = {ς̃ ′ : ς̃ ≈> ς̃ ′}.

8.2 Summarization Algorithm

Figure 9 presents the summarization algorithm. The product of running the algo-
rithm is three relations: the ternary relations Summary and Call , and the unary
relation Final . A summary (ũa, ˜cee, n) ∈ Summary records the fact that ˜cee
exits the procedure entered by ũa through its nth continuation (by position). A
call edge (ũa0, ũe, ũa) ∈ Call records the fact that, in the invocation ũa0 heads,
the call ũe yields the entry ũa. A state ũa ∈ Final is simply a terminal state of
evaluation.

218 K. Germane and M. Might

We define the summarization algorithm imperatively and based on a workset,
after the style of CFA2’s. The workset consists of pairs of states of form (ũa, ς̃)
where ũa is entry state of the procedure invocation containing ς̃. The workset
is initialized with Ĩ(pr , d̂) paired with itself (where Ĩ(pr , d̂) = |Î(pr , d̂)|al).

When ς̃ has local successors (as determined by succ), these are Propagated
to the workset. When ς̃ ∈ ˜UEval , its successors are ˜UApply states which are their
own corresponding entries. Thus, each successor ς̃ ′ is Propagated with itself and
the call is recorded in Call . Each summary that begins with ς̃ ′ is Linked with the
caller. Link searches for the return point of a call by looking at the continuation
expression at the position the summary exited. If that continuation expression
is some k, Return searches deeper in the stack with that continuation position
mapped through the formal parameters. If that continuation expression is some
clam, Update synthesizes the return point and Propagates it.

Finally, when ς̃ ∈ ˜CEvalExit , its continuation position with respect to ũa
is determined by CP and passed to Return. If the entry–exit–position triple is
already recorded in Summary , the path is sure to be explored and the search is
cut off. Otherwise, the triple is recorded in Summary . If ũa is the program entry
state, then ς̃ is a program exit state and Final uses it to synthesize a state to
record in Final . The last step of Return Links every caller of ũa with the triple.

8.3 Comparison with CFA2

The MCCFA2 summarization algorithm simplifies and generalizes that of CFA2.
To simplify, MCCFA2’s algorithm builds a single Call relation where CFA2

builds the Callers relation for proper callers and TCallers relation for tail callers.
Our consolidation of these relations was due to expediency: with multiple contin-
uations, one can’t in general determine whether a call’s particular continuation
will be invoked at the point of the call and hence the type of call cannot be
known a priori. However, the result is a more uniform treatment of calls which
is both simpler and more general.

MCCFA2’s algorithm also operates over a more general language than
CFA2’s—the MCPS λ-calculus. The presence of multiple continuations means
the return point of a call is no longer guaranteed to be at the top of the stack.
To reflect this, MCCFA2’s algorithm essentially has two phases: the first drives
the workset loop and explores the state space; the second is activated when a
procedure exits and the stack is walked to find the return point.

8.4 Integrating First-Class Control

Vardoulakis and Shivers [21] extend CFA2 to handle call/cc by allowing free
continuation references in operator position. The similarly-extended summariza-
tion algorithm keeps track of two additional unary relations: EntriesEsc contains
entry states of procedures that bind escaping continuations (that is, continua-
tions with free references) and Escapes contains exit states in which escaped
continuations are applied. When the algorithm encounters an entry state over

Relatively Complete Pushdown Analysis of Escape Continuations 219

a procedure ulam that binds an escaping continuation k, that state is added to
EntriesEsc and linked (by summary) to any Escapes states that apply k. On the
other end, when it encounters an exit state that applies an escaped continuation
bound to k, that state is added to Escapes and linked to any EntriesEsc states
that bind k.

Because the non-local linking it performs ignores path realizability, the
extended summarization algorithm is incomplete with respect to the CFA2’s
abstract semantics. Thus, summarization introduces spurious paths for even
morally second-class uses of call/cc, such as exceptions. The present work
has demonstrated that such uses can be treated completely with respect to the
abstract semantics. Furthermore, we can integrate this extension into MCCFA2
and pay-as-we-go for analysis of bonafide first-class control but enjoy complete
analysis otherwise.

To integrate this technique, we also keep track of EntriesEsc and Escapes. We
add an entry state to EntriesEsc when any of the continuations it binds escape
and link it to Escapes states that invoke any escaped continuation under those
bound names. We add an exit state to Escapes when it applies an escaped con-
tinuation and link it to EntriesEsc states that bind the continuation’s name. We
include the binding continuation of the escaped continuation in the synthesized
link to let Return propagate the control transfer.

In Sect. 11, we consider specific extensions to CFA2 and how this work sub-
sumes or enhances them.

8.5 Summarization Correctness

Our summarization algorithm is sound and complete with respect to the abstract
semantics. Before we formally define those properties, we need to introduce some
auxiliary definitions.

A path p is a sequence of abstract states ς̂0, ς̂1, . . . , ς̂n where ς̂0 � ς̂1 � . . . �
ς̂n. We denote by p0 � p1 the concatenation of paths p0 and p1. The smallest
reflexive relation over ̂State is denoted by �0, the transitive closure of � by
�+, and the reflexive, transitive closure of � by �∗.

To extract the continuation variable from ˆcee = ((k e)γ , ̂st , h), let
CV (ˆcee) = k. To determine the continuation position of a continuation from
the operator of ûa = ((λγ (uk+) call), d̂, q̂, ̂st , h), let CP(ûa, k) = i where
πi(k) = k. Finally, to extract the ith continuation argument (by position) from
ûe = ((f e q+)γ , ̂st , h), let CA(ûe, i) = πi(q).

The corresponding entry of an abstract state is the entry state of the invo-
cation of which it’s a part.

Definition 1 (Corresponding Entry). Let CEp(ς̂) denote the corresponding
entry of a state ς̂ in path p. For path p ≡ ûa �∗ ς̂, CEp(ς̂) = ûa if:

1. p ≡ ûa �0 ς̂;
2. p ≡ ûa �∗ ς̂ ′ � ς̂, ûa = CEp(ς̂ ′), ς̂ ′ 	∈ ̂UEval, and ς̂ ′ 	∈ ̂CEvalExit; or

220 K. Germane and M. Might

3. p ≡ ûa �+ ûe � ûa
′ �+ ˆcee � ς̂, ûa = CEp(ûe), CA(ûe, n) ∈ CLam,

and ûa
′ ≡p ˆcee by n.

For a path p ≡ ûa �+ ˆcee, we say ûa ≡p ˆcee by n if:

1. ûa = CEp(ˆcee) and CP(ûa,CV (ˆcee)) = n; or
2. p ≡ ûa �+ ûe � ûa

′ �+ ˆcee, ûa = CEp(ûe), ûa
′ ≡p ˆcee by n′,

CA(ûe, n′) = k, and CP(ûa, k) = n.

The first case of CEp says that, in path p, a procedure entry state ûa is
its own corresponding entry. The second says that the corresponding entry is
preserved across an intraprocedural transition. The third says that a return state
ĉa has the corresponding entry of a user call state ûe if its nth continuation
argument is some clam and that ûa′ ≡p ˆcee by n holds for the intervening path
ûa

′ �+ ˆcee. Two states with the same corresponding entry are part of the same
abstract procedure invocation.

The ternary “same-level” relation · ≡p · by · captures the fact that an exit
state ˆcee returns through a sequence of tail calls through ûa’s nth continuation.
The base case relates an entry state ûa and an exit state ˆcee in the same
invocation that returns through the nth continuation of ûa. The inductive case
assumes that ˆcee returns through the n′th continuation of ûa′ and, if the n′th
continuation of its caller ûe is a reference, extends it by ûe’s corresponding entry
ûa and the position n of the referenced continuation with respect to ûa.

Summarization Soundness. Soundness is the property that any abstract path
p initiated by Î(pr , d̂) is contained in the results of summarization. Formally,
we have the following:

Theorem 2 (Soundness).
After summarization,

1. if p ≡ Î(pr , d̂) �∗ ûa �+ ˆcee such that ûa ≡p ˆcee by n, then
(|ûa|al , | ˆcee|al , n) ∈ Summary; and

2. if p ≡ Î(pr , d̂) �∗ ûa �+ ûe � ûa
′ such that ûa = CEp(ûe),

(|ûa|al , |ûe|al , |ûa′|al) ∈ Call ;
3. if p ≡ Î(pr , d̂) �+ ς̂ such that ς̂ is a final state, then |ς̂|al ∈ Final .

The proof of this theorem is the same as that of CFA2 modulo our def-
initions of corresponding entry and “same-level” states (and our omission of
local environments from stack frames). The key step is ensuring that each called
continuation is properly identified on the stack. In CFA2, where only a sin-
gle continuation is possible, the continuation resides at the penultimate stack
frame. In MCCFA2, the continuation could reside arbitrarily-deep in the stack.
We address this possibility by connecting the path structure induced by corre-
sponding entries and “same-level” states to stack behavior. The proof appears
in a technical report [5].

Relatively Complete Pushdown Analysis of Escape Continuations 221

Summarization Completeness. Completeness is the property that only
abstract paths p initiated by Î(pr , d̂) are contained in the results of summa-
rization. Formally, we have the following:

Theorem 3 (Completeness).
After summarization,

1. if (ũa, ˜cee, n) ∈ Summary then there exists p ≡ Î(pr , d̂) �∗ ûa �+ ˆcee
such that ũa = |ûa|al , ˜cee = | ˆcee|al , and ûa ≡p ˆcee by n; and

2. if (ũa, ũe, ũa
′) ∈ Call , then there exists p ≡ Î(pr , d̂) �∗ ûa �+ ûe � ûa

′

such that ũa = |ûa|al , ũe = |ûe|al , ũa′ = |ûa′|al , and ûa = CEp(ûe);
3. if ς̃ ∈ Final , then there exists p ≡ Î(pr , d̂) �+ ς̂ such that ς̃ = |ς̂|al and ς̂ is

a final state.

The proof of this theorem strongly resembles the corresponding proof for CFA2
except for the use of summaries to extend paths; it appears in a technical
report [5].

A CFA2-produced summary (entry , exit) records not only that exit is reach-
able from entry but also such that the intervening evaluation perfectly balances
proper calls and returns. The path segments represented by these summaries
exhibit the property of stack irrelevance, that is, that the evaluation of these
path segments is not influenced by nor influences the stack of the entry state.
This property allows abstract paths to be synthesized by replacing irrelevant
suffixes of the stack.

When multiple continuations are present, user and continuation calls can pop
arbitrary portions of the stack, even below the stack of the entry state. Hence, a
summary (entry , exit , n) subject to the same call–return balance restriction does
not enjoy this property. However, such paths can be normalized, removing irrele-
vant suffixes of each constituent invocation, so that summaries can be employed
in the same way. This ability is critical to demonstrating completeness, one of
our technical contributions.

9 Multi-return λ-Calculus

Shivers and Fisher [16] introduce the multi-return λ-calculus (MRLC) as an
extension of a direct-style λ-calculus in which return points become an explicit
(though second-class) language construct. With this mechanism, MRLC essen-
tially provides user-level access to multiple escape continuations without the
severe notational overhead of CPS. This access makes MRLC adept at express-
ing programs from particular control-heavy domains such as LR parsing, back-
tracking search, and functional tree transformations [20]. MRLC is designed to
translate into MCPS so our analysis framework is keenly poised to handle these
domains as well.

Shivers and Fisher illustrate the utility of MRLC with a parsimonious filter
program which employs multiple return points to reuse as much of the input list
as possible. We consider MCCFA2 applied to the MCPS transformation of this
program:

222 K. Germane and M. Might

(λ0 (? ws k0)
(define1 (recur xs k1 k2)
(case xs k1

(λ3 (y ys)
(? y (λ5 (t)

(if t
(λ7 () (recur ys k1 (λ9 (zs) (cons y zs k2)10))8)
(λ11 () (recur ys (λ13 () (k2 ys)14) k2)12))6))4))2)

(recur ws (λ16 () (k0 ws)17) k0)15)
The primitive case procedure performs case analysis on its first argument, decon-
structs it, and invokes one of its continuations on the subparts. To exercise the
full behavior of this program, we apply it to 〈<havoc>,
list〉 where <havoc>
is an arbitrary primitive predicate.

The table in Fig. 10 presents the destination and content of each analysis
fact MCCFA2 discovers, in a possible order of discovery. Each call is a triple
consisting of the calling procedure entry, the call site, and the called procedure
entry. Primitive procedures have opaque representations of the form <name>.
Each summary is a triple consisting of a procedure entry, procedure exit, and
continuation index. A procedure exit is merely the exit site with the result values
implicit. Primitive procedure exit sites are not represented in the program so we
denote them with a pair (<name>, n) of primitive identifier and continuation
index, The final state is simply the program result value.

Fig. 10. An MCCFA2 analysis

10 Continuation Age Analysis

When a user call is made with multiple continuations, Might and Shivers’ gener-
alization of Orbit’s stack-management policy [14] dictates that all dead frames
are popped from the stack before the target procedure is entered. Dead frames
are typically determined dynamically by comparing the frame pointers of the
call’s continuations (as seen in the UEval rule of our concrete semantics) which
requires an MCPS-based compiler to emit comparison code at each call site.

Relatively Complete Pushdown Analysis of Escape Continuations 223

Vardoulakis and Shivers [20] introduced continuation age analysis which
attempts to statically determine the relative ages among each call’s continu-
ations. They build their analysis into a pre-existing finite-state k-CFA [15,18]
analysis framework. We can perform continuation age analysis directly on the
pushdown model MCCFA2 constructs without modifying the MCCFA2 imple-
mentation.

For each call site ucall = (f ek+)γ where |k| > 1, let

φ0 = {(ũa0, ũe0,k) : (ũa0, ũe0, ũa) ∈ Call , ũe0 = (ucall , h) for some h}.

That is, φ0 is a set of triples where each triple contains a ˜UEval state focused on
ucall , its corresponding entry, and its continuation argument vector (comprising
only continuation references). Find the fixed point of f(φ0) defined as

f(φ0)(φ) = φ0 ∪ {(ũa0, ũe0, q
′
) : (ũa, ũe, q) ∈ φ,

q ∈ CVar
+

,

(ũa0, ũe0, ũa) ∈ Call,

k = CP(ulam) where ũa = (ulam, d̂, h) for some d̂ and h,

q0 = LC (ucall) where ũe0 = (ucall, h) for some h,

q
′
= [k �→ q0](q) }.

The function f considers all triples in its argument φ that have a continuation
argument vector q consisting solely of continuation references. The callers of
each such triple’s entry state are used to construct new triples containing that
caller, its corresponding entry, and q mapped over [k �→ q0] which permutes the
outer caller’s continuation vector to match the inner caller’s.

By MCCFA2 soundness, this process will accumulate all continuation argu-
ment vectors that contain some clam that is eventually bound to a reference at
the original ucall . Given a fixed point φ of f(φ0), we can consider only the con-
tinuation vectors that contain a clam. One of the many ways to use the resultant
vectors is to map each to the set of indices at which a clam is found. Any indices
in the intersection of these sets are those of the youngest continuation. If the
intersection is empty, the union contains indices that may be the youngest. This
information may decrease the number of comparisons necessary to determine the
youngest at run time.

11 Related Work

There are many instances of pushdown control-flow analysis for higher-order lan-
guages [3,6,8,19]. This work is framed around CFA2. In their extension of CFA2
to handle first-class control [21], Vardoulakis and Shivers outline two approaches
to extend CFA2 to support exceptions without sacrificing precision:

1. Outlined in [21, Sect. 2.4], they propose to let exit points encapsulate a pair
of values, the first representing the result of standard control flow and the
second of exceptional control flow. Since procedures don’t exit naturally and

224 K. Germane and M. Might

exceptionally simultaneously, this pair behaves as a sum with the position of
the value providing an additional bit of information. Our approach generalizes
this approach in a sense by providing as many bits as the continuation position
takes to encode.

2. Outlined in [21, Sect. 5.5], they propose translating the program into 2CPS,
using the first continuation for standard control flow and the second for
exceptional—the standard “double-barrelled” CPS. In this approach, two dis-
tinct summary relations must be maintained by the summarization algorithm
“to not confuse exceptional with ordinary control flow”. As in the previous
approach, the caller syntax is inspected to determine whether it can handle
the type of return the summary represents, this time looking for a literal
λ term in the appropriate continuation position. Our approach extends this
approach in the obvious way, generalizing to arbitrarily many continuations
and using indices to distinguish summaries. This generalization is not free,
however, as we have made significant modifications to the summarization
algorithm and soundness/completeness arguments, in turn.

Pushdown exception-flow analysis has also been applied in the context of object-
oriented programs [12]. Like extended CFA2, the treatment is specialized to
exceptions and not the multiple continuations in general.

Acknowledgments. This material is partially based on research sponsored by
DARPA under agreement number AFRL FA8750-15-2-0092 and by NSF under
CAREER grant 1350344. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright notation
thereon.

References

1. Adams, N., Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J.: ORBIT: an
optimizing compiler for scheme. In: SIGPLAN 1986. ACM, New York (1986)

2. Appel, A.W.: Compiling with Continuations. Cambridge University Press, Cam-
bridge (2007)

3. Earl, C., Might, M., Van Horn, D.: Pushdown control-flow analysis of higher-order
programs. In: Workshop on Scheme and Functional Programming (2010)

4. Felleisen, M.: On the expressive power of programming languages. Sci. Comput.
Program. 17(1), 35–75 (1991)

5. Germane, K., Might, M.: Multi-continuation pushdown analysis. Technical report,
January 2019. http://kimball.germane.net/germane-mccfa2-techreport.pdf

6. Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-
flow analysis for free. In: Proceedings of the 43rd Annual ACM Symposium on
Principles of Programming Languages. POPL 2016, pp. 691–704. ACM, New York
(2016)

7. Hieb, R., Dybvig, R.K., Bruggeman, C.: Representing control in the presence of
first-class continuations. In: Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation. PLDI 1990, pp. 66–77.
ACM, New York (1990)

http://kimball.germane.net/germane-mccfa2-techreport.pdf

Relatively Complete Pushdown Analysis of Escape Continuations 225

8. Johnson, J.I., Van Horn, D.: Abstracting abstract control. In: Proceedings of the
10th ACM Symposium on Dynamic languages, pp. 11–22. ACM (2014)

9. Kennedy, A.: Compiling with continuations, continued. In: Proceedings of the 12th
ACM International Conference on Functional Programming. ICFP 2007, pp. 177–
190. ACM, New York (2007)

10. Kim, J., Yi, K., Danvy, O.: Assessing the overhead of ML exceptions by selective
CPS transformation, vol. 5, January 1998

11. Ley-Wild, R., Fluet, M., Acar, U.A.: Compiling self-adjusting programs with con-
tinuations. In: Proceedings of the 13th ACM International Conference on Func-
tional Programming. ICFP 2008, pp. 321–334. ACM, New York (2008)

12. Liang, S., Sun, W., Might, M., Keep, A., Horn, D.V.: Pruning, pushdown exception-
flow analysis. In: Proceedings of the 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation, pp. 265–274. IEEE Computer
Society (2014)

13. Might, M.: Environment analysis of higher-order languages (2007)
14. Might, M., Shivers, O.: Environment analysis via ΔCFA. In: Conference Record of

the 33rd ACM Symposium on Principles of Programming Languages. POPL 2006,
pp. 127–140. ACM, New York (2006)

15. Shivers, O.: Control-flow analysis of higher-order languages. Ph.D. thesis. Carnegie
Mellon University (1991)

16. Shivers, O., Fisher, D.: Multi-return function call. J. Funct. Program. 16(4), 547–
582 (2006)

17. Thielecke, H.: Comparing control constructs by double-barrelled CPS. Higher-
Order Symb. Comput. 15(2), 141–160 (2002)

18. Van Horn, D., Might, M.: Abstracting abstract machines. In: Proceedings of the
15th ACM International Conference on Functional Programming. ICFP 2010, pp.
51–62. ACM, New York (2010)

19. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow anal-
ysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570–589. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 30

20. Vardoulakis, D., Shivers, O.: Ordering multiple continuations on the stack. In: Pro-
ceedings of the 20th ACM Workshop on Partial Evaluation and Program Manip-
ulation. PEPM 2011, pp. 13–22. ACM, New York (2011)

21. Vardoulakis, D., Shivers, O.: Pushdown flow analysis of first-class control. In: Pro-
ceedings of the 16th ACM International Conference on Functional Programming.
ICFP 2011, pp. 69–80. ACM, New York (2011)

https://doi.org/10.1007/978-3-642-11957-6_30

	Relatively Complete Pushdown Analysis of Escape Continuations
	1 Introduction
	2 Overview
	2.1 Core Language
	2.2 Summarization Algorithm

	3 Notation
	4 Partitioned CPS -Calculus
	5 Concrete Semantics
	6 Abstract Semantics
	7 Abstraction
	8 Summarization
	8.1 Local Semantics
	8.2 Summarization Algorithm
	8.3 Comparison with CFA2
	8.4 Integrating First-Class Control
	8.5 Summarization Correctness

	9 Multi-return -Calculus
	10 Continuation Age Analysis
	11 Related Work
	References

