
 123

20th International Conference, VMCAI 2019
Cascais, Portugal, January 13–15, 2019
Proceedings

Verification, Model Checking, 
and Abstract InterpretationLN

CS
 1

13
88

AR
Co

SS
Constantin Enea
Ruzica Piskac (Eds.)



Lecture Notes in Computer Science 11388

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Constantin Enea • Ruzica Piskac (Eds.)

Verification, Model Checking,
and Abstract Interpretation
20th International Conference, VMCAI 2019
Cascais, Portugal, January 13–15, 2019
Proceedings

123



Editors
Constantin Enea
IRIF
University Paris Diderot and CNRS
Paris, France

Ruzica Piskac
Yale University
New Haven, CT, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-11244-8 ISBN 978-3-030-11245-5 (eBook)
https://doi.org/10.1007/978-3-030-11245-5

Library of Congress Control Number: 2018966547

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-11245-5


Preface

This volume contains the papers presented at VMCAI 2019: the International Con-
ference on Verification, Model Checking, and Abstract Interpretation held during
January 13–15, 2019, in Cascais, Portugal, co-located with POPL 2019 (the annual
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages).
Previous meetings were held in Port Jefferson (1997), Pisa (1998), Venice (2002), New
York (2003), Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San
Francisco (2008), Savannah (2009), Madrid (2010), Austin (2011), Philadelphia
(2012), Rome (2013), San Diego (2014), Mumbai (2015), St. Petersburg, Florida
(2016), Paris (2017), and Los Angeles (2018).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation to present their research and aims to
facilitate interaction, cross-fertilization, and advancement of hybrid methods that
combine these and related areas. VMCAI topics include: program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, hybrid and
cyber-physical systems.

This year the conference received 62 submissions, of which 27 were selected for
publication in the proceedings. Each submission was reviewed by at least three Pro-
gram Committee members, and the main selection criteria were quality, relevance, and
originality. In addition to the presentations of the 27 selected papers, the conference
also featured three invited keynote talks by Nuno P. Lopes (Microsoft Research), Kedar
Namjoshi (Nokia Bell Labs), Sylvie Putot (Ecole Polytechnique). We warmly thank
them for their participation and contributions.

We would like to thank the members of the Program Committee and the external
reviewers for their excellent work. We also thank the members of the Steering Com-
mittee, and in particular Lenore Zuck and Andreas Podelski, for their helpful advice,
assistance, and support. We thank the POPL 2019 Organizing Committee for providing
all the logistics for organizing VMCAI. We are also indebted to EasyChair for pro-
viding an excellent conference management system.

November 2018 Constantin Enea
Ruzica Piskac
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Semantics for Compiler IRs: Undefined
Behavior is not Evil!

Nuno P. Lopes

Microsoft Research
nlopes@microsoft.com

Summary

Building a compiler IR is tricky. First, it should be efficient to compile the desired
source language(s) (C, C++, Rust, etc) to this IR. Second, the IR should support all the
desired optimizations and analyses, and these should run efficiently. Finally, it should
be possible to lower this IR into the desired target(s) assembly efficiently. Striking a
good tradeoff in this design space is not easy.

Undefined behavior (UB) has been used in production compilers’ IRs for many
years, including all of GCC, ICC, LLVM, MSVC. Perhaps surprisingly, even formally
verified compilers which target safety-critical systems, such as CompCert [3], have UB
in their IR.

In this talk, we will explore what UB is, what it achieves, why it may be a good
idea, and why it is not as evil as most people think it is. This is based on work on
formalizing LLVM IR’s UB semantics [2], a memory model for LLVM supporting UB
[1], and work on formal verification of LLVM optimizations that exploit UB [4].

Short Bio: Nuno Lopes is a researcher at MSR Cambridge. He holds a PhD from the
University of Lisbon, and has previously interned at MSR Redmond, Apple, Max
Planck Institute (MPI-SWS), and the Institute for Systems and Robotics (ISR) Lisbon.
Nuno’s interests include software verification, compilers, and mixing the two.
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Designing Self-certifying Software Systems

Kedar S. Namjoshi

Bell Labs, Nokia
kedar.namjoshi@nokia-bell-labs.com

Abstract. Large software systems are hard to understand. The size and com-
plexity of the implementation, possibly written in a mix of programming lan-
guages, the number of potential configurations, concurrency, distribution, and
several other factors contribute to the difficulty of precisely analyzing system
behavior. How can one have confidence in the correct working of such a
complex system? In this talk, I explore an unusual approach to this challenge.
Suppose that a software system is designed so that it produces a mathematical
justification (a certificate) for the correctness of its result. The behavior of such a
self-certifying system can then be formally verified at run time, merely by
checking the validity of each certificate as it is generated, without having to
examine or reason directly about the system implementation. Self-certification
thus shrinks the size of the trusted computing base, often by orders of magni-
tude, as only the certificate checker must be trusted. The central research
question is the design of a certificate format that is comprehensive, easy to
generate, and straightforward to check. I will sketch how this may be done for a
variety of software system types: model checkers and static analyzers, network
operating systems, and optimizing compilers. I will also discuss several
intriguing open questions and describe some of the unexpected benefits of
certification.

Short Bio: Kedar Namjoshi is a member of technical staff at Nokia Bell Labs in
Murray Hill, NJ. He received his Ph.D. from the University of Texas at Austin with E.
Allen Emerson, and the B.Tech. degree from the Indian Institute of Technology,
Madras, both in the Computing Sciences. His research interests include program
semantics, specification logics and verification, model checking, static program anal-
ysis, distributed computing, and programming methodology.



Under and Over Approximated Reachability
Analysis for the Verification of Control

Systems

Sylvie Putot

LIX, CNRS and Ecole Polytechnique, Palaiseau, France
putot@lix.polytechnique.fr

Abstract. This talk will present a class of methods to compute under and over
approximating flowpipes [1, 2] for differential systems, possibly with delays,
systems that are pervasive in the modeling of networked control systems.
Computing over-approximations of the reachable states has become a classical
tool for the safety verification of control systems. Under-approximations are
notoriously more difficult to compute, and their use for verification much less
studied. We will discuss the guarantees and properties that can be obtained from
the joint use of these under and over-approximations for control systems with
inputs and disturbances.

Short Bio: Sylvie Putot is Professor in the Department of Computer Science of Ecole
Polytechnique. Her research focuses on set-based methods and abstractions for the
verification of numerical programs and more generally cyber-physical systems. She is
also one of the main authors of the Fluctuat static analyzer, dedicated to the analysis of
floating-point programs.
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On the Semantics of Snapshot Isolation

Azalea Raad1(B), Ori Lahav2, and Viktor Vafeiadis1

1 MPI-SWS, Kaiserslautern, Germany
{azalea,viktor}@mpi-sws.org

2 Tel Aviv University, Tel Aviv, Israel
orilahav@tau.ac.il

Abstract. Snapshot isolation (SI) is a standard transactional consis-
tency model used in databases, distributed systems and software trans-
actional memory (STM). Its semantics is formally defined both declara-
tively as an acyclicity axiom, and operationally as a concurrent algorithm
with memory bearing timestamps.

We develop two simpler equivalent operational definitions of SI as
lock-based reference implementations that do not use timestamps. Our
first locking implementation is prescient in that requires a priori knowl-
edge of the data accessed by a transaction and carries out transactional
writes eagerly (in-place). Our second implementation is non-prescient
and performs transactional writes lazily by recording them in a local
log and propagating them to memory at commit time. Whilst our first
implementation is simpler and may be better suited for developing a
program logic for SI transactions, our second implementation is more
practical due to its non-prescience. We show that both implementations
are sound and complete against the declarative SI specification and thus
yield equivalent operational definitions for SI.

We further consider, for the first time formally, the use of SI in a
context with racy non-transactional accesses, as can arise in STM imple-
mentations of SI. We introduce robust snapshot isolation (RSI), an adap-
tation of SI with similar semantics and guarantees in this mixed set-
ting. We present a declarative specification of RSI as an acyclicity axiom
and analogously develop two operational models as lock-based reference
implementations (one eager, one lazy). We show that these operational
models are both sound and complete against the declarative RSI model.

1 Introduction

Transactions are the de facto synchronisation mechanism in databases and geo-
replicated distributed systems, and are thus gaining adoption in the shared-
memory setting via software transactional memory (STM) [20,33]. In contrast
to other synchronisation mechanisms, transactions readily provide atomicity, iso-
lation, and consistency guarantees for sequences of operations, allowing program-
mers to focus on the high-level design of their systems.

However, providing these guarantees comes at a significant cost. As such,
various transactional consistency models in the literature trade off consistency
c© Springer Nature Switzerland AG 2019
C. Enea and R. Piskac (Eds.): VMCAI 2019, LNCS 11388, pp. 1–23, 2019.
https://doi.org/10.1007/978-3-030-11245-5_1
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2 A. Raad et al.

guarantees for better performance. At nearly the one end of the spectrum, we
have serialisability [28], which requires transactions to appear to have been exe-
cuted in some total order. Serialisability provides strong guarantees, but is widely
considered too expensive to implement. The main problem is that two conflicting
transactions (e.g. one reading from and one updating the same datum) cannot
both execute and commit in parallel.

Consequently, most major databases, both centralised (e.g. Oracle and MS
SQL Server) and distributed [15,29,32], have opted for a slightly weaker model
called snapshot isolation (SI) [7] as their default consistency model. SI has much
better performance than serialisability by allowing conflicting transactions to
execute concurrently and commit successfully as long as they do not have a
write-write conflict. This in effect allows reads of SI transactions to read from
an earlier memory snapshot than the one affected by their writes, and permits
the write skew anomaly [11] depicted in Fig. 1. Besides this anomaly, however,
SI is essentially the same as serialisability: Cerone et al. [11] provide a widely
applicable condition under which SI and serialisability coincide for a given set
of transactions. For these reasons, SI has also started gaining adoption in the
generic programming language setting via STM implementations [1,8,16,25,26]
that provide SI semantics for their transactions.

The formal study of SI, however, has so far not accounted for the more general
STM setting in which both transactions and uninstrumented non-transactional
code can access the same memory locations. While there exist two equivalent
definitions of SI—one declarative in terms of an acyclicity constraint [10,11]
and one operational in terms of an optimistic multi-version concurrency control
algorithm [7]—neither definition supports mixed-mode (i.e. both transactional
and non-transactional) accesses to the same locations. Extending the definitions
to do so is difficult for two reasons: (1) the operational definition attaches a
timestamp to every memory location, which heavily relies on the absence of
non-transactional accesses; and (2) there are subtle interactions between the
transactional implementation and the weak memory model underlying the non-
transactional accesses.

In this article, we address these limitations of SI. We develop two simple
lock-based reference implementations for SI that do not use timestamps. Our first
implementation is prescient [19] in that it requires a priori knowledge of the data
accessed by a transaction, and performs transactional writes eagerly (in-place).
Our second implementation is non-prescient and carries out transactional writes
lazily by first recording them in a local log and subsequently propagating them to
memory at commit time. Our first implementation is simpler and may be better
suited for understanding and developing a program logic for SI transactions,
whilst our second implementation is more practical due to its non-prescience. We
show that both implementations are sound and complete against the declarative
SI specification and thus yield equivalent operational definitions for SI.

We then extend both our eager and lazy implementations to make them
robust under uninstrumented non-transactional accesses, and characterise declar-
atively the semantics we obtain. We call this extended model robust snapshot
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isolation (RSI) and show that it gives reasonable semantics with mixed-mode
accesses.

To provide SI semantics, instead of timestamps, our implementations use
multiple-readers-single-writer (MRSW) locks. They acquire locks in reader mode
to take a snapshot of the memory locations accessed by a transaction and then
promote the relevant locks to writer mode to enforce an ordering on transactions
with write-write conflicts. As we discuss in Sect. 4, the equivalence of the RSI
implementation and its declarative characterisation depends heavily upon the
axiomatisation of MRSW locks: here, we opted for the weakest possible axioma-
tisation that does not order any concurrent reader lock operations and present
an MRSW lock implementation that achieves this.

Outline. In Sect. 2 we present an overview of our contributions by describing
our reference implementations for both SI and RSI. In Sect. 3 we define the
declarative framework for specifying STM programs. In Sect. 4 we present the
declarative SI specification against which we demonstrate the soundness and
completeness of our SI implementations. In Sect. 5 we formulate a declarative
specification for RSI and demonstrate the soundness and completeness of our
RSI implementations. We discuss related and future work in Sect. 6.1

2 Background and Main Ideas

As noted earlier, the key challenge in specifying STM transactions lies in account-
ing for the interactions between mixed-mode accesses to the same data. One
simple approach is to treat each non-transactional access as a singleton mini-
transaction and to provide strong isolation [9,27], i.e. full isolation between
transactional and non-transactional code. This, however, requires instrument-
ing non-transactional accesses to adhere to same access policies as transactional
ones (e.g. acquiring the necessary locks), which incurs a substantial performance
penalty for non-transactional code. A more practical approach is to enforce iso-
lation only amongst transactional accesses, an approach known as weak isola-
tion [9,27], adopted by the relaxed transactions of C++ [2].

As our focus is on STMs with SI guarantees, instrumenting non-transactional
accesses is not feasible. In particular, as we expect many more non-transactional
accesses than transactional ones, we do not want to incur any performance degra-
dation on non-transactional code when executed in parallel with transactional
code. As such, we opt for an STM with SI guarantees under weak isolation.
Under weak isolation, however, transactions with explicit abort instructions are
problematic as their intermediate state may be observed by non-transactional
code. As such, weakly isolated STMs (e.g. C++ relaxed transactions [2]) often
forbid explicit aborts altogether. Throughout our development we thus make
two simplifying assumptions: (1) transactions are not nested; and (2) there are
no explicit abort instructions, following the example of weakly isolated relaxed

1 A full version of this article is available at [31].
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Fig. 1. Litmus tests illustrating transaction anomalies and their admissibility under
SI and RSI. In all tests, initially, x = y = z = 0. The //v annotation next to a read
records the value read.

transactions of C++. As we describe later in Sect. 2.3, it is straightforward to
lift the latter restriction (2) for our lazy implementations.

For non-transactional accesses, we naturally have to pick some consistency
model. For simplicity and uniformity, we pick the release/acquire (RA) subset of
the C++ memory model [6,23], a well-behaved platform-independent memory
model, whose compilation to x86 requires no memory fences.

Snapshot Isolation (SI). The initial model of SI in [7] is described informally
in terms of a multi-version concurrent algorithm as follows. A transaction T
proceeds by taking a snapshot S of the shared objects. The execution of T is
then carried out locally: read operations query S and write operations update S.
Once T completes its execution, it attempts to commit its changes and succeeds
only if it is not write-conflicted. Transaction T is write-conflicted if another
committed transaction T′ has written to a location also written to by T, since
T recorded its snapshot. If T fails the conflict check it aborts and may restart;
otherwise, it commits its changes, and its changes become visible to all other
transactions that take a snapshot thereafter.

To realise this, the shared state is represented as a series of multi-versioned
objects: each object is associated with a history of several versions at differ-
ent timestamps. In order to obtain a snapshot, a transaction T chooses a start-
timestamp t0, and reads data from the committed state as of t0, ignoring updates
after t0. That is, updates committed after t0 are invisible to T. In order to com-
mit, T chooses a commit-timestamp tc larger than any existing start- or commit-
timestamp. Transaction T is deemed write-conflicted if another transaction T′

has written to a location also written to by T and the commit-timestamp of T′

is in the execution interval of T ([t0, tc]).
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2.1 Towards an SI Reference Implementation Without Timestamps

While the SI description above is suitable for understanding SI, it is not useful
for integrating the SI model in a language such as C/C++ or Java. From a pro-
grammer’s perspective, in such languages the various threads directly access the
uninstrumented (single-versioned) shared memory; they do not access their own
instrumented snapshot at a particular timestamp, which is loosely related to the
snapshots of other threads. Ideally, what we would therefore like is an equivalent
description of SI in terms of accesses to uninstrumented shared memory and a
synchronisation mechanism such as locks.

In what follows, we present our first lock-based reference implementation
for SI that does not rely on timestamps. To do this, we assume that the loca-
tions accessed by a transaction can be statically determined. Specifically, we
assume that each transaction T is supplied with its read set, RS, and write set,
WS, containing those locations read and written by T, respectively (a static over-
approximation of these sets suffices for soundness.). As such, our first reference
implementation is prescient [19] in that it requires a priori knowledge of the
locations accessed by the transaction. Later in Sect. 2.3 we lift this assumption
and develop an SI reference implementation that is non-prescient and similarly
does not rely on timestamps.

Conceptually, a candidate implementation of transaction T would (1) obtain
a snapshot of the locations read by T; (2) lock those locations written by T; (3)
execute T locally ; and (4) unlock the locations written. The snapshot is obtained
via snapshot(RS) in Fig. 3 where the values of locations in RS are recorded in a
local array s. The local execution of T is carried out by executing �T� in Fig. 3,
which is obtained from T by (i) modifying read operations to read locally from
the snapshot in s, and (ii) updating the snapshot after each write operation. Note
that the snapshot must be obtained atomically to reflect the memory state at a
particular instance (cf. start-timestamp). An obvious way to ensure the snapshot
atomicity is to lock the locations in the read set, obtain a snapshot, and unlock
the read set. However, as we must allow for two transactions reading from the
same location to execute in parallel, we opt for multiple-readers-single-writer
(MRSW) locks.

Let us now try to make this general pattern more precise. As a first attempt,
consider the implementation in Fig. 2a written in a simple while language, which
releases all the reader locks at the end of the snapshot phase before acquiring
any writer locks. This implementation is unsound as it admits the lost update
(LU) anomaly in Fig. 1 disallowed under SI [11]. To understand this, consider a
scheduling where T2 runs between lines 3 and 4 of T1 in Fig. 2a, which would
result in T1 having read a stale value. The problem is that the writer locks on WS
are acquired too late, allowing two conflicting transactions to run concurrently.
To address this, writer locks must be acquired early enough to pre-empt the
concurrent execution of write-write-conflicting transactions. Note that locks have
to be acquired early even for locations only written by a transaction to avoid
exhibiting a variant of the lost update anomaly (LU2).
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Fig. 2. Candidate SI implementations of transaction T given read/write sets RS, WS

As such, our second candidate implementation in Fig. 2b brings forward the
acquisition of writer locks. Whilst this implementation is sound (and disallows
lost update), it nevertheless disallows behaviours deemed valid under SI such
as the write skew anomaly (WS) in Fig. 1, and is thus incomplete. The prob-
lem is that such early acquisition of writer locks not only pre-empts concurrent
execution of write-write-conflicting transactions, but also those of read-write-
conflicting transactions (e.g. WS) due to the exclusivity of writer locks.

To remedy this, in our third candidate implementation in Fig. 2c we first
acquire weaker reader locks on all locations in RS or WS, and later promote the
reader locks on WS to exclusive writer ones, while releasing the reader locks on
RS. The promotion of a reader lock signals its intent for exclusive ownership and
awaits the release of the lock by other readers before claiming it exclusively as
a writer. To avoid deadlocks, we further assume that RS∪ WS is ordered so that
locks are promoted in the same order by all threads.

Although this implementation is “more complete” than the previous one, it
is still incomplete as it disallows certain behaviour admitted by SI. In particular,
consider a variant of the write skew anomaly (WS2) depicted in Fig. 1, which is
admitted under SI, but not admitted by this implementation.

To understand why this is admitted by SI, recall the operational SI model
using timestamps. Let the domain of timestamps be that of natural numbers N.
The behaviour of (WS2) can be achieved by assigning the following execution
intervals for T1: [tT10 = 2, tT1c = 2]; T2: [tT20 = 1, tT2c = 4]; and T3: [tT30 = 3, tT3c = 3].
To see why the implementation in Fig. 2c does not admit the behaviour in (WS2),
let us assume without loss of generality that x is ordered before y. Upon executing
lines 3–5, (a) T1 promotes y; (b) T2 promotes x and then (c) releases the reader
lock on y; and (d) T3 releases the reader lock on x. To admit the behaviour in
(WS2), the release of y in (c) must occur before the promotion of y in (a) since
otherwise T2 cannot read 0 for y. Similarly, the release of x in (d) must occur
before its promotion in (b). On the other hand, since T3 is executed by the
same thread after T1, we know that (a) occurs before (d). This however leads
to circular execution: (b)→(c)→(a)→(d)→(b), which cannot be realised.
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Fig. 3. SI implementation of transaction T given RS, WS; the code in blue ensures dead-
lock avoidance. The RSI implementation (Sect. 5) is obtained by replacing snapshot

on line 2 with snapshotRSI.

To overcome this, in our final candidate execution in Fig. 3 (ignoring the code
in blue), after obtaining a snapshot, we first release the reader locks on RS, and
then promote the reader locks on WS, rather than simultaneously in one pass.
As we demonstrate in Sect. 4, the implementation in Fig. 3 is both sound and
complete against its declarative SI specification.

Avoiding Deadlocks. As two distinct reader locks on x may simultaneously
attempt to promote their locks, promotion is done on a ‘first-come-first-served’
basis to avoid deadlocks. A call to can-promote x by reader r thus returns a
boolean denoting either (i) successful promotion (true); or (ii) failed promotion
as another reader r′ is currently promoting a lock on x (false). In the latter case,
r must release its reader lock on x to ensure the successful promotion of xl by
r′ and thus avoid deadlocks. To this end, our implementation in Fig. 3 includes
a deadlock avoidance mechanism (code in blue) as follows. We record a list LS of
those locks on the write set that have been successfully promoted so far. When
promoting a lock on x succeeds (line 5), the LS is extended with x. On the other
hand, when promoting x fails (line 6), all those locks promoted so far (i.e. in
LS) as well as those yet to be promoted (i.e. in WS \LS) are released and the
transaction is restarted.

Remark 1. Note that the deadlock avoidance code in blue does not influence
the correctness of the implementation in Fig. 3, and is merely included to make
the reference implementation more realistic. In particular, the implementation
without the deadlock avoidance code is both sound and complete against the
SI specification, provided that the conditional can-promote call on line 5 is
replaced by the blocking promote call.
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Avoiding Over-Synchronisation Due to MRSW Locks. Consider the
store buffering program (SBT) shown in Fig. 1. If, for a moment, we ignore
transactional accesses, our underlying memory model (RA)—as well as all other
weak memory models—allows the annotated weak behaviour. Intuitively, plac-
ing the two transactions that only read z in (SBT) should still allow the weak
behaviour since the two transactions do not need to synchronise in any way. Nev-
ertheless, most MRSW lock implementations forbid this outcome because they
use a single global counter to track the number of readers that have acquired the
lock, which inadvertently also synchronises the readers with one another. As a
result, the two read-only transactions act as memory fences forbidding the weak
outcome of (SBT). To avoid such synchronisation, in the technical appendix [31]
we provide a different MRSW implementation using a separate location for each
thread so that reader lock acquisitions do not synchronise.

To keep the presentation simple, we henceforth assume an abstract speci-
fication of a MRSW lock library providing operations for acquiring/releasing
reader/writer locks, as well as promoting reader locks to writer ones. We require
that (1) calls to writer locks (to acquire, release or promote) synchronise with
all other calls to the lock library; and (2) writer locks provide mutual exclusion
while held. We formalise these notions in Sect. 4. These requirements do not
restrict synchronisation between two read lock calls: two read lock calls may or
may not synchronise. Synchronisation between read lock calls is relevant only
for the completeness of our RSI implementation (handling mixed-mode code);
for that result, we further require that (3) read lock calls not synchronise.

2.2 Handling Racy Mixed-Mode Accesses

Let us consider what happens when data accessed by a transaction is modified
concurrently by an uninstrumented atomic non-transactional write. Since such
writes do not acquire any locks, the snapshots taken may include values written
by non-transactional accesses. The result of the snapshot then depends on the
order in which the variables are read. Consider the (MPT) example in Fig. 1.
In our implementation, if in the snapshot phase y is read before x, then the
annotated weak behaviour is not possible because the underlying model (RA)
disallows this weak “message passing” behaviour. If, however, x is read before y,
then the weak behaviour is possible. In essence, this means that the SI implemen-
tation described so far is of little use when there are races between transactional
and non-transactional code. Technically, our SI implementation violates mono-
tonicity with respect to wrapping code inside a transaction. The weak behaviour
of the (MPT) example is disallowed by RA if we remove the transaction block
T2, and yet it is exhibited by our SI implementation with the transaction block.

To get monotonicity under RA, it suffices for the snapshots to read the vari-
ables in the same order they are accessed by the transactions. Since a static
calculation of this order is not always possible, following [30], we achieve this
by reading each variable twice. In more detail, our snapshotRSI implementa-
tion in Fig. 3 takes two snapshots of the locations read by the transaction, and
checks that they both return the same values for each location. This ensures that
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every location is read both before and after every other location in the transac-
tion, and hence all the high-level happens-before orderings in executions of the
transactional program are also respected by its implementation. As we demon-
strate in Sect. 5, our RSI implementation is both sound and complete against
our proposed declarative semantics for RSI. There is however one caveat: since
equality of values is used to determine whether the two snapshots agree, we
will miss cases where different non-transactional writes to a location write the
same value. In our formal development (see Sect. 5), we thus assume that if mul-
tiple non-transactional writes write the same value to the same location, they
cannot race with the same transaction. Note that this assumption cannot be
lifted without instrumenting non-transactional writes, and thus impeding per-
formance substantially. That is, to lift this restriction we must instead replace
every non-transactional write x:= v with lock w x; x:= v; unlock w x.

2.3 Non-prescient Reference Implementations Without Timestamps

Recall that the SI and RSI implementations in Sect. 2.1 are prescient in that
they require knowledge of the read and write sets of transactions beforehand.
In what follows we present alternative SI and RSI implementations that are
non-prescient.

Non-prescient SI Reference Implementation. In Fig. 4 we present a lazy
lock-based reference implementation for SI. This implementation is non-prescient
and does not require a priori knowledge of the read set RS and the write set WS.
Rather, the RS and WS are computed on the fly as the execution of the transaction
unfolds. As with the SI implementation in Fig. 3, this implementation does not
rely on timestamps and uses MRSW locks to synchronise concurrent accesses
to shared data. As before, the implementation consults a local snapshot at s
for read operations. However, unlike the eager implementation in Fig. 3 where
transactional writes are performed in-place, the implementation in Fig. 4 is lazy
in that it logs the writes in the local array s and propagates them to memory
at commit time, as we describe shortly.

Ignoring the code in blue, the implementation in Fig. 4 proceeds with initial-
ising RS and WS with ∅ (line 1); it then populates the local snapshot array at s
with initial value ⊥ for each location x (line 2). It then executes �T� which is
obtained from T as follows. For each read operation a:= x in T, first the value of
s[x] is inspected to ensure it contains a snapshot of x. If this is not the case
(i.e. x �∈ RS ∪ WS), a reader lock on x is acquired, a snapshot of x is recorded
in s[x], and the read set RS is extended with x. The snapshot value in s[x] is
subsequently returned in a. Analogously, for each write operation x:= a, the WS
is extended with x, and the written value is lazily logged in s[x]. Recall from
our candidate executions in Fig. 2 that to ensure implementation correctness, for
each written location x, the implementation must first acquire a reader lock on x,
and subsequently promote it to a writer lock. As such, for each write operation
in T, the implementation first checks if a reader lock for x has been acquired (i.e.
x ∈ RS ∪ WS) and obtains one if this is not the case.
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Fig. 4. Non-prescient SI implementation of transaction T with RS and WS computed on
the fly; the code in blue ensures deadlock avoidance.

Once the execution of �T� is completed, the implementation proceeds to com-
mit the transaction. To this end, the reader locks on RS are released (line 4),
reader locks on WS are promoted to writer ones (line 6), the writes logged in
s are propagated to memory (line 11), and finally the writer locks on WS are
released (line 12). As we demonstrate later in Sect. 4, the implementation in
Fig. 4 is both sound and complete against the declarative SI specification.

Note that the implementation in Fig. 4 is optimistic in that it logs the writes
performed by the transaction in the local array s and propagates them to memory
at commit time, rather than performing the writes in-place as with its pessimistic
counterpart in Fig. 3. As before, the code in blue ensures deadlock avoidance and
is identical to its counterpart in Fig. 3. As before, this deadlock avoidance code
does not influence the correctness of the implementation and is merely included
to make the reference implementation more practical.

Non-prescient RSI Reference Implementation. In Fig. 5 we present a lazy
lock-based reference implementation for RSI. As with its SI counterpart, this
implementation is non-prescient and computes the RS and WS on the fly. As
before, the implementation does not rely on timestamps and uses MRSW locks
to synchronise concurrent accesses to shared data. Similarly, the implementa-
tion consults the local snapshot at s for read operations, whilst logging write
operations lazily in a write sequence at wseq, as we describe shortly.

Recall from the RSI implementation in Sect. 2.1 that to ensure snapshot
validity, each location is read twice to preclude intermediate non-transactional
writes. As such, when writing to a location x, the initial value read (recorded in
s) must not be overwritten by the transaction to allow for subsequent validation
of the snapshot. To this end, for each location x, the snapshot array s contains
a pair of values, (r, c), where r denotes the snapshot value (initial value read),
and c denotes the current value which may have overwritten the snapshot value.

Recall that under weak isolation, the intermediate values written by a trans-
action may be observed by non-transactional reads. For instance, given the
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Fig. 5. Non-prescient RSI implementation of transaction T with RS and WS computed
on the fly; the code in blue ensures deadlock avoidance.

T:
[
x := 1;x := 2

∣
∣
∣
∣ a := x program, the non-transactional read a := x, may

read either 1 or 2 for x. As such, at commit time, it is not sufficient solely to
propagate the last written value (in program order) to each location (e.g. to
propagate only the x := 2 write in the example above). Rather, to ensure imple-
mentation completeness, one must propagate all written values to memory, in
the order they appear in the transaction body. To this end, we track the values
written by the transaction as a (FIFO) write sequence at location wseq, contain-
ing items of the form (x, v), denoting the location written (x) and the associated
value (v).

Ignoring the code in blue, the implementation in Fig. 5 initialises RS and WS
with ∅, initialises wseq as an empty sequence [] (line 1), and populates the local
snapshot array s with initial value (⊥,⊥) for each location x (line 2). It then
executes �T�, obtained from T in an analogous manner to that in Fig. 4. For every
read a:= x in �T�, the current value recorded for x in s (namely c when s[x]
holds (-,c)) is returned in a. Dually, for every write x:= a in �T�, the current
value recorded for x in s is updated to a, and the write is logged in the write
sequence wseq by appending (x,a) to it.

Upon completion of �T�, the snapshot in s is validated (lines 4–7). Each
location x in RS is thus read again and its value is compared against the snapshot
value in s[x]. If validation fails (line 5), the locks acquired are released (line 6)
and the transaction is restarted (line 7).

If validation succeeds, the transaction is committed: the reader locks on RS
are released (line 8), the reader locks on WS are promoted (line 10), the writes in
wseq are propagated to memory in FIFO order (line 15), and finally the writer
locks on WS are released (line 16).

As we show in Sect. 5, the implementation in Fig. 5 is both sound and com-
plete against our proposed declarative specification for RSI. As before, the code
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in blue ensures deadlock avoidance; it does not influence the implementation
correctness and is merely included to make the implementation more practical.

Supporting Explicit Abort Instructions. It is straightforward to extend the
lazy implementations in Figs. 4 and 5 to handle transactions containing explicit
abort instructions. More concretely, as the effects (writes) of a transaction are
logged locally and are not propagated to memory until commit time, upon reach-
ing an abort in �T � no roll-back is necessary, and one can simply release the
locks acquired so far and return. That is, one can extend �.� in Figs. 4 and 5, and
define �abort� � for (x∈ RS∪ WS) unlock r x; return.

3 A Declarative Framework for STM

We present the notational conventions used in the remainder of this article, and
describe a general framework for declarative concurrency models. Later in this
article, we present SI, its extension with non-transactional accesses, and their
lock-based implementations as instances of this general definition.

Notation. Given a relation r on a set A, we write r?, r+ and r∗ for the
reflexive, transitive and reflexive-transitive closure of r, respectively. We write
r−1 for the inverse of r; r|A for r ∩ (A × A); [A] for the identity relation
on A, i.e.

{
(a, a) a ∈ A

}
; irreflexive(r) for �a. (a, a) ∈ r; and acyclic(r) for

irreflexive(r+). Given two relations r1 and r2, we write r1; r2 for their (left)
relational composition, i.e.

{
(a, b) ∃c. (a, c) ∈ r1 ∧ (c, b) ∈ r2

}
. Lastly, when

r is a strict partial order, we write r|imm for the immediate edges in r:{
(a, b) ∈ r �c. (a, c) ∈ r ∧ (c, b) ∈ r

}
.

Assume finite sets of locations Loc; values Val; thread identifiers TId, and
transaction identifiers TXId. We use x, y, z to range over locations, v over values,
τ over thread identifiers, and ξ over transaction identifiers.

Definition 1 (Events). An event is a tuple 〈n, τ, ξ, l〉, where n ∈ N is an event
identifier, τ ∈ TId{0} is a thread identifier (0 is used for initialisation events),
ξ ∈ TXId{0} is a transaction identifier (0 is used for non-transactional events),
and l is an event label that takes one of the following forms:

– A memory access label: R(x, v) for reads; W(x, v) for writes; and U(x, vr, vw)
for updates.

– A lock label: RL(x) for reader lock acquisition; RU(x) for reader lock release;
WL(x) for writer lock acquisition; WU(x) for writer lock release; and PL(x)
for reader to writer lock promotion.

We typically use a, b, and e to range over events. The functions tid, tx, lab,
typ, loc, valr and valw respectively project the thread identifier, transaction
identifier, label, type (in

{
R, W, U, RL, RU, WL, WU, PL

}
), location, and read/written

values of an event, where applicable. We assume only reads and writes are used
in transactions (tx(a) �= 0 =⇒ typ(a) ∈

{
R, W

}
).

Given a relation r on events, we write rloc for
{
(a, b) ∈ r loc(a) = loc(b)

}
.

Analogously, given a set A of events, we write Ax for
{
a ∈ A loc(a) = x

}
.
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Definition 2 (Execution graphs). An execution graph, G, is a tuple of the
form (E , po, rf,mo, lo), where:

– E is a set of events, assumed to contain a set E 0 of initialisation events,
consisting of a write event with label W(x, 0) for every x ∈ Loc. The sets of
read events in E is denoted by R �

{
e ∈ E typ(e) ∈ {R, U}

}
; write events

by W �
{
e ∈ E typ(e) ∈ {W, U}

}
; update events by U � R∩W; and lock

events by L �
{
e ∈ E typ(e) ∈

{
RL, RU, WL, WU, PL

}}
. The sets of reader

lock acquisition and release events, RL and RU , writer lock acquisition and
release events, WL and WU , and lock promotion events PL are defined
analogously. The set of transactional events in E is denoted by T (T �{
e ∈ E tx(e) �= 0

}
); and the set of non-transactional events is denoted by

NT (NT � E \ T ).
– po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint

union of strict total orders, each ordering the events of one thread, together
with E 0 × (E \ E 0) that places the initialisation events before any other
event. We assume that events belonging to the same transaction are ordered
by po, and that any other event po-between them also belongs to the same
transaction.

– rf ⊆ W × R denotes the ‘reads-from’ relation, defined between write and
read events of the same location with matching read and written values; it
is total and functional on reads, i.e. every read is related to exactly one
write.

– mo ⊆ W×W denotes the ‘modification-order’ relation, defined as a disjoint
union of strict total orders, each ordering the write events on one location.

– lo ⊆ L × L denotes the ‘lock-order’ relation, defined as a disjoint union
of strict orders, each of which (partially) ordering the lock events to one
location.

In the context of an execution graph G = (E , po, rf,mo, lo)—we often use “G.”
as a prefix to make this explicit—the ‘same-transaction’ relation, st ∈ T × T ,
is the equivalence relation given by st �

{
(a, b) ∈ T × T tx(a) = tx(b)

}
. Given

a relation r ⊆ E × E , we write rT for lifting r to transaction classes: rT �
st; (r \ st); st. For instance, when (w, r) ∈ rf, w is a transaction ξ1 event and r
is a transaction ξ2 event, then all events in ξ1 are rfT-related to all events in ξ2.
Analogously, we write rI to restrict r to its intra-transactional edges (within a
transaction): rI � r∩ st; and write rE to restrict r to its extra-transactional edges
(outside a transaction): rE � r \ st. Lastly, the ‘reads-before’ relation is defined
by rb � (rf−1;mo) \ [E ]. Intuitively, rb relates a read r to all writes w that are
mo-after the write r reads from; i.e. when (w′, r) ∈ rf and (w′, w) ∈ mo, then
(r, w) ∈ rb. In the transactional literature, this is known as the anti-dependency
relation [3,4].

Execution graphs of a given program represent traces of shared memory
accesses generated by the program. The set of execution graphs associated with
programs written in our while language can be straightforwardly defined by
induction over the structure of programs as in e.g. [35]. Each execution of a
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program P has a particular program outcome, prescribing the final values of
local variables in each thread. In this initial stage, the execution outcomes are
almost unrestricted as there are very few constraints on the rf, mo and lo relations.
Such restrictions and thus the permitted outcomes of a program are determined
by defining the set of consistent executions, which is defined separately for each
model we consider. Given a program P and a model M , the set outcomesM (P )
collects the outcomes of every M -consistent execution of P .

4 Snapshot Isolation (SI)

We present a declarative specification of SI and demonstrate that the SI imple-
mentations presented in Figs. 3 and 4 are both sound and complete with respect
to the SI specification.

In [11] Cerone and Gotsman developed a declarative specification for SI using
dependency graphs [3,4]. Below we adapt their specification to the notation of
Sect. 3. As with [11], throughout this section, we take SI execution graphs to be
those in which E = T ⊆ (R∪W)\U . That is, the SI model handles transactional
code only, consisting solely of read and write events (excluding updates).

Definition 3 (SI consistency [11]). An SI execution G = (E , po, rf,mo, lo) is
SI-consistent if the following conditions hold:

– rfI ∪ moI ∪ rbI ⊆ po (INT)
– acyclic((poT ∪ rfT ∪ moT); rbT?) (EXT)

Informally, (int) ensures the consistency of each transaction internally, while
(ext) provides the synchronisation guarantees among transactions. In particu-
lar, we note that the two conditions together ensure that if two read events in
the same transaction read from the same location x, and no write to x is po-
between them, then they must read from the same write (known as ‘internal
read consistency’).

Next, we provide an alternative equivalent formulation of SI-consistency
which will serve as the basis of our extension with non-transactional accesses
in Sect. 5.

Proposition 1. An SI execution G = (E , po, rf,mo, lo) is SI-consistent if
and only if int holds and the ‘SI-happens-before’ relation si-hb � (poT ∪
rfT ∪ moT ∪ si-rb)+ is irreflexive, where si-rb � [RE]; rbT; [W] and RE �
{r | ∃w. (w, r) ∈ rfE}.

Proof. The full proof is given in the technical appendix [31].

Intuitively, SI-happens-before orders events of different transactions; this
order is due to either the program order (poT), or synchronisation enforced by
the implementation (rfT ∪moT ∪ si-rb). By contrast, events of the same transac-
tion are unordered, as the implementation may well execute them in a different
order (in particular, by taking a snapshot, it executes external reads before the
writes).
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In more detail, the rfT corresponds to transactional synchronisation due to
causality, i.e. when one transaction T2 observes an effect of an earlier transaction
T1. The inclusion of rfT ensures that T2 cannot read from T1 without observing
its entire effect. This in turn ensures that transactions exhibit ‘all-or-nothing’
behaviour: they cannot mix-and-match the values they read. For instance, if T1
writes to both x and y, transaction T2 may not read x from T1 but read y from
an earlier (in ‘happens-before’ order) transaction T0.

The moT corresponds to transactional synchronisation due to write-write
conflicts. Its inclusion enforces write-conflict-freedom of SI transactions: if T1
and T2 both write to x via events w1 and w2 such that (w1, w2) ∈ mo, then T1
must commit before T2, and thus its entire effect must be visible to T2.

To understand si-rb, first note that RE denotes the external transactional
reads (i.e. those reading a value written by another transaction). That is, the
RE are the read events that get their values from the transactional snapshot
phases. By contrast, internal reads (those reading a value written by the same
transaction) happen only after the snapshot is taken. Now let there be an rbT
edge between two transactions, T1 and T2. This means there exist a read event
r of T1 and a write event w of T2 such that (r, w) ∈ rb; i.e. there exists w′ such
that (w′, r) ∈ rf and (w′, w) ∈ mo. If r reads internally (i.e. w′ is an event in T1),
then T1 and T2 are conflicting transactions and as accounted by moT described
above, all events of T1 happen before those of T2. Now, let us consider the case
when r reads externally (w′ is not in T1). From the timestamped model of SI,
there exists a start-timestamp tT10 as of which the T1 snapshot (all its external
reads including r) is recorded. Similarly, there exists a commit-timestamp tT2c
as of which the updates of T2 (including w) are committed. Moreover, since
(r, w) ∈ rb we know tT10 < tT2c (otherwise r must read the value written by w and
not w′). That is, we know all events in the snapshot of T1 (i.e. all external reads
in T1) happen before all writes of T2.2

We use the declarative framework in Sect. 3 to formalise the semantics of our
implementation. Here, our programs include only non-transactional code, and
thus implementation execution graphs are taken as those in which T = ∅. Further-
more, we assume that locks in implementation programs are used in a well-formed
manner: the sequence of lock events for each location, in each thread (following
po), should match (a prefix of) the regular expression (RL·RU | WL·WU | RL·PL·WU)∗.
For instance, a thread never releases a lock, without having acquired it earlier
in the program. As a consistency predicate on execution graphs, we use the C11
release/acquire consistency augmented with certain constraints on lock events.

Definition 4. An implementation execution graph G = (E , po, rf,mo, lo) is RA-
consistent if the following hold, where hb � (po ∪ rf ∪ lo)+ denotes the ‘RA-
happens-before’ relation:

– ∀x. ∀a ∈ WLx∪WUx∪PLx, b ∈ Lx. a = b∨(a, b) ∈ lo∨(b, a) ∈ lo(WSync)
– [WL ∪ PL]; (lo \ po); [L] ⊆ po; [WU ]; lo (WEx)

2 By taking rbT instead of si-rb in Proposition 1 one obtains a characterisation of
serialisability.
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– [RL]; (lo \ po); [WL ∪ PL] ⊆ po; [RU ∪ PL]; lo (RShare)
– acyclic(hbloc ∪ mo ∪ rb) (Acyc)

The (WSync) states that write lock calls (to acquire, release or promote)
synchronise with all other calls to the same lock.

The next two constraints ensure the ‘single-writer-multiple-readers’
paradigm. In particular, (WEx) states that write locks provide mutual exclu-
sion while held: any lock event l of thread τ lo-after a write lock acquisition
or promotion event l′ of another thread τ ′, is lo-after a subsequent write lock
release event u of τ ′ (i.e. (l′, u) ∈ po and (u, l) ∈ lo). As such, the lock cannot
be acquired (in read or write mode) by another thread until it has been released
by its current owner.

The (RShare) analogously states that once a thread acquires a lock in read
mode, the lock cannot be acquired in write mode by other threads until it has
either been released, or promoted to a writer lock (and subsequently released)
by its owner. Note that this does not preclude other threads from simultaneously
acquiring the lock in read mode. In the technical appendix [31] we present two
MRSW lock implementations that satisfy the conditions outlined above.

The last constraint (Acyc) is that of C11 RA consistency [23], with the hb
relation extended with lo.

Remark 2. Our choice of implementing the SI STMs on top of the RA fragment is
purely for presentational convenience. Indeed, it is easy to observe that execution
graphs of �P � are data race free, and thus, Acyc could be replaced by any
condition that implies ∀x. ([Wx]; (po ∪ lo)+; [Wx]; (po ∪ lo)+; [Rx]) ∩ rf = ∅ and
that is implied by acyclic(po∪ rf∪ lo∪mo∪ rb). In particular, the C11 non-atomic
accesses or sequentially consistent accesses may be used.

We next show that our SI implementations in Figs. 3 and 4 are sound and
complete with respect to the declarative specification given above. The proofs
are non-trivial and the full proofs are given in the technical appendix [31].

Theorem 1 (Soundness and completeness). Let P be a transactional pro-
gram; let �P �e denote its eager implementation as given in Fig. 3 and �P �l denote
its lazy implementation as given in Fig. 4. Then:

outcomesSI(P ) = outcomesRA(�P �e) = outcomesRA(�P �l)

Proof. The full proofs for both implementations is given in the technical
appendix [31].

Stronger MRSW Locks. As noted in Sect. 2, for both (prescient and non-
prescient) SI implementations our soundness and completeness proofs show that
the same result holds for a stronger lock specification, in which reader locks syn-
chronise as well. Formally, this specification is obtained by adding the following
to Definition 4:
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T

W(x, 0) W(y, 0)

w1 : W(y, 1)

w2 : W(x, 1)

R(x, 1)

R(y, 0)

rf
rf

rb

mo

(a)

T

W(x, 0) W(y, 0)

r′: R(y, 0)

r : R(x, 1)

W(y, 1)

w : W(x, 1)

mo

rf

rb

rf

(b)

T1

T2
W(x, 0) W(y, 0)

W(y, 1)

w : W(x, 1)

R(x, 2)

W(x, 2) r : R(x, 2)

R(y, 0)

rf
mo rb

(c)

Fig. 6. RSI-inconsistent executions due to (a) rsi-po; (b) [NT ]; rf; st; (c) (mo; rf)T

– ∀x. ∀a, b ∈ RLx ∪ RUx. a = b ∨ (a, b) ∈ lo ∨ (b, a) ∈ lo (RSync)

Soundness of this stronger specification (outcomesRA(�P �x) ⊆ outcomesSI(P ) for
x ∈ {e, l}) follows immediately from Theorem 1. Completeness (outcomes⊆(P )
SIoutcomesRA(�P �x) for x ∈ {e, l}), however, is more subtle, as we need to
additionally satisfy (RSync) when constructing lo. While we can do so for SI,
it is essential for the completeness of our RSI implementations that reader locks
not synchronise, as shown by (SBT) in Sect. 2.

In the technical appendix [31] we present two MRSW lock implementations
sound against the lo conditions in Definition 4. Additionally, the first implementa-
tion is complete against the conditions of Definition 4 augmented with (RSync),
whilst the second is complete against the conditions of Definition 4 alone.

5 Robust Snapshot Isolation (RSI)

We explore the semantics of SI STMs in the presence of non-transactional code
with weak isolation guarantees (see Sect. 2). We refer to this model as robust
snapshot isolation (RSI), due to its ability to provide SI guarantees between
transactions even in the presence of non-transactional code. We propose the
first declarative specification of RSI programs and develop two lock-based refer-
ence implementations that are both sound and complete against our proposed
specification.

A Declarative Specification of RSI STMs. We formulate a declarative
specification of RSI semantics by adapting the SI semantics in Proposition 1 to
account for non-transactional accesses. To specify the abstract behaviour of RSI
programs, RSI execution graphs are taken to be those in which L = ∅. Moreover,
as with SI graphs, RSI execution graphs are those in which T ⊆ (R∪W)\U . That
is, RSI transactions comprise solely read and write events, excluding updates.

Definition 5 (RSI consistency). An execution G = (E , po, rf,mo, lo) is RSI-
consistent iff int holds and acyclic(rsi-hbloc ∪ mo ∪ rb), where rsi-hb � (rsi-po ∪
rsi-rf ∪ moT ∪ si-rb)+ is the ‘RSI-happens-before’ relation, with rsi-po � (po \
poI) ∪ [W]; poI; [W] and rsi-rf � (rf; [NT ]) ∪ ([NT ]; rf; st) ∪ rfT ∪ (mo; rf)T.
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As with SI and RA, we characterise the set of executions admitted by RSI
as graphs that lack cycles of certain shapes. To account for non-transactional
accesses, similar to RA, we require rsi-hbloc ∪ mo ∪ rb to be acyclic (recall that
rsi-hbloc �

{
(a, b) ∈ rsi-hb loc(a) = loc(b)

}
). The RSI-happens-before relation

rsi-hb includes both the synchronisation edges enforced by the transactional
implementation (as in si-hb), and those due to non-transactional accesses (as
in hb of the RA consistency). The rsi-hb relation itself is rather similar to si-hb.
In particular, the moT and si-rb subparts can be justified as in si-hb; the difference
between the two lies in rsi-po and rsi-rf.

To justify rsi-po, recall from Sect. 4 that si-hb includes poT. The rsi-po is
indeed a strengthening of poT to account for non-transactional events: it addition-
ally includes (i) po to and from non-transactional events; and (ii) po between two
write events in a transaction. We believe (i) comes as no surprise to the reader;
for (ii), consider the execution graph in Fig. 6a, where transaction T is denoted
by the dashed box labelled T, comprising the write events w1 and w2. Remov-
ing the T block (with w1 and w2 as non-transactional writes), this execution is
deemed inconsistent, as this weak “message passing” behaviour is disallowed in
the RA model. We argue that the analogous transactional behaviour in Fig. 6a
must be similarly disallowed to maintain monotonicity with respect to wrapping
non-transactional code in a transaction (see Theorem3). As in SI, we cannot
include the entire po in rsi-hb because the write-read order in transactions is not
preserved by the implementation.

Similarly, rsi-rf is a strengthening of rfT to account for non-transactional
events: in the absence of non-transactional events rsi-rf reduces to rfT ∪ (mo; rf)T
which is contained in si-hb. The rf; [NT ] part is required to preserve the ‘happens-
before’ relation for non-transactional code. That is, as rf is included in the hb
relation of underlying memory model (RA), it is also included in rsi-hb.

The [NT ]; rf; st part asserts that in an execution where a read event r of
transaction T reads from a non-transactional write w, the snapshot of T reads
from w and so all events of T happen after w. Thus, in Fig. 6b, r′ cannot read
from the overwritten initialisation write to y.

For the (mo; rf)T part, consider the execution graph in Fig. 6c where there is
a write event w of transaction T1 and a read event r of transaction T2 such that
(w, r) ∈ mo; rf. Then, transaction T2 must acquire the read lock of loc(w) after
T1 releases the writer lock, which in turn means that every event of T1 happens
before every event of T2.

Remark 3. Recall that our choice of modelling SI and RSI STMs in the RA
fragment is purely for presentational convenience (see Remark 2). Had we chosen
a different model, the RSI consistency definition (Definition 5) would largely
remain unchanged, with the exception of rsi-rf � (sw; [NT ]) ∪ ([NT ]; sw; st) ∪
rfT ∪ (mo; rf)T, where in the highlighted changes the rf relation is replaced with
sw, denoting the ‘synchronises-with’ relation. As in the RA model sw � rf, we
have inlined this in Definition 5.



On the Semantics of Snapshot Isolation 19

SI and RSI Consistency. We next demonstrate that in the absence of non-
transactional code, the definitions of SI-consistency (Proposition 1) and RSI-
consistency (Definition 5) coincide. That is, for all executions G, if G.NT = ∅,
then G is SI-consistent if and only if G is RSI-consistent.

Theorem 2. For all executions G, if G.NT = ∅, then:

G is SI-consistent ⇐⇒ G is RSI-consistent

Proof. The full proof is given in the technical appendix [31].

Note that the above theorem implies that for all transactional pro-
grams P , if P contains no non-transactional accesses, then outcomesSI(P ) =
outcomesRSI(P ).

RSI Monotonicity. We next prove the monotonicity of RSI when wrap-
ping non-transactional events into a transaction. That is, wrapping a block
of non-transactional code inside a new transaction does not introduce addi-
tional behaviours. More concretely, given a program P , when a block of non-
transactional code in P is wrapped inside a new transaction to obtain a new
program PT, then outcomesRSI(PT) ⊆ outcomesRSI(P ). This is captured in the
theorem below, with its full proof given in the technical appendix [31].

Theorem 3 (Monotonicity). Let PT and P be RSI programs such that PT is
obtained from P by wrapping a block of non-transactional code inside a new
transaction. Then:

outcomesRSI(PT) ⊆ outcomesRSI(P )

Proof. The full proof is given in the technical appendix [31].

Lastly, we show that our RSI implementations in Sect. 2 (Figs. 3 and 5) are
sound and complete with respect to Definition 5. This is captured in the theorem
below. The soundness and completeness proofs are non-trivial; the full proofs are
given in the technical appendix [31].

Theorem 4 (Soundness and completeness). Let P be a program that pos-
sibly mixes transactional and non-transactional code. Let �P �e denote its eager
RSI implementation as given in Fig. 3 and �P �l denote its lazy RSI implementa-
tion as given in Fig. 5. If for every location x and value v, every RSI-consistent
execution of P contains either (i) at most one non-transactional write of v to
x; or (ii) all non-transactional writes of v to x are happens-before-ordered with
respect to all transactions accessing x, then:

outcomesRSI(P ) = outcomesRA(�P �e) = outcomesRA(�P �l)

Proof. The full proofs for both implementations are given in the technical
appendix [31].
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6 Related and Future Work

Much work has been done in formalising the semantics of weakly consistent
database transactions [3,4,7,10–14,18,34], both operationally and declaratively.
On the operational side, Berenson et al. [7] gave an operational model of SI as a
multi-version concurrent algorithm. Later, Sovran et al. [34] described and oper-
ationally defined the parallel snapshot isolation model (PSI), as a close relative
of SI with weaker guarantees.

On the declarative side, Adya et al. [3,4] introduced dependency graphs (sim-
ilar to execution graphs of our framework in Sect. 3) for specifying transactional
semantics and formalised several ANSI isolation levels. Cerone et al. [10,12] intro-
duced abstract executions and formalised several isolation levels including SI and
PSI. Later in [11], they used dependency graphs of Adya to develop equivalent
SI and PSI semantics; recently in [13], they provided a set of algebraic laws for
connecting these two declarative styles.

To facilitate client-side reasoning about the behaviour of database transac-
tions, Gotsman et al. [18] developed a proof rule for proving invariants of client
applications under a number of consistency models.

Recently, Kaki et al. [21] developed a program logic to reason about transac-
tions under ANSI SQL isolation levels (including SI). To do this, they formulated
an operational model of such programs (parametric in the isolation level). They
then proved the soundness of their logic with respect to their proposed opera-
tional model. However, the authors did not establish the soundness or complete-
ness of their operational model against existing formal semantics, e.g. [11]. The
lack of the completeness result means that their proposed operational model may
exclude behaviours deemed valid by the corresponding declarative models. This
is a particular limitation as possibly many valid behaviours cannot be shown
correct using the logic and is thus detrimental to its usability.

By contrast, transactional semantics in the STM setting with mixed (both
transactional and non-transactional) accesses is under-explored on both oper-
ational and declarative sides. Recently, Dongol et al. [17] applied execution
graphs [5] to specify serialisable STM programs under weak memory models.
Raad et al. [30] formalised the semantics of PSI STMs declaratively (using
execution graphs) and operationally (as lock-based reference implementations).
Neither work, however, handles the semantics of SI STMs with weak isolation
guarantees.

Finally, Khyzha et al. [22] formalise the sufficient conditions on STMs and
their programs that together ensure strong isolation. That is, non-transactional
accesses can be viewed as singleton transactions (transactions containing single
instructions). However, their conditions require serialisability for fully transac-
tional programs, and as such, RSI transactions do not meet their conditions.
Nevertheless, we conjecture that a DRF guarantee for strong atomicity, similar
to [22], may be established for RSI. That is, if all executions of a fully transac-
tional program have no races between singleton and non-singleton transactions,
then it is safe to replace all singleton transactions by non-transactional accesses.
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In the future, we plan to build on the work presented here by developing
reasoning techniques that would allow us to verify properties of STM programs.
This can be achieved by either extending existing program logics for weak mem-
ory, or developing new ones for currently unsupported models. In particular, we
can reason about the SI models presented here by developing custom proof rules
in the existing program logics for RA such as [24,35].
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Abstract. We introduce program synthesis with equivalence reduction, a
synthesis methodology that utilizes relational specifications over compo-
nents of a given synthesis domain to reduce the search space. Leveraging
a blend of classic and modern techniques from term rewriting, we use
relational specifications to discover a canonical representative per equiv-
alence class of programs. We show how to design synthesis procedures
that only consider programs in normal form, thus pruning the search
space. We discuss how to implement equivalence reduction using effi-
cient data structures, and demonstrate the significant reductions it can
achieve in synthesis time.

1 Introduction

Over the past few years, we have witnessed great strides in automated pro-
gram synthesis, the process of automatic construction of programs that satisfy
a given specification—for instance, a logical formula [3], an input-output exam-
ple [16,24], a type [17], etc. While the underlying algorithmic techniques may
appear different, ultimately, a majority of existing algorithms and tools imple-
ment a search through the space of programs, be it explicitly through careful
enumeration or implicitly through constraint solving.

Of course, the search space in synthesis is enormous—likely infinite. But
whenever we are encountered with a large search space, it is often the case that
large fractions of the space are redundant. Here, we ask the following question:
How can we exploit operator semantics to efficiently explore large spaces of can-
didate programs?

Motivation. Let us consider a generic learner–teacher model, where the learner
(the synthesizer) proposes programs and the teacher (the verifier) answers with
yes/no, indicating whether the learner has provided the correct program or not.
Our goal is to make the learner smarter : we want to reduce the number of
questions the learner needs to ask before arriving at the right answer.

Consider the following two string-manipulating programs:

p1 : λx. swap(lower(x)) p2 : λx. upper(x)
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where swap turns all uppercase characters to lowercase, and vice versa; lower
and upper turn all characters into lowercase or uppercase, respectively. A smart
learner would know that turning all characters into lowercase and then applying
swap is the same as simply applying upper. Therefore, the learner would only
inquire about one of the programs p1 and p2. Formally, the learner knows the
following piece of information connecting the three functions:

∀x. swap(lower(x)) = upper(x)

One could also imagine a variety of other semantic knowledge that a learner
can leverage, such as properties of specific functions (e.g., idempotence) or rela-
tional properties over combinations of functions (e.g., distributivity). Such prop-
erties can be supplied by the developer of the synthesis domain, or discovered
automatically using tools like QuickSpec [6] or Bach [37].

Equivalence Reduction. Universally quantified formulas like the one above
form equational specifications (equations, for short): they define some (but not
all) of the behaviors of the components (functions in the synthesis domain), as
well as relations between them. The equations partition the space of programs into
equivalence classes, where each equivalence class contains all equivalent programs
with respect to the equations. The learner needs to detect when two programs are
in the same equivalence class and only ask the teacher about one representative
per equivalence class. To do so, we make the observation that we can utilize the
equations to define a normal form on programs, where programs within the same
equivalence class all simplify to the same normal form. By structuring the learner
to only consider programs in normal form, we ensure that no redundant programs
are explored, potentially creating drastic reductions in the search space. We call
this process program synthesis with equivalence reduction.

By constraining specifications to be equational (as in the above example),
we can leverage standard completion algorithms, e.g., Knuth–Bendix comple-
tion [21], to construct a term-rewriting system (trs) that is confluent, terminat-
ing, and equivalent to the set of equations. Effectively, the result of completion
is a decision procedure that checks whether a program p is the representative
of its equivalence class—i.e., whether p is in normal form. The difficulty, how-
ever, is that constructing such a decision procedure is an undecidable process—
as equations are rich enough to encode a Turing machine. Nonetheless, signifi-
cant progress has been made in completion algorithms and termination proving
(e.g., [15,41,43]), which is used for completion.

Given a normalizing trs resulting from completion, we show how to incor-
porate it in existing synthesis techniques in order to prune away redundant
fragments of the search space and accelerate synthesis. We show how to incorpo-
rate equivalence reduction into salient synthesis algorithms that employ bottom-
up, dynamic-programming-style search—e.g., [2,3,28]—and top-down search—
e.g., [13,14,30,33].

Our primary technical contribution is porting foundational tech-
niques from term rewriting and theorem proving to a contemporary
automated program synthesis setting.
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Applicability. While our proposed technique is general and orthogonal to much
of the progress in program synthesis technology, it is important to note that it
is not a panacea. For instance, a number of synthesizers, e.g., the enumerative
SyGuS solver [3], prune the search space using observational equivalence with
respect to a set of input–output examples, which effectively impose a coarse
over-approximation of the true equivalence relation on programs. In such set-
tings, equivalence reduction can be beneficial when, for instance, (i) evaluating
examples is expensive, e.g., if one has to compile the program, simulate it, eval-
uate a large number of examples; or (ii) the verification procedure does not
produce counterexamples, e.g., if we are synthesizing separation logic invariants,
and one cannot prune through observational equivalence.

Our approach is beneficial in synthesis settings where observational equiva-
lence is not an option or is difficult to incorporate, e.g., in functional program
synthesis algorithms like λ2 [13], Myth [14,30], SynQuid [33], Leon [20], and
bigλ [36]. A number of these tools employ a top-down type-driven search with
which observational equivalence is not compatible. Additionally, some of these
techniques decompose the problem into multiple subproblems, e.g., a process
searching for mappers and another searching for reducers in bigλ. In such case,
different synthesis subproblems have no input context on which to employ obser-
vational equivalence. Thus, minimizing the search space is essential.

Contributions. This paper makes a number of contributions:
– Conceptual. We present program synthesis with equivalence reduction,

where a synthesis problem is augmented with domain knowledge in the
form of equational specifications.

– Algorithmic. We demonstrate how to utilize classical and modern tech-
niques from theorem proving and the theory of trss to impose a normal
form on programs. We demonstrate how to incorporate normal forms in
bottom-up and top-down synthesis techniques.

– Practical. We implement our approach in an existing synthesis tool for
functional, data-parallel programs. To fully exploit equivalence reduction,
we discuss the importance of employing efficient data structures used
by theorem provers—namely, perfect discrimination trees [27]—and fast
algorithms for normality checking.

– Empirical. We apply our tool to synthesis of reduction functions—
commutative and associative binary operators that are ubiquitous in
modern data-parallel programming. Our thorough empirical evaluation
investigates the following important aspects:

• Speedups gained with equivalence reduction.
• Overhead of applying equivalence reduction in different algorithms,

in relation to program size.
• Robustness of equivalence reduction to varying the number of equa-

tions used.
• The impact of data structures (perfect discrimination trees) on effi-

ciency.
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Fig. 1. Overview of synthesis with equivalence reduction

2 Overview and Illustration

2.1 Overview

Figure 1 provides an overview of our proposed synthesis technique. A synthe-
sis modulo equations problem is defined by three inputs. First, we are given
a synthesis domain, which is a set of components (operators) that define the
search space of programs. Second, we expect equational specifications, which are
equations over single components or combinations of components. For example,
equations might specify that an operator f is associative, or that two operators,
f and g, are inverses of each other. Finally, a synthesis problem also contains a
specification of the desired program. Below, we describe the various components
in Fig. 1 in detail.

2.2 Synthesis Modulo Equations Problem

Synthesis Domain. We will now illustrate the various parts of our approach
using a simple example. Consider the synthesis domain shown in Table 1(a). The
domain includes basic integer operations as well as a number of functions over
strings and byte arrays (utf8) that form a subset of Python 3.6’s string api.1

We describe some of the non-standard components. split(x,y) splits string x
into a list of strings using the delimiter string y, e.g.:

The function join(x,y) concatenates a list of strings x using the delimiter
string y. Functions encode/decode transform between strings and UTF-8 byte
arrays.

Equational Specifications. Even for such a simple synthesis domain, there is
a considerable amount of latent domain knowledge that we can exploit in the
synthesis process. Table 1(b) provides a partial view of the equations that we can
1 https://docs.python.org/3/library/stdtypes.html.

https://docs.python.org/3/library/stdtypes.html
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Table 1. (a) Left: synthesis domain; (b) Right: partial list of equations

utilize for this synthesis domain. The variables x, y, z are implicitly universally
quantified. Consider, for instance, the following equation:

∀x, y. join(split(x, y), y) = x

This connects split and join: splitting a string x with delimiter y, and then
joining the result using the same delimiter y, produces the string x. In other
words, split and join are inverses, assuming a fixed delimiter y.

Other equations specify, e.g., that abs (absolute value of an integer) is idem-
potent (∀x. abs(abs(x)) = abs(x)) or that the function swap is an involution—
an inverse of itself (∀x. swap(swap(x)) = x).

2.3 Completion Phase

Completion Overview. Two programs are equivalent with respect to the equa-
tions if we can use the equations to rewrite one into the other—just as a high-
school student would apply trigonometric identities to make the two sides of a
trigonometric equation identical. Given the set of equations, we would like to
be able to partition the space of programs into equivalence classes, where two
programs are in the same equivalence class if and only if they are equivalent
with respect to the equations. By partitioning the space into equivalence classes,
we can ensure that we only consider one representative program per equivalence
class. Intuitively, without equations, each program is its own equivalence class.
The more equations we add—i.e., the more domain knowledge we have—the
larger our equivalence classes are.

Given the set of equations, the completion phase generates a trs that trans-
forms any program into its normal form—the representative of its equivalence
class. It is important to note that the process of determining equality mod-
ulo equations is generally undecidable [29], since equations are rich enough to
encode transitions of a Turing machine. Completion attempts to generate a deci-
sion procedure for equality modulo equations, and as such can fail to terminate.
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Nevertheless, advances in automatic termination proving have resulted in pow-
erful completion tools (e.g., [41,43]). Note that completion is a one-time phase
for a given synthesis domain, and therefore can be employed offline, not affecting
synthesis performance.

The Term Rewriting System. The trs generated by completion is a set of
rewrite rules of the form l → r, which specify that if a (sub)program matches
the pattern l, then it can be transformed using the pattern r. For instance,
completion of the equations in our running example might result in a system that
includes the rule swap(swap(x)) → x. In other words, for any program containing
the pattern swap(swap(x)), where x is a variable indicating any completion of
the program, we can rewrite it into x.

The above rule appears like a simple syntactic transformation (orientation)
of the corresponding equation defining that swap is an involution. However, as
soon as we get to slightly more complex equations, the resulting rules can become
intricate. Consider, for instance, commutativity of addition. The completion pro-
cedure will generate an ordered rewrite system to deal with such unorientable
rules. For example, one rule that completion might generate is x + y →> y + x,
which specifies that a program of the form x + y can be rewritten into y + x
only if x + y > y + x, where > is a reduction ordering, which is a well-founded
ordering on programs. (The difficulty in completion is finding a reduction order,
just like finding a ranking function is the key for proving program termination.)

Normality Checking. Given the trs generated by the completion procedure,
checking whether a program p is in normal formal is a simple process: If any of
the rewrite rules in the trs can be applied to p, then we know that the program
is not in normal form, since it can be reduced.

2.4 Synthesis with Equivalence Reduction

Let us now discuss how a synthesis procedure might utilize the trs generated by
completion to prune the search space. For the sake of illustration, suppose our
synthesis technique constructs programs in a bottom-up fashion, by combining
small programs to generate larger programs, a strategy that is employed by a
number of recent synthesis algorithms [2,3,28].

Consider the following simple program,

where s is a string variable and count is an integer variable. The synthesizer
constructs this program by applying integer addition to the two smaller expres-
sions: and count. To check if the program is in normal form, the
synthesizer attempts to apply all the rules in the trs generated by completion.
If none of the rules apply, the program is irreducible, or in normal form. If any
rule applies, then we know that the program is not in normal form. In the latter
case, we can completely discard this program from the search space. But what if
the end solution uses this program as a subprogram? By construction of the trs,
if a program p is not in normal form, then all programs ps, where p appears in
ps as a subprogram, are also not in normal form. Intuitively, we can apply the
same rewrite rules to ps as those we can apply to p.
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Fig. 2. #normal forms vs. prog. size
(Color figure online)

By ensuring that we only construct and
maintain programs in normal form, we dras-
tically prune the search space. Figure 2
shows the number of well-typed programs
for fixed program size in our running syn-
thesis domain, augmented with two inte-
ger and two string variables. The solid
(blue) line shows the number of programs
(normal forms) for increasing size of the
abstract syntax tree (components and vari-
ables appearing in the program). When we
include the equations in Table 1(b) that
only deal with integer components, the
number of programs per size shrinks, as
shown by the dashed (green) line. Incorpo-
rating the full set of equations (over integer and string components) shrinks the
number of normal forms further, as shown by the dotted (red) line. For instance,
at 11 ast nodes, there are 21 million syntactically distinct programs, but only
about 20% of them are in normal form with respect to the full set of equations.

While the number of programs explodes as we increase the size (unless the
synthesis domain is fairly simple), utilizing the equations allows us to delay the
explosion and peer deeper into the space of programs. In Sect. 5, we experimen-
tally demonstrate the utility of equations on practical synthesis applications.

3 Synthesis Modulo Equations

We now define synthesis problems with equational specifications.

3.1 Formalizing the Synthesis Problem

Synthesis Domain. A synthesis domain D is a set of components {f1, . . . , fn},
where each component fi is a function of arity ar(fi) ∈ N. The synthesis domain
D induces a set of candidate programs PD, where each p ∈ PD is defined as
follows:

p := f f ∈ D and ar(f) = 0
| f(p1, . . . , pn) f ∈ D and ar(f) = n > 0

When clear from context, we shall use P to refer to PD. Components of arity
n model functions that take n arguments and return some value; components
of arity 0 model constants and input arguments of a program. For simplicity of
presentation, we shall restrict our discussion to first-order components and elide
types. While our approach can handle higher-order components, the equations
we define below are restricted to first-order components.
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Synthesis Problems. A synthesis problem S is a tuple (D, ϕ), where D is a
synthesis domain and ϕ is a specification. A solution to a synthesis problem S is
a program p ∈ PD such that p |= ϕ, where p |= ϕ specifies that the program p
satisfies the specification ϕ. We assume that ϕ is defined abstractly—it can be a
Hoare triple that p should satisfy, a reference implementation that p should be
equivalent to, a set of input–output examples p should satisfy, etc.

Synthesis Modulo Equations Problems. A synthesis modulo equations prob-
lem S� is a tuple (D, ϕ, E), where E defines equational specifications. Formally,
E is a set of equations, where each equation is a pair (p1, p2) ∈ PD(X) × PD(X)
and PD(X) is the set of programs induced by the domain D ∪ X, where
X = {x, y, z, . . .} is a special set of variables. An equation (p1, p2) denotes the
universally quantified formula ∀X. p1 = p2, indicating that programs p1 and p2
are semantically equivalent for any substitution of the variables X.

Example 1 (Matrix operations). Suppose that the synthesis domain is defined as
follows: D = {t,+m, i}, where t is a unary function that returns the transpose
of a matrix, +m is (infix) matrix addition, and i denotes an input argument. A
possible set E is:

t(t(x)) = x (s1)
t(x +m y) = t(x) +m t(y) (s2)

where x and y are from the set of variables X. Formula s1 specifies that transpos-
ing a matrix twice returns the same matrix; Formula s2 specifies that transpo-
sition distributes over matrix addition. Using E , we can infer that the following
programs are semantically equivalent:

t(t(i) +m t(i)) =s2 t(t(i)) +m t(t(i)) =s1 i +m i

Equivalence Reduction. Given a synthesis problem S�, the equations E induce
an equivalence relation on candidate programs in P. We shall use p1 =E p2 to
denote that two programs are equivalent modulo E (formally defined in Sect. 3.2).
We can partition the set of candidate programs P into a union of disjoint equiv-
alence classes, P = P1 � P2 � . . ., where for all p, p′ ∈ P,

p =E p′ ⇐⇒ (∃i ∈ N such that p, p′ ∈ Pi)

For each equivalence class Pi, we shall designate a single program pi ∈ Pi, called
the representative of Pi. A program p ∈ P is in normal form, denoted norm(p),
iff it is a representative of some equivalence class Pi.

Solutions of Synthesis Modulo Equations Problems. A solution to a syn-
thesis problem S� = (D, ϕ, E) is a program p ∈ P such that (1) p |= ϕ and (2)
norm(p) holds. That is, a solution to the synthesis problem is in normal form.

3.2 Term-Rewriting and Completion

We now ground our discussion in the theory of term rewriting systems and
discuss using completion to transform our equations into a procedure that detects
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if a program is in normal form. We refer to Baader and Nipkow [4] for a formal
exposition of term-rewriting systems.

Rewrite Rules. A rewrite system R is a set of rewrite rules of the form (l, r) ∈
PD(X) × PD(X), with vars(r) ⊆ vars(l). We will denote a rewrite rule (l, r) as
l → r. These rules induce a rewrite relation. We say that p rewrites to p′, written
as p →R p′, iff there exists a rule l → r ∈ R that can transform p to p′. We
illustrate rewrite rules with an example.

Example 2. Consider the following rewrite rule, f(x, x) → g(x), where f and g
are elements of D and x is a variable. Consider the program p = f(f(a, a), b),
where a and b are two arguments. We can apply the rewrite rule to rewrite p
into p′ = f(g(a), b), by rewriting the subprogram f(a, a) into g(a).

We will use →∗
R to denote the reflexive transitive closure of the rewrite rela-

tion. The symmetric closure of →∗
R, denoted ↔∗

R, forms an equivalence relation.
We shall drop the subscript R when the trs is clear from context.

Normal Forms. For a given trs R, a program p is R-irreducible iff there is
no program p′ such that p →R p′. For a program p, the set of R-irreducible
programs reachable from p via →R is its set of normal forms. We write NR(p) =
{p′ | p →∗ p′, p′ is R-irreducible} for the normal forms of p.

We say that a trs R is normalizing iff for every program p, |NR(p)| � 1.
A trs R is terminating iff the relation →R is well-founded ; that is, for every
program p, there exists n ∈ N such that there is no p′ where p →n

R p′ (i.e., no p′

reachable from p through n rewrites).

Rewrite Rules and Equations. Recall that equations are of the form
(p1, p2) ∈ PD(X) × PD(X). It is often convenient to view an equation (p1, p2)
as two rules: p1 → p2 and p2 → p1. Let R be the trs defined by equations in E ,
then for all programs p, p′ ∈ PD(X), we have p ↔∗

R p′ ⇐⇒ p =E p′.
R is not terminating by construction, and so cannot be used for determining

unique normal forms. For a terminating trs equivalent to E , we must be more
cautious with how rules are generated. The process of generating these rules is
known as a completion procedure.

Completion Procedures. For our purposes, we only need a declarative view of
completion procedures. A completion procedure provides a term rewriting system
Rc such that p ↔∗

Rc
p′ ⇐⇒ p =E p′ and for any program p, applying the rules in

Rc will always lead to a unique normal form in finitely many rewrites, no matter
what the order of application is. Formally, Rc is terminating and confluent.

Completion is generally undecidable. Knuth and Bendix are responsible for
the first completion procedure [21]; it repeatedly tries to orient equations—turn
them into rewrite rules—through syntactic transformations. Knuth–Bendix com-
pletion, even if it terminates, can still fail to produce a result, as not all equations
are orientable. Bachmair et al. neatly side-step this weakness by presenting a
completion procedure that cannot fail, called unfailing completion [5]. In order
to handle the unorientable rules, unfailing completion introduces ordered rules:
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(a) bottom-up: Bottom-up synthesis

init
C ∅

p ∈ C p |= ϕ
verify

p is a solution

f ∈ D {p1, . . . , pn} ⊆ C

p = f(p1, . . . , pn) norm(p)
expand

C C ∪ {p}

(b) top-down: Top-down synthesis

init
C { }

p ∈ C p |= ϕ
verify

p is a solution

p ∈ C norm(σp) ∈ vars(p) f ∈ D
σ = [ f( 1, . . . , n)] { i}i are fresh

expand
C C ∪ {σp}

Fig. 3. Synthesis with equivalence reduction algorithms

let > be a reduction order, and r : u →> v be an ordered rule. (A reduction
order is a well-founded order that ensures termination of the rewrite system.)
Then p1 → p2 by rule r iff p1 → p2 by the unordered rule u → v and p1 > p2.

Recall our matrix domain D = {t,+m, inp} from Example 1, and suppose we
have the equation x+my = y+mx. Knuth–Bendix completion will not be able to
orient this rule. Unfailing completion, when provided with a suitable reduction
order >, would generate the ordered rule x +m y →> y +m x. Modern comple-
tion tools, such as omkbTT [43] and Slothrop [41], are able to simultaneously
complete a set of rules and derive an appropriate reduction order.

Knuth–Bendix Order. The Knuth–Bendix order (kbo) is a standard family
of reduction orders that we will use in our implementation and evaluation. The
formal definition of kbo is not important for our exposition, and we thus relegate
it to the supplementary material. We will denote a kbo as >kbo, and note that
näıvely computing kbo following its standard definition is polynomial in the size
of the compared terms. We discuss our linear-time implementation in Sect. 5.3.

4 Synthesis Modulo Equations

We now describe how to incorporate equivalence reduction in bottom-up and top-
down synthesis techniques, and highlight the subtleties involved. An example
illustrating both scenarios is provided in the supplementary material.
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Bottom-up techniques explore the space of programs in a bottom-up,
dynamic-programming fashion, building larger programs from smaller ones.
Examples include Escher [2], the enumerative solver of SyGuS [3], and the prob-
abilistic search of Menon et al. [28].

Top-down techniques explore the space of programs in a top-down fashion,
effectively, by unrolling the grammar defining the programs. A number of recent
synthesis algorithms, particularly for functional programs, employ this method-
ology, e.g, Myth [30], Myth2 [14], Bigλ [36], λ2 [13], and SynQuid [33].

We now present abstract algorithms for these techniques and show how to
augment them with equivalence reduction.

4.1 Bottom-Up Synthesis Modulo Equations

We start by describing the bottom-up synthesis algorithm. We would like to find
a solution to the synthesis problem S� = (D, ϕ, E). We assume that completion
has resulted in a procedure norm(p) that checks whether a candidate program
p is in normal form.

Figure 3(a) shows a bottom-up synthesis algorithm, bottom-up, as a set of
guarded rules that can be applied non-deterministically. The only state main-
tained is a set C of explored programs, which is initialized to the empty set in
the initialization rule init. The algorithm terminates whenever the rule verify
applies, in which case a program satisfying the specification ϕ is found.

The rule expand creates a new program p by applying an n-ary function f
to n programs from the set C. Observe, however, that p is only considered if it
is in normal form. In other words, the algorithm maintains the invariant that all
programs in C are in normal form.

Root-Normality. The invariant that all programs in C are normal can be
used to simplify checking norm(p) during the expand step. In synthesizing p =
f(p1, . . . , pn), we already know that the subprograms p1, . . . , pn are normal: no
rule can apply to any subprogram. Therefore, if p is not normal, it must be due
to a rule applying at the root. Checking this property, called root-normality,
simplifies rule application. Instead of examining all subprogram decompositions
of p to see if the rule l → r applies, it suffices to check whether there exists a
substitution σ such that σp = σl.

4.2 Top-Down Synthesis Modulo Equations

We now describe how to perform top-down synthesis with equivalence reduction.
Top-down synthesis builds programs by unrolling the grammar of programs. We
will assume that we have a countable set of variables X = {�, �1, �2, . . .}, called
wildcards, which we use as placeholders for extending programs in PD(X).

Figure 3(b) shows the top-down synthesis algorithm, top-down, a simplified
version of the algorithm in bigλ [36]. The algorithm maintains a set C of ground
(with wildcards) and non-ground programs. C is initialized to the program �,
using init. The rule expand picks a non-ground program from C and substitutes
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one of its wildcards with a new program. The algorithm terminates when a
ground program in C satisfies the specification, as per rule verify.

Normality with Non-ground Programs. The rule expand checks whether
p is in normal form before adding it to C. However, note that top-down main-
tains non-ground programs in C, and even if a non-ground program is normal,
no ground programs derivable from it through expand need be normal. There-
fore, top-down may end up exploring subtrees of the search space that are
redundant. Deciding if a non-ground program has ground instances in normal
form is known as checking R-ground reducibility, which is decidable in exponen-
tial time [7]. Our formulation avoids exponential checks at the cost of exploring
redundant subtrees.

Soundness of both algorithms is discussed in the supplementary material.

5 Implementation and Evaluation

5.1 Implementation and Key Optimizations

We implemented our technique in an existing efficient synthesis tool, written
in OCaml, that employs bottom-up and top-down search strategies. Our tool
accepts a domain D, defined as typed OCaml functions, along with a set of
equations E over the OCaml functions. As a specification ϕ for the synthesis
problem, we utilize input–output examples (see Sect. 5.2 below).

The implementations of the bottom-up and top-down synthesis algorithms
augment the abstract algorithms in Sect. 4 with a deterministic search strategy
that utilizes types. Both algorithms explore programs by increasing size—a strat-
egy used in many existing synthesis tools, e.g., [2,13,30], as smaller programs
are considered more likely to generalize. Both algorithms are type-directed, enu-
merating only well-typed programs.

Implementing Completion and Reduction Orders. Completions of equa-
tions were found using the omkbTT tool [43]—which employs termination
provers for completion. All completions used the kbo reduction order (see the
supplementary material).

During synthesis, the reduction order can be a performance bottleneck, as
we need to compute it for every candidate program. If we were to implement
kbo directly from its formal definition (see the supplementary material), evalu-
ating s >kbo t would be quadratic in |s| + |t|. However, program transformation
techniques have given us an algorithm linear in the sizes of the terms [26]. In
our tool, we implement Löchner’s linear-time kbo computation algorithm. The
performance impacts of the reduction order will be discussed in Sect. 5.3.

Data Structures for Normalization. Every time a candidate program is
considered, we check if it is in normal form using norm(·) (recall algorithms in
Fig. 3). More precisely, given a candidate program p, norm attempts to find a
substitution σ and a rule l → r ∈ R such that σ(l) = p. This is a generalization
problem, which has been studied for years in the field of automated theorem
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proving. A näıve implementation of norm might keep a list of rules in the trs,
and match candidate programs against one rule at a time. Instead, we borrow
from the existing literature and use perfect discrimination trees [27] to represent
our list of rules. Perfect discrimination trees are used in the Waldmeister theorem
prover [18] to great effect; the tree representation lets us match multiple rules at
once, and ignore rules that are inapplicable.

A perfect discrimination tree can be thought of as a trie. Figure 4 illustrates
the construction for a set of unordered rules (ordered rules can be added anal-
ogously). First, rules are rewritten using De Bruijn-like indices [9]. Second, the
left-hand side of every rule is converted into a string through a pre-order traver-
sal. Finally, all string representations are inserted into the trie.

Fig. 4. Building the trie data structure from lhs of rules

To match a candidate program p against the trie, we first convert p to a flat-
term, which is a linked-list representation of p in pre-order with forward pointers
to jump over subterms. For example, the term +(max(x, y), 0) is converted to:

+ max x y 0

Now, matching the program against the trie is done using a simple back-
tracking algorithm, which returns a substitution (if one exists) that converts the
left-hand side of a rule in our set to the query program. See [27] for details.

Using perfect discrimination trees in our normalization procedure has several
immediate benefits, the most important of which is that unused rules do not
impact the performance, as their paths are never followed. In Sect. 5.3, we will
evaluate the performance overhead of normalization.

5.2 Synthesis Domain and Benchmarks

A primary inspiration for our work came from applying synthesis to the domain
of large-scale, data-parallel programming, where a program is composed of data-
parallel combinators, e.g., map and reduce, which allow programmers to write
distributed programs without having to worry about low-level details of distri-
bution. Popular MapReduce-like systems, e.g., Apache Spark [45], Hadoop [42],
and Dryad [44], provide such high-level interfaces.
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Fig. 5. Addition of two complex numbers of
the form a + bi, where a and b are represented
as a pair

Here, we will focus on synthe-
sizing reducers in the distributed,
data-parallel programming con-
text. Reducers are functions that
allow us to aggregate large amounts
of data by exploiting parallelism.
Our long-term goal with synthesis
of such aggregation functions from
examples is to enable average computer users to construct non-trivial data anal-
yses through examples. We will focus on evaluating our synthesis algorithms in
this context.

To synthesize deterministic data-parallel programs, tools like Bigλ ensure
that reducers form a commutative semigroup (csg) [36]. This guarantees deter-
minism in the face of data reordering (e.g., shuffles [10]). To ensure we only syn-
thesize csg reducers, we employ the dynamic analysis technique from Bigλ [36].

Synthesis Domain. Our synthesis domain comprises four primary sets of com-
ponents, each consisting of 10+ components, that focus on different types. These
types—integers, tuples, strings, and lists—are standard, and appear as the sub-
ject of many synthesis works. See full list in the supplementary material.

Equational Specifications. We manually gathered a set of 50 equations for
our synthesis domain. Each class of components has between 3 (lists) and 21
(integers) equations, with a few equations correlating functions over multiple
domains (e.g., strings and integers interacting through length). Completions of
the equations are a mix of ordered and unordered rules describing the inter-
action of the components. Some equations are described below—full list in the
supplementary material.

– Strings: In addition to the equations relating uppercase, swap, and
lowercase (as defined in Sect. 1), we include equations encoding, e.g., idem-
potence of trim, and the fact that many string operations distribute over
concatenation. For instance, we have the equation ∀x, y. len(x) + len(y) =
len(x ++ y).

– Lists: We provide equations specifying that operations distribute over list
concatenation, as in ∀x, y.sum(x) + sum(y) = sum(cat(x, y)). In addition, we
relate constructors/destructors, as in ∀x, y.head(cons(x, y)) = x.

Benchmarks. Our benchmarks were selected to model common reducers over
our domain, and typically require solutions with 10–12 ast nodes—large enough
to be a challenge for state-of-the-art synthesizers, as we see later in this Sect. 5.3.
A few examples are given below—for a full list, refer to supplementary material.

– Tuples and integers: The tuple benchmarks expose several different uses for
pairs in reducers—as an encoding for rational numbers (such as in mult-q), for
complex numbers (in add-c), and for points on the plane (as in distances).
We also treat pairs as intervals over integers (e.g., intervals synthesizes join
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in the lattice of intervals [8]). Figure 5 shows the synthesized program for one
of those benchmarks.

– Lists and integers: Lists are also an interesting target for aggregation, e.g.,
if we are aggregating values from different scientific experiments, where each
item is a list of readings from one sensor. List benchmarks compute a value
from two lists and emit the result as a singleton list. For example, ls-sum-abs
computes absolute value of the sums of two lists, and then adds the two,
returning the value as a singleton list.

Like many synthesis tools, we use input–output examples to characterize the
desired solution. Examples are used to ensure that the solution (i) matches user
expectations and (ii) forms a csg.

5.3 Experimental Evaluation

Our experiments investigate the following questions:

RQ1. Does equivalence reduction increase the efficiency of synthesis algorithms
on the domain described above?

RQ2. What is the overhead of equivalence reduction?
RQ3. How does the performance change with different numbers of equations?
RQ4. Are the data structures used in theorem provers a good fit for synthesis?

To address these questions, we developed a set of 30 synthesis benchmarks. Each
benchmark consists of: (i) a specification, in the form of input–output examples
(typically no more than 4 examples are sufficient to fully specify the solution);
(ii) a set of components from the appropriate domain; (iii) a set of ordered and
unordered rewrite rules generated from equations over the provided components.

For each algorithm, bottom-up (bu) and top-down (td), we created three
variations:

– bu and td: equivalence reduction disabled.
– bun and tdn: equivalence reduction enabled.
– buñ and tdñ: equivalence reduction without ordered rules. By dropping

ordered rules from the generated trs, we get more normal forms (less prun-
ing).

See Table 2 for the full results. For each experiment, we measure total time
taken in seconds. Grey boxes indicate the best-in-category strategy for each
benchmark—e.g., the winner of the sub-c benchmark is bun in the bottom-up
category, and tdñ in top-down. Values reported are the average across 10 runs.

RQ1: Effects of Equivalence Reduction on Performance. In 2 out of the
3 benchmarks where bu and td do not terminate, adding equivalence reduction
allows the synthesizer to find a solution in the allotted time. For bottom-up, in
all benchmarks where bu terminates in under 1 s, both bun and buñ outperform
the näıve bu, often quite dramatically: in sum-to-second, bu takes over 60 s,
while bun and buñ finish in under 2 s. For top-down, tdñ outperforms td in
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Table 2. Experimental results (Mac OS X 10.11; 4 GHz Intel Core i7; 16 GB RAM).
We impose a cpu timeout of 300 s and a memory limit of 10 GBs per benchmark. ✗

denotes a timeout.

nearly all benchmarks that take td more than 1 s (the exception being ls-sum2).
With ordered rules, the exceptions are more numerous. The most egregious is
ls-stutter, going from 50s with td to 94 s with tdn. There is still potential
for large performance gains: in sum-to-second, we decrease the time from 108 s
in td to under 12 s for tdn and under 6 s for tdñ.

Equivalence Reduction Appears to Drastically Improve the Perfor-
mance of Bottom-Up and Top-Down Synthesis. In general, the unordered
rules outperform the full ordered rules. In the bottom-up case, this performance
gap is smaller than 5s: while the ordered rules are more costly to check, bottom-
up synthesis only requires that we check them at the root of a program. In
top-down, we must check rule application at all sub-programs. This magnifies
the cost of the ordered rules and leads to significant performance differences
between tdn and tdñ.
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RQ2-a: Overhead of Equivalence Reduction. Figure 6 provides a different
look at the benchmarks in Table 2: for each benchmark where bu and td do
not terminate in less that 1 s, we compute (i) the overhead, the percentage of
time spent in the normalization procedure norm; and (ii) the reduction, the
percentage of programs visited compared to the un-normalized equivalent, bu
or td. The results are shown as density plots.

Figure 6a and c show the performance characteristics of buñ and tdñ, respec-
tively. Both have consistent overhead—40% for buñ and 25% for tdñ—although
tdñ has a more reliable reduction of over 85%, while buñ ranges from 60% to
90% reduction. Both strategies boast large reductions in the number of candidate
programs visited for reasonable overhead, although tdñ is the clear winner—buñ

dominates tdñ in Table 2, suggesting that normalization isn’t enough to fully
close the gap between bu and td. In Fig. 6b and d, we see the performance char-
acteristics of bun and tdn, respectively. Compared to Fig. 6a and c, we see a
higher overhead with less consistent normalization. Both figures have secondary
clusters of benchmarks outside the region of highest density: these contain the
benchmarks from the strings and integers domain.

This View of the Data Supports the Conclusion of Table 2 that
Unordered Rules Outperform Ordered Rules. While our implementation
of kbo is optimized, evaluating the reduction order is still a bottleneck. Our
implementation verifies candidate solutions quickly, but the benefits of high
reduction outweigh the large overhead as verification time increases.
For instance, when providing more input-output examples, the verification time
increases but not the overhead. In the ls-stutter benchmark, buñ visits
1,288,565 programs with an average overhead of 1.07 s, while bun visits 792,662
programs with an average overhead of 5.6 s. Increasing the verification cost per
program by only 0.0001 s will raise buñ’s time by 129 s, while bun’s time is only
raised by 80 s—easily a large enough gap to out-scale the overhead. Indeed, when
we instrument our tool with a synthetic delay, this behavior is visible.

Fig. 6. Equivalence reduction overhead. Benchmarks are converted into (overhead,
reduction) pairs and plotted using kernel density estimation (kde), with marginal
distributions projected on to the side. No points lie outside the bounding box (any
appearance of such is an artifact of kde).
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RQ2-b: Normalization Overhead w.r.t. Program Size. Experience holds
that normalization procedures don’t scale as candidate programs become large.
To explore how this behavior might impact the effectiveness of equivalence reduc-
tion, we instrumented our tool to ignore solutions and explore the space of pro-
grams depth-first, during which we record the average overhead of norm(·) at
all program sizes. Figure 7 presents the data for the sum-to-first benchmark,
although the figures are representative of the other benchmarks.

Fig. 7. Average performance of norm(·) w.r.t. the size of candidate programs. Normal
graph represents executions of norm(·) that return true; removed represents executions
that return false. Data is average of multiple executions of norm(·) per program size
using the sum-to-first benchmark. Time is in microseconds—note the difference in
scale between graphs.

Unsurprisingly, norm(·) Scales Linearly with Program Size. This Lin-
ear Growth Appears Quite Sustainable. Solutions with 100 ast nodes are
beyond modern-day synthesis tools, and a 3x slowdown compared to programs
of size 40 is manageable.

When we compare the performance of buñ in Fig. 7a to that of bun in Fig. 7b,
we observe an order of magnitude loss in performance. This holds as well for tdñ

and tdn in Fig. 7c and d, respectively. Checking kbo is clearly expensive, and
so the observed performance in Table 2 of bun and tdn indicate a large amount
of search-space reduction occurring.

RQ3 and RQ4: Impact of Rules and Perfect Discrimination Trees. To
determine how the number of rules impacts our tool’s performance, we completed
our entire set of 50 equations to produce 83 unordered rules that we randomly
sample subsets from (the results from ordered results are similar). To test the
effectiveness of perfect discrimination trees, we compare performance against a
näıve algorithm that maintains a list of rules it checks against one by one on
a representative benchmark: str-len. Not all rules apply to the components
used—only 47 out of 83 describe components used for str-len. We plot the
time taken for synthesis per number of randomly sampled rules, from 0 rules to
150 rules (to clearly show optimal performance). Results are presented in Fig. 8.

We see, for both benchmarks, nearly continuously decreasing graphs; the only
exceptions are with low numbers of rules sampled, where it is likely we have
mostly unusable rules. The performance levels off at 83 rules, when we are guar-
anteed to sample all applicable rules. These results are promising: completion
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Fig. 8. Performance versus number of rules sampled for d-tree and list over 2 bench-
marks. The line is the average of 10 samples per x-value, and the lighter band is a 95%
confidence interval.

is undecidable, and so it is impossible to predict the rules that will be included
from a given set of equations. However, the results in Fig. 8 indicate that—on
average—the more rules we provide the better the algorithm’s perfor-
mance, even when the rules might not be relevant. Furthermore, we see
immediately and clearly that perfect discrimination trees outperform our
list-based implementation. Performance differences are magnified in the tdñ

benchmarks, where checking normality includes checks on every subterm. On the
rest of the benchmarks, the näıve implementation results in an average of an 11%
increase in time for buñ and a 144% increase for tdñ, which strongly indicates
that perfect discrimination trees are an important implementation choice.

Gauging Benchmark Difficulty. We considered related tools as a gauge of
benchmark difficulty and a baseline for evaluation. The most similar tool—
λ2 [13]—is top-down, type-directed, uses input–output examples, and searches
for programs from smallest to largest. SynQuid (sq) [33] synthesizes Haskell pro-
grams from refinement types, using smt-driven type-directed synthesis. When
able, we encoded specifications of our benchmarks as refinement types.2

As seen in Table 2, λ2 is either not applicable (strings are not supported,
and so were ignored) or unable to solve most benchmarks. sq exhibits similar
behavior and performance. We stress that these results are meant as a indication
of the difficulty of the benchmarks, and not a head-to-head comparison between
our algorithms and those of λ2 and sq.

Threats to Validity. We identify two primary threats to the validity of our
evaluation. First, we base our evaluation on a single tool in order to evaluate vari-
ous algorithms and data structures. However, since our bottom-up and top-down
strategies are (i) instances of standard synthesis techniques and (ii) comparable
to existing implementations (as seen in Table 2), we believe our results can be
beneficial to tools like Myth, SynQuid, and λ2, modulo technical details.

2 We also consider two other works: Bigλ [36] is implemented in Python and not
competitive with our baseline, while Myth [30] expects data types to be specified
from first principles, and does not have, e.g., integers or strings by default.
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Second, the domains considered in our evaluation—integers, lists, etc.—
operate over well-behaved algebraic structures. These domains form the core
search space of many modern synthesis tools, but one could imagine domains
that do not induce many equational specifications, e.g., gui manipulation and
stateful domains.

5.4 Further Discussion

Constructing Equational Specifications. In a large number of recent works
on program synthesis, it is assumed that someone designs the synthesis domain
by providing a set of components. We additionally assume that we are given
a set of equational specifications over the components. In our evaluation, we
manually crafted a set of equations for our domain. Alternatively, this process
can be automated using tools like QuickSpec [6] and Bach [37].

Rule Preprocessing. The synthesis algorithms we consider search for a pro-
gram over a regular tree grammar of components. Therefore, one could incorpo-
rate equations by rewriting the grammar so as to only generate normal forms.
This can be done by encoding the trs as a regular tree grammar and intersecting
it with the search grammar. However, to express a trs as a regular tree gram-
mar, we require the trs to be left-linear and unordered [31]. These conditions
are too strong to be used as a general technique: most useful equations result in
non-left-linear or ordered rules.

Completion and Termination. A key component in our approach is the com-
pletion tool that takes our equations and produces a trs that can be used for
pruning the search space. In our evaluation, we found that modern completion
procedures were able to complete our equational specifications. In general, how-
ever, completion is an undecidable problem. In the supplementary material, we
discuss a mechanism to work around this fact, by terminating the completion
procedure at any point and salvaging a sub-optimal (non-confluent) trs.

6 Related Work

Program Synthesis. We are not the first to use normal forms for pruning
in synthesis. In type-directed synthesis, Osera and Zdancewic [30] and Frankle
et al. [14] restrict the space by only traversing programs in β-normal form.
Equivalence reduction can be used to augment such techniques with further
pruning, by exploiting the semantics of the abstract data types defined. Feser
et al. [13] mention that their enumeration uses a fixed set of standard rewrites,
e.g., x+0 → x, to avoid generating redundant expressions. In contrast, our work
presents a general methodology for incorporating equational systems into the
search by exploiting completion algorithms.

Techniques that search for fast programs—e.g., superoptimization [32,35]—
may not be able to directly benefit from equivalence reduction, as it may impose
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inefficient normal forms. It would be interesting to incorporate a cost model into
completion and coerce it into producing minimal-cost normal forms.

In SyGuS [3,39], the synthesizer generates a program encodable in a decid-
able first-order theory and equivalent to some logical specification. A num-
ber of solvers in this category employ a counter-example-guided synthesis loop
(cegis) [38]: they prune the search space using a set of input–output examples,
which impose a coarse over-approximation of the true equivalence relation on
programs. In the cegis setting, equivalence reduction can be beneficial when,
for instance, (i) evaluating a program to check if it satisfies the examples is
expensive, e.g., if one has to compile the program, simulate it, evaluate a large
number of examples; or (ii) the verification procedure does not produce coun-
terexamples, e.g., if we are synthesizing separation logic invariants.

A number of works sample programs from a probabilistic grammar that
imposes a probability distribution on programs [11,25,28]. It would be inter-
esting to investigate incorporating equivalence reduction in that context, for
instance, by truncating the distribution so as to only sample irreducible pro-
grams.

Recently, Wang et al. [40] introduced syngar, where abstract transition
relations are provided for each component of a synthesis domain. The synthe-
sis algorithm over-approximates equivalence classes by treating two programs
equivalent if they are equivalent in the abstract semantics. The abstraction is
refined when incorrect programs are found.

Completion and Term-Rewriting Systems. A number of classic works [12,
34] used completion procedures to transform an equational specification into a
program—a terminating rewrite system. Our setting is different: we use comple-
tion in order to prune the search space in modern inductive synthesis tools.

Kurihara and Kondo’s multi-completion [23] sidesteps the issue of picking a
reduction order by allowing completion procedures to consider a class of reduc-
tion orders simultaneously. Klein and Hirokawa’s maximal completion algorithm
[19] takes advantage of smt encodings of reduction orders (such as Zankl et al.’s
kbo encoding [46]) to reduce completion to a series of maxsmt problems in
which the parameters of the reduction order are left free. Completion tools like
omkbTT [43] and Slothrop [41], rely on external termination provers [1,22].

Acknowledgement. This work is supported by the National Science Foundation CCF
under awards 1566015 and 1652140.
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Abstract. We study the problem of synthesizing string to string trans-
formations from a set of input/output examples. The transformations we
consider are expressed using a particular class of transducers: functional
non-deterministic Mealy machines (f-NDMM). These are machines that
read input letters one at a time, and output one letter at each step. The
functionality constraint ensures that, even though the machine is locally
non-deterministic, each input string is mapped to exactly one output
string by the transducer.

We suggest that, given a set of input/output examples, the smallest
f-NDMM consistent with the examples is a good candidate for the trans-
formation the user was expecting. We therefore study the problem of,
given a set of examples, finding a minimal f-NDMM consistent with the
examples and satisfying the functionality and totality constraints men-
tioned above.

We prove that, in general, the decision problem corresponding to that
question is NP-complete, and we provide several NP-hardness proofs that
show the hardness of multiple variants of the problem.

Finally, we propose an algorithm for finding the minimal f-NDMM
consistent with input/output examples, that uses a reduction to SMT
solvers. We implemented the algorithm, and used it to evaluate the like-
lihood that the minimal f-NDMM indeed corresponds to the transforma-
tion expected by the user.

1 Introduction

Programming by examples is a form of program synthesis that enables users to
create programs by presenting input/output examples. In this paper, we analyze
the problem of synthesizing string-to-string transformations from examples.

We consider string transformations that can be represented by finite-state
automata, called functional non-deterministic Mealy machines (f-NDMM) [17].
f-NDMMs output one letter for each input letter which is read. Non-determinism
refers to the fact that f-NDMMs are allowed to have two outgoing transitions
from the same state labeled by the same input, while functionality ensures that
overall, one input string is mapped to at most one output string. Moreover, if
every input string has a corresponding output string, the automaton is called
total.
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Synthesizing an arbitrary total f-NDMM consistent with input/output exam-
ples can be solved in polynomial time, by having the f-NDMM return a default
string for the inputs which are not specified in the example. The issue with this
basic approach is that the generated automaton might not be what the user had
in mind when giving the input/output examples. In other words, input/output
examples are not a complete specification, and are ambiguous.

As one of the simplest and robust criteria to rank possible solutions, we
propose to synthesize a minimal automaton consistent with given input/output
examples. For sufficiently long input/output descriptions, the requirement of
minimality then forces the automaton to generalize from input/output examples.
This rationale is analogous to motivation for Syntax-Guided Synthesis [2]. In our
case we use automata minimality as a somewhat application-agnostic criterion.
Furthermore, we can in principle leverage the insights from automata theory
to improve the synthesis algorithm. Therefore, it is interesting to understand
the precise computational complexity of such synthesis problems and to identify
directions for promising synthesis approaches. This is the objective of our paper.

Complexity. We prove that the synthesis of minimal automata is in NP, by
showing that for a given set of input-output examples E there always exist an
f-NDMM consistent with E whose number of states is linear with respect to the
size of E. Furthermore, we show how to check in deterministic polynomial time
whether a given DFA is a total f-NDMM consitent with E. An NP procedure
can iterate for i from 1 to the aforementioned bound, guess a DFA of size i, and
check that it is a total f-NDMM consistent with the input/output examples.

We also consider the associated decision problem, which asks, given a set of
input/output examples, and a target number of states k, whether there exists
a total f-NDMM consistent with the examples and which has at most k states.
We prove that this problem is NP-hard.

We give three distinct reductions, that apply for different variants of the
problem. First, we show that the problem is NP-hard when the target number of
states is fixed to 3 (but the input alphabet is part of the problem description).
Second, we show that the decision problem is NP-hard when the input and
output alphabets are fixed (but the target number of states is part of the problem
description).

Third, we study a variant of the problem for layered automata for bitvectors,
that recognize only words of some fixed length. The name layered comes from
the fact that their states can be organized into layers that recognize only words
of a certain length. We prove that the problem is still NP-hard in that setting,
despite the fact that these automata have no cycles.

Algorithm. We provide a reduction to the satisfiability of a logical formula. We
implement our reduction, and link it to the Z3 SMT solver. We evaluate our tool
and show it can successfully recover simple relations on strings from not too many
examples (but scales to many examples as well). We also evaluate the ability of
our algorithm to recover a random automaton from a sample set of input-output
examples. Our experiments suggest that it is better to give a large number
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of small examples, rather than a small number of large examples. Moreover,
to improve the chance that our algorithm finds a particular automaton, the
examples given should generally be at least as long as the number of states.

Contributions of this paper are the following:

– NP-hardness proofs for the decision problem (Sects. 5 and 6),
– Proof that the minimization problem can be solved in NP (Sect. 7),
– A reduction from the minimization problem to a logical formula that can be

handled by SMT solvers (Sect. 8),
– An implementation of this reduction and experiments that evaluate the like-

lihood that minimization finds the automaton the user has in mind (Sect. 9).

Some proofs are deferred to the long version [14].

Note. A preliminary version of this paper, using a different encoding into SMT
constraints for the synthesis algorithm, was presented at the SYNT 2018 work-
shop, without a proceedings entry. SYNT explicitly permits subsequent publica-
tion of such papers. Moreover, the present encoding into SMT constraints uses
only quantifier-free linear integer arithmetic and is new to this submission.

2 Notation

An alphabet Σ is a non-empty finite set of symbols. Given a natural number
n ∈ N, we denote by Σn the set of sequences (or words) of n symbols of Σ. We
denote by Σ∗ the set of finite sequences

⋃
n≥0 Σn. For u ∈ Σ∗, |u| denotes the

length of the sequence u. A set of words is called a language.
A non-deterministic finite automaton (NFA) A is a tuple (Σ,Q, qinit, δ, F )

where Σ is an alphabet, Q is the finite set of states, qinit ∈ Q is the initial state,
δ ⊆ Q × Σ × Q is the transition function, and F ⊆ Q is the set of accepting
states. We denote by L(A) the language accepted by A, i.e. the set of words for
which there exists an accepting run in A. By an abuse of notation, the set L(A)
is sometimes denoted by A.

An NFA A is unambiguous (denoted UFA) if every word in Σ∗ has at most
one accepting run in A. An NFA is deterministic (denoted DFA) if for every
q1 ∈ Q, a ∈ Σ, there exists a unique q2 ∈ Q such that (q1, a, q2) ∈ δ. The size of
an NFA A is its number of states, and is denoted |A|.

Let Σ and Γ be two alphabets. For u ∈ Σn and v ∈ Γn where u = u1 . . . un,
v = v1 . . . vn, we denote by u ∗ v the sequence in (Σ × Γ )n where u ∗ v =
(u1, v1) . . . (un, vn). Note that the operator ∗ is well defined only when |u| = |v|.

Given two words u, v ∈ Σ∗, we denote by u �p v the fact that u is a prefix
of v. Moreover, Prefixes(v) denotes the set of prefixes of v, that is Prefixes(v) =
{u | u �p v}.
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3 Functional Non-deterministic Mealy Machines

We consider two alphabets, an input alphabet Σ and an output alphabet Γ . A
functional non-deterministic Mealy machine (f-NDMM) is a DFA A over Σ × Γ
satisfying: for all u ∈ Σ∗, v1, v2 ∈ Γ ∗ where |u| = |v1| = |v2|, if u ∗ v1 ∈ L(A)
and u ∗ v2 ∈ L(A), then v1 = v2.

Fig. 1. An automaton that overwrites an input string with 0’s or 1’s depending on
whether the last letter of the input is a 0 or 1.

Remark 1. Note here that we model f-NDMMs with deterministic finite
automata. The determinism refers to the fact given a state, an input letter
and an output letter, there is at most one outgoing transition labeled by those
letters. On the other hand, the non-determinism in the f-NDMM refers to the
fact that given one state and one input letter, there might be multiple outgoing
transitions, each one labeled with a distinct output letter.

Example 1. Figure 1 shows a f-NDMM that outputs a sequence of 0’s or a
sequence of 1, depending on whether the last letter of the input is a 0 or a
1. Input letters are written on the left-hand-side of the pair, while output letters
are on the right-hand-side.

Non-determinism is used in the initial state 4, to guess whether the last letter
of the input is a 0 or a 1. In the states 0 and 2, the automaton expects the last
letter to be a 1, while in the states 1 and 3, it expects the last letter to be a 0.
The sink state is omitted for readability (e.g. reading a 1 and outputting a 1 in
state 3 is not allowed).

Remark 2. This example illustrates the higher expressive power of f-NDMMs
compared to deterministic Mealy machines, which cannot express this transfor-
mation. On the other hand, this transformation can be expressed using more
expressive deterministic transducers, such as transducers with look-ahead (that
are able to take decisions based by seeking ahead in the input word) or two-way
transducers (which are allowed to read the input word multiple times, back and
forth).
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Due to the functionality restriction described above, an f-NDMM A defines
a partial function Ā ⊆ Σ∗ × Γ ∗, which is defined for u ∈ Σ∗ only when there
exists v ∈ Γ ∗ such that u∗v ∈ L(A). This unique word v is denoted by A(u). An
f-NDMM A is called total if the partial function Ā is total. For a set E ⊆ Σ∗×Γ ∗

we say that an f-NDMM A is consistent with E if E ⊆ Ā.

Problem 1. Let E ⊆ (Σ × Γ )∗ be finite a set of input/output examples.
Find a total f-NDMM, consistent with E (if it exists), whose size is minimal

(among all total f-NDMMs consistent with E).

We also investigate the following corresponding decision problem.

Problem 2. Let E ⊆ (Σ ×Γ )∗ be a set of input/output examples, and let n ∈ N.
Does there exist a total f-NDMM, consistent with E, with size at most n?

When stating complexity results, we consider that the size of the problem is
the sum of the sizes of each word in E, plus the size of n. Our hardness result
hold even when n is represented in unary, while our proofs that Problems 1 and
2 belong to NP hold even when n is represented in binary.

3.1 Summary of the Complexity Results

Table 1 summarizes the complexity results proved in this paper. As far as we
know, the problem is open when the input alphabet has size one, i.e. |Σ| = 1.
On the other hand, when |Γ | = 1, the problem becomes trivial as the minimal
total f-NDMM consistent with given input/output examples always has a single
state with a self-loop.

Layered f-NDMMs are defined in Sect. 6.2, and are f-NDMMs that only rec-
ognize words of some particular length. Even in that setting, the problem is
NP-complete.

Table 1. Summary of the complexity results

Problem Layered f-NDMMs f-NDMMs

Problem 2 NP-complete NP-complete

With |Γ | = 2, n = 3, |E| = 1 O(1) (Remark 4) NP-complete (Sect. 5)

With |Σ| = 3, |Γ | = 2 NP-complete (Sect. 6.2) NP-complete (Sect. 6.1)

With |Σ| = 3, |Γ | = 2, |E| = 1 O(1) (Remark 4) NP-complete (Sect. 6.1)

When Σ, Γ and n are fixed in P (Remark 3) in P (Remark 3)
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4 Preliminaries for the NP-Hardness Proofs

In Sects. 5, 6.1, and 6.2, we prove NP hardness results for Problem 2 and variants.
These hardness results carry directly over to Problem 1. Indeed, any algorithm
for solving Problem1 can be adapted to solve Problem2.

Our proofs rely on reductions from a variant of the boolean satisfiability
problem (SAT), called One-In-Three Positive SAT.

Problem 3 (One-In-Three Positive SAT). Given a set of variables V and a set
of clauses C ⊆ V 3, does there exist an assignment f : V → {⊥,�} such that for
each (x, y, z) ∈ C, exactly one variable out of x, y, z, evaluates to � through f .

In all reductions, our goal is to build from an instance ϕ of One-In-Three
Positive SAT a set of input/output examples such that ϕ is satisfiable if and only
if there exists a total f-NDMM consistent with the examples (and satisfying the
constraints of the minimization problem at hand).

q0 q1 qn−1

(a,0) (a,0) (a,0)

(a,1)

Fig. 2. The form of automata that have an (a, 0, 1)-loop.

Our strategy for these reductions is to give input/output examples that con-
strain the shape of any total f-NDMM consistent with these examples. We give
input/output examples that ensure that any total f-NDMM consistent with the
examples must have certain transitions, and cannot have certain other transi-
tions.

For example, in Sects. 5 and 6.1, we provide input/output examples that
restrict the shape of any solution to be of the form given in Fig. 2. Then, know-
ing that any solution must have this shape, we give additional examples that
correspond to our encoding of ϕ.

We first give a formal definition for automata that are of the shape of the
automaton given in Fig. 2.

Definition 1. Let A = (Σ × Γ,Q, qinit, δ, F ) be an f-NDMM with n ∈ N states,
n ≥ 1. We say that A has an (a, 0, 1)-loop if a ∈ Σ, and 0, 1 ∈ Γ , 0 
= 1, and
the states Q of A can be ordered in a sequence q0, . . . , qn−1 such that:

– qinit = q0,
– for every 0 ≤ i < n − 1, (qi, (a, 0), qi+1) ∈ δ,
– (qn−1, (a, 1), q0) ∈ δ,
– F = Q,
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– there are no transitions in δ labeled with letter a other than the ones mentioned
above.

The following lemma, used in Theorems 1 and 2, shows that we can give an
input/output example that forces automata to have an (a, 0, 1)-loop. The idea
is to give a long example that can only be recognized if the total f-NDMM has
an (a, 0, 1)-loop.

Lemma 1. Let A = (Σ × Γ,Q, qinit, δ, F ) be a total f-NDMM with n states,
n ≥ 1. Let u and v be two words such that:

A(a2n · u) = 0n−110n−11 · v.

Then A has an (a, 0, 1)-loop.

Proof. Consider the run of a2n ∗ 0n−110n−11 in A, of the form:

qinit = q0
(a,0)−−−→ q1

(a,0)−−−→ . . .
(a,0)−−−→ qn−1

(a,1)−−−→ qn
(a,0)−−−→ qn+1 . . .

(a,0)−−−→ q2n−1
(a,1)−−−→ q2n

where for all 0 ≤ i ≤ 2n, qi ∈ Q. By assumption, we know that from state q2n,
A accepts u ∗ v.

We want to prove that:

1. the states q0 to qn−1 are all distinct, and
2. qn = q0, and
3. there are no transitions labeled by a except the ones from the run above, and
4. F = Q.

Note that this entails that qi = qn+i for all 0 ≤ i ≤ n.

(1) Assume by contradiction that there exist 0 ≤ i < j ≤ n−1 such that qi = qj .
Since A only has n states, we know that there exist n ≤ k < l ≤ 2n such
that qk = ql. We consider two cases, either l < 2n, or l = 2n. If l < 2n,
then the following words are accepted by A, leading to a contradiction to
the output-uniqueness property of f-NDMMs.

– a2n−j+i−l+k+(j−i)(l−k) · u ∗ 0n−1−j+i10n−1−l+k+(j−i)(l−k)1 · v, by going
through
q0 . . . qiqj+1 . . . qk−1(qk . . . ql−1)j−iql . . . q2n . . . ,

– a2n−j+i−l+k+(j−i)(l−k) · u ∗ 0n−1−j+i+(j−i)(l−k)10n−1−l+k1 · v, by going
through
q0 . . . qi−1(qi . . . qj−1)l−kqj . . . qkql+1 . . . q2n . . . .

Similarly, if l = 2n, the following words are accepted by A, again leading to
a contradiction.

– a2n−j+i−l+k+(j−i)(l−k) · u ∗ 0n−1−j+i10n−l+k(0l−k−11)(j−i) · v,
– a2n−j+i−l+k+(j−i)(l−k) · u ∗ 0n−1−j+i+(j−i)(l−k)10n−l+k · v.

We conclude that the states q0 to qn−1 are all distinct.
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(2) Since the states q0 to qn−1 are all distinct, we know that qn = qi for some
0 ≤ i ≤ n − 1. Assume by contradiction that 0 < i. By doing the same case
analysis as above (either l < 2n, or l = 2n), we again find contradictions to
the output-uniqueness property of A.

(3) Assume by contradiction that there exist i 
= j with 0 ≤ i, j ≤ n − 1 and
b ∈ Γ such that δ(qi, (a, b)) = qj and this transition is different than the
transitions from the run above.

If i < j, then there is an alternative loop qi, qj , qj+1, . . . , qn−1, q0, q1, . . . , qi

containing n − j + i + 1 transitions labeled by a. In particular, this means that
the word an+n(n−j+i+1) has two different outputs in A. The first one is obtained
by going from q0 to qi, taking the alternative loop n times, and then going from
qi to q0 using the (a, 0, 1)-loop. The second is obtained by going from q0 to qi,
taking the (a, 0, 1)-loop (n − j + i + 1) times, and then going from qi to q0 using
the (a, 0, 1)-loop. This contradicts the output-uniqueness property of A.

A similar reasoning applies when j < i, by using qi, qj , qj+1, . . . , qi as the
alternative loop.

(4) Due to the previous property, the only run labeled whose input is ai for
0 ≤ i ≤ n−1 is the one going through q0, q1, . . . , qi in the (a, 0, 1)-loop. This
entails that for 0 ≤ i ≤ n − 1, qi is final and F = Q.

The following lemma states that multiple input/output examples may be
encoded into just one example for f-NDMMs that have an (a, 0, 1)-loop.

Lemma 2. Let A = (Σ × Γ,Q, qinit, δ, F ) be an f-NDMM with an (a, 0, 1)-loop.
Let u, v ∈ Σ∗ and u′, v′ ∈ Γ ∗ such that:

A(u · a · v) = u′ · 1 · v′.

Then A(u · a) = u′ · 1 and A(v) = v′.

Proof. Using Lemma 1, we know that A has an (a, 0, 1)-loop. Therefore, the
only transition labeled by (a, 1) is the one leading to the initial state. Therefore,
after reading (u · a) ∗ (u′ · 1), A must be in the initial state. This entails that
A(u · a) = u′ · 1 and A(v) = v′.

5 NP-Hardness of the Minimization Problem with One
Input/Output Example and Fixed Number of States

We prove the NP-hardness of Problem 2 by reducing the One-In-Three Positive
SAT problem to it. This NP-hardness proof holds even when the target number
of states for minimization is fixed to 3, the size of the output alphabet is fixed
to 2, and there is single input/output example.

Theorem 1. Problem 2 is NP-hard when the number of states is fixed, the output
alphabet is fixed, and there is a single input/output example.
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q0 q1 q2

(a,0)

(b,0)
(a,0)

(b,1)

(b,0) (a,1)

Fig. 3. f-NDMM used in the proof of Theorem 1.

Proof. Consider an instance ϕ of One-In-Three Positive SAT, with a set of vari-
ables V , and a set of clauses C ⊆ V 3. We reduce One-In-Three Positive SAT to
Problem 2 as follows. We define Σ = V ∪{a, b}, where a and b are fresh symbols
and Γ = {0, 1}. Moreover, we define n = 3 (fixed number of states).

Then, we define E = {w} where w is one input/output example made of the
concatenation of all the following words (the word aaaaaa∗001001 must go first
in the concatenation, but the other words can be concatenated in any order):

– aaaaaa ∗ 001001,
– baaa ∗ 0001,
– abaaa ∗ 00001,
– aabaaa ∗ 001001,
– xbaaa ∗ 00001 for all x ∈ V ,
– xxxaaa ∗ 000001 for all x ∈ V ,
– axxxaa ∗ 000001 for all x ∈ V ,
– aaxxxa ∗ 000001 for all x ∈ V ,
– xyzaa ∗ 00001 for all (x, y, z) ∈ C.

We prove that ϕ has a satisfying assignment if and only if there exists a total
f-NDMM A, consistent with E, and with (at most) 3 states.

(⇒) Let f : V → {⊥,�} be a satisfying assignment for ϕ. We define A =
(Σ × Γ,Q, qinit, δ, F ) following Fig. 3 with Q = F = {q0, q1, q2} and qinit = q0.
The transitions involving a ∈ Σ in A are: (q0, (a, 0), q1), (q1, (a, 0), q2) ∈ δ, and
(q2, (a, 1), q0) ∈ δ.

Then, for each x ∈ V , if f(x) = �, we add three transitions in δ, called
forward transitions: (q0, (x, 0), q1), (q1, (x, 0), q2), and (q2, (x, 0), q0). If f(x) =
⊥, we add three transitions as well, called looping transitions: (q0, (x, 0), q0),
(q1, (x, 0), q1), and (q2, (x, 0), q2).

A is a total f-NDMM, since all states are final, and for every state and every
input in Σ, there is a unique outgoing transition labeled by this input (and some
output in Γ ). Moreover, we can verify that A is consistent with the input/output
example w.

(⇐) Let A = (Σ × Γ,Q, qinit, δ, F ) be a total f-NDMM with 3 states, and
consistent with E. Our proofs goes as follows. First, using Lemmas 1 and 2, we
deduce that A must have an (a, 0, 1)-loop, and must accept all the individual
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words that constitute the concatenation w. Then, using the facts that A(baaa) =
0001, A(abaaa) = 00001, A(aabaaa) = 001001, we deduce that A must contain
the transitions present in Fig. 3, and no other transitions labeled by b.

Then, for each variable x ∈ V , using the facts that A(xbaaa) = 00001 and
A(xxxaaa) = A(axxxaa) = A(aaxxxa) = 000001, we show that x must either
have looping transitions, or forward transitions, as described in the first part of
the proof. We then use this fact to define f that assigns � to variables that have
forward transitions, and ⊥ to variables that have looping transitions.

Finally, for each clause (x, y, z) ∈ C, and using A(xyzaa) = 00001, we deduce
that exactly one variable out of x, y and z must have forward transitions, and
conclude that f is a satisfying assignment for ϕ.

We now give more details for each step of the proof. Our first goal is to prove
that A must contain the transitions given in Fig. 3. Since A(baaa) = 0001, we
know that after reading (b, 0), A must be in state q0, and therefore there exists
a transition (q, 0, (b, 0), q0) ∈ δ. Using A(abaaa) = 00001 and A(aabaaa) =
001001 respectively, we deduce that there exist transitions (q, 1, (b, 0), q0) and
(q, 2, (b, 1), q0) in δ. Using the output-uniqueness property of A, we can verify
that there can be no other transitions labeled by b in A.

Our next goal is to prove that for each variable x ∈ V , x must either have
looping transitions or forward transitions.

Since xbaaa ∗ 00001 ∈ A and the only transitions labeled by (b, 0) are the
ones from states q0 and q1, we deduce that from the initial state, reading (x, 0)
must lead either to q0 or q1, and therefore there should either exist a transition
(q0, (x, 0), q1) ∈ δ or a transition (q0, (x, 0), q0) ∈ δ.

Assume (q0, (x, 0), q1) ∈ δ. In that case, we prove that x has forward tran-
sitions, in the sense that there are transitions (q1, (x, 0), q2) and (q2, (x, 0), q0)
in δ. We know xxxaaa ∗ 0000001 ∈ A. Since the only state from which the
word aaa ∗ 001 is accepted is q0, the automaton A must end in q0 after reading
xxx ∗ 000. Moreover, since (q0, (x, 0), q1) ∈ δ, we know A ends in state q1 after
reading (x, 0) in the initial state. Therefore, when reading xx ∗ 00 from state q1,
A must end in state q0. The only way this is possible is by having transitions
(q1, (x, 0), q2) and (q2, (x, 0), q0) in δ.

The other case we consider is when (q0, (x, 0), q0) ∈ δ. Here, we want to
prove that x has looping transitions, with (q1, (x, 0), q1) and (q2, (x, 0), q2) in δ.
We know axxxaa∗000001 ∈ A. The only state from which aa∗01 can be accepted
is q1. Moreover, A ends in state q1 after reading (a, 0). Therefore, A must go
from state q1 to q1 by reading xxx ∗ 000. Due to the self-loop (q0, (x, 0), q0) ∈ δ,
the only possibility for this is to have a loop (q1, (x, 0), q1) ∈ δ. Similarly, using
aaxxxa ∗ 000001 ∈ A, we deduce there is a loop (q1, (x, 0), q1) ∈ δ.

Overall, we have shown that each variable x ∈ V either has forward tran-
sitions, or looping transitions. We now define the assignment f that assigns �
to variables that have forward transitions, and ⊥ to variables that have looping
transitions. Let (x, y, z) ∈ C. We know xyzaa ∗ 00001 ∈ A. The only state from
which aa ∗ 01 can be accepted is q1. Therefore, A must end in state q1 after
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reading xyz ∗ 000. The only way for this to be the case is that exactly one of x,
y, z has forward transitions, while the two others have looping transitions.

6 NP-Hardness Proofs for Other Variants

In this section, we give two other NP-hardness proofs, that cover instances of
the problem which are not comparable to the ones treated in Sect. 5.

These proofs also follow the idea of reducing from the One-In-Three Positive
SAT problem, but require new encodings. The proofs are deferred to the long
version [14].

6.1 NP-Hardness of the Minimization Problem with One
Input/Output Example and Fixed Alphabets

Our second NP-hardness proof holds for the case where the sizes of both input
and output alphabets are fixed, and there is a single input/output example.
When the input and output alphabets are fixed, we can no longer use the encod-
ing given in the previous section, where we could associate to each variable of
the SAT formula a letter in our alphabet. Instead, we here rely on the fact that
the target number of states is not fixed. As such, this theorem is complementary
to Theorem 1.

Theorem 2. Problem 2 is NP-hard when the alphabets Σ and Γ are fixed, and
there is a single input/output example.

Remark 3. Note that if the input and output alphabets as well as the target
number of states are fixed, then Problem2 can be solved in polynomial time.
The reason is that when all these parameters are constants, then there is only a
constant number of f-NDMMs to explore.

6.2 NP-Hardness of the Minimization Problem for Layered
Automata

In this section, we cover automata that only recognize words of the same length.
An NFA A = (Σ,Q, qinit, δ, F ) is said to be l-layered for l ∈ N if A only accepts
words of length l, i.e. L(A) ⊆ Σl. An l-layered f-NDMM A = (Σ×Γ,Q, qinit, δ, F )
is called l-total if the domain of the function associated with A is Σl.

We then adapt Problem2 for this setting.

Problem 4. Let Σ be an input alphabet, Γ an output alphabet, and l ∈ N. Let
u1 ∗ v1, . . . , uk ∗ vk be a set of input/output examples, with ui ∈ Σl and vi ∈ Γ l

for all 1 ≤ i ≤ k. Let n ∈ N.
Does there exist an l-layered and l-total f-NDMMs that accepts ui ∗ vi for all

1 ≤ i ≤ k, and that has at most n states.
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The following theorem proves that Problem4 is NP-hard, even when the
alphabets are fixed. In this theorem, we can no longer rely on Lemmas 1 and 2,
since layered automata cannot contain cycles. Instead, we have to use multiple
input/output examples in our encoding.

Theorem 3. Problem 4 is NP-hard when the alphabets Σ and Γ are fixed.

Remark 4. When there is a single input/output example, Problem4 can be
solved in polynomial time. The reason is that, in a layered f-NDMM, we need
at least as many states as the size of the example (plus one) to recognize it.
Therefore, the minimal layered f-NDMM that recognizes one given input/output
example is easy to construct, by using that many states.

7 Solving the Minimization Problem in NP

We now focus on finding an algorithm for solving the minimization Problems 1
and 2. In this section, we propose an approach which solves the problem in
non-deterministic polynomial-time. Combined with the proofs in the previous
sections, we can deduce that Problem 2 is NP-complete.

The key is to prove (see Lemma 3) that for any valid set of input/output
examples, there exists a total f-NDMM, consistent with E, and whose size is at
most 2 +

∑
w∈E |w|. Then, a naive minimization approach can iterate through

all integers i between 1 and this bound, guess non-deterministically a DFA A
of size i, and check whether A is a total f-NDMM consistent with E. We prove
that this final check can be done in polynomial time (see Lemma4), meaning
that the whole procedure has non-deterministic polynomial time.

Lemma 3. Let E ⊆ (Σ × Γ )∗ be a valid set of input/output examples. There
exists a total f-NDMM, consistent with E, with at most 2 +

∑
w∈E |w| states.

Proof. We define T = (Σ × Γ,QT , qT
init, δ

T , FT ) to be a tree-shaped (partial)
f-NDMM consistent with E, as follows:

– QT is the set of all prefixes of E,
– qT

init = ε,
– δT = {(q1, (a, b), q2) | q1, q2 ∈ E ∧ q2 = q1 · (a, b)},
– FT = E.

By construction, T has at most 1 +
∑

w∈E |w| states.
Let P = Prefixes(dom(E)) ⊆ Σ∗ be the set of all prefixes of dom(E). For

each u ∈ P , we choose v ∈ Γ ∗ as follows:

– if u ∈ dom(E), choose v as the unique word such that u ∗ v ∈ E,
– otherwise, choose any v such that u ∗ v ∈ Prefixes(E).

We denote by P ′ ⊆ Prefixes(E) the set of pairs (u, v) where u ∈ P and v is the
corresponding word, chosen in the previous step. Let b0 ∈ Γ be a letter of the
output alphabet. We define the automaton A = (Σ × Γ,Q, qinit, δ, F ), which is
a total f-NDMM consistent with E, as follows:
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– Q = QT ∪ {qf} where qf is a new state,
– qinit = qT

init,
– δ = δT ∪

{(qf , (a, b0), qf ) | a ∈ Σ} ∪
{(q, (a, b0), qf ) | q ∈ P ′ ∧ a ∈ Σ ∧ input(q) · a /∈ P}

– F = P ′ ∪ {qf}.

It remains to prove three things: (1) A is an f-NDMM, (2) A is total, and (3)
E ⊆ L(A).

1. By construction, A is a DFA. Let u ∗ v1 ∈ A, and u ∗ v2 ∈ A, with u ∈ Σ∗

and v1, v2 ∈ Γ ∗. Our goal is to prove that v1 = v2. We consider several cases:
(a) u∗v1 and u∗v2 are both accepted in qf : By construction of A, qf is a state
from which a run can never get out (a sink state). Consider the accepting run
of u ∗ v1 in A and let q1 ∈ QT be the last state of QT before reaching qf .
There is a prefix u1 ∗v′

1 of u∗v1 that corresponds to q1. Similarly, let q2 ∈ QT

be the last state of QT in the run of u∗v2 in A, and let u2 ∗v′
2 be the prefix of

u ∗ v2 that corresponds to state q2. Without loss of generality, we can assume
that u1 is a prefix of u2.
Moreover, we prove that u1 is in fact equal to u2. Assume by contradiction
that u1 is a strict prefix of u2, and let u2 = u1 · a · u′

1. Therefore, there is a
transition from q1 to qf whose input letter is a, which is not possible since
u1 · a ∈ P . Therefore, u1 = u2.
So far, we know u1 ∗ v′

1 goes to state q1, and u1 ∗ v′
2 goes to state q2. By

construction, the only transitions leading to qf are from states of P ′. So we
have q1, q2 ∈ P ′. We know P ′ is a function relation, and only associates to
each word in Σ∗ at most one word in Γ ∗. We deduce that v′

1 = v′
2, and that

q1 = q2.
Since the runs then join qf , where the only possible output letter is b0, we
deduce that v1 = v2.
(b) u ∗ v1 is accepted in qf , while u ∗ v2 is accepted in P ′ (the case where v1
and v2 are interchanged is symmetrical): Consider the accepting run of u ∗ v1
in A and let q1 ∈ QT be the last state of QT before reaching qf . Let u1 ∗ v′

1

be the prefix of u ∗ v1 that corresponds to q1. Let u = u1 · a · u′
1 with a ∈ Σ

and u′
1 ∈ Σ∗. By construction of q1, there is a transition from q1 to qf whose

input letter is a. However, this is a contradiction, as u1 · a ∈ P .
(c) u∗v1 and u∗v2 are both accepted in P ′. P ′ has been built as a functional
relation, therefore we must have v1 = v2.

2. Let u ∈ Σ∗. We want to prove that there exists v ∈ Γ ∗ such that u∗v ∈ A. Let
u = u′ · u′′ where u′ is the longest prefix of u that belongs to P . Let v′ ∈ Γ ∗

be the unique word such that u′ ∗ v′ ∈ P ′. By defining v = v′ · (b0)|u′′|, and
by construction of A, we have u ∗ v ∈ A.

3. Since A is obtained from T by adding one state, some transitions, and by mak-
ing some states accepting, we have L(T ) ⊆ L(A). Moreover, by construction
of T , we have E = L(T ), so we have E ⊆ L(A).
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Checking whether a DFA A is a total f-NDMM can be done in polynomial
time, as shown in Lemma 4. In addition, checking whether an f-NDMM A is
consistent with E, can be done by doing membership checks w ∈ A for each
w ∈ E.

Lemma 4. Let A be a DFA over the alphabet Σ×Γ . We can check in polynomial
time whether A is a total f-NDMM.

Proof. Let A′ be the projection of A over the input part of the alphabet Σ. The
output-uniqueness property of A is equivalent to the fact that A′ is unambiguous.
Checking whether an NFA is unambiguous can be done in polynomial time [23].

For the output existence property, we check whether Σ∗ = A′, which can be
done in polynomial time [25] since A′ has been verified to be unambiguous.

Using these lemmas, we conclude with the main result of this section.

Theorem 4. The minimization Problems (1, 2, and 4) can be solved in NP.

8 Algorithm for Solving the Minimization Problem

8.1 Description of the Algorithm

The algorithm given in the previous section is not applicable in practice, as it
requires guessing a total f-NDMM that satisfies the constraints. On a computer,
this would require enumerating all automata of a certain size until we find one
that satisfies the constraints.

In this section, we instead propose to encode the constraints in a logical
formula, and let an SMT solver check satisfiability of the formula. More precisely,
given a set of input/output examples E ⊆ (Σ × Γ )∗, and k ≥ 1, we define a
formula ϕE,k which is satisfiable if and only if there exists a total f-NDMM with
k states and that is consistent with E.

Then, in order to find the minimal total f-NDMM with a given set of examples
E, our algorithm checks satisfiability of ϕE,1, then ϕE,2, and so on, until one of
the formula is satisfiable and the automaton is found.

Encoding all the constraints of the problem in a logical formula is challenging.
The main reason is that SMT solver are best suited for dealing with logical
formula written in purely existential form, while the constraints that we want to
express (totality and output-uniqueness for f-NDMMs) are naturally expressed
using alternations between for all and exists quantifiers. Still, we were able
to find a purely existential encoding of the problem, in (quantifier-free) linear
arithmetic, which we describe below.

8.2 Encoding

The free variables of ϕE,k are (bounded) integers and booleans. They are setup so
that a valuation of the free variables represent an f-NDMM (Σ ×Γ,Q, qinit, δ, F )
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with k states (Q = {q0, . . . , qk−1}). More precisely, ϕE,k contains for every q ∈ Q
and σ ∈ Σ, γ ∈ Γ , a integer variable

0 ≤ δ(q,σ,γ) < k

to represent the value δ(q, (σ, γ)).
For each state q ∈ Q, ϕE,k also contains a boolean variable isFinalq which

is true when state q ∈ F . By convention, q0 is the initial state, and qk−1 is the
(non-accepting) sink state.

For states p, q ∈ Q and input letter σ ∈ Σ, we also add boolean variables
δp,σ,q
in describing the transition relation of the projection A′ of A over the input

alphabet Σ. The variable δin is expressed as a relation rather than as a function,
since in general, A′ can be non-deterministic.

The formula ϕE,k is then composed of multiple components:

AcceptExamples ∧ Projection ∧ Unambiguous ∧ Total.

The formula AcceptExamples constrains the variables δ(q,σ,γ) and isFinalq (q ∈
Q,σ ∈ Σ, γ ∈ Γ ) to make sure that every input/output example in E is accepted
by A.

The formula Projection ensures that the variable δp,σ,q
in indeed represents the

projection of δ on the input alphabet Σ.
The formulas Unambiguous and Total correspond to the approach described

in Lemma 4. The formula Unambiguous is a constraint over the variables δp,σ,q
in

and isFinalq. It states that A′ is a UFA, which ensures that A accepts every input
word at most once. Being unambiguous is naturally stated using quantifiers: for
every word w, if w is accepted by two runs r1 and r2 in A′, then r1 and r2
must be identical runs (i.e. going through identical states). However, writing
this condition as is would make it hard for the SMT solver to check satisfiability
of the formula, due to the universal quantification.

Instead, our formula Unambiguous is inspired from the algorithm that checks
whether a given NFA is unambiguous [23]. This algorithm constructs inductively
the pairs of states (qi, qj) that are reachable by the same word, but with distinct
runs. Then, the NFA is unambiguous if and only if there are no pairs (q, q′) in
that inductive construction where q and q′ are both final states.

The construction starts with the empty set, and adds, for each state q which
is reachable, and for every letter a ∈ Σ, the pairs (q1, q2), with q1 
= q2 such that
δin(q, a, q1) and δin(q, a, q2) hold. Then, for every (qi, qj) and every a ∈ Σ, we
add the pairs (q′

i, q
′
j) such that δin(qi, a, q′

i) and δin(qj , a, q′
j) hold.

Therefore, to ensure the unambiguity A′, the formula Unambiguous states
that there exists a fixed point (a set of pairs of states represented by boolean
variables rq,q′ for q, q′ ∈ Q) to that construction, i.e. a set which is closed under
adding new pairs according to the rules above. Finally, for every q, q′ ∈ Q, we
add a clause stating that two final states should not belong to the fixed point:

isFinalq ∧ isFinalq′ =⇒ ¬rq,q′ .
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The formula Total is also a constraint over the variables δp,σ,q
in and isFinalq.,

and states that A′ recognizes every string in Σ∗. This ensures that the f-NDMM
A accepts every input string at least once. Again, this constraint is naturally
expressed using quantifiers: for every word w, there exists a run for w in A′.
Such formulas are challenging for SMT solvers. Instead, our formula relies on
the fact that A′ is ensured to be unambiguous by the formula Unambiguous.
More precisely, to check that A′ accepts every string of Σ∗, it suffices to check
that A′ has |Σ|l accepting runs, for every l ≥ 0. Moreover, it was shown that it
is enough to do this check for l ≤ |Q| (see [25]).

Our formula Total introduces free variables cl,q, for each 0 ≤ l ≤ |Q|, and
q ∈ Q, and constrains them so that they count how many runs of length l end
in state q. By definition, the variable c0,q0 equals 1 (only one word of length 0 is
accepted in the initial state), and every other c0,qi (i > 0) equals 0 (the empty
word is not accepted in non-initial states).

Then, using a linear arithmetic formula, we express every cl,q (with l > 0) in
terms of the variables cl−1,p for p ∈ Q:

cl,q =
∑

σ∈Σ,p∈Q

if δp,σ,q
in then cl−1,p else 0.

Total then states, again using linear constraints, that for every 0 ≤ l ≤ |Q|,
the number of accepting runs of length l equals |Σ|l, i.e.

∑

q∈Q

if isFinalq then cl,q else 0 = |Σ|l.

9 Experimental Evaluation

We implemented our algorithm in Scala, using Z3 [19] as our backend.

9.1 Discovering Small Automata for Common Functions

We give in this section a few examples that we ran using our algorithm. We
focus on examples that have small automata, whether or not the input exam-
ples are small. Indeed, the combinatorial explosion makes it hard for the SMT
solver to find solutions for automata that have more than ∼10 states. The results
are shown in Fig. 4. The arithmetic examples operate on binary representations
of numbers, truncating the output to the length of inputs where needed. We
note that simple relations such as addition are recovered from examples without
the need to specify any expression grammars as in Syntax-Guided Synthesis [2],
because automaton minimality provides the needed bias towards simple solu-
tions. Adding more examples than needed (e.g. 22 examples of length 22) keeps
the synthesis time manageable, which is useful for cases of automatically gener-
ated examples.

We give in the last column (Time2) of the table the times for an enumeration
algorithm which does not use SMT solvers. Our algorithm enumerates all trans-
ducers by order of the number of states, and prune the search when it encounters
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Problem #Ex. Ex.Len. States Alphabet Time (s) Time2 (s)
x, y x+y 1 17 3 8 0.23 1.090
x, y x+y 5 4 3 8 0.20 0.090
x, y x+y 22 22 3 8 0.19 17.610

xor 1 4 2 8 0.07 0.002
and 1 4 2 8 0.08 0.004
or 1 4 2 8 0.05 0.002

not 1 4 2 4 0.06 0.002
x 2x+ 1 1 5 3 4 0.41 0.160

(p ∨ q) ∧ (r ∨ s) ∧ ¬t 1 32 2 64 0.14 3.960
(p ∨ q) ∧ (r ∨ s) ∧ ¬t 32 1 2 64 0.14 0.240

overwrite 10 2 6 4 0.42 0.150
overwrite (3) 39 3 8 9 4.41 4.310

Fig. 4. Synthesis of some common functions from examples, showing successful discov-
ery of minimal automata and tolerance to many long examples and larger alphabets.

transducers that are not compatible with the input/output examples. When we
find a transducer that accepts all input/output examples, we use a completion
procedure to attempt to make the transducer total by adding transitions. Our
implementation should not be considered heavily optimized; we believe that
there is space for improvement both in terms of internal data structures and
heuristics.

9.2 Evaluating Usefulness of Minimality on Random Automata

The next set of experiments evaluate the likelihood that our algorithm finds
the automaton that the user has is mind, depending on the number and size of
the input/output examples provided. We generated 100 random minimal total
f-NDMMs with 5 states, where the input and output alphabet were both of size
2. For each f-NDMM A, and for every 1 ≤ i, j ≤ 15, we generated i random
words in Σ∗, of length j. For each such word, we looked up the corresponding
output in A, thereby constructing a set of input/output examples E for A. Then,
we used our algorithm on E to see whether the obtained automaton would be
A. In Table 2, we summarized, for every i and j, out of the 100 automata, how
many we were able to reobtain using that method. Overall, the experiments ran
for about 3 h, for 15 ∗ 15 ∗ 100 = 22500 queries. The 3 h also include the time
taken to generate the random automata. To generate a random minimal total f-
NDMM, we generated a random sample, and applied our algorithm. Then, if the
obtained automaton had 5 states, we kept it for our experiment. Our selection
for the choice of the random automata is therefore biased, as the automata are
found by our tool in the first place.

Discussion. Generally, the results show that the greater the number of examples
given, and the longer they are, the more likely we are to find the automaton
that we want. More interestingly, we note that we are more likely to find the
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Table 2. In a given cell, the number represents, out of 100 random automata, how
many we were able to reobtain using our algorithm, with a random sample with i
input/output examples of length j.

i
j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
2 0 0 0 0 0 0 5 3 8 16 21 16 15 18 22
3 0 0 0 3 1 10 16 32 24 36 35 33 44 44 41
4 0 0 4 7 20 25 37 45 51 53 52 52 51 56 65
5 0 0 6 20 35 46 57 63 59 64 67 62 60 60 64
6 0 0 8 34 43 59 58 67 60 73 75 68 67 66 69
7 0 0 17 37 61 65 70 70 81 76 78 72 75 73 75
8 0 0 22 46 74 79 73 77 78 79 74 77 75 76 78
9 0 0 22 63 67 76 86 80 78 79 82 83 84 82 80
10 0 0 34 59 72 82 86 81 85 80 79 83 84 84 84
11 0 0 36 73 82 86 83 85 85 89 88 86 91 82 83
12 0 0 32 66 86 83 83 86 88 85 86 87 89 88 88
13 0 0 41 83 85 85 89 87 89 85 93 89 88 89 89
14 0 0 41 78 83 88 93 93 92 88 88 87 88 88 91
15 0 0 51 83 87 87 88 84 91 87 91 91 90 87 88

automaton we want with a large number of small examples (e.g. i = 15, j = 5)
than with a small number of large examples (e.g. i = 5, j = 15).

Another interesting observation is that the likelihood of finding the automa-
ton increases sharply when using examples of size j = 4 rather than j = 3.
Without counting the sink state, the automata we considered have 4 states.
This suggests that in general, a good strategy is to give multiple examples which
are at most as long as the number of states (though the user giving the examples
may not know how many states are required for the minimal automaton).

10 Related Work

In [16], we studied the problem of synthesizing tree-to-string transducers from
examples. Here, instead of having the user provide input/output examples, we
proposed an algorithm that generates particular inputs, and asks the user what
are the corresponding outputs. We show that, when the algorithm is allowed
to analyze previous answers in order to generate the next question, then the
number of questions required to determine the transducer that the user has in
mind is greatly reduced (compared to an approach without interaction, where
the algorithm would ask for all outputs at once).

The results obtained in [16] do not directly apply here, as they were for
single-state transducers. However, some of the techniques are fundamental and
could be reused here. In that respect, we could generate questions for the users,
and guarantee that the generated f-NDMM is indeed the one that the user had
in mind (given some bound on the number of states).
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Our paper is similar in spirit to [10], where the author proves that Problem2
is NP-complete for deterministic Mealy machines. Their NP-hardness holds even
when the alphabets’ sizes are fixed to 2, but the case where the number of states
is fixed is not treated. Moroever, even though f-NDMMs are a more general
model than deterministic Mealy machines, the NP-hardness of [10] cannot be
directly applied to f-NDMMs.

There is a long line of work devoted to learning deterministic finite state
transducers (see e.g. [1,6,18,20]). Algorithms for learning deterministic finite
automata (e.g. [4]) or finite transducers do not directly translate to our set-
ting, since we need to consider functionality and totality constraints, as shown
in Sect. 8.2. Methods for learning non-deterministic automata (e.g. [7]) do not
directly apply to our setting either, for the same reasons.

A particular case of learning transducers is an interpolation problem, that
consists in learning a finite automaton that accepts some given inputs (i.e. out-
puts 1) and rejects some other inputs (i.e. outputs 0) (see e.g. [8,11,21]).

In [15], the authors present an algorithm for learning non-deterministic
Mealy machines. They are interested in non-determinism to represent unknown
components of reactive systems, and as such do not focus on functional non-
deterministic Mealy machines. Moreover, their focus is rather on the algorithmic
aspect of the problem rather than on complexity classes.

In [12], the author proposes an efficient synthesis procedure from examples
for a language that does string transformations, but does not deal with the issue
of synthesizing finite-state transducers.

Our algorithm in Sect. 8 is inspired from the bounded synthesis approach
of [9]. There, the authors suggest that bounding the number of states is a good
strategy to synthesize reactive systems. They also propose a reduction from the
bounded synthesis problem for reactive systems to SMT solvers.

In [13], we presented a way to synthesize string-to-string functions given any
specification written in weak monadic second-order logic. Using these techniques,
it would be possible to synthesize an f-NDMM consistent with input/output
examples, by writing the input/output examples as a logical formula. However,
this approach would not yield the minimal f-NDMM consistent with the exam-
ples. For example, regardless of how many input/output examples we give for the
function ({0, 1} × {0, 1})∗ → {0, 1}∗ which xor’s two streams of bits, this app-
roach would not yield the 1-state automaton that we are expecting. Instead, the
method will generate large automata that are consistent with the given exam-
ples, but do not recognize the xor operation for other input strings. On the other
hand, our approach can find this automaton with only a few small examples.

The automata we consider in this paper are closely related to the notion of
thin language (see e.g. [22]). A language L is called thin if for every n ∈ N, it
contains at most one word of length n. Moreover, L is called length-complete if for
every n ∈ N, L contains at least one word of length n. When |Σ| = 1, i.e. when
only the length of the input matters, our minimization problem corresponds
exactly to finding a minimal DFA that contains a given set of examples, which
is both thin and length-complete. We left this question open in Sect. 3.1, and
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leave it for future work. This analogy with thin languages breaks when using a
non-unary input alphabet.

In [24], the authors encode the problem of learning DFAs in an SMT solver.
As is the case with our algorithm, such encodings only perform well for finding
automata with a small number of states (up to 10 or 15).

11 Conclusions

f-NDMMs are a form of functional non-deterministic one-way finite-state trans-
ducers (see e.g. [5,23]) where each transition is forced to produce exactly one let-
ter (instead of 0 or more in the general case). The term functional corresponds to
the output uniqueness property of f-NDMMs, and ensures that despite the non-
determinism, at most one output string is produced for each input string. The
non-determinism here refers to the input part of the alphabet, and f-NDMMs,
even though they are deterministic on Σ × Γ , can indeed be non-deterministic
in the input alphabet Σ. In that sense, f-NDMMs can define transformations
that are not captured by deterministic one-way transducers, such as the func-
tion that maps a word w to l|w| where l is the last letter of w. On the other hand,
deterministic one-way transducers can recognize transformations not recognized
by f-NDMMs, since they do not require the output to have the same length as
the input. This can be circumvented by padding the input and output strings
using a dummy letter. Existing synthesis algorithms generally target classes of
deterministic transducers, such as subsequential transducers (see e.g. [26]). Our
results about f-NDMMs are a first step towards synthesis algorithm for larger
classes of deterministic or functional non-deterministic transducers, such as two-
way finite-state transducers, or streaming string transducers [3]. We have shown
that most variants of synthesis for f-NDMMs are NP-complete, and presented a
promising approach using an encoding into SMT formulas.
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Abstract. We present an automated approach to repair programs using
formal verification and expression templates. In our approach, an input
program is first verified against its formal specification to discover poten-
tially buggy statements. For each of these statements, we identify the
expression that needs to be repaired and set up a template patch which
is a linear expression composed of the program’s variables and unknown
coefficients. Then, we analyze the template-patched program against the
original specification to collect a set of constraints of the template patch.
This constraint set will be solved by a constraint solving technique using
Farkas’ lemma to identify the unknown coefficients, consequently dis-
covering the actual patch. We implement our approach in a tool called
Maple and evaluate it with various buggy programs from a widely used
benchmark TCAS, and a synthetic yet challenging benchmark contain-
ing recursive programs. Our tool can quickly discover the correct patches
and outperforms the state-of-the-art program repair tools.

1 Introduction

The last decade has witnessed the rapid development of automatic program
repair, an active research area in computer science [19]. The goal of this research
field is to automatically generate patches to fix bugs in software programs.
Researchers have applied a common approach which uses test suites to local-
ize bugs, and then generate and validate patches. This test-suite-based method
is used by many works, such as [11,14,15,17]. However, this approach might pro-
duce overfitting patches: fixes that can pass all test cases, but also might break
untested yet desired functionality of programs. Therefore, the quality of output
patches often depends on the coverage of the provided test suites [22].

To avoid the above limitation of the test-suite-based approach, other
researchers proposed to leverage formal specification to guide the repair process.
This approach is used in several works like [8,9,13,18,21,25]. In this method,
the correctness of a program can be specified by logical formulas, which appear
in forms of pre-conditions, post-conditions, assertions, and invariants. Then, a
deductive verification system is deployed to check the input program against its
provided specifications to localize bugs and generate patches. In comparison to
the test-suite-based approach, the formal-specification-based method provides
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better coverage on the relation of the program’s input/output. However, the
current solutions to generate patches are still limited. For example, Rothenberg
and Grumberg [21] use simple code mutations to generate patches while Kneuss
et al. [8] need the tests of corner cases to repair functional programs.

In this work, we follow the formal-specification-based approach to repair
faulty C programs. We propose a general solution to discover patches by using
expression templates and constraint solving. Our method is summarized as fol-
lows. We first invoke a deductive system to verify an input program against its
specification. If this program fails to meet its specification, we obtain a set of
invalid proof obligations, which can be utilized to locate potentially buggy state-
ments. Here, we consider the bug type related to arithmetic expression, which
can be the test expression of a branching or a loop statement, or the expression
in the right hand side of an assignment. We replace each possibly buggy expres-
sion by a template patch which is a linear expression of the program’s variables
and unknown coefficients to create a template program. This program will be
analyzed against the original specification to collect a set of proof obligations
containing the template patch. These proof obligations will be solved to deter-
mine the actual values of the unknown coefficients, thus discover the repaired
program.

Contributions. Our work makes the following contributions.

– We propose an automatic framework to repair programs using formal speci-
fication and expression templates. The use of formal verification enables our
framework to locate buggy statements faster and more precise than other
testing-based approaches.

– We propose a novel method to generate program patches using expression
templates and constraint solving. Our solution is more general than existing
approaches that perform only simple code mutations.

– We implement the proposed approach in a tool, called Maple, and experi-
ment with it on a widely used benchmark named TCAS and a challenging
synthetic benchmark of recursive programs. Our tool can repair a majority
of the programs in these benchmarks and outperforms the state-of-the-art
program repair tools. Moreover, it does not introduce any overfitting patch.

2 Motivating Example

We consider a simple C program sum which computes the sum of all natural num-
bers from 0 to a given input number n (Fig. 2). This program is specified by a pair
of pre-condition and post-condition, captured by keywords requires/ensures
(lines 2, 3). In essence, this specification indicates that given a non-negative input
n, or n ≥ 0, the expected output, represented by the variable res, is n · (n + 1)/2.
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1: int sum(int n)
2: //@ requires n ≥ 0
3: //@ ensures res = n·(n+ 1)/2
4: {
5: if (n == 0) return 0;
6: else {
7: int s = sum(n − 1);
8: return 2 ∗ n+ s;
9: }

10: }

Fig. 1. A faulty C program

The body of sum is implemented in a
recursive fashion (lines 4–10). In the base
case, when the input n is 0, this program
returns 0 (line 5). Otherwise, in the recur-
sive case, it first computes the sum s of all
natural numbers from 0 to n − 1 (line 7),
and adds 2 ∗ n to that sum (line 8). How-
ever, this implementation of the recursive
case is buggy. In line 8, by adding 2 ∗ n to
s, the final result of the procedure sum(n)
cannot be equal to n · (n + 1)/2, as spec-
ified in the post-condition (line 3).

Given the specification in lines 2, 3,
existing verification tools such as [1,12] can easily detect the bug at line 8. How-
ever, these tools do not support repairing faulty programs. Moreover, repairing
this bug is challenging, and the state-of-the-art program repair tools cannot dis-
cover a patch that replaces 2 ∗ n by n. There are two reasons as follows. Firstly,
this patch cannot be discovered by the technique that performs simple code
mutation [21], since it does not consider mutating the variables’ coefficients.
Even if the coefficient mutation is supported, it is still impractical to discover
the correct patch since the number of possible values for these coefficients is infi-
nite. Secondly, the program sum contains a recursive call, which is challenging for
the test-suite-based methods [11,15]. For instance, genetic programming opera-
tors used by GenProg [11], such as deletion, swap, or insertion, suffer the same
difficulty as the mutation-based counterpart in finding the correct coefficients.

1: int sum(int n)
2: //@ requires n ≥ 0
3: //@ ensures res = n·(n+ 1)/2
4: {
5: if (n == 0) return 0;
6: else {
7: int s = sum(n − 1);
8: return f(s, n); // a template fix
9: }

10: }

Fig. 2. A template fix for the program sum

We observe that the desired
patch should be an expression of
some variables in the program. In
particular, it can be an expres-
sion of at most two variables s
and n. Here, we focus on find-
ing the patch in form of a linear
expression. Therefore, we denote
the desired patch by an expres-
sion f(s, n) � c1 ∗ s + c2 ∗ n + c3,
where c1, c2, c3 are some unknown
integer coefficients.

Now, we can apply standard
verification techniques [1,12] to col-
lect the proof obligations about
f(s, n), which need to be valid so
that the program satisfies its specification. These proof obligations will be solved
to discover the actual values of the unknown coefficients c1, c2, c3. We will elab-
orate the details in Sect. 4.
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3 Background

In this section, we represent the background of the formal verification of soft-
ware. We target to the class of C programs that performs logical and arithmetic
computations. The program syntax can be referred to in the C11 standard [6].
In our approach, the functional correctness of a program is represented by a
specification, which are logical formulas preceded by the special string “//@”,
as shown in the motivating example in Fig. 2.

Our specification language is presented in Fig. 3. We write c, x to denote an
integer constant, variable, and res is a special variable representing the output of
a procedure. The expression e is constructed using basic arithmetic operations:
addition, subtraction, multiplication, division. We write P to indicate a first-
order logic formula, which is composed of equality and arithmetic constraints,
using standard logical connectives and quantifications. Finally, S denotes a speci-
fication which is either a pair of pre-condition and post-condition of a procedure
(preceded by the keywords requires and ensures) or an invariant of a loop
statement (preceded by the keyword invariant).

e ::= c | x | res | − e | e1 + e2 | e1 − e2 | e1 · e2 | e1 / e2
P ::= true | false | e1 = e2 | e1 �= e2 | e1 >e2 | e1 ≥ e2 | e1 <e2 | e1 ≤ e2

| ¬P | P1 ∧P2 | P1 ∨P2 | P1 P2 | ∀x.P | ∃x.P
S ::= requires P1 ensures P2 | invariant P

Fig. 3. Syntax of the specification language

We follow the literature to use Hoare logic [4] to verify the functional cor-
rectness of a program against its specification. The heart of this logic is a Hoare
triple {P} C {Q} which describes how a program changes its state during the
execution. Here P and Q are two assertions, representing the pre-condition and
post-condition of the program C. In essence, the Hoare triple {P} C {Q} states
that for a given program state satisfying P , if the program C executes and ter-
minates, then the new program state will satisfy Q.

Hoare logic provides inference rules for all the constructs of an imperative
programming language. They include the rules handling assignment, sequential
composition of statements, branching statements, function call, etc. These rules
are standard and can be found in many works in the field of program verification,
such as [4,5]. For example, the rule for the composition of statements and the
if statement are presented in Fig. 4. Interested readers can refer to [5] for more
Hoare rules.
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{P} C1 {Q} {Q} C2 {R}
composition

{P} C1; C2 {R}
{P ∧ R} C1 {Q} {P ∧ ¬R} C2 {Q}

if
{P} if (R) C1 else C2 {Q}

Fig. 4. Examples of Hoare rules

4 Our Approach to Repair Faulty Programs

We now elaborate our program repair approach. The workflow is illustrated in
Fig. 5. Given a program and its specification, we verify the program symbol-
ically, using Hoare logic, to determine whether it behaves correctly w.r.t. its
specification. If the verification step fails, we localize the possibly buggy state-
ments and create possible template patches, which are linear expressions of the
program’s variables with unknown coefficients. Each of the template-patched
programs will be verified again to collect a set of constraints (proof obligations)
over the corresponding template patch. Then, this constraint set will be solved
by a constraint solving technique using Farkas’ lemma to discover the unknown
coeffients of the template patch. If a solution of these coeffients can be found,
then a candidate patch to repair the program is obtained. This candidate will
be validated against the specification to determine if it is the actual patch. If
the selected buggy statement cannot be repaired, then the next possibly buggy
statement will be examined.

Verify &
Localize Bugs

Create Template
Patch & Analyze

to Collect
Constraints

Solve Constraints
& Validate Patch

FAIL

Repaired Procedure

Procedure +
Specification

Buggy

Statements

ConstraintsFail

Empty

Success

Fig. 5. Overview of Repair Procedure

In the next three Sects. 4.1, 4.2 and 4.3, we will describe the main components
of our framework that verify and localize bug, create template patch and collect
constraints, and solve constraints. Then, we will summarize our approach using
a pseudo code algorithm in Sect. 4.4 and discuss its soundness in Sect. 4.5.
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4.1 Verifying Programs and Localizing Bugs

We follow the literature to apply Hoare logic to verify programs and localize
bugs. This approach is well-known and has been described in many works, such
as [5]. We briefly summarize it as follows.

Program Verification. When symbolically analyzing a procedure of a program
against its specification, we first assign its pre-condition to the initial program
state of that procedure. Then, the program state after executing each statement
of the procedure will be computed using the Hoare rules. Note that for each
function call, the callee will not be analyzed directly. Instead, its specification
will verified and utilized to update the program state of the caller.

For each loop statement of the procedure, we need to check if the program
states at the entry and the exit of the loop imply the loop invariant. Similarly,
for each return statement, we also need to check if the program state at the
returned point implies the post-condition. The procedure is said to be correct
w.r.t. its specification if all the aforementioned implications (proof obligations)
can be proved valid. Otherwise, it is considered buggy.

For example, the verification of the program sum in Sect. 2 is presented in
Fig. 6. We indicate the program states after executing each statement by the
string “//”. At the beginning, the initial program state is updated with the
given pre-condition n ≥ 0 (line 5). Then, the program executes the first branch
of the if statement and the branching condition n = 0 is propagated (line 7).

1: int sum(int n)
2: //@ requires n≥0
3: //@ ensures res = n·(n+ 1)/2
4: {
5: // n≥0 (the initial program state is from the pre-condition)
6: if (n == 0)
7: // n≥0 ∧ n=0
8: return 0;
9: // n≥0 ∧ n=0 ∧ res=0 (the final program state)

10: // ⇒ need to prove the post-condition:
11: // n≥0 ∧ n=0 ∧ res=0 � res=n·(n+1)/2
12: else {
13: // n≥0 ∧ n�=0
14: int s = sum(n − 1);
15: // n≥0 ∧ n�=0 ∧ s=(n−1)·n/2 (use the post-condition of sum)
16: return 2 ∗ n+ s;
17: // n≥0 ∧ n�=0 ∧ s=(n−1)·n/2 ∧ res=2·n+s (the final program state)
18: // ⇒ need to prove the post-condition:
19: // n≥0 ∧ n�=0 ∧ s=(n−1)·n/2 ∧ res=2·n+s � res=n·(n+1)/2
20: }
21: }

Fig. 6. Verifying the motivating example
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When the program exits (line 8), the constraint of the returned result res = 0
is accumulated to obtain the final program state n ≥ 0 ∧ n = 0 ∧ res = 0. Now,
the verification system needs to check if this program state implies the post-
condition, that is, to prove the following entailment E1:

E1 � n ≥ 0 ∧ n = 0 ∧ res = 0 � res = n · (n + 1)/2

In our approach, the entailment E1 can be easily proved by invoking an
off-the-shelf SMT solver like Z3 [16]. In fact, this entailment is valid since the
constraint n = 0 ∧ res = 0 in its antecedent implies the constraint res = n ·
(n + 1)/2 in its consequent. Hence, this execution path of the if statement is
considered correct w.r.t. the specification.

Similarly, when the program executes the else branch (line 12), the branch-
ing condition n �= 0 is also propagated to the program state (line 13). When the
recursive call sum(n − 1) is performed (line 14), the verification system checks if
the current program state n ≥ 0 ∧ n �= 0 implies the pre-condition n − 1 ≥ 0 of
this function call. After that, the post-condition s = (n − 1) · n/2 of this call
will be accumulated into the current program state (line 15). When the program
exits (line 16), the final program state is n ≥ 0∧n �= 0∧s = (n−1) · n/2∧res =
2 · n+s. Again, the verification system also needs to check whether this program
state implies the post-condition, resulting in the following entailment:

E2 � n ≥ 0 ∧ n �= 0 ∧ s = (n − 1) · n/2 ∧ res = 2 · n + s � res = n · (n + 1)/2

However, this entailment is invalid, since its antecedent, which can be simpli-
fied to n ≥ 0∧res = n · (n+3)/2, cannot prove its consequent res = n · (n+1)/2.
Consequently, there is a bug in this execution path of the program sum.

Bug Localization. Once the program is verified, we identify the invalid proof
obligation to discover the buggy execution path. For example, the invalid proof
obligation for the program sum (Fig. 6) is the entailment E2 above. Thus, there
is a bug in the execution path of the else branch.

In our implementation, we record the correspondence of the constraints in
each proof obligation with the program specification and code. This record
enables us to identify that the constraint n ≥ 0 comes from the pre-condition
(line 2, Fig. 6), n �= 0 is from the if statement (line 6), etc. Using this record,
we can simplify the antecedent of the invalid proof obligation by removing all
constraints belonging to the program specification. The remaining constraints
which correspond to the program code are the ones that cause the bug. For
example, when removing the constraint n ≥ 0 from E2, we obtain the constraint
F , which corresponds to all possible bugs of the program sum.

F � n �= 0 ∧ s = (n − 1) · n/2 ∧ res = 2 · n + s

To make the bug localization more efficient, we rank the remaining con-
straints by their likelihood to trigger the bug. Our ranking heuristics are as
follows.

– If a constraint has its corresponding program code which belongs to a correct
execution path, then this constraint is less likely to cause the bug in other
execution paths.
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– If a constraint has the corresponding program code belonging to only the
buggy execution path, then this constraint is more likely to cause the bug.

For example, the constraint n �= 0 in F corresponds to the conditional state-
ment if (n == 0) (line 6), which also belong the correct execution path related
to the proof obligation E1. Therefore, the likelihood to cause the bug of n �= 0
is low.

The two constraints s = (n − 1) · n/2 and res = 2 · n + s correspond to the
function call sum(n − 1) (line 14) and the computation 2 ∗ n + s (line 16). Since
these two statements appear only in the execution path related to the invalid
proof obligation E2, their likelihoods to cause the bug are equally high.

4.2 Creating Template Patches and Analyzing Template Programs

For each possibly buggy expression discovered in the previous step, we substi-
tute it by a linear template patch to create a template-patched program. In
essence, a patch is a linear expressions of the program variables in the execution
path leading to the bug with unknown coefficients (Definition 1). Then, each
template-patched program will be verified against its specification to obtain a
set of entailments (proof obligations) related to the expression template.

Definition 1 (Linear Expression Template). A linear expression template
for n variables x1, ..., xn, denoted as f(x1, ..., xn), is an expression of the form
c1 · x1+...+cn · xn+cn+1, where c1, ..., cn, cn+1 are unknown integer coefficients.

For example, given the possibly buggy expression sum(n − 1) discovered in the
previous section (line 14, Fig. 6), there exists only 1 variable n in the execution
path leading to the function call sum(n − 1). Therefore, we can create a linear
expression template f(n) � c1 · n + c2, which replaces the expression n − 1 to
create a patch sum(f(n)).

Similarly, given the possibly buggy expression 2 ∗ n + s (line 16, Fig. 6), there
exist two variables s, n involved in the corresponding execution path. Hence, we
can create a template patch f(s, n) � c1 · s + c2 · n + c3. We illustrate the
template-patched program for this bug in Fig. 7.

After analyzing this program against its specification, we obtain a proof
obligation set containing one entailment: n ≥ 0 ∧ n �= 0 ∧ s = (n − 1) · n/2 ∧
res = f(s, n) � res = n · (n + 1)/2. This entailment can be rewritten as
the entailment E3 below by unfolding the definition of the expression template
f(s, n) � c1 · s + c2 · n + c3:

E3 � n ≥ 0 ∧ n �= 0 ∧ s = (n − 1) · n/2

∧ res = c1 · s + c2 · n + c3 � res = n · (n + 1)/2
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1: int sum(int n)
2: //@ requires n≥0
3: //@ ensures res = n·(n+ 1)/2
4: {
5: // n≥0 (the initial program state)
6: if (n == 0) return 0;
7: else {
8: // n≥0 ∧ n�=0
9: int s = sum(n − 1);

10: // n≥0 ∧ n�=0 ∧ s=(n−1)·n/2
11: return f(s, n); // a template patch
12: // n≥0 ∧ n�=0 ∧ s=(n−1)·n/2 ∧ res=f(s, n) (the final program state)
13: // ⇒ need to prove the post-condition:
14: // n≥0 ∧ n �=0 ∧ s=(n−1)·n/2 ∧ res=f(s, n) � res=n·(n+1)/2
15: }
16: }

Fig. 7. Verifying the template-patched program

4.3 Solving Constraints to Discover Repaired Programs

In this section, we will describe the underlying constraint solving technique using
Farkas’ lemma [2]. We first restate Farkas’ lemma and then explain how it is
applied to solve a set E of entailments (proof obligations) collected from the
verification of template-patched programs.

Theorem 1 (Farkas’ Lemma). Given a system S of linear constraints over
real-valued variables x1, ..., xn:

S �
∧m

j=1

∑n

i=1aij · xi + bj ≥ 0.

When S is satisfiable, it entails the following linear constraint ψ:

ψ �
∑n

i=1ci · xi + γ ≥ 0

if and only if there exists non-negative numbers λ1, ..., λm such that

n∧

i=1

ci =
m∑

j=1

λj · aij and
m∑

j=1

λj · bj ≤ γ

Given the set E of entailments, which contain unknown coefficients of the
template patch, we can solve it in three steps:

– Normalize the entailments in E into entailments of the form S � ψ, which
satisfies the conditions of Farkas’ lemma, where S is a conjunction of linear
constraints, and ψ is a linear constraint.
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– Apply Farkas’ lemma to eliminate universal quantification to obtain new con-
straints with only existential quantification over the unknown coefficients and
the factors λj .

– Solve the new constraints by an off-the-shelf prover, such as Z3 [16], to find
the concrete values of the unknown coefficients in the template patch.

We now illustrate these 3 steps with the entailment E3 collected in Sect. 4.2
to discover the unknown coefficients c1, c2, and c3 of the expression template
f(s, n) � c1 · s + c2 · n + c3.

4.3.1 Normalizing the Entailments
In our work, the entailments obtained from the verification process might con-
tain polynomial terms and equality/inequality relations. Therefore, we need
to normalize them into the linear constraint forms satisfying the condition of
Farkas’ lemma. This normalization includes four steps: (1) linearizing all non-
linear expressions, (2) transforming all arithmetic constraints to the form e ≥ 0,
(3) eliminating disjunctions in the antecedent of each entailment, and (4) trans-
forming the consequent of each entailment to contain only one linear constraint.
They are explained follows.

1. Linearizing non-linear expressions. We use the associative and distributive
properties of arithmetic to unfold and simplify all non-linear expressions into
polynomials. Then, we encode each polynomial term whose degree is greater
than 1 (k · xk1

1 · ... · xkn
n where k1 + ... + kn> 1) by an expression of its

coefficient and a fresh variable (k · x′, where x′ is a fresh variable). For example,
by applying this linearization, we can transform the entailment E3 into the
following entailment E′

3, where u is a fresh variable that encodes n2:

E′
3 � n ≥ 0 ∧ n �= 0 ∧ s = 1

2
· u − 1

2
· n

∧ res = c1 · s + c2 · n + c3 � res = 1
2

· u + 1
2

· n

Note that in the linearization above, we do not capture the constraint between
the new and the old variables. Hence, once the normalized entailments are solved
to discover the unknown coefficients, we will need to validate if the discovered
coefficients is also the solution of the original entailments. This detail will be
discussed again in Sect. 4.3.3.

2. Transforming arithmetic constraints. We can apply the following equivalence
transformations of arithmetic constraints (over integer domain) to obtain the
constraints of the form e ≥ 0, which are required by Farkas’ lemma.

e1 = e2 ≡ (e1 − e2 ≥ 0) ∧ (e2 − e1 ≥ 0) e1 ≥ e2 ≡ e1 − e2 ≥ 0

e1 �= e2 ≡ (e1 − e2 − 1 ≥ 0) ∨ (e2 − e1 − 1 ≥ 0) e1 < e2 ≡ e2 − e1 − 1 ≥ 0

e1 > e2 ≡ e1 − e2 − 1 ≥ 0 e1 ≤ e2 ≡ e2 − e1 ≥ 0

By applying the above equivalences, we can transform the entailment E′
3 into

the following entailment E′′
3 :
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E′′
3 � n ≥ 0 ∧ (n − 1 ≥ 0 ∨ −n − 1 ≥ 0) ∧ s − 1

2
· u + 1

2
· n ≥ 0 ∧ 1

2
· u − 1

2
· n − s ≥ 0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0

� res − 1
2

· u − 1
2

· n ≥ 0 ∧ 1
2

· u + 1
2

· n − res ≥ 0

3. Eliminating disjunctions in the entailments’ antecedents. The disjunction
operators in the antecedent of each entailment can be easily eliminated to
introduce simpler entailments. In particular, we can replace an entailment like
F1 ∨ F2 � F3 in the entailment set E by two new entailments F1 � F3 and
F2 � F3. This disjunction elimination preserves the validity of E , since the entail-
ment F1 ∨ F2 � F3 is valid if and only if both F1 � F3 and F2 � F3 are valid.
For example, by applying this transformation to E′′

3 , we obtain the set of two
entailments below:

E′′
31 � n ≥ 0 ∧ n − 1 ≥ 0 ∧ s − 1

2
· u + 1

2
· n ≥ 0 ∧ 1

2
· u − 1

2
· n − s ≥ 0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0

� res − 1
2

· u − 1
2

· n ≥ 0 ∧ 1
2

· u + 1
2

· n − res ≥ 0

E′′
32 � n ≥ 0 ∧ −n − 1 ≥0 ∧ s − 1

2
· u + 1

2
· n ≥0 ∧ 1

2
· u − 1

2
· n − s ≥0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0

� res − 1
2

· u − 1
2

· n ≥ 0 ∧ 1
2

· u + 1
2

· n − res ≥ 0

4. Normalize the entailments’ consequents. In this final step, we transform all
entailments in E to the form whose consequents contain only 1 linear constraint.
This can be done by applying the following transformation rules:

– If the entailment set E contains an entailment like F1 � F2 ∧ F3, then this
entailment can be replaced by two new entailments F1 � F2 and F1 � F3.

– If E contains an entailment like F1 � F2 ∨ F3, then this entailment can be
replaced by either F1 � F2 or F1 � F3. Here, we derive two new entailment
sets E1 and E2 which respectively contain F1 � F2 and F1 � F3. These two
sets E1 and E2 will be solved independently, and if one of them has a solution,
this solution is also the solution of the original set E .

For example, in the entailment set containing E′′
31 and E′′

32, the entailments’
consequents have only the conjunction operator (∧). Hence, we can apply the
above transformation rules to derive a set of the following 4 entailments.

E′′
311 � n ≥ 0 ∧ n − 1 ≥ 0 ∧ s − 1

2
· u + 1

2
· n ≥ 0 ∧ 1

2
· u − 1

2
· n − s ≥ 0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0

� res − 1
2

· u − 1
2

· n ≥ 0
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E′′
312 � n ≥ 0 ∧ n − 1 ≥ 0 ∧ s − 1

2
· u + 1

2
· n ≥ 0 ∧ 1

2
· u − 1

2
· n − s ≥ 0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0
� 1

2
· u + 1

2
· n − res ≥ 0

E′′
321 � n ≥ 0 ∧ −n − 1 ≥ 0 ∧ s − 1

2
· u + 1

2
· n ≥ 0 ∧ 1

2
· u − 1

2
· n − s ≥ 0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0
� res − 1

2
· u − 1

2
· n ≥ 0

E′′
322 � n ≥ 0 ∧ −n − 1 ≥ 0 ∧ s − 1

2
· u + 1

2
· n ≥ 0 ∧ 1

2
· u − 1

2
· n − s ≥ 0

∧ res − c1 · s − c2 · n − c3 ≥ 0 ∧ c1 · s + c2 · n + c3 − res ≥ 0
� 1

2
· u + 1

2
· n − res ≥ 0

4.3.2 Generating the New Constraints
Once all the entailments are normalized into the form satisfying the conditions of
Farkas’ lemma (Theorem 1), we can apply the lemma to eliminate the universal
quantification over all variables, and generate the constraints containing only
unknown coefficients and factors λi. Details about this constraint generation
can be referred to in [2]. For instance, given the four entailments above, we can
generate the following constraints of the unknown coefficient c1, c2, c3 and the
factors λi.

F1 � (−λ3 · c1 + λ4 · c1 + λ5 − λ6 = 0)

∧ (λ1 + λ2 − λ3 · c2 + λ4 · c2 + 1
2

· λ5 − 1
2

· λ6 = − 1
2
)

∧ (λ3 − λ4 = 1) ∧ (− 1
2

· λ5 + 1
2

· λ6 = − 1
2
)

∧ (−λ2 − λ3 · c3 + λ4 · c3 ≤ 0)

F2 � (−λ9 · c1 + λ10 · c1 + λ11 − λ12 = 0)

∧ (λ7 + λ8 − λ9 · c2 + λ10 · c2 + 1
2

· λ11 − 1
2

· λ12 = 1
2
)

∧ (λ9 − λ10 = −1) ∧ (− 1
2

· λ11 + 1
2

· λ12 = 1
2
)

∧ (−λ8 − λ9 · c3 + λ10 · c3 ≤ 0)

F3 � (−λ15 · c1 + λ16 · c1 + λ17 − λ18 = 0)

∧ (λ13 − λ14 − λ15 · c2 + λ16 · c2 + 1
2

· λ17 − 1
2

· λ18 =− 1
2
)

∧ (λ15 − λ16 = 1) ∧ (− 1
2

· λ17 + 1
2

· λ18 = − 1
2
)

∧ (−λ14 − λ15 · c3 + λ16 · c3 ≤ 0)

F4 �(−λ21 · c1 + λ22 · c1 + λ23 − λ24 = 0)

∧ (λ19 − λ20 − λ21 · c2 + λ22 · c2 + 1
2

· λ23 − 1
2

· λ24 = 1
2
)

∧ (λ21 − λ22 = −1) ∧ (− 1
2

· λ23 + 1
2

· λ24 = 1
2
)

∧ (−λ20 − λ21 · c3 + λ22 · c3 ≤ 0)

4.3.3 Solving the New Constraints
The new constraints obtained from previous steps can be solved by a SMT
solver, such as Z3 [16], to discover the actual values of the unknown coefficients.
For instance, when solving the aforementioned constraints, we obtain a solution
forthe unknown coefficients c1, c2, c3 that c1 = 1, c2 = 1, c3 = 0. When replacing
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these values to the template patch f(s, n) � c1 · s + c2 · n + c3 in E3, we obtain
the following new entailment:

E3 � n ≥ 0 ∧ n �= 0 ∧ s = (n − 1) · n/2 ∧ res = s + n � res = n · (n + 1)/2

Recall that during the linearization of non-linear expressions (Sect. 4.3.1),
all polynomial terms are encoded by fresh variables. Since this encoding does
not maintain the relations of the old and the new variables, we need to validate
if the discovered solution obtained here still satisfies the original entailments.
This validation can be easily done by invoking an SMT solver to prove the new
entailments (like E3).

4.4 The Repair Algorithm

Figure 8 presents our main procedure Repair(P,S). Its inputs include a buggy
procedure P and a correct specification S. There are three possible outputs as
follows. Firstly, if P is correct w.r.t. its specification S, then it does not need
to be repaired, and the procedure simply returns NONE. Secondly, if P is buggy
and can be repaired, then the procedure returns PATCH〈P〉 to indicate that P is
the repaired solution. Finally, the procedure returns FAIL if it cannot repair the
buggy procedure P.

The procedure Repair first verifies the input program P against its specifi-
cation S by invoking an auxiliary procedure Verify (line 1). If the verification
fails, then there exists a bug in the implementation of P w.r.t. its specification
S. Then, Repair will utilize the invalid proof obligation to discover all possibly

Procedure Repair(P,S)
Input: A procedure P, and its correct specification S.
Output: NONE if P is correct w.r.t. S, PATCH〈P〉 if P is buggy and P is the repaired
solution, or FAIL if P is buggy but cannot be repaired.
1: if Verify(P,S) = FAIL then //P is buggy w.r.t. to its specs S
2: X GetInvalidProofObligation(P,S)
3: E LocalizeBuggyExpressions(P, X) //all possible buggy exps
4: for E in E do //repair each buggy expression
5: T CreateTemplatePatch(P, E)
6: P ′ CreateTemplateProgram(P, T )
7: C VerifyAndCollectProofObligations(P ′,S)
8: if HasSolution(C, T ) then
9: T GetSolution(C, T )

10: P CreateRepairedProgram(P ′,T )
11: if Verify(P ,S) = SUCCESS then
12: return PATCH〈P〉 //discover a patch

13: return FAIL //cannot repair any buggy expression
14: else return NONE //P is correct w.r.t. to its specs S, does not need to be repaired

Fig. 8. The repair algorithm
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buggy expressions (lines 2, 3). Then, it attempts to repair each of these expres-
sions (lines 4–12).

For each possibly buggy expression E, the procedure Repair creates a tem-
plate patch T (line 5), which is a linear expression of the program’s variables
and unknown coefficients, as described earlier in Sect. 4.2. This template patch
T will replace E in the original program P to create a template program P’ (line
6). This template program will be verified again to collect a constraint set C of
proof obligations about the template T . This constraint set will be solved by
the technique using Farkas’ lemmas (lines 8, 9). If a solution T of the template
patch T is discovered, it will be used to create a repaired program P (line 10).
This repaired program will be validated against the specs S (line 11), and will
be returned by the procedure Repair (line 12) if this validation succeeds.

On the other hand, the procedure Repair returns FAIL if it cannot repair any
of the possibly buggy expressions (line 13). It also returns NONE if the original
program P is correct w.r.t. the specification S (line 14).

4.5 Soundness

We claim that our program repair approach is sound. We formally state this
soundness in the following Theorem 2.

Theorem 2 (Soundness). Given a buggy program P and a specification S,
if the procedure Repair returns a program P , then this repaired program satisfies
the specification S.

Proof. In our repair algorithm (Fig. 8), after solving the constraints to discover
a candidate program (lines 8–10), we always verify this candidate against its
specification S (line 11). Consequently, if the procedure Repair returns a repaired
program P , this program always satisfies the specification S.

5 Implementation and Experiment

We implement our program repair approach in a tool, called Maple, using the
OCaml programming language. It is built on top of the verification system HIP
[1] and the theorem prover Songbird [23,24]. We evaluate the performance of
Maple on repairing faulty programs in a literature benchmark TCAS [3], which
implements a traffic collision avoidance system for aircrafts. This benchmark
is widely used in previous experiments of many program repair tools; it has a
correct program of 142 lines of C code and 41 different faulty versions to simulate
realistic bugs. However, the benchmark TCAS does not contain any loop or
recursive call, a popular feature in modern programming languages. Therefore,
we decide to compose a more challenging benchmark, called Recursion, which
contain not only non-recursive but also recursive programs.

Our experiment was conducted on a computer with CPU Intel R© CoreTM i7-
6700 (3.4 GHz), 8 GB RAM, and Ubuntu 16.04 LTS. We compare Maple against
the state-of-the-art program repair tools for C programs, which are AllRepair
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[21], Forensic [9,10], GenProg [11], and Angelix [15]. Among these tools, GenProg
and Angelix rely on test suites, while AllRepair and Forensic use specifications (in
the form of assertions) to repair programs. The details of our tool Maple and
experiments are available online at https://maple-repair.github.io.

5.1 Experiment with the Benchmark TCAS

In this experiment, we evaluate all the tools with 41 faulty programs in the
benchmark TCAS [3]. Since this benchmark was used before in the experiment
of other tools AllRepair, Forensic, Angelix, and GenProg, we reuse their original
settings in our experiment. Particularly, the specification-based tools AllRepair
and Forensic keep the correct program along with the faulty versions to check
the correctness of the repair candidates. On the other hand, the testing-based
tools GenProg and Angelix use different test suites of 50 cases for each faulty
program. For our tool Maple, we manually write the specification for the correct
program and use this specification to repair the faulty versions.1

Table 1 presents the detailed results of our experiment. We report whether a
tool can correctly repair a program (denoted by �), or repair the program by
an overfitted patch (denoted by o)2, or cannot repair it (denoted by –). We also
record the runtime (in seconds) of each tool. Here, we do not set a timeout: a tool
can run until either it returns a patch or informs that it fails to find any patch.
In the summary rows, we report the total number of the correct and overfitting
patches discovered by each tool, and the average time spent by each tool. The
best result is highlighted in the bold typeface.

Our tool Maple can correctly repair 26/41 faulty programs and does not
produce any overfitting patch. This is the best result among all participants. The
tool AllRepair is the second best, which it can successfully repair 18 programs.
Forensic and Angelix are the next best tools, and they can correctly repair 15
and 9 programs, respectively. Note that although Forensic and Angelix can repair
in total 23 and 32 programs, respectively, many of them (8 and 23 programs) are
repaired by overfitting patches. While these patches pass the test suites used by
Angelix and Forensic, they change the desired behaviors of the original program.
For instance, in the faulty program v 2, the tool Angelix incorrectly replaces
the buggy expression Up Separation + 300 by Up Separation + 24, while the
expected repaired expression is Up Separation + 100.

Regarding the execution time, our tool Maple is the second fastest when
it spends on average 155.3 s to repair a program. It is slower than All-
Repair which spends averagely 16.9 s per program. Here, AllRepair uses a
simple strategy to mutate operators and constants. In contrast, our tool
needs to create a patch template, collect and solve the template’s con-
straints to discover the actual patch. Nonetheless, these heavier compu-
tations enable Maple to correctly fix more programs than AllRepair. On

1 Our specification contains 34 lines, while the original program has 142 lines of code.
2 The correct and the overfitted patches are classified by comparing the similarity in

the structures of the repaired and the originally correct programs.

https://maple-repair.github.io
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Table 1. Experiment with the benchmark TCAS, where the participants are AllRe-
pair(Arp), Angelix(Agl), GenProg(Gpr), Forensic(Frs), and Maple(Mpl)

Programs
Repair Result Repair Time (s)

Arp Agl Gpr Frs Mpl Arp Agl Gpr Frs Mpl
v 1 � � o – � 1 46 800 – 104
v 2 – o – � � – 114 – 28 98
v 3 � o – – � 1 131 – – 224
v 4 – � o o � – 11 445 51 139
v 5 – � – – – – 911 – – –
v 6 � � – � � 1 42 – 52 100
v 7 – o – � � – 7938 – 43 100
v 8 – o – � � – 27 – 36 105
v 9 � o o � � 2 366 149 286 107
v 10 � o o � � 4 737 487 770 107
v 11 – o – – � – 738 – – 184
v 12 � o – – � 1 1079 – – 1264
v 13 – o – – – – 926 – – –
v 14 – o – – – – 230 – – –
v 15 – o – – – – 1718 – – –
v 16 � o – � � 21 32 – 47 93
v 17 � – – � � 38 – – 43 96
v 18 – – – � � – – – 52 97
v 19 – – o � � – – 258 35 99
v 20 � o o � � 1 398 738 224 99
v 21 – o – o – – 36 – 452 –
v 22 – o – – – – 504 – – –
v 23 – o o – – – 604 165 – –
v 24 – o – – – – 605 – – –
v 25 � o o � � 1 37 120 364 111
v 26 – � – – – – 1098 – – –
v 27 – � – – – – 1179 – – –
v 28 � � – � � 67 338 – 180 101
v 29 – – – – � – – – – 94
v 30 – – – – � – – – – 98
v 31 � o o o � 1 15 171 491 84
v 32 � o o o � 1 26 62 544 99
v 33 – – – – – – – – – –
v 34 – o – o – – 260 – 1420 –
v 35 � � – � � 67 175 – 179 111
v 36 � – – o – 90 – – 1501 –
v 37 – – – – – – – – – –
v 38 – – – – – – – – – –
v 39 � o o � � 1 218 184 367 111
v 40 � � – o � 4 28 – 514 107
v 41 � o – o � 3 29 – 603 106

Correct (�) 18 9 0 15 26 16.9 3615.0 – 180.4 155.3
Overfit (o) 0 23 11 8 0 – 729.0 325.4 697.0 –
Total (41) 18 32 11 23 26 16.9 1540.7 325.4 360.1 155.3

the other hand, the other tools Forensic, Angelix, and GenProg spend
longer time to repair a program, compared to our tool Maple. These per-
formances can be explained as follows. Firstly, Forensic also uses tem-
plate patches, but its constraint solving technique requires an incremental
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counter-example-driven template refinement, which is less efficient than our
approach of using Farkas’ lemma. Secondly, Angelix utilizes a component-based
repair synthesis algorithm, which is more costly than our method, in the context
of repairing linear expressions. Finally, GenProg needs to heuristically mutate
the original programs many times to find correct patches.

5.2 Experiment with the Benchmark Recursion

In this experiment, we evaluate all tools with the synthetic benchmark Recursion,
which contains challenging arithmetic programs. This benchmark is presented in
Table 2. We classify its programs into two categories: non-recursive and recursive.
The non-recursive category includes programs that compute the maximum, the
minimum, or the sum of two or three numbers, or the absolute value of a number.
On the other hand, programs in the recursive category are constructed in a
similar fashion to the motivating program sum (Sect. 2). They compute the sums
of different sequences of numbers, which can be enumerated by an indexing
number i, starting from 0 to a given number n. For example, they include a
sequence of n consecutive numbers or a sequence of n products of the form
i · (i+1). Although these recursive programs are relatively small (each program
contains 5 to 9 lines of code), they are still challenging for the existing state-of-
the-art program repair tools.

In order to evaluate GenProg and Angelix, we follow the tools’ guidelines to
create test suites of 10 cases. Note that these tools require the values of variables
for every recursive call of the recursive programs. We also create specifications
for the tool AllRepair and Forensic. They follow the same style of using assertions
to compare the results of running the correct and buggy programs. For our
tool Maple, we create a desired specification for each buggy program. These
specifications are small, they contain only 2 lines per program.

Table 2 presents the experimental result with the benchmark Recursion.
Our tool Maple can repair all 26 faulty programs and does not generate any
overfitting patch. Furthermore, Maple outperforms the second and the third best
tools Angelix and Forensic, which could correctly repair only 8 and 5 faulty pro-
grams, respectively. On the other hand, the two tools AllRepair and GenProg
cannot repair any program. These tools perform only simple code mutations
such as alternating Boolean or arithmetic operators, which are insufficient to
handle these buggy programs. For the tool Forensic, although it exploits the cor-
rect programs to generate test suites to repair the faulty programs, these test
suites cannot fully cover the underlying computations of these recursive pro-
grams. Consequently, Forensic can discover only overfitting patches, as shown
with the recursive category in Table 2.

Regarding the runtime, Forensic is the fastest tool when it takes averagely
3.6 s to correctly repair a program. Our tool Maple is the second fastest which
spends 5.6 s per correctly repaired program. Note that this average runtime also
includes the time spent on recursive programs, which Forensic can produce only
overfitting patches. Also, for every program that Forensic can repair correctly
(max 2 2, max 3 2, min 2 2, min 3 2, absolute 2), our tool Maple spends less
time than Forensic, thanks to the efficiency of the constraint solving technique
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Table 2. Experiment with our numeric benchmark, where the participants are AllRe-
pair(Arp), Angelix(Agl), GenProg(Gpr), Forensic(Frs), and Maple(Mpl)

Programs
Repair Result Repair Time (s)

Arp Agl Gpr Frs Mpl Arp Agl Gpr Frs Mpl
max 2 1 – – – o � – – – 4 4
max 2 2 – � – � � – 8 – 2 2
max 3 1 – – – – � – – – – 8
max 3 2 – � – � � – 10 – 5 3
min 2 1 – – – – � – – – – 4
min 2 2 – � – � � – 8 – 3 2
min 3 1 – – – – � – – – – 8
min 3 2 – � – � � – 16 – 5 3
sum 2 1 – – – – � – – – – 2
sum 2 2 – – – – � – – – – 2
sum 3 1 – – – – � – – – – 2
sum 3 2 – – – – � – – – – 2

absolute 1 – � – � � – 15 – 3 2

no
n-
re
cu

rs
iv
e

absolute 2 – – – – � – – – – 7
sum n 1 – � – – � – 38 – – 4
sum n 2 – – – o � – – – 29 7
sum n 3 – – – – � – – – – 7
sum n 4 – – – o � – – – 24 7
conseq 1 – � – – � – 35 – – 4
conseq 2 – – – o � – – – 28 11
conseq 3 – – – – � – – – – 11
conseq 4 – – – o � – – – 23 11

increment 1 – � – – � – 51 – – 4
increment 2 – – – – � – – – – 9
increment 3 – – – – � – – – – 10

re
cu

rs
iv
e

increment 4 – – – – � – – – – 10

Correct (�) 0 8 0 5 26 – 22.6 – 3.6 5.6
Overfit (o) 0 0 0 5 0 – – – 21.6 –
Total (26) 0 8 0 10 26 – 22.6 – 12.6 5.6

using Farkas’ lemma. In this benchmark, the runtime of all tools is smaller than
that of the benchmark TCAS. This is because all programs in this benchmark
are shorter: each program contains only 1 procedure of about 5 to 9 lines of code,
while each program in the benchmark TCAS contains 8 procedures of totally 142
lines of code.

6 Related Work

There have been many approaches to repair faulty programs, and most of them
use test suites to guide the repair process: they are used to localize the bug, then
to generate and validate fix candidates. These approaches can be categorized into
heuristic-based and semantic-based approaches. Heuristic-based tools, such as
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GenProg [11,27], RSRepair [20], traverse programs’ abstract syntax trees (AST)
using generic programming or random search algorithms, and then modify ASTs
by mutation and crossover operations. On the other hand, semantic-based tools
such as SemFix [17] and Angelix [15] propose to firstly locate bug locations
using ranking methods, such as Tarantula [7]. Then, they employ the symbolic
execution technique to generate constraints and solve the collected constraints by
a component-based repair synthesis algorithm to generate the repaired programs.

However, there is a major problem that all the test suite-based approaches
need to handle is the generation of overfitting patches. These patches can easily
pass all the test cases, but they also break untested but desired functionality
of repaired programs [22]. This problem happens when the test suites, provided
by users, contain concrete values, which cannot cover all the functionality of
a program. To deal with this problem, the works [28–30] propose methods to
automatically generate more test cases. For instance, Yang et al. [19] propose to
detect overfitting patches and use fuzzing to generate more test cases to guide
the repair tools. However, it is impossible to guarantee that the newly generated
test cases can fully cover all behaviours of the original programs.

The works that are closer to ours are [8–10,21], which use formal specification
to guide the repair process. In particular, the work [21] uses assertions to compare
the output of the correct and the repaired programs. They generate the patch by
performing simple code mutations, such as increasing or decreasing numerical
constants by 1, or changing logical/arithmetic operators. This approach can
fix simple bugs, as demonstrated by the tool AllRepair. The works [9,10] use
the provided specifications to generated test cases and use a template-based
approach like ours to generate the patches. Since the constraints related to the
template fix are resolved by using test cases, these approaches result in many
overfitting patches, as shown in our experiments with the tool Forensic.

In contrast to the test-case-based approaches, our work may does not gener-
ate overfitting patches, since the utilized specification can captures better sym-
bolic relations of the program input/output, compared to concrete value relations
in test suites. This is demonstrated in the experiments that all the patches dis-
covered by our tool Maple are correct patches. Compared to the aforementioned
specification-based approaches, our approach to generating the patches is more
general. We consider the patches in the form of linear expression templates, and
perform symbolic execution to collect and solve constraints over the template
patches. Consequently, our tool can repair correctly more faulty programs than
other specification-based tools AllRepair and Forensic.

Whereas all the above works, including ours, focus on repairing Boolean and
arithmetic properties in C programs, there are works that aim to repair heap
properties in C program [25,26], or repair programs in Eiffel [18], Scala [8], and
C# [13]. Among these works, the tool AutoFix [18] uses test suites, the work [26]
needs programmer’s help, while the other works use the specification to guide the
repair. Compared to ours, all these works focus on either different fragments of
C programs or different programming languages. Therefore, we did not evaluate
them in the experiments.



Automatic Program Repair Using Formal Verification 89

7 Limitations and Future Work

We now discuss the limitations of our work and corresponding planned improve-
ments. There are three limitations as follows. Firstly, our current approach
focuses on repairing only linear arithmetic expressions. In the future, we want to
extend it to repair more types of expressions, such as arrays, strings, or dynam-
ically allocated data structures like linked lists and trees. Secondly, our tool can
fix only one expression each time. Hence, we would like to equip it with the abil-
ity of considering multiple buggy expressions at the same time. Thirdly, the tool
cannot synthesize missing expressions. Since specifications are used, this prob-
lem is equivalent to finding correct code fragments that meet the specifications
of the missing expressions. Thus, we can follow the approach of [25] which learns
specifications of the existing programs to find the removed program fragments.

8 Conclusions

We have introduced an automated program repair framework using formal ver-
ification and expression templates. More specifically, we first utilize a formal
verification system to locate and rank the potentially buggy expressions by their
likelihood to cause the bug. Then, each buggy expression is replaced by a tem-
plate patch, which is a linear expression of the program’s variables with unknown
coefficients, to create a template program. This program will be verified against
to collect constraints of the template patch. Finally, we apply a constraint solving
technique using Farkas’ lemma to solve these constraints to discover the repaired
program. In practice, our prototype tool Maple can discover more correct patches
than other program repair tools in the widely used benchmark TCAS. It can also
fix many challenging programs in the synthetic benchmark Recursion, which can-
not be fully repaired by other tools.
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Abstract. We present a new technique for generating a function imple-
mentation from a declarative specification formulated as a ∀∃-formula in
first-order logic. We follow a classic approach of eliminating existential
quantifiers and extracting Skolem functions for the theory of linear arith-
metic. Our method eliminates quantifiers lazily and produces a synthesis
solution in the form of a decision tree. Compared to prior approaches,
our decision trees have fewer nodes due to deriving theory terms that
can be shared both within a single output as well as across multiple out-
puts. Our approach is implemented in a tool called AE-VAL, and its
evaluation on a set of reactive synthesis benchmarks shows promise.

1 Introduction

The task of generating a function implementation from a specification of an
input-output relation is commonly addressed by functional synthesis. Many prior
approaches have been proposed for functional synthesis [10,13,16,18,20], with
applications in various stages of software development, from prototyping to main-
taining and repairing existing products. However, there is still a great need to
make the synthesizers more robust and scalable, and the synthesized implemen-
tations more compact. We build this work on recent advances in lazy quantifier
elimination methods [3,6,14,17,20] that enabled us to progress in both these
dimensions.

Synthesis tasks are often formulated as quantified formulas. We consider
formulas of the form ∀�x .∃�y . ψ(�x, �y) (or ∀∃-formulas in short1). A simple example
of a synthesis task formulated as a ∀∃-formula to generate a max-function is
shown below, where the two input variables x1 and x2 are universally quantified
and the output y is existentially quantified:

∀x1, x2 .∃y . y ≥ x1 ∧ y ≥ x2 ∧ (x1 = y ∨ x2 = y)
The validity of this formula means that there always exists a maximum

between two integers. A witness to the maximum value, i.e., a Skolem func-
tion y = ite(x1 ≥ x2, x1, x2), can then be generated (and suitably decoded as
a statement in a program). In this paper, we consider the general case of syn-
thesis of multi-output programs, i.e., with an arbitrary number of outputs. An
1 Here and later, we use the vector notation to denote multiple variables.
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example task is to generate a program that invokes both max and min-functions
at the same time. An encoding of this task as a ∀∃-formula is somewhat bulky,
as shown below:

∀x1, x2 .∃y1, y2 . y1 ≥ x1 ∧ y1 ≥ x2 ∧ (x1 = y1 ∨ x2 = y1)∧
y2 ≤ x1 ∧ y2 ≤ x2 ∧ (x1 = y2 ∨ x2 = y2)

However, a solution for this synthesis task can still be formulated concisely:
ite(x1 ≥ x2, y1 = x1 ∧ y2 = x2, y1 = x2 ∧ y2 = x1). In particular, note that the
predicate x1 ≥ x2 is shared between the two outputs y1 and y2 in the program,
which respectively denote the values of the max and min functions.

Our synthesis procedure generates an implementation of a function while
eliminating existential quantifiers in the formula, similar to prior work by Kun-
cak et al. [16]. However, quantifier elimination is an expensive iterative procedure
in general. To lower the overall cost of functional synthesis, we propose to use a
lazy procedure [6] for quantifier elimination in ∀∃-formulas using Model-Based
Projection (MBP) for linear arithmetic [14]. Unlike the prior work, our procedure
does not require converting the formula into Disjunctive Normal Form (DNF),
and thus often produces smaller and non-redundant implementations.

Along with the use of MBPs, we formulate criteria for an effective decom-
position of a functional synthesis task. In particular, we aim at searching for a
structured synthesis solution in the form of a decision tree, where each of the
synthesis subtasks is defined in terms of a precondition and a set of Skolem
constraints in a grammar, from which a function implementation is generated.
While our notion of a precondition is similar to that in prior work [16], our
MBP-based procedure results in fewer number of synthesis subtasks, thereby
providing performance improvements and smaller implementations.

Our effective decomposition further enables optimization procedures for on-
the-fly compaction of the generated function. In particular, we derive Skolem
terms that can be re-used across multiple preconditions for a single output, and
share the preconditions in a common decision tree across multiple outputs in the
program. Our method identifies theory terms that can be shared both within and
across outputs. While the motivation for such sharing is similar to optimization
of Boolean gate-level circuits in the area of logic synthesis, our compaction is
enabled by theory-specific reasoning (validity checks), not Boolean optimization
at the propositional level. Our evaluation in a tool called AE-VAL demonstrates
the benefits of our compaction algorithm, which further reduces the size of the
resulting implementations by an average of two.

We have implemented our ideas in AE-VAL on top of our prior work [6],
which described a procedure for determining the validity of ∀∃-formulas using
MBPs for linear arithmetic [14]. The focus of that effort was on deriving Skolem
witnesses for a simulation relation between two given programs. However, there
was no method described for functional synthesis, which requires deriving a
Skolem function rather than a Skolem relation. Furthermore, it did not con-
sider minimization or compaction of the generated implementations. Note again,
that this minimization/compaction is not at the propositional level, but requires
theory-specific reasoning. The required validity checks for compaction are built
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into the synthesis procedure and use the same MBP-based validity checker recur-
sively. We provide a detailed evaluation of our tool on a selection of public bench-
marks from SyGuS-COMP2 and benchmark examples for reactive synthesis from
Assume-Guarantee contracts [13].

We start by providing some background in Sect. 2. Next, in Sect. 3, we
describe our criteria for effective decomposition and the MBP-based proce-
dure for formulating the synthesis subtasks. In Sect. 4, we present a method for
extracting Skolem functions from Skolem constraints. In Sect. 5, we describe our
algorithm for compaction and re-use of theory terms within and across subtasks.
We have implemented our procedure for functional synthesis for linear arithmetic
and present a detailed evaluation in Sect. 6. Related work is described in Sect. 7
and conclusions in Sect. 8.

2 Background and Notation

A many-sorted first-order theory consists of disjoint sets of sorts S , function
symbols F and predicate symbols P . A set of terms is defined recursively as
follows:

term ::= f(term, . . . , term) | const | var
where f ∈ F , const is an application of some v ∈ F of zero arity, and var is a
variable uniquely associated with a sort in S . A set of quantifier-free formulas is
built recursively using the usual grammar:

formula ::= true | false | p(term, . . . , term) | Bvar |
¬formula | formula ∧ formula | formula ∨ formula

where true and false are Boolean constants, p ∈ P , and Bvar is a variable
associated with sort Bool.

In this paper, we consider theories of Linear Rational Arithmetic (LRA) and
Linear Integer Arithmetic (LIA). In LRA, S def= {Q, Bool}, F def= {+, ·}, where
· is a scalar multiplication (i.e., it does not allow multiplying two terms which
both contain variables), and P def= {=, >,<,≥,≤, 	=}. In LIA, C def= {Z, Bool},
F def= {+, ·, div}, where div is an integer division3 , and P def= {=, >,<,≥,≤, 	=}.
For both LRA and LIA, we use a shortcut ite(x, y, z) def= (x ∧ y) ∨ (¬x ∧ z), but
do not include ite in F .

Formula ϕ is called satisfiable if there exists an interpretation m, called a
model, of each element (i.e., a variable, a function or a predicate symbol), under
which ϕ evaluates to true (denoted m |= ϕ); otherwise ϕ is called unsatisfiable.
If every model of ϕ is also a model of ψ, then we write ϕ =⇒ ψ. A formula ϕ
is called valid if true =⇒ ϕ.

For existentially-quantified formulas of the form ∃y . ψ(�x, y), validity requires
that each interpretation for variables in �x and each function and predicate symbol

2 http://sygus.seas.upenn.edu/SyGuS-COMP2018.html.
3 We do not consider the modulo operation in this work, but our approach can be

extended to support it.

http://sygus.seas.upenn.edu/SyGuS-COMP2018.html
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in ψ can be extended to a model of ψ(�x, y). For a valid formula ∃y . ψ(�x, y), a
term sky(�x) is called a Skolem term, if ψ(�x, sky(�x)) is valid. More generally, for
a valid formula ∃�y . ψ(�x, �y) over a vector of existentially quantified variables �y,
there exists a vector of individual Skolem terms for every variable �y[j], where
0 < j ≤ N and N = |�y|, such that:

true =⇒ ψ(�x, sk�y[1](�x), . . . , sk�y[N ](�x)) (1)
In the paper, we assume that all free variables �x are implicitly universally

quantified. For simplicity, we omit the arguments and simply write ϕ when the
arguments are clear from the context.

3 Decomposing Functional Synthesis

A functional synthesis task aims at generating a function from a given input-
output relation. We view this in terms of validity checking of ∀∃-formulas and
derive Skolem terms for the existentially-quantified variables. We propose to
discover Skolem terms in stages: an original task is decomposed into subtasks,
where each of the subtasks is solved in isolation, and the solution to the original
problem is obtained as one common decision tree that combines the results from
the subtasks.

3.1 Illustrative Example

Consider a given formula in Disjunctive Normal Form (DNF) (we defer a dis-
cussion of a general case until later in this section). Here, it is intuitively easy to
see that the individual Skolem function for each �y[j] can be represented in the
form of a decision tree, as illustrated in the following example.

Example 1. Given a formula ∃y1, y2 . ψ(x, y1, y2) in LIA, where

ψ(x, y1, y2)
def= (x ≤ 2 ∧ y1 > −3 · x ∧ y2 < x) ∨ (x ≥ −1 ∧ y1 < 5 · x ∧ y2 > x)

The formula is valid, which means that for every value of x there exist values
of y1 and y2 that make either of two disjuncts true. Intuitively, the disjuncts
correspond to two cases, when x ≤ 2 or x ≥ −1. We call these formulas precon-
ditions.

To extract Skolem terms for y1 and y2, this example permits considering two
preconditions in isolation (however, it may not be true for other formulas, see
Sect. 3.3). That is, if x ≤ 2, then y1 should satisfy y1 > −3 · x and y2 should
satisfy y2 < x. In other words, the following two formulas are valid:

(x ≤ 2) =⇒ ∃y1 . (y1 > −3 · x)
(x ≤ 2) =⇒ ∃y2 . (y2 < x)

Skolem terms for y1 and y2 assuming x ≤ 2 could be −3 · x + 1 and x − 1
respectively. Similarly, for the second precondition:

(x ≥ −1) =⇒ ∃y1 . (y1 < 5 · x)
(x ≥ −1) =⇒ ∃y2 . (y2 > x)
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Assuming x ≥ −1, a Skolem term for y1 could again be −3 · x + 1, but a Skolem
term for y2 is x + 1. Combining these Skolem terms for both preconditions, we
get Skolem terms for ∃y1, y2 . ψ(x, y1, y2):

sky1(x) def= −3 · x + 1

sky2(x) def= ite(x ≤ 2, x − 1, x + 1)
Note that this composition is possible because (x ≤ 2) ∨ (x ≥ −1) is valid. In
the next subsection, we describe this process formally.

3.2 Effective Decomposition

Our functional synthesis technique is based on a notion we call effective decom-
position, defined below.

Definition 1. A decomposition of a valid formula ∃�y . ψ(�x, �y) is a tuple 〈pre, φ〉,
where pre (called preconditions) is a vector of formulas of length M and φ (called
Skolem constraints) is a matrix of dimensions M × |�y|, such that the following
three conditions hold.

true =⇒
M∨

i=1

pre[i](�x) (i-totality)

pre[i](�x) ∧
|�y|∧

j=1

φ[i, j](�x, �y) =⇒ ψ(�x, �y) (under-approximation)

pre[i](�x) =⇒ ∃�y .

|�y|∧

j=1

φ[i, j](�x, �y) (j-totality)

Lemma 1. For every valid formula ∃�y . ψ(�x, �y), a decomposition exists.

Indeed, a decomposition could be constructed by the formula itself and a pre-
condition true. We are not interested in such cases because they do not simplify
a process of extracting Skolem terms from Skolem constraints φ. Instead, we
impose additional syntactic restrictions on φ. In particular, we call a decompo-
sition 〈pre, φ〉 of ∃�y . ψ(�x, �y) G-effective if all formulas φ are expressible in some
grammar G .

The task of extracting Skolem terms boils down to developing an algorithm
that (1) produces Skolem constraints in G , and (2) exploits G to extract a matrix
of Skolem terms from a matrix of Skolem constraints, i.e., the following holds:

�y[j] = sk[i, j](�x) =⇒ φ[i, j](�x, �y) (embedding)

Theorem 1. Let 〈pre, φ〉 be a decomposition of ∃�y . ψ(�x, �y), and sk be a matrix
of Skolem terms, such that (embedding) holds. Then Sk j is the Skolem term for
�y[j]:

Sk j
def= ite(pre[1], sk [1, j], . . . ite(pre[M − 1], sk [M − 1, j], sk [M, i])) (2)
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Fig. 1. A decision tree.

A straightforward implementation of Skj in the
form of a decision tree is shown in Fig. 1.

In this work, we restrict G to be the gram-
mars of LIA/LRA (see Sect. 2) but allow nei-
ther disjunctions nor negations. In the next sub-
section, we outline an algorithm that creates a
G-effective decomposition while solving formulas
for validity. Then, in Sect. 4, we present an algo-
rithm for extracting Skolem terms from formulas
in G .

3.3 Witnessing Existential Quantifiers with AE-VAL

Obtaining preconditions in general requires quantifier elimination. However, it
leads to expensive reasoning, which we would like to improve upon.

Example 2. Consider the following formula:
∃y1, y2 .

(
y1 > x1 ∨ y2 < −x2

) ∧ (
y1 < x2 ∨ y2 > −x1

)

If we were running the algorithm from [16], we would need to convert this formula
into DNF, which would give us four disjuncts. A complete quantifier-elimination
procedure would be then required to produce four preconditions and four Skolem
constraints.

Our lazy quantifier-elimination method, called AE-VAL, generates both pre-
conditions and Skolem constraints while solving the given formula for validity.
In contrast to the DNF translation, for the formula in Example 2, it generates
only two preconditions and two Skolem constraints.

The pseudocode of AE-VAL is shown in Algorithm 1 (we refer the reader
to [6] for more detail). AE-VAL produces a sequence of Model-Based Projec-
tions (MBPs, see the definition below) [14], each of which under-approximates
quantifier elimination. It iterates until the disjunction of MBPs is valid and thus
avoids a complete quantifier elimination.

Definition 2. An MBP�y is a function from models of ψ(�x, �y) to �y-free formulas
if it has a finite image and the following hold:

if m |= ψ(�x, �y) then m |= MBP�y(m,ψ)
MBP�y(m,ψ) =⇒ ∃�y . ψ(�x, �y)

There are different algorithms for constructing MBPs for different theories.
We follow a method from [3] for LIA and present it on the following example.
Intuitively, it is based on finding models, testing them on literals of the original
formula, and eliminating quantifiers from the conjunctions of literals that passed
the test.
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Algorithm 1: AE-VAL
(
∃�y . ψ(�x, �y)

)
, cf. [6].

Input: ∃�y . ψ(�x, �y)
Output: Return value ∈ {valid, invalid} of ∃�y . ψ(�x, �y),

MBPs pre, Skolem constraints φ

1 M ← 1;
2 while true do

3 if true =⇒
M∨

i=1

pre[i](�x) then return 〈valid, pre, φ〉;

4 tmp ← ψ(�x, �y) ∧
M∧

i=1

¬pre[i](�x);

5 if tmp =⇒ false then return 〈invalid, ∅, ∅〉;
6 m ← getModel(tmp);
7 〈pre[M ], φ[M, 1], . . . , φ[M, |�y|]〉 ← GetMBP(�y, m, ψ);
8 M ← M + 1;

Example 3. Recall the formula ∃y1, y2 . ψ(x1, x2, y1, y2) from Example 2. Its set
of literals is Lit = {y1 > x1, y2 < −x2, y1 < x2, y2 > −x1}. In the first iteration,
AE-VAL generates a model m1 of ψ: m1 = {x1 → 0, x2 → −2, y1 → 0, y2 → 1}.
An MBP of ψ w.r.t. m1 is then generated iteratively: by eliminating y1 first, and
eliminating y2 then.

For y1 and m1, AE-VAL fills φ[1, 1] with a set of literals {l ∈ Lit | y1 ∈
vars(l) ∧ m1 |= l}, i.e., {y1 < x2}. Then AE-VAL eliminates quantifiers from
∃y1 . φ[1, 1] and adds the result (i.e., true) to the MBP.

For y2 and m1, AE-VAL fills φ[1, 2] with {l ∈ Lit | y2 ∈ vars(l) ∧ m1 |= l},
i.e., {y2 < −x2, y2 > −x1}. It then eliminates quantifiers from ∃y2 . φ[1, 2] and
adds the result (i.e., x1 − x2 > 1) to the MBP.

Thus, after the first iteration of AE-VAL, we get the precondition pre[1] =
x1 − x2 > 1, and Skolem constraints φ[1, 1] and φ[1, 2]. The second iteration
proceeds similarly, and AE-VAL outputs pre[2] = true, φ[2, 1] = y1 > x1, and
φ[2, 2] = y2 > −x1, and terminates.

Lemma 2. If AE-VAL returns 〈valid, pre, φ〉 for a formula ∃�y . ψ(�x, �y), then
the formula is effectively decomposable by pre and φ, i.e., (i-totality),
(under-approximation), and (j-totality) hold.

Intuitively, the sequence of MBPs provides a lazy disjunctive decomposition
of the overall problem, where each precondition can capture an arbitrary sub-
space on the �x variables (under which it is possible to derive a Skolem term
for the �y variables). It often requires far fewer decompositions than a DNF-
based quantifier elimination approach, where each precondition can at best be a
cube, i.e., a conjunction of predicates on �x. Note that the number of decomposi-
tions, M , corresponds directly to the depth of the decision tree in the generated
implementations. Thus, our MBP-based procedure for quantifier elimination can
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potentially perform better and lead to smaller implementations. Our experimen-
tal results in Sect. 6 show promising support.

4 Extraction of Skolem Terms

In this section, we describe our procedure for extracting individual Skolem terms
from a matrix of Skolem constraints φ[i, j] in linear arithmetic. As pointed out
in (embedding), this procedure is performed independently of a precondition
pre[i]. We first describe the procedure where each φ[i, j] has occurrence of only
one variable y = �y[j], and thus has form π(�x, y); and pre[i](�x) =⇒ ∃y . π(�x, y) is
valid. In Sect. 4.3, we describe how to handle occurrences of multiple �y variables.

Although the general extraction schema is similar for all background theories,
specific algorithmic details of each theory need to be discussed. In the rest of
this section, we separately consider algorithms for LRA and LIA.

4.1 Skolem Terms in LRA

In Algorithm 2, we show how to extract a Skolem term for a variable y ∈ �y from
constraints having form π(�x, y). Intuitively, Algorithm2 constructs a graph of a
function that is embedded in a relation specified by a conjunction of equalities,
inequalities, and disequalities over y and �x. Thus, Algorithm2 takes as input six
vectors of clauses extracted from π: E, D, G, GE, L, and LE:

E
def= {y = fi(�x)}i G

def= {y > fi(�x)}i L
def= {y < fi(�x)}i

D
def= {y 	= fi(�x)}i GE

def= {y ≥ fi(�x)}i LE
def= {y ≤ fi(�x)}i

We do not consider constraints having the shape α · y ∼ f(�x), because it
is safe to normalize it to y ∼ f(�x)

α (assuming positive α; a negative α requires
swapping the operator ∼ between < and >, and ≤ and ≥). Finally, we assume
that at least one of the vectors of clauses is non-empty, otherwise a Skolem term
could be arbitrary, and there is no need to run Algorithm2.

Below we present several helper-operators needed to construct a term sk
based on a lightweight analysis of clauses in E, D, G, GE, L, and LE (where
∼∈ {<,≤,=, 	=,≥, >}):

ASSM(y ∼ e(�x)) def= e ADD(�, c) def= � + c MID(�, u) def=
� + u

2
In the case when there is at least one conjunct (y = e(�x)) ∈ E (line 1), the

algorithm simply returns the exact term e(�x). Note that there could be two or
more equalities in E, which are consistent with each other due to (j-totality).
Thus, it does not matter which of them is used for extracting a Skolem term.

In the case when there are lower and upper bounds (lines 2 and 3 respec-
tively), the algorithm extracts expressions that encode the maximal and minimal
values that y can take. Technically, it is done by mapping sets G and GE (for
MAX) and L and LE (for MIN) to results of applications of ASSM to elements
of these sets. In the case when D = ∅ or when � and u are semantically equal,
the algorithm has sufficient information to extract a Skolem term. In particular,
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Algorithm 2: ExtractSkLRA(�x, y, E,D,G,GE,L,LE)
Input: Variable y, Skolem constraint

π(�x, y) =
∧

�∈E∪D∪G∪GE∪L∪LE

�(�x, y)

Output: Term sk, such that (y = sk(�x)) =⇒ π(�x, y)
1 if E 
= ∅ then return ASSM(e), s.t. e ∈ E;
2 if G ∪ GE 
= ∅ then � ← max(map(ASSM, G ∪ GE));
3 if L ∪ LE 
= ∅ then u ← min(map(ASSM, L ∪ LE));
4 if �(�x) = u(�x) then return �;
5 if D = ∅ then
6 if � 
= undef ∧ u 
= undef) then return MID(�, u);
7 if � = undef then return ADD(u, −1);
8 if u = undef then return ADD(�, 1);

9 else
10 if � = undef ∧ u = undef then � ← 1;
11 if � = undef then � ← ADD(u, −1);
12 if u = undef then u ← ADD(�, 1);
13 return BNSR(�, u, map(ASSM, D), |D|);

if both lower and upper bounds are extracted, the algorithm returns a symbolic
midpoint (line 6). Otherwise, it returns a symbolic value which differs from the
upper or lower bounds (whichever is present) by one (lines 7 and 8).

Example 4. Consider π = (y > 4 · x1) ∧ (y ≥ −3 · x2 + 1) ∧ (y < x1 + x2).
Algorithm 2 aims at extracting a term sk such that

(
y = sk(x1, x2)

)
=⇒ π.

First, the algorithm extracts the lower bound from two inequalities with “>”
and“≥”: � = max(4 · x1,−3 · x2 + 1) = ite(4 · x1 > −3 · x2 + 1, 4 · x1,−3 · x2 + 1).
Second, the algorithm extracts the upper bound from the only “<”-inequality:
u = x1 + x2. Finally, the algorithm extracts and returns the symbolic midpoint
between � and u. That is, sk = ite(4·x1>−3·x2+1,4·x1,−3·x2+1)+(x1+x2)

2 .

The rest of the algorithm handles disequalities, i.e., in the case when D 	= ∅

(line 9). It assumes that � and u are extracted, otherwise any suitable � and
u could be selected (in lines 10–12, we use some particular but not the only
possible choice).

Intuitively, if y is required to differ from some h(�x) and to be in a range
(�, u), it is sufficient to pick two distinct terms v1 and v2 such that:

(y = v1(�x)) =⇒ (�(�x) < y < u(�x))
(y = v2(�x)) =⇒ (�(�x) < y < u(�x))

(v1(�x) = v2(�x)) =⇒ false

Since each variable assignment m to �x makes at most one formula from set
{h(m) = v1(m), h(m) = v2(m)} true, we can always extract a Skolem term
sk = ite(h = v1, v2, v1) that satisfies (y = sk(�x)) =⇒ (y 	= h(�x)).

A similar reasoning is applied to any set D of disequalities: it is enough to
consider |D| + 1 terms, which are semantically distinct. Our algorithm can be
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parametrized by any routine that extracts semantically distinct terms belonging
to a range between � and u. Two of possible routines are inspired respectively
by a binary search (which is used in line 13) and a linear scan.

Definition 3. Let n be the number of disequalities in D and H be the set of
right sides of expressions of D, then the binary-search helper-operator is defined
as follows:

BNSR(�, u,H, n) def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MID(�, u) if n = 0

ite
( ∨

h∈H

MID(�, u) = h,

BNSR
(
l,MID(�, u),H, n − 1

)
,MID(�, u)

)
else

Example 5. Consider π = (y 	= x1 ∧ y 	= x2). Since there are no inequalities in
π, the lower and upper bounds are obtained from an arbitrary range, say (0, 1).
Otherwise, they are computed similarly to as in Example 4. Algorithm 2 uses
BNSR and returns the following Skolem term:

sk = ite
(1

2
= x1 ∨ 1

2
= x2, ite

(1
4

= x1 ∨ 1
4

= x2,
1
8
,
1
4

)
,
1
2

)

Definition 4. Let s be some number, then

SCAN(�, s,H, n) def=

⎧
⎨

⎩
� if n = 1

ite
( ∨

h∈H

� = h,SCAN
(
� + s, s,H, n − 1

)
, �

)
else

Example 6. Consider formula π from Example 5, for which H = {x1, x2}, � = 0,
and u = 1. A Skolem term can be compiled using the call to
SCAN(� + u−�

|H|+2 , u−�
|H|+2 ,H, |H| + 1):

sk = ite
(1

4
= x1 ∨ 1

4
= x2, ite

(1
2

= x1 ∨ 1
2

= x2,
3
4
,
1
2

)
,
1
4

)

4.2 Skolem Terms in LIA

In this subsection, we present an algorithm for extracting Skolem terms in LIA.
Although the flow of the algorithm is similar to the flow of the algorithm for
LRA, presented in Sect. 4.1, there are two differences. First, there is no need to
calculate a midpoint in the case when both a lower bound � and an upper bound
u are given. Instead, because (j-totality) guarantees the existence of at least one
integer value for all y, it is enough to choose either the least or the greatest
integer value within the range (�, u). Second, there are divisibility constraints,
which have to be treated more carefully. Unlike the case of LRA, we consider
four vectors of clauses in the Skolem constraints π over LIA:

E
def= {α · y = fi(�x)}i G

def= {α · y > fi(�x)}i

D
def= {α · y 	= fi(�x)}i LE

def= {α · y ≤ fi(�x)}i
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Algorithm 3: ExtractSkLIA(�x, y, E,G,LE,D)
Input: Variable y, Skolem constraint

π(�x, y) =
∧

�∈E∪G∪LE∪D

�(�x, y)

Output: Term sk, such that (y = sk(�x)) =⇒ π(�x, y)
1 if (E 
= ∅) then return ASSMZ(e), s.t. e ∈ E;
2 if (G 
= ∅) then � ← max(map(ASSMZ, G));
3 if (LE 
= ∅) then u ← min(map(ASSMZ, LE));
4 if (D = ∅) then
5 if (� 
= undef) then return ADD(�, 1);
6 if (u 
= undef) then return u;

7 else
8 if (� = undef ∧ u = undef) then � ← 0;
9 if (� = undef) then � ← ADD(u, −1 · |D|);

10 return SCANZ(�, D, |D|);

We can safely avoid clauses containing < and ≥ because of the following
transformations:

A < B
A ≤ B − 1

A ≥ B

A > B − 1 (3)
We need these rules to simplify the normalization of inequalities by dividing

their right sides by α (assuming positive α; a negative α requires changing the
operator ∼ accordingly). For example, it would not be correct to normalize an
inequality 5·y ≥ 9 to y ≥ div(9, 5). Instead, when 5·y ≥ 9 is rewritten to 5·y > 8,
the normalization works correctly: y > div(8, 5). Similarly, an inequality 5 ·y < 9
should be rewritten to 5 · y ≤ 8 and normalized to y ≤ div(8, 5).

We also rewrite the divisibility constraints (i.e., div(y, α) ∼ f(�x)) using the
following transformations (in addition to applying (3)):

div(y, α) = f(�x)
α · f(�x) ≤ y < α · f(�x) + α

div(y, α) > f(�x)
y > α · f(�x) + α − 1

div(y, α) 	= f(�x)
α−1∧
i=0

y 	= α · f(�x) + i

div(y, α) ≤ f(�x)
y ≤ α · f(�x) + α − 1

An example for applying the first rule is div(y, 3) = 0: y could be either 0, 1, or 2;
or in other words 0 ≤ y ∧y < 3. For the second rule, an example is div(y, 3) > 0:
y could be anything greater or equal than 3, or alternatively greater than 2.
Similarly, div(y, 3) ≤ 0 is equivalent to y ≤ 2. Finally, the rule for disequalities
enumerates a finite number (equal to α) of disequalities of form y 	= f(x). For
instance, div(y, 3) 	= 1 is equivalent to y 	= 3 ∧ y 	= 4 ∧ y 	= 5.

The pseudocode of the algorithm that extracts a Skolem term for π in
LIA is shown in Algorithm 3. It handles constraints using the following helper-
operators.
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ASSMZ(α · y ∼ f(�x)) def= div(f, α)

Definition 5. Let h[y/�] denote the term h with term � substituted for variable
y. Then a helper-operator for the linear scan in LIA is implemented as follows.

SCANZ(�,H, n) def=

⎧
⎨

⎩
� if n = 0

ite
( ∧

h∈H

h[y/�], �, SCANZ

(
� + 1,H, n − 1

))
else

For the case when there exists an equality α · y = e(�x) in π, it is sufficient
to extract div(e, α) for sk, because requirement (j-totality) guarantees that e is
divisible by α. This is implemented in function ASSMZ. To handle disequalities,
the algorithm can only perform a linear scan, i.e., starting from the lower bound
to make the least possible increments (i.e., by one). As opposed to the binary
search, the linear scan guarantees that enough semantically distinct terms are
considered. We illustrate this in the following example.

Example 7. Consider π = (5 · y 	= 4 · x). Since there is no lower bound and no
upper bound, we allow � = 0 (alternatively, any other term can be chosen). Then,
since π has only one disequality, we get the final Skolem as a single if-then-else:
ite

((
5 · 0 	= 4 · x), 0, 1

)
.

4.3 Putting It All Together

Theorem 2. For some i, let φ[i, j](�x, �y) be in LRA (resp. LIA), and |�y| = N .
Then for each j ∈ [1, N ], Algorithm2 (resp. Algorithm3.) extracts a term sk[i, j],
such that (embedding) holds.

For proving this theorem, it remains to show how we obtain π(�x, �y[j]) that
Algorithm 2 (resp. Algorithm 3) should take as input with each �y[j]. Indeed, the
MBPs constructed in Sect. 3.3 allow occurrences of multiple variables from �y in
a clause in φ[i, j]. However, by construction, a variable �y[j] can appear in all
φ[i, k], 1 ≤ k ≤ j, but a variable �y[j] cannot appear in any φ[i, k], j < k ≤ N .
In particular, term φ[i,N ] is only over the variables �x and �y[N ]. Therefore, we
first apply Algorithm2 (resp. Algorithm 3) to φ[i,N ], to derive the Skolem term
sk[i,N ]. It is then substituted in all appearances of �y[N ] in other constraints
φ[i,N − 1], . . . , φ[i, 1]. Continuing such reasoning over the remaining variables
leads to obtaining suitable inputs for Algorithm2 (resp. Algorithm 3) and each
�y[j].

5 Synthesis of Compact Skolem Terms

Recall that Theorem 1 gives a way to construct a global Skolem term from
preconditions and relations, and Sect. 4 describes algorithms to extract a local
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term sk[i, j] from a relation φ[i, j]. So far, this provides a procedure that invokes
Algorithm 2 or Algorithm 3 as soon as possible, i.e., when φ[i, j] has just been
produced by the MBP-based procedure AE-VAL together with some pre[i].
However, for large formulas it is often the case that the number M of generated
MBPs is large, and so is a vector of tuples 〈pre[i],

∧
0<j≤N

φ[i, j]〉 where 0 < i ≤ M .

In this section, we propose to leverage the output of AE-VAL for producing
compact Skolem terms. We first describe how to reduce the number of distinct
Skolem terms among the tuples generated by AE-VAL for each y ∈ �y. Next, we
aim to reduce the depth of the overall decision tree in case of multiple outputs
�y, i.e., extracting a common if-then-else (ite) block which is shared among all
outputs.

5.1 Optimizing Decision Trees by Combining Preconditions

Fig. 2. Optimized decision tree.

Our goal is to decrease the depth of a decision
tree that combines Skolem terms for M different
preconditions. Recall that at each node i, where
0 < i ≤ M and for variable y = �y[j], the Skolem
term sk[i, j] and the precondition pre[i] should
be connected via (j-totality) and (embedding),
i.e.:

pre[i](�x) =⇒ ∃y . φ[i, j](�x, �y)
y = sk[i, j](�x) =⇒ φ[i, j](�x, �y)

Note that preconditions in the decision tree could potentially guard the same
Skolem terms, in which case we could compact the size. This is illustrated pic-
torially in Fig. 2 for the example shown earlier in Fig. 1. In particular, if sk[1, j]
and sk[2, j] in Fig. 1 could be replaced by a common sk′, then the precondi-
tions pre[1] and pre[2] can be merged using a disjunction, thereby decreasing
the depth of the decision tree. The challenge is that sk′ might not necessarily
be obtained by Algorithm2 or Algorithm 3, because Skolem constraints φ[1, j]
or φ[2, j], taken in isolation, are in general not restrictive enough. However, sk′

could be produced by Algorithm2 or Algorithm 3 if φ[1, j] ∧ φ[2, j] is given as
input.

Generalizing this idea further, we consider an expensive minimization algo-
rithm to search over all partitions of the set M

def= {1, . . . , M} and find the best
partition such that each index in a class of the partition can share the same
Skolem term. More formally, for each partition P

def= {p1, . . . pr} of M, for each
class pk in the partition, we check that:∨

i∈pk

pre[i](�x) =⇒ ∃y .
∧

i∈pk

φ[i, j](�x, y) (4)

If all r implications hold, then P is a valid candidate partition, associated with
r Skolem terms sk′, . . . , sk(r) derived from

∧
i∈p1

φ[i, j](�x, y), . . . ,
∧

i∈pr

φ[i, j](�x, y),

respectively. We then select the best partition among the valid candidate par-
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Algorithm 4: getPartitionClass(I, pre, φ, y = �y[j])
Input: Initial set of indices I, preconditions pre, constraints φ
Output: Output set of indices pk

1 pk ← I;
2 while

∨
i∈pk

pre[i](�x) 
=⇒ ∃y .
∧

i∈pk

φ[i, j](�x, y) do

3 pk ← {i ∈ pk | pre[i](�x) =⇒ ∃y .
∧

i∈pk

φ[i, j](�x, y)};

4 for i′ ∈ I \ pk do
5 if

∨
i∈pk∪{i′}

pre[i](�x) =⇒ ∃y .
∧

i∈pk∪{i′}
φ[i, j](�x, y) then

6 pk ← pk ∪ {i′};

7 return pk;

titions, based on size of resulting Skolem terms (or other cost criteria). Clearly,
examining all possible partitions would have exponential cost, with the check for
each partition class also being an expensive validity check.

Instead of the expensive exact minimization, we adopt a greedy strategy for
finding a good (but not necessarily the best) valid candidate partition, possibly
within a predetermined number of iterations. The routine for identifying each
partition class pk is shown in Algorithm 4. First, p1 is selected from M, then p2
is selected from M \ p1, and so on.

Algorithm 4 is based on iteratively guessing a set of indices pk and checking
an implication of the form (4). The guessing proceeds in two phases: first it
checks if all eligible indices from a set I ⊆ M are in pk. If so, the algorithm
terminates. Otherwise, it iteratively tries to strengthen the left side of (4) by
removing some of the disjuncts (line 3). After removing a disjunct pre[i′] from
the left side, the Skolem constraint φ[i′, j] should also be removed from the right
side, and the validity check repeats. This way, the algorithm is guaranteed to
find the set of indices pk (possibly, empty) in a finite number of iterations.

The second phase of the guessing aims at strengthening pk. It simply traverses
the set of indices I\pk (line 5), adds pre[i′] and φ[i′, j] to the left and right sides
of 4 respectively and checks validity. The motivation behind the second phase
is that the first phase could be too aggressive in practice, thus removing more
indices from pk than needed.

Example 8. Recall our formula from Example 1. For generating a Skolem term
for y1, we create the following ∀∃-formula and check its validity:

(x ≥ −1 ∨ x ≤ 2) =⇒ ∃y1 . (y1 < 5 · x ∧ y1 > −3 · x)
Since this formula is valid, our algorithm creates a single Skolem term sk[1, 1] =
sk[1, 2] = −3 · x + 1.

For generating a Skolem term for y2, the corresponding ∀∃-formula is invalid,
and our algorithm generates two different Skolem terms sk[2, 1] and sk[2, 2]:

(x ≥ −1 ∨ x ≤ 2) =⇒ ∃y2 . (y2 < x ∧ y2 > x)
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5.2 Minimizing the Depth of the Common Decision Tree

To allow re-use of theory terms among multiple outputs �y, a common ite-block
could be pulled outside of the individual decision trees for each output, denoted
Sk�y(�x, �y):

Sk�y(�x, �y) def= ite
(
pre[1](�x),

N∧

j=1

�y[j] = sk [1, j](�x), . . .

ite
(
pre[M − 1](�x),

N∧

j=1

�y[j] = sk [M − 1, j](�x),
N∧

j=1

�y[j] = sk [M, i](�x)
))

In general, depending on the cost criteria, it may be advantageous to not
have a common ite-block at all or to have it be common to a subset of the
outputs rather than all outputs. In this section, we consider a simple case where
a common ite-block is shared among all outputs. Then, the remaining goal is to
reduce the depth of this block by finding redundant branches.

Recall that Algorithm 4 can be used per output to find a good partition among
the tuples, i.e., to decide which branches of the ite-block can share the same
Skolem term. We view the results from this algorithm in the form of a matrix
of Skolem terms, with a row for each ite-branch and a column for each output.
Then, it is straightforward to identify redundant branches, which correspond to
identical rows in the matrix. We illustrate this process in an example.

Example 9. Consider a formula with four existentially quantified variables �y and
four preconditions. Suppose the algorithm from Sect. 5 returns the partitions of
the set {1, 2, 3, 4} for each variable in �y, as shown in the following matrix.

For instance, �y[1] requires a partition {p1} where p1 = {1, 2, 3, 4}. Vari-
able �y[2] requires partition {q1, q2} where q1 = {1} and q2 = {2, 3, 4}. Variable
�y[3] requires partition {r1, r2} where r1 = {1, 2, 4} and q2 = {3}. Variable �y[4]
requires partition {s1, s2, s3} where s1 = {1}, s2 = {2, 4} and s3 = {3}.

We can easily identify identical rows A1, . . . Ak in the matrix, such that for
all 0 < j < M , elements A1[j] = A2[j] = . . . = Ak[j] are equal.

�y[1] �y[2] �y[3] �y[4]
pre[1] p1 q1 r1 s1
pre[2] p1 q2 r1 s2
pre[3] p1 q2 r2 s3
pre[4] p1 q2 r1 s2

In this example, row A1 corresponds to pre[2], and row A2 corresponds to
pre[4]. Thus, individual Skolem terms for all variables for pre[2] and pre[4] can
be combined, and the depth of the common ite-block is reduced by one.

6 Evaluation

We implemented our synthesis algorithms on top of the AE-VAL tool [6] which
is in turn built on top of the Z3 SMT solver [5]. Note that the previous imple-
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mentation of AE-VAL was already able to solve quantified formulas for validity
via an iterative MBP construction and to extract Skolem constraints. However, it
did not provide procedures to extract Skolem functions (described in Sect. 4) or
to compact them (described in Sect. 5). In particular, note that during our com-
paction procedure, we use AE-VAL recursively to solve subsidiary quantified
formulas of the form (4).

6.1 Results on Benchmark Examples

We considered 134 ∀∃-formulas originated from various Assume-Guarantee con-
tracts written in the Lustre programming language [13] 4. The majority of bench-
marks are derived from industrial projects, such as a Quad-Redundant Flight
Control System, a Generic Patient Controlled Analgesia infusion pump, as well
as a Microwave model, a Cinderella-Stepmother game, and several hand-written
examples. Since the original set of benchmarks include minor variations of the
same tasks, we identified 80 distinct benchmarks5 for presentation in Table 1.

All the ∀∃-formulas had more than one existentially-quantified variable.
Table 1 presents the statistics and results on the benchmarks. The formulas
are over 5–100 universally-quantified variables and 2–49 existentially-quantified
variables. The highest depth of the common ite-block in the produced Skolem6

is 7. AE-VAL was able to terminate on all of them within a timeout of 60 s. The
solving stage (including construction of MBPs and collecting Skolem constraints)
took less than a second for all benchmarks. Compiling Skolem1 (i.e., without
compaction) took insignificant time, but compacting Skolem2 took much longer
for 11 outliers (the most crucial one is №16). This can be explained by many
iterations for greedily finding a good partition, as explained in Sect. 5.

Figure 3 visualizes the effect of the Skolem compaction. Each point in the
plot corresponds to a pair of runs of AE-VAL: the x-axis shows the size of the
compacted Skolem (i.e., extracted with the use of both techniques from Sect. 5),
and the y-axis shows the size of the naively created Skolem. The geometric
mean for the ratio is 2.06, and the largest improvement is 6.95 – seen for the
benchmark №38. In nearly half of the cases (35 out of 80), the depth of the
ite-structure in the Skolem decreased at least by one. However, what proved to
be the most effective for compaction is the factoring out of individual Skolem
terms for particular variables, i.e., AE-VAL found a function which is good for
all preconditions by greedy partitioning.

4 Not to be confused with the evaluation of [13] which applied AE-VAL iteratively,
and most of the formulas were invalid. Here, we considered only valid formulas and
focused only on the Skolem extraction.

5 These benchmarks are available at: http://www.cs.princeton.edu/∼grigoryf/aeval-
benchs.zip.

6 Without taking into account the individual ite-s due to computing greatest and
lowest bounds and handling disequalities, as described in Sect. 4.

http://www.cs.princeton.edu/~grigoryf/aeval-benchs.zip
http://www.cs.princeton.edu/~grigoryf/aeval-benchs.zip
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Table 1. Concrete evaluation data.

∀∃ . ψ Skolem1 Skolem2
size #∀ #∃ size #⇓ time size #⇓ time

1 371 71 25 192 5 0.46 80 4 3.37
2 337 71 49 116 2 0.31 61 2 0.38
3 337 70 49 106 2 0.3 64 2 0.27
4 302 100 30 175 4 0.29 95 4 1.28
5 296 39 14 180 5 0.29 61 3 2.03
6 296 98 30 175 4 0.29 95 4 1.34
7 267 90 49 168 3 0.42 77 3 0.71
8 247 36 25 126 4 0.33 39 3 0.49
9 222 39 8 128 4 0.34 54 3 0.79
10 210 52 7 27 2 0.07 20 2 0.12
11 201 51 30 231 5 0.39 124 5 4.87
12 201 50 30 130 3 0.23 77 3 0.45
13 197 21 14 58 3 0.09 15 1 0.08
14 195 33 9 199 3 0.24 77 2 0.35
15 178 30 8 101 3 0.21 44 2 0.34
16 174 10 7 321 7 0.95 195 6 91.3
17 166 39 23 552 2 0.3 232 2 0.23
18 155 52 15 151 2 0.17 67 2 0.16
19 151 23 20 115 2 0.22 64 2 0.21
20 149 11 8 240 5 0.73 128 4 3.01
21 147 24 9 260 4 0.35 87 3 0.75
22 147 23 9 120 2 0.18 69 2 0.31
23 140 31 7 34 2 0.07 27 2 0.15
24 139 30 8 139 3 0.22 37 1 0.24
25 137 47 20 89 2 0.19 49 2 0.23
26 134 22 8 210 6 0.44 74 4 12.6
27 134 21 8 54 2 0.18 36 2 0.25
28 117 36 15 151 2 0.15 53 1 0.09
29 105 22 8 290 6 0.44 61 3 9.38
30 105 21 8 138 3 0.25 66 3 0.42
31 102 71 30 176 4 0.27 99 4 1.18
32 102 32 5 21 2 0.11 14 2 0.11
33 95 20 7 94 4 0.29 39 3 0.76
34 95 19 7 72 3 0.25 44 3 0.41
35 84 33 23 552 2 0.3 232 2 0.22
36 82 26 5 21 2 0.09 14 2 0.11
37 82 25 5 21 2 0.09 14 2 0.1
38 78 21 15 431 4 0.35 62 1 0.18
39 78 20 15 107 2 0.14 41 1 0.09
40 75 25 4 165 4 0.38 147 4 0.81

∀∃ . ψ Skolem1 Skolem2
size #∀ #∃ size #⇓ time size #⇓ time

41 71 37 7 26 2 0.07 19 2 0.14
42 71 37 7 34 2 0.08 27 2 0.11
43 66 13 7 181 2 0.12 75 2 0.17
44 62 18 5 21 2 0.1 14 2 0.1
45 57 17 4 121 3 0.32 109 3 0.62
46 57 15 5 34 2 0.09 11 1 0.08
47 51 10 5 36 2 0.09 25 2 0.11
48 44 13 3 14 2 0.08 11 2 0.1
49 44 12 3 14 2 0.08 11 2 0.1
50 40 18 15 429 4 0.34 99 3 0.53
51 39 12 9 24 2 0.07 18 2 0.1
52 38 10 4 218 4 0.43 197 4 1.32
53 38 9 4 88 3 0.31 76 3 0.51
54 38 13 6 175 5 0.11 28 1 0.14
55 38 8 5 30 2 0.09 10 1 0.07
56 38 9 5 44 2 0.08 12 1 0.07
57 38 12 6 36 2 0.06 17 1 0.06
58 38 11 5 69 2 0.06 32 1 0.05
59 38 10 5 51 2 0.06 22 1 0.05
60 34 12 7 260 3 0.14 75 2 0.24
61 33 13 4 24 2 0.05 10 1 0.05
62 28 9 4 47 2 0.09 38 2 0.17
63 28 8 3 12 2 0.08 9 2 0.09
64 26 8 3 11 2 0.08 8 2 0.11
65 26 8 4 42 2 0.07 11 1 0.06
66 25 5 3 14 2 0.08 11 2 0.12
67 24 14 11 26 2 0.08 15 2 0.11
68 22 8 4 28 2 0.05 13 1 0.05
69 22 7 4 20 2 0.05 9 1 0.05
70 21 6 5 13 2 0.05 8 2 0.11
71 21 16 9 24 2 0.06 18 2 0.1
72 20 13 4 198 4 0.4 177 4 1.47
73 20 15 6 181 5 0.11 28 1 0.12
74 20 10 5 44 2 0.09 12 1 0.07
75 20 14 5 71 2 0.05 32 1 0.06
76 16 5 2 13 2 0.06 11 2 0.12
77 15 7 4 47 2 0.1 34 2 0.23
78 14 9 4 42 2 0.06 11 1 0.06
79 12 8 5 14 2 0.05 9 2 0.1
80 12 9 4 30 2 0.05 13 1 0.05

: Synthesis task; Skolem1: without compaction, Skolem2: with compaction;
size: total number of Boolean and arithmetic operators, # : number of universally-
quantified variables, # : number of existentially-quantified variables, # : depth of the
ite-block, time: synthesis time (in seconds, for Skolem2, including the compaction).

6.2 Comparison with CVC4

We also compared AE-VAL with state-of-the-art tool CVC4 [20], version 1.7-
prerelease [git master 464470c3], the winner of the general track of the fifth
SyGuS-COMP. Like AE-VAL and unlike most of the synthesizers based on an
enumerative search (e.g. [2]), the refutation-based synthesizer in CVC4 does not
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Fig. 4. Benefits of AE-VAL over CVC4.

enforce any syntactic restrictions on its solutions, e.g., formal grammars or tem-
plates, and it is more efficient than an enumerative synthesizer also implemented
in CVC4.

Among 80 benchmarks from Table 1, CVC4 was able to solve 55, and it
exceeded a timeout of 60 s for the remaining 25 benchmarks. In Fig. 4(a), we
report the ratio of depths of the ite-blocks generated in the implementations. In
most of the cases, our implementations have shorter depths.

Note that due to reasonings of encoding [19], CVC4 solved slightly different
problems, in which it extracted only individual Skolems for each output vari-
able. It is unable to combine them in one relation or share them, as opposed
to what our tool does. Thus, we are unable to compare the overall size of the
implementations produced by CVC4 and our method.
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In addition, we performed comparison experiments on isolated groups of
benchmarks from SyGuS-COMP, in which the formal grammars were ignored
by both tools. In particular, we considered nearly fifty single-invocation bench-
marks from groups array sum, array search, and max. The performance of both
AE-VAL and CVC4 on array sum and array search is similar – both tools
converge in less than a second. Figure 4(b) shows a comparison of AE-VAL with
CVC4 on a sequence of max-benchmarks, in which the number of arguments n
for the function max being synthesized varies from 2 to 16. AE-VAL and CVC4
both converge with similar results, but the synthesis time varies significantly.
Note that for n < 10, both tools require less than 1 s (and CVC4 is slightly
faster), but for larger n, the performance of CVC4 gets worse almost expo-
nentially, while the performance of AE-VAL remains reasonable. In particular,
CVC4 is unable to synthesize a max function with 17 inputs after two hours,
but AE-VAL synthesizes a solution in just forty seconds.

7 Related Work

Our approach follows the classical flow of functional synthesis for unbounded
domains proposed in [16]. Their main idea is to enhance quantifier-elimination
procedures with a routine to generate witnesses. However, in practice, it requires
an expensive conversion of the specification to DNF and applying quantifier
elimination for each disjunct. With our MBP-based lazy quantifier-elimination
procedure AE-VAL, we have made the approach more scalable and robust,
while keeping the elegance and improving generality of the witness generation
procedures. Furthermore, our approach benefits from additional optimization
stages to make the final implementations compact.

As mentioned earlier, an older version of AE-VAL was built and successfully
used for solving the validity of ∀∃-formulas [6]. It has been successfully used in
many applications:

– Realizability checking and synthesis from Assume-Guarantee contracts [13],
– Non-termination checking, and (potentially) synthesis of never-terminating

lasso-shaped programs [9],
– Synthesis of simulation relations between pairs of programs [6,7],
– Synthesis of (candidates of) inductive invariants [8].

However, it did not include any procedures to generate terms for a pure func-
tional synthesis setting, or to compact the Skolems and share terms. We believe
our new procedures can further improve the above-listed and other applications
of AE-VAL.

An alternative way to quantifier elimination for solving functional synthesis
tasks is implemented in CVC4 [20]. Their refutation-based approach aims at
determining the unsatisfiability of the negated form of ∀∃-formula. A solution
is then directly obtained from an unsatisfiable set of ground instances of the
negated synthesis conjecture. Similarly to AE-VAL, CVC4 proceeds lazily and
creates a decision tree. However, as confirmed by our evaluation, their decision
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trees are often larger than the decision trees produced by AE-VAL for the same
tasks.

Laziness in the search-space exploration allows viewing both AE-VAL
and CVC4 as instances of Counterexample-Guided Inductive Synthesis
(CEGIS [21]). Typically, the CEGIS-based algorithms, e.g., [1,2,21,22], perform
a guided search over the syntax tree of the program being synthesized. Our app-
roach to synthesis, as well as [16] and [20], is driven by the logical structure of a
background theory and does not put any restriction on the syntax tree size. This
allows generating large and expressive implementations (such as max-functions
over dozens of inputs) quickly.

There is a rich body of work on logic synthesis, i.e., synthesis of Boolean
gate-level functions from specifications in propositional logic [12]. This consid-
ers synthesis of two-level (e.g., sum of products) or multi-level circuits, with
minimization of various cost criteria (size, delay, power, etc.), and with sharing
Boolean gates across multiple outputs. While our motivation for sharing “logic”
is similar, note that we identify theory terms that can be shared within the imple-
mentation of an output, and across implementations of multiple outputs. Thus,
our minimization/compaction is not at the Boolean-level, but requires theory-
specific reasoning (validity checks). Furthermore, most logic synthesis efforts
start with functional specifications. There have been some efforts in considering
relational specifications [4,15], but these are fairly straightforward extensions of
well-known functional techniques.

Finally, a procedure similar to Model-Based Projection has also been used for
existential quantification in Boolean formulas [11], where it was called circuit-
cofactoring. The application considered there was SAT-based model checking,
where a pre-image of a given set of states is computed by existential quantifica-
tion of a set of variables. The main idea was to use a model on the quantified
variables to derive a circuit-cofactor (including disjunctions), which can cap-
ture many more states than a generalized cube on the remaining variables. This
resulted in far fewer enumerations than cube-based enumeration techniques.

8 Conclusions

We have presented a novel approach to functional synthesis based on lazy quanti-
fier elimination. While checking realizability of the given specification, our algo-
rithm produces a system of synthesis subtasks through effective decomposition.
Individual solutions for these subtasks generate a decision tree based imple-
mentation, which is further eligible for optimizations. Compared to the existing
approaches, our generated solutions are more compact, and the average running
time for their synthesis is reasonably small. We have implemented the app-
roach in a tool called AE-VAL and evaluated it on a set of reactive synthesis
benchmarks and benchmarks from SyGuS-COMP. We have identified classes of
programs when AE-VAL outperformed its closest competitor CVC4 both on
running time and on ite-depth of implementations. In the future, we wish to
extend AE-VAL to other first-order theories, to support (whenever applicable)
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enumeration-based reasoning, which utilizes grammars and results in even more
compact solutions, and to leverage specifications enhanced with input-output
examples.
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Abstract. In this paper we propose a new abstract domain for static
analysis of binary code. Our motivation stems from the need to improve
the precision of the estimation of the Worst-Case Execution Time
(WCET) of safety-critical real-time code. WCET estimation requires
computing information such as upper bounds on the number of loop
iterations, unfeasible execution paths, etc. These estimations are usually
performed on binary code, mainly to avoid making assumptions on how
the compiler works. Our abstract domain, based to polyhedra and on
two mapping functions that associate polyhedra variables with registers
and memory, targets the precise computation of such information. We
prove the correctness of the method, and demonstrate its effectiveness
on benchmarks and examples from typical embedded code.

1 Introduction

In real time systems, checking that computations complete before their deadlines
under all possible contexts is a crucial activity. Worst-Case Execution Time
(WCET) analysis consists in computing an upper bound to the longest execution
path in the code. It is usually performed on the binary code, because it needs
information on the low-level instructions executed by the hardware processor.

In this paper, we propose a static analysis of binary code based on abstract
interpretation using a polyhedra-based abstract domain. Our motivation is the
need to enhance existing WCET analysis by improving the computation of upper
bounds on the number of iterations in loops. However, our abstract domain has
other potential applications (not developed in this paper), such as buffer-overflow
analysis, unfeasible paths analysis or symbolic WCET computation [6].

Most analyses by abstract interpretation proposed in the literature are per-
formed on source code. On the contrary, as it is usually the case for WCET
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1 void send_packet(char *buf) {

2 int iphdr_l = ((struct ip*)buf)->hdr_len;

3 int udp_l = ((struct udp*)(buf + iphdr_l))->len;

4 for (int i = 0; i < udp_l; i++) { /* do CRC */ }

5 ethernet_write(buf);

6 }

7

8 void send_request(int iphdr_size, int udp_size) {

9 char buf[1024];

10 if ((iphdr_size >= 20) && (iphdr_size <= 60) &&

11 (udp_size >= 4) && (udp_size <= 100)) {

12 struct ip *h1 = buf;

13 struct udp *h2 = buf + iphdr_size;

14

15 h1->hdr_len = iphdr_size;

16 h2->len = udp_size;

17 fill_packet_payload(buf);

18 send_packet(buf);

19 }

20 }

Fig. 1. Network-inspired benchmark

analysis, we propose to analyze binary code. There are several important advan-
tages in performing static analysis of binary code: (1) we analyze the code that
actually runs on the machine, hence no need for additional assumptions on how
the compiler works; (2) in presence of undefined behaviors (of source code), the
analysis is more accurate; (3) we can perform the analysis even without access
to the source code.

The main problem is that, in higher-level representations, the variables,
addresses and values are well identified. In binary code, the notion of program
variable is lost, so we can only analyze processor registers and memory loca-
tions. We propose to identify the subset of registers and memory locations to
be represented in the abstract state as the analysis progresses. This representa-
tion enables us to design a relational analysis on binary code, which is the main
contribution of the paper.

1.1 Motivating Example

As a motivating example, we present a snippet of C code, inspired from packet
processing network drivers in Fig. 11. We remind however that our methodology
addresses (disassembled) binary code.

The send_request function sends a request in some application-layer proto-
col that runs over UDP/IP. Lines 12–13 build a packet composed of a variable-
length IP header, a fixed-length UDP header, and a variable-length UDP payload

1 The original bench listing is available here: https://pastebin.com/C5UPYRx3.

https://pastebin.com/C5UPYRx3
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(some operations on IP or UDP fields have been omitted). Note that the starting
address of the UDP header depends on the size of the IP header (h1->hdr_len).
At line 17, we call the function responsible for putting the useful data (payload)
into the packet. At line 18, the packet is sent using the send_packet function,
which belongs to the lower-level network layer API. This function does not take
the packet size as parameter, since it can be deduced from the header: in lines
2-3, the function parses the packet to obtain the UDP payload size, and the
UDP checksum is computed by iterating over the payload.

To automatically compute a bound on the number of iterations of the loop
at line 4, the analysis has to discover that udp_l equals udp_size (due to
line 16). This can be done with an appropriate use of a relational abstract domain.
However, very few of the existing analyses running on binary code use a rela-
tional domain, and to the best of our knowledge, none support relations between
addresses that are not know statically (udp_l, udp_size). Let us emphasize that
such a use of pointers and memory buffers is typical of many embedded systems:
for instance in network packet processing, but also in many device drivers.

1.2 Contribution

The contributions of the paper are:

– A new relational abstract domain POLYMAP, which consists of a polyhedron
and two mappings that track the correspondence between data locations (reg-
isters or memory) and polyhedra variables;

– An abstract interpretation procedure, which computes abstract states of
POLYMAP for a small assembly language, and which we prove to be sound;

– An experimental evaluation of our prototype called Polymalys. It implements
the previous procedure and computes upper bounds to loop iterations. We
compare Polymalys with other existing tools on a set of classic benchmarks.

2 Language Definition

In this section, we define the analyzed language, called MEMP, a simplified assem-
bly language where we focus on memory indirection operators.

2.1 Syntax

In order to simplify the presentation, we make the following assumptions: all data
locations have the same size, memory accesses are aligned to the word size, there
are no integer overflows, and function calls are inlined (these limitations could be
lifted using for instance [10,28]). We also reduce the set of instructions to a mini-
mum (Polymalys actually supports the ARM A32 instruction set). The syntax of
MEMP is defined in Fig. 2. A program is a sequence of labeled instructions. Instruc-
tions operate on registers, labels or constants. Concerning memory instructions,
if r contains value c, then ∗(r) denotes the content at address r (below, we
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overload the notation and also denote ∗(c) for this content). OPc denotes the
concrete semantics of operation OP. RAND emulates undefined registers, to rep-
resent e.g. function parameters. Other instructions are directly commented in
the figure (on the left of each instruction).

Programs (P) ::= l1 : I1, l2 : I2, . . . , ln : END
Labels (L) ::= {l1, l2, . . .}
Registers (R) ::= {r1, r2, . . .}
Constants (C) ::= {c1, c2, . . .}
Instructions (I) ::=
r1 OPc(r2, r3) | OP r1 r2 r3

r c | SET r c

Emulate undefined r | RAND r

r1 ∗(r2) | LOAD r1 r2

∗(r1) r2 | STORE r1 r2

Branch to l if r = 0 | BR r l

Halt | END

Fig. 2. Syntax of MEMP

2.2 Formal Semantics

The small-steps semantics of MEMP is defined below. The semantics of data and
arithmetic/logic operations is defined in Fig. 3 by function i−→, which operates
in a context (R, ∗) consisting of two mappings where:

– R : R �→ Z is the registers content, which maps registers to their values. We
assume that it is initially empty;

– ∗ : Z �→ Z is the memory content, which maps memory addresses to their
values. We assume that it is also initially empty. Note that integer wrapping
could be used to restrain addresses to be in N instead of Z [10].

For a given mapping m, we denote m[x : y] the mapping m′ such that m′(x) =
y and, for every register x′ �= x, m′(x′) = m(x′). In other words, m[x : y]
denotes a single mapping substitution (or mapping addition if x was previously
unmapped). We also denote m\(x1 : x2) the mapping such that the association
x1 : x2 is removed from m.

The semantics of control flow operations is defined in Fig. 4, by the function
c→, which adds a program counter pc to the previous context. We use e→ to
denote the last transition of the program.

3 Abstract Domain

The abstract domain we propose is based on the polyhedral abstract domain [12],
to which we add information to track relations between polyhedra variables and
registers or memory addresses.



118 C. Ballabriga et al.

(SET r c,R, ∗) i (R[r : c], ∗)
c = random()

(RAND r,R, ∗) i (R[r : c], ∗)
R(r2) = c2 R(r3) = c3 c1 = OPc(c2, c3)

(OP r1 r2 r3,R, ∗) i (R[r1 : c1], ∗)
R(r2) = c2 ∗(c2) = c1

(LOAD r1 r2,R, ∗) i (R[r1 : c1], ∗)
R(r1) = c1 R(r2) = c2

(STORE r1 r2,R, ∗) i (R, ∗[c1 : c2])

Fig. 3. Semantics of data and arithmetic operations.

P [pc] = BR r l R(r) �= 0

P � (pc,R, ∗) c (pc+ 1,R, ∗)
P [pc] = BR r l R(r) = 0

P � (pc,R, ∗) c (l,R, ∗)

P [pc] = END

P � (pc,R, ∗) e (R, ∗)
P [pc] = I I {∈� END, BR} (I,R, ∗) i (R′, ∗′)

P � (pc,R, ∗) c (pc+ 1,R′, ∗′)

Fig. 4. Semantics of control-flow operations.

3.1 Polyhedra

A polyhedron p denotes a set of points in a Z vector space bounded by linear con-
straints (equalities or inequalities). More formally, let |S| denote the cardinality
of set S. Let Cn denote the set of linear constraints in Z

n on the set of variables
Vn, where |Vn| = n. Then 〈c1, c2, ..., cm〉 denotes the polyhedron p consisting
of all the vectors in Z

n that satisfy constraints c1, c2, . . ., cm, where ci ∈ Cn

for 1 ≤ i ≤ m (n and m are unrelated). We denote dim(p) = n the dimension
of p. In the rest of the paper, the term variable implicitly refers to polyhedron
variables. We denote:

– P the set of polyhedra;
– s ∈ p when s (with s ∈ Z

dim(p)) satisfies the constraints of polyhedron p;
– p 
� p′ iff ∀s ∈ p, s ∈ p′;
– p′′ = p �� p′ the convex hull of p and p′;
– p′′ = p � p′ the union of the constraints of p and p′;
– vars(p) the set of variables of p, where |vars(p)| = dim(p) by definition;
– proj (p, x1 . . . xk) the projection of p on space x1 . . . xk, with k < |dim(p)|;
– p[xi/xj ] the substitution of variable xj by xi in p.

3.2 Abstract States

In polyhedral analysis of source code, variables of the polyhedra are related
to variables of the source code. In our case, polyhedra variables are related to
registers and memory contents. We use the term data location to refer indistinctly
to registers or memory addresses. Let V denote the set of polyhedra variables.
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The set of abstract states POLYMAP is defined as A = P × (R �→ V)× (V �→
V). An abstract state a ∈ A, with a = (p,R�, ∗�), consists of a polyhedron
p, a register mapping R� and an address mapping ∗�. We have R�(r) = v iff
variable v represents the value of register r in p. We have ∗�(x1) = x2 iff variable
x2 represents the value at the memory address represented by variable x1. We
denote varsR(p) the codomain of R� (i.e. register content variables), varsA(p)
the domain of ∗� (i.e. address variables) and varsC(p) the codomain of ∗� (i.e.
address content variables). Sets varsR(p), varsA(p) and varsC(p) are disjoint
and are all subsets of vars(p).

Example 1. In the following abstract state, register r0 contains value 2, and
address 2 contains value 1:

({x1 = 2, x2 = x1, x3 = 1}, {r0 : x1}, {x2 : x3})

The usual operators on the abstract domain (inclusion, join and widening),
and its least and greatest elements are presented in Sect. 4.4.

3.3 Aliasing

In a general sense, aliasing occurs in a program when a data location can be
accessed through several symbolic names. As we will see in Sect. 4, aliases play
an important role in our analysis. In fact, we introduce mechanisms that prevent
their occurrence in the abstract state (see Sect. 4.2), so as to simplify the analysis.
We define the aliasing relation between two variables x1 and x2 of a polyhedron
p as follows:

– Cannot alias: whenever 〈x1 = x2〉 ∩ p = ∅;
– May alias: whenever 〈x1 = x2〉 ∩ p �= ∅;
– Must alias, denoted x1 ≡ x2: whenever p 
� 〈x1 = x2〉.
The aliasing relation between a register r and a variable x is defined by the
aliasing relation between R�(r) and x. Similarly, the aliasing relation between
two registers r1, r2 is defined by the aliasing relation between R�(r1) and R�(r2).

To avoid ambiguities with notations on constraints, let same(x1, x2) denote
the fact that x1 and x2 are the same polyhedron variables (not just equivalent
variables). There is no need to check register aliases, because a single register
cannot be mapped to two different variables (R� is a function). The absence of
aliases can thus be stated as follows.

Definition 1. Let s = (p,R�, ∗�) be an abstract state. We say that s is alias
free iff:

∀x1, x2 ∈ varsA(p), x1 ≡ x2 ⇒ same(x1, x2)
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4 Computing Abstract States

Our analysis follows the abstract interpretation framework proposed in [12],
adapted to our setting with non-local control-flow, following the technique pro-
posed in Astrée [21] and MOPSA [23]. An important singularity of our analysis
is that polyhedral variables are progressively created or removed during the anal-
ysis. Whenever a new polyhedron variable is introduced, we assume it is a fresh
variable that has never been used at any other point during the analysis.

4.1 Interpretation Algorithm

We use (p′, [ri : xi], [xj : xk])(·) as a shorthand for λ(p,R�, ∗�).(p � p′,R�[ri :
xi], ∗�[xj : xk]), and denote − when a state component remains unchanged. Pro-
cedures to compute the join (�), widening (�) and antialias of abstract states,
and the transfer function (I )� of instruction I are detailed in the remainder of
this section. The complete interpretation procedure is described in Algorithm1.
It applies to a program P of MEMP. During the interpretation, we keep a subset
L of labels of interest. Abstract values are stored in a map M from labels to
abstract values. We assume that loop header labels LW of P have previously
been identified using an existing analysis (e.g. Tarjan’s algorithm [29]). Figure 5
reports a running example of this analysis, that will be used throughout the rest
of the section.

1: RAND r0

2: RAND r7

3: SET r1 4

4: SET r2 5

5: ADD r3 r0 r1

6: STORE r3 r1

7: SUB r5 r7 r1

8: BR r5 10

9: STORE r3 r2

10: LOAD r6 r3

11: END

Label Polyhedron Registers Memory

5 p1 = 〈x1 = 4, x2 = 5〉 R�
1 = {r0 : x0, r1 : x1,
r2 : x2, r7 : x7}

6 p2 = p1 �� 〈x3 = x0 + x1〉 R�
2 = R�

1[r3 : x3]
7 p3 = p2 �� 〈x4 = x3, x5 = x1〉 R�

2 ∗�
1 = {x4 : x5}

8 p4 = p3 �� 〈x8 = x7 − x1〉 R�
3 = R�

2[r5 : x8] ∗�
1

10 (from 9) p5 = p4 �� 〈x9 = x2〉 R�
3 ∗�

2 = {x4 : x9}
10′ (from 8) p6 = p4 �� 〈x8 = 0〉 R�

3 ∗�
1

unify(10, 10′) p7 = p6[x9/x5] R�
3 ∗�

3 = {x4 : x9}
10 	 10′ p8 = p2 �� 〈x4 = x3, x8 = x7 − x1, R�

3 ∗�
3x1 ≤ x9 ≤ x2〉

11 p8 �� 〈x10 = x9〉 R�
3[r6 : x10] ∗�

3

Fig. 5. Running example of analysis
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Algorithm 1. Interpret(P)

1: procedure update(�, a, L) � Auxiliary procedure
2: a ← antialias(a)
3: if � ∈ LW then � Check if l is a loop header
4: new ← M [l ] �(M [l ] � a

)

5: else
6: new ← M [�] � a
7: end if
8: if new �� M [�] then � Abstract value for � changed, propagate
9: M [�] ← new ; L ← L ∪ �

10: end if
11: end procedure
12:
13: for all (�, I) ∈ P do � Start of main procedure
14: M [�] ← ⊥ � Begin with empty abstract states
15: end for
16: M [�1] ← 	; L ← {�1} � Program starting label
17: while L �= ∅ do � Fixpoint iteration
18: Pick and remove � from L
19: match P [�]
20: with BR r �′

21: update(�′, (〈r = 0〉, −, −)(M [�]), L) � Branching case
22: update(� + 1, (−, −, −)(M [�]), L) � Not branching case

23: with END

24: skip

25: with
26: update(� + 1, ((P [�])�)(M [�]), L) � Abstract semantics of I

27: end while
28: return M

4.2 Anti-aliasing

Whenever updating an abstract state, we immediately remove aliases (line 2),
because the absence of aliases significantly simplifies the analysis in places where
we need to check the equivalence of two variables (LOAD, STORE, � and �). In
practice, aliases are introduced when encountering a conditional branching (see
Sect. 4.3). We remove an alias using procedure antialias, which relies on the
procedure Merge defined below. It is based on the following observation: if two
addresses are equal, then the values stored at these addresses must be equal too.
Let x1, x2 be two variables of varsA(p) such that: ¬same(x1, x2) ∧ x1 ≡ x2.

Merge((p,R�, ∗�), x1, x2) = (p′,R�, ∗�′
)

with p′ = (p[x1/x2])[∗�(x1)/ ∗� (x2)]

and ∗�′
= ∗� \ (x2 : ∗�(x2))

Function antialias : A → A applies Merge for each pair of distinct equivalent
address variables of an abstract state.
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Example 2. In state a below, address x2 is an alias on address x1. Thus, x4

must be equal to x3, so Merge(a, x1, x2) replaces x2 by x1 and x4 by x3. In
the result, x3 is constrained by the original constraints of x3 and x4, and the
memory mapping x2 : x4 is discarded.

a = (〈x1 = x2, x3 ≥ 4, x4 ≤ 5〉, −, ∗� = {x1 : x3, x2 : x4})

Merge(a, x1, x2) = (〈4 ≤ x3 ≤ 5〉, −, ∗�′
= {x1 : x3})

4.3 Transfer Functions

We now define the constraints generated for the analysis of each instruction of
our language. We denote (I )� : A → A the transfer function of instruction I.

Binary Operation. If the relation r1 = OPc(r2, r3) is linear, we map the target
register to a new variable, subject to the corresponding linear constraint in the
polyhedron. The memory mapping is unchanged. Otherwise, the target register
is mapped to a new unconstrained variable.

(OP r1 r2 r3)� =

{
(〈x = OPc(R�(r2),R�(r3))〉, [r1 : x], −)(·) if linear(OPc)
(−, [r1 : x], −)(·) otherwise

Example 3. In Fig. 5, at label 6 (i.e. the label immediately following the ADD
operation) we introduce the constraint x3 = x0 + x1 and the register mapping
R�

1(r3) = x3.

Set. The impact of the immediate load instruction is straightforward:

(SET r1 c)� = (〈x = c〉, [r1 : x],−)(·)

Rand. The random instruction maps a register to an unconstrained variable:

(RAND r1)� = (−, [r1 : x],−)(·)

Load. If the input state contains a memory address variable that is equivalent
to the load address (note that for alias free states, if such a variable exists, it
is unique), then in the output state the value of the destination register is the
value of the memory value mapped to this address. Otherwise, the value of the
destination register is undefined:

(LOAD r1 r2)� =

{
(〈x = ∗�(a)〉, [r1 : x], −)(·) if a ≡ r2

(−, [r1 : x], −)(·) otherwise

Example 4. In Fig. 5, at label 10 we have x4 ≡ r3 and ∗�(x4) = x9, so at label 11
we introduce the constraint x10 = x9 and the mapping R�

3[r6] = x10.



Static Analysis of Binary Code with Memory Indirections Using Polyhedra 123

Store. Again, we need to consider the impact of aliases. If there exists an address
variable equivalent to the target register, then there already exists a memory
mapping for this address. The previous content at this address is replaced by
the content of the source register (see Replace below). Otherwise, we create a new
memory mapping (see Create below). An alias free state contains at most one
address variable that must-alias with r1. It may however contain several may-
alias address variables a′. For each such a′, this means that a′ either equals r1,
which requires a Replace, or is different from r1, which has no impact. We apply
operator � on both cases to manage this uncertainty, and add the constraints
for each may-alias address (see May below).

(STORE r1 r2)� =

{
λs.Replace(a)(May(s)) if ∃a ∈ varsA(p), a ≡ r1

λs.Create(May(s)) otherwise

With (© denotes function composition):

Replace(a) = (〈x = R�(r2)〉, −, [a : x])(·)
Create = (〈xi = R�(r1), xj = R�(r2)〉,−, [xi : xj ])(·)

May = ©
{a∈A|a may-alias r1}

λs.(Replace(a)(s) � s)

Example 5. In Fig. 5, at label 7, we create a new memory mapping ∗�
1(x4) = x5

and we introduce the constraints x4 = x3, x5 = x1.

Example 6. In Fig. 5, at label 10, when coming from label 9, we replace a previous
mapping, x4 is mapped to x9 (instead of x5 previously), and we introduce the
constraint x9 = x2.

Branching. In Algorithm 1, when branching to a target label (�′) the branching
condition holds (r = 0). We add no constraint for the otherwise case because it
cannot be encoded using a linear relation.

Example 7. In Fig. 5, at label 10, when coming from label 6, we add the con-
straint x8 = 0.

4.4 Abstract Domain Operators, Least and Greatest Elements

Our analysis introduces new variables and removes old ones as it progresses.
There is no predefined correspondence between variables and data locations,
because the set of data locations used by the program is unknown a priori. As
a consequence, it may happen that two abstract states use different variables to
designate the same data location. This implies that to compare two states we
first need to check whether some variables of the two states actually correspond
to the same data location. This verification relies on a unification procedure,
presented below. Unification is used for inclusion testing, and also in the join
and widening operators.
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Unification. Unification checks for the equivalence of two variables in two poly-
hedra, p1 and p2. Intuitively, we try to express each variable as a linear expression
of a well-chosen set of variables to conveniently check their equivalence.

Let Vc = vars(p1)∩ vars(p2) and p′ = proj (p1, Vc)�� proj (p2, Vc). We denote
npiv(p′) the set of non-pivot variables discovered by Gauss-Jordan elimination
performed on the system of equality constraints of p′ (we exclude inequalities).
Then, npiv(p′) is such that, in p′:

– no variable in npiv(p′) is equivalent to a linear expression of other variables
of npiv(p′);

– each variable in vars(p′)\npiv(p′) is equivalent to a linear expression of vari-
ables from npiv(p′).

Let linexpr(x, p1,npiv(p′)) denote the linear expression representation of
variable x ∈ vars(p1) in terms of variables in npiv(p′), represented as the
vector of the linear expression coefficients. Let C ′ be the constraint system of
proj (p1, x∪npiv(p′)). If C ′ contains an equality constraint involving x, then com-
puting linexpr(x, p1,npiv(p′)) is straightforward. Otherwise, the empty vector is
returned. If several (non-equivalent) equality constraints appear, we arbitrarily
pick one. Note that, even though our unification can miss equivalent variables,
this does not jeopardize the soundness of the analysis (see Sect. 5.3 and in par-
ticular Lemma 3).

Algorithm 2 describes our unification procedure. We directly modify the sec-
ond state to unify it with the first one. First, we compute set of non-pivot vari-
ables (line 4). Then, we check for the equivalence of address variables according
to their linear expression representation, and we perform variable substitutions
in p′

2, R�′
2 and ∗�′

2 in case of equivalence (line 8). Register unification is simpler,
we just replace the bindings in R�′

2 by those of R�
1 (line 12).

Algorithm 2. unify((p1,R�
1, ∗�

1), (p2,R�
2, ∗�

2))

1: (p′
2, R�′

2 , ∗�′
2 ) ← (p2, R�

2, ∗�
2)

2: Vc ← vars(p1) ∩ vars(p2) � common variables
3: p′ ← proj (p1, Vc) �� proj (p2, Vc)
4: B ← npiv(p′)
5: for all (xi, xj) ∈ varsA(p1) × varsA(p2) do
6: vi = linexpr(xi, p1, B); vj = linexpr(xj , p2, B)
7: if vi �= [] and vj �= [] and vi = vj then � variables are equivalent

8: Replace xj by xi and ∗�(xj) by ∗�(xi) in p′
2, R�′

2 , and ∗�′
2

9: end if
10: end for
11: for all r ∈ Dom(R�

1) ∩ Dom(R�
2) do � variables are trivially equivalent

12: Replace R�
2(r) by R�

1(r) in p′
2, R�′

2 , and ∗�′
2

13: end for
14: return (p′

2, R�′
2 , ∗�′

2 )
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Example 8. In Fig. 5, when computing unify(10, 10′), s1 corresponds to the state
of 10 and s2 to the state of 10′. A possible set of non-pivot variables is {x0, x7}.
In s1 (and in s2), we have x4−x0+0·x7−4 = 0, so linexpr(x4) = [1; −1; 0; −4]
(corresponding, respectively, to the coefficients of x4, x0, x7, and the constant).
Since ∗�

2(x4) = x9 (in s1) and ∗�
1(x4) = x5 (in s2), we replace x5 by x9 in s2.

Inclusion. Let us now define formally the partially ordered set (A,
). Given
two functions f and g, we denote f ⊆ g when Dom(f) ⊆ Dom(g) and ∀x ∈
Dom(f) : f(x) = g(x). Introducing new mappings in R� or ∗� (i.e. enlarging
their domains) actually removes feasible concrete states, thus we define abstract
states inclusion as follows (see Lemma 4 for more details):

Definition 2. Let a1 = (p1,R�
1, ∗�

1) and a2 = (p2,R�
2, ∗�

2). The ordering opera-
tor 
 is defined as follows:

a1 
 a2 ⇔ p′
1 
� p2 ∧ R�

2 ⊆ R�′
1 ∧ ∗�

2 ⊆ ∗�′
1

with (p1′,R�′
1 , ∗�′

) = unify(a2, a1)

There exists several equivalent representations of the greatest and least ele-
ments of (A,
). We define them as follows:

Definition 3. The greatest element of (A,
) is denoted �, with � = (〈〉, ∅, ∅).

Definition 4. The least element of (A,
) is denoted ⊥ and defined as ⊥ =
(p⊥,R�

⊥, ∗�
⊥), where p⊥ is the empty polyhedron and R�

⊥, ∗�
⊥ are such that every

data location is mapped to a variable.

Join. Algorithm 3 describes our join procedure. It unifies the input states
(line 1), then computes the convex hull on the unified states (line 2). Then,
if a memory location or register is bound in one input state and unbound in the
other, it is unbound in the result state.

Example 9. In Fig. 5, when computing 10 � 10′, we obtain identical register and
memory mappings for 10 and unify(10, 10′). The convex hull p5 �� p7 groups the
constraints on x9 (x1 ≤ x9 ≤ x2) and lifts those on x8.

Widening. Due to the presence of loops, the widening operator � is used to
ensure that our analysis reaches a fixpoint. � is defined just like �, except that
we use a polyhedra widening operator �� in place of ��.

4.5 Loop Bounds

To compute loop bounds, for each loop header label � we create a “virtual”
register r�, to count the number of iterations of �. We instrument the program
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Algorithm 3. (p1,R�
1, ∗�

1) � (p2,R�
2, ∗�

2)

1: (p′
2, R�′

2 , ∗�′
2 ) = unify((p1, R�

1, ∗�
1), (p2, R�

2, ∗�
2))

2: p ← p1 �� p′
2

3: R� ← ∅; ∗� ← ∅
4: for all r ∈ Dom(R�′

1 ) do

5: if R�
1(r) = R�′

2 (r) then R�(r) ← R�
1(r) end if

6: end for
7: for all a ∈ Dom(∗�′

1 ) do

8: if ∗�
1(a) = ∗�′

2 (a) then ∗�(a) ← ∗�
1(a) end if

9: end for
10: return (p, R�, ∗�)

so that the register r� is set to 0 when entering loop �, and incremented at each
iteration of � (which is fairly classic, see e.g. [15]).

Finally, let P a program of MEMP and M = interpret(P ). Let �e be the label of
instruction END in P . Let (pf ,R�

f , ∗�
f ) = M [�e]. Then the loop bound for a loop

header � is computed as max(pf ,R�
f [r�]) (where max(p, x) denotes the greatest

value of variable x satisfying the constraints of p).

5 Soundness

In this section, we prove the soundness of our analysis. We first establish a set of
important lemmas on our abstract domain operators, and then prove soundness
with respect to the concretization function.

5.1 Join

Operator � is not commutative. We establish that it does however compute an
upper bound of its operands, with respect to our inclusion definition (Lemma1).
The proof is based on two auxiliary properties on mapping inclusions:

Property 1. Let a1 = (p1,R�
1, ∗�

1), a2 ∈ A, a3 = (p3,R�
3, ∗�

3) = a1 � a2. We have:

(p1 
� p3) ∧ (R�
3 ⊆ R�

1) ∧ (∗�
3 ⊆ ∗�

1)

Proof. Considering Algorithm3: (p1 
� p3) follows from line 2, (R�
3 ⊆ R�

1) from
line 5, and (∗�

3 ⊆ ∗�
1) from line 8. �

Property 2. Let a1, a2, a′
1 ∈ A, with a′

1 = (p′
1,R�′

1 , ∗�′
1 ) = unify(a2, a1). Then:

(R�
2 ⊆ R�

1) ∧ (∗�
2 ⊆ ∗�

1) ⇒ (R�
2 ⊆ R�′

1 ) ∧ (∗�
2 ⊆ ∗�′

1 )

Proof. Obvious from Algorithm2.

Lemma 1. Let a1, a2 ∈ A. We have: (a1 
 a1 � a2) ∧ (a2 
 a1 � a2).
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Proof. Polyhedron inclusion follows from the polyhedra join operator. We must
also prove the inclusion of register and memory mappings (after unification).

Case for a1 follows from Properties 1 and 2. Concerning the case for a2, let
a3 = a1 � a2. When computing a3, a variable v of a2 falls into one of three cate-
gories: (1) v is also in vars(p1), it remains in a3; (2) v is equivalent to a variable
v1 of vars(p1), it is replaced by v1 in a3 (Algorithm 2, line 8); (3) otherwise,
it is removed (Algorithm 3). Then, let a′

2 = unify(a3, a2). When computing a′
2,

variables that fell in category 2 at the previous step (when computing a3) will
be replaced by their equivalent in a3, because they fall again in category 2. Thus
we obtain R�

3 ⊆ R�′
2 , ∗�

3 ⊆ ∗�′
2 , which concludes the proof. �

5.2 Widening

Lemma 2 establishes that operator � is indeed a widening operator.

Property 3. Let a1, a2 ∈ A. We have: (a1 � a2) 
 (a1 � a2).

Proof. The property holds because � and � use the same unification procedure,
and because we assume that �� is a valid polyhedra widening operator. �
Property 4. Let a1 = (p1,R�

1, ∗�
1), a2 ∈ A, a3 = (p3,R�

3, ∗�
3) = a1 �� a2. We

have: (p1 
� p3) ∧ (R�
3 ⊆ R�

1) ∧ (∗�
3 ⊆ ∗�

1)

Proof. Same as for Property 1.

Property 5. Let (bn)n∈N be a non decreasing infinite sequence in A. Then, the
sequence a0 = b0 and an+1 = an � bn+1 converges in a finite number of steps.

Proof. Thanks to Property 4, and considering that there is a finite quantity of
data locations, there exists N ∈ N such that for all i > N , R�

i+1 = R�
i and

∗�
i+1 = ∗�

i . Thus, ai+1 = (pi �� qi+1,R�
i , ∗�

i), where qi+1 is the polyhedron of bi+1

and pi that of ai.
Assuming that �� is a valid polyhedra widening operator, there exists m > N

such that pm+1 = pm. Since m > N we also have R�
m+1 = R�

m and ∗�
m+1 = ∗�

m,
which concludes the proof. �
Lemma 2. Operator � is a widening operator.

Proof. Follows from Properties 3 and 5.

5.3 Concrete and Abstract States

Let C = ((R �→ Z) × (Z �→ Z)) denote the set of concrete states (pairs of
registers contents and memory contents). Data locations are mapped to values
in a concrete state, while they are mapped to polyhedra variables in the abstract
state. The concretization function γ relates data location values to data location
variables as follows:
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Definition 5. Let a = (p,R�, ∗�) be an abstract state. The concretization func-
tion γ is defined as follows:

γ : A −→ P(C)

(p,R�, ∗�) �−→
{

(∗,R) | ∃f : Dom(∗�) → Dom(∗),⎛
⎝ ��

r∈Dom(R�)

〈R�(r) = R(r)〉 �
��

x∈Dom(∗�)

〈x = f(x), ∗�(x) = ∗(f(x))〉
⎞
⎠ 
� p

}

More intuitively, we build a polyhedron p′ with the following constraints: (1)
register values of the concrete state (R(r)) must be equal to the corresponding
variable in the abstract state (R�(r)); (2) we try to find a function f that maps
address variables to addresses (x = f(x)), then the content of each address
variables (∗�(x)) must be equal to the memory value (∗(f(x))). If p′ 
� p then
the concrete state satisfies the constraints of p and belongs to the concretization.

Example 10.

a = ({1 ≤ x1 ≤ 2, x2 = x1, x3 = 1}, {r0 : x1}, {x2 : x3})
γ(a) = {({r0 = 1}, {∗(1) = 1}}), (f(x2) = 1)

({r0 = 2}, {∗(2) = 1})} (f(x2) = 2)

Let c−→∗ denote the transitive closure of c→. The soundness of our abstract
interpretation is established as follows:

Theorem 1. Let P be a MEMP program. Let M = Interpret(P ). Then, for any
concrete state sinit : (P � (l1, sinit)

c−→∗(�, s)) =⇒ (s ∈ γ(M [�])).

Proof. The proof of soundness follows from the structure of Algorithm1, and
from the following lemmas, which establish the soundness of each operator used
in the algorithm.

Lemma 3. Let a1, a2 ∈ A. We have: γ(a1) = γ(unify(a2, a1)).

Proof. Let a′
1 = unify(a2, a1). Since we assume that a1 and a2 are alias free

(recall Sect. 4.2), any two non-equivalent variables in a1 are also replaced by
non-equivalent variables in a′

1 (or unchanged). Thus a′
1 is a simple renaming of

a1, and so a1 and a′
1 have the same concretization. �

Lemma 4. Let a1, a2 ∈ A. We have: (a1 
 a2) ⇒ γ(a1) ⊆ γ(a2).

Proof. Let s ∈ γ(a1). Let a′
1 = (p′

1,R�′
1 , ∗�′

1 ) = unify(a2, a1). From Lemma 3, s ∈
γ(a′

1), thus there exists a function f for s satisfying the property of Definition 5
with a = a1. Now, assume that p′

1 
� p2 ∧ R�
2 ⊆ R�′

1 ∧ ∗�
2 ⊆ ∗�

1 (i.e. a1 
 a2).
Then there exists a function f ′ for s that satisfies Definition 5, with a = a2: just
take f ′ such that it is the restriction of f to Dom(∗�

2). So s ∈ γ(a2). �
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Lemma 5. Let a1, a2 ∈ A. We have: γ(a1) ∪ γ(a2) ⊆ γ(a1 � a2).

Proof. From Lemmas 1 and 4.

Lemma 6. Let a1, a2 ∈ A. We have: γ(a1) ∪ γ(a2) ⊆ γ(a1 � a2).

Proof. From Lemmas 5, 4 and Property 3.

Lemma 7. Let a ∈ A. We have: γ(a) ⊆ γ(antialias(a)).

Proof. Let (p,R�, ∗�) = a. Let x1, x2 ∈ varsA(p) be such that ¬same(x1, x2) ∧
x1 ≡ x2. Then:

s ∈ γ(a) ⇒ s ∈ γ(p � 〈x1 = x2, ∗�(x1) = ∗�(x2)〉,R�, ∗�)

⇒ s ∈ γ((p[x1/x2])[∗�(x1)/ ∗� (x2)],R�, ∗�)
⇒ s ∈ γ(Merge(a1, x1, x2))

The soundness of antialias follows. �
Lemma 8. Let P be a MEMP program. Let M = Interpret(P ). Then, for all labels
�, �′ of P :

(P � (�,R, ∗) c→ (�′,R′, ∗′)) =⇒ ((R, ∗) ∈ γ(M [�]) ⇒ (R′, ∗′) ∈ γ(M [�′]))

Proof. Trivially follows from the formal semantics and from the definition of
transfer functions, except for STORE. Let a′ = (p′,R�′

, ∗�′
) = (STORE r1 r2 )�(a).

The proof follows from noting that: (1) Both in the Create and Replace cases,
we obtain ∗�′

(R�′
(r1)) = R�′

(r2), which is coherent with the formal seman-
tics of STORE; (2) The soundness of May follows from the soundness of � and
Replace. �
Lemma 9. Algorithm1 terminates.

Proof. Because � is applied on loop headers and � is a valid widening
operator. �

6 Related Works

Abstract interpretation using polyhedra has been first described in [12]. Static
analysis tools such as Astree [21], Frama-C [11] or PAGAI [18] use various abstract
domains (including polyhedra) to generate invariants for proving various prop-
erties, such as the absence of array out-of-bounds accesses for instance.

While Astree and Frama-C work on the Abstract Syntax Tree, PAGAI pro-
cesses LLVM Intermediate Representation (IR). Compared to our approach, both
the AST and LLVM representations are closer to the source code, and contain
information on variables and their types, and also a precise control flow. This
makes the analysis easier to design, but less precise as far as WCET is concerned.
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Several other abstract domains other that polyhedra, capable of representing
linear constraints between variables, have been proposed, such as for instance [20,
24,30]. Choosing the most appropriate domain boils down to a trade-off between
the execution time and the precision of the analysis. In our work we chose the
polyhedra domain and thus favored precision. However, we think that it would
be simple to adapt our work to another domain (e.g. to reduce analysis time),
because our computation of memory and register mappings does not depend on
how constraints between variables are represented and computed.

Several works address static analysis of binary code [4,7,13,26,27], however
they do not consider the problem of identifying memory locations of interest. In
contrast, we identify these locations during the analyses.

An important problem when dealing with binary code analysis is to figure
out the set of interesting data locations used by the program. This is related
to pointer analysis (the so-called aliasing problem), and has been extensively
studied [17,19]. While the majority of pointer analyses have been proposed in
the context of compiler optimizations, a certain number of ideas can be borrowed
and applied to binary code analysis.

In this paper, our approach is applied to static loop bound estimation, in the
context of WCET analysis, so we compare our results with other loop bound
estimation tools. The oRange tool [8] is based on an abstract interpretation
method defined in [2]. It provides a very fast estimation of loop bounds, but it is
restricted to C source code. SWEET [14] features a loop bound estimator, which
works on an intermediary representation (ALF format). The approach is based
on slicing and abstract interpretation and it generally provides very tight loop
bounds even in complex cases, but the running time of the analysis seems to
depend on the loop bound values, and in our experience for large loop bounds
the analysis did not terminate.

KTA [9] is a static WCET analysis tool based on abstract interpretation
and path exploration of binary code. As its purpose is to compute a WCET,
it does not directly provide information on loop bounds and we could not find
documentation on the method used to compute these bounds. Thus, KAT was
not included in our benchmarks. Furthermore, the analysis time seems to depend
on the loop bound values.

Compared to these existing works, our approach combines the polyhedral
domain with binary code analysis, taking into account memory accesses and
supporting analysis of relations between unknown memory addresses; moreover
our method is proved to be sound and to always terminate.

7 Experimental Results

Our methodology is implemented in a prototype called Polymalys. Our experi-
ments consist of two parts. First, we validate our approach by comparing Poly-
malys with other existing loop bound analysis tools on classic benchmarks. Then,
we provide detailed examples of programs for which Polymalys successfully esti-
mates loops bounds, while the other tools fail to do so.
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7.1 Implementation

Polymalys is implemented as a plugin of OTAWA (version 2.0), an open source
WCET computation tool [5]. Polymalys relies on OTAWA for control-flow analy-
sis and manipulation, and on PPL [3] for polyhedra operations. Polymalys imple-
ments several optimizations to reduce the number of variables and constraints
of an abstract state (p,R�, ∗�), most notably:

– Unmapped variables: any variable that is not in R� or in ∗� can be safely
removed from the polyhedron by performing a projection on the remaining
(used) variables;

– Dead registers: we remove dead register variables by perform a preliminary
liveness analysis, using classic data-flow analysis methods [1];

– Out-of-scope variables: whenever modifying the stack pointer register (SP),
assuming that the stack grows downwards, for each pair of variables (xi, xj)
such that ∗�(xi) = xj , if p 
� 〈xi < R�[SP ]〉 then xi and xj can be removed.

7.2 Benchmarks

The analyses have been executed on a PC with an Intel core i5 3470 at 3.2 Ghz,
with 8 GB of RAM. Every benchmark has been compiled with ARM crosstool-
NG 1.20.0 (gcc version 4.9.1), using the -O1 optimization level.

First, we report the results of our experiments on the Mälardalen bench-
marks [16] and on PolyBench [25] in Table 1. The benchmarks gemver, covari-
ance, correlation, nussinov and floyd-warshall are from PolyBench, while the
others are from Mälardalen. We exclude benchmarks that are not supported
by OTAWA, mainly due to floating point operations or indirect branching (e.g.
switch). We compare Polymalys with SWEET [22], PAGAI [18] and oRange [8].
For each benchmark, we report: the number of lines of code (in the C source),
the total number of loops, the number of loops that are correctly bounded by
each tool, and the computation time. We do not report the computation time for
SWEET because we only had access to it through an online applet. For oRange,
computation time is below the measurement resolution (10 ms), except for edn,
where it reaches 50 ms. We ran PAGAI with the -d pk -t lw+pf options. For the
PolyBench benchmarks, we did not succeed in running them with SWEET due to
the online applet limitation. For the correlation benchmark, we did not succeed
in running it with PAGAI, it terminates without giving any result.

The execution time of Polymalys is typically higher than that of PAGAI
because we introduce more variables and constraints. We believe that we can
reduce the gap with additional optimizations, however Polymalys will probably
remain more costly , because it works at a lower level of abstraction.

Cases where tools fail to analyze some loop bounds are depicted in bold.
There is only one benchmark for which Polymalys did not find a loop bound:
for janne complex. The difficulty is that it contains complex loop index updates
inside a if-then-else. On the contrary, there are several cases where Polymalys
successfully estimates loops bounds, while the other tools fail to do so. Note
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that PAGAI does not specifically compute loop bounds, instead it computes loop
invariants. We deduced loop bounds from these invariants.

Table 1. Benchmark results.

Loops correctly bounded Time (ms)

Benchmark LoC Loops Polymalys SWEET PAGAI oRange Polymalys PAGAI

crc 16 1 1 1 1 1 150 40

fibcall 22 1 1 1 1 1 230 50

janne complex 26 2 1 2 1 1 870 140

expint 56 3 3 2 3 3 732 9140

matmult 84 5 5 5 5 5 3455 1380

fdct 149 2 2 2 2 2 7421 2150

jfdctint 165 3 3 3 3 3 10660 1960

fir 189 2 2 2 2 1 4989 390

edn 198 12 12 12 9 12 21356 15660

ns 414 4 4 4 4 4 1700 380

gemver 186 10 10 N/A 10 10 12136 6029

covariance 138 11 11 N/A 11 11 7248 836

correlation 168 13 13 N/A N/A 13 9129 25062

nussinov 143 8 8 N/A 8 8 7272 2811

floyd-warshall 112 7 7 N/A 2 7 2904 468

7.3 Loop Bounds Examples

We further illustrate the differences between tool capabilities on some synthetic
program examples.

Example 11. The following example contains pointer aliasing and pointer arith-
metic:

foo() {

int i, bound = 10;

int *ptr = &bound;

ptr++; ptr--; *ptr = 15; k = 0;

for (i = 0; i < bound; i++);

}

PAGAI does not find the loop bound (the loop is considered unbounded),
because it does not infer that ptr = &bound when executing the instruction
*ptr=15. Other tools bound the loop correctly (15 iterations).
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Example 12. The following example contains an off-by-one array access:

1 #define SIZE 10
2 foo(int offset) {

3 int i, bound = 10;
4 int tab[SIZE];

5 if ((offset > SIZE) || (offset < 0))

6 return -1;

7 tab[offset] = 100;

8 for (i = 0; i < bound; i++);

9 }

The off-by-one error (lines 5–6) may cause the array cell assignment (line 7)
to overwrite the bound variable with the value 100. Polymalys correctly detects
that the loop may iterate 100 times, while oRange and SWEET detect a maximum
of 10 iterations. PAGAI also bounds to 10 iterations, but warns about a possible
undefined behavior and unsafe result. Note that the bound depends on the stack
variable allocation layout. In our experiments, the compiler allocates the bound
variable next to the array. Such an information is much easier to analyze at the
binary code level than at the source code level.

Example 13. The following example shows the benefits of a relational domain:

1 #define MAXSIZE 10
2 foo() {

3 int base, end, i;

4 if (end - base > MAXSIZE)

5 end = base + MAXSIZE;

6 for (i = base; i < end; i++);

7 }

Here, we do not know statically the value of end and base. However, due to
the if statement (line 4), Polymalys introduces the constraint end − base ≤ 10.
Thus, Polymalys bounds the loop correctly (10 iterations), while PAGAI, oRange
and SWEET do not.

Example 14. Finally, we report analysis results for the motivational example of
Fig. 1. Polymalys correctly finds that the loop bound is equal to the maximum
size of the UDP payload; PAGAI, oRange and SWEET fail to provide any bound.

8 Conclusion

In this paper we propose a novel technique for performing abstract interpretation
of binary code using polyhedra. It consists in adding new variables to the polyhe-
dra as the analysis progresses, and maintaining a correspondence with registers
and memory addresses. Thanks to the relational properties of polyhedra, our
technique naturally provides information on pointer relations when compared
to other techniques based on non-relational domains. While the complexity of
our method is currently still higher than other existing techniques, we believe
that there is room for improvement. In particular, we are planning to extend our
work with a modular procedure analysis and a data-structure analysis.
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Abstract. Program analysis by abstract interpretation using relational
abstract domains—like polyhedra or octagons—easily extends from state
analysis (construction of reachable states) to relational analysis (con-
struction of input-output relations). In this paper, we exploit this exten-
sion to enable interprocedural program analysis, by constructing rela-
tional summaries of procedures. In order to improve the accuracy of
procedure summaries, we propose a method to refine them into disjunc-
tions of relations, these disjunctions being directed by preconditions on
input parameters.

1 Introduction

Linear Relation Analysis (LRA [17])—or polyhedral abstract interpretation—is
a classical method for discovering invariant linear inequalities among the numer-
ical variables of a program. This method is still one of the most powerful numer-
ical program analysis techniques, because of the expressivity of the discovered
properties. However, it is not applicable to large monolithic programs, because
of its prohibitive complexity, in terms of number of involved variables—in spite
of recent progress in polyhedra algorithmics [22,37,49]. An obvious solution con-
sists in using it in a modular way: the analysis of reasonably small procedures can
provide, once and for all, a summary as an input-output relation; this summary
can be reused in the analysis of programs calling the procedure. The relational
nature of LRA is, of course, beneficial in this process.

On the other hand, the numerous works on interprocedural analysis, often
concluded that such a “bottom-up” approach—where a procedure is analyzed
before its callers—generally results in very imprecise summaries, because the
procedure is considered independently of its calling context. One can object that
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this imprecision can be also due to the poor expressivity of the used domains,
in particular those commonly used in compilers (e.g., data-flow analysis [32]).

So interprocedural analysis can provide a solution to the prohibitive cost of
LRA, which, in turn, can provide a convenient expressive power for expressing
more accurate procedure summaries.

This idea of using LRA to synthesize input-output relations is quite straight-
forward and not new. In particular, it is systematically applied in the tool
PIPS [3,23], which considers each basic statement as an elementary relation,
and synthesizes the input-output relation of a full program by composing these
relations bottom-up. In this paper, we specialize the approach to the synthesis of
procedure summaries. An easy way for building a relational summary of a pro-
cedure consists in duplicating the parameters to record their initial value, then
performing a standard LRA of the body, which provides the summary as the
least upper bound (convex hull) of the results at return points of the procedure.

However, it appears that conjunctions of linear constraints, i.e., convex poly-
hedral relations, are too restrictive. Obviously, procedures may exhibit very dif-
ferent and irregular behaviors according to the values of conditions appearing in
tests. For instance,

– in many cases, whether an outermost loop is entered at least once or not is
very relevant for the global behavior of the procedure;

– when a procedure has several return points, they are likely to correspond to
quite different behaviors;

– for a simple recursive procedure, the base case(s) should be distinguished
from those which involve recursive calls.

So it is natural to look for summaries that are disjunctions of polyhedral rela-
tions. However, algorithms for manipulating polyhedra do not extend easily
to general disjunctions of polyhedra. A solution consists in using trace parti-
tioning [9,28,38,47]. This solution is used in [24,26], where the partitioning is
directed by formulas on Boolean variables. Here, we will propose such a parti-
tioning directed by well-chosen preconditions on input parameters.

Contributions: While being mainly interested in LRA, we consider a more gen-
eral framework. We provide a general formalization of relational abstract inter-
pretation, that we didn’t find elsewhere. As its use for computing procedure
summaries often provides too rough results, we propose an approach to build
disjunctive summaries, based on precondition partitioning. The choice of parti-
tions is a heuristic process. We propose a method based on successive partition
refinements, guided, on one hand, by the reachability of control points, and
on the other hand, by the partitioning of summaries of called procedures. The
method has been implemented in a prototype analyzer. Our experiments give
encouraging results.

The paper is organized as follows. To situate our work, we first survey the
abundant literature on interprocedural program analysis (Sect. 2). Since our app-
roach can be applied in a more general context than LRA, we will develop each
aspect in a stratified fashion: first, we consider the very general framework,
then we present a specialization to LRA, before an application on a running
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example. Section 3 is concerned with concrete relational semantics of programs,
and introduces the notations in the general framework and for numerical pro-
grams, together with our running example. Sections 4 and 5 deal with relational
abstract interpretation and its use for building procedure summaries relative to
a precondition. In view of the results on our example, in Sect. 6, we propose
to compute disjunctive summaries directed by a partition of preconditions. In
Sect. 7, we present a way of partitioning preconditions by successive refinements.
The application of our method to recursive procedures is illustrated in Sect. 8.
Section 9 briefly presents our prototype implementation, and some experiments
are described in Sect. 10. Section 11 gives the conclusion and sketches some future
work.

2 Related Work

Interprocedural analysis originated in side-effects analysis, from works of
Spillman [51], Allen [1,2] and Barth [6].

Interprocedural analyses can be distinguished according to the order in which
procedures are traversed. In top-down analyses, procedures are analyzed follow-
ing their invocation order [2], from callers to callees, while in bottom-up analy-
ses, procedures are analyzed according to the inverse invocation order, from the
callees up to the callers, by computing procedure summaries. Hybrid analyses
[53] combine top-down and bottom-up analyses. We are interested in bottom-up
approaches since each procedure is analyzed only once, regardless of the calling
contexts, in possibly much smaller variable environments, thereby allowing a
modular analysis with potential scalability improvements for numerical analyses
such as LRA.

Sharir and Pnueli [48] introduced the functional approach and the call strings
approach for distributive data flow frameworks. The functional approach com-
putes procedure summaries, either from the bottom-up composition of individual
propagation functions or by propagating data flow properties in a top-down fash-
ion and by tabulating properties obtained at the exit node of a procedure with
the associated property at entry. In the call strings approach, data flow proper-
ties are tagged by a finite string which encodes the procedure calls encountered
during propagation. Call strings are managed as stacks and updated during
propagation through a procedure call or return.

Reps et al. [46] proposed an algorithm belonging to the family of functional
approaches to solve data flow problems with finite semilattices and distributive
propagation functions in polynomial time, by recasting these data flow prob-
lems into graph reachability problems. Jeannet et al. [30,50] proposed a method
reminiscent of the call strings approach, for the relational numerical analysis of
programs with recursive procedures and pointers to the stack. It is a top-down
approach based on an abstraction of the stack. An implementation is available
in the Interproc tool [25]. Abstract states are partitioned according to Boolean
conditions, but not according to possible input abstract states of a procedure.
Yorsh et al. [52] proposed a bottom-up approach for finite distributive data flow
properties and described how precise summaries for this class of properties can
be constructed by composition of summaries of individual statements.
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A relational abstraction of sets of functions for shape analysis is proposed in
[27], considering functions of signature D1 → D2, provided that abstractions A1

of P(D1) and A2 of P(D2) exist, and that A1 is of finite cardinality. This abstrac-
tion is relational since it is able to express relations between images of abstract
elements mapped by a set of functions, but the abstraction A1 is required to be
of finite cardinality, thus excluding numerical abstract domains such as convex
polyhedra.

Gulwani et al. [20] proposed a backward analysis to compute procedure sum-
maries as constraints that must be satisfied to guarantee that some generic
assertion holds at the end of a procedure. A generic assertion is an assertion
with context variables which can be instantiated by symbols of a given the-
ory. Procedure summaries are obtained by computing weakest preconditions of
generic assertions. These generic assertions must be given prior to the analysis,
thus forbidding the automatic discovery of procedure properties.

Cousot and Cousot [15,16] describe the symbolic relational separate analy-
sis for abstract interpretation, which uses relational domains, relational seman-
tics and symbolic names to represent initial values of variables modified by a
procedure. When instantiated with the convex polyhedra abstract domain, this
approach computes procedure summaries which are input-output relations rep-
resented by a single convex polyhedron, with no ability to capture disjunctive
behaviors in procedures. Recursive procedures are supported, as presented earlier
in [13,14,21].

Müller-Olm et al. [40,42] proposed an interprocedural bottom-up analysis
to discover all Herbrand equalities between program variables in polynomial
time. This approach was extended to linear two-variables equalities [18] and
to affine relations [41]. This approach considers only abstracted programs with
affine assignments, ignoring conditions on branches and dealing conservatively
with other assignments. We are proposing a more general approach, which is
also able to capture some disjunctive behaviors.

In the PIPS tool [3,23], statements are abstracted by affine transformers
[35,36] which are input-output relations represented by convex polyhedra. The
summary of a whole procedure is obtained from the composition of statement
transformers, in a bottom-up fashion. Recursive procedures are not supported
and each procedure summary is a single affine input-output relation, preventing
the expression of disjunctive behaviors.

Popeea et al. [43–45] presented an analysis to both prove user-supplied safety
properties and to find bugs by deriving conditions leading either to success or
failure in each procedure. Disjunctive numerical properties are handled by a
complete decision procedure for linear arithmetic provided by the Omega Test
[31]. Our approach is able to discover automatically some disjunctive behaviors
of procedures without requiring user-provided assertions.

Kranz et al. [33] proposed a modular analysis of executables based on Heyting
completion [19]. Unfortunately, in the convex polyhedra abstract domain, the
pseudo-complement a ⇒ b = �{d | a � d � b} of a relative to b is not available
in general.
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3 Concrete Relational Semantics

3.1 General Framework

In our general framework, a program or a procedure is just a transition system.
We introduce below a few definitions and notations.

States and Relations: Let S be a set of states. Let 2S be the powerset of S. Let
R = 2S×S be the set of binary relations on S.

– We define src, tgt the projection functions R �→ 2S such that: ∀r ∈ R,

src(r) = {s0 ∈ S | ∃s1 ∈ S, (s0, s1) ∈ r}, tgt(r) = {s1 ∈ S | ∃s0 ∈ S, (s0, s1) ∈ r}
– If U ⊆ S, we define IdU the relation {(s, s) | s ∈ U}.
– If r1, r2 ∈ R, we denote by r1 ◦ r2 their composition:

r1 ◦ r2 = {(s, s′) | ∃s′′, (s, s′′) ∈ r1 and (s′′, s′) ∈ r2}
Forward, Backward Relational Semantic Equations: Let ρ ∈ R be a transition
relation on S. We are interested in computing an upper approximation of its
transitive closure ρ∗, which can be defined as a least fixpoint:

ρ∗ = μr.IdS ∪ (r ◦ ρ) (forward equation)
= μr.IdS ∪ (ρ ◦ r) (backward equation)

Trace Partitioning: We use the classical “trace partitioning” technique [38,47].
Assume that the set S is finitely partitioned: S = S1 ⊕ S2 ⊕ . . . ⊕ Sn. This par-
titioning can reflect the control points in a program or a control-flow graph, but
it can also be more “semantic”, and express state properties, like preconditions.
If r ∈ R, for each i, j ∈ {1, . . . , n}, we define r(Si, Sj) = r ∩ (Si × Sj).

With these notations, the relations ρ∗(Si, Sj) can be defined by the following
system of fixpoint equations (henceforth, we consider only forward computation,
backward computation is symmetrical):

∀j �= i, ρ∗(Si, Sj) =
n⋃

k=1

ρ∗(Si, Sk) ◦ ρ(Sk, Sj)

ρ∗(Si, Si) = IdSi
∪

n⋃

k=1

ρ∗(Si, Sk) ◦ ρ(Sk, Si)

Concrete Relational Summaries: Let p be a procedure, S, ρ, I, E , respectively, its
set of states, its transition relation, its sets of initial states (global precondition)
and exit states. We assume that S is partitioned, and that I, E belong to the
partition. The concrete relational summary of p is σp = ρ∗(I, E). So, for the
forward computation of the summary, we are concerned with the computation
of ρ∗(I, Sj), j = 1...n, according to the equations

ρ∗(I, Sj) =

(
n⋃

k=1

ρ∗(I, Sk) ◦ ρ(Sk, Sj)

)
∪

{
IdI if Sj = I
∅ otherwise

}
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Concrete Semantics of Procedure Calls: Let S be the set of states of a proce-
dure p, T be the set of states of a program calling p. For a given call to p, let
us write π the mapping ∈ 2S×S �→ 2T×T representing the parameter passing
mechanism (generally, a renaming of formal parameters into actual ones). Then,
if Ti (resp. Tj) represents the sets of states just before (resp., just after) the call,
the elementary relation corresponding to the call is ρ(Ti, Tj) = π(σp).

3.2 Numerical Programs and Procedures

Procedures: For simplicity, and without loss of generality, the following assump-
tions are taken:

– All procedure parameters are supposed to be passed by reference. However,
we are not concerned with pointer manipulation, and we entrust existing
analyses to detect aliasing problems.

– Global variables are dealt with as additional parameters.
– For clarity, we will consider that all variables are parameters, since local

variables don’t raise any problem, but complicate the presentation.

In LRA, only numerical variables—taking their values in a numerical domain
N (= Z or Q)—are considered. A state of a numerical procedure with n variables
is thus a pair (c, V ), where c ∈ C is a control point (a line, a statement, a block
in a control-flow graph, . . . ), and V = (v1, ..., vn) ∈ N n is a vector of numerical
values. Control points provide a natural partitioning of such a set of states:
Sc = {(c, V ) | V ∈ N n}. The set of initial states I of a procedure with entry
point cI is such an ScI , possibly restricted by a precondition AI ⊆ N n on
parameter values: I = {(cI , V ) | V ∈ AI}.

From State to Relational Collecting Semantics: Given such a partition {Sc | c ∈
C}, the usual collecting semantics defines the set Ac of reachable variable val-
uations in each Sc, such that Ac = {V | (c, V ) is a reachable state from I}, as
the least solution of a system of fixpoint equations:

Ac = Fc ({Ac′ | c′ ∈ C}) ∪
{

AI if c = cI
∅ otherwise

where the semantic function Fc expresses how the states in Sc depends on the
states at other control points. This state semantics can be straightforwardly
extended to relational semantics as follows: for each variable vi, a new variable
v0

i is introduced to record the initial value of vi. The new set of states is thus
C × N 2n, and the new initial state is

I = {(cI , (v0
1 , . . . v

0
n, v1, . . . , vn)) | (v0

1 , . . . , v
0
n) ∈ AI ∧ vi = v0

i , i = 1...n}

The relational semantics is equivalent to the state semantics of the same proce-
dure, initialized with the assignments v0

i = vi for each i = 1...n.
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Concrete Relational Summary: Let E ⊂ C be the set of exit points of the pro-
cedure. Then,

⋃
c∈E Ac is the concrete summary of the procedure. In presence

of local variables, they should be eliminated from this expression by existential
quantification.

3.3 A Very Simple Example

Our example program is the classical Euclidean division, shown below with its
relational semantic equations:

void div (int a, b, *q, *r){
assume (a ≥ 0 && b ≥ 1);

1 *q=0; *r=a;
2 while
3 (*r ≥ b) {
4 *r = *r-b; *q = *q+1;
5 }
6 }

A1 = {(a0, b0, q0, r0, a, b, q, r) |
a0 ≥ 0 ∧ b0 ≥ 1 ∧ a = a0∧
b = b0 ∧ q = q0 ∧ r = r0}

A2 = A1[q ← 0][r ← a]
A3 = A2 ∪ A5

A4 = A3 ∩ (r ≥ b)
A5 = A4[r ← r − b][q ← q + 1]
A6 = A3 ∩ (r ≤ b − 1)

The least solution for A6, the unique exit point, is the concrete summary of the
procedure: a = a0 ∧ b = b0 ∧ a = bq + r ∧ q ≥ 0 ∧ b − 1 ≥ r ≥ 0. Notice that
it contains a non linear relation, so it cannot be precisely obtained by LRA.
For simplicity, we pretended to duplicate all parameters. Of course, in practice,
pure input parameters (“value” parameters, whose value is not changed in the
procedure) as well as pure output parameters (“result” parameters, whose initial
value is not used in the procedure) don’t need to be duplicated.

4 Relational Abstract Interpretation

4.1 General Framework

Relational Abstract Domains: A relational abstract domain is a complete lattice
(R�,�,⊥,�,�,�) related to R by a Galois connection, i.e., a pair of increasing
functions: αR : R �→ R� (abstraction), γR : R� �→ R (concretization), such that
∀r ∈ R, r� ∈ R�, α(r) � r� ⇔ r ⊆ γ(r�).

If U ⊆ S, we denote by Id �
U the abstract relation αR(IdU ). If r�

1, r
�
2 ∈ R�,

we define r�
1 ◦ r�

2 their composition as αR(γR(r�
1) ◦γR(r�

2)). A relational abstract
domain induces two abstract domains, S�

→ and S�
← on 2S :

∀U ⊆ S, αS→(U) = αR(U × S), αS←(U) = αR(S × U)

Notice that both S�
→ and S�

← are included in R�. We can define the abstract
projections src� : R� �→ S�

→ and tgt� : R� �→ S�
← by:

src�(r�) = αS→(src(γR(r�))), tgt�(r�) = αS←(tgt(γR(r�)))
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Relational Abstract Analysis: Let ρ be a transition relation, and ρ� be an upper
bound of its abstraction. We assume the availability of both a widening and a
narrowing operation ∇,Δ : R� × R� �→ R�. Classically [12], an upper approx-
imation of ρ�∗ can be obtained by computing the limit r�∇ of an increasing
approximation sequence:

r�
0 = ⊥, r�

n+1 = r�
n∇(r�

n ◦ ρ�)

then the limit r�∇Δ of a decreasing sequence:

r′�
0 = r�∇, r′�

n+1 = r′�
nΔ(r′�

n ◦ ρ�)

The result r�∇Δ is an abstract approximation of ρ∗, i.e., ρ∗ ⊆ γ(r�∇Δ).

Abstract Partition: For ↔∈ {←,→}, we define an abstract partition of S�
↔ as a

finite set {S�
0, ..., S

�
n} ⊆ S�

↔, such that {Si = γS↔(S�
i ) | i = 1...n} is a partition

of S. More generally, if U ⊆ S, an abstract partition of U �
↔ = αS↔(U) is a finite

set {U �
0 , ..., U

�
n} ⊆ U �

↔, such that {Ui = γS↔(U �
i ) | i = 1...n} is a partition of U .

Partitioned Relational Abstract Analysis: Let {Si = γ(S�
i ) | i = 1...n} be a par-

tition of S, let ρ be a transition relation, ρ(Si, Sj) be defined as before for
i, j = 1...n, and ρ�(S�

i , S
�
j) be (an upper bound of) the abstraction of ρ(Si, Sj).

An upper approximation of the vector {ρ�∗(S�
i , S

�
j) | i, j = 1...n} can be obtained

as the limit of (vectorial) increasing-decreasing sequences corresponding to the
system of fixpoint equations:

∀i = 1...n, ∀j �= i, ρ�∗(S�
i , S

�
j) =

n⊔

k=1

ρ�∗(S�
i , S

�
k) ◦ ρ�(S�

k, S�
j)

ρ�∗(S�
i , S

�
i ) = Id �

S�
i

�
n⊔

k=1

ρ�∗(S�
i , S

�
k) ◦ ρ�(S�

k, S�
i )

Abstract Summary and Abstract Effect of a Procedure Call: Let p be a pro-
cedure, I, E its set of initial and exit states. The abstract summary of p is
σ�

p = ρ�∗(I�, E�). The abstract effect of a call to p, with parameter passing π,
situated between T �

i and T �
j is ρ�(T �

i , T �
j ) = π(σ�

p).

4.2 Building Summaries Using LRA

LRA makes use of the lattice of convex polyhedra [5,17]. It abstracts a set of
numerical vectors by its convex hull (i.e., its least convex superset). Notice that
the convex hull of an infinite set of vectors is not necessarily a polyhedron, but
the finiteness of the analysis—thanks to the use of a widening operation—ensures
that all the computed approximations are polyhedra, i.e., sets of solutions of a
finite system of affine inequalities.

Intersection (P1 � P2), convex hull (P1 � P2), projection (∃X.P ), effect of
variable assignment (P [x ← exp], widening (P1∇P2), test for inclusion (P1 � P2)
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and emptiness (P = ∅) are available. Instead of using a narrowing operator to
ensure the finiteness of the decreasing sequence, a limited number of iterations
of the abstract function is generally applied.

Polyhedra can be used for representing input-output relations, as an abstrac-
tion of the relational semantics described in Sect. 3.2. We write P (X0,X) a
polyhedron involving initial values X0 and current values X. Notice that the
source and the target of the relation r expressed by P (X0,X) can be obtained
by polyhedron projections:

src�(r) = ∃X.P (X0,X), tgt�(r) = ∃X0.P (X0,X)

4.3 Example

Let us apply LRA to our Euclidean division example. The abstract equations
are as follows:

P1 = (a0 ≥ 0, b0 ≥ 1, a = a0, b = b0, q = q0, r = r0)
P2 = P1[q ← 0][r ← a] P4 = P3 � (r ≥ b)
P3 = P2 � P5 P5 = P4[r ← r − b][q ← q + 1]
P6 = P3 � (r ≤ b − 1)

P6 corresponds to the unique exit point of the procedure, so it is the sum-
mary. The standard analysis—where the widening is applied on P3 during the
increasing sequence, and the decreasing sequence is limited to 2 steps—provides:

P6 = (a = a0 , b = b0, r ≥ 0, q ≥ 0 , b ≥ r + 1)

It is a rather weak summary, all the more as the precondition a0 ≥ 0 has been
lost. This suggests that preconditions should be considered more carefully.

5 Preconditions

For closed programs, the initial state is generally not relevant, since, normally,
the variables are explicitly assigned an initial value before being used. When
considering procedures, the initial state is implicitly defined by the initial values
of parameters. Therefore, it is essential to take it into account. In particular, the
correct behavior of a procedure often depends on (user-defined) preconditions
on parameter values. We will call global precondition the abstraction of the set
of legal initial states of a procedure: I�

p = αS→(Ip). Notice that we already took
into account the global precondition a ≥ 0, b ≥ 1 in our example. Such global
precondition may be given by the user, or deduced from another analysis of the
calling contexts, or simply �.

Moreover, preconditions can be used to differentiate cases of input values
(calling contexts) that should be considered separately. These preconditions will
be obtained by refining the global precondition. This is the way we intend to
build disjunctive summaries.
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Widening under a Precondition: In relational analysis, a precondition provides
an obvious invariant: a procedure may not change its initial state, so any concrete
relation ρ∗(Ip, Si) has its source within Ip. However, it is not as obvious with
abstract analysis: because of the use of widening, it may happen that the result
r�∇Δ does not satisfy this invariant, i.e., γR(r�∇Δ) is not included in Ip × S.
This is what happened in our example (Sect. 4.3). As a consequence, it is sound
and interesting to make use of a “limited widening” when computing r�∇: we
define this more precise widening by r∇I�

p
r′ = (r∇r′) � I�

p.

Example: Coming back to our example in Sect. 4.3, the widening is performed on
P3. Instead of applying the widening classically, i.e., computing P3 = P3∇(P2 �
P5), we limit it with the precondition, i.e., compute P3 = (P3∇(P2�P5))�(a0 ≥
0, b0 ≥ 1). The summary we obtain

P6 = (a = a0, b = b0, r ≥ 0 , q ≥ 0 , b ≥ r + 1 , a ≥ q + r)

recovers more than just the precondition. Instead of gaining just a ≥ 0, we get
the stronger a ≥ q + r.

6 Disjunctive Summaries

Up to now, we described the classical analysis by abstract interpretation, with
an emphasis on relational analysis, use of trace partitioning, and taking care of
preconditions. In this section, we propose to refine the partitioning by distin-
guishing the calling contexts of a procedure, defined as preconditions.

Abstract domains are generally not closed under disjunction (in some sense,
it is the essence of abstraction). In order to build more precise procedure sum-
maries, it is natural to consider disjunctions of abstract relations. However, some
restrictions must be applied to be able to compute on such disjunctions. More-
over, in order to be able to exploit such a disjunctive procedure summary when
using it on a procedure call, the values of the actual parameters should deter-
mine which disjunct must apply. Thus, different disjuncts should have disjoint
sources.

6.1 Disjunctive Refinements of an Abstract Relation

If p is a procedure with global precondition I, a disjunctive refinement of the
abstract relation ρ�∗(I�, S�

i ) will be a finite set r�∗
1 , ..., r�∗

m of abstract relations,
such that

(1) ∀k = 1...m, r�∗
k � ρ�∗(I�, S�

i )
(2) ∀k1, k2 = 1...m, k1 �= k2 ⇒ γ(src�(r�∗

k1
)) ∩ γ(src�(r�∗

k2
)) = ∅

(3)
m⋃

k=1

γ(src�(r�∗
k )) = γ(I�)
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In other words, {src�(r�∗
k )}k=1...m forms an abstract partition of I�. Notice

that, with this definition, the disjunctive summary of a procedure can also be
seen as a conjunction of implications:

m∨

k=1

r�∗
k ⇐⇒

m∧

k=1

(
src�(r�∗

k ) ⇒ r�∗
k

)

emphasizing the fact that the partitioning is directed by properties of input
parameters. Conversely, given an abstract partition {I�

k}k=1...m of I�, one can
compute a disjunctive refinement of the abstract relation ρ�∗(I�, S�

i ) simply by
computing r�∗

k = ρ�∗(I�
k, S�

i ) for each k = 1...m.

6.2 Disjunctive Abstract Summary and Abstract Effect of a Call

Given a disjunctive refinement {r�∗
k }k=1...m of an abstract relation, the corre-

sponding abstract summary of a procedure is a set of disjuncts:

{σ�
k = r�∗

k (I�
p, E�

p)}k=1...m

Given such a disjunctive summary, the abstract effect of a call to p, with param-
eter passing π, situated between T �

i and T �
j is

ρ�(T �
i , T �

j ) =
m⊔

k=1

π(σ�
k)

6.3 Application to LRA

Disjunctive Polyhedral Summaries: Let p be a procedure, X be its vector of
variables, and I� be its polyhedral global precondition. A disjunctive polyhedral
summary of p is a disjunction of input-output relations expressed by a set of
polyhedra {R1, ..., Rm}, and such that, if we define I�

k = src�(Rk) = ∃X.Rk (k =
1...m), the set {I�

k}k=1...m forms an abstract partition of I�.

Polyhedron Transformer of a Procedure Call: With the same notations con-
cerning the procedure p and its disjunctive polyhedral summary, assume that
X = (x1, . . . , xn) is the list of formal parameters. Let q be a caller to p,
A = (a1, . . . , an) be the actual parameters of a call to p situated between control
points c and c′ in q. Let Qc be the polyhedron associated with c in q. Then the
polyhedron associated with the return point c′ is

Qc′ =
m⊔

k=1

(∃A1.Qc[A/A1] � Rk[X0/A1][X/A]
)

where

– Qc[A/A1] is the result of renaming, in Qc, each variable ai as a1
i



Disjunctive Relational Abstract Interpretation 147

– Rk[X0/A1][X/A] is the result of renaming, in Rk, each variable x0
i as a1

i ,
and each variable xi as ai (this term is what we wrote π(σ�

k) in the general
framework Sect. 6.2).

In other words, the auxiliary variables A1 = (a1
1, . . . , a

1
n) represent the values of

actual parameters before the call, so they are substituted for A in the calling
context Qc and to X0 in the summary; the values A of the actual parameters
after the call, are substituted for X in the summary.

7 Partition Refinement

7.1 General Framework

Given an abstract partition of the global precondition of a procedure, we know
how to compute and use a disjunctive summary based on this partition. In this
section, we propose a heuristic method to choose the abstract partition.

Complementable Abstract Values: An abstract value r� is said to be com-
plementable, if there exists an abstract value r� (its complement) such that
r� � r� = ⊥ and γ(r�) ∪ γ( r� ) = R. For instance, complementable convex
polyhedra are half-spaces, i.e., polyhedra defined by a single inequality.

Refinement According to Local Reachability: Let {r�∇Δ(I�, S�
i )}i=1...n be the

result of a classic analysis from a precondition I�. For a given i ∈ {1...n},
I�

i = src�(r�∇Δ(I�, S�
i )) is a necessary condition for S�

i to be reachable. As a
consequence, if s� is a complementable abstract value such that

– I�
i � s�

– I ′� = I� � s� �= ⊥ and I ′′� = I� � s� �= ⊥
then (I ′�, I ′′�) is a good candidate for refining the precondition I�. As a matter
of fact, I ′′� is a sufficient precondition for S�

i to be unreachable.

Refinement According to the Summary of a Called Procedure: The effect of a call
to a procedure with a partitioned summary {σ�

k}k=1...m (as defined in Sect. 6.2)
involves a least upper bound

⊔m
k=1 π(σ�

k), which is likely to lose precision. So
it is interesting to refine the partition in the caller in order to split this least
upper bound. Let us denote by J �

k = π(src�(σ�
k)), i.e., the condition on actual

parameters for σ�
k to be applicable. Then, in the caller, I�

k = src�(r�∇Δ(I�,J �
k )),

is a necessary precondition for J �
k to be satisfiable. As a consequence, if s� is a

complementable abstract value such that

– I�
k � s�

– I ′� = I� � s� �= ⊥ and I ′′� = I� � s� �= ⊥
then (I ′�, I ′′�) is a good candidate for refining the precondition I�. As a matter
of fact, I ′′� is a sufficient precondition for J �

k to be unsatisfiable at the call.
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Iterative Refinements: Our proposal is to build the summary of a procedure as
the result of a sequence of analyses, working on more and more refined parti-
tions. We define P(�) = {I�(�)

k }k=1...m�
the partition of abstract preconditions

considered at �-th analysis. Starting with P(0) = {I�} (the singleton made of
the global precondition of the procedure), for each �, we compute from P(�)

the corresponding disjunctive abstract relation {r
�(�)
k }k=1...m�

, which is used to
refine P(�) into P(�+1), using one of the refinement techniques presented above.
This process is not guaranteed to terminate, but may be stopped at any step.
In practice, the size of the partition will be limited by a constant parameter of
the analysis.

Ensuring the Monotonicity of the Refinement: Refining a precondition is
intended to provide a more precise summary. However, this is not guaranteed
because of the non-monotonicity of the widening operator. So at step �, when
precondition I�(�)

k has been split into a pair (I�(�+1)
k′ , I�(�+1)

k′′ ) of new precondi-
tions, the analyses performed at step � + 1 from these new preconditions should
use a widening limited by r

�(�)
k . The monotonicity of the refinement is especially

important when dealing with recursive procedures, and avoids the difficulties
tackled by [4].

7.2 Application to LRA

Complementable Polyhedra: As said before, complementable polyhedra are those
defined by a single inequality. So any polyhedron is the intersection of a finite
number of complementable polyhedra. The complement of “aX ≤ b” is obtained
either with the converse strict inequality “aX > b” (strict inequalities are han-
dled in the PPL [5,8] and in Apron [29]), or, in case of integer variables, by the
inequality “aX ≥ b + 1”.

Precondition Refinement: From a precondition I�, a standard analysis by LRA
provides, at each control point c of the program, a polyhedron Pc(I�). From
these solutions, we can try to refine the precondition:

– For each control point c, let Qc = ∃X.Pc(I�) be the projection of Pc(I�) on
initial variables. Then, if Qc �= I�, any constraint χ of Qc not satisfied by I�

can be used to separate I� into I�
1 = I� ∩ χ and I�

2 = I� ∩ χ , since the point
c is unreachable by any execution starting in I�

2. Obviously, this should be
tried on control points following a test, and especially those corresponding to
loop conditions.

– For each control point c corresponding to a call to a procedure, say p(A),
let {R1, ..., Rm} be the polyhedral summary of p, and for each k = 1...m,
J �

k (p) = src�(Rk)[X0/A] (i.e., J �
k (p) is the precondition of Rk, expressed on

actual parameters). Then, let Qc,k = ∃X.Pc(I�) � J �
k (p) be the projection

of Pc(I�) � J �
k (p) on the initial variables of the caller. Then, as before, if

Qc,k �= I�, any constraint χ of Qc,k not satisfied by I� can be used to separate
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I� into I�
1 = I� ∩ χ and I�

2 = I� ∩ χ , and it is interesting since starting the
caller in I�

2 makes empty the precondition J �
k (p).

Notice that, in both cases, the choice of the constraint χ is arbitrary, and that
several such constraints can be used in turn. So the fact that the refinement is
done according to one single constraint is not a limitation.

7.3 Example

The analysis of the example in Sect. 4.3, from the precondition I�(0) = (a0 ≥
0, b0 ≥ 1), as done in Sect. 5, provides, on the branches of the loop condition
(r ≥ b), the solutions:

P4(I�(0)) = (a0 = a, b0 = b, r ≥ b, q ≥ 0, b ≥ 1, a ≥ q + r)
P6(I�(0)) = (a0 = a, b0 = b, r ≥ 0, q ≥ 0, b ≥ r + 1, a ≥ q + r)

The projections of these solutions on the initial values are:

src�(P4(I�(0))) = (a0 ≥ b0 ≥ 1) src�(P6(I�(0))) = (a0 ≥ 0, b0 ≥ 1)

src�(P6(I�(0))) = I(0), so it does not induce any refinement. However,
src�(P4(I�(0))) �= I�(0), since I�(0) does not imply a0 ≥ b0. We can refine I�(0)

into
I�(1)
1 = (a0 ≥ b0 ≥ 1) and I�(1)

2 = (b0 − 1 ≥ a0 ≥ 0)

i.e., separate the cases where the loop is entered at least once or not. New
analyses from these refined preconditions provide:

P4(I�(1)
1 ) = (a0 = a, b0 = b, r ≥ b, q ≥ 0, b ≥ 1, a ≥ q + r)

P6(I�(1)
1 ) = (a0 = a, b0 = b, r ≥ 0, q ≥ 0, q + r >= 1, b ≥ r + 1,

a + 1 ≥ b + q, a ≥ b)
P4(I�(1)

2 ) = ⊥
P6(I�(1)

2 ) = (a0 = a, b0 = b, b − 1 ≥ a ≥ 0, q = 0, r = a)

The projections of these solutions on the initial values are:

src�(P4(I�(1)
1 )) = (a0 ≥ b0 ≥ 1) = I�(1)

1 )
src�(P6(I�(1)

1 )) = (a0 ≥ b0 ≥ 1) = I�(1)
1 )

src�(P4(I�(1)
2 )) = ⊥

src�(P6(I�(1)
2 )) = (b0 − 1 ≥ a0 ≥ 0) = I�(1)

2

so, according to our criteria, the preconditions cannot be further refined, and we
get the summary

R1 =
(
a0 = a, b0 = b, a0 ≥ b0 ≥ 1,
r ≥ 0, q ≥ 0, q + r >= 1, b ≥ r + 1, a + 1 ≥ b + q)

R2 =
(
a0 = a, b0 = b, b0 − 1 ≥ a0 ≥ 0, q = 0, r = a

)

directed by input conditions R0
1 = (a0 ≥ b0 ≥ 1) and R0

2 = (b0 − 1 ≥ a0 ≥ 0).
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7.4 A Last Improvement: Postponing Loop Feedback

The previous example shows a weakness of the analysis: the summary has been
partitioned according to whether the loop is entered at least once (R1) or not
(R2). However, in the former case, since the loop body is executed at least once,
we should obtain q ≥ 1, a fact which is missed by the analysis. We could recover
this fact by systematically unrolling once each loop that gives raise to such a
partitioning. We propose another, cheaper solution. The problem comes from
the least upper bound computed at loop entry (P3 = P2 � P5 in the abstract
equations of Sect. 4.3), before the test on the loop condition (P6 = P3 � (r ≤
b − 1)). The solution consists in permuting the least upper bound and the test,
computing instead P6 = (P2 � (r ≤ b − 1)) � (P5 � (r ≤ b − 1))1.

Back to the Example: Computing R1 = P6(I�(1)
1 ) with this new equation, since

P2 � (r ≤ b − 1) = ⊥, we get

R1 =
(
a0 = a, b0 = b, a0 ≥ b0 ≥ 1, r ≥ 0, q ≥ 1, b ≥ r + 1, a + 1 ≥ b + q + r

)

Once again, we recover more precision than expected, since, in addition to finding
q ≥ 1, a + 1 ≥ b + q is strengthened into a + 1 ≥ b + q + r.

8 Recursive Procedures

The relational abstract interpretation of recursive procedures was proposed a
long time ago [13,15,21]. It involves the use of widening, since the summary of
a recursive procedure depends on itself. Moreover, a group of mutually recursive
procedures must be analyzed jointly, with widening applied on a cutset of their
call graph. In this section, we only show a simple example of how our technique
can be applied to build a disjunctive summary of a recursive procedure. It will
also illustrate the refinement according to the summary of a called procedure.

void f91 (int x,*y) {
int z, t ;

1 if (x > 100) *y = x -10 ;
2
3 else { z = x + 11 ;
4 f91 (z, &t) ;
5 f91 (t, y) ;
6 }
}

Example: McCarthy’s 91 Function. The oppo-
site procedure is the well-known “91 function”
defined by John McCarthy. For simplicity, we
don’t duplicate parameters, knowing that x is
a value parameter and y is a result parameter.
The polyhedral summary of the procedure can
be defined by the following equations:

R(x, y) = P2 � P7

P2 = (x ≥ 101, y = x − 10)
P7 = (x ≤ 100 � (∃t.R(x + 11, t) � R(t, y)))

1 This change in the abstract equations could also be obtained by transforming each
loop “while c do B” into “if c {do B while c}”, a transformation called “loop inver-
sion” often applied by compilers.
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A first, standard analysis, without partitioning, reaches the following fixpoint
after one widening step:

P2 = (x ≥ 101, y = x − 10), P6 = (x ≤ 100, y + 9 ≥ x, y ≥ 91)
R(0) = (x ≤ y + 10, y ≥ 91)

Since src�(P2) = (x ≥ 101) splits the global precondition I� = �, we refine the
precondition into I�(1)

1 = (x ≥ 101) and I�(1)
2 = (x ≤ 100). From this (obvious)

partition, the results are not much better:

P2(I�(1)
1 ) = (x ≥ 101, y = x − 10), P2(I�(1)

2 ) = ⊥
P6(I�(1)

1 ) = ⊥, P6(I�(1)
2 ) = (x ≤ 100, y ≥ 91)

R(1)(I�(1)
1 ) = (x ≥ 101, y = x − 10), R(1)(I�(1)

2 ) = (x ≤ 100, y ≥ 91)

But now, the partitioned precondition involves a refinement of I�(1)
2 at the first

recursive call, according to the condition x + 11 ≥ 101. We get I�(2)
1 = (90 ≤

x ≤ 100) and I�(2)
2 = (x ≤ 89). The final result is

R(1)(I�(1)
1 ) = (x ≥ 101, y = x − 10)

R(2)(I�(2)
1 ) = (90 ≤ x ≤ 100, y = 91)

R(2)(I�(2)
2 ) = (x ≤ 89, y = 91)

which is the most precise summary.

9 Implementation

This approach has been implemented in a prototype static analyzer . Organized
as a collection of tools, the analyzer computes numerical invariants on programs
written in a significant subset of C. A front-end tool based on Clang [34] and
LibTooling translates the abstract syntax tree of a C program into an intermedi-
ate representation. The analyzer tool then computes numerical invariants on the
intermediate representation. Abstract domains, such as convex polyhedra, are
provided by the Apron [29] library. The analyzer can either consider an inlined
version of the program, or construct and use procedure summaries as described
in the paper, with some restrictions: for the time being, recursive procedures are
not yet taken into account, and postponing the loop feedback is not performed
as described in Sect. 7.4, but makes use of “loop inversion”.

Procedures are analyzed only once, regardless of the number of call sites, in
a bottom-up fashion according to the inverse invocation order, with respect to
the dependencies induced by the program call graph.

In order to limit the number of additional variables, the tool does not dupli-
cate all procedure parameters, but applies a simple dataflow analysis before
summary construction to identify procedure parameters which are either pure
input parameters or pure output parameters, and thus which do not need to be
duplicated.
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Refinement according to local reachability is performed by the analyzer only
at direct successors of test nodes and particularly at loop entry and loop exit.
Candidate nodes for refinement are examined during each refinement step using
a breadth-first traversal of the program graph. For practical reasons, in order
to guarantee the termination of the refinement process and to limit procedure
summaries to a reasonable size, an upper-bound θ on the refinement depth for a
given procedure is set to θ = 2. This limits procedure summaries to a maximum
size of 4.

10 Experiments

Up to now, to illustrate our approach, we presented only tiny exam-
ples, for which the precondition partitioning is obvious. However, in pres-
ence of more complex control structures—nested and/or successive loops—
and when preconditions result from more involved invariants, the useful-
ness of our method for discovering relevant preconditions is more convinc-
ing. Several more complex ad-hoc examples can be found on the repository
github.com/programexamples/programexamples.

More thorough experiments are necessary to validate our approach, and in
particular to answer the following questions:

– Since we analyze a procedure several times to construct its summary, it is
likely to be time-consuming. So it is interesting to measure the cost of sum-
mary construction with respect to the time hopefully saved by using the
summary.

– Precondition partitioning is a heuristic process, so it is important to evalu-
ate the precision lost or gained by using a disjunctive summary instead of
analyzing again the procedure for each calling context.

So our experiments consists in comparing our bottom-up approach with an anal-
ysis of inlined programs, both with respect to the analysis time and the precision
of results. Several difficulties must be addressed first:
– Most public benchmarks are not usable, since they contain very few numer-

ical programs with procedures. For instance, in the SV-COMP benchmark2,
most numerical examples are inlined; the ALICe benchmark3 also contains
only monolithic programs. For our assessment, we used the benchmark of the
Mälardalen4 WCET research group, which contains various small and middle-
sized programs, such as sorts, matrix computations, fft, etc. Moreover, some
programs of this benchmark were sometimes extended with auxiliary vari-
ables counting the number of executions of each block to help the evaluation
of the execution time [10]; these extensions—the name of which are prefixed
with “cnt ” below—are interesting for us, since they contains more numeric
variables.

2 sv-comp.sosy-lab.org/2018/benchmarks.php.
3 alice.cri.mines-paristech.fr/models.html.
4 www.mrtc.mdh.se/projects/wcet/benchmarks.html.

https://github.com/programexamples/programexamples
https://sv-comp.sosy-lab.org/2018/benchmarks.php
http://alice.cri.mines-paristech.fr/models.html
www.mrtc.mdh.se/projects/wcet/benchmarks.html
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– The comparison of polyhedral results is not straightforward:
• On one hand, we must decide which polyhedra to compare. The correspon-

dence of control points between the inlined program and the structured
one is not easy to preserve. In our experiments, we only compared the
results at the end of the main program. Of course, for the comparison to
be meaningful, the results on the inlined program must be first projected
on the variables of the main program.

• On the other hand, while a qualitative comparison of two polyhedra is
easy—by checking their inclusion in both directions—, a quantitative
comparison is more difficult: it could be precisely achieved by compar-
ing their volumes—algorithms are available for that [7,11]—but it is only
possible for bounded polyhedra. In our assessment, besides a qualitative
comparison, we only compared the number of constraints.

All our experiments are done using the convex polyhedra abstract domain.
Widening is never delayed and decreasing sequences are limited to 7 terms. The
analysis times are those obtained on an Intel Xeon E5-2630 v3 2.40 Ghz machine
with 32 GB of RAM and 20MB of L3 cache running Linux.

Table 1 compares our method with a standard LRA on inlined programs, in
terms of analysis time, qualitative precision and number of constraints of results
found at the exit points of the main procedures. The “# procs” column gives
the number of procedures in each program and the “max. # calls” column gives
the maximum number of call sites per procedure in a program. We define:
– til (resp. tip) the time (in seconds) for analyzing the inlined program (resp.

the time for interprocedural analysis)
– Pil (resp. Pip) the polyhedron result of the inlined analysis (resp., of the

interprocedural analysis)
– Cil (resp. Cip) the number of constraints of Pil (resp. of Pip).
The qualitative results comparison is shown by column “cmp. res.” which indi-
cates whether the result Pip is better (�), worse (�), equal (=) or incompara-
ble (<>) w.r.t. Pil. The S column gives for each program the speedup of our
method defined as S = til/tip. Our method is significantly faster than standard
LRA using inlining for 13 over 19 programs (≈ 68% of programs), with an aver-
age speedup of 2.9. The loss of precision is very moderate since only 1 over 19
programs, namely minver, has a less precise convex polyhedra at the exit node
of the main procedure.

Interestingly, our method also leads to precision improvements for some pro-
grams, such as janne complex, my sin and cnt minver, due to the use of
disjunction, enabling a more accurate analysis of procedure behaviors. More-
over, those precision improvements are not necessarily obtained at the expense
of analysis time, since the janne complex program has a more precise convex
polyhedra at the exit of the main procedure, with a 60% increase in the number
of constraints and has also the highest speedup with S = 15.34.

Table 2 reports the computation times of the summary of each procedure in
each program. The τc column gives the fraction of the analysis time using our
method spent during the computation of each procedure summary, defined as
τc = Procedure summary comp. time/Program analysis time using rel. summ.



154 R. Boutonnet and N. Halbwachs

Table 1. Experimental results.

Program # procs max.
# calls

Inlining Interprocedural cmp.
res.

S

til Cil tip Cip

fabs 2 1 0.013 4 0.015 4 = 0.87

fdct 2 1 0.084 0 0.069 0 = 1.22

fft1 6 3 0.742 4 0.465 3 <> 1.59

fir 2 1 0.040 1 0.072 1 = 0.55

janne complex 2 1 0.948 5 0.062 8 � 15.34

minver 4 2 0.155 1 0.686 2 � 0.23

my sin 2 1 0.032 1 0.028 5 � 1.14

jfdctint 2 1 0.082 3 0.060 3 = 1.38

ludcmp 3 1 0.074 3 0.102 3 = 0.73

ns 2 1 0.057 0 0.051 0 = 1.13

qurt 4 1 0.057 1 0.028 1 = 2.06

select 2 1 0.097 0 0.057 0 = 1.69

ud 2 1 0.093 3 0.118 3 = 0.79

cnt fdct 2 1 0.098 1 0.075 1 = 1.31

cnt fft1 6 3 33.417 5 2.646 3 <> 12.63

cnt jfdctint 2 1 0.102 5 0.070 5 = 1.46

cnt ns 2 1 0.085 0 0.067 0 = 1.25

cnt qurt 4 1 0.601 2 0.063 2 = 9.54

cnt minver 4 2 1.008 1 3.424 6 � 0.29

The summary construction time for small utility procedures, such as the
my fabs, my sin, my cos and my log procedures, in the fft1 and cnt fft1
programs, are very small (lower than 4 ms) and often individually negligible with
respect to the analysis time of the entire program (with τc often lower than 1%).
This suggests that our method could be particularly beneficial, in terms of anal-
ysis performance, for programs built on top of a collection of utility procedures
or a library of such procedures, each procedure summary being computed only
once and possibly used in many call contexts.

Our last experiment concerns the speedup
of our interprocedural analysis with respect
to the number of calls. Notice that the
Mälardalen benchmark is not very favorable in
this respect, since most procedures are called
only once. Our analysis on the cnt ns pro-
gram has a moderate speedup of 1.25. In order
to observe the evolution of the speedup with
the number of calls, we increase the number
of calls to the foo procedure in the main pro-
cedure of the cnt ns program. The opposite



Disjunctive Relational Abstract Interpretation 155

Table 2. Summaries computation times.

Program Function Time (s) τc
fabs fabs 0.001 0.067
fdct fdct 0.050 0.588
fft1 my fabs < 0.001 0.001

my sin 0.002 0.004
my cos < 0.001 0.001
my log < 0.001 < 0.001
fft1 0.350 0.753

fir fir 0.019 0.267
janne janne 0.037 0.602
minver mmul 0.047 0.069

minver fabs < 0.001 < 0.001
minver 0.616 0.897

my sin my sin 0.003 0.098
jfdctint jpeg fdct islow 0.031 0.528
ludcmp fabs < 0.001 0.002

ludcmp 0.055 0.540
ns foo 0.011 0.215

qurt qurt fabs < 0.001 0.007
qurt sqrt 0.004 0.138
qurt 0.002 0.066

select select 0.042 0.730
ud ludcmp 0.050 0.425
cnt fdct fdct 0.070 0.941
cnt fft1 my fabs 0.001 < 0.001

my sin 0.004 0.001
my cos < 0.001 < 0.001
my log < 0.001 < 0.001
fft1 1.750 0.661

cnt jfdctint jpeg fdct islow 0.035 0.500
cnt ns foo 0.026 0.382
cnt qurt qurt fabs 0.001 0.010

qurt sqrt 0.019 0.308
qurt 0.003 0.047

cnt minver mmul 0.126 0.037
minver fabs < 0.001 < 0.001
minver 2.925 0.854

graphic shows the evolution of the analysis times of these successive versions,
comparing our analysis with respect to standard LRA with inlining.

The analysis of the cnt ns program using our disjunctive relational sum-
maries analysis becomes significantly faster than standard LRA with inlining
when there are more than 2 calls to the foo procedure in the main procedure.

11 Conclusion and Future Work

In this paper, we proposed a method for interprocedural analysis as a solution
to the cost of using expressive relational abstract domains in program analysis.
An analysis using a relational domain can be straightforwardly transformed into
a relational analysis, computing an input-output relation. Such relations can be
used as procedure summaries, computed once and for all, and used bottom-up
to compute the effect of procedure calls. Applying this idea with linear relation
analysis, we concluded that the obtained polyhedral summaries are not precise
enough, and deserve to be refined disjunctively. The main ideas of the paper are
as follows. First, we used precondition partitioning as a basis of disjunctive sum-
maries. Then, we proposed a heuristic method for refining a summary according
to reachability of control points or calling contexts of called procedures. We also
identified some technical improvements, like widening limited by preconditions
and previously computed relations, and more precise computation of results at
loop exit points. Our experiments show that using summaries built in this way
can significantly reduce the analysis time, especially for procedures used sev-
eral times. On the other hand, the precision of the results is not dramatically
damaged, and can even be improved, due to disjunctive analysis.
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Future work should be devoted to applying the method with other rela-
tional domains. In particular, octagons [39] would be interesting since they per-
mit a better quantitative comparison of results: apart from infinite bounds, two
octagons on the same variables can be precisely compared by comparing their
constant vectors. Another, longer-term, perspective is to use disjunctive rela-
tional summaries for procedures acting on remanent memories, like methods
in object-oriented programming or reaction functions in reactive programming.
Our precondition partitioning could result in partitioning memory states, and
allow disjunctive memory invariants to be constructed modularly.
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40. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 79–96. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 6

41. Müller-Olm, M., Seidl, H.: Computing interprocedurally valid relations in affine
programs. Princ. Prog. Lang. (2004)

42. Müller-Olm, M., Seidl, H., Steffen, B.: Interprocedural analysis (almost) for free.
Univ. Dekanat Informatik (2004)

43. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77505-8 26

44. Popeea, C., Chin, W.N.: Dual analysis for proving safety and finding bugs. In:
Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 2137–2143.
ACM (2010)

45. Popeea, C., Chin, W.N.: Dual analysis for proving safety and finding bugs. Sci.
Comput. Program. 78(4), 390–411 (2013)

46. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49–61. ACM (1995)

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-27815-3_22
https://doi.org/10.1007/978-3-540-27815-3_22
https://doi.org/10.1007/978-3-319-73721-8_14
https://doi.org/10.1007/978-3-319-73721-8_14
https://doi.org/10.1007/978-3-319-66706-5_11
https://doi.org/10.1007/978-3-319-66706-5_11
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/978-3-540-30579-8_6
https://doi.org/10.1007/978-3-540-77505-8_26


Disjunctive Relational Abstract Interpretation 159

47. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. (TOPLAS) 29(5), 26 (2007)

48. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New
York University, Courant Institute of Mathematical Sciences, Computer Science
Department (1978)
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Abstract. Cooperation between verification methods is crucial to tackle
the challenging problem of software verification. The paper focuses on
the verification of C programs using pointers and it formalizes a coop-
eration between static analyzers doing pointer analysis and a deductive
verification tool based on first order logic. We propose a framework based
on memory models that captures the partitioning of memory inferred by
pointer analyses, and complies with the memory models used to generate
verification conditions. The framework guided us to propose a pointer
analysis that accommodates to various low-level operations on point-
ers while providing precise information about memory partitioning to
the deductive verification. We implemented this cooperation inside the
Frama-C platform and we show its effectiveness in reducing the task of
deductive verification on a complex case study.

1 Introduction

Software verification is a challenging problem for which different solutions have
been proposed. Two of these solutions are deductive verification (DV) and static
analysis (SA). Deductive verification is interested in checking precise and expres-
sive properties of the input code. It requires efforts from the user that has to
specify the properties to be checked, plus other annotations – e.g., loop invari-
ants. Using these specifications, DV tools build verification conditions which
are formulas in various logic theories and send them to specialized solvers. For
C programs with pointers, DV has been boosted by the usage of Separation
Logic [29], which leads to compact proofs due to the local reasoning allowed
by the separating conjunction operator. However, for programs with low-level
operations on pointers (e.g., pointer arithmetics and casting), this approach is
actually limited by the theoretical results on the fragment of separation logic
employed [7] and on the availability of solvers. Therefore, this class of programs
is most commonly dealt using classic approaches based on memory models à la
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Fig. 1. Verification using memory partitioning inferred by pointer analysis

Burstall-Bornat [6,9], which may be adapted to be sound in presence of low-
level operations [31] and dynamic allocation [36]. The memory model is chosen
in general by the DV engine which may employ some heuristics to guide the
choice [20]. Indeed, changing the memory model may result in an increase of the
number of proofs discharged automatically [35]. However, annotations on non
aliasing between pointers and memory partitioning complicates the task of users
and of underlying solvers.

On the other hand, static analysis targets checking a fixed class of prop-
erties. This loss in the expressivity of properties is counterbalanced by a high
degree of automation. For example, static pointer analysis for C programs usually
computes over-approximations of the set of values (addresses) for each pointer
expression at each control point. These abstractions do not speak about concrete
memory addresses, but refer to symbolic memory regions provided by the mem-
ory allocated to program variables and in heap by dynamic allocation methods.

The information obtained by static analysis may help to infer partitioning of
the memory in disjoint regions which can then be used by DV tools. The success
of this collaboration between SA and DV tool strongly depends on the coarseness
of the abstraction used by SA to keep track of the locations scanned by a pointer
inside each memory region. For example, consider p a pointer to integer and a
variable s of type record with five integer fields, struct {int m,n,o,p,q;},
such that p scans locations of all fields of s except o (i.e., &s.m, &s.n, &s.p and
&s.q). Pointer analyses (e.g., Sect. 5.2 of [28]) over-approximate the location of
p to any location in the memory region of s which is multiple of an integer, thus
including the spurious o field. Therefore, it is important to be able to try several
SA algorithms to gather precise information about the memory partitioning.

Our contribution targets this specific cooperation of SA and DV methods
in the context of first-order logic solvers. The verification process we propose is
summarized by the flow diagram in Fig. 1. The code to be verified is first given to
the static analyzer to produce state invariants including a sound partitioning P
of the program’s memory. The partitioning P is exploited by a functor M which
produces a memory model environment MME used by the DV tool to generate
verification conditions into a logic theory supported by automatic solvers. Our
first contribution is the formalization of the functor M and of the information
it needs from the static analysis. Secondly, we demonstrate that several existing
pointer analyses may be used in this general framework. Thirdly, we implemented
this functor in the Frama-C platform [22] between the plug-ins Eva for static
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1 typedef int32_t data_t;
2 typedef uint8_t pos_t;
3 typedef struct {
4 data_t *in1 , *in2 , *in3 , *in4;
5 data_t *out1 ,*out2 ,*out3 ,*out4;
6 pos_t *pos1 ,*pos2 ,*pos3 ,*pos4;
7 } intf4_t;
8 /*@ requires:
9 * sep({args ->in1 ,...,args ->in4},

10 * args ->out1 ,...,args ->out4 ,
11 * args ->pos1 ,...,args ->pos4);
12 * ensures:
13 * sorted_vals (&(args ->out1) ,4);
14 * ensures:
15 * perm (&(args ->in1) ,&(args ->out1),
16 * &(args ->pos1) ,4); */
17 void sort4(intf4_t *args) {
18 data_t ** inArr =
19 (data_t **) &(args ->in1);
20 data_t ** outArr =
21 (data_t **) &(args ->out1);

22 pos_t ** posArr =
23 (pos_t **) &(args ->pos1);
24 /** init arrays from inputs */
25 int32_t sortArr [4]; // values
26 uint8_t permArr [4]; // permutation
27 /*@ loop invariant: ... */
28 for (int i = 0; i < 4; i++) {
29 sortArr[i] = *inArr[i];
30 permArr[i] = i;
31 }
32
33 /* sorting algorithm on sortArr
34 * with permutation in permArr */
35
36 /** copy results to outputs */
37 /*@ loop invariant: ... */
38 for (int i = 0; i < 4; i++) {
39 (* outArr[i]) = sortArr[i];
40 (* posArr[i]) = permArr[i];
41 }
42 }

Fig. 2. Sorting function for N = 4 inputs and outputs

analysis and WP for deductive verification. Finally, we propose a new pointer
analysis exploiting a value analysis based on abstract interpretation; this analysis
is able to produce the memory model that reduces the verification effort of a
relevant benchmark.

2 A Motivating Example

We overview the issues targeted and the solution proposed in this work using the
C code given in Fig. 2. This code is extracted from the C code generated by the
compiler of a high level data flow language. It combines at least three complex
features of pointers in C.

The first feature is the duality of records and arrays, which is used here
to interpret the (large) list of arguments for a function as individual fields in
a compound (record) type or as cells of an array. Thus, the read of the k-th
field (k ≥ 0) named fk of a record stored at location s and using only fields of
type τ may be written s->fk or *(&(s->f0)+k), where f0 is the first field. It is
debatable whether the C standard actually permits this form of dual indexing
between records with fields of the same type and arrays [34], but some programs,
including this one, use this feature with success. In our example, this duality is
used in function sort4 to ease the extraction of numerical values from the inputs
and the storage of the sorted values in the outputs. This first feature makes our
running example more challenging, but the technique we propose is also effective
when the parameters are encapsulated in arrays of pointers, e.g., when inputs
and outputs are declared as a field of type array by data_t* in[4]. The second
feature is precisely the usage of arrays of pointers which is notoriously difficult
to be dealt precisely by pointer analyses. The third feature is the complex sepa-
ration constraints between pointers stored in arrays, which leads to a quadratic
number of constraints on the size of the array and complicates the task of DV
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tools. In the following, we discuss in detail these issues and our approach to deal
with them.

Inputs and outputs of sort4 have the same type, data_t, which shall encap-
sulate a numerical value to be sorted. For simplicity, we consider only one field
of int32_t type for data_t. Type pos_t models an element of the permutation
and denotes the destination position (an unsigned integer) of the value sorted.
The parameters of sort4 are collected by type intf4_t: four pointers to data_t
for input values, four pointers to data_t for output values, and four pointers to
pos_t for the new positions of input values.

The function is annotated with pre/post conditions and with loop invariants.
The pre-condition requires (predicate sep) that (1) all pointers in *args are
valid, i.e. point to valid memory locations, (2) the pointers in fields in are disjoint
from any pointer in fields out and pos, and (3) pointers in fields out and pos are
pairwise disjoint. Notice that the in fields may alias. The post-condition states
that the values pointed by the fields out are sorted (predicate sorted_vals)
and, for each output i, the value of this output is equal to the value of the input
j such that pos[j] is i (predicate perm).

The separation pre-condition is necessary for the proof of the post-condition
because any aliasing between fields out may crush the results of the sorting
algorithm. The encoding of this pre-condition in FOL is done by a conjunction
of dis-equalities which is quadratic on the number of pointers concerned. More
precisely, for n inputs (and so n outputs and n positions), there are O(n2) such
constraints. (In SL, this requirement is encoded in linear formulas.) The original
code from which our example is inspired instantiate n with 24 and therefore
generates a huge number of dis-equalities. Several techniques have been proposed
to reduce the number of dis-equalities generated by the separation constraints.
For example, a classic technique is assigning a distinct logic value (a color) to
each pointer in the separated set. This technique does not apply in our example
if the type data_t is a record with more than one field because the color shall
concern only the numerical value to be sorted.

As an alternative, we propose to use precise points-to analyses to lift out such
constraints and to simplify the memory model used for the proof of the function.
Importantly, we perform a per-call proof of sort4, instead of a unitary proof.
For each call of sort4, the static analysis tries to check that the separation pre-
condition is satisfied and provides a model for the memory where the pointers
are dispatched over disjoint zones. Unfortunately, the precision of the points-
to analyses (and consequently the number of separation constraints discharged)
may change radically with the kind of initialization done for the arguments of
sort4. We will illustrate this behavior for two calls of sort4 given in Fig. 3: the
call in listing (a) uses variables and the one in listing (b) uses arrays. Notice that
each call satisfies the separation pre-condition of sort4.

Typed Memory Model: For completeness, we quickly present first how DV
tools using FOL deal with our example using the Burstall-Bornat model. In
this model, the memory is represented by a set of array variables, each array
corresponding to a (pre-defined, basic) type of memory locations. For our
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Listing 1.1: (a) using variables
1 data_t df_1 ,df_2 ,..., df_8;
2 pos_t pf_1 ,pf_2 ,pf_3 ,pf_4;
3 intf4_t SORT = {
4 .in1=&df1 , .in2=&df2 ,
5 .in3=&df3 , .in4=&df4 ,
6 .out1=&df5 , .out2=&df6 ,
7 .out3=&df7 , .out4=&df8 ,
8 .pos1=&pf1 , .pos2=&pf2 ,
9 .pos3=&pf3 , .pos4=&pf4 };

10
11 df_1 = nondet_data ();
12 df_2 = nondet_data ();
13 df_3 = nondet_data ();
14 df_4 = nondet_data ();
15
16 sort4(&SORT);

Listing 1.2: (b) using arrays
1 data_t df[8];
2 pos_t pf[4];
3 intf4_t SORT = {
4 .in1=df+1, .in2=df+2,
5 .in3=df+3, .in4=df+4,
6 .out1=df+5, .out2=df+6,
7 .out3=df+7, .out4=df ,
8 .pos1=pf , .pos2=pf+1,
9 .pos3=pf+2, .pos4=pf+3 };

10
11 df[1] = nondet_data ();
12 df[2] = nondet_data ();
13 df[3] = nondet_data ();
14 df[4] = nondet_data ();
15
16 sort4(&SORT);

Fig. 3. Two calls for the sorting function using different initialization

example, the memory model includes six array variables: M_int32, M_uint8,
M_int32_ref, M_uint8_ref, M_int32_ref_ref, M_uint8_ref_ref storing val-
ues of type respectively int32_t, uint8_t, int32_t*, uint8_t*, int32_t** and
uint8_t**. Program variables are used as indices in these arrays, e.g., variable
inArr is an index in array M_int32_ref_ref and sortArr is index of M_int32.

The separation pre-condition of sort4 is encoded by dis-equalities,
e.g., M_int32_ref[args_in4] <> M_int32_ref[args_out1] where args_in4
is bound to the term shift(M_int32_ref_ref[args], in4) which encodes
the access to the memory location &(args->in4) using the logic function
shift ;args_out1 is defined similarly. However, these dis-equalities are not prop-
agated through the assignments at lines 18–23 in Fig. 2, which interpret the
sequence of (input/output/position) fields as arrays. Therefore, additional anno-
tations are required to prove the correct initialization of the output at lines
39–41. Some of these annotations may be avoided using our method that employs
pointer analyses to infer precise memory models, as we show below.

Base-Offset Pointer Analysis: Consider now a pointer analysis which is field
and context sensitive, and which computes an over-approximation of the value
of each pointer expression at each program statement. The over-approximation,
that we name abstract location, is built upon the standard concrete memory
model of C [25]. An abstract location is a partial map between the set of pro-
gram’s variables and the set of intervals in N. An element of this abstraction,
(v, i#), denotes the symbolic (i.e., not related with the locations in the virtual
memory space used during the concrete execution) memory block that starts at
the location of the program variable v (called also base), and the abstraction
by an interval i# of the set of possible offsets (in bytes) inside the symbolic
block of v to which the pointer expression may be evaluated. In this memory
model, symbolic blocks of different program variables are implicitly separated:
it is impossible to move from the block of one variable to another using pointer
arithmetic. The memory model is modeled by a set of logic arrays, one for each
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symbolic block. The over-approximation computed by the analysis allows to dis-
patch a pointer expression used in a statement on these arrays.

In our example, for the call of sort4 in Fig. 3(a), the memory model includes
the symbolic blocks for program’s variable dfi, pfi and SORT. The above analysis
computes for the pointer expressions args->in1 and *(args->in1) at the start
of sort4, the abstract location {(SORT, [0, 0])} and (df1, [0, 0]) respectively. The
abstract locations for the pointer expressions involving other fields of args are
computed similarly. The separation pre-condition of sort4 is implied by these
abstract locations. After the fields of args are interpreted as arrays (lines 18–23
of sort4), the pointer expression outArr+i at line 39, where i is restricted to the
interval [0, 3], is over-approximated to the abstract location {(SORT, [16, 31])}.
Similarly, inArr+i is abstracted by {(SORT, [0, 15])}. Therefore, the left value
given by the pointer expression outArr[i] (at line 39) is (precisely) computed
to be {(df5, [0, 0]), ..., (df8, [0, 0])}. This allows proving the correctness of the
output computed by sort4.

For the call in Fig. 3(b), the memory model includes symbolic blocks for
program’s variable df, pf and SORT. The analysis computes for pointer expres-
sions args->in1 and *(args->in1) (used at the start of sort4), the abstract
location {(SORT, [0, 0])} resp. (df, [0, 3]), which also allows to prove the separa-
tion pre-condition. The interpretation of fields as arrays (lines 18–23) leads to
the abstract location {(df, [1, 4])} for inArr+i, which is very precise. However,
because the initialization of the field SORT.out4 at line 18 in Fig. 3(b) breaks
the uniformity of the interval, the pointer expression outArr+i (at line 39) is
over-approximated to {(df, [0, 7])}. This prevents the proof of the post-condition.

In conclusion, such an analysis is able to infer a sound memory model that
offers a finer grain of separation than the typed memory model. However, it is
not precise enough to deal with the array of pointers and field duality in records.

Partitioning Analysis: Based on the base-offset pointer analysis above, we define
in Sect. 5.3 a new analysis that computes for each pointer expression an abstract
location that collects a finite set of slices of symbolic blocks, i.e., the abstrac-
tion is a partial mapping from program’s variables to sets of intervals rep-
resenting offsets in the block. With this analysis, the abstract location com-
puted for outArr+i (at line 39 of sort4, call in Fig. 3(b)) is more precise, i.e.,
{df �→ {[5, 7], [0, 0]}}, and it allows to prove the post-condition for sort4. Notice
that the analysis computes a finite set of slices in symbolic blocks whose con-
cretizations (sets of locations) are pairwise disjoint. For this reason, this analysis
may be imprecise if its parameter fixing the maximum size of this set is exceeded.
This analysis also deals precisely with the call of sort4 in Fig. 3(a).

Dealing with Different Analyses: The above comments demonstrate the diver-
sity of results obtained for the memory models for different points-to analysis
algorithms. One of our contributions is to define a generic interface for the defi-
nition of the memory model for the DV based on the results obtained by static
analyses doing points-to analysis (SPA). This interface eases the integration of
a new SPA algorithm and the comparison of results obtained with different SPA
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n ∈ N, k ∈ Z integer constants num integer type in {i8, u8, i16, . . . , u64}
rt ∈ Rtyp record type names f ∈ Fld field names
v ∈ Cvar program variables op ∈ O unary and binary arithmetic operators

scalar types Styp � u ::= num | t ptr

program types Ctyp � t ::= u | rt | u[n]
expressions Expr � e ::= ie | a
integer expressions Iexpr � ie ::= k | lv | op ie | ie op ie′

address expressions Aexpr � a ::= null | lv | &lv | a+ ie

left-values Lval � lv ::= v | lv.f | ∗a
statements Stmt � s ::= lv=e | assert e

Fig. 4. Syntax of our Clight fragment

algorithms. We formalize this interface in Sect. 4 and instantiate it for different
SPA algorithms in Sect. 5. Our results are presented in Sect. 6.

3 Generating Verification Conditions

To fix ideas, we recall the basic principles of generating verification conditions
(VC) using a memory model by means of a simple C-like language.

3.1 A Clight Fragment

We consider a fragment of Clight [4] that excludes casts, union types and
multi-dimensional arrays. We also restrict the numerical expressions to inte-
ger expressions. The syntax of expressions, types and atomic statements is
defined by the grammar in Fig. 4. This fragment is able to encode all assign-
ment statements in Figs. 2 and 3 using classic syntax sugar (e.g., **(arr + i)
for *arr[i], &((*args).in1) for &(args->in1)). Complex control statements
can be encoded using the standard way. User defined types are pointer types,
static size array types, and record types. A record type declares a list of typed
fields with names from a set Fld; for simplicity, we suppose that each field has a
unique name. We split expressions into integer expressions and address expres-
sions to ease their typing. Expressions are statically typed by a type t in Ctyp.
When this information is needed, we write et.

We choose to present our work on this simple fragment for readability. How-
ever, our framework may be extended to other constructs. For example, our
running example contains struct initialization. Struct assignment may be added
by explicit assignment of fields. Type casting for arithmetic and compatible
pointer types (i.e., aligned on the same type) may be dealt soundly in DV tools
employing array-based memory models using the technique in [31]. Functions
calls may be also introduced if we choose context-sensitive SA. In general, DV
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sig AMM :
type Loc � Cvar × N

ops base : Cvar Loc
shift : Loc N Loc

types Mem, Val � Vint(Z) | Vptr(Loc)
ops load : Mem Styp Loc Val⊥

store : Mem Styp Loc Val Mem⊥

Fig. 5. Abstract signature for the concrete memory model

tools conduct unit proofs for functions. We restrict this work to whole-program
proofs, because it avoids the requirement that SA is able to conduct analyses
starting with function’s pre-conditions. Our memory model could however be
instantiated with an inter-procedural SA, thus enabling unit proof of functions.

3.2 Memory Model

We define the denotational semantics of our language using an environment
called abstract memory model (AMM). (This name is reminiscent of the first
abstract memory model defined in [24,25] for CompCert. We enriched it with
some notations to increase readability of our presentation.) Figure 5 summarizes
the elements of this abstract memory model. The link between abstract and
concrete standard memory models is provided in the extended version.

The states of the memory are represented by an abstract data type Mem
which associates locations of type Loc to values in the type Val. Locations are
pairs (b, o) where b is the identifier of a symbolic block and o is an integer giving
the offset of the location in the symbolic block of b. Because we are not consid-
ering dynamic allocation, symbolic blocks are all labeled by program’s variables.
Thus we simplify the concrete memory model by replacing block identifiers by
program variables. Values of type Loc are built by two operations of AMM:
base(v) gives the location of a program variable v and shift(�, n) computes the
location obtained by shifting the offset of location � by n bytes. The shift oper-
ation abstracts pointer arithmetics. The typing function cty(.) is extended to
elements of Loc based on the typing of expressions used to access them. Some
operations are partial and we denote by ⊥ the undefined value. A set A extended
with the undefined value is denoted by A⊥. The axiomatization of loading and
storing operations is similar to the one in [24,25].

3.3 Semantics

Figure 6 defines the rules of the semantics using the abstract memory model, via
the overloaded functions [[ · ]]. The semantic functions are partial: the undefined
case ⊥ cuts the evaluation. The operators ôp are interpretations of operations op
over integer types num. The functions offset(·) and sizeof(·) are defined by the
Application Binary Interface (ABI) and depend on the architecture. Conversions
between integer values are done using function cast(·, ·).
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[[ · ]] : Stmt Mem Mem⊥
[[ lvu=e ]](m) � store(m, u, [[ lv ]](m), [[ e ]](m))
[[ assert e ]](m) � if [[ e ]](m) �∼ 0 then m else ⊥

[[ · ]] : Expr Mem Val⊥
[[ ie ]](m) � Vint([[ ie ]](m))
[[ a ]](m) � Vptr([[ a ]](m))

[[ · ]] : Iexpr Mem Z⊥
[[ i ]](m) � i

[[ lvnum ]](m) � i,Vint(i) = load(m, num, [[ lv ]](m))
[[ op ie ]](m) � ôp([[ ie ]](m))

[[ · ]] : Lval Mem Loc⊥
[[ v ]](m) � base(v)
[[ lv.f ]](m) � shift([[ lv ]](m), offset(f))
[[ ∗a ]](m) � [[ a ]](m)

[[ · ]] : Aexpr Mem Loc⊥
[[ null ]](m) � base(null)
[[ lvu[n] ]](m) � [[ lv ]](m)
[[ lvt ptr ]](m) � � where load(m, t ptr, [[ lv ]](m)) = Vptr(�)
[[ &lv ]](m) � [[ lv ]](m)
[[ at ptr + ie ]](m) � shift([[ a ]](m), sizeof(t) × cast([[ ie ]](m), u32))

Fig. 6. Semantics of our Clight fragment

3.4 Generating Verification Conditions

Verification conditions (VC) are generated from Hoare’s triple {P} s {Q} with
P and Q formulas in some logic theory T used for program annotations and
s a program statement. The classic method [18,23] is built on the computa-
tion of a formula Rs(vb,ve) in T specifying the relation between the states of
the program before and after the execution of s, which are represented by the
set of logic variables vb resp. ve. The VC built for the above Hoare’s triple is
∀vb,ve.

(

P (vb)∧R(vb,ve)
)

=⇒ Q(ve) and it is given to solvers for T to check
its validity. In the following, we denote by E the set of logic terms built in the
logic theory T using the constants, operations, and variables in a set X . For a
logic sort τ , we designate by Eτ the terms of type τ .

Compilation Environment: Formula Rs(·, ·) is defined based on the dynamic
semantics of statements, like the one given in Fig. 6 for our language. The com-
pilation of this semantics into formulas T uses a memory model environment
(called simply environment) that implements the interface of the abstract mem-
ory model given in Fig. 5. This environment changes at each context call and
keeps the information required by the practical compilation into formulas, e.g.,
the set of variables used for modeling the state at the current control point of
this specific context call. Figure 7 defines the signature of memory environments.

sig MME :
type Loc
ops base : Cvar Loc

shift : Mem Loc EI Loc⊥

types Mem, Val � Vint(EI) | Vptr(Loc)
ops load : Mem Styp Loc Val⊥

store : Mem Styp Loc Val (Mem × EB)⊥

Fig. 7. Signature of the memory model environments
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The types Mem and Loc encapsulate information about the program states
and memory locations respectively. Notice that the logical representation of loca-
tions is hidden by this interface, which allows to capture very different memory
models. The compilation information about the values stored is given by the type
Val, which represent integers by integer terms in T , i.e., in the set EI. Operation
shift implements arithmetics on locations by an integer term. Operation store
encapsulates the updating of the environment by an assignment and produces a
new environment and a term in EB, i.e., a formula of T .

Prerequisites on the Logic Theory: For DV tools based on first order logic, the
theory T is a multi-sorted FOL that embeds the logic theory used to anno-
tate programs (which usually includes boolean and integer arithmetics theories)
and the McCarthy’s array theory [26] employed by the Burstall-Bornat memory
model [6] to represent atomic memory blocks. The memory model environment
associates to each memory blocks a set of logic array variables using base opera-
tions. It encodes the operations load(m, t, �) resp. store(m, t, �, v) into logic array
operations read(a, o) resp. store(a, o, v), where a is the array variable for the sym-
bolic block b of location � that stores values of type t and o is the offset of �
in b. T also embeds abstract data types (or at least polymorphic pairs with
component selection by fst and snd), and uninterpreted functions. Polymorphic
conditional expression “(econd)?etrue : efalse” are also needed.

In the following, we use the logic theory above T and suppose that an infi-
nite number of fresh variables can be generated. To ease the reading of envi-
ronment definitions, we distinguish the logic terms by using the mathematical
style and by underlining the terms of T , e.g., x + x. For example, the logic term
read(m(b), 4 + x) is built from a VC generator term m(b) that computes a logic
term of array type and the logic sub-term read(·, 4 + x).

Example: Consider the Hoare’s triple {P} (∗(&r.f))i8 = 5 {Q}. Let l0 be
shift(m0, base(r), offset(f)), where m0 (resp. m1) is the environment for the
source state (resp. modified by the store for the destination state); that is
m1, φ1 � store(m0, i8, l0,Vint(5)). The formula P (resp. Q) is generated from
P (resp. Q) using compilation environment m0 (resp. m1). Then the VC gen-
erated by the above method is P ∧ φ1 =⇒ Q. Notice that the above calls of
the environment’s operations follow the order given by the semantics in Fig. 6,
except for the failure cases. Indeed, to simplify our presentation, we consider
that statement’s pre-condition includes the constraints that eliminate runs lead-
ing to undefined behaviors. Therefore, the VC generation focuses on encoding
in Rs(·, ·) the correct executions of statements.

4 Partition-Based Memory Model

We define a functor that produces memory models environments implementing
the interface on Fig. 7 from the information inferred by a pointer analysis. The
main idea is that the SA produces a finite partitioning of symbolic blocks into
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sig PA :
type L
ops base : Cvar

domain : 2B

type S
ops load : Ptr

shift : I L

type B
ops base : Cvar

slice : I

L
L

S L L
S L E

B
B E EB

disjointness: ∀b#1 , b#2 ∈ B · b#1 �= b#2 ⇒ γ(b#1 ) ∩ γ(b#2 ) = ∅ (1)

completeness: ∀v ∈ Cvar ∀i ∈ [0, sizeof(cty(v)) − 1) ∃b# ∈ B · (v, i) ∈ γ(b#) (2)

unique base: ∀b# ∈ B ∃!v ∈ Cvar · γ(b#) ⊂ {(v, i) | i ∈ N} (3)

sound B ops: ∀b# ∈ B · γ(b#) = {(v, i) ∈ Loc | v = base(b#) ∧ slice(b#, i) = true} (4)

sound L ops: ∀�# ∈ L ∀� ∈ γ(�#) ∃b# ∈ domain(�#) · � ∈ γ(b#) (5)

sound S ops: ∀s ∀s# ∈ S(s) ∀�# ∈ s# ·
γ(shift(s#, �#, e)) ⊇ {shift(�, i) | � ∈ γ(�#),m ∈ γ(s#), i ∈ [[ e ]](m)}(6)

∀s ∀s# ∈ S(s) ∀�# ∈ s# ·
γ(load(s#, t ptr, �#)) ⊇ {load(m, t ptr, �) | � ∈ γ(�#),m ∈ γ(s#)} (7)

Fig. 8. A signature for pointer analysis and its properties

a set of pairwise disjoint sub-blocks and each sub-block is mapped to a specific
set of array logic variables by the compilation environment. We first formalize
the pre-requisites for the pointer analysis using a signature constrained by well-
formed properties. Then, we define the functor by providing an implementation
for each element of the interface on Fig. 7.

4.1 Pointer Analysis Signature

A necessary condition on the pointer analysis is its soundness. To ease the rea-
soning about this property of analysis, we adopt the abstract interpretation [16]
framework. In this setting, a SA computes an abstract representation s# of the
set of concrete states reached by the program’s executions before the execution
of each statement. The abstract states s# belong to a complete lattice (S#,
#)
which is related to the set of concrete program configurations State by a pair
of functions α : 2State → S# (abstraction) and γ : S# → 2State (concretiza-
tion) forming a Galois connection. In the following, we overload the symbol γ to
denote concretization functions for other abstract objects.

Aside being sound, the SA shall be context sensitive and provide, for each
context call, an implementation of the signature on Fig. 8. The values of S pro-
vides, for each statement of the current context, the abstract state in S# com-
puted by the analysis. The type L represents the domain of abstract values com-
puted for the pointer expressions in abstract states. The concretization function
γ : L → 2Loc maps abstract locations to sets of concrete locations.

The type B stands for the set of pairwise disjoint abstract blocks partitioning
the symbolic memory blocs, for the fixed specific context call. The concretization
function for abstract blocks γ : B → 2Loc maps blocks to set of concrete locations.
Equations (1) and (2) in Fig. 8 specify that abstract blocks in B shall form a
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partition of the set of concrete locations available in symbolic blocks such that
an abstract block belongs to a unique symbolic block.

The operation base(b#) returns the symbolic block to which b# belongs,
represented by the program variable labeling this symbolic block. The range
of an abstract block b# inside its symbolic block is specified by the operation
slice(b#, e), which returns a formula (boolean term in EB) that constrains e to
be in this range. The soundness of the base and slice operations is specified by
Eq. (4). The set of abstract blocks covered by an abstract location is provided by
the operation domain, whose soundness is specified by Eq. (5). The operation base
abstracts the offset 0 of a program variable. Abstract locations may be shifted
by an integer term using operation shift. Operation load(s, t ptr, �#) computes
the abstract location stored at �# in some context s, i.e., it dereferences �# of
type t ptr ptr for some t. (We denote by Ptr the set of all pointer types in
the program.) The last two operations shall be sound abstract transformers on
abstract locations, as stated in Eqs. (6) resp. (7).

4.2 A Functor for Memory Model Environments

We define now our functor that uses the signature PA to define the elements of the
memory model environment MME defined in Fig. 7. To disambiguate symbols,
we prefix names of types and operations by the name of the signature or logic
theory when necessary.

Environment’s Type: A compilation environment m ∈ Mem stores the mapping
to abstract states from PA and and a total function that associates to each
abstract block in PA.B a logic variable in X :

MME.Mem � PA.S × [PA.B → T .X ] (8)

where [A → B] denotes the set of total functions from A to B, i.e., BA. We
designate by ms and mε the first and second component of some m ∈ Mem.

If an abstract block b# stores only one type of values, the logic variable
mε(b#) has type array(Z, τ) where τ is the logic type for the values stored.
For blocks storing integer values (i.e., num), τ is naturally (logical) Z or N. For
blocks storing pointer values, τ is Z× Z, (b, o) where the b denotes the abstract
block of the location and o represents the location’s offset. We denote by b# the
integer constant that uniquely identifies b# ∈ B. If an abstract block b# stores
values of both kinds of scalar types (notice that only scalar values are stored
in array-based models), the logic variable mε(b#) has the type pair of arrays,
(array(Z,Z), array(Z,Z×Z)) where the first array is used for integer values and
the second one for pointer values. For readability, we detail here only the case
of homogeneously typed blocks. Notice that the mapping mε binds fresh array
variable names to abstract blocks changed by store operation.

Locations’ Type: The type MME.Loc collects the logic encoding of locations as
a pair of integer terms (eb, eo) ∈ EI × EI together with the abstract location �
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provided by the static analysis, i.e., MME.Loc � EI×I ×PA.L. Intuitively, in the
logic pair (eb, eo), eb is interpreted as an abstract block identifier and eo models
the offset of the location in the symbolic block of the abstract block eb, i.e., an
integer in the slice of eb.

Locations’ Operations: The values of MME.Loc are built by two opera-
tions MME.base and MME.shift defined as follows. For a program variable v,
MME.base(v) is based on the abstract location �# returned by PA.base(v). The
domain of �# shall have only one abstract block b# because program variables
are located at the start of symbolic blocks. Moreover, the term denoting the
offset shall be the constant 0. Formally:

MME.base(v) � 〈(b#, 0), �#〉 where PA.base(v) = �#, domain(�#) = {b#} (9)

The shifting of a location in Loc by an expression e is computed based on the
abstract shift operation as follows:

MME.shift(m, 〈(eb, eo), �#〉, e) � 〈(e′
b, eo + e), �#s 〉 (10)

where �#s = PA.shift(ms, �
#, e) and the new logic base e′

b selects (using a
conditional expression) the base b#i from the ones of �#s . Let us denote by
fits(eb, �

#, b#) the boolean term testing that the block identifier in eb is one
of the blocks identifiers in PA.domain(�#) which has the same symbolic block
(i.e., base) as b#i , i.e.:

fits(eb, �
#, b#) �

∨

b#j ∈PA.domain(�#) s.t. PA.base(b#j )=PA.base(b#)

eb = b#j (11)

Using fits, if PA.domain(�#s ) is {b#1 , . . . , b#n }, the formal definition of e′
b is:

e′
b �

⎛

⎝

fits(eb, �
#, b#1 ) ∧ PA.slice(b#1 , eo + e) ? b#1 :

. . . fits(eb, �
#, b#n−1) ∧ PA.slice(b#n−1, eo + e) ? b#n−1 : b#n

⎞

⎠ (12)

Indeed, since the shift operation can not change the symbolic block, we have
to test, using fits, that each resulting block identifier b#i has the same symbolic
block as eb.

The size of the expression encoding MME.shift depends on the product of
sizes of domains computed by PA for �# and �#s . If the abstract locations have
a singleton domain, i.e. PA.domain(�#s ) = {b#1 }, then e′

b is simply b#1 . When the
precision of the SA does not enable such simplification, we could soundly avoid
big expressions generated by MME.shift by using in MME.load and MME.store
operations only the component abstract location of an environment’s location.

Loading from Memory: Reading an integer value in the environment m at a
location l = 〈(eb, eo), �#〉 is compiled into a read operation (denoted by a[e] for
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concision) from an array variable obtained by statically dispatching the logical
base eb of l among the possible base identifiers in PA.domain(�#) = {b#1 , . . . , b#n }
as follows:

MME.load(m, num, 〈(eb, eo), �#〉) � Vint (e) (13)

where

e �

⎛

⎝

eb = b#1 ? mε(b
#
1 )[eo] :

. . . eb = b#n−1 ? mε(b
#
n−1)[eo] : mε(b#n )[eo]

⎞

⎠ (14)

The size of the expression above may be reduced by asking to SA an over-
approximation o# of the values of expression eo in the current state. If SA is
able to produce a precise result for o#, we could remove from the expression
above the cases for abstract blocks b#j for which PA.slice(b#j , o#) = false (i.e.,
the formula is invalid for the values in o#).

The expression in Eq. (14) is also used for reading pointer values. In this case,
the expression obtained is a tuple. The abstract location corresponding to this
logic expression is obtained using the abstract PA.load operation in the abstract
state component ms of the environment:

MME.load(m, t ptr, 〈(b, o), �#〉) � Vptr
(

e,PA.load(ms, t ptr, �#)
)

(15)

Storing in Memory: The compilation of store semantic operation is done by the
MME.store operation that produces a new environment m′ and a boolean term
(formula) e′ encoding the relation between the logic arrays associated to blocks
before and after the assignment as follows:

MME.store(m, t, 〈(eb, eo), �#〉, v) � m′, e′ for v ∈ {Vint(e),Vptr(〈e, �#v 〉)} (16)

where m′ = 〈s′#,m′
ε〉 with s′# the abstract state computed by the analysis for

the control pointer after the assignment compiled. The new block mapping m′
ε

uses fresh logic variables for the abstract blocks in the domain PA.domain(�#) =
{b#1 , . . . , b#n } of the abstract location �# at which is done the update:

m′
ε � m[b#1 ←− α1, · · · , b#n ←− αn] (17)

The fresh variables are related with the old ones using the store operator on logic
arrays, denoted by a[i ←− e], in the generated formula e′ defined as follows:

e′ � ∧n
i=1

(

(eb = b#i ) ? αi = m[b#i ][eo ←− e] : αi = m[b#i ]
)

(18)

The size of this expression may be reduced using the SA results in a similar way
as for load. In general, the size of expressions generated by the compilation in
Eqs. (12), (14) and (18) depends on size of the domain for the abstract locations
computed by the static analysis. Indeed, if the analysis always provides abstract
locations with a singleton domain, the compilation produces expressions with
only one component, while proving most separation annotations. However, if
the analysis computes a small set B (however bigger or equal to the number of
program variables), the VC generated does not win any concision (we are falling
back to the separation given by the typed model).
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Functor’s Properties: The requirements on the signature PA ensure that the
operations domain, load and shift are sound. This enforces the soundness of defi-
nitions for the MME’s operations. Based on this observation, we conjecture that
these operations compute a sound post-condition relation, although this relation
maybe not the strongest post-condition. A formal proof is left for future work.

5 Instances of Pointer Analysis Signature

The signature PA may be implemented by several existing pointer analyses. We
consider three of them here and we show how they fulfill the requirements of PA.
We also define an analysis which exploits the results of a precise pointer analysis
to provide an appropriate partitioning of the memory in PA.B.

All pointer analyses we consider computes statically the possible values (i)
of an address expression, i.e., an over-approximation of [[ a ]] (a ∈ Aexpr from
Fig. 4) and (ii) of an address dereference, i.e., an over-approximation of [[ ∗a ]].
For these reason, these analyses belong to the points-to analyses class [19].

5.1 Basic Analyses (B and B�)

The first points-to analysis abstracts locations by a finite set of pairs (v, I#)
built from a symbolic block identifier v and an abstraction for sets of integers
I# collecting the possible offsets of the location in the symbolic block. If we
fix I# to be the abstract domain used to represents sets of integers, then the
abstract domain for locations is defined by Loc# � 2Cvar×I#

.
Many abstract domains have been proposed to deal with integer sets in

abstract interpretation framework. For points-to analysis, most approaches use
the classic domain of intervals [16]. To obtain more precise results, we consider
here the extension of the interval domain which also keeps modulo constraints
and small sets of integers. This domain is implemented in the Eva plugin of
Frama-C [22]. Then, the abstract sets in I# are defined by the following gram-
mar:

I# � I#::= � | [i∞..i′∞]r%n | {i1, . . . , in} (19)

where r, n ∈ N are natural constants, i1, . . . , in ∈ Z are integer constants and
i∞, i′∞ ∈ Z ∪ {+∞,−∞} are integer constants extended with two symbols to
capture unspecified bounds. We wrote [i∞..i′∞] for [i∞..i′∞]0%1. The concretiza-
tion of a value I# in I#, γ : I# → 2Z maps [i∞..i′∞]r%n to the set of integers
k ∈ [i, i′] such that k%n = r. Because the abstract intervals are used to cap-
ture offsets in symbolic blocks which have a known size (given by the ABI),
the concrete offsets are always bounded, but they may be very large. We obtain
independence of the ABI by introducing unspecified bounds for intervals and the
� value. For efficiency, the size of explicit sets {i1, . . . , in} is kept bounded by a
parameter of the analysis, denoted in the following ilvl. The domain I# comes
with lattice operators (e.g., join �#) and abstract transformers for operations
on integers. Our work requires a sound abstract transformer for addition, +#.
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L � Loc# S � Stmt S# (20)

B � Cvar base(v) � {(v, {0})} slice(v, e) � 0 ≤ e < sizeof(cty(v)) (21)

domain(�#) � {v | (v, I#) ∈ �#} (22)

shift(s, �#, e) � �#

(vk,I
#
k

)∈�#
{(vk, I#

k +# [[ e ]]#(s))} (23)

load(s, t ptr, [[ a ]]#(s)) � [[ ∗a ]]#(s) (24)

Fig. 9. Implementation of PA by analyses B and B�

Precise Offsets (B): Let us consider a precise instance of such an analysis, i.e.
field-sensitive and employing the abstract domain of intervals I# defined above.
Let S# be the abstract domain for program’s states implemented in this analysis.
This domain captures the abstract values for all program’s variables. We denote
by �a�#(s) the abstract location (in Loc#) computed by the analysis for the
address expression a at statement s. For address expressions typed as pointer to
pointer types, the abstract value of the address expression �∗a�#(s) is also an
element of Loc# and computes the points-to information.

The types and operations of PA are shown in Fig. 9. The symbolic blocks are
not partitioned, since B � Cvar. Then, the slice for a block is the set of valid off-
sets for the symbolic block and the generated constraint is very simple. Abstract
locations are shifted precisely using the abstract transformer for addition in I#.
It is usually precise when e is a constant. The soundness properties required by
PA are trivially satisfied due to the simple form of abstract blocks’ type and the
soundness of operations on the abstract domains used.

Imprecise Offsets (B�): We also consider an instance of the points-to anal-
ysis which is not field-sensitive. For example, the B� analysis computes for
[[ &SORT.out2 ]]#(s3), where s3 is the assignment at line 3 of listing in Fig. 3(a),
the set of abstract location {(dfi,�), . . . , (pfj,�) | 1 ≤ i ≤ 8, 1 ≤ j ≤ 4}. The
definition of the elements of the signature PA is exactly the one given in Fig. 9.

5.2 Partitioning by Cells (C)

Analyzers that do not handle aggregate types (arrays and structs) decompose
the symbolic blocks of variables having aggregate types into atomic blocks that
all have a scalar type. We call these blocks cells. For examples, the symbolic
block of variable pf in Fig. 3(b) is split into four cells of type pos_t. For this
analysis, the definitions for PA are those given in Fig. 9 except for the type B
and the operations using this type slice and domain. To define B, we first define
the set C(t) of cells-paths of type t by induction on the syntax of t as follows:

C(t) �

⎧

⎨

⎩

{ε} if t ∈ Styp
⋃

1≤i≤n fi · C(ti) if t is the record type {f1 : t1, . . . , fn : tn}
⋃

0≤i<n[i] · C(te) if t is the array type te[n]
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where the operator “·” prefixes each path of its second operand by its first
operand. For a variable v, we define C(v) = v·C(cty(v)). For example in Fig. 3(b),
C(df) = {df · [0], . . . , df · [7]}. Given a cell-path c, we denote by r(c) the range
of offsets (in bytes) that correspond to the path and which is computed using
ABI. Then, we replace definitions in Eqs. (21–22) from Fig. 9 by:

B � {C(v) | v ∈ Cvar} slice(v · c, e) � e ∈ r(c)
domain(�#) � {v · c ∈ B | ∃i ∈ N, (v, i) ∈ γ(�#) ∧ i ∈ r(c)}

meaning that the slice of a cell-path is given by the range of bytes corresponding
to the cell, and the domain of an abstract location is defined by enumerating all
cells that intersect with abstract location’s abstract offsets.

5.3 Partitioning by Dereference Analysis (P)

We have seen in Sect. 4.2 that the size of generated VC strongly depends on
two factors: the size of B and the number of abstract blocks in the domain of
abstract locations. This section defines an analysis which, based on the results
of B, aims to minimize these two factors while still producing sound results.
Roughly, the idea is to group cells that are accessed by a set of left values which
is upwards-closed w.r.t. the relation “points-to” computed by B. Therefore, two
different abstract blocks will never be pointed-to by the same left value, i.e., if
the domains of abstract locations [[ ∗a1 ]]#(s1) and [[ ∗a2 ]]#(s2) share an abstract
block b#, then [[ a1 ]]#(s1) and [[ a2 ]]#(s2) belong to the same block.

For this, we define a partition P of pointer-typed left-values used by state-
ments of the current context call using the equivalence relation � defined as
follows. We denote by �# ↓n the set of concrete locations γ(�# +# 0) ∪ . . . ∪
γ(�# +# n − 1). Then, two left-values appearing in some statements are related
by � if the concretization of the abstract locations computed by B for their
addresses on the corresponding statements overlap. Formally, for any left-values
lv1 and lv2 used in statements s1 resp. s2,

(
�(&lv1)

t1�#(s1) ↓n1

) ⋂ (
�(&lv2)

t2�#(s2) ↓n2

) �= ∅ =⇒ (lv1, s1) � (lv2, s2)

where ni = sizeof(ti). By definition, this relationship is reflexive and symmet-
ric, and we close it transitively. It is computed by a simple iterative process on
top of the results of B analysis. For a given element p ∈ P , we compute the set
of concrete locations pointing to left-values in p:

B(p) �
⋃

(lvi,si)∈p

γ(�&lvi�
#(si))

Analysis P implements signature PA using the definitions in Fig. 9 except for
(21–22) that are replaced by:

B � {〈v, s〉 | ∃p ∈ P ∧ s = {i | (v, i) ∈ B(p)}}
slice(〈v, s〉, e) � e ∈ s

domain(�#) � {〈v, s〉 ∈ B | ∃i ∈ N, (v, i) ∈ γ(�#) ∧ i ∈ s}
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In the example on Fig. 3(b), if B is precise enough, P computes a B which splits
the symbolic block labeled by the array variable df into (only) two abstract
blocks: one for the bytes located at indexes [1..4] (whose addresses are stored in
input fields) and another for indexes {0} ∪ [5..7] (stored in output fields).

6 Experimental Results

6.1 Implementation

We implemented our framework in Frama-C [22], an extensible and modular
platform for the analysis of software written in C. Frama-C includes various
plug-ins, interacting with each other through interfaces defined by the platform.

The plug-in Eva is a context-sensitive static analyzer based on abstract inter-
pretation; it employs several numerical abstract domains, including the one
defined in Eq. (19) for sets of integers. On top of the value analysis provided
by Eva, which includes the B analysis from Sect. 5, we coded new partition
analyses to obtain analyses B�, C and P.

The WP plug-in of Frama-C is a DV tool which also includes a built-in simpli-
fier for formulae, Qed [14], a driver to call SMT solvers and the signature MME
for memory model environments [15]. We coded in WP the signature PA, the
functor defined in Sect. 4.2, and each implementation of PA for the above static
analyses. The full development represents 1680 LoC of Ocaml.

6.2 Experimental Setup

Case Study: We consider a case study which extends our running example from
Fig. 2 such that the type data_t is a record which encapsulates numerical values
to be sorted and other information. We attempt to prove the functional correct-
ness of the sort function for various number of inputs N ∈ {4, 8, 16, 32}. The
specification of sort consists of 40 ACSL properties, which WP transforms into
62 VC for each memory model. We also consider 3 different context calls for
sort as the entry point for the analysis. They initialize the fields of the SORT
variable using pointers to: variables on the stack similar to Fig. 3(a) (vars), fields
of a single record (strct) and two arrays (for values and permutations) (arrs).
In addition, we consider two variants for contexts strct and arrs. In the (grp)
variant, all input and output fields are grouped together, i.e., inputs point to the
first N fields/indexes in a regular way and outputs to the remainder. For the
(rdn) variant, inputs and outputs are initialized in a randomized order, as in
Fig. 3(b) for arrs. The latter case is designed to defeat points-to analyses where
offsets are abstracted solely by intervals plus congruences.

Variants of Memory Models: For comparison with the basic DV tools, we also
conduct proof using the default memory model of WP (case Typed). To observe
the influence of the precision of points-to analysis B on the generated memory
models environments, we vary the parameter ilvl which gives the upper limit for
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Fig. 10. Comparison between analyses on number of partitions

the size of small sets kept by the abstract domain I# in Sect. 5.1. We apply B
for ilvl in {4, 8, 16, 32} to generate its memory model environment and the VC.
For the same values, we launch the C (resp. P) analysis after B and generate
the corresponding environments.

Proving VCs: WP generates VC using the library for many sorted first-order logic
provided by Qed. After applying on-the-fly simplifications of VCs, Qed exports
the VC to back-end solvers. We configure WP to discharge simplified VCs to the
Alt-ergo prover and the remaining unproved VCs to be sent to CVC4. Those
experiments ran on an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz with a
timeout of 10 s per goal for each solver.

6.3 Results

Figure 10 shows the number of partitions (size of PA.B) inferred by the various
analysis for a given call context. Recall that the partitioning generated by B is
always constant, since fixed by the program variables. As expected, C’s result
is linear in the number of inputs (right plot in Fig. 10). The partitioning by P
creates fewer abstract blocks when N is less than ilvl (left plot in Fig. 10). Fewer
blocks means a less precise analysis: in our example, the two equivalence classes
that get merged are those corresponding to inputs and outputs.

Figure 11 (left) shows that B partitioning is sufficient to prove all goals for
the vars context, since all values are implicitly separated onto different symbolic
bases. However, for contexts strct and arrs, inputs and outputs share the same
symbolic base which is too imprecise to prove all goals. Analysis B� infers that
the fields of SORT point to all possible inputs and outputs, which yields even worse
results. The results for C partitioning worsen with the increase in the number
of inputs due to the complexity of the VCs generated. For P partitioning, we
are not interested in the vars context considering it is but a small refinement
of B in that context. In our experiments, we were able to identify two classes
of experiments giving similar results in term of provability and time: Pmax are
results for experiments where partitions are maximal and conversely for Pfew.
For readability reasons, we display only the worse results of those two classes.
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Figure 11 (right) shows for each model the total time spent on the VCs that
get proven (i.e., do not timeout), and the total number of proven goals. For an
equal number of proven goals, shorter times are better. We observe that more
partitions lead to bigger VCs which take more time to be proven, especially for
C partitioning. Refining B partitioning within P leads to a better provability
at the cost of a negligible increase in time in provers. Indeed, we are interested
in proving all VCs since some goals (shown as valid) implicitly assume that
other goals are verified. These results demonstrate that P analysis offers the
best trade-off between partition’s granularity and provability in reasonable time,
regardless of the context. Moreover, all verification conditions are proved for
the regular context; for randomized contexts, better results are obtained by
increasing the precision of points-to analysis B. The improvement of P is real
because B exhibits the same performance only for the vars context.

7 Related Work and Conclusion

Memory Model for C: Program verification and certified compilation have pro-
posed several memory models to capture the semantics of C pointers. All these
models view the memory as a collection of disjoint regions. Two main classes
may be distinguished: (i) the regions are typed by the value stored, therefore
regions storing values of different types are disjoint and (ii) the regions are seen
as raw arrays of bytes to capture low-level manipulations of memory in C. The
first class provides a good abstraction for verification of type-safe languages,
(e.g., Java-like [1,2], HOL [27]) or type-safe C programs (GRASSHoper [30],
HIP/Sleek [13]). The second class is mainly used inside static analyzers for
C (Infer [10], MemCAD [11], Eva [8]) or deductive verifiers (Caduceus [17],
HAVOC [12], SMACK [31], VCC [5], VeriFast [21]). Hybrid memory models
either introduce typing in raw memory models for efficiency, or introduce raw
models in typed ones for precision. WP supports both classes of models and
provides instances of the environment MME for them [15].

The CompCert project [24,25] employs an abstract memory model to capture
in an uniform way refinements of memory models for the certified compilation of
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C. This work also inspired [33], which surveys several concrete memory models
for C and proposes a method to design static analyzers based on abstract memory
models. Eva is not built following these principles for efficiency reasons.

Separation Logic versus FOL: Separation Logic [29] is used in many verification
tools for C (e.g., GRASSHoper, HIP/Sleek, Infer, VCC, VeriFast) due to the
efficiency of local reasoning. The specification logic used in Frama-C, ACSL [3],
includes a separating conjunction operator (understood by WP and Eva plugins),
but it is far weaker than the standard separating conjunction operator. The
underlying solvers for SL of the above tools are either not available or deal
with the type safe fragment of C. The recent SL-COMP initiative motivated the
development of several independent solvers for type safe fragments of SL, one of
them included in the CVC4 [32] solver. Our work focuses on DV tools using FOL
and infers separation properties between memory regions. Our pointer analyses
may be used in SL-based tools to obtain precise properties on arrays of pointers.

Pointer Analyses for DV: Static analysis based on region inference is used in [20]
to partition a typed memory model. The analysis is less precise than the points-
to analysis in Eva because the loss of precision for one location could force many
precise locations to be collapsed in the same region. [31] employs pointer analysis
to ensure a sound usage of the typed memory model in presence of casts. This
work may be applied to extend the class of programs we deal with, but our
focus is on improving efficiency of DV, not its realm. Recent work [36] proposes
a precise points-to analysis to infer separation information in order to decrease
the size of VCs. Although Eva is doing a less precise analysis, it is still able
to infer such separation properties. In addition, we define a formalized channel
to transfer such information to DV tools. The authors of [5] explore different
memory models to generate with VCC a benchmark of problems for SMT solvers.
By implementing various memory models for WP, we increase such benchmark.

Conclusion: We have formalized the collaboration of a pointer analysis tool and
a deductive verification tool by a functor which exploits the results of the pointer
analysis to define sound and precise memory model environments used in the
generation of verification conditions in first order logic theories. We applied this
functor to several pointer analyses, including classic analyses (points-to analysis)
and a new analysis that allows to obtain precise partitioning information of
the program’s memory. We reported on the implementation of the functor in
Frama-C and on the results obtained by different analyses on a benchmark of C
programs that exhibit complex features of pointers in C (arrays of pointers,
duality of fields) and complex separation annotations. The results obtained show
the interest of our functor for the automatization of deductive verification.
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Abstract. The increasing prevalence of soft errors and security concerns
due to recent attacks like rowhammer have caused increased interest in
the robustness of software against bit flips.

Arithmetic codes can be used as a protection mechanism to detect
small errors injected in the program’s data. However, the accumulation
of propagated errors can increase the number of bits flips in a variable -
possibly up to an undetectable level.

The effect of error masking can occur: An error weight exceeds the lim-
itations of the code and a new, valid, but incorrect code word is formed.
Masked errors are undetectable, and it is crucial to check variables for
bit flips before error masking can occur.

In this paper, we develop a theory of provably robust arithmetic pro-
grams. We focus on the interaction of bit flips that can happen at differ-
ent locations in the program and the propagation and possible masking
of errors. We show how this interaction can be formally modeled and
how off-the-shelf model checkers can be used to show correctness. We
evaluate our approach based on prominent and security relevant algo-
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1 Introduction

A typical assumption when writing software is that registers and memory content
do not change unless the software performs a write operation on these locations.
However, in practice, this assumption is challenged in several ways. On the one
hand, the feature size of transistors in processors and memories keeps shrinking
and shrinking, which allows natural phenomena like cosmic radiation to sporad-
ically flip bits in memories and processors [4]. On the other hand, there exist
attack techniques that aim at overcoming security mechanisms of systems by
inducing targeted faults into a system. There is a wide range of publications on
how to induce faults in systems using for example voltage glitches [3] or lasers
[29]. The rowhammer effect [15] even allows attackers to cause bit flips remotely
without any physical access to the target device.

Independent of whether a fault is caused by a natural phenomenon or an
attacker, we refer to any change of a system state that is not caused by the
software itself as a fault. Faults have huge implications on the security and safety
of a system. Even a single bit flip, can lead to a critical system failure or reveal
secret cryptographic keys (e.g. [1,7]). Consequently, appropriate mechanisms for
detecting and handling faults are necessary.

The first error detection codes have been invented by Golay [13] and Ham-
ming [14]. They proposed to add redundancy to every number, to increase the
Hamming Distance [14] between encoded numbers. The higher the size of redun-
dancy, the more bit flips can be detected. In the subsequent years, a special
form of error detection codes have been discovered: Arithmetic codes do not
only detect up to a fixed number of bit flips, the code words also remain valid
over a certain set of arithmetic operations, e.g. encode(a) +enc encode(b) =
encode(a + b). The number of detectable bit flips depends on the minimum
arithmetic distance between valid code words [17], referred to as dmin. Examples
for arithmetic error detection codes are AN, AN+B and residue codes [9,10,22].

1.1 Error Masking

In this work, we build up on the theory of arithmetic distance between arithmetic
code words [17] and extend it to describe the propagation of errors and their
arithmetic weights over an arithmetic program.

Listing 1.1. Copy of an invalid code word, resulting in two faulted variables a and b.

1 a := encode (0)

2 a := flip(a, 0th bit)

3 b := a

Every typical program contains data dependencies. If a value depends on a
faulted one, it is influenced by that fault and is unlikely to be correct – the error
propagated to the new variable. Listing 1.1 shows a simple example of an error
propagating from one faulted variable to another one.
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Listing 1.2. The sum of two invalid code words a and b, yields a faulted code word c

containing two flipped bits.

1 a := encode (0)

2 a := flip(a, 0th bit)

3 b := a + a

4 c := a + b

As soon as an instruction has two faulted operands, the arithmetic weight of
the errors can accumulate, and as a result the new error’s weight can exceed the
detection limit dmin of the code. In Listing 1.2, the flip of the 0th bit in a results
in a flip of the 1st bit in b. Both errors accumulate to two bit flips in c.

Definition 1 (Error Masking). Error masking is the effect of a new, valid,
but incorrect code word emerging from an operation with two faulted operands.

Listing 1.3. The injected fault is detected before errors can accumulate.

1 a := encode (0)

2 a := flip(a, 0th bit)

3 b := a + a

4 check(b)

5 c := a + b

A countermeasure for error masking is to check variables for errors at inter-
mediate program locations, like in the example in Listing 1.3. However, it is
non-trivial to determine where to place these checks: on the one hand, too many
checks increase the run time of a program significantly, on the other hand, miss-
ing checks can lead to error masking.

1.2 Contribution

Within this work, we present a technique to prove that a program is robust
against error masking. The following three points summarize our contribution:

1. We introduce the theory behind the effect of error masking based on the
concept of error propagation over arithmetically encoded programs.

2. We use these insights to define the property of error masking robustness
and present a novel technique to prove that the checks inside a program are
sufficient to prevent error masking.

3. We demonstrate the capabilities of our approach based on real world pro-
grams. We were able to detect error masking vulnerabilities in cryptography
algorithms and propose verifiable robust adaptions of these algorithms con-
taining intermediate checks.

The core idea of our proposed method is the translation of an input program
into a model of its worst-case error propagation, and to evaluate the model using
an off-the-shelf model checker. With our method, we are not limited to detect
robustness violations, but also receive indications of the problematic statements.
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Furthermore, our approach is generic for all arithmetic encoding schemes, as long
as there is a minimum arithmetic distance dmin between valid code words.

The flexibility of the technique allows us to use fault specifications of varying
complexity. In contrast to other approaches, our method allows us to evaluate a
program in the presence of multiple faults distributed over all possible locations!

1.3 Outline

The remainder of this paper is organized as follows: First, Sect. 2 describes the
state of the art and related work. Next, Sect. 3 states the preliminaries and
explains the concept of arithmetic codes and its most prominent examples. Our
proposed approach to detect error masking is presented in Sects. 4 and 5: Sect. 4
describes the input language and the fault model, and Sect. 5 states the process
to create a verifiable abstraction of the program under verification. Following,
we prove the correctness of our approach in Sect. 6 and present our experimental
results in Sect. 7. Finally, we conclude with a discussion of (dis-)advantages of
our approach in Sect. 8 and a summary in Sect. 9.

2 Related Work

The first papers on arithmetic codes can be dated back to the 1950’s and
1960’s [9,10,17,22]. They describe a class of error detection codes that natively
supports arithmetic operations without decoding the code word. While arith-
metic codes have been developed to detect and correct bit flips during data
transmission, they turned out to be also well suited as protection mechanism
against a more recent concern: Using modern technology, adversaries are able
to intentionally inject faults during program execution and thus reveal secret
information [18].

In the recent years, researchers developed methods to automatically encode
programs at compile time [11,25,26]. Although some of the required checks can
be inserted automatically, they are insufficient for the prevention of error mask-
ing, and the user needs to specify further check locations himself. However, there
is currently no exact theory to decide where necessary checks are required. This
paper addresses this problem by introducing a method to automatically evaluate
the placement of checks inside a program.

The idea of applying formal methods to verify the robustness of programs
against faults is shared with multiple related papers: Pattabiraman et al. [21]
and Larsson and Hähnle [16] both propose to use symbolic execution. The first
of these two papers describes a method, where registers and memory locations
are symbolically tagged with an err label, and error propagation is modelled
through duplication of this label. The framework runs user defined error detec-
tors to identify and report problems. However, the authors do not consider the
exact number of bit flips on a variable, which prevents the tool from identify-
ing error masking. The second publication focuses on the symbolic injection of
multiple bit flips at fixed fault locations. In contrast to our work, it proposes
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a method tailored to the principle of code duplication as countermeasure. This
method compares the result of two versions of the same code, where one is based
on faulted data. The effectiveness of code multiplication requires a strict inde-
pendence of all redundant data paths. Walker et al. [31] introduce a method to
identify such dependencies inside programs.

The idea of using LLVM bitcode transformations to add explicit fault injec-
tions to the source code is shared with the papers [30] and [12]. The idea of [30]
is to execute two versions of a program - the original and a faulted version - and
to evaluate user defined predicates. Every combination of the program counter
and the state of these predicates form a node in a transition diagram. If an exe-
cution ever reaches a node unreachable in the fault-free transition diagram their
tool reports an error. In the second paper, mutated binaries are model checked
against a given specification. The results are then compared with the results of
a fault-free verification run to identify differences. All those papers share simi-
larities with our work, but they apply to different countermeasures and are not
designed to detect error masking.

On the side of formal verification of programs using error detection codes, as
to our knowledge, only few publications exist so far. Meola [20] formally proved
the robustness of a small encoded program using Hoare Logic, and Schiffel [27]
investigates the soundness and completeness of arithmetic codes using formal
methods. Schiffel posits that the formal verification of AN-encoded programs
using model checkers is impossible due to the exponential increase of verification
time. We address this challenge by creating an abstraction of the program, only
considering the error’s weight instead of a variable’s value.

3 Arithmetic Error Detecting Codes

Error detecting codes are a well-known way to detect errors during storage or
computation. They can be divided into multiple sub-classes, among them the
class of arithmetic error detection codes. These codes do not only guarantee a
detection of all errors with an arithmetic weight smaller a constant dmin, they
also remain valid over certain arithmetic operations, like additions.

3.1 Examples for Arithmetic Codes

One prominent example for an arithmetic code is the AN-code [9,10,26].
All valid AN code words are multiples of an user-defined constant A, with
encode(x) = x · A. To check a code word for validity, the remainder of the code
word divided by A is calculated. For all valid code words, this remainder must be
0, otherwise the check detects an error and aborts execution. In the case of AN
codes the check aborts, if a code word is not a multiple of A, varenc mod A �= 0.

A second class of arithmetic codes are residue codes [17]. A residue code
word is defined by x concatenated with x mod M , given a constant modulus M ,
encode(x) = (x | x mod M). This code separates the redundancy part from the
functional value x, thus the name separate code. Although the robustness of the
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code is defined by the modulus M , residue codes only guarantee detection of a
single bit flip. To overcome this limitation, the redundancy part can be increased
by using more than one residue [23,24], yielding a multi-residue code.

3.2 Arithmetic Weight and Distance

Both, AN-codes and (multi-) residue codes use the arithmetic weight and the
arithmetic distance to quantify the robustness of the instantiated code. These
properties are similar to the Hamming weight and Hamming distance [14] used
for binary linear codes. The arithmetic weight W (|x|) of the integer value x
is defined as the minimum number of non-zero coefficients in the signed digit
representation of x.

W (|x|) = min

{ ∞∑
i=0

|bi|
∣∣∣∣∣ bi ∈ {−1, 0, 1}, x =

∞∑
i=0

bi2i

}

The arithmetic distance d(x1, x2) between the two integers x1 and x2 is equal
to the arithmetic weight of the absolute difference between x1 and x2.

d(x1, x2) = W (|x1 − x2|)

The constant dmin is the only information about the encoding our method
requires. It is defined as the minimum arithmetic distance between any two valid
code words xenc1 and xenc2. All errors with a weight up to dmin are guaranteed
to be detected by a properly implemented check. This property is essential to
verify the error masking robustness, as described in the subsequent sections.

dmin = min
xenc1 �=xenc2

d(xenc1, xenc2)

4 Error Masking Robust Programs

In this section, we first describe the input program’s language and define the fault
model considered in our approach. Next, we explain, how to derive a program
Pf containing explicit fault injections. Finally, we present a formal definition of
robustness against error masking based on an explicitly faulted program Pf .

4.1 Programs

Our robustness verification method is applicable for arithmetic programs of the
following form.

Definition 2 (Input Programs). An input program P is a directed graph P =
(V,E, λ, v0,Var), where V is a set of vertices, E ⊆ V × V is a set of edges,
λ : V → S is a mapping of vertices to statements, v0 ∈ V is a start vertex, and
Var = Varloc ∪ Vararg is a set of local variables and program arguments.
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All variables var ∈ Var and constants constenc ∈ Constenc = {encode(n) |
n ∈ N} are arithmetically encoded natural numbers. All statements s ∈ S are
either arithmetic instructions s ∈ Sarith or control-flow directives s ∈ Scf; i.e.,
S = Sarith ∪ Scf. Arithmetic instructions s ∈ Sarith can either be assignments
of constants s ∈ Sassign, additions s ∈ Sadd1 ∪ Sadd2, or subtractions s ∈ Ssub.
We distinguish between additions with the same variable for both operands,
s ∈ Sadd1, and additions with different variables, s ∈ Sadd2. Formally, we have
Sarith = Sassign ∪ Sadd1 ∪ Sadd2 ∪ Ssub, with

Sassign = {var := constenc | var ∈ Var, constenc ∈ Constenc},

Sadd1 = {var := var1 + var1 | var , var1 ∈ Var},

Sadd2 = {var := var1 + var2 | var , var1, var2 ∈ Var}, and
Ssub = {var := var1 − var2 | var , var1, var2 ∈ Var}.

Control-flow directives s ∈ Scf include direct jumps s ∈ Sjump, conditional
branches s ∈ Scbranch, checks s ∈ Scheck and terminators s ∈ Sret. We have
Scf = Sjump ∪ Scbranch ∪ Scheck ∪ Sret, with

Sjump = {goto v | v ∈ V },

Scbranch = {if (c) goto v1 else goto v2 | v1, v2 ∈ V, c ∈ C},

Scheck = {check (var) | var ∈ Var}, and
Sret = {return var | var ∈ Var}.

Boolean conditions c ∈ C are either comparisons val1 op val2, with val1, val2 ∈
Constenc∪Var and op ∈ {<,≤,=, �=,≥, >}, or boolean combinations of compar-
isons. In the fault-free case, conditional branches continue with the first target
vertex, if the condition c evaluates to true, and with the second vertex other-
wise. Every conditional branch performs an implicit check on all operands in c.
To avoid flipping the boolean value of c itself, we propose to use branch protec-
tion algorithms like [28]. The execution of a conditional branch can fall into one
of three cases: (1) Every operand is correct and the execution jumps to the cor-
rect vertex. (2) Any operand in the condition is faulted, but contains a detectable
fault. In this case, the conditional branch statement aborts execution and enters
a safe state. (3) The error weight on the compared operands exceeds dmin − 1,
and the branch protection mechanism can miss the fault. The statement con-
tinues with either of both goto statements and executes a possibly invalid path.
This behavior is a consequence of error masking and will be detected by our
method.

A runtime assertion check (var) checks a code word var for validity, aborts
execution and enters a safe state if it detects a fault on this variable. However,
checks are not able to detect masked errors and only guarantee to disclose errors
with a maximum arithmetic weight of dmin − 1. The actual implementation of
a check depends on the encoding scheme of the program and is both possible in
hardware and in software.

Every vertex vi with a statement λ(vi) ∈ Sarith ∪ Scheck ∪ Sjump has
exactly one successor vi+1. If λ(vi) = goto vj , the destination vertex vj must
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be the single successor of vi. All vertices vi with conditional branch statements
λ(vi) = if (c) goto vj else goto v′

j have exactly two outgoing edges to vj and
v′

j , and all vertices vi with return statements λ(vi) ∈ Sret have zero successors.
Our method requires the whole program to be encoded using the same encod-

ing scheme and the same encoding constants. As a consequence, there is a value
dmin > 1, which is smaller or equal to the arithmetic distance of any two valid
code words. The constant dmin−1 forms the upper limit for the number of guar-
anteed detectable bit flips and needs to be known in order to evaluate a program
using our method. The programmer is responsible for choosing an appropriate
encoding scheme, such that all operations in the program are possible in the
encoded domain and no overflows can occur.

Listing 1.4. Running example.

1 toy():

2 a := encode (0)

3 b := a + a

4 check(b)

5 c := a + b

6 return c

As running example we use our small toy program from Listings 1.2 and
1.3. The flip in both programs was not intended and occurred due to either
an attacker or environmental influences during execution. Listing 1.4 shows the
original program, as it was written by the programmer.

4.2 Fault Model

This work focuses on faults in memory, where bits of variable values are flipped.
Every fault consists of a (possibly negative) error Err of an arithmetic weight
W (|Err |) < dmin added to a variable var at any point in time during program
execution. A special case of faults are bit flips. A single bit flip in the ith bit
corresponds to an error Err = bi2i, with bi = 1 if the flip sets the bit, and bi = −1
otherwise. Therefore, the arithmetic weight of a single bit flip is W (|Err |) = 1.
All faults injected into a variable var remain present until a new value is assigned
to var and overwrites the fault. In this work, we do not consider control-flow
attacks as there are already promising countermeasures [28,32] to protect this
attack vector. We assume that an integrity mechanism is present such that all
instructions as well as the control-flow of the program are protected.

4.3 Explicitly Faulted Programs

In order to verify the robustness of a program, we need to make faults in the input
program visible to the model checker. Therefore, we define a derived program
with explicit fault injections. The derived program contains a copy of every
vertex v ∈ V called v′

f with the same statement; i.e., λf (v′
f ) = λ(v). Additionally,

we add a vertex v′′
f before every v′

f . The statement of v′′
f injects faults explicitly

into the operands of the statement λf (v′
f ). Formally, we define Pf as:
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Definition 3 (Explicitly Faulted Program Pf). Let P = (V,E, λ, v0,Var)
be a program, let V ′

f = V × {1} and V ′′
f = V × {2} be two copies of V , and

let Vf = V ′
f ∪ V ′′

f . The explicitly faulted program Pf = (Vf , Ef , λf , v0f ,Varf )
is a graph, where Ef = Ef1 ∪ Ef2 is the set of edges with Ef1 = {(v′′

f , v′
f ) |

v′′
f = (v, 2), v′

f = (v, 1), v ∈ V } and Ef2 = {(v′
1f

, v′′
2f

) | v′
1f

= (v1, 1), v′′
2f

=
(v2, 2), (v1, v2) ∈ E}, and Varf = Var is the set of variables. The start vertex
v0f is defined by v0f = (v0, 2) and the statement function λf as

λf ((v, i)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ(v) if i = 1
var := var + Errv if i = 2 and λ(v) = return var

var1 := var1 + Err1v

var2 := var2 + Err2v
if i = 2 and λ(v) = var := var1 ± var2

ε else.

In this formula, Errv denotes the error injected before execution of the state-
ment of v into its operand. In the case of two operands, the Err1v is the error
injected into the first operand and Err2v is the error injected into the second
operand. If λ(v) has no operands, the statement λf ((v, 2)) is empty. The explic-
itly faulted version of our toy example is depicted in Listing 1.5.

Listing 1.5. Pf of the running example in Listing 1.4.

1 toy():

2 a := encode (0)

4 a := a + Err1v1
5 a := a + Err2v1
6 b := a + a

8 check(b)

10 a := a + Err1v3
11 b := b + Err2v3
12 c := a + b

14 c := c + Errv4
15 return c

4.4 Robustness Condition

The explicit faults in Pf allow us to name the errors on every variable during exe-
cution. Therefore, we can introduce the following terms and define the condition
for robustness of a program against error masking.

Definition 4 (Execution Path). A path π = π[0], . . . , π[n] is a sequence of
n + 1 vertices with π[i] ∈ V , where the program graph P has a directed edge
between any two subsequent elements (π[i], π[i + 1]) ∈ E.
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Definition 5 (Execution Trace). An execution trace πexec = π[0], . . . , π[n] of
a program P is an execution path through the program starting at π[0] = v0 and
ending with a vertex π[n], with λ(π[n]) ∈ Sret.

Definition 6 (Feasible Execution Trace). An execution path π is contained
in an execution trace πexec, if all elements of π are also included in πexec and
their order is preserved. An execution trace πexec of a program P is feasible in
an explicitly faulted program Pf, iff there is an execution trace πexec

f , such that
πexec is contained in πexec

f .

Definition 7 (Fault-Free Program). Given a program Pf , the fault-free pro-
gram P 0

f is defined as Pf with no errors injected at any vertex, i.e. for all v ∈ V
it holds that Errv = 0, Err1v = 0, and Err2v = 0.

Definition 8 (Program State). Given a deterministic, explicitly faulted pro-
gram Pf and fixed values for every program argument and injected errors, there
is only one feasible execution trace π. We define the program state Π[t] of π as
the mapping from all variables to their value at execution step t. The function
�Π[t] | var� returns the value of the variable var in this execution state, and
�Π[t]�π returns the execution path π[0], . . . , π[t] up to π[t].

Definition 9 (Error on a variable). Given an execution state Πf of Pf and
the corresponding execution state Π0

f of P 0
f , the error �Πf [t] | Err(var)� on a

variable var is the difference between �Πf [t] | var� and �Π0
f [t] | var�.

Definition 10 (Robustness of an explicitly faulted program). A faulted
program Pf is error masking robust if every feasible execution trace is also feasible
in the fault-free program P 0

f and all its executions return either a fault-free value
�Πf [k] | Err(var)� = 0 or any fault on the returned value �Πf [k] | var� is smaller
than dmin and therefore guaranteed detectable.

Definition 11 (Robustness of an program). A program P is robust against
error masking iff the explicitly faulted program Pf is robust against error masking.

To guarantee the robustness against error masking, the properties stated
in Definition 10 are required to hold on the explicitly faulted program. The first
condition can be ensured by preventing error masking on any variables compared
in a branch condition, while the latter requires the absence of error masking on
the return value. Both problems are detected by the method described in the
next section.

5 Proving a Program Robust Against Error Masking

This section describes the verification of the error masking robustness of a pro-
gram, as defined in Sect. 4. Figure 1 depicts the verification process: starting from
an input program P , we create the explicitly faulted program Pf and derive an
abstract model of the worst case error weight propagation Pw. This model is
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Fig. 1. The work flow of the verification process.

then model checked for error masking robustness. In the case of error masking
possibilities, the model checker generates a counterexample, which can be used
to improve P by inserting additional checks. If the model checker reports no
errors, the program is guaranteed to be error masking robust.

The main idea behind our method is to track the maximum error weight on
each variable and to ensure this error weight never exceeds dmin − 1. In this
case, errors can never mask each other and are always detectable. Our technique
to prove error masking robustness involves three main steps: (1) We derive the
explicitly faulted program P � Pf from the input program P , as described in
Sect. 4. (2) We transforms the faulted program Pf into an error weight counting
program Pf � Pw. The program Pw is a model of the worst case error weight
propagation and contains assertions for ensuring P to be robust. (3) We apply an
off-the-shelf model checker to evaluate the new program Pw. The model checker
proves the absence of error masking or provides a counterexample in case of any
violations of the robustness assertions.

In order to define the error weight counting program Pw, we first introduce
the concept of fault specifications and afterwards explain the language of Pw

and its construction.

5.1 Fault Specification

The fault specification FS constraints the maximum arithmetic weight of any
injected error and is provided by the user.

Definition 12 (Maximum Injected Error Weight). The maximum injected
error weight Wv denotes the maximum weight of errors injected over all visits to
a vertex v into the operand of λ(v). In the case of two operands, W1v and W2v

are the maximum injected error weights of the first and the second operand.

Definition 13 (Fault Specification). A fault specification FS is a Boolean
expression over predicates

∑
(Wv) op n, with op ∈ {<,≤,=,≥, >, �=} and a

constant n ≤ dmin, such that FS restricts every injected error weight to an
upper limit of dmin − 1.

A simple example for a fault specification is to limit the sum of all maximum
injected error weights to a constant n < dmin; i.e.:

∑
Wv+

∑
W1v+

∑
W2v ≤ n.
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5.2 Adaption of the Input Language

The language of Pw is defined as follows. Let Varw be a copy of all variables of
V ar. For every node v ∈ V we have an error weight injection variable Wv for each
operand of λ(v). Similar to the statements S of P , we define the statements Sw of
Pw as combination of arithmetic instructions Sarithw

and control-flow directives
Scfw . In the case of Pw, the arithmetic statements include the initialization
of an error weight inject Sinit injw , the deletion of an error weight Szerow

, the
duplication of an error weight Sduplw and the addition of two error weights
Saddw

. Formally, these statements are defined as:

Sinit injw = {Wv := ∗ | v ∈ V },

Szerow
= {varw := 0 | varw ∈ Varw},

Sduplw = {varw := var1w | varw, var1w ∈ Varw}, and
Saddw

= {varw := var1w + var2w | varw, var1w, var2w ∈ Varw}.

Control-flow directives Scfw include jumps Sjumpw
, conditional branches

Scbranchw
, terminators Sretw , assertions Sassertw and assumptions Sassumew , i.e.

Scfw = Sjumpw
∪ Scbranchw

∪ Sretw ∪ Sassertw ∪ Sassumew . Let Vw be the set of
vertices in Pw, Varw a set of variables, and fs a fault specification. We can
define the different kinds of control-flow directives of Pw as:

Sjumpw
= {goto vw | vw ∈ Vw},

Scbranchw
= {if (∗) goto v1w else goto v2w | v1w, v2w ∈ Vw},

Sretw = {return},

Sassertw = {assert (varw < dmin) | varw ∈ Varw}, and
Sassumew = {assume (varw == 0) | varw ∈ Varw} ∪ {assume (FS )}

In this syntax, the ∗ symbol denotes non-deterministic value. The task of the
model checker is to prove that for any value as ∗ the assertions inside Pw are
never violated, given that all assumptions are fulfilled.

5.3 Translation of the Explicitly Faulted Program into a Weight
Counting Program

The error weight counting program Pw can be derived from an explicitly faulted
program Pf, via the transformation Pf � Pw. Pw is an abstraction of the program
Pf, which stores only the upper bound of the error weight on the corresponding
variables’ value. Therefore, Pw contains one error weight counter varw ∈ Varw

for every variable of Varf . All error weight counters in Varw = Varf are unsigned
variables, which are initialized to zero. In addition to the two copies of V in Pf ,
Pw contains a third copy V ′′′

w = V × {3}, where assertions are added. Further-
more, Pw starts with multiple initialization vertices, namely vew init

w , vW init
w ,

and vfs
w . The vertex vew init

w is the first vertex of the program with the following
statements:

λw(vew init
w ) = {varw := 0 | varw ∈ Varw}.
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Next, within the node vW init
w , every maximum injected error weight Wv is set

to a non-deterministic, positive integer:

λw(vW init
w ) = {Wv := ∗ | v ∈ V } ∪ {W1v := ∗ | v ∈ V } ∪ {W2v := ∗ | v ∈ V }.

As final initialization step, the node vfs limits the maximum injected error
weights according to the fault specification:

λw(vfs
w) = assume(fs).

Let v′
f be a vertex in V ′

f , and v′
w be the corresponding copy in V ′

w. Fur-
thermore, let each varw be the error weight counter for the variable varf . Every
arithmetic statement λf (v′

f ) ∈ Sarith is transformed into a new statement λw(v′
w)

by the following rules:

λw(v′
w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

varw := 0 if λf (v′
f ) = var := constenc

varw := var1w if λf (v′
f ) = var := var1 + var1

varw := var1w + var2w if λf (v′
f ) = var := var1 + var2

varw := var1w + var2w if λf (v′
f ) = var := var1 − var2

.

Assigning a constant to a variable varf is equivalent to erasing the error that
was stored in varf before execution of the assignment. Therefore, the error weigh
counter is erased. When the same variable is added to itself, the error itself is
multiplied by two, but its weight remains the same. Therefore, the addition of
the same variables var := var1 + var1 is the same as copying the error weight
counter var1w to varw. Finally, every addition and subtraction has the worst
case error propagation varw := var1w +var2w, as modelled by the last two cases.

Let ciw be all operands of a condition c. Similarly to λf (v′
f ) ∈ Sarith, every

control-flow directive λf (v′
f ) ∈ Scf is translated according to

λw(v′
w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

goto v1w if λf (v′
f ) = goto v1f

assume (ciw = 0)
if (∗) goto v′

1w

else goto v′
2w

if λf (v′
f ) =

if (c) goto v′
1f

else goto v′
2f

assume (varw = 0) if λf (v′
f ) = check (var)

assert (varw < dmin)
return

if λf (v′
f ) = return varf

.

Every unconditional jump in Pf corresponds to the same jump in Pw. However,
every conditional branch is transformed into a non-deterministic branch, regard-
less of the previous branch condition. This transformation guarantees indepen-
dence of actual variable values and brings along both advantages and restrictions.
These matters are further discussed in Sect. 8. As all variables accessed by c are
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implicitly checked by a branch protection algorithm as described in Subsect. 4.1,
the new statement begins with the assumptions that all ciw are fault-free. When
a check(var) statement of Pf is executed, exactly one of the following cases must
apply:

1. 0 < var < dmin: In this case, an error is detected for sure and the execution is
aborted. There cannot be any further error masking and therefore this case
can be neglected.

2. var ≥ dmin: In this case the program could either be terminated or continued.
This case violates the robustness property and is reported by the assertion
assert(varw < dmin).

3. var = 0: The only remaining case is the error free case, which can be assumed,
once the robustness assertion has been passed.

Eventually, a return statement quits execution of a program and no further error
masking can occur. Every return in Pf corresponds to a return in Pw.

Like in Pf, all fault injections are explicit. A fault injection in Pw is repre-
sented by an increment of the error weight counter by the maximum injectable
error weight. After the error has been injected, there are no bit flips left for this
location and the remaining error weight is set to 0.

λw(v′′
w) =

varw := varw + Wv

Wv := 0
if λf (v′′

f ) = varf := varf + Errv

Finally, a model checker requires a definition of the correctness for a program.
As defined in Definition 10, the correctness of the program can be guaranteed if
all variables’ error weights remain below dmin. If there is any chance this property
is ever violated, the model checker should prompt a warning and give a violating
counterexample. Within the program Pw, the correctness is assured by calls to
the assert function. Let v′′′

w ∈ V ′′′
w be a node of the third vertex copy of V , and

varw be the error weight counter modified by λw(v′′
w). Then λw(v′′′

w ) is given as

λw(v′′′
w ) = assert (varw < dmin | varw ∈ Varw).

Given the previously defined construction, we can define Pw as follows.

Definition 14 (Error Weight Counting Program Pw). Let Vw =
{vew init

w , vW init
w , vfs

w} ∪ V ′
w ∪ V ′′

w ∪ V ′′′
w be a set of vertices and Ew =

{(vew init
w , vW init

w ), (vW init
w , vfs

w )} ∪ {(v′′
w, v′

w) | v′
f ∈ Vf} ∪ {(v′

w, v′′′
w ) | vf ∈

Vf} ∪ {(v′′′
1w, v′′

2w) | v′′′
1w = (v1, 3), v′′

2w = (v2, 2), (v1, v2) ∈ Ef} a set of edge
between the nodes. Then Pw is defined as Pw = (Vw, Ew, λw, v0w,Varw), with
v0w = vew init

w and Varw = Var.

After performing the steps described above, the transformation is complete.
The resulting program Pw models the worst case error propagation and any
potential error masking in P is present as an assertion violation in Pw.
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Listing 1.6. Pw of the toy example.

1 toy():

2 a, b, c := 0

3 W1v1 , W2v1 , W1v3 , W2v2 , Wv4 := *

4 assume(W1v1 + W2v1 + W1v3 + W2v2 + Wv4 ≤ 2)

6 a := 0

7 assert(a < dmin)

9 a := a + W1v1

10 a := a + W2v1

11 b := a

12 assert(b < dmin)

14 assume(b = 0)

16 a := a + W1v3

17 b := b + W2v3

18 c := a + b

19 assert(c < dmin)

21 c := c + Wv4

22 assert(c < dmin)

23 return

The weight counting program of our toy example can be seen in Listing 1.6.
Within the first line, it sets every error weight counter (a, b, and c) to zero.
The next line initializes all error weight injections to arbitrary values before they
are restricted according to the fault specification, in this case to at most two bit
flips in total. The next lines (lines 6–22) consist of each the injection of the error
weight into the operands, followed by the error propagation and the robustness
assertions. The check on b in the middle of the program has been transformed
to an assume and finally Pw ends with the transformed return statement.

5.4 Applying a Model Checker to Prove Correctness

As third step, we use a model checker to verify the resulting program Pw. For
our running example, we are able to verify its error masking robustness, giving
the fault specification

∑
(Wv) ≤ 2 with dmin = 3. However, without the line

check(b), the model checker successfully reports a vulnerability within the
instruction c := a + b, if a contains an error of weight 2. This result corresponds
to the expected outcome as illustrated in Sect. 1.

The next section will give a proof of correctness of our method, followed by
an evaluation of the method using real world examples.

6 Proof of Correctness

We can show that for every potential error masking in P , Pw contains an assertion
violation. For this, we use the following definitions.
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Definition 15 (Mapping of a Program State). Given a program state Πf [t]
of the explicitly faulted program Pf, we define Πw(Πf [t]) as the corresponding
program state of Pw, where for all Errv it holds that W (|�Πf [0] | Errv�|) =
�Πw(Πf [0]) | Wv� and �Πw(Πf [t])�π is the smallest execution trace containing
�Πf [t]�π.

Theorem 1. Let Πf [t] be a program state, where every variable is smaller or
equal to its corresponding error weight counter in Πw(Πf [t]). After any state-
ment λf (vf ) ∈ Sarith, the error of the variable varf modified by λf (vf ) is smaller
or equal to the error weight counter varw belonging to this variable.

Proof. All arithmetic statements fall into one of the following cases: (1) In
the case of λf (vf ) = varf := encode(c), a variable is set to a encoded
constant, which originally contains no fault. W (|Err (encode(c))|) = 0 →
varw = 0 ≥ W (|Err(varf )|). (2) In the case of addition of the same
variable with itself, λf (vf ) = varf := varf1 + varf1 , we get D(varf1 +
varf1 , var

0
f1

+ var0f1
) = W (|2Err (varf1)|) = W (|Err (varf1)|), such that varw =

W (|Err (varf1)|) = W (|Err (varf )|). (3) If two different variables are added
or subtracted, λf (vf ) = varf := varf1 ± varf2 , the new error weight fulfills
the following inequality: D(varf1 + varf2 , var

0
f1

+ var0f2
) = W (|Err (varf1) −

Err (varf2)|) ≤ W (|Err (varf1)|) + W (|Err (varf2)|). Therefore it holds that
varw = W (|Err (varf1)|) + W (|Err (varf2)|) ≥ W (|Err (varf )|).
Theorem 2. In any program state Πf [t] of Pf with Πw(Πf [t]) fulfilling all
assumed conditions, the error of a variable �Πf [t] | Err (varf )� has at most the
arithmetic weight stored in the corresponding error weight variable, i.e., varw,
�Πf [t] | Err (varf )� ≤ �Πw(Πf [t]) | varw�.

Proof. Every execution trace πf starts with the same vertex πf [0] = v0f , where
no errors could have been injected yet. Therefore, it is correct to assume that all
variable’s error weight are 0. Suppose all error weights in every program state
Πw(Πf [i]) with i < t are correct. ∀i < t.∀varf �Πf [i] | Err (varf )� ≤ �Πw(Πf [i]) |
varw�. We can show that after any further step with πf [t + 1] = vf , the variable
modified by λf (vf ) has an error weight �Πf [t+1] | Err (varf )� ≤ �Πw(Πf [t+1]) |
varw�: The statement λf (vf ) can be either an arithmetic statement, an control-
flow directive or an error injection. Theorem1 proves that this property is fulfilled
for every statement λf (vf ) ∈ Sarith. In contrast to that, control-flow directives
do not modify the error weights directly. As long as the execution follows the
same path through the program ∀tΠf [t] = w(Πf [t]), the control-flow directives
will not influence any error weights. Finally, given Definition 15 defines that all
for all Ev it holds that W (|�Πf [0] | Ev�|) = �Πw(Πf [0]) | Wv�. This guarantees
that �Πf [t + 1] | Err (varf )� ≤ �Πw(Πf [t + 1]) | varw�.

This shows, that the weight of the error on all variables remains smaller or
equal the value of the corresponding weight variables.

Theorem 3 (Transformation of Checks). Every passed check(varf ) either
implies a violation of the assertion assert(varw < dmin) or that Err (varf ) = 0.
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Proof. There are three cases for the execution of every check:

1. 0 < W (|Err (varf )|) < dmin: In this case, the check is not passed and the
execution is aborted. No further error masking can occur.

2. W (|Err (varf )|) ≥ dmin: If the error weight exceeds the minimum arithmetic
distance, Theorem 2 proves that varw ≥ W (|Err (varf )|), and the assertion
assert(varw < dmin) is violated.

3. W (|Err (varf )|) = 0: The only remaining case is the error free case, which
can be assumed, once the robustness assertion has been passed.

Theorem 4. Given a program Pw containing loops, where all error weights are
injected in the first iteration, and a program P ′

w abstracting the same program
P , with all error weight injections distributed over all infinite loop iterations, it
is always true that if Pw is correct, then P ′

w also is correct.

Proof. The value of an error weight counter in a program state Πw[t] can be
represented as the sum of multiple error weight injections. �Πw[t] | varw� =∑∞

j=0 kv[j]Wv[j], where the factor kv indicates the number of times the injected
error weight has accumulated in an error weight counter, and Wv[j] is the
error weight injected in loop iteration j. In the case of Pw, Wv[0] = Wv and
∀j > 0 : Wv[j] = 0, while all Wv[j] of P ′

w are smaller or equal those of Pw.
Furthermore, ∀j > 0 : kv[0] = 0 ∨ kv[0] > kv[j], therefore, the only way that
�Πw[t] | varw� < �Π ′

w[t] | varw� can be achieved is, if varw is overwritten after
injecting Wv[0] (kv[0] = 0), and j is the current loop iteration. However, in the
next loop iteration, this error weight will be overwritten again (kv[j] = 0). The
maximum value during the first loop iteration will never be exceeded.

Theorem 5 (Correctness of Pw). If Pw is correct, Pf is correct and P is
robust against error masking.

Proof. Assume Pf is incorrect. Let Πf [k] be the last execution state of a pro-
gram run violating the correctness of Pf, and varret be the returned value. A
program run Πf can violate the correctness condition in two ways: (1) The
return value is a faulted code word �Πf [k] | varret� �= �Π0

f [k] | varret�, with its
error weight undetectable �Πf [k] | W (|Err (varret)|)� ≥ dmin, or (2), an invalid
path through the program is taken. In case (1), Theorem2 provides a proof, that
�Πf [k],Err (varret)� > dmin → �Πw(Πf [k]) | varwret� > dmin. Therefore, at least
the last assertion in Pw is violated and Pw is incorrect. Case (2) can only be
caused, if the execution of a statement of the form if (cond) goto v1f else goto

v2f continues with the wrong branch. An appropriate branch protection mecha-
nism will abort execution as long as it detects any fault in either the compared
operands or in the comparison result. This leaves the remaining situations where
(2) is possible, as those, where a fault on the comparison operands contains a
masked error. However, Theorem 2 proves that the assertions in Pw detect this
case as well, and therefore Pw is incorrect in this case too. This shows, that any
violation of Pf will always result in a violation of Pw, and if Pw is correct, that
implies that Pf is robust.
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Theorem 6 (Decidability). The correctness of every error counting program
Pw is decidable, even in the case of an extended version with recursive function
calls.

Every possible value range of the error counting variables is limited by the con-
stant dmin. After all modifications of all error counting variables, the model
checker evaluates the correctness assertions and returns a counterexample in the
case of a violation. Therefore, in every program Pw no variable value ever exceeds
2 · (dmin − 1). The domain of all variables is finite. Therefore, the resulting pro-
grams are effectively Boolean programs and the problem is reducible to solving
a Boolean program. According to Ball and Rajamani [2], Boolean programs are
equivalent to push-down automatons and therefore decidable [8].

7 Evaluation

The former sections described our method to verify the error masking robustness
of encoded programs. Using this technique, we were able to identify real error
masking vulnerabilities of real world, security relevant algorithms. Our set of
algorithms under verification contains (among others) the following algorithms,
which we want to describe in further detail: (1) Fibonacci Number Generator, (2)
Euclidean Algorithm, (3) Extended Euclidean Algorithm, (4) Square & Multiply
Exponentiation Algorithm and (5) Exponentiation in Zn. All of these iterative
algorithms can be expressed in our toy language, with multiplication, division
and modulo replaced by repeated addition and all function calls inlined. For
further details on the algorithms, we refer to [19].

In our experiments, we used algorithms in the form of C source code, compiled
them to LLVM bitcode, and generated the weight counting programs using a tool
based on the LLVM compiler framework. Afterwards, we evaluated both a check-
less version and a version containing correctly placed checks using the model
checker CPAChecker [6]. Table 1 shows the verification time given different fault
specifications. As configuration, we choose an iterative bounded model checking
approach, where the loop bound is incremented if no error was found up to a
limit of 5 loop iterations. This allowed us to calculate the exact loop bound where
error masking occurs for the given specification. If the result is still unsound
after a bounded model checking with an unroll bound of 5, we run a predicate
analysis [5] algorithm to conclude the evaluation. Table 1 shows the verification
time of the first algorithm with a sound result, on a machine with up to 16
threads running in parallel.

Table 1 shows that the complexity of the evaluation depends less on the
number of injected bit flips, but more on the number of loop iterations necessary
until error masking occurs, as well as the complexity (number and depth of nested
loops) of P . Especially in the case of the last fault specification, dmin was greater
than three times the maximum injectable error weight. In practise such a ratio
and therefore this problem is quite unlikely, because a high dmin is costly (more
redundant bits are necessary) and will not be chosen as protection against the
injection of a way smaller number of bit flips.
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Table 1. Verification times for different fault specifications.

dmin FaultSpec Program Without checks With correct checks

Ver. time Iter. Robust? Ver. time Robust?

2
∑

W v
i ≤ 1 (1) Fibonacci 1 s 2 ✗ 1 s ✓

(2) Euclid 1 s – ✓ – –

(3) Extended Euclid 8 s 2 ✗ 241 s ✓

(4) Square & Multiply 16 s 2 ✗ 152 s ✓

(5) Exp in Zn 53 s 2 ✗ 43 s ✓

20
∑

W v
i ≤ 10 (1) Fibonacci 1 s 2 ✗ 1 s ✓

(2) Euclid 1 s – ✓ – –

(3) Extended Euclid 11 s 2 ✗ 271 s ✓

(4) Square & Multiply 11 s 2 ✗ 159 s ✓

(5) Exp in Zn 48 s 2 ✗ 43 s ✓

300
∑

W v
i ≤ 100 (1) Fibonacci 1 s 3 ✗ 1 s ✓

(2) Euclid 1 s – ✓ – –

(3) Extended Euclid 70 s 3 ✗ 1497 s ✓

(4) Square & Multiply 161 s 3 ✗ 547 s ✓

(5) Exp in Zn t/o 1800 s ? ? 28 s ✓

40
∑

W v
i ≤ 10 (1) Fibonacci 2 s 4 ✗ 1 s ✓

(2) Euclid 1 s – ✓ – –

(3) Extended Euclid 1528 s 4 ✗ t/o (1800 s) ?

(4) Square & Multiply 1043 s 3 ✗ 561 s ✓

(5) Exp in Zn t/o 1800 s ? ? 28 s ✓

Table 2. Comparison of evaluated programs.

Program # Checks P # Instr. P # W v
i in Pweights # Instr. Pweights

(1) Fibonacci 1 70 12 219

(2) Euclid 0 68 11 186

(3) Extended Euclid 5 162 61 943

(4) Square & Multiply 2 136 51 765

(5) Exp in Zn 2 211 78 1126

Therefore, more iterations were necessary to detect error masking and the
verification task was more difficult. More details about the programs under test
can be found in Table 2.

As the results show, the complexity of the verification depends less on the
number of injected bit flips, than on the complexity of the programs. The high
number of bit flips is possible through abstracting the concrete variable values
away and comes with advantages and drawbacks alike. The next section further
discusses these challenges and gives ideas for future work.
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8 Discussion and Future Work

Our technique to prove the absence of error masking brings along advantages
but also holds potential for future work. Most important is the fact, that we
evaluate abstraction of the original program. There are two main drawbacks of
this: (1) Not every error with an arithmetic weight ≥ dmin automatically allows
to form a new valid code word, this also depends on the actual encoded data.
(2) Due to the discarded branch conditions, we might report spurious errors on
infeasible paths through the program.

Nevertheless, there are important reasons and advantages of this decision:
First, the abstraction gives us independence of the program argument’s values.
Therefore the search space for variable values is way smaller. Second, by storing
the weights instead of the exact errors, the model checker does not need to
calculate any arithmetic weight. This significantly reduces the complexity of
the verification problem. Furthermore, the abstraction of the branch condition
reduces the length of the path conditions and the algorithm Predicate Analysis
solves the tasks independently of loop iterations. All these advantages help to
decrease the verification effort.

However, this method just builds one step towards complete verification of
robustness against injected faults. Both, the language and the fault model can
be further extended. Including pointers and support for other encoding schemes
(e.g. linear codes) may introduce new challenges and poses an interesting problem
for the future.

9 Conclusion

In this article, we presented a novel method to verify the robustness against error
masking of arithmetically encoded programs. This property guarantees that all
faults according to the predefined fault model are detectable. The described
technique applies formal methods to either prove the absence of error mask-
ing or calculate a counterexample. We provided a proof for the correctness of
our approach and evaluated it using the model checker CPAChecker. Finally,
a demonstration based on a real-world example multiplication algorithm shows
the feasibility of our method.
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motive - Safety and Security 2017 - Sicherheit und Zuverlässigkeit für automobile
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Abstract. Escape continuations are weaker than full, first-class contin-
uations but nevertheless can express many common control operators.
Although language and compiler designs profitably leverage escape con-
tinuations, all previous approaches to analyze them statically in a higher-
order setting have been ad hoc or imprecise. We present MCCFA2, a
generalization of CFA2 that analyzes them with pushdown precision in
their most-general form. In particular, the summarization algorithm of
MCCFA2 is both sound and complete with respect to a conservative
extension of CFA2’s abstract semantics. We also present an continuation
age analysis as a client of MCCFA2 that reveals critical function call
optimizations.

1 Introduction

Continuations are a powerful tool in the hands of programmers, whether handled
as a naked reference provided by call/cc or through the veneer of the excep-
tional raise, the logical fail, the cooperative yield, or the primitive longjmp.1

On the other side of the language, compiler writers unify their implementations
of these and other control constructs by expressing them directly via continua-
tions [1,2,9]. While this unification has the effect of simplifying the compiler, it
also amplifies the effect the compiler’s power to reason about continuations has
on the quality of the code it generates. Here, static analysis tools that provide
maximal insight into a program’s continuation use become critical.

CFA2 [19] was the first abstract interpretation of higher-order programs
to model the continuation with a pushdown automaton, allowing it to pre-
cisely match calls and returns. Compared to that of finite-state models as in
k-CFA [13,15], this choice of model greatly increased the precision with which
continuation use could be reasoned, but at the cost of the ability to reason about
any non-trivial continuation use—including any of the control constructs men-
tioned above. Vardoulakis and Shivers [21] extend CFA2 to soundly reason about
call/cc but their technique sacrifices completeness w.r.t. the abstract seman-
tics (a point we discuss further in Sect. 8.4). Vardoulakis and Shivers [21] also
1 Of course, even return calls the current continuation, but we consider such uses

essentially trivial.
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propose two ad-hoc extensions to CFA2 to reason about exceptions. Integrat-
ing either of these proposals unduly complicates the summarization algorithm.
In contrast, our approach subsumes and generalizes these proposals and yields
a simpler and more coherent summarization algorithm relative to CFA2. We
discuss the details of our relationship to these proposals in Sect. 11.

Although call/cc is a highly-expressive control construct, the power of
the first-class continuations it furnishes isn’t always necessary: many uses of
continuations require only second-class escape continuations, of which raise,
fail, longjmp, and others are thinly-masked expressions. This paper presents
MCCFA2, an alternative extension to CFA2 that can reason about escape con-
tinuations both soundly and completely w.r.t. the abstract semantics and in a
general, principled way.

MCCFA2 extends each of CFA2’s three stages: the core language and concrete
semantics, the abstract semantics, and the summarization algorithm.

1. CFA2 operates over a CPS λ-calculus statically restricted to preclude any
non-trivial continuation behavior (let alone call/cc). We conservatively
extend [4] this language to allow function calls to provide and procedures to
receive and bind multiple continuations. This capability allows the language
to express escape continuations generally but so regulates their lifetimes that
they can be allocated on the stack [20]. To underscore this fact, our concrete
semantics allocates continuations on a stack rather than a heap.

2. CFA2’s abstract semantics is sound but not complete w.r.t. its concrete
semantics. We extend CFA2’s abstract semantics to accommodate multiple
continuations. This extended abstract semantics is sound w.r.t. the extended
concrete and, again, conservatively extends CFA2’s. That is, MCCFA2’s
abstract semantics of a program in CFA2’s core language are exactly as pre-
cise as CFA2’s. The primary distinction between the two abstract semantics is
that MCCFA2’s walks the stack at each call to find the return point whereas
CFA2’s can determine the return point by the syntactic form of the continu-
ation at the call site.

3. CFA2’s summarization algorithm is both sound and complete w.r.t. its
abstract semantics. Similarly, MCCFA2’s summarization algorithm is both
sound and complete w.r.t. its abstract semantics. To accommodate multi-
ple continuations, MCCFA2’s algorithm unifies and generalizes CFA2’s by
treating every continuation call as a potential escape: continuation calls that
represent local returns are immediately identified as such, while those that
represent non-local returns (escapes) are discovered as the algorithm walks
the abstract stack.

In summary, MCCFA2 offers sound and relatively complete account of escape
continuations in a general, higher-order setting. Additionally, MCCFA2 can be
combined with Vardoulakis and Shivers’ extension to handle first-class control
which yields an analysis that forfeits precision only when continuations are used
in a genuinely first-class way (Sect. 8.4).

In the next section, we discuss the MCCFA2 extension in more depth.
We then establish notation (Sect. 3) and proceed to formally introduce MCPS
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(Sect. 4) and its concrete (Sect. 5) and abstract (Sect. 6) semantics, connected by
a sound abstraction (Sect. 7). We then present summarization (Sect. 8), by way
of an algorithm (Sect. 8.2) and its correctness (Sect. 8.5). We then walk through
an example MCPS program analysis (Sect. 9). Finally, we sketch how to integrate
Vardoulakis and Shivers’ technique to handle first-class control into MCCFA2
(Sect. 8.4) and compare MCCFA2 to other proposals to handle exceptions, as
well as other related work (Sect. 11).

2 Overview

In this section, we overview MCCFA2 and discuss some significant aspects of its
design.

2.1 Core Language

CFA2 considers programs to have originated in some direct-style source lan-
guage before CPS conversion into its core language. Accordingly, CFA2 oper-
ates over a CPS λ-calculus partitioned into user-world and continuation-world
terms [20,21]. User-world terms are those that have a direct correspondent in the
source program whereas continuation-world terms are those introduced directly
by the CPS transform. For instance, for a continuation reference k, the CPS
term (f x k) is a user-world call as it directly corresponds to the call (f x) in
the source program, whereas the CPS term (k x) is a continuation-world call as
it was synthesized from the tail-position appearance of the reference x in the
source program. This static partition allows CFA2 to distinguish source-level
uses of the continuation from regular function calls and thereby model such uses
more precisely. CFA2’s core language includes the additional restriction that
continuation references may not appear free under a user-world λ-term, making
it impossible to encode any control construct that interacts non-trivially with
its context, let alone call/cc.

CFA2 is able to so precisely model the continuation behavior of the programs
in its core language in part because its core language is statically limited to offer
no interesting continuation behavior. MCCFA2 extends the CFA2’s core lan-
guage of the CPS λ-calculus to the multiple continuation-passing style (MCPS)
λ-calculus in which function calls can provide and procedures can receive and
bind multiple continuations. This ability allows the MCPS λ-calculus (or simply
MCPS) to express escape continuations generally. MCPS retains the restriction
that continuation references may not appear free under a user-world λ-term,
which precludes it from encoding call/cc.

MCPS is a conservative extension [4] of single CPS that can be found
in several continuation-aware compilers. For instance, MCPS limited to two
continuations—“double-barreled” CPS—has been used frequently to encode
exceptions and other control constructs [2,9–11,17]. MCPS is also the inter-
mediate language of the multi-return λ-calculus (MRLC) [16] (which we revisit
in Sect. 9).
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The static restriction of MCPS on where continuation references may occur
regulates continuation lifetimes to strictly follow a stack discipline. Thus, MCPS
offers compiler writers an efficient implementation of continuations allocated on
the run-time stack [7,20]. We underscore this fact by stack-allocating continua-
tions in MCCFA2’s concrete semantics (Sect. 5), deviating from CFA2’s concrete
semantics which heap-allocates them.

2.2 Summarization Algorithm

As it runs, CFA2’s summarization algorithm records summaries of the form
(entry , exit) which expresses that the entry state entry reaches the correspond-
ing exit state. In the presence of multiple continuations, this form of summary
doesn’t adequately capture the flow of entry and exit as exit applies one of
the multiple continuations that may be in scope at entry . To accommodate
this fact, the summarization algorithm of MCCFA2 uses summaries of the form
(entry , exit , n) which include the index of the continuation (w.r.t. entry) called
in exit .

In CFA2’s core language, proper and tail calls in the source program are syn-
tactically distinguished by the form of continuation: a user-world call which con-
structs a continuation (via a continuation-world λ-term) is a proper call whereas
a user-world call which references the continuation is a tail call. CFA2’s summa-
rization algorithm exploits this knowledge by separately tracking proper callers
and tail callers. When a procedure calls its continuation (i.e. returns in the source
program), the tail callers are used to extend summaries and the proper callers
are used as return points. In the presence of multiple continuations, proper and
tail calls cannot in general be distinguished at the time of the call since, for the
purposes of extending summaries or offering return points, the type of call is not
known until the continuation is called. To accommodate this fact, the summa-
rization algorithm of MCCFA2 (1) does not separately track proper and tail calls
and (2) treats every continuation call as a potential escape. Accordingly, each
continuation call instigates a phase of the algorithm which walks the abstract
stack in search of return points, extending summaries as it goes.

Altogether, these changes simplify and generalize the summarization algo-
rithm of CFA2.

3 Notation

We leverage metavariables heavily and try to be extremely careful in their use.
For an arbitrary metavariable x, a bolded metavariable x represents a vector of x
and a bolded, superscripted metavariable x+ represents a non-empty vector of x.
The quantity πi(x) is the ith element of x indexed from 1. Vectors will sometimes
be treated as sets and functions will sometimes be lifted over vectors. For a multi-
argument function of vectors and scalars, the scalars are lifted appropriately as
well. For example, f(x, y) = 〈f(x1, y), . . . , f(xn, y)〉 for x = 〈x1, . . . , xn〉. The
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empty vector is denoted 〈〉. We often use head–tail notation both to construct
and deconstruct vectors, writing 〈x1, x2, . . . , xn〉 as x1 :: 〈x2, . . . , xn〉.

Throughout the paper, a definition’s left side is a pattern which deconstructs
and binds subvalues of the value of the expression on its right.

4 Partitioned CPS λ-Calculus

We view MCPS programs as being obtained by a CPS transformation of a direct-
style source program. Hence, we maintain a distinction between user-world and
continuation-world terms where a user-world term directly corresponds to a term
in the source program and a continuation-world term is introduced by the CPS
transformation. Both worlds contain λ terms, calls, and variable references. A
user-world λ term ulam has a user parameter vector u, a non-empty continu-
ation parameter vector k, and a call call . Given lam or call , the continuation
parameter function CP retrieves the vector k of the innermost-enclosing ulam
of lam or call (where a ulam encloses itself for this definition). A user-world
call ucall has a user operator expression f , an argument expression vector e,
and a non-empty continuation expression vector q. The continuation argument
function LC retrieves the vector q of a given ucall or the surrounding q of a
given clam. A user-world variable u will be bound only to user-world values. A
continuation-world λ term clam has a user parameter vector u and a call call .
A continuation-world call ccall has a continuation operator expression q and an
argument expression vector e. A continuation-world variable k will be bound
only to continuations (Fig. 1).

All λ terms and calls are labelled uniquely in a given program to distinguish
otherwise identical terms. We will sometimes identify a term with its label but
the meaning should be clear from context.

Programs are closed ulams with a single continuation parameter and contin-
uation variables may not appear free within a ulam term.

Fig. 1. Partitioned CPS λ-calculus syntax
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5 Concrete Semantics

We start by defining an abstract machine to evaluate MCPS programs which
will serve as the ground truth of evaluation. Like many real-world runtimes,
this machine uses a stack to house both local environments and return-point
information. (A stack is not necessary however; an MCPS machine that heap-
allocates continuations works as well.) A value environment serves as a heap and
all values are heap-allocated.

Fig. 2. Concrete state space

Figure 2 presents the concrete state space State of this machine. Each state
in State has a stack st , a value environment ve serving as the heap, and a times-
tamp t. State is partitioned into two domains, Eval and Apply . An Eval state
focuses on a call call in the context of a user environment βu and continuation
environment βk. Apply is further partitioned into the user domain UApply and
continuation domain CApply . A UApply state holds a procedure proc ready to
apply to an argument vector d and non-empty continuation vector c. A CApply
state, on the other hand, holds a code pointer cp and result vector d. We also
make finer distinctions between states: an Eval state with a user call is a UEval
state, denoted ue; a Eval state with a continuation call with a CVar operator
is a CEvalExit state, denoted cee, and a CLam operator is a CEvalInner state,
denoted cei.

Figure 3 presents the concrete machine’s evaluation relation → as the union of
four relations. The side conditions of each relation are divided so that user-world
conditions are on the left and continuation-world on the right. (An overarching,
implicit side condition is that, when a function is lifted over two different vec-
tors, those vectors must have the same length.) The concrete machine evaluates
programs by alternating between two modes: evaluating operators/arguments
and applying an evaluated operator to its arguments, corresponding precisely to
Eval and Apply states.
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Fig. 3. The concrete semantics

For Eval states, the metafunction Au evaluates atomic user-world expres-
sions, dereferencing variables and constructing closures. Likewise, Ak evaluates
continuation expressions, dereferencing variables and constructing code–frame
pointer pairs. As part of each call—user or continuation—the evaluated continu-
ations are used to determine the youngest live frame on the stack. If a call doesn’t
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reference some continuations in scope, the frames unique to them become dead.
The pop metafunction discards all such frames that reside at the top of the stack
as part of the transition (where the notation st |fp indicates the oldest fp frames
of st). Hence, arbitrarily many frames may be popped when a call is made. This
stack management policy follows Might and Shivers’ generalization [14] of the
stack management policy of the Orbit compiler [1].

Apply states precipitate the procedure entry or re-entry, depending on
whether a user procedure or continuation is applied. Application of a user pro-
cedure proc extends its environment βu with bindings for the arguments and the
heap ve with their values, as well as constructing a continuation environment
βk. New user bindings use the timestamp t′ to ensure freshness; in this work,
this is the sole use of timestamps. Continuation application entails popping the
stack to c’s frame pointer fp, jumping to c’s code pointer cp, and extending the
local environment βu with bindings and the heap ve with the result values.

A program pr and its arguments d are injected into a UApply state with a
single halt continuation pointing to the base of the stack, empty stack, empty
value environment, and epoch time.

6 Abstract Semantics

The next stage of MCCFA2 is the definition of an abstract semantics. The
abstract state space ̂State, seen in Fig. 4, is partitioned identically to State. How-
ever, abstract states themselves and their components differ nontrivially from
their concrete counterparts. Following CFA2, abstract states lack timestamps,

Fig. 4. Abstract state space
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Fig. 5. The abstract semantics

an abstract denotable d̂ is a superposition of procedures p̂roc; and closures no
longer include an environment.2

MCCFA2 summarization crucially relies on a non-standard abstraction for
continuation environments: the syntax map. A syntax map is a finite mapping
from continuation variables to continuation expression syntax, i.e., the syntax
of the continuation arguments in a call expression. Each stack frame houses a
syntax map and a stack of these frames comprises the program’s control linkage
information. The particular maintenance of this stack, which we describe shortly,
allows us to omit frame pointers from continuations—they consist of merely a
code pointer.

2 Deviating from CFA2, we omit environments from stack frames as well. This is only
to simplify the presentation; they can be reintroduced without difficulty.
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We define the abstract semantics as a union of the four relations defined in
Fig. 5. Once again, user-world conditions are sequestered to the left column and
continuation-world to the right. Because multiple procedure values may be in
superposition as a call’s operator, the target procedure is chosen nondetermin-
istically. Just as in the concrete semantics, the stack is popped at both user
and continuation calls according to the generalized Orbit policy. However, the
mechanism by which this policy is upheld is significantly different.

When a user call is made, the p̂op metafunction uses the call’s continuation
expressions q and the stack ̂st to determine the dead frames (if any) to pop from
the stack. If there is some clam within q, then the caller frame is live (since a
nested call may return to it) and no dead frames can be popped. On the other
hand, if q = k for some k, the call is a tail call and at least one dead frame
(the caller’s) can be popped. Thus, each step of p̂op determines whether the top
frame of the provided stack is dead and, if so, pops it. It may be that such a
step results in some syntax vector k′ which indicates that the newly-revealed top
frame is dead also, a situation that occurs when a call doesn’t reference the only
continuations on which multiple frames atop the stack depend. For this reason,
p̂op is recursive and can pop arbitrarily-many frames in a given transition.

The p̂op metafunction is used to implement continuation calls as well. When
used in this way, the continuation operator q is provided to p̂op along with
the stack. If q ∈ CLam, the call represents a let-continuation, a local binding
construct in the source program. In this case, p̂op correctly determines that the
top frame is live and preserves the stack. If q ∈ CVar , the call represents a return
to some continuation in scope. In this case, the recursive definition of p̂op effects
the popping of the stack and discovery of the return point.

The Î metafunction injects a program and abstract argument vector into an
initial machine state.

7 Abstraction

With machines for both the concrete and abstract semantics defined, we need to
ensure that the abstract semantics simulates the concrete semantics. To obtain
this assurance, we first need to establish a correspondence between their state
spaces and introduce a notion of precision into the abstract state space. Figure 6
presents this correspondence via the concrete–abstract abstraction map | · |ca
and the abstraction refinement relation �.

The bulk of | · |ca is contained in the mutually-inductive metafunctions
reconstruct and reconstruct∗ which reconstruct an abstract stack and continua-
tions from a concrete stack and continuations. If the stack st given to reconstruct∗

is empty, the given argument vector c must be halt and the result is its abstrac-
tion halt paired with the empty stack. Otherwise, the code pointer clam of the
height-maximum continuation c is determined and the continuation argument
syntax vector q in which it’s found is paired with the reconstruct ion of the con-
tinuation parameter vector k of its enclosing λ-term and the rest of the stack.
The reconstruct metafunction uses reconstruct∗ to reconstruct all but the top
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Fig. 6. Abstraction map and refinement relation

frame of the stack. It uses the given continuation parameter vector k and the
resultant continuation argument syntax vector q̂ to build the top frame.

The abstraction refinement relation � is standard.

Theorem 1 (Simulation).
If ς → ς ′ and |ς|ca � ς̂, then there exists ς̂ ′ such that ς̂ � ς̂ ′ and |ς ′|ca � ς̂ ′.

The soundness of the Eval–Apply transitions are non-trivial as they must
establish that equivalent frames are popped from the stack in the transitions.
To establish it, we use the following lemma.

Lemma 1. Suppose |ue|ca � ûe where ue = ((f e q+)γ , βu, βk, st , ve, t). If k =
CP(γ), Ak(q, βu, st) = c, reconstruct(k, βk, st) = ̂st, and pop(c, (βu, βk) :: st) =
st ′, then reconstruct∗(c, st ′) = p̂op(q, ̂st).

This lemma establishes that pop and p̂op commute with reconstruct and
reconstruct∗. That is, given a concrete stack st , one can reconstruct an abstract
stack ̂st and p̂op it to ̂st

′
or pop it to st ′ and reconstruct∗ to obtain ̂st

′
. This

lemma is established by proving that reconstruct/reconstruct∗ yield stacks that
preserve the behavior of pop in p̂op. A proof is given in a technical report [5].
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Fig. 7. Local state space

8 Summarization

Because abstract stacks are unbounded, the abstract state space is infinite.
Hence, we can’t perform abstract interpretation simply by enumerating the
states reachable from the program entry state. Instead, we’ll perform it using a
summarization algorithm similar to that of CFA2.

Summarization algorithms are so-called because they discover and summarize
reachability facts between system states. CFA2’s summarization algorithm sum-
marizes the fact that exit is reachable from entry in a stack-respecting way with
a pair (entry , exit). This form of summary is inadequate for MCPS. Instead, we
use a summary (entry , exit , n) to record the fact that both exit is reachable from
entry in a stack-respecting way and exit is returning to the nth continuation of
entry .

In Sect. 8.5, we show that the summarization algorithm inherently respects
the stack. Consequently, the stack component of abstract states is unnecessary
and the summarization algorithm operates over the local semantics, the stack-
free residue of the abstract semantics.

Fig. 8. The local semantics

8.1 Local Semantics

The local semantics describes segments of evaluation that don’t require the
return-point information of the stack. Figure 7 contains the local state space,
which is simply the abstract state space with stacks excised. Accordingly, the
local abstraction map | · |al merely performs the excision:
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Fig. 9. The summarization algorithm

|(ulam, d̂, q̂, ̂st , h)|al = (ulam, d̂, h)

|(clam, d̂, ̂st , h)|al = (clam, d̂, h)

|(call , ̂st , h)|al = (call , h)

We define the local semantics as the union of four relations over local states,
seen in Fig. 8. This semantics is similar to the abstract semantics except that it
is not defined over continuation calls that exit the procedure, which requires the
return-point information of the stack. The summarization algorithm is tasked
with linking exits to their return points.

The local successors succ(ς̃) of a state ς̃ is defined succ(ς̃) = {ς̃ ′ : ς̃ ≈> ς̃ ′}.

8.2 Summarization Algorithm

Figure 9 presents the summarization algorithm. The product of running the algo-
rithm is three relations: the ternary relations Summary and Call , and the unary
relation Final . A summary (ũa, ˜cee, n) ∈ Summary records the fact that ˜cee
exits the procedure entered by ũa through its nth continuation (by position). A
call edge (ũa0, ũe, ũa) ∈ Call records the fact that, in the invocation ũa0 heads,
the call ũe yields the entry ũa. A state ũa ∈ Final is simply a terminal state of
evaluation.
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We define the summarization algorithm imperatively and based on a workset,
after the style of CFA2’s. The workset consists of pairs of states of form (ũa, ς̃)
where ũa is entry state of the procedure invocation containing ς̃. The workset
is initialized with Ĩ(pr , d̂) paired with itself (where Ĩ(pr , d̂) = |Î(pr , d̂)|al).

When ς̃ has local successors (as determined by succ), these are Propagated
to the workset. When ς̃ ∈ ˜UEval , its successors are ˜UApply states which are their
own corresponding entries. Thus, each successor ς̃ ′ is Propagated with itself and
the call is recorded in Call . Each summary that begins with ς̃ ′ is Linked with the
caller. Link searches for the return point of a call by looking at the continuation
expression at the position the summary exited. If that continuation expression
is some k, Return searches deeper in the stack with that continuation position
mapped through the formal parameters. If that continuation expression is some
clam, Update synthesizes the return point and Propagates it.

Finally, when ς̃ ∈ ˜CEvalExit , its continuation position with respect to ũa
is determined by CP and passed to Return. If the entry–exit–position triple is
already recorded in Summary , the path is sure to be explored and the search is
cut off. Otherwise, the triple is recorded in Summary . If ũa is the program entry
state, then ς̃ is a program exit state and Final uses it to synthesize a state to
record in Final . The last step of Return Links every caller of ũa with the triple.

8.3 Comparison with CFA2

The MCCFA2 summarization algorithm simplifies and generalizes that of CFA2.
To simplify, MCCFA2’s algorithm builds a single Call relation where CFA2

builds the Callers relation for proper callers and TCallers relation for tail callers.
Our consolidation of these relations was due to expediency: with multiple contin-
uations, one can’t in general determine whether a call’s particular continuation
will be invoked at the point of the call and hence the type of call cannot be
known a priori. However, the result is a more uniform treatment of calls which
is both simpler and more general.

MCCFA2’s algorithm also operates over a more general language than
CFA2’s—the MCPS λ-calculus. The presence of multiple continuations means
the return point of a call is no longer guaranteed to be at the top of the stack.
To reflect this, MCCFA2’s algorithm essentially has two phases: the first drives
the workset loop and explores the state space; the second is activated when a
procedure exits and the stack is walked to find the return point.

8.4 Integrating First-Class Control

Vardoulakis and Shivers [21] extend CFA2 to handle call/cc by allowing free
continuation references in operator position. The similarly-extended summariza-
tion algorithm keeps track of two additional unary relations: EntriesEsc contains
entry states of procedures that bind escaping continuations (that is, continua-
tions with free references) and Escapes contains exit states in which escaped
continuations are applied. When the algorithm encounters an entry state over
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a procedure ulam that binds an escaping continuation k, that state is added to
EntriesEsc and linked (by summary) to any Escapes states that apply k. On the
other end, when it encounters an exit state that applies an escaped continuation
bound to k, that state is added to Escapes and linked to any EntriesEsc states
that bind k.

Because the non-local linking it performs ignores path realizability, the
extended summarization algorithm is incomplete with respect to the CFA2’s
abstract semantics. Thus, summarization introduces spurious paths for even
morally second-class uses of call/cc, such as exceptions. The present work
has demonstrated that such uses can be treated completely with respect to the
abstract semantics. Furthermore, we can integrate this extension into MCCFA2
and pay-as-we-go for analysis of bonafide first-class control but enjoy complete
analysis otherwise.

To integrate this technique, we also keep track of EntriesEsc and Escapes. We
add an entry state to EntriesEsc when any of the continuations it binds escape
and link it to Escapes states that invoke any escaped continuation under those
bound names. We add an exit state to Escapes when it applies an escaped con-
tinuation and link it to EntriesEsc states that bind the continuation’s name. We
include the binding continuation of the escaped continuation in the synthesized
link to let Return propagate the control transfer.

In Sect. 11, we consider specific extensions to CFA2 and how this work sub-
sumes or enhances them.

8.5 Summarization Correctness

Our summarization algorithm is sound and complete with respect to the abstract
semantics. Before we formally define those properties, we need to introduce some
auxiliary definitions.

A path p is a sequence of abstract states ς̂0, ς̂1, . . . , ς̂n where ς̂0 � ς̂1 � . . . �
ς̂n. We denote by p0 � p1 the concatenation of paths p0 and p1. The smallest
reflexive relation over ̂State is denoted by �0, the transitive closure of � by
�+, and the reflexive, transitive closure of � by �∗.

To extract the continuation variable from ˆcee = ((k e)γ , ̂st , h), let
CV ( ˆcee) = k. To determine the continuation position of a continuation from
the operator of ûa = ((λγ (uk+) call), d̂, q̂, ̂st , h), let CP(ûa, k) = i where
πi(k) = k. Finally, to extract the ith continuation argument (by position) from
ûe = ((f e q+)γ , ̂st , h), let CA(ûe, i) = πi(q).

The corresponding entry of an abstract state is the entry state of the invo-
cation of which it’s a part.

Definition 1 (Corresponding Entry). Let CEp(ς̂) denote the corresponding
entry of a state ς̂ in path p. For path p ≡ ûa �∗ ς̂, CEp(ς̂) = ûa if:

1. p ≡ ûa �0 ς̂;
2. p ≡ ûa �∗ ς̂ ′ � ς̂, ûa = CEp(ς̂ ′), ς̂ ′ 	∈ ̂UEval, and ς̂ ′ 	∈ ̂CEvalExit; or



220 K. Germane and M. Might

3. p ≡ ûa �+ ûe � ûa
′ �+ ˆcee � ς̂, ûa = CEp(ûe), CA(ûe, n) ∈ CLam,

and ûa
′ ≡p ˆcee by n.

For a path p ≡ ûa �+ ˆcee, we say ûa ≡p ˆcee by n if:

1. ûa = CEp( ˆcee) and CP(ûa,CV ( ˆcee)) = n; or
2. p ≡ ûa �+ ûe � ûa

′ �+ ˆcee, ûa = CEp(ûe), ûa
′ ≡p ˆcee by n′,

CA(ûe, n′) = k, and CP(ûa, k) = n.

The first case of CEp says that, in path p, a procedure entry state ûa is
its own corresponding entry. The second says that the corresponding entry is
preserved across an intraprocedural transition. The third says that a return state
ĉa has the corresponding entry of a user call state ûe if its nth continuation
argument is some clam and that ûa′ ≡p ˆcee by n holds for the intervening path
ûa

′ �+ ˆcee. Two states with the same corresponding entry are part of the same
abstract procedure invocation.

The ternary “same-level” relation · ≡p · by · captures the fact that an exit
state ˆcee returns through a sequence of tail calls through ûa’s nth continuation.
The base case relates an entry state ûa and an exit state ˆcee in the same
invocation that returns through the nth continuation of ûa. The inductive case
assumes that ˆcee returns through the n′th continuation of ûa′ and, if the n′th
continuation of its caller ûe is a reference, extends it by ûe’s corresponding entry
ûa and the position n of the referenced continuation with respect to ûa.

Summarization Soundness. Soundness is the property that any abstract path
p initiated by Î(pr , d̂) is contained in the results of summarization. Formally,
we have the following:

Theorem 2 (Soundness).
After summarization,

1. if p ≡ Î(pr , d̂) �∗ ûa �+ ˆcee such that ûa ≡p ˆcee by n, then
(|ûa|al , | ˆcee|al , n) ∈ Summary; and

2. if p ≡ Î(pr , d̂) �∗ ûa �+ ûe � ûa
′ such that ûa = CEp(ûe),

(|ûa|al , |ûe|al , |ûa′|al) ∈ Call ;
3. if p ≡ Î(pr , d̂) �+ ς̂ such that ς̂ is a final state, then |ς̂|al ∈ Final .

The proof of this theorem is the same as that of CFA2 modulo our def-
initions of corresponding entry and “same-level” states (and our omission of
local environments from stack frames). The key step is ensuring that each called
continuation is properly identified on the stack. In CFA2, where only a sin-
gle continuation is possible, the continuation resides at the penultimate stack
frame. In MCCFA2, the continuation could reside arbitrarily-deep in the stack.
We address this possibility by connecting the path structure induced by corre-
sponding entries and “same-level” states to stack behavior. The proof appears
in a technical report [5].
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Summarization Completeness. Completeness is the property that only
abstract paths p initiated by Î(pr , d̂) are contained in the results of summa-
rization. Formally, we have the following:

Theorem 3 (Completeness).
After summarization,

1. if (ũa, ˜cee, n) ∈ Summary then there exists p ≡ Î(pr , d̂) �∗ ûa �+ ˆcee
such that ũa = |ûa|al , ˜cee = | ˆcee|al , and ûa ≡p ˆcee by n; and

2. if (ũa, ũe, ũa
′) ∈ Call , then there exists p ≡ Î(pr , d̂) �∗ ûa �+ ûe � ûa

′

such that ũa = |ûa|al , ũe = |ûe|al , ũa′ = |ûa′|al , and ûa = CEp(ûe);
3. if ς̃ ∈ Final , then there exists p ≡ Î(pr , d̂) �+ ς̂ such that ς̃ = |ς̂|al and ς̂ is

a final state.

The proof of this theorem strongly resembles the corresponding proof for CFA2
except for the use of summaries to extend paths; it appears in a technical
report [5].

A CFA2-produced summary (entry , exit) records not only that exit is reach-
able from entry but also such that the intervening evaluation perfectly balances
proper calls and returns. The path segments represented by these summaries
exhibit the property of stack irrelevance, that is, that the evaluation of these
path segments is not influenced by nor influences the stack of the entry state.
This property allows abstract paths to be synthesized by replacing irrelevant
suffixes of the stack.

When multiple continuations are present, user and continuation calls can pop
arbitrary portions of the stack, even below the stack of the entry state. Hence, a
summary (entry , exit , n) subject to the same call–return balance restriction does
not enjoy this property. However, such paths can be normalized, removing irrele-
vant suffixes of each constituent invocation, so that summaries can be employed
in the same way. This ability is critical to demonstrating completeness, one of
our technical contributions.

9 Multi-return λ-Calculus

Shivers and Fisher [16] introduce the multi-return λ-calculus (MRLC) as an
extension of a direct-style λ-calculus in which return points become an explicit
(though second-class) language construct. With this mechanism, MRLC essen-
tially provides user-level access to multiple escape continuations without the
severe notational overhead of CPS. This access makes MRLC adept at express-
ing programs from particular control-heavy domains such as LR parsing, back-
tracking search, and functional tree transformations [20]. MRLC is designed to
translate into MCPS so our analysis framework is keenly poised to handle these
domains as well.

Shivers and Fisher illustrate the utility of MRLC with a parsimonious filter
program which employs multiple return points to reuse as much of the input list
as possible. We consider MCCFA2 applied to the MCPS transformation of this
program:
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(λ0 (? ws k0)
(define1 (recur xs k1 k2)
(case xs k1

(λ3 (y ys)
(? y (λ5 (t)

(if t
(λ7 () (recur ys k1 (λ9 (zs) (cons y zs k2)10))8)
(λ11 () (recur ys (λ13 () (k2 ys)14) k2)12))6))4))2)

(recur ws (λ16 () (k0 ws)17) k0)15)
The primitive case procedure performs case analysis on its first argument, decon-
structs it, and invokes one of its continuations on the subparts. To exercise the
full behavior of this program, we apply it to 〈<havoc>,
list〉 where <havoc>
is an arbitrary primitive predicate.

The table in Fig. 10 presents the destination and content of each analysis
fact MCCFA2 discovers, in a possible order of discovery. Each call is a triple
consisting of the calling procedure entry, the call site, and the called procedure
entry. Primitive procedures have opaque representations of the form <name>.
Each summary is a triple consisting of a procedure entry, procedure exit, and
continuation index. A procedure exit is merely the exit site with the result values
implicit. Primitive procedure exit sites are not represented in the program so we
denote them with a pair (<name>, n) of primitive identifier and continuation
index, The final state is simply the program result value.

Fig. 10. An MCCFA2 analysis

10 Continuation Age Analysis

When a user call is made with multiple continuations, Might and Shivers’ gener-
alization of Orbit’s stack-management policy [14] dictates that all dead frames
are popped from the stack before the target procedure is entered. Dead frames
are typically determined dynamically by comparing the frame pointers of the
call’s continuations (as seen in the UEval rule of our concrete semantics) which
requires an MCPS-based compiler to emit comparison code at each call site.
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Vardoulakis and Shivers [20] introduced continuation age analysis which
attempts to statically determine the relative ages among each call’s continu-
ations. They build their analysis into a pre-existing finite-state k-CFA [15,18]
analysis framework. We can perform continuation age analysis directly on the
pushdown model MCCFA2 constructs without modifying the MCCFA2 imple-
mentation.

For each call site ucall = (f ek+)γ where |k| > 1, let

φ0 = {(ũa0, ũe0,k) : (ũa0, ũe0, ũa) ∈ Call , ũe0 = (ucall , h) for some h}.

That is, φ0 is a set of triples where each triple contains a ˜UEval state focused on
ucall , its corresponding entry, and its continuation argument vector (comprising
only continuation references). Find the fixed point of f(φ0) defined as

f(φ0)(φ) = φ0 ∪ {(ũa0, ũe0, q
′
) : (ũa, ũe, q) ∈ φ,

q ∈ CVar
+

,

(ũa0, ũe0, ũa) ∈ Call,

k = CP(ulam) where ũa = (ulam, d̂, h) for some d̂ and h,

q0 = LC (ucall) where ũe0 = (ucall, h) for some h,

q
′
= [k �→ q0](q) }.

The function f considers all triples in its argument φ that have a continuation
argument vector q consisting solely of continuation references. The callers of
each such triple’s entry state are used to construct new triples containing that
caller, its corresponding entry, and q mapped over [k �→ q0] which permutes the
outer caller’s continuation vector to match the inner caller’s.

By MCCFA2 soundness, this process will accumulate all continuation argu-
ment vectors that contain some clam that is eventually bound to a reference at
the original ucall . Given a fixed point φ of f(φ0), we can consider only the con-
tinuation vectors that contain a clam. One of the many ways to use the resultant
vectors is to map each to the set of indices at which a clam is found. Any indices
in the intersection of these sets are those of the youngest continuation. If the
intersection is empty, the union contains indices that may be the youngest. This
information may decrease the number of comparisons necessary to determine the
youngest at run time.

11 Related Work

There are many instances of pushdown control-flow analysis for higher-order lan-
guages [3,6,8,19]. This work is framed around CFA2. In their extension of CFA2
to handle first-class control [21], Vardoulakis and Shivers outline two approaches
to extend CFA2 to support exceptions without sacrificing precision:

1. Outlined in [21, Sect. 2.4], they propose to let exit points encapsulate a pair
of values, the first representing the result of standard control flow and the
second of exceptional control flow. Since procedures don’t exit naturally and
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exceptionally simultaneously, this pair behaves as a sum with the position of
the value providing an additional bit of information. Our approach generalizes
this approach in a sense by providing as many bits as the continuation position
takes to encode.

2. Outlined in [21, Sect. 5.5], they propose translating the program into 2CPS,
using the first continuation for standard control flow and the second for
exceptional—the standard “double-barrelled” CPS. In this approach, two dis-
tinct summary relations must be maintained by the summarization algorithm
“to not confuse exceptional with ordinary control flow”. As in the previous
approach, the caller syntax is inspected to determine whether it can handle
the type of return the summary represents, this time looking for a literal
λ term in the appropriate continuation position. Our approach extends this
approach in the obvious way, generalizing to arbitrarily many continuations
and using indices to distinguish summaries. This generalization is not free,
however, as we have made significant modifications to the summarization
algorithm and soundness/completeness arguments, in turn.

Pushdown exception-flow analysis has also been applied in the context of object-
oriented programs [12]. Like extended CFA2, the treatment is specialized to
exceptions and not the multiple continuations in general.
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Abstract. Points-to analysis manifests in a functional setting as
control-flow analysis. Despite the ubiquity of demand points-to analy-
ses, there are no analogous demand control-flow analyses for functional
languages in general. We present demand 0CFA, a demand control-flow
analysis that offers clients in a functional setting the same pricing model
that demand points-to analysis clients enjoy in an imperative setting. We
establish demand 0CFA’s correctness via an intermediary exact seman-
tics, demand evaluation, that can potentially support demand variants
of more-precise analyses.

1 Introduction

Points-to analysis is a fundamental program analysis over languages that exhibit
imperative or object-oriented features. A particular points-to analyses is specified
as exhaustive or demand. An exhaustive points-to analysis calculates points-to
facts for every variable reference in the program or component. In constrast,
a demand points-to analysis calculates points-to facts for a client-specified set
of variable references. A demand analysis that obtains points-to facts about a
specified set and avoids analysis work that doesn’t contribute thereto presents
a pricing model to clients distinct from that of exhaustive analyses. As we dis-
cuss in the next section, this pricing model offers advantages to clients such as
compilers and IDEs.

Control-flow analysis (CFA) is the analogue of points-to analysis in languages
that offer first-class functions [12]. Unlike those of points-to analysis, however,
the specifications of essentially all modern CFAs define exhaustive analyses that
produce a comprehensive account of control flow for a target program or compo-
nent. However, a demand CFA would offer clients in the functional setting many
of the same advantages that a demand points-to analysis offers its clients in an
imperative or object-oriented setting. This paper introduces demand 0CFA, a
specification of a demand CFA. As a demand analysis, demand 0CFA resolves
the (potentially higher-order) control flows of arbitrary client-specified subex-
pressions while avoiding analysis work that doesn’t pertain to them. Previ-
ous demand analyses for functional languages offer limited demand behavior
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in higher-order settings [15] or apply only in limited higher-order settings [8];
in contrast, demand 0CFA offers full demand behavior in a general higher-order
setting.

To a first approximation, demand 0CFA is achieved by extending exhaustive
0CFA with another mode of operation. Rather than (abstractly) evaluating every
expression to its values as exhaustive 0CFA does, demand 0CFA in one mode
evaluates some expressions to their values and in another traces some values to
the expressions that take them on. At various points in analysis, the operation
of each of these modes is informed by results of the other. To provide context
for the additional tracing mode, we review exhaustive 0CFA in Sect. 4 before
formally introducing demand 0CFA in Sect. 5; we briefly review the call-by-
value λ calculus (their common language) in Sect. 3. We report on an evaluation
of the efficiency and precision of demand 0CFA relative to 0CFA in Sect. 6.
The connection between demand 0CFA and a ground-truth exact semantics is
not as direct as that of exhaustive 0CFA; in Sect. 7, we bridge this connection
with demand evaluation, a demand specification of exact evaluation. We discuss
related work in Sect. 8 and future work in Sect. 9. In the next section, we overview
the utility and operation of demand 0CFA.

2 Overview

Palsberg characterizes higher-order program analysis as the combination of first-
order program analysis and control-flow analysis (under the name closure anal-
ysis) [16]. That is, in order to apply a first-order analysis to a higher-order
program, one must be able to contend with higher-order control flow.

However, control-flow analysis is expensive. Even the least-expensive “full-
precision” CFA—0CFA—has time complexity cubic in program size and this
bound is unlikely to be decreased [20]. And, for some clients, control-flow infor-
mation may be quickly obsoleted. For instance, both the transformations that
optimizing compilers perform and the user edits made within a client IDE can
invalidate analysis results [4]. This dynamic discourages potential clients of CFA,
such as compilers and IDEs, even when the program insight it offers would be
useful.

However, this dynamic is not rooted solely in the raw cost of CFA, but
also in the pricing model it offers clients. Under this model, clients purchase
an (exhaustive) conglomeration of control-flow facts for a large sum up front.
For potential clients that forego CFA, the average utility (to the client) of a
constituent control-flow fact must not outweigh the average cost (to the client).
However, the fact that neither utility nor cost is constant across facts suggests
that these clients could be better-served by an alternative pricing model. Before
we discuss this pricing model in more detail, we will briefly discuss why neither
the (1) utility nor (2) cost would be constant:

1. For clients that don’t need all control-flow information to be effective, some
control-flow facts are more valuable than others. For instance, optimizing
compilers likely value facts regarding a critical path in the program at a
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premium over run-once code. Similarly, an IDE attempting to provide the
user with insight into a particular program part values information about
that part higher than other parts.

2. The control flow at a particular program point has a kind of locality and not
all program points exhibit the same locality. For instance, the target of f in
the fragment (λf.(f x)λy.e) has higher locality than it does in (λf.(f x) g).
This locality can translate into the amount of analysis required to resolve
the control flow [1]. This variation makes little difference to an exhaustive
analysis, however, since such an analysis cannot selectively omit expensive
facts.

2.1 The Demand Pricing Model

The demand pricing model allows clients to purchase analysis facts selectively. To
illustrate some of the advantages of the demand pricing model for a functional
language, let’s consider super-β inlining [17]. Super-β inlining is the higher-
order analogue of procedure inlining. Super-β inlining syntactically replaces the
operator f in the call (f x) with the target code (in terms of λ). For instance, if f
always evaluates to a closure over λy.e, the super-β inline of the call is (λy.e x),
a form susceptible to further optimizations.

For the purposes of super-β inlining, the demand pricing model has several
distinct advantages over the exhaustive pricing model; we discuss two:

1. Super-β inlining is not an essential optimization but also cannot be per-
formed without flow information. Under an exhaustive pricing model, one
inlining opportunity is revealed only if all inlining opportunities are revealed.
In contrast, a demand pricing model allows clients to obtain control-flow infor-
mation about individual program expressions without necessarily analyzing
all other expressions.

2. Super-β inlining unlocks a potential cascade of optimizations as an inlined call
site is simplified. In transforming the program, these optimizations can inval-
idate the CFA results of the original program. Under an exhaustive pricing
model, these results were likely both comprehensive and expensive, resulting
in a significant loss. In constrant, under the demand pricing model, the set
of results invalidated is both small and relatively inexpensive.

In Sect. 6, we evaluate the fitness of demand 0CFA to super-β inlining in terms
of its precision relative to exhaustive 0CFA.

2.2 Alternative Sources of the Demand Pricing Model

Demand analyses are confined to limited higher-order settings. For instance,
demand points-to analysis for object-oriented languages has a rich literature
(e.g. [18,19]) but, especially as the same specification can have strikingly different
manifestations in the object-oriented and functional settings [12], it is not clear
that current techniques could port directly. The few demand analyses that have
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targeted functional languages directly each suffer from their own limitations. For
instance, Demand-Driven Program Analysis [15] constructs a call graph rooted at
program entry and the subtransitive CFA of Heintze and McAllester [8] applies
to typed programs with bounded types. In order to enable the whole host of
demand first-order program analyses in a higher-order setting, general higher-
order control flow must be directly addressed.

While not offering pure demand analysis, the CFA community has recog-
nized the utility of and offered more-selective CFAs. Both Shivers’ escape tech-
nique [17, Chap. 3] and Ashley and Dybvig’s sub-0CFA [1] allow the client to
delimit a region of the program to be analyzed. This option comes with its own
difficulties: because each analysis is (willfully) blind to the actual control flow
outside the region, selecting an appropriate region is critical but not straight-
forward. For instance, a region that is too small could omit some or even all
of the sources of dependent value and control flow; on the other hand, a region
that is too large wastes analysis effort obtaining irrelevant (to a particular ques-
tion) control-flow facts. Exasperatingly, approaching optimal region selection in
general likely requires control-flow analysis itself.

In a demand analysis, however, the region-selection problem is non-existent
because the analyzer will traverse as much of the program as necessary to resolve
the desired control flow. Because the reason the client initially was going to
delimit a region was to minimize the analysis time, clients of demand analyses
may impose time limits on the demand analyzer. Imposing a time limit rather
than a region limit is a much better fit for the client as it was selecting the
region to optimize for time, whereas in this arrangement it can optimize for
time directly.

2.3 How Demand CFA Operates

An exhaustive CFA, regardless of whether it is based on abstract interpreters or
flow constraints, proceeds in a kind of evaluation mode. To analyze a program, it
starts at the top level and, like an evaluator, dispatches on the type of expression
under focus. The analysis of each expression shadows its concrete evaluation:
variable references bring the environment and result value into accord; λ-terms
produce values themselves; and applications cause the analyzer to descend on
the operator and argument and then operator body, once it’s known. As we’ll
see, an evaluation-centric mode is inadequate to achieve a demand CFA. The
key idea behind demand CFA is to introduce an additional tracing mode to the
analyzer which performs the dual function of evaluation: where evaluation seeks
the values to which an expression can evaluate, tracing seeks the expressions
which evaluate to a particular value.

Clients specify a particular fact of interest to an analyzer by issuing a query.
In the setting of an applicative functional language, queries take the form of
subexpressions for which the client would like control-flow information. Issues
arise, however, because a query may be an arbitrary subexpression and, in partic-
ular, depend on the resolution of a free reference to a variable x. In an exhaustive
analysis, the flows to the binding of x are established before the evaluation of any
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reference to it (which we discuss further in Sect. 4.1). A demand analysis has no
such guarantee and must be prepared to establish the flows from this point. To
do so, it first considers the way in which x is bound, which, in a lexically-scoped
language, is syntactically apparent. For this example, suppose that it is bound
by application of a closure over λx.e. Next, it traces the flow of the closure over
λx.e to each call site which applies it. Since x is bound by its application, the
values of the arguments at those call sites constitute its value flows. The ana-
lyzer obtains these values by issuing evaluation subqueries for each argument
expression.

Let’s consider the resolution of the query y in the context of the program
(λf x.(f x)λy.yλz.z). (In other words, we’ll look at a demand approach to deter-
mining the values that the reference y can take on.) In order to resolve an eval-
uation query, the analyzer assumes evaluation mode and, accordingly, attempts
to evaluate y. Since y is a variable reference and the analyzer doesn’t have its
binding available to it, it inspects the program to discover that it is the binder
of λy.y, bound when a closure over λy.y is applied. At this point, the analyzer
enters tracing mode, following the value of λy.y to all of the places where it is
applied. The way it traces a value flow manifests its duality to evaluation once
again: evaluation dispatches on the type of expression but tracing dispatches on
the type of syntactic context of the expression under focus. The analyzer observes
that λy.y is in an argument context and its value will be bound to an operator
parameter. Its next task, then, is to obtain the operator value by shifting back
into evaluation mode. Once it discovers the operator value to be a closure over
λf x.(f x), it can continue tracing the value of λy.y through references to f. The
only reference to f is in operator position in (f x) and (f x) constitutes a call
site of the value of λy.y. From here, the value bound to y can be obtained as
the value of x. To resolve the value bound to x, the analyzer follows the same
process as it did to resolve y, discovering the entire expression as a call site for
the binding λ-term of x and λz.z in the corresponding argument position. With
λz.z, the analyzer has determined that each reference to y evaluates to a closure
over λz.z.

In this example, the demand approach appears especially indirect since an
exhaustive analysis that “evaluated” the call would shortly discover the value
of y. Exhaustive analyses typically enjoy an economy of scale: they perform
less work to obtain an analysis fact, on average, than a demand analysis [9].
Nevertheless, the selective nature of demand analyses can more than compensate
for this overhead.

3 The Call-by-Value λ-Calculus

In this section, we formally present the language that both 0CFA and demand
0CFA operate on. Its semantics serve as the ground truth for the correctness
theorems of demand 0CFA in Sect. 7.

Following Nielson et al., expressions e in our language are labelled terms
t� and terms take the form of variable references x, λ-abstractions λx.e, and
applications (e0 e1). Formally, we have
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x ∈ Var � ∈ Lab
e ∈ Exp t ∈ Term

e ::= t� t ::= x |λx.e | (e0 e1)

Variables and labels are drawn from the disjoint infinite sets Var and Lab,
respectively. Labels are unique and therefore distinguish otherwise identical
terms; we omit them when unnecessary.

We define an environment-based call-by-value semantics in big-step style
which relates configurations (ρ, e, c) to values v when an expression e evalu-
ates to a value v under an environment ρ and calling context c. We denote this
relationship by the judgment ρ, c � e ⇓ v. In this simple language, the only form
of value is that of a closure (λx.e, ρ), a pair of a λ-abstraction and its closing
environment, where environments are a finite map from variables x to values v.
Calling contexts are finite sequences of labels. Formally, values, environments,
and calling contexts are given as

v ::= (λx.e, ρ) ρ ::= ⊥ | ρ[x �→ v] c ::= 〈〉 | � :: c

The semantic relation over configurations and values is defined by three rules,
one for each type of syntactic expression.

Ref
ρ, c � x� ⇓ ρ(x)

Lam
ρ, c � (λx.e)� ⇓ (λx.e, ρ)

App
ρ, c � e0 ⇓ (λx.e, ρ′) ρ, c � e1 ⇓ v′ ρ′[x �→ v′], � :: c � e ⇓ v

ρ, c � (e0 e1)� ⇓ v

These rules are standard: the Ref rule states that a variable reference evalu-
ates to the value bound to that variable in the environment; the Lam rule states
that a λ-abstraction evaluates to a closure, pairing it with its environment; and
the App rule states that an application evaluates to the body of the operator
value under the operator environment extended to bind the operator parameter
to the argument value. We also assume that premises are established from the
left to right.

4 Background: 0CFA

In this section, we review the core of the constraint-based formulation of 0CFA
presented by Nielson et al. [14]. We consider the analysis over only the unary
λ-calculus presented in the previous section but it is straightforward to extend
it to a richer language (see Nielson et al. [14]).

A 0CFA analysis is a pair (Ĉ, ρ̂) where Ĉ is an abstract cache that associates
to each expression e an abstract value and ρ̂ is an abstract environment that
associates to each variable x an abstract value. The intent is that Ĉ associates
to each expression e an abstraction of those values to which e can evaluate and
that ρ̂ associates to each variable x an abstraction of those values to which x
can be bound during evaluation. An abstract value v̂ is a set of λ-terms which
yields the following functionalities
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v̂ ∈ ̂Val = P(Lam) abstract values
ρ̂ ∈ ̂Env = Var → ̂Val abstract environments
Ĉ ∈ ̂Cache = Lab → ̂Val abstract caches

where Var, Lab, and Lam are the variables, labels, and λ-terms of the analyzed
program and, hence, are finite.

[Ref] (Ĉ, ρ̂) |=fs x� iff ρ̂(x) ⊆ Ĉ(�)
[Lam] (Ĉ, ρ̂) |=fs (λx.e)� iff {λx.e} ⊆ Ĉ(�)
[App] (Ĉ, ρ̂) |=fs (t�0

0 t�1
1 )� iff

(Ĉ, ρ̂) |=fs t�0
0 ∧ (Ĉ, ρ̂) |=fs t�1

1 ∧
∀λx.t�2 ∈ Ĉ(�0), (Ĉ, ρ̂) |=fs t�2 ∧ Ĉ(�2) ⊆ Ĉ(�) ∧ Ĉ(�1) ⊆ ρ̂(x)

Fig. 1. The |=fs relation

What constitutes a 0CFA analysis of a program is defined by a relation over
analyses and programs; Fig. 1 defines one such relation by means of a set of
clauses, one for each category of expression:

The Ref Clause. The Ref clause relates (Ĉ, ρ̂) to a reference x� if ρ̂(x) ⊆ Ĉ(�).
For a closed program, the |=fs relation only considers a reference x� after it has
ensured that ρ̂(x) abstracts all of the values to which x could be bound.

The Lam Clause. The Lam clause relates (Ĉ, ρ̂) to a λ-term (λx.e)� if {λx.e} ⊆
Ĉ(�). This clause leaves implicit the fact that, prior to ensuring that this con-
straint holds, the |=fs specification ensures that ρ̂(x) is populated appropriately
for every variable y with a free reference in λx.e.

The App Clause. The work of |=fs is done by the App clause, which relates (Ĉ, ρ̂)
to an application (t�00 t�11 )� if several conditions hold. First, |=fs must relate (Ĉ, ρ̂)
to both the operator t�00 and argument t�11 . Second, for every λx.e in the operator
cache Ĉ(�0), the constraint Ĉ(�2) ⊆ Ĉ(�), ensuring that values of the call include
those of the function body, and the constraint Ĉ(�1) ⊆ ρ̂(x), ensuring that the
values bound to x include those of the argument, must both hold.

When (Ĉ, ρ̂) |=fs pr holds, we say that (Ĉ, ρ̂) is acceptable with respect to pr .
Acceptability implies soundness, so, for an acceptable analysis (Ĉ, ρ̂), for every
label � of a term t, Ĉ(�) abstracts every value to which t evaluates and, for every
variable x, ρ̂(x) abstracts every value to which x becomes bound. We will not
review how to arrive at an acceptable analysis, but the interested reader may
consult Nielson et al. [14].

4.1 An Inherently-Exhaustive Specification

The |=fs relation inherently specifies an exhaustive analysis. The crux is essen-
tially that the notion of acceptability it defines (which entails soundness) holds
only for closed programs; it cannot make guarantees about an analysis related
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to an open expression. For instance, what analyses are related to the lone
free variable x2? According to the specification, (⊥,⊥) |=fs x2 holds since
⊥(x) = ∅ ⊆ ∅ = ⊥(2). But the analysis (⊥,⊥) doesn’t capture the flow behavior
of x2 as it appears in ((λx.x2)1 (λy.y4)3)0. The |=fs relation relies on previously-
imposed constraints to populate the environment mapping of x and thus appro-
priately constrain x2. Without special provision, this occurs only if the binding
term of x is processed before the reference x2 is encountered. Since |=fs relies
on this for every variable, it accurately defines acceptability for only closed pro-
grams in general.

5 Demand 0CFA

Demand 0CFA specifies what it means for an analysis to be acceptable with
respect to a (possibly open) program subexpression. In other words, this specifi-
cation ensures that an analysis accounts for all values to which a subexpression
may evaluate, even if that subexpression has free variables. Demand 0CFA strives
to analyze only those parts of the program needed to obtain a sound result for
the target subexpression, though additional expressions are often implicated by
control or value dependencies.

A demand 0CFA analysis is a pair (Ĉ, Ê) where Ĉ has the same form as
in 0CFA and Ê is an abstract callers relation which associates to λ-term body
expressions e a set of call sites (e0 e1). In demand 0CFA, Ĉ does not necessarily
(nor typically) associate every expression to an abstract value but only those
necessary to determine the control flow of a externally-selected expression. The
intent is that Ê associates to each of certain λ-terms (also determined by an
externally-selected expression) the set of call sites that apply (closures over) it.
As in Nielson et al. [14], an abstract value v̂ is a set of λ-terms, yielding the
following functionalities:

v̂ ∈ ̂Val = P(Lam)
ĉ ∈ ̂App = P(App)
Ĉ ∈ ̂Cache = Lab → ̂Val
Ê ∈ ̂Calls = Exp → ̂App

Just as with exhaustive 0CFA, there is the notion of acceptability for a
demand 0CFA analysis. Rather than being acceptable w.r.t. a program, how-
ever, a demand 0CFA analysis is acceptable w.r.t. a query. The relation |=fseval

relates an analysis (Ĉ, Ê) to an expression e when (Ĉ, Ê) is acceptable for the
evaluation of e. This means that (Ĉ, Ê) entails the evaluation and tracing nec-
essary to evaluate e. Similarly, the relation |=fscall relates an analysis (Ĉ, Ê) to
an occurrence (λx.e0, e) when (Ĉ, Ê) is acceptable for the trace of λx.e0 from
e. This means that (Ĉ, Ê) entails the evaluation and tracing necessary to trace
λx.e0 from e. We discuss each relation in more detail below.
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The demand 0CFA specification makes use of the syntactic context of expres-
sions provided by a function Kpr : Exp → Ctx where

Ctx � ctx ::= � | (� e)� | (e�)� | (λx.�)�

That is, the syntactic context ctx of an expression e within a program pr is
either the top-level context �, an operator context (� e1)�, an argument context
(e0 �)�, or an abstraction body context (λx.�)�. (From now on, we will leave pr
implicit.) The syntactic context can also be seen as an inherited attribute at the
node of an expression e within a program’s abstract syntax tree.

5.1 The |=fseval Relation

The relation |=fseval relates an analysis (Ĉ, Ê) to an expression t�. Its purpose
is to ensure that Ĉ(�) contains an abstraction of all the values to which t� can
evaluate; in this sense, it corresponds to the |=fs relation of exhaustive 0CFA.
The definition of |=fseval can be seen in Fig. 2 and, like |=fs , includes a clause for
each syntactic category of the λ-calculus.

[Ref] (Ĉ, Ê) |=fseval x� iff
(λx.e)�b = bindfs(x, x�) ∧ (Ĉ, Ê) |=fscall (λx.e, (λx.e)�b) ∧
∀(t�0

0 t�1
1 )�2 ∈ Ê(e), (Ĉ, Ê) |=fseval t�1

1 ∧ Ĉ(�1) ⊆ Ĉ(�)
[Lam] (Ĉ, Ê) |=fseval (λx.e)� iff {λx.e} ⊆ Ĉ(�)
[App] (Ĉ, Ê) |=fseval (t�0

0 t�1
1 )� iff

(Ĉ, Ê) |=fseval t�0
0 ∧

∀λx.t�2
2 ∈ Ĉ(�0), (Ĉ, Ê) |=fseval t�2

2 ∧ Ĉ(�2) ⊆ Ĉ(�)

Fig. 2. The |=fseval relation

The Ref Clause. To determine the values to which a reference x may evaluate,
the Ref clause uses the bindfs metafunction, defined in Fig. 3, to reconstruct
the binding λ-term λx.e. It then relies on the |=fscall relation to ensure that each
call site of (closures over) λx.e is known. For each such call site, the Ref clause
constrains the reference x to evaluate to each value to which the argument may
evaluate.

The Lam Clause. A λ-term λx.e evaluates to only closures over itself, so the
Lam clause of |=fseval is the same as the Lam clause of |=fs . However, unlike
|=fs , the |=fseval relation does not assume at this point that the free variables of
λx.e are subject to any constraints to ensure they’re bound.

The App Clause. The App clause ensures that the operator is evaluated, that
the body of each of its values is evaluated, and that the application itself takes
on each of the body values. Unlike the App clause of |=fs , the App clause of
|=fseval doesn’t evaluate the argument nor bind its values in the operator’s. If
the argument value is needed, the Ref clause will obtain it.
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bindfs(x, e) = bindfs(x, (e e′)�) if K(e) = (� e′)�

bindfs(x, e) = bindfs(x, (e′ e)�) if K(e) = (e′ �)�

bindfs(x, e) = (λx.e)� if K(e) = (λx.�)�

bindfs(x, e) = bindfs(x, (λy.e)�) if K(e) = (λy.�)� where x �= y

Fig. 3. Given a variable x and an expression e in which x appears free, the bindfs

metafunction reconstructs the binding λ-term of x (of which e is a subexpression) by
walking upward on the program syntax tree until it encounters the binder of x. Because
whole programs are closed (and, we assume, demand 0CFA has access to them), bindfs

will always encounter the binder of x before it reaches the program top level. To
perform demand 0CFA over components with free variables, bindfs could be altered to
signal the occurrence of one to the analyzer, which might apply, e.g., Shivers’ escape
technique [17].

5.2 The |=fscall Relation

The relation |=fscall relates an analysis (Ĉ, Ê) to an occurrence (λx.e, t�) which
denotes that t� evaluates (in some context) to a closure over λx.e. Its purpose
is to ensure that Ê(e) contains every call site (t�00 t�11 )�2 which may apply a
closure over λx.e, as it flowed from t�. In order to trace the value flow from
t�, |=fscall considers the syntactic context of t�, which reveals its next occurrence.
Accordingly, the definition of |=fscall , seen in Fig. 4, includes a clause for each
syntactic (expression) context: operator, argument, λ-term body, and top-level.

[Rator]
(Ĉ, Ê) |=fscall (λx.e, t�0

0 )
for K(t�0

0 ) = (� t�1
1 )�2

iff {(t�0
0 t�1

1 )�2} ⊆ Ê(e)

[Rand]
(Ĉ, Ê) |=fscall (λx.e, t�1

1 )
for K(t�1

1 ) = (t�0
0 �)�2

iff
(Ĉ, Ê) |=fseval t�0

0 ∧
∀λy.e′ ∈ Ĉ(�0), ∀� ∈ findfs(y, e′), (Ĉ, Ê) |=fscall (λx.e, y�)

[Body] (Ĉ, Ê) |=fscall (λx.e, t�)
for K(t�) = (λy.�)�y

iff
(Ĉ, Ê) |=fscall (λy.t�, (λy.t�)�y ) ∧
∀(e0 e1)�2 ∈ Ê(t�), (Ĉ, Ê) |=fscall (λx.e, (e0 e1)�2)

[Top] (Ĉ, Ê) |=fscall (λx.e, t�)
for K(t�) = � iff always

Fig. 4. The |=fscall relation

The Rator Clause. When λx.e occurs at the operator t�00 of the application
(t�00 t�11 )�2 , (t�00 t�11 )�2 is a caller of a closure over λx.e. The Rator clause ensures
that, in such cases, (t�00 t�11 )�2 ∈ Ê(e).

The Rand Clause. When λx.e occurs at the argument t�11 of the application
(t�00 t�11 )�2 , it will be bound to x2 for each closure over λy.e′ to which t�00 evaluates.
The Rand clause ensures that t�00 is evaluated and, for each closure over λy.e′

to which it evaluates, uses the findfs metafunction, defined in Fig. 5, to locate
references to y in e′. The Rand clause then ensures that λx.e occurs at each
such reference.
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findfs(x, x�) = {�}
findfs(x, y�) = ∅ if x �= y

findfs(x, (λx.e)�) = ∅
findfs(x, (λy.e)�) = findfs(x, e) if x �= y

findfs(x, (f e)�) = findfs(x, f) ∪ findfs(x, e)

Fig. 5. Given a variable x and an expression e in its scope, the findfs metafunction
gathers the references to x within e by descending downward on the program syntax
tree.

The Body Clause. When λx.e occurs at the body t� of a λ-term (λy.t�)�y , a
closure over λx.e will be the result of a call to a closure over λy.t�. In other
words, λx.e will also occur at each caller (e0 e1)�2 of λy.t�. The Body clause
ensures that the callers of λy.t� are known and that λx.e occurs at each of them.

The Top Clause. When λx.e occurs at an expression t� with context �, it has
reached the top level of the program or component. If this top level is of the
entire program, such an occurrence means that the result of the program is a
closure over λx.e and that it is not applied along this flow. If this top level is of
only a component, such an occurrence means that a closure over λx.e escapes
the component and can signal the analyzer to respond appropriately.

5.3 Constraint Generation

The constraint generation process of demand 0CFA is very similar to that of
exhaustive 0CFA: it proceeds by recursion over the definitions of |=fseval and
|=fscall using memoization to avoid revisiting any particular relation. The con-
straints themselves, however, differ substantially. Evaluation of x� with x bound
as λx.e generates the constraint (t�00 t�11 )�2 ∈ Ê(e) =⇒ Ĉ(�1) ⊆ Ĉ(�). Like
exhaustive 0CFA, evaluation of (λx.e)� generates the constraint {λx.e} ⊆ Ĉ(�).
Evaluation of (t�00 t�11 )�2 generates the constraint λx.t� ∈ Ĉ(�0) =⇒ Ĉ(�) ⊆ Ĉ(�2).
Evaluation of t�00 to a closure over λx.e in syntactic context (� t�11 )�2 generates
the constraint {(t�00 t�11 )�2} ⊆ Ê(e).

6 Evaluation

In this section, we evaluate whether

1. demand 0CFA is essentially as precise as exhaustive 0CFA, and
2. a non-trivial fraction of control-flow information is available for relatively low

cost.

In each evaluation, we use the same corpus of 30 programs. The corpus was
obtained by using a random program generator and filtering to include only
those programs (1) consist of between 2,500 and 10,000 expressions and (2)
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take (individually) over five seconds for exhaustive 0CFA to analyze. The corpus
consists of the first 30 programs encountered by this technique. While this corpus
may not be representative of real-world programs, the second criterion ensures
that all programs within it exhibit non-trivial control flow (at least from the
perspective of 0CFA). The time that exhaustive 0CFA takes to analyze each
program is used as that program’s baseline in proceeding evaluations.

6.1 The Relative Precision of Demand 0CFA

Control-flow analysis is necessary to justify valuable optimizations such as super-
β inlining [17]. This particular optimization, when applied at a call site (f e),
requires that f evaluates to closures over only a single λ-term. A CFA demon-
strates this condition when it calculates a singleton flow set for f .

Demand 0CFA sometimes considers unreachable code and therefore calcu-
lates a larger control-flow relation than exhaustive 0CFA does. (We discuss this
further in Sect. 7.) This could undermine its ability to justify optimizations rela-
tive to exhaustive 0CFA if exhaustive 0CFA calculates a singleton flow set for an
expression but demand 0CFA fails to. We compare, for each program, the num-
ber of reachable non-λ-term expressions for which exhaustive 0CFA calculates
a singleton flow set to the number of those for which demand 0CFA calculates
a singleton flow set. We omit an (uninteresting) table as data shows that, for
our corpus, there are very few cases in which demand 0CFA doesn’t calculate a
singleton flow set when exhaustive 0CFA does: for two programs, it does so in
about 98% of cases; for the remaining 28 programs, it does so in at least 99% of
cases; and for six programs, it does so for 100% of cases. If λ-term expressions
were included in these counts, theses percentages would uniformly increase since
both exhaustive 0CFA and demand 0CFA always calculate a singleton set for
them. These results demonstrate the demand 0CFA is essentially as precise as
exhaustive 0CFA.

6.2 The Existence of Cheap Control-Flow Information

With an exhaustive CFA, it doesn’t make sense to talk about the cost to obtain
any given piece of control-flow information since, by design, exhaustive CFA
bundles all control-flow information together. We can however talk about the
MCE, the mean cost per expression as the quotient of the cost of the bundle and
the number of program expressions whose control-flow information it includes.
For example, Program 5 has 5,338 expressions and takes exhaustive 0CFA 5.84
seconds to analyze, so its MCE in terms of time is 5.84 s/5338 ≈ 1.09 ms.

The intuition presented in Sect. 2 suggests that the locality of control flow
varies across expressions. If the locality of control flow is a proxy for the cost
of obtaining it, then this cost varies across expressions as well. In turn, a vary-
ing cost means that the control-flow information for some expressions may be
obtainable at sub-MCE cost. In real terms, if these assumptions hold, we would
expect that the control-flow information of some of the expressions in Program
5 would be obtainable for less than 1.09 ms.
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For this evaluation, we limit the running time of demand 0CFA to a fraction α
of the MCE for each program. We then dispatch demand 0CFA on each program
expression in succession with analysis of each expression subject to this limit.
The analysis of an expression either succeeds, yielding a sound account of its
control-flow information, or reaches the limit, yielding no information, before we
dispatch demand 0CFA on a successive expression. Figure 6 shows the percentage
of expressions for which demand 0CFA succeeds in this manner under time limits
determined by various fractions α.

Fig. 6. This graph shows the demand 0CFA success rate for fractions α =
1/10, 2/10, 3/10, 4/10, 5/10, 1 of the MCE for 10 programs randomly selected from
our corpus. These data show that demand 0CFA can obtain the control flow for a
significant fraction of expressions—on average over 50%—when time-limited to 1/10
of MCE. As expected, this fraction increases as the fraction of MCE increases, nearing
75% at when demand 0CFA is time-limited MCE itself. These results imply that nearly
75% of a program’s control flow is obtainable for an order-of-magnitude less time than
taken by exhaustive 0CFA. (See text.)

We report the median percentage of three runs for 10 programs programs
randomly selected from our corpus and for α = 1/10, 2/10, 3/10, 4/10, 5/10, 1.
As the graph shows, demand 0CFA can obtain the control flow for a significant
fraction of expressions—on average over 50%—when time-limited to 1/10 of
MCE. As expected, this fraction increases as the fraction of MCE increases,
nearing 75% at when demand 0CFA is time-limited MCE itself.

A first-order upper bound to demand 0CFA’s relative running time is its
fraction α. If demand 0CFA is time-limited to 1/10 of MCE, then, even if it
is dispatched on every program expression, it will not take more than 1/10 of
the time of exhaustive 0CFA. However, as the data show, the vast majority of
expressions analyzable in 2/10 of MCE are analyzable in 1/10 of MCE, and
similarly for 3/10 relative to 2/10, etc. Using this fact, we can obtain a second-
order upper bound A to demand 0CFA’s relative running time via the formula

A =
n

∑

i=1

αi(fi − fi−1)

given a sequence of fractions α1, α2, . . . , αn of MCE and corresponding fractions
f1, f2, . . . , fn of demand 0CFA success rates, where α0 = 0 and f0 = 0. By
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this estimate, when α = 1, demand 0CFA on average obtains nearly 75% of a
program’s control flow in approximately 11% of the time taken by exhaustive
0CFA.

In practice, compilers can’t limit demand 0CFA to a fraction of MCE, because
the MCE is determined only by running an exhaustive 0CFA analysis. For
instance, a compiler of Program 5 would not know that its MCE was 1.01ms
since it would not know the time taken by exhaustive 0CFA was 5.84 s. Instead, it
might know simply that it has 0.5 s to budget to demand 0CFA. To increase effec-
tiveness, it might allocate this budget non-uniformly across the program, using
program knowledge to concentrate it on performance-critical program parts.

These results demonstrate not only that some pieces of control-flow informa-
tion indeed cost less than MCE to obtain but also that

1. a significant fraction cost an order of magnitude less than MCE to obtain and
2. demand 0CFA can efficiently obtain them taking an order of magnitude less

than MCE.

7 Demand 0CFA Correctness

The purpose of this section is to establish that demand 0CFA is sound w.r.t. an
exact forward semantics. To do so, we will establish that demand 0CFA is sound
w.r.t. an exact demand semantics and that this demand semantics has a formal
correspondence to an exact forward semantics.

We term the exact demand semantics we define demand evaluation. To a first
approximation, demand evaluation computes a subderivation of a full deriva-
tion of a program’s evaluation, where the particular subderivation computed is
determined in part by the program subexpression. This is only an approximate
description of the action of demand evaluation for a few reasons: first, one may
successfully apply demand evaluation to unreachable program subexpressions,
computing derivations that don’t appear in the derivation of the whole pro-
gram’s evaluation; second, the product of demand evaluation isn’t necessarily a
single contiguous subderivation but may instead be a set of related subderiva-
tions obtained (conceptually) by removing irrelevant judgments from a larger
derivation.

Although our intuition is rooted in derivations, we formalize demand eval-
uation as exact demand analyses related to program configurations, analogous
to how we formalized demand 0CFA as approximate demand analyses related
to program expressions. Doing so decreases the conceptual distance between
demand 0CFA and demand evaluation, making soundness easier to establish. In
order to connect demand evaluation to forward evaluation, we reify derivations
from exact demand analyses and formally establish a correspondence between
those derivations and forward derivations in a technical report [6].

7.1 Demand Evaluation

We define demand evaluation in the same way that we define demand 0CFA:
namely, we define an exact analysis (C, E) that records exact evaluation facts
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and two (undecidable) relations, |=eval and |=call , over exact analyses and con-
figurations (ρd, e, nc). Both |=eval and |=call relate analyses and configurations
in an analogous way to |=fseval and |=fscall .

Figure 7 contains formal definitions for the domains of demand evaluation.
An exact analysis (C, E) consists of a cache C and a caller relation E . In the exact
semantics, a caller relation E is actually a function from called contexts to caller
contexts. A cache C is itself a triple ($, σ, ν) of three functions: $ associates
configurations with names, σ associates names with values, and ν associates
names with calling contexts. A name n serves the function of an address that
can be known and transmitted before anything is bound to it; it can be used to
obtain the value that may eventually be bound to it in σ. The domain Name
can be any countably-infinite set; when we must be concrete, it will assume the
set of natural numbers N. Demand evaluation environments map variables to
names (and not to values contra environments in the exact, big-step semantics
presented in Sect. 2) which are resolved in the store σ. Similarly, calling con-
texts are indirected by names which are resolved in the context store ν. (Names
within environments and names in contexts come from different address spaces
and never interact.) Closures remain the only type of value and remain a pair
(λx.e, ρd) of a λ-term λx.e and an enclosing environment ρd. Configurations are
a triple (ρd, e, n) of an environment ρd closing an expression e in a calling context
named by n (and resolved through ν). In the exact semantics, an occurrence is
merely a configuration, but we ensure that every configuration treated as such
has a value in C.

n ∈ Name a countably-infinite set
ρd ∈ Envd ::= ⊥ | ρd[x n]

(λx.e, ρd) ∈ Value = Lam × Envd

cd ∈ CCtxd ::= mt | � :: n

(ρd, e, n) ∈ Config = Envd × Exp × Name
Occur = Config

$ ∈ Names = Config Name
σ ∈ Store = Name Value
ν ∈ CStore = Name CCtxd

C ∈ Cache = Names × Store × Store
E ∈ Calls = Config Config

Fig. 7. Demand evaluation domains

An exact demand analysis encapsulates the evaluation of a given configu-
ration. However, because configuration environments and calling contexts are
threaded through stores, all configurations for a given expression have the same
shape. In consequence, a configuration does not uniquely identify a particular
evaluation for an expression—that is, the evaluation of a particular instance of
the expression in evaluation. Instead, we will define our acceptability relations
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|=eval and |=call to admit analyses that encapsulate some evaluation of the given
configuration.

7.2 The |=eval Relation

The |=eval relation relates an analysis (C, E) to a judgment ρd, nc � e ⇓d vd when
(C, E) entails the evaluation of the configuration (ρd, e, nc) to the value vd. Its
definition, seen in Fig. 8, contains a clause for each type of expression. Each of
these clauses functions essentially as its counterpart does in |=fseval .

Fig. 8. The |=eval relation

The Ref Clause. The Ref clause specifies that an analysis (C, E) entails the
evaluation of a variable reference configuration (ρd, x�, nc). It ensures that such
a configuration evaluates to a value vd when (1) the name of the configura-
tion reflects the name of the environment binding, (2) the closure that created
that binding when applied (furnished by bind) is called at a call site, (3) the
name of the argument configuration at that call site is consistent with the new
environment binding, and (4) the argument configuration evaluates to vd.

The bind metafunction (defined in Fig. 9) reconstructs not simply the binding
λ-term λx.e of x but the configuration at which the particular closure over λx.e
first appears.



242 K. Germane et al.

Fig. 9. Given a variable x and an expression e in which x appears free, along with its
closing environment and calling context, the bind metafunction reconstructs the “birth”
context of the closure which yields this binding of x when applied. The resultant name
of the calling context must be consistent with (and is uniquely identified by) the calling
context discovered for this closure.

The Lam Clause. The Lam clause of |=eval specifies that an analysis (C, E) entails
the evaluation of a λ-term configuration (ρd, (λx.e)�, nc) if C(ρd, (λx.e)�, nc) =
(λx.e, ρd) meaning that C$(ρd, (λx.e)�, nc) = n and σ(n) = (λx.e, ρd) for some n.

The App Clause. The App clause applies to configurations focused on an appli-
cation expression (e0 e1)�. It ensures that such a configuration evaluates to a
value vd when (1) the operator e0 is evaluated (within its configuration) to some
value (λx.e, ρd

0), (2) the environment ρd
0 and calling context nc are defined appro-

priately in the configuration of e, (3) the caller of that configuration is defined
in E , and (4) that configuration evaluates to vd.

7.3 The |=call Relation

The |=call relation relates an analysis (C, E) to a judgment (ρd, e, nc) ⇒d

(ρd
0, (e0 e1)�, nc′) when (C, E) entails that the value of the configuration (ρd, e, nc)

is applied at the configuration (ρd
0, (e0 e1)�, nc′). Its definition, seen in Fig. 10,

contains a clause for each type of expression context. Each of these clauses func-
tions essentially as its counterpart does in |=fscall .

The Rator Clause. The resultant value of a configuration (ρd, e0, nc) where e0
has context (� e1)� is applied at (e0 e1)� (assuming the convergence of evaluation
of e1) so its caller configuration is (ρd, (e0 e1)�, nc).

The Rand Clause. The resultant value of a configuration (ρd, e1, nc) where e1
has context (e0 �)� is bound to the parameter x of the value (λx.e, ρd

0) of e0
and appears at every reference to x in e. The Rand clause ensures that the
argument value is called at configuration (ρd

0, (e2 e3)�0 , nc′) when (1) the operator
expression is evaluated to a value, (2) the environment of that value is extended
with the name of the argument and the calling context is extended with the call-
site label, and (3) the find metarelation furnishes a configuration whose value is
called at (ρd

0, (e2 e3)�0 , nc′).
The find metarelation, defined in Fig. 11, relates references to x in a config-

uration (ρd, e, nc) to configurations (ρd
0, x

�, nc′) wich constitute references to x.

The Body Clause. If a configuration is in a body context, its result becomes
the result of the caller of the closure over its enclosing λ-term. The Body clause
ensures that the resultant value of a configuration (ρd[x �→ n], e, nc) such that
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Fig. 10. The |=call relation

(ρd, x�, nc) ∈ find(x, ρd, x�, nc) iff always

(ρd
0, x

�, nc′) ∈ find(x, ρd, λy.e�, nc) iff (ρd
0, x

�, nc′) ∈ find(x, ρd[y n], e, nc′′)
where x �= y and for some n, nc′′

(ρd
0, x

�, nc) ∈ find(x, ρd, (e0 e1)�, nc) iff (ρd
0, x

�, nc) ∈ find(x, ρd, e0, nc)
(ρd

0, x
�, nc) ∈ find(x, ρd, (e0 e1)�, nc) iff (ρd

0, x
�, nc) ∈ find(x, ρd, e1, nc)

Fig. 11. The find relation

e has syntactic context (λx.�)� is called at a configuration (ρd
1, (e2 e3)�1 , nc′′′)

when (1) the enclosing value is called at configuration (ρd
1, (e2 e3)�1 , nc′′′), and (2)

the resultant value of (ρd
1, (e2 e3)�1 , nc′′′)—the value of the initial configuration

over e—is called at configuration (ρd
1, (e2 e3)�1 , nc′′′).

The Top Clause. A closure that reaches the top level of the program is not
called at any configuration within evaluation.

7.4 Soundness

We can now formally state the correctness of demand 0CFA relative to demand
evaluation. Correctness is expressed by two lemmas which each relate a demand
evaluation relation to its demand 0CFA counterpart.

Lemma 1. If (C, E) |=eval ρd, nc � t� ⇓d (λx.e, ρd
0) then, if (Ĉ, Ê) |=fseval t�,

λx.e ∈ Ĉ(�).

Lemma 2. If (C, E) |=call (ρd, t�, nc) ⇒d (ρd
0, (e0 e1)�0 , nc′) where

C(ρd, t�, nc) = (λx.e, ρd
0) then, if (Ĉ, Ê) |=fscall (λx.e, t�), (e0 e1)�0 ∈ Ê(e).
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Lemma 1 states that a demand 0CFA analysis (Ĉ, Ê) acceptable by |=fseval

for an expression e contains an abstraction of every value for which there is
an acceptable (by |=eval) exact analysis (C, E). Lemma 2 says that the demand
0CFA specification |=fseval will always include abstractions of calling configura-
tions discovered by the demand evaluation specification |=call . Because we took
great pains to keep exact demand evaluation close to approximate demand evalu-
ation, the proofs of these lemmas proceed straightforwardly by mutual induction
on the definitions of |=eval and |=call . The coinductive step proceeds by cases
over expressions, in the case of Lemma 1, and syntactic contexts, in the case
of Lemma 2. The corresponding clauses in the exact and approximate relations
themselves tightly correspond, so each case proceeds without impediment.

8 Related Work

Palmer and Smith’s Demand-Driven Program Analysis (DDPA) [15] is most-
closely related to this work, being both demand-driven and a control-flow anal-
ysis. DDPA differs from demand 0CFA in that it must construct a call graph
from the program entry point, using its demand lookup facilities to resolve tar-
gets along the way. In contrast, demand 0CFA is able to construct the call graph
on demand from an arbitrary control point.

There are three nominal higher-order demand-driven analyses that use the
term demand in a different sense than we do. The first is a “demand-driven 0-
CFA” derived by using a calculational approach to abstract interpretation [11].
The derived analysis is not demand in our sense in that one cannot specify an
arbitrary program expression to be analyzed but instead refers to an analyzer
that attempts to analyze only those parts of the program that influence the final
result. In this very loose sense, demand 0CFA is a generalization of demand-
driven 0CFA. The authors relate their work to the second nominally demand
analysis, Biswas [2] which uses the term demand in a similar way for first-order
functional programs. Heintze and McAllester’s [8] “subtransitive CFA” computes
an underapproximation of control-flow in linear time which can be transitively
closed at quadratic cost (for cubic total cost) and is described by the authors
as “demand-driven”. Their analysis operates over typed programs with bounded
type; in contrast, demand 0CFA operates over untyped programs.

The CFA aspect of this work is related to the myriad exhaustive specifications
of CFA [3,5,7,10,13,17,21,22]. The most significant difference of this work is its
demand-driven nature. However, other differences remain: modern conceptions
of CFA are based on small-step abstract machines [21] or big-step definitional
interpreters [3,23] which offer flow, context, and path sensitivity; we have pre-
sented demand 0CFA as a constraint-based analysis that is flow-, context-, and
path-insensitive.

Control-flow analysis is the higher-order analogue of points-to analysis. Even
object-oriented programs exhibit higher-order control flow in that the destina-
tion of a method call depends on the class of the dynamic target. While earlier
work [19] leveraged only the class hierarchy to approximate the call graph, later
work used it merely as a foothold to a more-precise construction of it [18].
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9 Conclusion and Future Work

In this paper, we introduced demand 0CFA, a monovariant, context-insensitive,
constraint-based, demand-driven control-flow analysis, and discussed how it is
well-suited to many CFA clients. Future work includes enhancing demand 0CFA
with both polyvariance and context-sensitivity, arriving at a demand-driven
k-CFA hierarchy [17]. While flow insensitivity is fundamental to our formal-
ism, context- and even path-insensitivity are not. However, the constraint-based
framework which underlies demand 0CFA is likely not essential to it and it may
be possible to port the approach to a small-step abstract machine-based frame-
work (e.g. [21]) to achieve flow sensitivity. Applying the insight of Gilray et
al. [7], introducing an environment may provide the leverage needed to obtain a
pushdown abstraction of control flow.
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Abstract. Traditional machine-based static analyses use a worklist
algorithm to explore the analysis state space, and compare each state
in the worklist against a set of seen states as part of their fixed-point
computation. This may require many state comparisons, which gives rise
to a computational overhead. Even an analysis with a global store has
to clear its set of seen states each time the store updates because of allo-
cation or side-effects, which results in more states being reanalyzed and
compared.

In this work we present a static analysis technique, Modf, that does
not rely on a set of seen states, and apply it to a machine-based analy-
sis with global-store widening. Modf analyzes one function execution at
a time to completion while tracking read, write, and call effects. These
effects trigger the analysis of other function executions, and the analysis
terminates when no new effects can be discovered.

We compared Modf to a traditional machine-based analysis imple-
mentation on a set of 20 benchmark programs and found that Modf is
faster for 17 programs with speedups ranging between 1.4x and 12.3x.
Furthermore, Modf exhibits similar precision as the traditional analysis
on most programs and yields state graphs that are comparable in size.

Keywords: Program analysis · Static analysis
Abstract interpretation · Effects

1 Introduction

1.1 Motivation

Traditional machine-based analyses [25] use a worklist algorithm to explore the
analysis state space. The worklist contains the program states that still have
to be explored by the fixed-point computation. In order to reach a fixed point,
every state that is pulled from the worklist has to be checked against a set of
seen states. If the state was already analyzed, then it must not be reanalyzed to
ensure termination of the analysis.

Comparing states in this manner gives rise to a computational overhead, espe-
cially if the store is contained in the program states. To accelerate the fixed-point
computation, global-store widening can be applied [22]. Global-store widening
c© Springer Nature Switzerland AG 2019
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lifts the store out of individual states and turns it into a global analysis com-
ponent, making it a shared component of each state that the analysis produces.
This reduces the number of times states have to be reanalyzed and compared,
and state comparison itself also becomes cheaper.

Yet, despite improved tractability, an analysis with a global store may still
require many state comparisons. Moreover, each time the global store is updated,
the set of seen states has to be cleared because all states explored so far were
computed with a previous version of the store that is different from the latest
one. Although clearing the set of seen states makes checking for membership of
this set cheaper, naive approaches do so in an indiscriminate manner. Seen states
that are not dependent on a particular store update will still be removed from
the set of seen states, and will be reanalyzed without the analysis discovering
new information (new states, new store updates, . . . ). This causes the analysis
to reanalyze and compare states unnecessarily.

Therefore, the impact of maintaining a set of seen states on the performance,
which is unpredictable in general, motivated the following two research questions.

1. How to design a static analysis that does not require a set of seen states to
reach a fixed point? and

2. What are the implications on performance and precision when compared to a
traditional technique?

As the set of seen states plays an important role in ensuring termination of the
analysis, our answer focuses on its fixed-point mechanism while assuming regular
semantics and configurability (lattices, context-sensitivity, . . . ).

1.2 Approach

In this work we present a static analysis technique for higher-order, side-effecting
programs, called Modf, that does not rely on a set of seen states for computing a
fixed point. Modf analyzes one single function execution at a time to completion
while tracking read, write, and call effects. These effects trigger the analysis of
other function executions, and the analysis terminates when no new effects can
be discovered. This means that, unlike existing analyses that rely on effects,
Modf uses the effects discovered during analysis to drive the analysis itself. The
result of the analysis is a flow graph that can be queried by client analyses for
obtaining information about fundamental program properties such as control
flow and value flow.

Whenever during a function execution another function is called, a call effect
is generated and the cached return value of the called function is retrieved from
the store and used as return value. If it is the first call to a particular function,
then the called function is added to the worklist for future analysis. Whenever
a function reads from the global store, this read dependency is tracked. Upon a
write to an address in the store, all read-dependent functions are added to the
worklist for reanalysis. When a function returns, its return value is written to the
store using the function as the address. Calls beyond the initial one to a particular
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function do not by themselves trigger that function’s reanalysis. Because both
the arguments and the return value are stored, writing the argument values at
call time and writing the return value at return time ensures that the required
(dependent) functions are reanalyzed, thereby honoring the call/return pattern.

By not relying on a set of seen states, Modf avoids the associated state
comparisons, and by tracking read and write effects Modf is more selective in
reanalyzing program states. The goal of this design is to remove an important
source of overhead in naive implementations of machine-based techniques such
as AAM [25]. In addition, caching of return values in combination with selective
reanalysis acts as a memoization mechanism that a Modf analysis can benefit
from.

We applied Modf to a traditional AAM analyzer with global-store widening,
and our evaluation shows that for many benchmark programs the Modf analyzer
is indeed faster while maintaining precision (Sect. 4).

Contributions

– The formal definition of a function-modular static analysis design for higher-
order, side-effecting programs that does not rely on a set of seen states
(Modf).

– The application of Modf to AAM, a well-known and widely used analysis
approach.

– The implementation of an AAM-based Modf analyzer and its evaluation in
terms of performance and precision.

Overview of the Paper. We first introduce Modf (Sect. 2) and formalize our
approach (Sect. 3). We then compare a Modf analyzer to an AAM analyzer in
terms of performance and precision (Sect. 4). We discuss related work (Sect. 5)
and conclude by presenting open questions for future research (Sect. 6).

2 Overview of the Approach

We illustrate Modf through a number of examples involving (recursive) function
calls, higher-order functions, and side-effects.

Function execution occurs in a particular execution context, and the combi-
nation of a function f and its execution context is denoted by κf. The program
itself is executed in an initial context denoted by κ0, but in the remainder of
this paper we treat it like any other function execution context and refer to it
as such (conceptually a program can be thought of as representing the body of
an implicit main function that is called to start the execution of the program).
Modf analyzes each function execution separately from other executions, track-
ing function calls and accesses to the global store. When an address is read from
the store, a read effect is generated by the analysis: r(x) denotes a read effect on
variable x (we use variable names as addresses for simplicity). Similarly, when a
value is added or modified in the store, a write effect is generated: w(x) denotes
a write effect on variable x. Modf does not immediately step into a function
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when it is called, but rather models these calls through call effects: c(κ) denotes a
call effect on the context κ. Tracking read, write, and call effects enables detect-
ing how changes made by the execution of one function affect other function
executions.

2.1 Simple Function

Consider the following Scheme program, which defines a function f and calls it
twice.

(define (f) 3)

(f)

(f)

Modf starts by analyzing the initial context κ0. When encountering the first call
to f, Modf produces a call effect c(κf ) and looks up the return value of f in the
store at address κf (contexts are used as addresses in the store). Because f has
not yet produced a return value, the lookup results in the bottom value ⊥, which
denotes the absence of information. Looking up this return value produces a read
effect r(κf). The presence of this effect results in κ0 having a read dependency
on address κf.

The second call to f is treated in the same manner, so that context κ0 is now
fully analyzed. This is represented by the following graph, where green nodes
correspond to expressions that have to be evaluated by the program, and red
nodes correspond to values reached by evaluating the preceding green node. The
edges correspond to transitions in the evaluation of the program and may be
annotated with one or more effects. For clarity, we omit some of the read effects
in the graphs that follow.

κ0: (f) ⊥ (f) ⊥
c(κf)

r(κf)

c(κf)

r(κf)

Because the analysis of context κ0 yielded a function call with context κf , and
context κf was not encountered before, Modf proceeds by analyzing it. This
produces an abstract return value int (assuming a type lattice as the abstract
domain for values), which is written in the store at location κf , thereby producing
a write effect w(κf ).

κf: 3 int
w(κf)

Because context κf updates address κf, and κ0 has a read dependency on
this address, the analysis of the context κ0 is retriggered with the updated store,
during which the resulting values of function calls to f are now correctly resolved.
No new effects are discovered.
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κ0: (f) int (f) int
c(κf)

r(κf)

c(κf)

r(κf)

Because all discovered contexts have been analyzed and no new store-
changing effects were detected, Modf has reached a fixed point.

2.2 Higher-Order Function

The following example illustrates the analysis of higher-order functions. Function
g returns a closure f which is called on the last line.

(define (f) 3)

(define (g) f)

(define x (g))

(x)

The first iteration of Modf analyzes the initial context κ0 and detects the call
to function g, immediately followed by the assignment of value ⊥ to variable x
because no return value was previously computed for g. The call to variable x
therefore results in a ⊥ value as well.

κ0: (g) ⊥ (x) ⊥
c(κg)

r(κg)

In the next iteration Modf analyzes context κg, as it was encountered for
the first time during the previous iteration. The analysis detects that g returns
function f, and this return value is stored at address κg.

κg: f f
w(κg)

The third iteration reanalyzes κ0 as one of the addresses read by this context
(κg) has been written to. The value of variable x now is function f, and a call
effect is generated on context κf that immediately returns value ⊥ because f
has not been analyzed previously.

κ0: (g) f (x) ⊥
c(κg)

r(κg)

c(κf)

r(κf)

The fourth iteration analyzes newly discovered context κf and discovers
abstract return value int, which is stored at address κf, generating a write
effect.

κf: 3 int
w(κf)
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The fifth and final iteration reanalyzes the initial context, for which the call
(x) produces the return value int residing at address κf, and Modf reaches a
fixed point.

κ0: (g) f (x) int
c(κg)

r(κg)

c(κf)

r(κf)

Although this example only considers a program in which a function is
returned by another function, Modf supports closures as arguments to or return
values of function calls.

2.3 Recursion and Function Arguments

The next example features a recursive function sum which computes the sum of
natural numbers between 1 and n.

(define (sum n acc)

(if (= n 0)

acc

(sum (- n 1) (+ acc n))))

(sum 5 0)

First, the initial context κ0 is analyzed, and the call to sum immediately results
in value ⊥, generating a call effect for context κsum. During this iteration (i.e.,
at the call site), the analysis binds the argument values in the store, generating
the corresponding write effects. The store itself is global to the analysis, and
only grows monotonically. In our examples we use the name of a variable as the
address at which we store its value, so that a particular function parameter is
always stored at the same address and multiple calls to sum cause the different
arguments values to become joined in the store.

κ0: (sum 5 0) ⊥
c(κsum)

r(κsum), w(n), w(acc)

The second iteration of Modf proceeds with the analysis of context κsum and
the possible return value int, stemming from expression acc in the then-branch,
is detected. The value corresponding to the recursive call in the else-branch is ⊥
as the address κsum is not yet bound in the store at this point.

κsum: (= n 0) acc int

(sum (- n 1) (+ acc n)) ⊥ ⊥

w(κsum)

c(κsum)

r(κsum), w(n), w(acc) w(κsum)



Effect-Driven Flow Analysis 253

In the third iteration, the analysis has to consider either κ0 or κsum, because
both contexts have a read dependency on address κsum, which was written during
the previous iteration. Although the order in which contexts are analyzed may
influence the convergence speed of a Modf analysis, it will not influence its end
result. For this example’s sake, we assume Modf reanalyzes κ0 first, in which
the call to sum now produces return value int by reading address κsum in the
store.

κ0: (sum 5 0) int
c(κsum)

r(κsum), w(n), w(acc)

Finally, context κsum is reanalyzed, and the recursive call now also results in
the expected abstract value int. Because the return value of the sum function
was already determined to be int, the store does not change and no additional
contexts have to be analyzed, concluding the analysis.

κsum: (= n 0) acc int

(sum (- n 1) (+ acc n)) int int

w(κsum)

c(κsum)

r(κsum), w(n), w(acc) w(κsum)

2.4 Mutable State

In this final example we mutate state using the set! construct. Variable x in the
program below initially holds an integer value. After evaluating x a first time,
function f is called, which changes the value of x to a string, and variable x is
evaluated again.

(define x 0)

(define (f) (set! x "foo"))

(display x)

(f)

(display x)

A first analysis of initial context κ0 correctly infers the first value for x (int)
but incorrectly infers its second value as execution context κf has not yet been
analyzed. However, the read dependency of κ0 on the address of variable x is
inferred as a read effect.

κ0: x int (f) ⊥ x int
r(x)

c(κf)

r(κf) r(x)

In the next iteration, context κf is analyzed. It writes to the address of
variable x and to return location κf.
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κf: (set! x "foo") str str
w(x) w(κf)

Finally, the reanalysis of context κ0 is triggered due to changes on addresses
on which it depends (x and κf), and a sound over-approximation of the possible
value of x is obtained.

κ0: x {int, str} (f) str x {int, str}
r(x)

c(κf)

r(κf) r(x)

3 Formal Definition

We formally define Modf for a higher-order, side-effecting language as a process
that alternates between two phases:

1. An intra-context analysis analyzes a function execution context given an input
store, and tracks the effects performed within this context.

2. An inter-context analysis triggers subsequent intra-context analysis based on
the effects observed during previous intra-context analyses.

Before introducing these analysis phases, we provide the concrete operational
semantics of the language under analysis.

3.1 Input Language

As input language for the formal definition of Modf, we use the untyped λ-
calculus in A-Normal Form with support for side-effects through set!. A-Normal
Form, or ANF, is a restricted syntactic form for λ-calculus programs in which
operators and operands are restricted to atomic expressions. Atomic expres-
sions ae are expressions that can be evaluated immediately without impacting
the program state, as opposed to non-atomic expressions that may impact the
program state. This syntactic simplification of the language does not limit its
expressiveness, as any λ-calculus program can be automatically rewritten into
its A-Normal Form [4]. We assume the domain of expressions (Exp) to be finite,
as any program contains a finite number of expressions and we only consider
expressions appearing in the analyzed program.

We include atomic expressions that denote integer and string primitive values
in the language for consistency with the examples given previously and to illus-
trate that they do not present any complications with respect to the analysis.
Other primitive values can be added in a similar fashion.

The set! operator modifies the value of a variable x to the value resulting
from the evaluation of an atomic expression ae. While the presentation in this
paper focuses on a functional language with only set! as an imperative construct,
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nothing prevents the Modf approach from being applied to languages with other
and additional imperative constructs.

e ∈ Exp ::= ae | (f ae)

| (set! x ae)

| (let ((x e)) e)

f, ae ∈ AExp ::= x | lam | n | s

lam ∈ Lam ::= (λ (x) e)

x ∈ Var a finite set of identifiers
n ∈ Z the set of finite integers
s ∈ S the set of finite strings

3.2 Concrete Semantics

The concrete semantics of the input language is defined as a transition relation,
denoted ς, σ → ς ′, σ′. It acts on a state ς and a store σ, producing a successor
state and store.

State Space. A state is composed of a control component c, which can either con-
tain an expression to evaluate in an environment (ev(e, ρ)) or a value (val(v)),
and a stack ι, which itself is a sequence of frames representing the continuation
of the execution. The values (v) in this language are primitive values such as
integers (int) and strings (str), and closures (clo) that bind lambda-expressions
with their defining environments. Environments map variables to addresses, and
stores map addresses to values. We leave addresses undefined for the sake of
generality, but we assume that there are infinitely many concrete addresses.

ς ∈ Σ ::= 〈c, ι〉
c ∈ Control ::= ev(e, ρ) | val(v)

v ∈ Val ::= clo(lam, ρ) | int(n) | str(s)

ι ∈ Stack ::= φ : ι | ε

φ ∈ Frame ::= let(a, e, ρ)

ρ ∈ Env = Var → Addr

σ ∈ Store = Addr → Val

a ∈ Addr an infinite set of addresses

Atomic Evaluation. Atomic expressions are evaluated by the atomic evaluation
function A : AExp×Env ×Store → Val that, given an environment and a store,
computes the value of the atomic expression. Variable references x are evaluated
by looking up the address of that variable in the environment and returning
the value that resides in the store at that address. The evaluation of a lambda
expression results in a closure that pairs the lambda expression with the current
environment. Integers and strings are tagged with their respective type during
atomic evaluation.

Transition Relation. The transition relation is defined using 5 rules.
Function A is used by the transition relation to evaluate an atomic expression

into a value, leaving the stack and the store unmodified.

v = A(ae, ρ, σ)
〈ev(ae, ρ), ι〉, σ → 〈val(v), ι〉, σ
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For a function call, first the operator f and the operand ae are evalu-
ated atomically. Evaluation then continues by stepping into the body e′ of
the called function with the environment and store extended with the value
v of the argument x at a fresh address generated by the allocation function
alloc : Var → Addr .

clo((λ(x)e′), ρ′) = A(f, ρ, σ) v = A(ae, ρ, σ) a = alloc(x) ρ′′ = ρ′[x �→ a]

〈ev((f ae), ρ), ι〉, σ → 〈ev(e′, ρ′′), ι〉, σ[a �→ v]

A set! expression is evaluated by first evaluating the atomic expression ae
to obtain the new value v for x, and then updating the value of x in the store.

v = A(ae, ρ, σ)
〈ev((set! x ae), ρ), ι〉, σ → 〈val(v), ι〉, σ[ρ(x) �→ v]

A let expression is evaluated in two steps. A first rule pushes a continuation
on the stack and evaluates the expression for which x has to be bound to the
result. The environment is extended at this point to enable recursion, so that
a function can refer to itself in its body (meaning that this let is equivalent to
Scheme’s letrec).

a = alloc(x) ρ′ = ρ[x �→ a] ι′ = let(a, e2, ρ
′) : ι

〈ev((let ((x e1)) e2), ρ), ι〉, σ → 〈ev(e1, ρ′), ι′〉, σ

A second rule then acts when a value has been computed for the variable x by
evaluating the body of the let after binding the address of x to its value in the
store.

σ′ = σ[a �→ v]
〈val(v), let(a, e, ρ) : ι〉, σ → 〈ev(e, ρ), ι〉, σ′

This completes the rules for the concrete semantics of the input language.

Allocation. The alloc function for allocating addresses in the store is a parameter
of the analysis. For defining concrete semantics, natural numbers can be used
as concrete addresses, i.e., we take Addr = N and have alloc generate fresh
addresses each time it is called.

Collecting Semantics. The concrete collecting semantics of a program e is the
set of states that the program may reach during its execution. It is defined as
the fixed point of a transfer function Fe : P(Σ × Store) → P(Σ × Store), where
function I(e) : Exp → Σ injects a program represented by an expression into an
initial state.

Fe(S) = {(I(e), [])} ∪
⋃

ς,σ∈S
ς,σ→ς′,σ′

(ς ′, σ′) I(e) = 〈ev(e, []), ε〉
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In the remainder of this section, we discuss approaches to soundly over-
approximate the set of concrete states formed by lfp(Fe). First, we abstract
all elements of the state space except for the stack (Sect. 3.3), resulting in an
infinite abstract interpretation. We then examine and compare different existing
approaches for abstracting the stack and introduce and discuss the approach
taken by Modf (Sect. 3.4).

3.3 Abstracting Values

Similar to Earl et al. [3], we perform a first abstraction of the concrete semantics
to obtain a baseline abstract interpretation to illustrate the similarities and
differences between Modf and related work. In this abstraction, we render the
set of values and the set of addresses finite but leave the stack untouched.

State Space. This first abstraction consists of rendering the set of addresses finite,
which implies that stores now map to sets of values rather than a single value.
To ensure that the set of values is finite, we also abstract primitive values into
their type, although other finite abstractions would work as well. As a result, all
components of this state space are finite with the exception of the stack, which
can grow infinitely (something we address in the next sections). We highlight
the main changes in the formalism in gray.

ς ∈ Σ ::= 〈c, ι〉
c ∈ Control ::= ev(e, ρ) | val( {v, . . . } )

v ∈ Val ::= clo(lam, ρ) | int | str

ι ∈ Stack ::= φ : ι | ε

φ ∈ Frame ::= let(a, e, ρ)

ρ ∈ Env = Var → Addr

σ ∈ Store = Addr → P(Val)

a ∈ Addr a finite set of addresses

Atomic Evaluation. The changes in the state space propagate to the atomic
evaluation function. The atomic evaluation function A : AExp × Env × Store →
P(Val) now evaluates to a set of abstract values, losing information about con-
crete values of integers and strings.

Transition Relation. The rules of the transition relation are updated to account
for the changes in the store and atomic evaluation function. Because multiple
values can be bound at the same address in the store, it is crucial that store
updates become store joins instead for the sake of soundness. Store joins are
defined as the pointwise lift of the join operation of abstract values (which in
our case, is the set union). To avoid unnecessary non-determinism, we introduce
the V ∈ P(Val) metavariable to denote a set of values.
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Allocation and Context Sensitivity. The choice for the abstraction of the set
of addresses and for the definition of the alloc function influences the context-
sensitivity of the abstract interpretation. For example, abstracting addresses to
variable names (Addr = Var, with alloc(x) = x) results in a context-insensitive 0-
CFA analysis. Any allocation function is sound [12], and it is possible to introduce
more precise context-sensitivities. We refer to Gilray et al. [7] for a discussion of
the impact of allocation on the precision of analyses.

Collecting Semantics. Using the abstraction defined here, the abstract collecting
semantics of a program e is defined similarly to the concrete collecting semantics.
The abstract transfer function Fe uses the abstract transition relation instead
of the concrete one.

Fe(S) = {(I(e), [])} ∪
⋃

ς,σ∈S

ς,σ → ς′,σ′

(ς ′, σ′)

The fixed point of the abstract transfer function defines the abstract collecting
semantics. However, the set defined by lfp(Fe) may not be computable as we
have not performed abstraction of the stack. It is therefore not suitable for static
analysis without additional abstractions as discussed in the following sections.

3.4 Abstracting the Stack

We left the stack untouched until now, which means it can grow infinitely, result-
ing in an abstract interpretation that may not terminate. Multiple approaches
for abstracting the stack have been proposed, which we summarize here before
detailing our own approach in Modf.

AAM Abstraction. AAM (Abstracting Abstract Machines [25]) is a technique
for finitely abstracting machine-based interpreters. AAM eliminates potentially
infinite recursion by allocating recursive components in the store and—as we
did in Sect. 3.3—making the set of store addresses finite. With a finite number
of addresses in the store the store cannot grow infinitely, and therefore AAM
provides a suitable foundation for static analysis. The solution proposed in AAM
to abstract the stack therefore is to thread the potentially infinite sequence of
stack frames through the store, rendering the stack finite.
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State Space. The components of the state space that require adaptation are the
store, which now also contains stacks, and the stacks themselves, which contain
at most a single continuation frame and the address at which the rest of the
stack resides in the store. To differentiate between stack addresses and value
addresses in the store, we introduce contexts (κ) to represent stack addresses.

ς ∈ Σ ::= 〈c, ι〉
c ∈ Control ::= ev(e, ρ) | val({v, . . . })

v ∈ Val ::= clo(lam, ρ) | int | str

ι ∈ Stack ::= φ : κ | ε

φ ∈ Frame ::= let(a, e, ρ)

ρ ∈ Env = Var → Addr

σ ∈ Store = (Addr + K) → P(Val + Stack)

a ∈ Addr a finite set of addresses

κ ∈ K a finite set of contexts

Transition Relation. The only rules of the transition relation impacted by these
changes are the rules that push and pop continuation frames from the stack.

To evaluate a let binding, a continuation frame is pushed onto the stack.
First a stack address is allocated using stack allocation function allocCtx . The
store can then be extended at the address returned by the stack allocator to
contain the current continuation, and a new stack is used in the resulting state.
When the let continuation has to be popped from the stack, the rest of the stack
is looked up in the store at address κ.

V = A(ae, ρ, σ)
〈ev(ae, ρ), ι〉, σ 〈val(V ), ι〉, σ

clo((λ(x)e′), ρ′) ∈ A(f, ρ, σ) V = A(ae, ρ, σ) a = alloc(x) ρ′′ = ρ′[x �→ a]
〈ev((f ae), ρ), ι〉, σ 〈ev(e′, ρ′′), ι〉, σ � [a �→ V ]

V = A(ae, ρ, σ)
〈ev((set! x ae), ρ), ι〉, σ 〈val(v), ι〉, σ � [ρ(x) �→ V ]

a = alloc(x) ρ′ = ρ[x �→ a] ι′ = let(a, e2, ρ
′) : κ κ = allocCtx (e1, ρ) σ′ = σ � [κ {→� ι}]

〈ev((let ((x e1)) e2), ρ), ι〉, σ 〈ev(e1, ρ′), ι′〉, σ′

σ′ = σ � [a �→ V ] ι ∈ σ(κ)

〈val(V ), let(a, e, ρ) : κ 〉, σ 〈ev(e, ρ), ι〉, σ′

Allocation and Context Sensitivity. Like function alloc, function allocCtx is a
parameter of the analysis that can be used to influence the context sensitivity
of the analysis. To facilitate comparison with Modf (see Sect. 3.4), we take
K = Exp × Env and allocCtx : Exp × Env → K with allocCtx (e, ρ) = (e, ρ).
With this definition of allocCtx , and because environments contain addresses,
any context sensitivity introduced by the value address allocator alloc will also
influence the context-sensitivity of stack addresses.

Collecting Semantics. The abstract transfer function for computing the abstract
collecting semantics needs to be adapted to use the transition relation devel-
oped here. In contrast to the abstract transfer function of Sect. 3.3, the resulting
abstract collecting semantics is guaranteed to be computable, as the abstraction
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is finite. This therefore results in an abstract interpretation suitable for a static
analysis, although the resulting analysis may not be efficient. If the fixed point is
computed with the usual fixed-point computation techniques, such as the com-
monly used worklist algorithm [19], this requires maintaining a set of states that
have been visited in order to avoid re-visiting a state more than once. This in
turn ensures that the algorithm terminates.

Because traditional, unoptimized AAM is inefficient, a common performance
optimization technique is widening of the global store [25]. Global-store widening
widens all reachable stores into a single global store, in effect removing the store
as component from individual states.

Fe(S, σ) = ({I(e)}, []) ∪ (
⋃

ς∈S
ς,σ ς′,σ′

ς ′,
⊔

ς∈S
ς,σ ς′,σ′

σ′)

Although global store-widening improves the performance of the analysis (at the
cost of precision), the fixed-point computation of the transfer function using a
worklist algorithm has to carefully clear the set of seen states when changes are
performed on the global store, as the store is shared with all explored states
and changes therefore may impact states that have already been visited. While
clearing this set of seen states is crucial for soundness, it does however cause a
significant cost, as many of the states present in the set of seen states may not be
impacted by the store changes, but will still have to be visited. Our experiments,
described in Sect. 4 and in which we observed that 80% of the reanalyzed states
in AAM do not yield new states, confirm this. The worst-case complexity of
AAM for computing the context-insensitive 0-CFA analysis is O(n3) [25], with
n representing the size of the program.

Pushdown Abstraction. CFA2 [26] and PDCFA [3] are two approaches that
use a pushdown automaton instead of a finite state machine to approximate
the behavior of a program. However, besides requiring significant engineering
effort, using these two techniques as the foundation for static analysis yields
a computational costs in O(2n) for CFA2 and in O(n6) for PDCFA, resp. [8].
Additionally, CFA2 only supports programs that are written in continuation-
passing style.

AAC Abstraction. Johnson et al. [10] proposes a variation on stack abstrac-
tion found in AAM called AAC (Abstracting Abstract Control). AAC does not
allocate stacks in the value store, but instead introduces a different “stack store”
for this purpose. This enables the allocation of stack addresses that consist of
all components that influence the outcome of a procedure application (assum-
ing the absence of first-class control), i.e., the entire calling context including
the value store. This in turn leads to full call/return precision under a given
value abstraction, but without requiring the complex implementation of push-
down automata. In AAC the continuation is also split into a local continuation
and a meta-continuation. The local continuation represents the intraprocedural
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stack and is represented as a sequence of frames, i.e., with maximal precision.
A local continuation is bounded by a meta-continuation which is allocated in
the store at function calls and therefore represents the interprocedural (call)
stack. Although AAC offers high precision, the worst-case computational cost of
a context-insensitive AAC flow analysis [10] was found to be O(n8) [8], where n
is the size of the input program. P4F [8] is the name for the technique of choosing
AAC stack addresses consisting only of an expression and an environment. While
this results in a reduced computational cost of O(n3) for a context-insensitive
analysis, maximal (pushdown) call/return precision for side-effecting programs
is lost because the store is not a component of the stack address.

Modular Abstraction. Rather than abstracting the stack, Modf, the app-
roach presented in this paper, modifies the fixed-point computation to ensure
that the stack cannot grow infinitely. Similarly to AAC, during the execution of
the body of a function, the stack is modeled as a sequence of frames that can
grow. By modifying the fixed-point computation to compute local fixed points
for each function call, and because the only means of looping in the input lan-
guage is recursion, the stack cannot grow infinitely, ensuring the termination
of the abstract semantics with Modf. In the next section we describe changes
made to the abstract semantics introduced in Sect. 3.3 in order to obtain a Modf
analysis.

3.5 Intra-context Abstract Semantics for Modf

We first describe changes made to the state space and the abstract transition
relation to accomodate for the fixed point computation of Modf.

State Space. Contrary to AAM, Modf leaves the stack untouched and preserves
its concrete nature. Instead it is the fixed-point computation that ensures that
the stack cannot grow infinitely. Two extra components are necessary to approx-
imate the semantics of a program using Modf.

1. Transition relations are annotated with effects (eff ) in order to denote oper-
ations performed during a transition: a write effect (w(a)) indicates that the
store has been modified at address a, a read effect (r) indicates that the store
has been accessed at address a, and a call effect (c(κ)) indicates that there
has been a function call to the function denoted by context κ. These effects
are used to detect dependencies between the analyzed contexts.

2. The ret(κ) continuation frame is introduced to represent the end of the exe-
cution of a function body. Results of function calls are written in the store at
addresses that correspond to execution contexts.

ς ∈ Σ ::= 〈c, ι〉
c ∈ Control ::= ev(e, ρ) | val({v, . . . })

v ∈ Val ::= clo(lam, ρ) | int | str

ι ∈ Stack ::= φ : ι | ε

φ ∈ Frame ::= let(a, e, ρ) | ret(κ)

ρ ∈ Env = Var → Addr

eff ∈ Eff ::= w(a) | r(a) | c(κ)

σ ∈ Store = (Addr + K) → P(Val)

a ∈ Addr a finite set of addresses

κ ∈ K a finite set of contexts
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Atomic Evaluation. The atomic evaluation function A : AExp × Env × Store →
P(Val) × P(Eff ) may read from the store, and therefore now returns a set of
effects indicating whether this was the case.

A(x, ρ, σ) = σ(ρ(x)), {r(ρ(x))} A(lam, ρ, σ) = {clo(lam, ρ)}, {}

A(n, ρ, σ) = {int}, {} A(s, ρ, σ) = {str}, {}

Transition Relation. The transition relation is annotated with effects too: ς, σ E

ς ′, σ′ indicates that the transition has generated the set of effects in E. When
evaluating an atomic expression, the transition relation is annotated with the
effects generated by the atomic evaluation function.

V,E = A(ae, ρ, σ)

〈ev(ae, ρ), ι〉, σ E 〈val(V ), ι〉, σ

Function calls are evaluated differently than in the AAM semantics and its
variant discussed so far. In Modf each function execution is analyzed in isolation
from other function executions. The evaluation of a function call therefore does
not step into the body of the called function, but rather generates a call effect
c that will be used by the fixed-point computation to trigger additional intra-
context analyses. Immediately after generating a call effect, the return value for
the execution context is read from the store, thereby also generating a read effect
r(κ). If execution context κ was not analyzed before, then σ(κ) = ⊥ and the
result of the function call is ⊥. A function call also results in a write effect w(a)
being generated at address a of the parameter of the function call.

When evaluating a set!, a write effect is generated for the address being
modified.

V,E1 = A(ae, ρ, σ) E = E1 ∪ {w(ρ(x))}
〈ev((set! x ae), ρ), ι〉, σ E 〈val(V ), ι〉, σ 	 [ρ(x) �→ V ]

Rules for evaluating a let remain the same, with the exception that a write
effect is generated when the value is bound into the store.

A new rule is added to account for the ret frame, which is reached at the
end of a function execution. When a function call with context κ reaches the end
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of its execution, the resulting value is allocated in the store at address κ and a
write effect w(κ) is generated.

E = {w(κ)}
〈val(V ), ret(κ) : ε〉, σ E 〈val(V ), ε〉, σ 	 [κ �→ v]

Allocation and Context Sensitivity. Similarly to previous stack abstractions, in
Modf the definition of the allocation strategy will influence the context sensi-
tivity of the resulting analysis. While the semantics of Modf is different, the
existing allocation strategies for the value store (function alloc) developed in
the context of AAM [7] can be reused in order to obtain analyses with various
context sensitivities.

Modf also requires an allocator for function execution contexts (function
allocCtx ). Unlike in AAM or AAC, however, in Modf contexts are not con-
sidered to be stack addresses because they are not used to store continuations
(although contexts are used as addresses to store return values). Similar to exist-
ing approaches that require one, context allocator allocCtx in Modf can be used
to tune the precision of the analysis. However, because the inter-context analysis
must be able to analyze execution contexts, at least the following information
must be determinable from a function execution context in Modf: (i) the syntac-
tic function, and (ii) the argument values. For the argument values, one option
would be to include the argument values as part of the context. We opt for includ-
ing the extended environment (the environment after binding function param-
eters) instead, so that the signature of allocCtx is allocCtx : Exp × Env → K
with allocCtx (e, ρ) = (e, ρ). With this choice of context allocator, the single
mechanism of read-dependency tracking (also of the addresses of the function
parameters) suffices to trigger the reanalysis of function executions when they
are called with different argument values.

Note that when taking a context-insensitive alloc function (0-CFA), then tak-
ing only a function as execution context (as we did in the examples in Sect. 2)
is sound, since each parameter is its own address and a function therefore cor-
responds with a single and unique set of parameter addresses.

3.6 Intra-context Analysis

Contrary to AAM-style analyses, Modf cannot be used with a traditional trans-
fer function for computing the abstract collecting semantics. Instead, Modf per-
forms local fixed-point computations for each function execution context through
an intra-context analysis, which will be used by an inter-context analysis (pre-
sented in the next section) in order to obtain the abstract collecting seman-
tics. The intra-context analysis is defined as a function Intra : K × Store →
A × Store × P(Eff ) which, given a context κ and a store σ, provides:

– Some information computed by the analysis, represented by an element of
A; we define A as the set of reachable states within a context (A = P(Σ))
because it most closely resembles the collecting semantics computed by a
machine-based analysis such as AAM.
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– The resulting store, which has to contain the return value of the context
at address ret(κ), i.e., for the resulting store σ′ we should have ret(κ) ∈
dom(σ′).

– The set of effects generated by the transition relation during the analysis of
context κ.

With the definition of the abstract transition relation E , we define the intra-
context analysis as the fixed-point computation of a transfer function Fκ

σ0
, acting

on elements of the domain A × Store × P(Eff ). For a context under analysis κ
and for an initial store σ0, this domain consists of the set of reachable states,
the store, and the set of generated effects.

F (e,ρ)
σ0

(S, σ,E) = 〈{ς0}, σ0, ∅〉 ∪
⋃

ς∈S

ς,σ E′
ς′,σ′

〈{ς ′}, σ′, E′〉

where ς0 = 〈ev(e, ρ), ret((e, ρ)) : ε〉

This transfer function deems as reachable the initial state ς0, and any state
ς ′ that can be reached in one abstract transition from a reachable state ς. The
initial stack consists of a single stack frame ret to mark the boundary of the
function execution. Effects detected during transitions are collected and will be
used by the inter-context analysis to detect contexts that need to be reanalyzed.
The intra-context analysis is defined as the least fixed point of the transfer
function: Intra(κ, σ) = lfp(Fκ

σ ). The only way a state could be reachable from
itself would be through a recursive call, but this is delegated to the inter-context
analysis. Therefore the computation of this fixed point does not require a set of
seen states and associated state comparisons.

3.7 Inter-context Analysis

The inter-context analysis operates on a worklist of execution contexts, analyz-
ing one execution context until completion before moving on to the next one.
A Modf analysis starts with the inter-context analysis on a worklist containing
the root context as sole element. The root context represents the initial context
in which the input program is evaluated. The inter-context analysis terminates
when its worklist is empty, returning the mapping from contexts to intra-context
analysis results. The inter-context analysis also keeps track of the read dependen-
cies of contexts on addresses to support the mechanism of reanalyzing contexts
when an address they depend on is written to.

Formally speaking, the inter-context analysis is defined by the function Inter :
P(K) × (Addr → P(K)) × Store × (K → A) → (K → A). It acts on a worklist
of contexts (P(K)), a map that tracks which addresses are read from by which
context (Addr → P(K)), a global store (Store), and a map S that stores the
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most recent results from intra-context analyses (K → A). Since we compute
collecting semantics, we have A = P(Σ).

Inter(∅, , , S) = S

Inter(κ � κs, R, σ, S) = Inter(κs ∪
⋃

c(κ′)∈E

κ′ �∈dom(σ)

κ′ ∪
⋃

w(a)∈E

κ′∈R(a)

σ(a) �=σ′(a)

κ′, R �
⊔

r(a)∈E

[a 	→ {κ}], σ′, S[κ 	→ S′])

where 〈S′, σ′, E〉 = Intra(κ, σ)

If the worklist is empty, map S is returned. Otherwise, the inter-context analysis
pulls a context κ from its worklist and performs an intra-context analysis. Based
on the results of the intra-context analysis, additional contexts may be added to
the worklist. Adding contexts to the worklist requires comparing contexts which
is cheaper than comparing states in a traditional analysis where the worklist
contains program states. Also note the absence of a set of seen states, which is
needed in traditional algorithms to ensure termination. A context κ′ is added to
the worklist if at least one of the following two conditions is met.

1. Context κ′ was called (c(κ′) ∈ E) and has not yet been analyzed (modelled
as κ′ 
∈ dom(σ)).

2. Context κ′ has a read dependency on an address a (κ′ ∈ R(a)) and a was
written to (w(a) ∈ E) in a way that changes the store (σ(a) 
= σ′(a)).

Any address a′ that was read during the intra-context analysis of context κ (i.e.,
r(a′) ∈ E) is registered as being depended upon by κ by updating the mapping
of read dependencies R accordingly. The global store is also updated and the
result S′ of the intra-context analysis is stored in S.

Collecting Semantics. Let κ0 = allocCtx (e, []) be the root context for program
e. The abstract collecting semantics of program e is obtained by computing
Inter(κ0, ∅, ∅, ∅, ∅), which results in a mapping S ∈ K → A from contexts to
the set of states that may be reachable in that context.

3.8 Soundness

Soundness of the Abstract Semantics. Except from the rule for function calls, our
abstraction of the transition relation rules follows the usual AAM recipe. Their
soundness is proven by a case analysis [25]. As our function call rule does not
step into the body of the called function, its soundness solely relies on the fact
that σ(κ) holds a sound approximation of the result of a function call—which is
proven in the last paragraph of this section.

Soundness of the Intra-context Analysis. We have to show that given an approx-
imation of the store σ, our intra-context analysis Intra(κ, σ) yields a sound over-
approximation for the reachable states, the store, and the effects returned. This
is the case because all states reachable from its input store and context will be
analyzed, by definition. The soundness of the intra-context analysis therefore
also relies on the fact that the given input store is sound.
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Soundness of the Inter-context Analysis. The soundness proof for the inter-
context analysis amounts to showing that the considered store eventually
becomes a sound over-approximation of all possible stores reached by the con-
crete semantics, and contains an over-approximation of all return values of each
function at the address corresponding to their context. This is shown by the
fact that intra-context analyses are sound for the store with which they are
executed, hence the resulting store is completed with information coming from
the analysis of a context given an input store. This in turn will trigger other
analyses based on the discovered read dependencies and function calls. We note
that a discovered context that has not yet been analyzed will be analyzed by the
intra-context analysis, and that a context that has already been analyzed will be
analyzed upon changes to values in the store. Eventually, all reachable contexts
will be analyzed for all possible changes to the values they depend on, resulting
in a sound over-approximation of the store and a sound over-approximation of
all possible return values of these contexts. Hence, the inter-context analysis is
sound.

3.9 Termination

Termination of the Intra-context Analysis. The intra-context analysis, defined
as a fixed-point computation, always terminates. All components of the abstract
state space are finite, except for the stack: the abstract address domain Addr
itself is made finite by the abstraction, and this propagates to the other com-
ponents of the state space. The resulting set of abstract environments is finite,
as there is a finite number of variable names and a finite number of abstract
addresses to compose them from. The set of abstract values (Val) is finite as
there is a finite number of abstract environments from which closures can be
composed. The sets of stores (Store), effects (Eff ), and contexts (K) become
finite too.

Even though the Stack abstract domain is not finite, the intra-context anal-
ysis cannot construct an infinite stack. Stacks only grow when analyzing let

expressions, and there can only be a finite number of such expressions within
a function body. Constructing an infinite stack requires loops in the analysis,
which is precluded by our use of the value cached in the store for a (poten-
tially recursive) function call. The fixed-point computation for the intra-context
analysis will therefore always terminate.

Termination of the Inter-context Analysis. The inter-context analysis terminates
when its worklist is empty. This worklist grows in two cases.

First, when a function call with context κ is encountered for the first time
(i.e., a c(κ) effect is discovered), κ is added to the worklist. There is a finite
number of syntactic function calls, and once a function call has already been
considered (modelled as κ ∈ dom(σ)), it will not be considered again. The work-
list can hence not grow indefinitely through function calls.

Second, when a write effect w(a) is discovered for an address that is read by
a context κ, this context is added to the worklist under the condition that the
value residing at address a in the store has itself changed (σ(a) 
= σ′(a)). The
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store being monotone and the number of possible values associated with each
address in the store being finite, values will eventually stabilize. This ensures
that a given context can be considered for reanalysis only a finite number of
times.

Altogether, each context κ will only be analyzed a finite number of times,
and there can only be a finite number of contexts for a given program. This
ensures that the inter-context analysis always terminates.

3.10 Complexity

Complexity of the Intra-context Analysis. The intra-context analysis can execute
at most a number of transitions equal to the number of expressions in the con-
text under analysis. Hence, the complexity of the intra-context analysis given a
specific context and specific store is in O(|Exp|), where |Exp| is the size of the
program under analysis.

Complexity of the Inter-context Analysis. Each context managed by the inter-
context analysis can be analyzed for each change in the store to each of the
addresses read in that context. An address can have at most |Exp| different values,
hence the number of changes to an address is bounded by |Exp|. Similarly, with
our address allocation strategy, there are at most |Exp| addresses in the store,
hence each context can be analyzed at most |Exp|2 times.

The inter-context analysis manages at most |Exp| contexts. With these
bounds, one derives a worst-case time complexity of O(|Exp|4): there are at
most |Exp| contexts, each analyzed at most |Exp|2 times, and the complexity of
the analysis of one context being bounded by |Exp|. However, note that for a
given program, the number of contexts is inversely proportional to the size of
each context: a program with the worst-case context length (|Exp|) can have only
one context, as its number of expressions is equal to the size of the program.
Conversely, a program with the worst-case number of contexts (|Exp|) has the
minimal size for each context. In fact, the number of contexts is related to the
size of the contexts in such a way that the worst-case of their multiplication
is |Exp|. Hence, Modf has a worst-case time complexity of O(|Exp|3), which is
equal to the worst-case time-complexity of a 0-CFA AAM analysis widened with
a global store [25]. In practice, as we evaluate in Sect. 4, Modf executes in a
lower analysis time than the equivalent AAM analysis.

4 Evaluation

We implemented an AAM analyzer and a Modf analyzer in the Racket dialect of
Scheme, and evaluated them on several Scheme benchmark programs. Compared
to the descriptions and formalizations presented in this paper, the analyzers sup-
port a more extensive input language and semantics featuring conditionals, lists,
vectors, and additional primitives. Our AAM analyzer is a faithful implemen-
tation of an AAM analysis, more specifically the AAC variant introduced by
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Johnson and Van Horn [10], configured with 0-CFA store value allocators and a
stack value allocator identical to that of Modf.

To make the comparison possible and fair, we actually derived Modf from
the AAM implementation, only changing what was necessary. Therefore both
implementations share infrastructure for ASTs, lattices, machine semantics (the
intra-context small-step relation), primitives, and so on. We did not optimize
the AAM and Modf analyzer and will address applying and evaluating different
optimization strategies as future work (also see Sect. 5). The worklist strategy
used by the inter-context analysis of Modf and by the AAM analysis both
follow a last-in first-out strategy. The analyzers’ implementation and test setup,
including benchmark programs, are publicly available1.

Our set of benchmark programs consists of 20 Scheme programs coming from
a variety of sources, including the Gabriel performance benchmarks [6], bench-
marks from related work typically used to challenge control-flow analyses (see
Sect. 5), and benchmarks from the Computer Language Benchmarks Game [5].
In the remainder of this section we report on the soundness, precision, and per-
formance of our implementations on these programs.

4.1 Soundness Testing

We first established the correctness of our AAM-based semantics by running
each benchmark program under concrete semantics and checking that it pro-
duced a single answer equivalent to the answer computed by Racket for the
same program. We then mechanically checked that, for each program and under
abstract semantics, the abstract values for all variables produced by our AAM
and Modf implementations subsume their corresponding concrete values after
abstraction [1]. From these experiments we conclude that both analyzers are
sound w.r.t. to our set of benchmark programs.

4.2 Precision Evaluation

We measured the overall precision of each analysis by counting the number of
abstract values in all states of the results of each analysis. Because we use a set
lattice, set size can be used as a measure of precision: the more elements are in
a set representing an abstract value, the lower the precision. Column Values in
Table 1 lists the results of this experiment (lower is better). In comparison to
AAM, Modf may lose precision with respect to function argument values and
the return value for a function execution context, as under our test configuration
(0-CFA) these values are joined in the store. Upon reanalysis of a context, this
may introduce spurious results. In contrast, AAM will not have spurious results
for a first call to a function, but may have spurious results for subsequent calls.
As seen from the numbers in Table 1, we conclude that in practice the AAM
and Modf analyzers are similar in precision for the majority of our benchmark
programs.

1 https://github.com/jensnicolay/modf.

https://github.com/jensnicolay/modf
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Table 1. Precision comparison between AAM and Modf. |Exp| is the number of atoms
present in the program under analysis. Values is the sum of the set of abstract values
(lower is better), and Mono is the number of monomorphic call sites detected by the
analysis (higher is better). The Difference columns indicate the difference in percentage
of the results for AAM and Modf: a positive percentage indicates that Modf has
detected more elements. For Values, lower percentages are better, and for Mono, higher
percentages are better.

Program |Exp| AAM Modf Difference

Values Mono Values Mono Values Mono

primtest 281 66 55 66 55 +0% +0%

partialsums 326 86 73 86 73 +0% +0%

treeadd 354 123 57 128 57 +5% +0%

spectralnorm 400 109 89 109 89 +0% +0%

matrix 351 106 77 109 74 +2% −4%

classtree 430 439 97 441 91 +0% −6%

fankuch 415 131 98 133 97 +2% −1%

destruct 356 167 48 163 48 −2% +0%

supermerge 202 972 21 990 18 +2% −14%

churchnums 194 403 19 403 19 +0% +0%

deriv 331 735 46 756 47 +3% +2%

regex 540 426 69 423 69 −1% +0%

triangl 448 698 40 659 40 −6% +0%

graphs 1407 657 198 657 197 +0% −1%

mazefun 1100 2587 117 2615 116 +1% −1%

dderiv 449 2463 49 2457 49 +0% +0%

scm2java 1769 5908 266 5956 265 +1% −1%

browse 1251 8935 129 8606 129 −4% +0%

mceval 1390 13178 159 13049 159 −1% +0%

boyer 2260 115365 86 115574 86 +0% +0%

Although the measurements of the number of values give a good indication of
the overall precision of the analysis results, they do not reveal much about “use-
ful” precision. Therefore we also counted the number of singleton sets computed
by each abstract analysis (column Mono in Table 1, higher is better). Singleton
sets indicate abstract values that, in our configuration, represent either a single
primitive type, a single closure, or a single address (list or vector). Therefore,
this measure of precision is interesting for client analyses such as type analysis,
call graph reachability, and monomorphic call inference (a single closure value
for an operator position corresponds to a monomorphic function call). We con-
clude again that the precision of the AAM analyzer and Modf analyzer are
comparable in this respect for the majority of the benchmark programs.
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4.3 Performance Evaluation

We measured the time it takes for the analyses to complete, and how many
abstract states are computed in this time. Table 2 depicts the results sorted in
ascending order by AAM analysis time. The results show an average speedup
of 3.7 for Modf over AAM on our set of 20 benchmark programs. Modf fin-
ished the analysis faster in 17 out of 20 programs, with speedup factors ranging
between 1.4 and 12.3. We registered a slowdown for 3 out of 20 programs, with a
doubling of analysis time for one smaller benchmark. The higher the AAM anal-
ysis time for a program, the better Modf performs: in Table 2 Modf generally
results in a speedup.

Table 2. Performance comparison between AAM and Modf. For AAM and Modf,
column States is the number of states that the analysis has explored, and Time is
the time taken by the analysis to run to completion, in milliseconds. The Reduction
columns indicate the improvement in number of states and in time resulting from
Modf, as a factor of the number of states explored (resp. the time taken) by AAM
over the number of states explored (resp. the time taken) by Modf. A higher reduction
factor shows more improvement resulting from Modf.

Program |Exp| AAM Modf Reduction

States Time States Time States Time

primtest 281 178 18 183 7 1.0× 2.6×
partialsums 326 223 18 225 7 1.0× 2.6×
treeadd 354 263 28 292 35 0.9× 0.8×
spectralnorm 400 256 31 269 10 1.0× 3.1×
matrix 351 237 44 256 27 0.9× 1.6×
classtree 430 352 72 465 137 0.8× 0.5×
fankuch 415 308 73 338 54 0.9× 1.4×
destruct 356 274 95 306 58 0.9× 1.6×
supermerge 202 356 295 212 63 1.7× 4.7×
churchnums 194 428 309 318 82 1.3× 3.8×
deriv 331 419 313 400 118 1.0× 2.7×
regex 540 579 558 491 86 1.2× 6.5×
triangl 448 371 861 373 205 1.0× 4.2×
graphs 1407 918 2020 898 347 1.0× 5.8×
mazefun 1100 1066 2655 1140 3379 0.9× 0.8×
dderiv 449 750 3003 546 889 1.4× 3.4×
scm2java 1769 2446 24925 1602 2356 1.5× 10.6×
browse 1251 1565 41478 1510 10621 1.0× 3.9×
mceval 1390 2333 46483 2478 23040 0.9× 2.0×
boyer 2260 13048 5241215 2154 425915 6.1× 12.3×
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To gain insights to why Modf is faster on these programs, we performed
some additional measurements with the following averaged results:

1. 8% of the running time of the AAM analyzer is spent checking seen states,
which is avoided by Modf.

2. Adding return value merging to the AAM analyzer—something inherently
present in Modf—only improves its running time by 2%.

3. 80% of reanalyzed states by the AAM analyzer do not yield new states, while
this is the case for 63% of reanalyzed states by the Modf analyzer.

Considering that, apart from the effect tracking and the fixed-point computation,
both analyzers share the same implementation, we can conclude that (i) avoiding
the cost of checking for seen states, and (ii) profiting of a worklist strategy
that can selectively reanalyze states upon store updates in combination with
memoization of return values are the two major factors in explaining why Modf
outperforms AAM on our set of benchmark programs.

Modf also tends to produce smaller flow graphs than AAM as analysis time
increases, although for the smaller benchmarks Modf slightly outputs more
program states. The reason is that Modf immediately continues after a function
call with the cached result fetched from the store, even if the function was not
previously analyzed. In the latter case, a ⊥ return value results, which does not
occur in AAM. However, for the larger benchmarks, the advantages of Modf
and especially its return value memoization outweigh these ⊥ return flows, and
Modf often produces flow graphs with less states than AAM. It is also worth
noting that Modf often is faster even when producing more states.

In conclusion, while Modf loses some precision for some programs when com-
pared with AAM, we believe that the tradeoff our technique proposes between
performance and precision is worthwhile.

5 Related Work

Modular Analysis. Modf can be regarded as a modular analysis in that function
execution contexts are analyzed one at a time and to completion. The concept of
a modular analysis was formalized by Cousot and Cousot [2], which presents dif-
ferent general-purpose techniques. Sharir and Pnueli [21] introduces a program
analysis that integrates an interprocedural analysis with intraprocedural analy-
sis, similarly to Modf. The result of the intraprocedural analysis is a summary
that is used by the interprocedural analysis. However, this approach remains lim-
ited to a first-order setting while Modf was explicitly designed with support for
higher-order, side-effecting programs. Moreover, unlike modular summary-based
analyses, Modf does reanalyze function execution contexts as new contexts and
effects are discovered.

Abstract Machines. In this paper we compare a Modf analyzer against an
implementation of a variation of AAM, a well-known machine-based analysis
approach [10,25] Related work has produced different techniques and extensions
for AAM with varying trade-offs between precision and performance, of which
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a summary can be found in Gilray et al. [8]. Modf itself also uses AAM-style
semantics for its small-step analysis of functions, which makes the comparison
with the AAM analyzer justified and straightforward, the latter also on a tech-
nical level by maximizing code reuse. Applications of AAM are found in various
domains, such as detecting function purity [18], performing symbolic execution
for contracts [15], analyzing concurrent programs [14,23,24], determining func-
tion coupling [16], discovering security vulnerabilities [17] or performing malware
analysis [11]. The approach used by Modf could improve the performance of
such applications and other client analyses without impacting their precision.

Might and Shivers [13] introduced abstract garbage collection and abstract
counting as techniques for increasing the performance and precision of a store-
based abstract interpretation. Abstract garbage collection reclaims unused store
addresses, but is not straightforward to adapt for Modf because of the per-
context analysis in combination with a global store. Abstract counting keeps
track of whether an address is allocated exactly once or multiple times in the
store. If the address has only been allocated once, a strong update can be used
instead of a weak update. Abstract counting is orthogonal to Modf and incor-
porating it into our approach and evaluating its effects is future work.

In this paper we compare unoptimized implementations of a Modf and an
AAM analyzer. Johnson et al. [9] presents OAAM, a series of 6 steps that can be
applied to optimize naive global-store AAM implementations for higher-order,
functional languages, resulting in two to three order of magnitude speedups.
However, OAAM requires heavy semantics and implementation engineering,
while Modf is a simple technique that can be applied to side-effecting seman-
tics as well. Some OAAM optimizations can be applied to Modf (e.g., store
pre-allocation), while others clearly cannot (e.g., optimizations that rely on the
absence of side effects, or those that involve the set of seen states).

Effect Systems. Modf relies on effects to drive the inter-context analysis. This
however differs from typical usages of effect systems [20]. A first difference is that
effect systems usually extend a static type system, while Modf does not make
any assumptions about the type system of the analyzed language. Another major
difference is that effect systems are used to reason about the effects performed
in the program under analysis, while Modf relies on effects during the analysis
to perform a general-purpose static analysis that can serve a number of client
applications. Hence, while both Modf and effect systems use effects, the way
effects are used is entirely different.

6 Conclusion

We presented Modf, a technique for the static analysis of higher-order, side-
effecting programs in a modular way. Modf analyzes one single function execu-
tion at a time to completion while tracking read, write, and call effects. These
effects trigger the analysis of other function executions, and the analysis termi-
nates when no new effects can be discovered.

The goal of Modf’s design is to reduce the overhead associated with main-
taining a set of seen states while exploring the state space. By not relying on a
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set of seen states, Modf avoids many state comparisons, and by tracking read
and write effects Modf is more selective in reanalyzing program states than
traditional implementations of machine-based static analyses such as AAM.

We implemented an AAM analyzer and derived a Modf analyzer from it by
adding effect tracking and changing the fixed point computation, and evaluated
the two implementations on 20 benchmark programs. Our experiments show an
average speedup of 3.7 for Modf over AAM on our set of benchmark programs.
Modf finished the analysis faster in 17 out of 20 programs, with speedup fac-
tors ranging between 1.4 and 12.3. We also found that the AAM and Modf
analyzer are similar in precision for the majority of our benchmark programs,
while computing flow graphs of similar size or smaller.

In future research we will experiment with different concepts of modules and
context sensitivities for analyzing modules, and will also examine opportunities
to incrementalize and parallelize the approach. Although Modf is already inher-
ently incremental in the sense that upon a change in the input program initially
only the directly affected execution contexts can be (or should be) reanalyzed,
the monotonicity of the global store complicates matters in terms of precision.
The modular nature of Modf and the fact that the approach tracks interference
between modules by design should facilitate its parallelization.
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Abstract. Our aim is to statically verify that in a given reactive pro-
gram, the length of collection variables does not grow beyond a given
bound. We propose a scalable type-based technique that checks that
each collection variable has a given refinement type that specifies con-
straints about its length. A novel feature of our refinement types is that
the refinements can refer to AST counters that track how many times
an AST node has been executed. This feature enables type refinements
to track limited flow-sensitive information. We generate verification con-
ditions that ensure that the AST counters are used consistently, and
that the types imply the given bound. The verification conditions are
discharged by an off-the-shelf SMT solver. Experimental results demon-
strate that our technique is scalable, and effective at verifying reactive
programs with respect to requirements on length of collections.

1 Introduction

Collections are widely used abstract data types in programs. Collections, by
providing a layer of abstraction, allow a programmer to flexibly choose different
implementations leading to better modularity essential for developing good qual-
ity software. Since collections are extensively used, related performance issues
have attracted considerable attention [20,29,30]. Besides performance issues,
improper usage of collections may lead to security vulnerabilities such as denial-
of-service (DoS) attacks. The performance and security issues are more pro-
nounced in reactive programs such as service threads in operating systems or
web applications. An important category of DoS vulnerabilities is out-of-memory
error caused by collections with excessively large lengths.

Problem. The goal of this paper is to verify bounds on collection lengths using
a scalable type-directed approach. Given constraints on inputs, our technique
statically verifies at any point of execution total length of collection variables
is less than a given bound. Verifying bound on collection lengths for reactive
programs brings the following challenges:

Non-termination. Reactive programs do not terminate. The most common
method for resource bound analysis is based on finding loop bounds [8,14,15,
17,24,31]. This method therefore does not directly apply to reactive programs.
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Scalability. We need a scalable and modular solution, because real world reac-
tive programs such as web servers are large (e.g. up to 30kloc).

Non-inductiveness of invariants. The necessary safety invariants might be
non-inductive. For instance, collection lengths of a program may be bounded,
but this is at first glance not provable by checking each statement in isolation,
because a particular statement might simply add an element to a collection,
thus breaking an invariant that is naively constructed to help verifying bound-
edness.

Approach. We now describe our approach, with a focus on how the three chal-
lenges are addressed. We develop a refinement type system, where the user is
able to specify bounds on collection lengths, as well as an overall guarantee on
the total length of all collections. These bounds might be symbolic, referring to
for instance to bounds on lengths of input collections. Our tool Quantm then
type checks the program, and proves (or refutes) the overall guarantee.

First, to address the challenges of non-termination, our system relies purely
on safety properties, never requiring a liveness property such as termination. We
also do not require finding loop bounds.

Second, to address the challenge of scalability, we use type-based reason-
ing only. This entails checking at most one invariant per collection, as opposed
to one invariant per each code location (as the approaches based on abstract
interpretation [15,17] might need).

Third, to address the challenge of non-inductiveness of invariants, we allow
the refinement refer to AST counters that count how many times an Abstract
Syntax Tree (AST) node has been executed. For instance, consider the fragment:

while (true) { if (*) { C: s.add(r1);...;D: t.add(r2); } }

and suppose we are interested in the invariant |len(s) − len(t)| ≤ 1, that is,
the difference between lengths of the two collections s and t is at most 1. The
invariant is not inductive, the statement s.add(r) breaks it. However, let C be
a counter associated with the AST node of s.add(r1), and D with t.add(r2).
The invariant len(s) + D = len(t) + C holds. We can then add a counter
axiom (D + 1 ≡ C) ∨ (C ≡ D) as the two statements are inside a same basic
block. Counter axioms are the place where the limited amount of flow-sensitive
information that our system uses is captured. The inductive invariant and the
axiom together imply the property we are interested in: | len(s) − len(t) |≤ 1.

Contributions. The main contributions of this paper are

– Refinement types for collection lengths. We propose to encode the total
length of collection variables as safety properties of all reachable program
states, as opposed to relying on analyzing time bounds. We develop a refine-
ment type system where the refinements allow reasoning about collection
lengths.

– AST counters for inductive invariants. A novel feature of our refinement
types is that the refinements can refer to AST counters that track how many
times an AST node has been executed. This feature enables type refinements
to track limited flow-sensitive information.
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– Empirical evaluation. Experimental results show that our approach scales
to programs up to 30kloc (180kloc in total), within 52 s of analysis time per
benchmark. Moreover, we discovered a Denial-of-Service vulnerability in one
of our benchmarks because of correctly not being able to verify boundedness.

2 Overview

We demonstrate our approach for verifying the total collection lengths for reac-
tive programs on a motivating example in Fig. 1.

2.1 Using Quantm

Overall, a user interacts with our tool Quantm as follows. First, they write
a driver that encodes a particular usage pattern that they are interested in.
Then they specify invariants as type annotations. After these two steps, our
type system will take care of the rest by automatically checking if the invariant
relations are valid. If the invariants are indeed valid, Quantm will automatically
discharge a query to an off-the-shelf SMT solver, returning the result “verified”
or “not verified”. The “verified” answer is conclusive, as our method is sound.
The “not verified” is inconclusive: either the bound does not hold, or the user
has not provided sufficient invariants to answer the verification problem.

Example (Blogging Server). We simplified code from a Java web server based
on the Spring framework that allows users to upload a blog post, delete a blog
post and render a list of posts as an html page. Callback methods postNewBlog,
deleteBlog, and showBlogs implement these functionalities. Method driver
encodes an infinite input sequence that a user of our tool is interested in: it first
reads a blog from input and appends it to the database, then renders the blog as
an HTML page, and finally removes the blog from database. Our goal is to verify
the boundedness of total collection lengths in every method separately, when
input variables satisfy given constraints (e.g., inputs can have upper bounds on
their length). In particular, callback methods postNewBlog and deleteBlog do
not declare collection-typed variables and therefore they are vacuously bounded.
More interestingly, we would like to verify the following bounding predicates
denoted by @Guarantee in Fig. 1.

– The total length of collection variables in method driver is less than 2, i.e.
len(blogDB) < 2

– Total length of collection variables in method showBlogs is less than or equal
to length of input variable blogDB, i.e. len(toShow) ≤ len(blogDB) + 2

We emphasize that our approach is able to verify above bounds when there
exist neither time bounds nor input bounds, because input variables input and
blogDB have no constraint at all, i.e. a true constraint.

The notation @Inv in Fig. 1 denotes a refinement type. The content inside the
brackets following @Inv is the refinement of that particular type. For example,
len(blogDB) = c8 − c10 is a type refinement on variable blogDB.
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1 void driver(@Inv("true") List <String > input) {
2 @Guarantee("len(blogDB) <2")
3 @Inv("len(blogDB)=c8 -c10") List <String > blogDB = new List <String >();
4 @Inv("iterOf(input)") Iterator <String > it = input.iterator ();
5 String blog;
6 while (*) {
7 blog = it.next();
8 c8: postNewBlog(blog , blogDB);
9 c9: showBlog(blogDB);

10 c10: deleteBlog(blogDB);
11 } }
12 @Summary{"len(blogDB ’)=len(blogDB)+1"}
13 void postNewBlog(String blog , List <String > blogDB) {// callback: add post
14 blogDB.add(blog);
15 }
16 @Summary{"len(blogDB ’)=len(blogDB)-1"}
17 void deleteBlog(List <String > blogDB) { // callback: delete last post
18 blogDB.remove ();
19 }
20 @Summary{"len(blogDB ’)=len(blogDB)"}
21 void showBlogs(@Inv("true") List <String > blogDB) {
22 @Guarantee("len(toShow) <=len(blogDB)+2")
23 // callback: display blog contents
24 @Inv("len(toShow)-idx(it)=c28+c30+c33 -c32") List <String > toShow = new

List <String >();
25 @Inv("iterOf(blogDB)")Iterator <String > it = blogDB.iterator ();
26 String blog;
27 blog = "Welcome !\n";
28 c28: toShow.add(b);
29 blog = "Blog begins :\n";
30 c30: toShow.add(b);
31 while (*) {
32 c32: blog = it.next();
33 c33: toShow.add(blog);
34 }
35 // render toShow as an HTML page
36 }

Fig. 1. Motivating example: a simplified version of a blogging server.

Specifying Invariants with AST Counters. We now explain the role of
the AST counters in the invariant. For example, if we look at the inner loop
at line 31–34 in Fig. 1, the property we most likely need for list toShow is
len(toShow) ≤ idx(it)+2, where idx(it) represents the number of elements that
has been visited using iterator it. However, this property is actually not inductive
because it breaks after line 28(as well as line 30), as len(toShow) is incremented
by 1 but nothing else is updated in the invariant. However, we can add AST coun-
ters to the invariant, and obtain len(toShow)−idx(it) = c28+c30+c33− c32.
We thus obtain an inductive invariant that is then used as the type of toShow.

The purpose of these counters is to enable writing expressive invariants.
The interesting invariants usually do not depend on the value of the counters
(the value grows without bound for nonterminating programs), just on relations
between counters of different AST nodes. These could be seen on the example
in the previous section.

As another example, consider how we reason about the non-terminating
loop at line 6–11, we first summarize the effects of callback postNewBlog and
deleteBlog on any collection variable passed in as argument(s), which is to
add 1 element to or remove 1 element from list blogDB. Method summaries are
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automatically applied at invocation sites. Next, since we have AST counters,
we are now able to easily define the length of variable blogDB as an inductive
invariant len(blogDB) = c8−c10 (shown at line 2) that hold at before and after
every execution step. Note that this invariant serves as a safety property of all
program states under the existence of non-terminating executing traces, which
is the root cause of the mainstream approach in resource bound analysis to fail
under the scenario of reactive programs.

2.2 Inside Quantm

Typechecking. Our type system is based on Liquid types [22], where the refine-
ments can express facts about collections and AST counters. Our type checking
rules are standard, with added rules that capture the semantics of collections
(lists) and counters.
Constraints on AST Counters. Constraints on AST counters are generated
from the Abstract Syntax Tree structure of the program. For instance, AST
counter c32 is always either greater than (by 1) AST counter c33 (after executing
line 32) or equal to it (after executing line 33) at any time during an execution.
We formalize this and other relations on counters in a set of axioms.
Verification Condition Generation. We generate verification conditions that
ensure that the AST counters are used consistently, and that the types imply
the given bound. For instance, now that we have invariants describing lengths
of list blogDB and toShow in the method showBlogs, we can plug in counter
axioms and check the required implications. For instance, the type of toShow is
len(toShow) − idx(it) = c28 + c30 + c33 − c32. From the counter axioms, we
have that c28 ≤ 1 ∧ c30 ≤ 1 (as the corresponding statements are executed once
at most) and (c32 ≡ c33+1)∨ (c32 ≡ c33) (as the corresponding statements are
sequentially executed). We then use an off-the-shelf SMT solver to check that
the inductive invariant and the counter axioms imply the guarantee that the
user specified: len(toShow) ≤ len(blogDB) + 2.

3 Quantm Type System

In this section, we present the core calculus of our target program along with
the types and refinements, and operational semantics. As usual, we write B and
Z for the Boolean and integer domains. We write v to denote a list of syntactic
elements separated either by comma or semicolon: v1, v2, . . . , vk or v1; v2; . . . ; vk.
We also write (v :: vk+1) for the list value (v1, v2, . . . , vk, vk+1). We model other
types of collection data types (such as sets and maps) as lists because of being
only interested in sizes of collection-typed variables.

3.1 Syntax and Refinement Types

Core Calculus. Our core calculus focuses on methods manipulating collections
as shown in Fig. 2a. A method M is composed of a sequence of input-variable dec-
larations τ u, a sequence of initialized local-variables declarations τ x = e, and a
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Method definition M ::= τ u τ x = e s
Compound statements s ::= sB | {s} | if(e) then s1 else s2 | while(e) s
Basic statements sB ::= x = e | x = z.next() | y.rmv() | y.add(x) | skip
Expressions e ::= x ∈ X | u ∈ U | n ∈ Z | b ∈ B | y.iter()

| new List[τB] | e1 ⊕ e2 | e1 �� e2 | e1 ∨ e2 | ¬e
Variables u, x, y, z ::= x ∈ X | u ∈ U | y, z ∈ X ∪ U

(a) The core calculus.

Base types τB ::= Int | Bool | Iter[τB] | List[τB]
Refinement types τ ::= τB� r
Refinements r ::= b ∈ B | xbool | iterOf(xlist) | eτ

1 �� eτ
2 | r1 ∨ r2 | ¬r

Refinement expressions eτ ::= n ∈ Z | νint | xint | len(eτ
list) | idx(eτ

iter) | eτ
1 ⊕ eτ

2 | c ∈ C
List expressions eτ

list ::= νlist | xlist

Iterator expressions eτ
iter ::= νiter | xiter

Typing context Γ ::= · | Γ, x : τ

(b) Types and refinements.

Fig. 2. (a) The core calculus for methods manipulating collections. The operator ⊕
stands for arithmetic operators, while �� stands for comparison operators. (b) The
types and corresponding refinements. The subscripts in variables xbool, xint, xlist, xiter ∈
X ∪ U are used to emphasize their types, ⊕ is arithmetic operator restricted to linear
arithmetic, and �� is a comparison operator.

method body s that is composed of basic and compound statements. We denote
the set of input variables and local variables by U and X, respectively. The basic
statements x = z.next(), y.rmv(), and y.add(x) provide standard operations on
iterator variable z and collection variable y. In addition, we have standard assign-
ment statement x = e, where e is an expression without side effects.

Refinement Type System. Our type system, shown in Fig. 2b, permits type
refinements over base types integer Int, boolean Bool, iterator Iter and list
List. A refinement type [[τB� r]] further qualifies variables by providing an asser-
tion over the values of the variable using a predicate r. A unique feature of our
refinement predicates is that, the predicates can refer to AST counters c ∈ C to
track limited flow-sensitive information. Moreover, predicate can refer to the vari-
able on which the refinement is expressed using the self-reference variable ν. A
refinement can be expressed as an arbitrary Boolean combination of Boolean val-
ues b, Boolean-typed program variables xbool, predicates iterOf(xlist) (express-
ing that the variable is an iterator of a list variable xlist), and comparisons
between refinement expressions. A refinement expression eτ is integer-typed and
can be composed of integer values n, integer-typed variable xint, length expres-
sions len(eτ

list) (representing the length of list expression eτ
list), index expressions

idx(eτ
iter) (representing the current index of an iterator expression eτ

iter), AST
counter variables, and arithmetic operations over other refinement expressions.
An AST counter variable c ∈ C is associated with an AST node. Intuitively, it
counts the number of times an AST node has been executed. List expressions
eτ
list could be νlist (which refers to the refined variable itself) or a list-typed
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program variable xlist. Explanation for the iterator expression eτ
iter is analogous.

Typing context Γ is a mapping from variables to their types. Overall, our refine-
ment language is in a decidable logic fragment EUFLIA (Equality, Uninterpreted
Functions and LInear Arithmetic) where len(eτ

list), idx(e
τ
iter) and iterOf(eτ

iter)
are treated as uninterpreted functions.

3.2 Operational Semantics

We define small-step operational semantics of our core calculus as well as seman-
tics of type refinements in Figs. 3 and 4. An environment (or equivalently, a state)
η is a mapping from program variables to values, which intuitively serves as a
stack activation record. The domain of variable values include integers, booleans,
iterators, and list values. The calculus also supports lists of lists. We denote the
initial environment as ηinit. Environment ηinit initializes counters as zero, input
variables as concrete input values, and local variables as their initial values spec-
ified in the method.

Figure 3 defines the small-step operational semantics for our core calculus.
We use the following three judgment forms:

1. Judgment form 〈η, e〉 � e′ states that expression e is evaluated to expression
e′ in one evaluation step under environment η,

2. Judgment form 〈η, s〉 � 〈η′, s′〉 states that after one evaluation step of exe-
cuting statement s under environment η, the environment changes to η′ and
the next statement to be evaluated is s′, and

3. Judgment form 〈η, s〉 � η′ expresses the AST counter state transitions by
modifying η to increment the counter value associated with statement s.

Compared with standard operational semantics (IMP language [28]), there are
two main differences. The first difference is that we introduce collections into our
core calculus. The semantics of collection operations is straightforward as shown
in Fig. 3. The other significant difference is due to the use of AST counters in
refinement types. Most of the differences from non-standard semantics is related
to handling of these counters. The function κ(s,M) returns the unique counter c
associated with the statement s in the method M . Notice that the intermediate
derivations of the rules may produce auxiliary statements that are not present in
the original program. Since the refinement types may not refer to these counters,
we ignore counter values for these auxiliary statements by associating them
with a same special counter ⊥, whose value we do not care about. E.g., The
conclusion of the rule E-IfExpr introduces a new ⊥if statement along with
original statements s1 and s2, associating this new if-else statement with counter
⊥. Rules E-Counter and E-Counter-Aux are mainly concerned with AST
counter bookkeeping. The explanation of other rules is straightforward.

Types and Refinements. Figure 4 defines semantics of types and refinements.
Judgment form v �η τ states that the value v conforms to a type τ under envi-
ronment η. The semantics of the base-types η[x] �η τB is straightforward and
hence omitted. The judgment form �η x : r states that variable x to which
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Fig. 3. Environment, values, and small-step operational semantics.
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Fig. 4. Refinement semantics.

expression ν in refinement r refers, conforms to the refinement under the envi-
ronment η. We exploit helper functions eval(x : eτ )η and subst(x : eτ )η in
refinement semantics defined in the following fashion:

– Function eval(x : eτ )η takes a refinement expression eτ , a variable x (to
which self-reference ν in eτ refers), and an environment η as inputs and then
returns the evaluation of refinement expression.

– Function subst(x : eτ )η takes as inputs refinement expression eτ , variable x
(to which expression ν refers), and environment η, and returns an expression
that is the result of first substituting self-reference ν with variable x and then
substituting every len(xlist) in eτ with length of list-typed variable xlist, as
well as every idx(yiter) with index value of iterator-typed variable yiter.

We write �∗ for the transitive closure of �. Most of the refinement semantics
are straightforward. In particular, the semantics of iterOf(y) is that variable x,
to which ν refers, is an iterator for list-typed variable y.

3.3 Well-Typed Methods

We say that an environment η is reachable in a method M if 〈ηinit,M〉 �∗ 〈η, s〉.
We write ReachEnv(M) for the set of all reachable environments of M . We say
that an environment η is well-typed in M if all of the variables conform to their
types, i.e. for all x ∈ X ∪ U with type [[τB� r]], we have that η[x] �η [[τB� r]]. We
write WellTyped(M) for the set of all well-typed environments in M . We say that
a method M is well-typed if all of the reachable states of M are well-typed, i.e.
ReachEnv(M) ⊆ WellTyped(M).

4 Collection Bound Verification Problem

Given a method M , our goal is to verify that if the inputs to the method satisfy a
given assumption φA, then the method M guarantees that the collection lengths
remain bounded. The guarantee requirements φG can be expressed as a predicate
constructed using the refinement language introduced in Fig. 2b Observe that,
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since this verification condition is not attached to any particular variable, it is
free from predicates iterOf(xlist) and self-reference ν. We further assume that
the assumptions on the input variables are expressed using type refinements on
the input variables. Formally, we are interested in the following problem:

Definition 1 (Collection Bound Verification Problem). Given a method
M along with its input variables with types and refinements ui : τi, and a guar-
antee requirement φG, verify that every reachable environment satisfies φG, i.e.
for all η ∈ ReachEnv(M) we have that �η φG.

We present a type-directed approach to solve this problem. We first propose
type-checking rules to verify if the method is well-typed. Then, we discuss how
to automatically derive AST counter relation axioms in Sect. 4.2. Finally, we
reduce solving the verification problem into issuing SMT queries, in Sect. 4.3,
using as constraints the type refinements verified in Sect. 4.1 as well as AST
counter relation axioms extracted from Sect. 4.2.

4.1 Type Checking

Our key analysis algorithm is encoded into refinement type checking rules shown
in Fig. 5. Subtyping between two refinement types is defined as the implication
relation between two refinements using the following rule:

τB1<:τB2 r1 =⇒ r2

[[τB1� r1]]<:[[τB2� r2]]
<:-RefinementTyp

Figure 5 defines type-checking rules for refinement types, while the rules for
base types are standard and thus presented in companion paper [27]. Notation
τ [eτ ′/eτ ] denotes substituting expression eτ with eτ ′ in the refinement of type
τ .

The Judgment form Γ  s states that the statement s is successfully type
checked under typing context Γ if premises are satisfied. We case split on the
right hand side of assignment statement x = e into: Rule T-AssignIter,
T-Assign, T-AssignList, and T-AssignNewList. Intuitively, type check-
ing rules check that after applying each corresponding evaluation rule, type
refinements should still be valid. More specifically, in each type checking rule
we check for all refinements, if its validity before applying a corresponding
evaluation rule implies its validity afterwards. For example, after applying
Rule E-Add, the environment has the following updates: length of collec-
tion variable y is incremented by 1 and the associated AST counter’s value
is incremented by 1. Therefore Rule T-Add checks the implication of valid-
ity between a type τw[w/ν] and the result after applying to it a substitu-
tion (τw[w/ν])[(len(y)+1)/len(y), (c+1)/c], which precisely expresses the actual
value of type τw[w/ν] after applying Rule E-Add in terms of its value before-
hand. Rule T-Remove is dual to Rule T-Add. In Rule T-AssignIter, in addi-
tion to subtyping checking, we also check for variable z if its refinement will still
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hold true after substituting iterOf(∗) with iterOf(y). The intuition behind is
that after evaluating statement z = y.iter(), variable z will become an iterator
for variable y, no matter what list it was an iterato for. For a reader interested in
why we must treat refinement iterOf(x) differently, the root cause here is that
unlike idx(z) specifying a property of one variable, iterOf(x) actually specifies
a relation between two variables. Rule T-Assign checks if refinements will still
hold true when x becomes e, no matter if variable x is integer-typed, boolean-
typed or iterator-typed (where idx(x) becomes idx(e)). Rule T-AssignList
and Rule T-Assign are similar, except that in Rule T-AssignList we check
if refinements will still hold true when len(x) becomes len(e). We split Rule
T-AssignList from Rule T-Assign, avoiding simply checking if x becoming e
will break any refinement, because assignment x = e does not make refinement
iterOf(x) become iterOf(e). In Rule T-Next, besides checking the validity
of implication, we also check if every type refinement is logically equivalent to
itself being existentially quantified by variable x. Intuitively, this ensures soundly
that the assignment in statement x = z.next() will not break any refinement,
since there is no constraint on list elements retrieved from list variable z by
invoking z.next(). Just like Rule E-Counter interleaves with every evaluation
rule in Fig. 3, Rule T-Counter serves as a premise for every type checking
rule of compound statements. For every type checking rule of basic statements,
Rule T-Counter is embedded into subtyping checking. Rule T-Decl checks
that all local variables’ type refinements are valid, given their initial values. We
also define a helper function 〈〈s1〉〉 ⊆ 〈〈s2〉〉 that is used in Rule T-Decl, which
describes AST sub-node relations between AST node s2 and its sub-node s1.

SubNode-Block
s = s1; . . . ; sn

〈〈si〉〉 ⊆ 〈〈{s}〉〉, for all i ∈ {1, · · · , n}

SubNode-While

〈〈s〉〉 ⊆ 〈〈while(e) s〉〉

SubNode-If

〈〈si〉〉 ⊆ 〈〈if(e) then s1 else s2〉〉, for i ∈ {1, 2}

4.2 AST Counter Axioms

We next present the AST counter relation axioms. The goal of deriving counter
relation axioms is to improve verification precision by having additional con-
straints when encoding the problem statement into SMT queries. We let counter
relations precisely correspond to abstract syntax tree structure of a program.
Respecting semantics of counters, these counters keep record of the number of
times a particular AST node has been executed at runtime.

The function Δ(s) takes as input a statement s and statically outputs a
predicate about the relations on all AST sub nodes of statement s, as well as
counter relation axioms derived from all AST sub nodes themselves. For exam-
ple, Rule R-Block extracts counter relations from a block of statements {s}.
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For 1 ≤ j ≤ n − 1, in the constraint dj the counter ci associated with state-
ment si is either: (a) equal to counter ci+1 associated with statement si+1, when
statement si and si+1 have both been executed; or (b) the counter ci is equal
to ci+1+1, when statement si has been executed, but not statement si+1. Intu-
itively, constraint dj describes a set of valid counter relations at one program
state, which is immediately after executing statement sj but before executing
statement sj+1. Constraint dn denotes the counter relations right after finishing
executing block statement {s}. Additionally, the value of counter c0 (associated
with block statement {s} itself) is always equivalent to the value of counter
c1 (associated with the first statement s1 in the block), respecting operational
semantics of {s} defined in Rule E-Block of Fig. 3. Furthermore, the constraints
Ci, for 1 ≤ i ≤ n, are recursively generated from every statement si. Intuitively,
these relations describes counter relations when flow-sensitively executing the
code block {s} (Fig. 6).

As another example, Rule R-While extracts counter relations from a while
loop. Note that we cannot conclude any relations between counter cb (associated
with loop body s) and counter c0 (associated with loop while(e) s), because
although loop body s may be executed for a positive number times or may not
be executed, loop while(e) s will always be executed for one more time whenever
executing this AST node, according to Rule E-While in Fig. 3. Other rules are
straightforward. Proof of soundness for above counter relations is straightforward
and hence omitted.

4.3 Collection Bound Verification

We formalize our approach that solves the collection bound verification problem
for method M by constructing an SMT query. We first obtain constraints from
type refinements and AST counter axioms, and then generate the following SMT
query that searches for counterexamples for the guarantee φG :

Ψast ∧
∧

〈〈τ u〉〉⊆〈〈M〉〉
Φ(u : τ) ∧

∧

〈〈τ x〉〉⊆〈〈M〉〉
Φ(x : τ) ∧ ¬φG ,

where Ψast are the constraints generated from functions Δ(s) defined in Sect. 4.2.
The helper function Φ(x : τ), defined in Fig. 7 takes as input a variable x together
with its type τ , and returns refinement constraints from type τ . Intuitively,
constraint Ψast soundly constrains the possible values that AST counters could
take when flow-sensitively executing a program. Constraints Φ(u : τ) encode
assumptions on the inputs to the method, and constraints Φ(x : τ) soundly
constrain the values that local variables could take. Together they constitute a
constraint on all reachable program states (which is proven in Sect. 5). In other
words, the conjunction of constraints defines a set of program states that is a
sound over-approximation of every actual reachable program states of method
M . Therefore, the answer to the query provides a sound solution to the collection
bound verification problem.
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Fig. 5. Type checking rules
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R-Block

s = s1; . . . ; sn Δ(si) = Ci and κ(si, M) = ci, for all i ∈ {1, · · · , n}

dj = (
j∧

i=1

ci ≡ ci−1 ∧ cj+1+1 ≡ cj), for all j ∈ {1, · · · , n−1}
κ({s}, M) = c0 dn = (c0 ≡ · · · ≡ cn)

Δ({s}) =
n∧

i=1

Ci ∧
n∨

i=1

di

R-While

Δ(s) = C κ(while(e) s, M) = c0 κ(s, M) = cb

Δ(while(e) s) = C

R-Basic

Δ(sB) = true

R-If

Δ(si) = Ci and κ(si, M) = ci, for i ∈ {1, 2} κ(if(e) then s1 else s2, M) = c0

Δ(if(e) then s1 else s2) = (c0 ≡ c1 + c2) ∧ C1 ∧ C2

Fig. 6. AST counter axioms

Fig. 7. The helper function Φ for extracting refinement constraints.

5 Soundness

In this section, we present theorems on refinement preservation and refinement
progress. Intuitively, refinement preservation guarantees that if a program passes
refinement type checking (Sect. 4.1), then it will always end up in a well-typed
environment (Sect. 3.3), under which we perform bound verification (Sect. 4.3).
Refinement progress states that a program that passes type checking will not
get stuck. Refinement preservation is the core theorem, we prove it below.

Theorem 1 (Refinement preservation). If we have that η � Γ , Γ  s, and
〈η, s〉 � 〈η′, s′〉, then η′ � Γ and Γ  s′.

Proof. Given η � Γ and Γ  s and 〈η, s〉 � 〈η′, s′〉, we focus on proving η′ � Γ ,
because the validity of Γ  s′ is directly implied from the premises in Fig. 5. The
goal is to prove for every variable xi with type τi in Dom(η), we have η′[xi] �η′

τi[xi/ν].

– Rule E-Add: We need to prove that if η � Γ and 〈η, y.add(x)〉 � 〈η′, skip〉,
then η′ � Γ . From the Rule T-Add, we have



Type-Directed Bounding of Collections 289

(Fact 1): η � Γ implies that η � Γ [(len(y)+1)/len(y), (c+1)/c],
where we define Γ [(len(y)+1)/len(y), (c+1)/c] as performing substitution
[(len(y)+1)/len(y), (c+1)/c] for all types in typing context Γ .
From the Rule E-Add, we can infer that if 〈η, y.add(x)〉 � 〈η′, skip〉, then
η′(z) = η(z) for variables other than c and y. Furthermore, η′[c] = η[c] + 1
an len(η′[y]) = len(η[y]) + 1. Based on these properties of η′, we prove
by a simple induction on the structure of refinements that (Fact 2): if
η � Γ [(len(y)+1)/len(y), (c+1)/c] then η′  Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

The other cases are similar or simpler, and can be found in the companion
paper [27]. ��

Corollary 1 states that all reachable program states are well-typed (Sect. 3.3).
The proof immediately follows from Theorem 1.
Corollary 1. If Γ  M and η ∈ ReachEnv(M) then η � Γ .

Theorem 2 (Refinement progress). If η � Γ and Γ  s, then either state-
ment s is skip, or there exist η′ and s′ such that 〈η, s〉 � 〈η′, s′〉

The proof of Theorem2 is standard and hence omitted.

6 Experiment

We implemented our tool Quantm in Scala using the Checker Framework [12,
21], Microsoft Z3 [11] and Scala SMT-LIB [2]. Quantm is implemented as a
Java annotation processor, relying on the Checker Framework to extract type
annotations and perform type checking. Microsoft Z3 served as an off-the-shelf
SMT solver. We also used Scala SMT-LIB for parsing string-typed annotations.
We chose several web applications as benchmarks (180k lines of code in total),
each of which supports various functionalities. Benchmarks were collected from
different sources, including GitHub (jforum3 with 218 stars and SpringPetClinic
with 2325 stars), Google Code Archive (jRecruiter1), and DARPA STAC project
[1] (TextCrunchr, Braidit, WithMi, Calculator, Battleboats, Image processor,
Smartmail, Powerbroker, and Snapbuddy). To set up the experiments, we created
drivers invoking callback methods in patterns that imitate standard usage. To
support the Object-Oriented feature (which is orthogonal to the problem and
approach in the paper), we not only annotate collection-typed local variables,
but also annotate collection-typed object fields that are reachable from local
variables. Then we gave bounds to each method as tight as possible and used
Microsoft Z3 to verify the bounds.

6.1 Research Questions

We evaluated our technique by answering the following research questions

RQ1. Bound verification. How effective is AST Counter Instrumentation?
That is, what percentage of methods and collection variables were verified
w.r.t. their specifications.

RQ2. Analysis speed. How fast/scalable is our verification technique?
1 https://code.google.com/archive/p/jrecruiter/.

https://code.google.com/archive/p/jrecruiter/
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Table 1. Benchmark results. “Lines of code” counts the total lines of code in projects.
“Verified methods” gives number of verified methods and unverified methods. Number
of verified methods is split into non-vacuously and vacuously verified, where being vac-
uously verified means not declaring any local collection variables. “Verified/Unverified
collections” gives the number of collection variables that are verified versus unverified.
“Callbacks” gives the number of invoked callbacks in drivers. “Method summaries”
gives the number of method summaries supporting verifying collection variables that
are inter-procedurally mutated. “Analysis time” indicates the speed of our analysis
on each benchmark. Experiments were conducted on a 4-core 2.9 GHz Intel Core i7
MacBook with 16 GB of RAM running OS X 10.13.6.

Benchmarks Lines of

code

Verified/Unverified

methods

Verified/Unverified

collections

Call-

backs

Summaries Analysis

time (s)

TextCrunchr 2, 150 (13+190)/5 23/5 4 9 14.7

Braidit 20, 835 (8+2114)/0 50/0 8 8 84.2

jforum3 22, 813 (35+1675)/8 54/10 24 27 69.8

jRecruiter 13, 936 (29+933)/5 40/4 10 7 45.1

SpringPetClinic 1, 429 (6+98)/0 11/1 9 12 15.8

WithMi 24, 927 (30+2515)/5 35/2 5 4 82.0

Calculator 5, 378 (20+316)/2 25/6 5 3 18.2

Battleboats 21, 525 (8+2171)/6 12/2 5 2 75.6

Image processor 1, 365 (4+110)/0 5/0 0 0 7.8

Smartmail 1, 977 (7+137)/4 11/3 0 0 10.9

Powerbroker 29, 374 (22+3015)/8 27/3 3 8 91.6

Snapbuddy 34, 797 (57+2940)/8 88/9 5 2 107.0

Total 180, 506 (239+16214)/51 381/45 78 82 622.6

RQ1: Bound Verification. We verified 16453 methods in total, 239 of which
are non-vacuously verified (who declares at least one collection variable) and the
rest are vacuously verified (who declares no collection variable). If not considering
vacuously verified methods, then we verified 239 out of 290 (82.4%) methods. In
order to verify method boundedness, we also wrote and verified global invariants
on 381 collection variables out of a total of 426 (89.4%), as well as provided 82
method summaries. We invoked 78 callbacks from drivers. We believe this result
demonstrates that our technique is effective at verifying method and variable spec-
ifications. Our technique works very well when there is no statement reading a list-
typed element from a collection, which if it happens, constitutes the vast majority
of the causes of the 51 unverified methods and 45 unverified collections, because
to ensure soundness we had to enforce no constraint on these list-typed variables
read from collections, leading to unboundedness. We currently do not support this
feature in the type system and we will leave it for future work. Note that in the
table we did not include unverified methods and variables caused by orthogonal
problems such as Java features (e.g. dynamic dispatch) discussed in Sect. 6.2.

We attribute the effectiveness of AST Counter Instrumentationto the scal-
able type checking approach and our AST counter-base approach. Also note
that without AST Counter Instrumentation, it would have not been possible to
flow-insensitively verify the desired properties. The detailed results from each
benchmark are in Table 1.
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Alias. Note that the operational semantics defined in Fig. 3 does not support
aliasing among collection-typed variables. This is because aliasing is orthogonal
to the problem and approach in the paper. To demonstrate that this is indeed the
case, we extend our framework with aliasing, which we present in the companion
paper [27]. The implementation uses the framework from the appendix.

Case Studies. We present an interesting loop that we found and simplified from
the jforum3 benchmark. In the while loop at line 4–17, line 5 reads in a String
with readLine and line 14 adds an element to list comments. Although the while
loop may not terminate, the inductive invariant len(comments)−idx(reader) =
c5–c14 is preserved before and every execution step. Here we consider variable
reader as an iterator, respecting the semantics of the readLine API.
1 @Inv("len(comments)-idx(reader)=c5-c14") List <String > comments = new

ArrayList <>();
2 // ...
3 String s;
4 while (true) {
5 c5: s = reader.readLine ();
6 if (s != null) {
7 s = s.trim();
8 }
9 if (s == null || s.length() < 1) {

10 continue;
11 }
12 if (s.charAt (0) == ’#’) { // comment
13 if (collectComments && s.length() > 1) {
14 c14: comments.add(s.substring (1));
15 }
16 continue;
17 }

We also discovered a Denial-of-Service bug from benchmark TextCrunchr
that is caused by a collection variable with an excessively large length.
TextCrunchr is a text analysis program that is able to perform some useful
analysis (word frequency, word length, etc.), as well as process plain text files
and compressed files, which it will uncompress to analyze the contents. The vul-
nerability is in the decompressing functionality where it uses a collection variable
queue to store files to be decompressed. Our tool Quantm correctly did not ver-
ify the boundedness of variable queue and we believe this leads to TextCrunchr’s
being vulnerable to a Zip bomb attack, because variable queue may store an
exponential number of files that is caused by a carefully crafted zip file, which
contains other carefully crafted zip files inside, thus leading to an exponential
number of files to be stored in variable queue and to be decompressed.

RQ2: Analysis Speed. On average, it takes 51.9 s to analyze a 15k lines of
code benchmark program (including vacuously verified methods) with Quantm.
The detailed results from each benchmark are in Table 1. Given the lines of code
of our benchmarks, we believe this result indicates that the speed of our analysis
benefits from being type-based and flow-insensitive, exhibiting the potential of
scaling to even larger programs.
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6.2 Limitations, Future Work and Discussion

In experiments, we encountered collection variables that could not be annotated,
leaving Quantm unable to verify boundedness of methods that declare them.
We next categorize the reasons and discuss future work for improvements:

– To ensure soundness, we enforce no constraint on a collection-typed variable’s
length (i.e. allow it to be infinitely long), when it is the result of reading a
list-typed element from a collection. The reason is that the type system does
not yet support annotating lengths of inner lists. This extension of our type
system is left for future work.

– Not discovering the right global invariants. In the future we plan to auto-
mate the invariant discovery process with abstract interpretation, which will
hopefully help uncover more invariants.

– Imprecision and “soundiness” caused by Java features such as aliasing,
dynamic dispatch, inner class, class inheritance and multi-threading. We
regard these as orthogonal problems to our problem statement and we could
extend our type system to support them.

Integration with Building Tools. To evaluate how user-friendly Quantm is for a
developer, we also evaluated how Quantm integrates with open source reposito-
ries (i.e. jforum3, jRecruiter and SpringPetClinic) that use popular building tools
(e.g. Maven). We discovered that the configuration is reasonably easy: Develop-
ers only need to add several Maven dependencies (including Quantm, Checker
framework, Scala library, Scala SMT-LIB and Microsoft Z3’s Java bindings) into
pom.xml and specify Quantm as an additional annotation processor. After that,
a developer could immediately start using our tool!

Annotation Workflow. The typical annotation workflow of a user is to first
configure Quantm as an annotation processor, and then compile the tar-
get code/project without any annotations. Note that errors and warnings are
expected if Quantm cannot prove boundedness of a procedure, which is intrin-
sically caused by insufficient annotations (i.e. type refinements). In the end, a
user will fix the errors and warnings by annotating collection variables. In the
case of a method returning a locally allocated collection variable, we inlined
the method into its caller to ensure soundness. Additionally, to perform inter-
procedural analysis, we introduce method summaries to describe changes in
lengths of collection-typed variables caused by method invocation. Method sum-
maries are expressed in the refinement language defined in Fig. 2b, together with
variables in their primed version, which denotes the values after method invoca-
tion. Method summaries are automatically applied when type checking a method
invocation statement. The annotation burden for method summaries was light
(6.8 methods on average) in the experiments.

7 Related Works

Type Systems for Resource Analysis. Type-based approaches have been
proposed for resource analysis [9,25,26]. These works verify size relations
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between input and output list variables as a function specification. Addition-
ally, there is a line of works that combines a type-based approach with the
idea of amortized analysis [18,19] to analyze resource usage. These approaches
are not able to analyze programs with mutation and it is also unclear how to
adapt them into a setting with mutation. The reason is the need for the analysis
to be flow-sensitive in the presence of mutation, because mutation causes pro-
gram variables’ sizes to change. In contrast, we emphasize that it is our novelty
to introduce AST Counter Instrumentation, making it possible to write flow-
insensitive types in the presence of mutation, and thus enjoy the benefits of a
type-based approach—being compositional and scalable. We put back the lim-
ited flow-sensitive information (in the form of counter axioms) only after the
type checking phase.

Resource Analysis by Loop-Bound Analysis. Bound analysis techniques [8,
14,15,17,24,31] emphasize that time bounds (especially loop bounds) are nec-
essary for resource bound analysis and therefore they focus on obtaining loop
bounds. However, time boundedness is actually only a sufficient condition for
resource boundedness. In contrast, our approach verifies resource bounds even
when time bounds are not available. The other difference is that, Gulwani et
al. and Zuleger et al.’s works [15,17,31] generate invariants at different pro-
gram locations, as opposed to our approach of using same invariants at all pro-
gram locations. In more detail, Carbonneaux et al. [8] use a Hoare logic style
inter-procedural reasoning to derive constraints on unknown coefficients of loop
bounds, who are in the form of pre-defined templates consisting of multivariate
intervals. Gulwani et al. [15] introduce a technique to first transform multi-path
loops into loop paths who interleave in an explicit way, and then generate differ-
ent invariants at different program locations. In another work, Gulwani et al. [17],
compute the transitive closure of inner loops, which are invariants only hold true
at the beginning of loops. It also utilizes several common loop patterns to obtain
ranking functions, which are eventually used to compute loop bounds. Sinn et al.
[24] flatten multi-path loops into sets of mutual independent loop paths and uses
global lexicographic ranking functions to derive loop bounds. Similarly, Giesl et
al. [14] use a standard ranking function approach to obtain loop bounds for its
bound analysis, which is a component of its interleaving of size analysis and
bound analysis. Zuleger et al. [31] txake size-change abstraction approach from
termination analysis domain into bound analysis. Size-change abstraction relates
values of variables before and after a loop iteration at the beginning of a loop,
which are eventually used to obtain loop bounds. Additionally, although Gulwani
et al. [16] also adopt a counter approach by instrumenting loops with counters,
the functionalities of counters are different. In our AST Counter Instrumenta-
tion approach, counters enable writing flow-insensitive global invariants under
the scenario of mutation. In contrast, the functionality of counters in Gulwani
et al.’s work [16] is to make it explicit if one loop is semantically (instead of
syntactically) nested in another loop: each loop is associated with a counter and
this work encodes loop nest relations as counter dependencies.
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Resource Analysis by Cost-Recurrence Relations. A classical approach to
cost analysis [3–7,13] is to derive a set of cost recurrence relations from the orig-
inal program, whose closed-form solutions will serve as an over-approximation
of the cost usage. As pointed out by Alonso et al. [7], one of the limitations
in recurrence relation approach is that it poorly supports mutation, because of
ignoring the side effects of a callee that may have on its caller. Since collection
APIs typically have side effects, recurrence relation may not be the best app-
roach to reason about collection variables’ lengths. Additionally, we believe our
approach applies to a wider class of programs, because it is more difficult to
find closed-form solutions than our approach of checking if a set of constraints
implies the desired property.

Refinement Types. Our type system is inspired by Rondon et al. [22]. The
subsequent work by Rondon et al. [23] propose a flow-sensitive refinement type
system to reason about programs with mutation. Similarly, Coughlin et al.’s work
[10] handles mutation via a flow-sensitive approach, allowing type refinements
to temporarily break and then get re-established later at some other control
locations. It adopts flow-sensitive analysis between control locations who break
and re-establish the invariant, respectively. Compared with Rondon et al. [23]
and Coughlin et al. [10], our work is different because it separates types and
refinements from counter relation axioms, where types and refinements are flow-
insensitive but counter relation axioms are flow-sensitive. The advantage of our
approach over Coughlin et al.’s work is that, to verify a given property, Coughlin
et al.’s work is more expensive because it is sensitive to the distance (in terms
of lines of code) between any two relevant control locations (i.e., where the
first location breaks an invariant and the second location potentially restores
the invariant). More specifically, Coughlin et al.’s work has to perform flow-
sensitive and path-sensitive symbolic execution between any two relevant control
locations. In comparison, our approach is insensitive to the distance between any
two relevant control locations.

8 Conclusion

We proposed a technique that statically verifies the boundedness of total length
of collection variables when given constraint(s) on input(s). Our technique is able
to verify the above property for non-terminating reactive programs. To ensure
scalability, we take a type-based approach and enforce using global inductive
invariants, as opposed to different invariants at different program locations. To
design global invariants for programs supporting mutation, we introduce AST
counters, which track how many times an AST node was executed. We then add
axioms on relations of the counter variables. Experimental results demonstrate
that our technique is scalable, and effective at verifying bounds.

We plan to build on this work in at least the following two directions: (i)
extending from collection lengths to general memory usage, (ii) generalizing the
AST counter technique and applying it in different contexts.
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5. Albert, E., Genaim, S., Gómez-Zamalloa Gil, M.: Live heap space analysis for
languages with garbage collection. In: Proceedings of the 2009 International Sym-
posium on Memory Management, pp. 129–138. ACM (2009)

6. Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost anal-
ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 38–53.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 5

7. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
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Abstract. We present a new solver and interpolation algorithm for the
theory of arrays with constant arrays. It is based on our previous work on
weakly equivalent arrays. Constant arrays store the same value at every
index, which is useful for model checking of programs with initialised
memory. Instead of using a store chain to explicitly initialise the memory,
using a constant array can considerably simplify the queries and thus
reduce the solving and interpolation time. We show that only a few new
rules are required for constant arrays and prove the correctness of the
decision procedure and the interpolation procedure. We implemented the
algorithm in our interpolating solver SMTInterpol.

1 Introduction

This paper presents a new solver and interpolation algorithm for the theory of
arrays with constant arrays. It is a direct extension of the algorithms presented
in [4,10].

Interpolation based model checking is a successful technique for proving cor-
rectness of programs. In the Software Verification Competition (sv-comp) [1]
the winners of the last three years are using interpolants to generate candidate
invariants [6,9]. These programs use SMT solvers with different theories. For
example, to represent heap memory with pointer arithmetic or static arrays in
C the tools usually use the theory of arrays. Often, allocated memory is either
explicitly or implicitly initialised with a default value. For example in C pro-
grams statically allocated memory is guaranteed to be initialised to be zero at
start-up. Without the feature of constant arrays, the initialisation has to be
done explicitly in the formula. This can lead to a huge store term that stores
thousands of zeros into a large static block. This store term has to be carried
around by the model checker and provided with each query of the solver. It may
also slow down the solving process, especially when counter-examples have to be
generated, or when the initialisation is crucial for showing unsatisfiability.

In this paper we describe an extension of the array theory for constant arrays.
Constant arrays are simply arrays that store the same given constant at all
indices. They have already been described in [14] where a decision procedure was
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given, but so far no interpolation algorithm exists. We present a new decision
procedure based on weakly equivalent arrays that is interpolation-friendly, and
an interpolation algorithm for proofs generated by this decision procedure.

The decision procedure and interpolation algorithm are implemented in our
interpolating SMT solver SMTInterpol. The new rules necessary for constant
arrays are only triggered if constant arrays exist in the input formula. Thus,
the performance of the decision procedure is not negatively affected for the
previously supported formulas. Furthermore, the new lemmas can quickly be
found using the existing data structures for weak equivalence. Our preliminary
evaluation shows that using constant arrays instead of explicitly initialised arrays
significantly reduces the query size and solving time.

The contributions of this paper are:

– a decision procedure for constant arrays based on weakly equivalent arrays,
– an interpolation procedure for constant arrays that also allows for combining

equality interpolating theories,
– correctness proofs for the decision procedure and the produced interpolants.

2 Preliminaries

In this section we define our variant of the theory of arrays with constant arrays
and give a short summary of Craig interpolation.

2.1 Theory of Arrays

We assume standard sorted first-order logic with equality. We use � for the
formula that is always true and ⊥ for false. Theories are defined by the signature
and a set of axioms for their interpreted symbols. The theory of arrays TA uses a
parametric sort (σ ⇒ τ), which denotes the arrays with the index sort σ and the
element sort τ . The signature ΣA contains a select function ·[·] : (σ ⇒ τ)×σ → τ
and a store function ·〈· � ·〉 : (σ ⇒ τ) × σ × τ → (σ ⇒ τ). For array a, index
i and element v, a[i] returns the element stored in a at index i, and a〈i � v〉
returns a fresh array that is a copy of a where the element at i is replaced by v.

These functions are defined by the following axioms by McCarthy [11].

∀ a : (σ ⇒ τ) i : σ v : τ. a〈i � v〉[i] = v (idx)
∀ a : (σ ⇒ τ) i : σ j : σ v : τ. i 	= j → a〈i � v〉[j] = a[j] (read-over-write)

To get an extensional array theory, we include in the signature ΣA the function
diff(·, ·) : (σ ⇒ τ)× (σ ⇒ τ) → σ, which was proposed by Bruttomesso et al. [3].
For distinct arrays a and b, it returns an index where a and b differ, and an
arbitrary index otherwise. This is ensured by the following axiom (which implies
extensionality).

∀ a : (σ ⇒ τ) b : (σ ⇒ τ). a[diff(a, b)] = b[diff(a, b)] → a = b. (ext-diff)
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The theory of arrays with constant arrays, proposed by Stump et al. [14],
additionally defines a function constσ(·) : τ → (σ ⇒ τ). For an element v, the
function application constσ(v) returns an array that contains the element v at
all indices i, which is formalised by the following axiom:

∀ i : σ v : τ. constσ(v)[i] = v (const)

For simplicity we often write const(v) for constσ(v) if the index type can be
deduced from context or is not important.

To facilitate Nelson–Oppen theory combination, we need a stably infinite
array theory. To achieve this, we require that the index sort is stably infinite and
that the element sort has a model containing at least two elements (we allow
Booleans as the element sort). However, simply adding the axiom for constant
arrays renders the resulting array theory non-stably infinite. As an example, the
formula constσ(v)〈i � w〉 = constσ(w) ∧ v 	= w is satisfiable, but only if the sort
σ contains only one element. To avoid this problem, Stump et al. assume that
the index set is always infinite. We make this explicit by adding infinity axioms,
i.e., for every sort σ for which constσ(·) is used and for every natural number n,
we add the axiom

∀ i1 : σ . . . in : σ. ∃ j : σ. j 	= i1 ∧ · · · ∧ j 	= in (infinity)

To avoid unsoundness in our solver for SMTLIB, which does not mandate the
infinity axiom, we only allow constant arrays for index domains that are known
to be infinite, e.g., integers and reals.

2.2 Interpolation

An interpolation problem with respect to a given background theory T is a pair
of formulas (A,B) such that A∧B is unsatisfiable in T . We also say that A and
B form a partitioning of F : A ∧ B. A Craig interpolant for (A,B) is a formula
I such that (i) A implies I in the theory T , (ii) I and B are unsatisfiable in T
and (iii) all non-theory symbols in I occur in both A and B.

We call a non-theory symbol shared if it occurs in both A and B, A-local if it
occurs only in A, and B-local if it occurs only in B. This definition is naturally
extended to terms and literals. In addition, a term or literal is called mixed if it
contains both A-local and B-local symbols.

Given a resolution proof for unsatisfiability of a formula F : A ∧ B, an
interpolant for (A,B) can be derived inductively from the proof tree. We use
the proof tree preserving interpolation scheme by Christ et al. [5]. This is an
extension to Pudlák’s [13] and McMillan’s [12] interpolation algorithms and also
supports SMT and theory combination with equality interpolating theories.

For proof tree preserving interpolation, each theory has to compute inter-
polants for its theory conflicts. An interpolant for a theory conflict C is computed
as an interpolant of (C �A,C �B) where�A and�B are projection functions that
split the literals of the conflict C into A- and B-parts. If a literal � is A-local, its
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projections are defined as � �A ≡ � and � �B ≡ �, and analogously for B-local
literals. Shared literals are projected to both partitions: � � A ≡ � � B ≡ �. The
projection of a conjunction is the conjunction of the projections.

The crucial part of proof tree preserving interpolation is the extension of the
projections to mixed equality and disequality literals. We introduce an uninter-
preted binary predicate EQ and, for each atom a = b where a is A-local and b
is B-local, a fresh variable xab. The projections for the literals a = b and a 	= b
are defined as follows.

(a = b)�A ≡ (a = xab) (a = b)�B ≡ (xab = b)
(a 	= b)�A ≡ EQ(xab, a) (a 	= b)�B ≡ ¬EQ(xab, b)

An interpolant of a conflict containing the literal a = b may contain the
auxiliary variable xab at any place. For an interpolant of a conflict containing
a 	= b, proof tree preserving interpolation requires that the auxiliary variable
xab occurs only as first parameter of a positively occurring EQ predicate, i.e.,
the interpolant has the form I[EQ(xab, s1)] . . . [EQ(xab, sn)] for shared terms
s1, . . . , sn. This is usually automatically the case. As an example, an interpolant
of the theory conflict a = b ∧ f(a) 	= f(b) where a is A-local, b is B-local and f
is shared, is defined as an interpolant of the problem

(a = xab ∧ EQ(xf(a)f(b), f(a)), xab = b ∧ ¬EQ(xf(a)f(b), f(b))).

Such an interpolant is I = EQ(xf(a)f(b), f(xab)).

3 Decision Procedure for Arrays

In this section we present the decision procedure for the theory of arrays with
constant arrays. It extends our decision procedure based on weakly equivalent
arrays, which we summarise in the next subsection. In Sect. 3.2, we present the
necessary changes for constant arrays and prove the correctness of the decision
procedure.

Our decision procedure is compatible with proof tree preserving interpolation
presented in the previous section. It can propagate equalities and disequalities
between terms from different parts of the interpolation problem, but it does not
create new mixed terms. Most existing procedures create mixed select terms,
e.g, when instantiating (read-over-write) on an A-local store term and a B-local
index.

3.1 Weakly Equivalent Arrays

Our solver for the array theory fits into the Nelson–Oppen theory combination
framework. For a formula F , we define the set of shared terms V . In the original
presentation of Nelson–Oppen, shared variables are introduced for every term
shared between different theories, e.g. for every select term a[i], shared variables
va, vi, va[i] are created, the formula va[i] = va[vi] is added to the array theory
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and a[i] in the original formula is replaced by va[i]. Each theory then propagates
equality constraints on these shared variables in the form of a disjunction of
equalities and disequalities. We find it simpler to work directly with the shared
terms and treat in each theory the terms whose head symbol is from a foreign
theory as an uninterpreted constant. The reader who prefers the variable view
can replace in the remainder of the paper every term t by its auxiliary variable vt.

Our algorithm starts with a preprocessing phase. In the preprocessing phase,
we instantiate for each store term a〈i�v〉 the axiom (idx) a〈i�v〉[i] = v and for
each diff term diff(a, b) the axiom (ext-diff) a[diff(a, b)] = b[diff(a, b)] → a = b.
Note that this preprocessing step can be done for each input formula separately
and that an interpolant for the preprocessed formulas is also an interpolant
for the original formulas. We then compute the set of shared terms V as the
set of all terms in the (preprocessed) formula of array type as well as for each
select term a[i] the terms a[i] and i and for every store term a〈i � v〉 the terms
i, a[i], a〈i�v〉[i]. Note that this step creates a new term a[i] ∈ V for a store term
a〈i � v〉.

The main algorithm of our solver is the DPLL(T) algorithm that generates
partial models by assigning truth values to literals and asks each theory for
conflicts. In the case of the theory of arrays, the literals are the equalities on V .
The theory solver takes as input a candidate equality relation ∼ on V (it assumes
that terms are not equal unless the corresponding equality literal is set). If the
equality relation ∼ is satisfiable for the theory of arrays and is compatible with
all other theories and the input formula, we found a satisfying model. Otherwise
the theory solver returns a conflict, i.e., a (small) conjunction of equalities and
disequalities that are part of (V,∼) and contradict the array axioms.

To find these conflicts, our array solver uses the notion of weak equivalence
over (V,∼). The weak equivalence graph G is defined by its vertices, the array-
valued terms in V , and its undirected edges of the form (i) s1 ↔ s2 if s1 ∼ s2
and (ii) s1

i↔ s2 if s1 has the form s2〈i � ·〉 or vice versa. If two arrays a and
b are connected in G by a path P , they are called weakly equivalent. This is
denoted by a

P⇔ b. Weakly equivalent arrays can differ only at finitely many
indices given by Stores (P ) := {i | ∃s1 s2. s1

i↔ s2 ∈ P}. Two arrays a and b are
called weakly equivalent on i, denoted by a ≈i b, if they are connected by a path
P such that k 	∼ i holds for each k ∈ Stores (P ). Two arrays a and b are called
weakly congruent on i, a ∼i b, if they are weakly equivalent on i, or if there exist
a′[j], b′[k] ∈ V with a′[j] ∼ b′[k] and j ∼ k ∼ i and a ≈i a′, b′ ≈i b. If a and b
are weakly congruent on i, they must store the same value at i. For example, if
a〈i + 1 � v〉 ∼ b and b[i] ∼ c[i], arrays a and b are weakly equivalent on i, but a
and c are only weakly congruent on i.

For the theory of arrays without constant arrays the following two patterns
are sufficient to detect all conflicts.

a ≈i b i ∼ j a[i] 	∼ b[j] (read-over-weakeq)

a
P⇔ b

∧

i∈Stores(P )

a ∼i b a 	∼ b (weakeq-ext)
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The first pattern, based on (read-over-write), checks if a disequality between
select terms a[i] and b[j] with i ∼ j contradicts a weak equivalence between a
and b. The second pattern detects inequalities on array terms that contradict the
fact that they are weakly equivalent on every index. These patterns are complete
for the quantifier-free theory of arrays [4], i.e., if no pattern is applicable, there
is a model for the array theory compatible with ∼.

If a pattern is detected, the solver returns a conflict, which is the conjunc-
tion of equalities and disequalities that contradict the array axioms. We use
Cond(a P⇔ b),Cond(a ≈i b),Cond(a ∼i b) to denote the conjunction of the liter-
als v = v′ (resp. v 	= v′), v, v′ ∈ V , such that v ∼ v′ (resp. v 	∼ v′) is necessary to
show the corresponding property. The conflict for (read-over-weakeq) can then
be written as Cond(a ≈i b) ∧ i = j ∧ a[i] 	= b[j] and similarly for the other pat-
tern. The negated conflict is inserted into the DPLL engine as a theory lemma
clause.

3.2 Extension for Constant Arrays

For every constant array const(v) in the formula, we add const(v) and v to the
set V of shared terms. We extend the decision procedure from [4] in two ways.
On the one hand, we define two new patterns to treat constant arrays, on the
other hand, we extend the definition of weak congruence to treat extensionality.

The first pattern is applicable if any two constant arrays are weakly equiv-
alent: if two constant arrays const(v), const(w) are connected by a weak path,
they can differ only at finitely many indices. But as they are constant and the
index sort is infinite, the arrays must already be equal, which means that the
constant element values v and w must be equal. The second pattern, which is
very similar to (read-over-weakeq), is applicable if an array a is weakly equiv-
alent on i to a constant array const(v) and there is a select term a[i]. Then it
must store the same value at position i as the constant array, which is constantly
v, independently of i. Formally, the patterns are as follows:

const(v) P⇔ const(w) v 	∼ w (const-weakeq)
a ≈i const(v) a[i] 	∼ v (read-const-weakeq)

For extensionality, pattern (weakeq-ext) can be used, but we need to update
the definition of weak congruence on i. In addition to the previous definition, two
arrays a and b are also weakly congruent on i if the following holds: a is weakly
equivalent to an array s, b is weakly equivalent to a constant array const(v), and
s[j] is equal to v at an index j that is equal to i, or symmetrically with a and b
switched. Formally, the new definition is as follows.

Definition 1 (Weak congruence on i with constant arrays). Two arrays
a and b are weakly congruent on i, denoted by a ∼i b, if either

1. they are weakly equivalent on i, i.e., a ≈i b, or
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2. there exist a′[j], b′[k] ∈ V with a′[j] ∼ b′[k] and j ∼ k ∼ i and a ≈i a′, b′ ≈i b,
or

3. there exist s[j], const(v) ∈ V with s[j] ∼ v and i ∼ j and either a ≈i s,
const(v) ≈i b or a ≈i const(v), s ≈i b.

Theorem 1. The conflict patterns (read-const-weakeq), (const-weakeq) as well
as (weakeq-ext) with the updated definition of weak congruence are sound, i.e.,
the corresponding conflict contradicts the theory of arrays.

Proof. For (const-weakeq), consider the path P with const(v) P⇔ const(w). Let
Stores (P ) = {i1, . . . , in} be the set of store indices. By the axiom (infinity)
there is an index j with j 	= i1, . . . , j 	= in. By induction over the length of the
weak path P , it holds that Cond(const(v) P⇔ const(w)) implies const(v)[j] =
const(w)[j]. With the axiom (const) this contradicts v 	= w.

For (read-const-weakeq), induction over the length of the weak path shows
that Cond(a ≈i const(v)) implies a[i] = const(v)[i]. Using the axiom (const) this
gives a conflict with a[i] 	= v.

For (weakeq-ext), we refer to the proof in [4]. It remains to show that
Cond(a ∼i b) implies a[i] = b[i] also in case 3. of Definition 1. If Cond(a ≈i s) ∧
Cond(b ≈i const(v)) ∧ i = j ∧ s[j] = v hold, then induction over the paths for
a ≈i s and b ≈i const(v) shows that this implies a[i] = s[i] and b[i] = const(v)[i].
With i = j ∧ s[j] = v, congruence, and the axiom (const) this implies a[i] = b[i]
as desired. The other case with a ≈i const(v), s ≈i b is symmetric. ��

Theorem 2. The patterns (read-const-weakeq), (const-weakeq), together with
the patterns in Sect. 3.1 and the updated definition for weak congruence, are
complete for the theory of arrays with extensionality and constant arrays.

Proof. We show for a given equivalence relation ∼ on V where no pattern
matches that there is an array model M compatible with ∼. We build M
for all sorts inductively over the structure of the sort, such that for t, t′ ∈ V ,
M[t] = M[t′] holds if and only if t ∼ t′. The base case is a non-array sort σ,
for which we define the domain Dσ as the set containing at least the equivalence
classes Vσ/∼ of terms. In the case of σ being an index sort, Dσ also contains
an infinite number of unique elements (to ensure the infinity axiom). For a term
t ∈ V of type σ that is not an array we define M[t] = {t′ ∈ V |t′ ∼ t}. The
domain of an array sort D(σ⇒τ) is defined as the set of total functions Dσ → Dτ .
Since Dσ is infinite, we can assume that there is a function �·� that returns
for every weak equivalence class a unique element from Dσ different from any
element M[i] for i ∈ Vσ. For τ our assumption is that there are at least two dis-
tinct elements Fstτ ,Sndτ ∈ Dτ (which can be equal to some M[v] for v ∈ Vτ ).
We define the valuation of all terms a ∈ V that have an array sort (σ ⇒ τ) as
follows:
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M[a](j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M[a′[i]] if there is a′[i] ∈ V with M[i] = j , and a ≈i a′

M[v] if there is const(v) ∈ V with a P⇔ const(v),
and M[i] 	= j for all i ∈ Stores (P )

Sndτ if j = �WeakEQ(a)� and no const(v) ∈ WeakEQ(a)
Fstτ otherwise

The first two cases ensure that the valuation for the array a is compatible
with the a[i] terms in the formula and that an array const(v) stores only the
value v. The last two cases ensure that arrays from different weak equivalence
classes store different values at some index.

First, the definition is well-defined: if there are two terms a1[i1], a2[i2] ∈ V
for which the first case applies, then i1 ∼ i2, a1 ≈i1 a2, and the pattern
(read-over-weakeq) ensures a1[i1] ∼ a2[i2]. By induction hypothesis, M[a1[i1]] =
M[a2[i2]]. If there are two terms v1, v2 for which the second case applies, then
there are weak paths a

P1⇔ const(v1) and a
P2⇔ const(v2). Hence, there is a path

const(v1)
P⇔ const(v2) and the pattern (const-weakeq) ensures that v1 ∼ v2. If

there is a term a′[i1] for which the first case applies and const(v) for which the
second case applies, then a′ ≈i1 const(v) holds. The pattern (read-const-weakeq)
ensures that a′[i1] ∼ v. The third case cannot apply if the first case applies by
the definition of �·�. The third case also cannot apply when the second case
applies. The last case only applies if the other cases do not apply.

Next we show that for every a〈i � v〉 ∈ V , the above definition assigns to
M[a〈i � v〉](j) the value M[a](j) if M[i] 	= j and M[v] if M[i] = j. The latter
holds because the preprocessing step adds a〈i � v〉[i] = v to the formula and
a′ = a〈i�v〉 fulfils the first case. Hence, M[a〈i�v〉](j) = M[a〈i�v〉[i]] = M[v].
For j with M[i] 	= j, one can show M[a〈i � v〉](j) = M[a](j) by case distinction
over which case applies in the definition of M[a](j). It is easy to see that the
same case also applies for M[a〈i � v〉](j) if M[i] 	= j holds and that the defined
value is the same.

Finally, we show extensionality, i.e., we show for a, b ∈ V that M[a] and
M[b] differ or a ∼ b holds. If a and b are not weakly equivalent, then they
differ at either j = �WeakEQ(a)� or j = �WeakEQ(b)�: if both arrays are not
weakly equivalent to any const(v), then values Fstτ 	∼ Sndτ are different and
if w.l.o.g. a is weakly equivalent to some const(v) then M[a](j) = M[v], but
M[b](j) is either equal to a different constant value or is alternating between
Fstτ and Sndτ . If a and b are weakly equivalent, i.e., a

P⇔ b, and a ∼i b for some
i ∈ Stores (P ) does not hold, then we can show that M[a](M[i]) 	= M[b](M[i])
holds as follows. Take i1 to be the first store index on the path from a to b with
i1 ∼ i (i ∈ Stores (P ) guarantees its existence). Then for the array a′ on the left
of this store edge a ≈i a′ holds, and the preprocessing step created the select
term a′[i1] ∈ V . Similarly we find i2 and b′ with b ≈i b′ and b′[i2]. Since a 	∼i b,
we have a′[i1] 	∼ b′[i2] and the values differ. Finally, if a

P⇔ b, and a ∼i b holds
for all i ∈ Stores (P ), then a ∼ b by pattern (weakeq-ext). ��
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Remark 1. If the element sort is known to be stably infinite, it is not necessary
to create a a[i] term for every a〈i � v〉 term. In this case, one can always find
a fresh value for every WeakEQi(a) class as model value for a[i]. This slightly
complicates the extensionality proof, as the preprocessor does not create the a[i]
terms, see [4] for details.

It turns out that adding the select terms in the preprocessor makes the case 3.
of Definition 1 superfluous, as there is always a select term that is equal because
of the pattern (read-const-weakeq) and case 2. can be used instead. Nonetheless
we decided to include this case to allow using the more efficient procedure that
does not add the select terms in the preprocessor.

3.3 Implementation Details

First we note that our algorithm can also be easily adapted to not only find con-
flicts but also propagate new equalities. In our implementation we build (V,∼)
incrementally and the array solver assumes that all elements that are not explic-
itly equal are not equal. Thus the produced conflicts can still have undefined
literals. If there is only one undefined literal, the conflict can be used to propa-
gate a new equality. If there are more undefined literals the conflict will tell the
DPLL engine, which undecided equalities can potentially cause a conflict and
need to be decided.

We use an efficient data structure to represent the weak equivalence
classes [4]. For each equivalence class of (V,∼) a node is created. Each node
has at most two outgoing edges, a primary and a secondary, which correspond
to the store edges in the weak equivalence graph and are labelled by the corre-
sponding index. The primary edges form a tree, where each edge points in the
direction of the root of the tree, which is the representative of the whole weak
equivalence class. The secondary edges are used to find the representative of ≈i

in the case that i is equal to the label of the primary edge. The representative
of ≈i is either the root node or a node with a primary but no secondary edge.

For the representative of a weak equivalence class we remember the constant
arrays in this class. For the representative of ≈i we remember the select term
involving i. This means that the root node has a map from index i to the corre-
sponding select term and the other nodes without a secondary edge only store the
select term for the index on the label of the primary edge. This allows to quickly
identify instantiations for the patterns (read-over-weakeq), (const-weakeq), and
(read-const-weakeq). For example, if two weak equivalence classes both contain-
ing constant arrays are merged, we can instantiate the (const-weakeq) pattern.

To find instances of (weakeq-ext) we compute the model in a similar way
as described in the proof of Theorem 2 and use a hash set to detect two arrays
which are extensionally equal. We then use our data structure to find the weak
equivalence paths needed for the conflict.

The problem of solving quantifier-free formulas over arrays is NP-complete,
and the overall algorithm including the DPLL engine is exponential. In [4], we
showed that identifying the instances of the (read-over-weakeq) pattern is cubic
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in the size of the formula. Adding constant arrays and the new patterns does
not change the overall complexity.

4 Interpolation

In the following, we present an interpolation algorithm for the extensional the-
ory of arrays with constant arrays. It computes quantifier-free interpolants for
the theory conflicts described in Sect. 3. The algorithm extends our algorithm
presented in [10].

We first describe the basic concepts needed to compute interpolants in the
presence of weak equivalences and weak congruences and shortly outline the
interpolation algorithm for (read-over-weakeq) and (weakeq-ext) conflicts. After-
wards, we show how to extend the algorithm to the new conflicts (const-weakeq)
and (read-const-weakeq) and how to modify the algorithm for (weakeq-ext) with
the updated definition of weak congruence.

4.1 Interpolation for the Theory of Arrays

Our interpolation algorithm for the theory of arrays follows a colour-based app-
roach [8]: each conflict contains weak paths that are subdivided into A- and
B-coloured subpaths as follows. Equality edges ↔ are A- or B-coloured if the
corresponding equality literal is in A or B, respectively. For shared literals, the
edge can be either A- or B-coloured, whatever is more convenient. If the cor-
responding literal is a mixed equality a′ = b′, the edge is split into an A- and
a B-coloured edge a′ ↔ xa′b′ ↔ b′ using the auxiliary variable xa′b′ of the lit-
eral. Store edges i↔ are assigned to the part that contains the store term. The
boundary term between an A- and a B-path is shared and may be used in the
interpolant.

A (read-over-weakeq) conflict consists of a weak path a ≈i b showing that a
and b store the same value at i, which together with the index equality i = j
contradicts the main disequality a[i] 	= b[j]. Depending on the main disequality
a[i] 	= b[j] the algorithm distinguishes four base cases: (r-i) there exists a shared
term representing the index equality i = j and a[i] 	= b[j] is in B or mixed,
(r-ii) there exists a shared term for i = j and a[i] 	= b[j] is A-local, (r-iii) i, j
and a[i] 	= b[j] are all B-local, or (r-iv) i, j and a[i] 	= b[j] are A-local.

In case (r-i), the shared term x for the index equality i = j can either be i
or j, if one of them is shared, or the auxiliary variable xij . For simplicity of the
presentation, we focus here on the cases where i or xij is the shared term, and
j and therefore b[j] are B-local.

The basic idea is to summarise maximal A-paths by equalities between shared
select terms over the path ends, which must be shared. A path π : s1 ≈i s2
together with i = x implies s1[x] = s2[x] for the shared term x. As some store
index disequalities contained in an A-path may be B-local or mixed, an inter-
polant formula for this A-path also needs to contain the negated B-projections of
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B-local and mixed store index disequalities. An interpolant for an inner A-path
π : s1 ≈i s2 is given by

Iπ : s1[x] = s2[x] ∨ FA
π (x)

where FA
π is defined as

FA
π (x) ≡

∨

k∈Stores(π)
i�=k B-local

x = k ∨
∨

k∈Stores(π)
i�=k mixed

EQ(xik, x).

For the outer A-path π : a ≈i s1 in the mixed case, where a[i] is A-local, the
select equality in the interpolant must be replaced by the corresponding EQ
predicate, i.e., the resulting path interpolant is EQ(xa[i]b[j], s1[x]) ∨ FA

π (x).
For B-paths, the interpolant only needs to collect the A-projections of A-

local and mixed index disequalities in formula FB
π which is defined dually to FA

π

as

FB
π (x) ≡

∧

k∈Stores(π)
i�=k A-local

x 	= k ∧
∧

k∈Stores(π)
i�=k mixed

EQ(xik, x).

The interpolant is the conjunction of the path interpolants Iπ and FB
π (x).

The interpolant contains only shared terms by construction, in particular,
all auxiliary variables for disequalities appear under EQ predicates. It follows
from the A-part of the conflict: the interpolant formula for a B-path is just the
conjunction of the A-projections of A-local or mixed disequalities on this path,
where the shared term x replaces index i and i = x follows from the A-projection
of i = j. For an A-path, ¬FA

π (x) with the A-projections of i 	= k implies x 	= k
for k ∈ Stores (π). Thus, the interpolant formula for an A-path follows from
(read-over-weakeq). The interpolant contradicts the B-part: An A-path inter-
polant together with the B-parts of the corresponding index disequalities implies
that the shared arrays at the path ends contain the same element at index i, and
similarly for an FB

π formula together with the corresponding B-path. Together
with transitivity, this contradicts the main disequality.

For case (r-ii), a dual interpolant formula can be computed by replacing
conjunctions by disjunctions and vice versa and equalities by disequalities and
vice versa. The EQ predicates are unchanged because of the asymmetry of the
projection functions.

In case (r-iii), where i = j is B-local and no shared term for i = j exists, we
cannot summarise A-paths in the way described above. However, we know that
the shared arrays only differ at the finitely many store indices and we can express
in shared terms the formula that each index where they differ must satisfy. In
order to capture the store indices, we build rewrite chains between the shared
arrays at the path ends using the diff function.

We use a convenient notation from [15] for rewriting an array step by step
into another array: for two arrays s1, s2 and m ≥ 0, the term s1

m� s2 denotes
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the array obtained by modifying s1 at m indices to resemble array s2, which is
equal to array s2 if s1 and s2 differ at m or less indices. It is defined inductively
as

s1
0� s2 := s1 s1

m+1� s2 := s1〈diff(s1, s2) � s2[diff(s1, s2)]〉 m� s2.

As an example, if s1 = s2〈i � v〉〈j � w〉, then s1
2� s2 = s2, and s1 = s2 ∨

diff(s1, s2) = i ∨ diff(s1, s2) = j. Similarly for diff(s1
1� s2, s2). To express that

two arrays s1 and s2 differ at most at m indices that all satisfy a formula F (·)
with one free parameter, a formula weq(s1, s2,m, F (·)) is defined inductively
over m ≥ 0 as follows.

weq(s1, s2, 0, F (·)) ≡ s1 = s2

weq(s1, s2,m + 1, F (·)) ≡ (s1 = s2 ∨ F (diff(s1, s2))) ∧ weq(s1
1� s2, s2,m, F (·))

With this notation, we can summarise an A-path π : s1 ≈i s2 by

Iπ : weq(s1, s2, |π|, FA
π (·))

where |π| is the number of stores on path π and FA
π (·) is defined as above. For

B-paths, there is nothing to do as all store disequalities are B-local as well. The
interpolant is the conjunction of all path interpolants.

By construction, the interpolant contains only shared terms. It follows from
the A-part: for an A-path π : s1 ≈i s2, we know that s1 and s2 can differ at most
at |π| indices. If they differ, applying diff hits one of the store indices for which
C �A contains the corresponding EQ predicate. The interpolant contradicts the
B-part: the arrays at the ends of each B-path cannot differ at i because of
C � B. The arrays at the ends of each A-path can only differ at finitely many
indices satisfying FA

π . Because of the corresponding B-projections, i does not
satisfy FA

π and hence the arrays store the same value at i. Transitivity yields the
contradiction to the main disequality.

For case (r-iv), one can again compute the dual interpolant, and a formula
nweq(s1, s2,m, F (·)) is defined dually to the weq formula:

nweq(s1, s2, 0, F (·)) ≡ s1 	= s2

nweq(s1, s2,m + 1, F (·)) ≡ (s1 	= s2 ∧ F (diff(s1, s2)))
∨ nweq(s1

1� s2, s2,m, F (·))

A (weakeq-ext) conflict consists of a main path a
P⇔ b and a weak path a ∼i b

for every i ∈ Stores (P ) which ensure that a and b store the same element at
each i, in contradiction to the main disequality a 	= b. We consider three cases:
(e-i) a 	= b in B, (e-ii) a 	= b A-local, or (e-iii) a 	= b mixed.

We shortly recapitulate the interpolant for (e-i). If a 	= b is in B, the inter-
polant is built by summarising A-paths. For an A-path s1

π⇔ s2 on the main path
P , we compute for each store index i ∈ Stores (π) the interpolant of a ∼i b, as in
case (r-i) for (read-over-weakeq) using a fresh variable · for the shared index. If
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i itself is shared, then a conjunct i = · has to be added. We call this interpolant
Ii(·). Then we summarise π by a weq formula that states that s1 and s2 only
differ at most at |π| indices and each index satisfies one of these interpolants:

Iπ ≡ weq(s1, s2, |π|, Ii(·)).

For every store index i on a B-path, we interpolate a ∼i b as in case (r-i) or
(r-iii) and obtain Ii. The interpolant is then obtained as the conjunction of Iπ

for A-paths and Ii for store indices i on B-paths.
There is an important variation in the methods for (read-over-weakeq) if a

weak congruence a ∼i b uses select equality a′[j] = b′[k], which we call select
edge and see it as an edge connecting a′ and b′. If the select edge lies on a B-
path π : s1 ∼i s2, any A-path is still a weak equivalence on i, and therefore the
A-path summaries can be built as before. If one of the index equalities i = j or
i = k is A-local or mixed, a conjunct for the corresponding A-projection must
be added to FB

π . If the select edge is on an A-path π : s1 ∼i s2, a weq formula
cannot be built as it holds only for weak equivalences. But this is no problem:
either we built an Ii(·)-summary for an index i on an A-path of the main path
P and the fresh variable · is a shared index term. Otherwise, the index i on a
B-path of P is either itself shared, or, because the select edge is in A, j must be
shared or i = j must be mixed. Thus, in each case there is a shared index term
and the A-path (and all other A-paths similarly) is summarised as in case (r-i),
i.e., by s1[·] = s2[·] ∨ FA

π (·) where FA
π also includes disjuncts for the negated

B-projections of i = j, i = k if these equalities are B-local or mixed. If the
select edge is mixed, w.l.o.g. a′[j] A-local and b′[k] B-local, there is a shared
index x for similar reasons. In this case, there is no shared array at the end
of the A-path s1 ∼i a′. Instead, the auxiliary variable is used in the summary
s1[x] = xa′[j]b′[k] ∨ FA

π (x).
The interpolant for case (e-ii) is the dual obtained by swapping disjunc-

tions with conjunctions and equalities with disequalities. The interpolant for
case (e-iii) is complicated and requires an exponential case distinction. We refer
the interested reader to [10].

4.2 Interpolants for Conflicts of Type (const-weakeq)

A (const-weakeq) conflict Cond(const(v) P⇔ const(w)) ∧ v 	= w consists of a
weak equivalence path between two constant arrays const(v) and const(w) that
describes that the two constant arrays must be equal at all positions except the
store indices, which contradicts the disequality v 	= w. We distinguish three base
cases for computing interpolants: v 	= w is (c-i) in B, (c-ii) in A, or (c-iii) it is
mixed.

(c-i) If v 	= w is in B, the weak equivalence path const(v) P⇔ const(w) can be
subdivided into A- and B-subpaths such that all A-paths start and end with
shared arrays. An interpolant should state for each A-path s1

π⇔ s2 that the
arrays at the path ends, s1 and s2, differ at most at the number of store indices
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|π|. This can be described by a weq formula, i.e., for an A-path s1
π⇔ s2 the

interpolant formula is Iπ : weq(s1, s2, |π|,�).
The interpolant of the conflict is the conjunction of all Iπ for A-paths.

Lemma 1. If v 	= w is in B, then an interpolant of the conflict Cond(const(v)
P⇔ const(w)) ∧ v 	= w is given by

I ≡
∧

s1
π⇔s2∈A-paths

weq(s1, s2, |π|,�).

Proof. By construction, the interpolant contains only the shared arrays at path
ends, and diff and select terms constructed from these arrays. Hence, the symbol
condition is fulfilled.

C � A implies I: Let s1
π⇔ s2 be an A-path. The path π witnesses that the

arrays s1 and s2 can only differ at the store indices, i.e., at most at |π| positions.
Rewriting s1 towards s2 in |π| steps therefore yields an array term that is equal

to s2, i.e., s1
|π|� s2 = s2 which is exactly the formula weq(s1, s2, |π|,�).

C � B ∧ I is unsatisfiable: Each pair of arrays at the ends of a B-path can
only differ at finitely many indices. Because of I, each pair of arrays at the ends
of an A-path can only differ at finitely many indices as well, and therefore by
transitivity, const(v) and const(w) can only differ at finitely many indices. But
then because of the axiom (infinity), there exists an index j that is different from
all these indices and because of (read-over-write) the arrays store the same value
at j, i.e., v = const(v)[j] = const(w)[j] = w. This contradicts the disequality
v 	= w. ��

(c-ii) Similarly, if v 	= w is in A, all B-subpaths of the weak equivalence path
const(v) P⇔ const(w) start and end with shared arrays. Each B-path s1

π⇔ s2 is
summarised by Iπ : nweq(s1, s2, |π|,⊥) and the interpolant is the disjunction of
all subpath interpolants.

Lemma 2. If v 	= w is in A, an interpolant of the conflict Cond(const(v) P⇔
const(w)) ∧ v 	= w is given by

I ≡
∨

s1
π⇔s2∈B-paths

nweq(s1, s2, |π|,⊥).

Proof. Again, by construction, I contains only shared arrays and diff and select
terms constructed over these arrays. Thus, the symbol condition is fulfilled.

C � A implies I: For each A-path, C � A implies that the arrays at the path
ends can only differ at finitely many indices. Because of the main disequality
v 	= w, the constant arrays const(v) and const(w) must differ at all positions.
This means that there must exist a B-path s1

π⇔ s2 such that the arrays s1 and
s2 differ at almost all indices. Therefore, the weaker statement that s1 and s2
differ at more than |π| indices also holds, i.e., nweq(s1, s2, |π|,⊥). The disjunction
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of the nweq formulas results from the fact that it is not known for which B-path
this holds.

C �B ∧ I is unsatisfiable: For each B-path s1
π⇔ s2, the B-projection C �B

implies that the arrays s1 and s2 differ at most at |π| indices, in contradiction
to the corresponding nweq formula in the interpolant I. ��

(c-iii) If the atom v 	= w is mixed, we assume w.l.o.g. that v is A-local and w B-
local. All A-paths except the one starting at const(v) start and end with shared
arrays. As in case (c-i), summarise inner A-paths s1

π⇔ s2 by weq(s1, s2, |π|,�).
In the interpolant the auxiliary variable xvw for v = w may only occur in EQ

predicates. The difficulty is to express the value v of this variable as a shared
term. The outer A-path const(v) π0⇔ s ensures that s stores v at all indices except
those in the finite set Stores (π0). We use diff to find an index where s stores
v, and then we can express v as the corresponding select term. Note that any
index that is not contained in Stores (π0) works for this purpose.

We start by taking an arbitrary element ṽ0 of s, using ṽ0 := s[diff(s, s)],
which is a shared term. If this does not yield the right constant, diff(s, s) must
be one of the store indices and const(ṽ0) differs from s at all indices except
diff(s, s) and possibly some of the other store indices. If we rewrite const(ṽ0)
towards s, then in each step the diff term either finds an index different from the
store indices and hence a representation of const(v), or we find a store index,
and obtain an array that does not differ from s at this index. Therefore, after
|π0| − 1 steps, either we have already found an index different from the store
indices, or the obtained array const(ṽ0)

|π0|−1� s is equal to s at all store indices
and s[diff(. . . , s)] is a shared term for ṽ.

For each of the candidate values ṽ, we build a candidate interpolant IA
π0

(ṽ) of
the outer path const(v) π0⇔ s that states that the constant array const(ṽ) differs
from s at most at |π0| indices, and that ṽ is the correct value for the auxiliary
variable.

Lemma 3. If v 	= w is mixed where w.l.o.g. v is A-local, an interpolant of the
conflict Cond(const(v) P⇔ const(w)) ∧ v 	= w is given by

I ≡
(
IA
π0

(ṽ0) ∨
|π0|−1∨

m=0

IA
π0

(s[diff(const(ṽ0)
m� s, s)])

)

∧
∧

π:s1≈is2 inner A-path

weq(s1, s2, |π|,�)

where the outer A-path is const(v) π0⇔ s, and ṽ0 := s[diff(s, s)], and

IA
π0

(ṽ) ≡ EQ(xvw, ṽ) ∧ weq(const(ṽ), s, |π0|,�).

Proof. The symbol condition is met, in particular, only the shared array s is
used to construct the interpolant formula for the outer A-path.

C �A implies I: The interpolant parts for the inner A-paths follow from C �A
as in case (c-i). For the outer A-path const(v) π0⇔ s, if ṽ is equal to v, then the
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weq formula weq(const(ṽ), s, |π0|,�) follows from A as in case (c-i). The EQ
predicate follows by replacing v with ṽ in the A-projection of v 	= w. Thus, it
remains to show that ṽ0 = v or s[diff(const(ṽ0)

i� s, s)] = v for some m < |π0|.
If ṽ0 does not equal v, then const(ṽ0) and s differ at infinitely many

indices. We consider the sequence of diff terms for d0 := diff(s, s), dm+1 :=
diff(const(ṽ0)

m� s, s). By construction, the arrays const(ṽ0)
m� s and s cannot

differ at positions d0, . . . , dm. Hence, the indices d0, . . . , d|π0| are all different and
some dm+1 is not one of the store indices in π0. But then s[dm+1] is equal to v.

C � B ∧ I is unsatisfiable: Each B-path implies that the arrays at the path
ends differ at most at the finitely many store indices. Each interpolant part for
an inner A-path implies that the arrays at these path ends also differ at most
at finitely many indices. The interpolant part for the outer A-path const(v) π⇔ s
implies that there exists a constant array const(ṽ) that differs from s at finitely
many indices, and that the value ṽ of this constant array satisfies EQ(x, ṽ). But
then by transitivity, this const(ṽ) and const(w) can only differ at finitely many
indices. Hence, ṽ = w as in the soundness proof for (const-weakeq). But then
also EQ(xvw, w) must hold, in contradiction to the B-projection of v 	= w. ��

Remark 2. The size of the interpolants in cases (c-i) and (c-ii) is linear in the size
of the lemma: the formulas weq(s1, s2, |π|,�) and nweq(s1, s2, |π|,⊥) are linear
in the length of the subpath s1

π⇔ s2. The size of the interpolants in case (c-iii)
is quadratic: the formula IA

π0
(·) is linear in the size of π0, and it occurs |π0| times

in the interpolant.
The size of the interpolant in case (c-iii) can be reduced as follows. Compare

the lengths of the outer A-path and the outer B-path. If the A-path is shorter
than the B-path, compute the interpolant as described above. Otherwise, com-
pute the dual interpolant by summarising the inner B-paths using nweq formulas
as in case (c-ii), and the outer B-path s

π0⇔ const(w) by

IB
π0

(s[diff(s, s)], s, |π0|,⊥) ∧
|π0|−1∧

m=0

IB
π0

(s[diff(const(s[diff(s, s)]) m� s, s)])

with

IB
π0

(w̃) ≡ EQ(xvw, w̃) ∨ nweq(s, const(w̃), |π0|,⊥).

4.3 Interpolants for Conflicts of Type (read-const-weakeq)

A (read-const-weakeq) conflict is basically a (read-over-weakeq) conflict, with the
particularity that one side is a constant array, i.e., the weak path a ≈i const(v)
witnesses that a and const(v) must store the same value at index i which con-
tradicts the main disequality a[i] 	= v.

We focus on the case where a[i] 	= v is mixed and where i is not shared. In
all other cases, we can apply the algorithm for (read-over-weakeq) outlined in
Sect. 4.1 with the following variations: there is a shared term for i only if i itself
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is shared, and if the interpolant would contain the select term const(v)[i], it is
replaced by the value v which is justified by axiom (const).

The main disequality a[i] 	= v is mixed and i is not shared. If i is B-local, then
a[i] is B-local and v is A-local. We summarise A-paths in weq formulas, similar
to the B-local case (r-iii). But then we also need to build a weq formula over the
outer A-path π0 : s ≈i const(v) ending with the A-local array const(v). The idea
is the same as in case (c-iii) of Sect. 4.2: we use the array s to construct candidate
shared terms ṽ for v. For each ṽ we summarise π0 : s ≈i const(v) = const(ṽ)
with EQ(xa[i]v, ṽ) and the weq term for π0 including FA

π0
. If i is A-local, we build

the dual interpolant by summarising B-paths.

Lemma 4. If a[i] 	= v is mixed and i is B-local, an interpolant of the conflict
Cond(a ≈i const(v)) ∧ a[i] 	= v is given by

I ≡
(
IA
π0

(ṽ0) ∨
|π0|−1∨

m=0

IA
π0

(s[diff(const(ṽ0)
m� s, s)])

)

∧
∧

π:s1≈is2 inner A-path

weq(s1, s2, |π|, FA
π (·))

where π0 : s ≈i const(v) is the outer A-path, ṽ0 := s[diff(s, s)], and

IA
π0

(ṽ) ≡ EQ(xa[i]v, ṽ) ∧ weq(s, const(ṽ), |π0|, FA
π0

(·)).

and if i is A-local, an interpolant is given by

I ≡
(
IB
π0

(ṽ0) ∧
|π0|−1∧

m=0

IB
π0

(s[diff(const(ṽ0)
m� s, s)])

)

∨
∨

π:s1≈is2 inner B-path

nweq(s1, s2, |π|, FB
π (·))

where π0 : s ≈i const(v) is the outer B-path, ṽ0 := s[diff(s, s)], and

IB
π0

(ṽ) ≡ EQ(xa[i]v, ṽ) ∨ nweq(s, const(ṽ), |π0|, FB
π0

(·)).

Proof. We consider the case where the select index i is B-local, the interpolant
for the case where i is A-local is just the dual interpolant.

By construction, the interpolant only contains the shared arrays separating
A- and B-paths and diff terms over such arrays, and in the FA

π or FB
π formulas,

shared indices of store index inequalities and auxiliary variables for inequalities
under EQ predicates.

C �A implies I: The interpolants for the inner A-paths follow as in case (r-iii)
for (read-over-weakeq) interpolants. As in the proof of Lemma3, it follows that ṽ0
or some ṽm+1 := s[diff(const(ṽ0)

m�s, s)] is equal to v. This value ṽ satisfies IA
π0

(ṽ),
because EQ(xa[i]v, ṽ) follows from (a[i] 	= v)�A and weq(s, const(ṽ), |π0|, FA

π0
(·))

follows as in case (r-iii).
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C �B ∧ I is unsatisfiable: For a B-path, C �B and (read-over-weakeq) imply
that the arrays at the path ends must store the same element at i. For an inner A-
path π : s1 ≈i s2, the interpolant states that s1 and s2 differ at most at |π| indices
and each index where they differ must satisfy formula FA

π . But FA
π contains the

negated B-projection of each B-local or mixed store index disequality on π and
therefore any index where s1 and s2 differ is different from i. Hence, s1[i] = s2[i].
The same argument holds for s and the value ṽ for which IA

π0
(ṽ) holds. One of the

disjuncts must hold, and transitivity and axiom (const) yield a[i] = ṽ. Together
with the corresponding EQ predicate in IA

π0
(ṽ) this contradicts the B-projection

of a[i] 	= v, i.e., ¬EQ(xa[i]v, a[i]). ��

Remark 3. The size of the interpolants is worst-case cubic in the size of the
lemma: the formula IA

π0
(·) is quadratic in the size of π0 because FA

π0
(·) is linear.

The formula IA
π0

(·) occurs |π0| times in the interpolant.

4.4 Interpolants for Conflicts of Type (weakeq-ext)

In the presence of constant arrays, the index paths in (weakeq-ext) conflicts can
contain select edges of the form s[k] = v. In the case that a select edge s[k] = v is
mixed, we can split it using the auxiliary variable into a select edge s[k] = xs[k]v

(which is no longer mixed) and the equality edge const(xs[k]v) = const(v) on
the weak congruence chain. Thus, we only need to handle non-mixed edges. If a
select edge s[k] = v is not mixed, we can handle it like a select edge a′[j] = b′[k]
that is not mixed, except that there is only one index equality i = k.

5 Evaluation

The algorithm was integrated into the interpolating SMT solver SMTInter-
pol. Since constant arrays are not part of the SMTLIB standard, there were no
benchmarks. We manually created a few benchmarks that we obtained using a
model checker for C programs and evaluated the possible performance improve-
ment from using constant arrays.

To obtain interesting examples we used the Ultimate Automizer model
checker on a real-world program1. We took a small C library from an embedded
system, added a test harness, and used the model checker to prove that it has no
out-of-bound memory writes. The model checker is based on CEGAR and needs
five abstraction-refinement iterations to find an inductive invariant that proves
the program correct. Each query requests interpolants for a path through the C
program. We logged the queries to generate our benchmarks.

Because the C program uses a large static array (1024 bytes) that is implicitly
initialised with zero and because the model checker does not support constant
arrays yet, each query uses a large store chain to explicitly initialise the memory.
We manually edited the queries to remove the store chain and replace it by
a constant array. This manual step can be avoided, once the model checker
1 https://ultimate.informatik.uni-freiburg.de/smtinterpol/vmcai2019.zip.

https://ultimate.informatik.uni-freiburg.de/smtinterpol/vmcai2019.zip
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supports constant arrays. Both the original and the manually simplified query
yield the same interpolants. The results can be found in Table 1. As one would
expect, introducing constant arrays drastically decreased the size of the queries
and the runtime of the solver.

The example was picked because it uses a large static array. We claim that
this is not untypical, especially for embedded software where dynamic memory
allocation is usually avoided. We expect similar savings for other programs in
the same category. Note that the interpolation query is only a small part of
the software model checker, but we expect that a model checker using constant
arrays will also profit in other parts such as query generation, counterexample
generation, and inductivity checks.

Table 1. Experimental results running verification problems for a drawing library.
The left column gives the iteration number (the model checker needs five interpolation
queries to find an inductive invariant). The next two columns give the size (in bytes)
of the query and the runtime (wall time in ms) for each interpolation problem as
provided by the model checker. The last two columns give the size and runtime of the
same problems where the initialisation was manually replaced by a constant array.

Iteration Store chain Constant array

Size Time Size Time

1 283486 352ms 8991 7 ms

2 284796 368ms 10109 9 ms

3 285268 620ms 10581 12 ms

4 285214 487ms 10524 6 ms

5 285232 371ms 10545 9 ms

6 Related Work

Our work is based on our previous algorithm that does not include constant
arrays, which mentions some related work on deciding and interpolation of the
theory of arrays. Here we only focus on related work on constant arrays.

Decision procedures for constant arrays have been presented by several
authors. To our knowledge the first procedure was in [14]. They have similar
restriction to us, requiring an infinite index sort. One of their rules is even iden-
tical to our (const-weakeq) pattern. The solver z3 has a decision procedure for
combinatory array logic (CAL) [7], which includes constant arrays. They do not
require infinite index sort as they do not have an equivalent to the (const-weakeq)
pattern. However, our experiments revealed a case where the solver was unsound
and returned a false model for an unsatisfiable formula. We reported the bug
and it was fixed, but it shows that the theory of constant arrays becomes tricky
if the requirement of infinite index sort is removed. Constant arrays can also be
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seen as a very simple special case of the map property fragment [2]. While the
authors do not explicitly mention it, their procedure also requires the key sort
to be infinite (they assume there is a κ different from all keys occurring in select
terms).

All these decision procedures create instances based on syntactic criteria.
Their completeness proof requires that these instances are created, even if they
are already true, because they may trigger new syntactic instances. In contrast,
our decision procedure keeps track of a partial model and creates only instances
that are not true in the current partial model. We presented an efficient algo-
rithm, cubic in the size of the input formula, that generates these instances based
on weak equivalence.

Furthermore, the previous decision procedures are not interpolation-friendly.
They create new select terms where the array and index may come from different
parts of the interpolation problem. These create difficulties for quantifier-free
interpolation algorithms and cannot be handled by our proof tree preserving
interpolation method. Also, the procedures create much more terms than neces-
sary, while our decision procedure only creates a linear number of new terms in
the preprocessing step and no new term during the main solving algorithm.

To our knowledge, this is the first published interpolation procedure for con-
stant arrays.

7 Conclusion

We presented an algorithm to solve and interpolate quantifier free formulas in
the theory of arrays with constant arrays. The solving algorithm can be easily
integrated into DPLL(T) based solvers with Nelson–Oppen theory combination.
It is efficient and only creates very few new terms. The interpolation algorithm is
based on proof tree preserving interpolation and also works in combination with
other equality interpolating theories. Our preliminary results show that constant
arrays are useful for software model checking: they simplify the queries to the
solver, which leads to a big speed-up for solving the queries. Constant arrays are
currently integrated into the Ultimate framework for software model checking
to profit from the simplified queries.
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Abstract. We present Dryaddec, a decidable logic that allows reasoning
about tree data-structures with measurements. This logic supports user-
defined recursive measure functions based on Max or Sum, and recur-
sive predicates based on these measure functions, such as AVL trees
or red-black trees. We prove that the logic’s satisfiability is decidable.
The crux of the decidability proof is a small model property which
allows us to reduce the satisfiability of Dryaddec to quantifier-free lin-
ear arithmetic theory which can be solved efficiently using SMT solvers.
We also show that Dryaddec can encode a variety of verification and
synthesis problems, including natural proof verification conditions for
functional correctness of recursive tree-manipulating programs, legal-
ity conditions for fusing tree traversals, synthesis conditions for con-
ditional linear-integer arithmetic functions. We developed the decision
procedure and successfully solved 220+ Dryaddec formulae raised from
these application scenarios, including verifying functional correctness of
programs manipulating AVL trees, red-black trees and treaps, check-
ing the fusibility of height-based mutually recursive tree traversals, and
counterexample-guided synthesis from linear integer arithmetic specifi-
cations. To our knowledge, Dryaddec is the first decidable logic that can
solve such a wide variety of problems requiring flexible combination of
measure-related, data-related and shape-related properties for trees.

1 Introduction

Logical reasoning about tree data-structures has been needed in various applica-
tion scenarios such as program verification [4,14,24,26,32,42,49], compiler opti-
mization [9,17,18,44] and webpage layout engines [30,31]. One particular class
of desirable properties is the measurements of trees such as the size or height. For
example, one may want to check whether a compiler optimizer always reduces
the size of the program in terms of the number of nodes in the AST, or a tree
balancing routine does not increase the height of the tree. These measurements
are usually tangled with other shape properties and arithmetic properties, mak-
ing logical reasoning very difficult. For example, an AVL tree should be sorted
(arithmetic property) and height-balanced (shape property based on height), or
a red-black tree of height 5 should contain at least 10 nodes (two measurements
combined).
c© Springer Nature Switzerland AG 2019
C. Enea and R. Piskac (Eds.): VMCAI 2019, LNCS 11388, pp. 318–341, 2019.
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Most existing logics for trees either give up the completeness, aiming at
mostly automated reasoning systems [4,5,16,39], or disallow either data prop-
erties [28,32,58] or tree measurements [24,25]. There do exist some powerful
automatic verification systems that are capable of handling all of data, shape
and tree measurements, such as VCDryad [26,36,42] and Leon [49,50]. How-
ever, the underlying logic of VCDryad cannot reason about the properties of
AVL trees or red-black trees in a decidable fashion. In other words, they can
verify the functional correctness of programs manipulating AVL trees or red-
black trees, but they do not guarantee to provide a concrete counterexample to
disprove a defective program. Leon [49,50] does guarantee decidability/termina-
tion for a small and brittle fragment of their specification language, which does
not capture even the simplest measurement properties. For example, consider a
program that inserts a new node to the leftmost path of a full tree: Skipping
lines 2 and 3, the program recursively finds the leftmost leaf of the input tree
and inserts a newly created node to the left. The requires (line 2) and ensures
(line 3) clauses describe the simplest properties regarding the size of the tree: if
the input tree is a nonempty full tree, the returned tree after running the pro-
gram should not be a full tree and should contain at least 2 nodes. Note that the
full-treeness full∗ and the tree-size size∗ can be defined recursively in VCDryad
or Leon in a similar manner. However, none of VCDryad or Leon can verify the
program below in a decidable fashion (see explanation in Sect. 5).

1 loc insertToLeft(Node t)
2 requires full∗(t) ∧ size∗(t) ≥ 1
3 ensures ¬full∗(ret) ∧ size∗(ret) ≥ 2
4 {
5 if (t.l == nil) t.l = new Node();
6 else t.l = insertToLeft(t.l);
7 return t;
8 }

In this work, our aim is to develop a
decidable logic for tree data-structures
that combines shape, data, and mea-
surement. The decidability for such
a powerful logic is highly desirable,
as the decision procedure will guar-
antee to construct either a proof or
witness trees as a disproof, which
can benefit a wide variety of tech-
niques beyond deductive verification,

e.g., syntax-guided synthesis or test generation.
The decidable logic we set forth in this paper stems from the Dryad logic,

an expressive tree logic proposed along with a proof methodology called Nat-
ural Proofs [26,42]. Dryad allows the user to define recursive definitions that
can be unfolded exhaustively for arbitrarily large trees. Natural proofs, as a
lightweight, automatic but incomplete proof methodology, restricts the unfold-
ing to the footprint of the program only, then encodes the unfolded formula
to decidable SMT-solvable theories using predicate abstraction, i.e., treating
the remaining recursive definitions as uninterpreted. The limited unfolding and
predicate abstraction make the procedure incomplete.

In this paper, we identify Dryaddec, a fragment of Dryad, and show that
its satisfiability is decidable. The fragment limits both user-defined recursive
definitions and formulae with carefully crafted restrictions to obtain the small
model property. With a given Dryaddec formula, one can analytically compute
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Fig. 1. Templates of Dryaddec functions and predicates

a bound up to which all recursive definitions should be unfolded, and the small
model property ensures that a fixed number of unfolding is sufficient and guar-
antees completeness. The Dryaddec logic features the following properties: (a)
allows user-defined and mutually recursive definitions to describe the functional
properties of AVL trees, red-black trees and treaps; (b) the satisfiability prob-
lem is decidable; (c) experiments show that the logic can be used to encode and
solve a variety of practical problems, including correctness verification, fusibility
checking and syntax-guided synthesis. To the best of our knowledge, Dryaddec is
the first decidable logic that can reason about a flexible mixture of sophisticated
data, shape and measure properties of trees.

2 A Decidable Fragment of Dryad

Dryad is a logic for reasoning about tree data-structures, first proposed by Mad-
husudan et al. [26]. Dryad can be viewed as a variant of first-order logic extended
with least fixed points. The syntax of Dryad is free of quantifiers but supports
user-provided recursive functions for describing properties and measurements
of tree data structures. Each recursive function maps trees to a boolean value,
an integer or a set of integers, and is defined recursively in the following form:
F ∗(x)

def
= ite(isNil(x), Fbase, Find), where Fbase stands for the value of the

base case, i.e., x is nil, and Find recursively defines the value of F ∗(x) based on
the local data fields and subtrees of x. Dryad is in general undecidable and Mad-
husudan et al. [26] present an automatic but incomplete procedure for Dryad
based on a methodology called Natural Proofs.
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Fig. 2. Syntax of Dryaddec logic

In this paper, we carefully crafted a decidable fragment of Dryad, called
Dryaddec, which is amenable for reasoning about the measurement of trees.

2.1 Syntax

The templates for recursive functions and predicates allowed in Dryaddec are
shown in Fig. 1 and the syntax of Dryaddec is presented in Fig. 2. To simplify
the presentation, these figures show unary functions and predicates only, i.e.,
those recursively defined over a single tree. Dryaddec also supports recursive
functions and predicates with multiple arguments, which are amenable to define
data structures characterizing loop invariants, such as list segments, tree-with-
a-hole, etc.

Overall, Dryaddec allows seven categories of recursive functions or predicates
with various types, constraints on their definitions and forms of occurrence in a
formula. Figure 3 gives several common examples of recursive definitions express-
ible in Dryaddec. We explain the intuition behind each category below:

Increasing or decreasing Int function1 defines the maximum or mini-
mum value of it

[
x
]
, where x is the location being unfolded in the tree. The local

term it
[
x
]

is an integer term defined only based on the local data fields of x. The
most common example is it

[
x
]

= x.key; then the function gives the maximum
or minimum key stored in a tree. These increasing/decreasing functions can be
combined using standard arithmetic connectives to form atomic formulae.

Increasing IntSet function defines the union of all set terms ST
[
x
]

for
any location x under the tree, where ST

[
x
]

is a set of local integer terms defined
only based on the local data fields of x. The most typical example is the function
representing the set of all keys w.r.t. the data field key, where ST

[
x
]

= {x.key}.
These IntSet functions can be combined with regular Int terms arbitrarily to
form IntSet terms in Dryaddec, which can be further used to construct atomic
formulae for set-inclusion and subset relationship. The only restriction is that
the subset checking S1 ⊆ S2 can occur negatively only.

1 Intuitively, a Dryaddec function is increasing/decreasing if its value monotonically
increases/decreases when the input tree expands. The monotonicity will be formally
defined in Sect. 3.1.
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There are two types of measure functions. Intuitively, they recursively
define Max- and Sum-based measurements of a tree or tree segment, respec-
tively. For each node x under the tree, it counts towards the measurement, i.e.,
the height/size being increased by 1, if and only if a local formula υ

[
x
]

is sat-
isfied. In Fig. 1, this conditional value is written as iter(υ

[
x
]
, 1, 0), where r is

an integer constant called intermittence. For example, the black height for red
black trees can be defined with intermittence 2: ite2(x.color = black, 1, 0).
The intermittence’s semantics will be explained in Sect. 2.3. Specifically, when
υ
[
x
] def

= true and r = 1, the corresponding Max- and Sum-based functions define
the regular tree height and size, respectively. In this paper, we denote them as
height∗ and size∗.

A measure-related Int term can be a measure function f∗(x) only, or a dif-
ference of form f∗(x1) − f∗(x2). A measure-related Int term can be compared
with a constant K. For example, one can specify two trees with the same height
using height∗(x1) − height∗(x2) = 0.

General predicate is satisfied by trees (x) if and only if a local constraint
ϕ is satisfied between any location in x. Notice that ϕ may involve other non-
measure-related functions or predicates (with some restrictions as shown in
Fig. 1). For example, the sorted∗ property can be defined based on max∗ and
min∗ (see the definition of sorted∗ in Fig. 3).

Measure-related predicate is similar to general predicates. In addition
to everything allowed in the definition of general predicates, a measure-related
predicate is allowed to involve a single measure-related function in the differ-
ence form. For example, an avl∗-tree requires the height∗-difference between two
subtrees is at most one (see the definition of avl∗ in Fig. 3).

2.2 Syntactic Restrictions for Decidability

As we have mentioned before, the syntax of Dryaddec is carefully crafted for
decidability. Besides the specific syntactical restrictions delineated above for the
definitions in each category of recursive functions or predicates, Dryaddec also
restricts how variables, functions and predicates can be related to each other.
As shown in Fig. 2, a variable x is considered related to a measure function if x
occurs in a measure-related predicate or in the difference form f∗(x)−f∗(y). One
important restriction of Dryaddec is that a location variable can be related to
only one measure function. For example, Dryaddec cannot express a single-path
tree: height∗(x) = size∗(x).

Insight Behind the Syntax. Intuitively, the Dryaddec syntax characterizes
the class of formulae independent to the height/size of the tree. Hence non-
measure functions such as min∗ or max∗ can occur unrestrictedly in the logic, as
their values are only determined by the “witness nodes”. For measure functions
such as height or size, obviously they are determined by the height/size of the
tree; that’s why we allow only differences between measure functions such as
height∗(x1) − height∗(x2), as the difference is unchanged if we tailor both the
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two trees rooted by x1 and x2 at the same time. Likewise for subset relation,
the negation of subset relation S1 � S2 can also be captured by a“witness node”
which is in the set of S1 but not in the set of S2 whereas the subset relation
S1 ⊆ S2 is determined by all elements in two sets. Therefore, S1 � S2 is allowed
whereas S1 ⊆ S2 is not as S1 ⊆ S2 is not ensured to be unchanged through
tailoring. To conclude, we try to maximize the logic without losing decidability.

Capabilities And Limitations. Dryaddec can express all standard tree-based
data structures such as lists, trees, lists of trees, etc., and some limited non-tree
data structures such as doubly linked lists or cyclic lists. However, Dryad (and
inherently Dryaddec) is unable or not natural to express non-tree data struc-
tures, e.g., DAGs or overlaid data structures. The main restrictions from Dryad
to Dryaddec are twofold. First, only Max- and Sum-based measure functions are
allowed. For example, Dryaddec cannot define the length of the leftmost path of
a tree. Second, properties involving multiple measure functions are not allowed.
For example, as red-black trees are defined using black-height, Dryaddec cannot
describe the real height of a red-black tree.

Fig. 3. List of recursive definitions

2.3 Semantics

The semantics of Dryaddec is consistent with the semantics of Dryad defined
in [26], which is interpreted on program heaps. A heap consists of a finite set of
locations with the same layout. Each location contains a set of pointer fields Dir
and a set of data fields DF. In addition, there is a set of location variables LV,
a set of integer variables IV, and a special location nil where the pointer fields
can point to. We call Σ = (Dir,DF,LV, IV) a signature for the Dryaddec logic,
and call the heap w.r.t. Σ a Σ-heap. The formal definition is as below:
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Definition 1. Let Σ = (Dir,DF). A Σ-heap is a tuple (N, pf, df) where:

– N is a finite set of locations; nil ∈ N is a special location;
– pf : (N \ {nil}) × Dir → N is a function defining the pointer fields;
– df : (N \ {nil}) × DF → Z is a function defining the data fields. ��

A recursive definition f∗(x) can be interpreted on a Σ-heap (N, pf, df) by
mapping x to a location nx in the heap. As f∗ is a recursive definition, f∗(x)
is undefined if nx is not the root of a tree; otherwise it is evaluated inductively
using the recursive definition of f∗. Notice that the evaluation is only determined
by a subset of N that is reachable from nx. If a heap T ’s locations form a tree,
we use f∗(T ) to represent the interpretation of f∗(x) with x mapped to the root
of T . We simply call T a Σ-tree. We denote n as root(T ), and the subtree rooted
by n.dir as T.dir.

A Dryaddec formula ϕ(x̄, j̄, r̄) can be interpreted on a Σ-heap by mapping
every Loc variable in x̄ to a location in the heap and mapping every Int variable
in j̄ and IntSet variable in r̄ to the corresponding sort. The mapping is valid
only if every Loc variable maps to the root of a tree in the heap; otherwise the
interpretation is undefined.

Most logical connectives and recursive functions/predicates are interpreted
as one can expect. In addition, measure functions have a special intermittence
constraint. Recall that any measure function f∗’s definition comes with an inter-
mittence r occurred in form of iter(υ

[
x
]
, 1, 0). The intermittence is a positive

integer indicating how often the local formula υ
[
x
]

should be satisfied in the
trees. Formally, f∗ is defined on a tree T only if the following intermittence
constraint is satisfied: for any node x in T and its (r − 1) immediate ancestors,
there is a node w within these r nodes such that υ

[
w

]
is true.

Notice that a satisfiable ϕ with m Loc variables x1, . . . , xm can always be
satisfied by a heap consisting of m disjoint trees T1, . . . , Tm by mapping every
xi to the root of Ti. In the rest of the paper, we focus on checking satisfiability
and consider only these disjoint-tree models.

3 Proof of Decidability

In this section, we prove that the satisfiability problem of Dryaddec is decidable.
The crux of the proof is the small model property : Given a Dryaddec formula ϕ,
it is satisfiable only if it is satisfied by a model of bounded size. The main idea is
to show that if ϕ is satisfied by a model larger than the bound, one can tailor the
model to obtain a smaller model which preserves the satisfiability (Theorem 1).

Intuitively, the value of an increasing/decreasing Int function or increasing
IntSet function always relies on a witness node. For example, if an increasing Int
function mif∗ is defined w.r.t. a local term it within any tree T , there is a witness
node w s.t. mif∗(T ) = it[w] and it[w] ≥ it[u] for any other node u. Then these
function values can be preserved as long as these witness nodes are retained in
the tailored model (Lemma 6).



A Decidable Logic for Tree Data-Structures with Measurements 325

The most challenging part is that the value of a measure-related function
will become smaller. Nonetheless, we prove that one can tailor the tree appro-
priately such that the height/size is reduced by exactly 1 while all relevant
recursive predicates are still preserved. Then as these measure functions only
occur in the form f∗(x1) − f∗(x2), both f∗(x1) and f∗(x2) will be reduced by
1 simultaneously and the difference will remain unchanged. Moreover, we prove
the tailoring guarantees that the evaluation of other functions and predicates
are not affected (Lemmas 7 and 8).

3.1 Preliminaries

We start with some formal definitions and lemmas. The proofs for these lemmas
can be found at the project website [1].

Normalization. We normalize a Dryaddec formula ϕ through repeatedly apply-
ing the following steps until no rule can be applied:

1. For every ite-expression Eite = ite(l, t1, t2) in ϕ, rewrite ϕ to (l ∧
ϕ[t1/Eite]) ∨ (¬l ∧ ϕ[t2/Eite]);

2. For every literal S1 
⊆ S2, introduce a fresh integer variable w as a witness,
and replace the literal with w ∈ S1 ∧ w 
∈ S2;

3. For every atomic formula of the form t ∈ A ∩ B or t ∈ A ∪ B, replace it with
t ∈ A ∧ t ∈ B or t ∈ A ∨ t ∈ B, respectively;

4. For every atomic formula of the form t1 ∈ {t2}, replace it with t1 = t2;
5. For every atomic formula t ∈ S where t is a non-variable expression, introduce

a fresh integer variable j and replace t ∈ S with j ∈ S ∧ j = t;
6. For every literal lif∗(x) − lif∗(y) 
≥ K or eif∗(x) − eif∗(y) 
≥ K, replace it with

lif∗(y) − lif∗(x) ≥ 1 − K or eif∗(y) − eif∗(x) ≥ 1 − K.

We denote the normalized formula constructed from ϕ as Norm(ϕ). The first two
steps remove the ite-expressions and the 
⊆ relations from the formula. Steps 3–5
make sure that set terms occur in the form of j ∈ sf∗(x) only. Step 6 makes sure
differences between measure functions occur positively only. To check the satis-
fiability of ϕ, one can always normalize the formula first, as the normalization
process preserves satisfiability, which can be trivially proved:

Lemma 1. For any Dryaddec formula ϕ, ϕ and Norm(ϕ) are equisatisfiable.

d : |Dir| n : # Int Variables m : # Loc Variables
P : # General Predicates M : # lif∗ -related Predicates C : Balance Bound
Dht : Height Bound Dsz : Size Bound Dsub : Subtractive Bound
F : # Increasing/Decreasing Int Fuctions E : # Increasing IntSet Fuctions

Fig. 4. Denotations for metrics
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Formula Metrics. The size bound for the small model property will be deter-
mined by a set of metrics regarding the signature Σ, the formula ϕ and the set of
recursive definitions it relies on. For the rest of the paper, we fix the denotation
for these metrics, as shown in Fig. 4. Besides simple counting of functions or
predicates, these metrics also include the bounds on various kinds of constants
involved in the formula. Specifically, we define the following four bounds:

Definition 2 (Balance Bound). For any Max-based measure function lif∗, the
balance bound C is the maximal constant in the set: {ite(K > 0,K, 1 − K) |
lif∗(t) − lif∗(t′) ≥ K occurred in the definition of a lif∗-related predicate}.
Definition 3 (Subtractive Bound). The subtractive bound Dsub of a for-
mula ϕ is the maximal constant in the set: {max(K, 0) | lif∗(x) − lif∗(y) ≥
K or eif∗(x) − eif∗(y) ≥ K occurred positively in ϕ}.
Definition 4 (Height Bound). The height bound Dht of a formula ϕ is
the maximal constant in the set:

{
rK | lif∗(y) ≥ K occurred positively in ϕ

and r is the intermittence of lif∗
}
.

Definition 5 (Size Bound). The size bound Dsz of a formula ϕ is
the maximal constant in the set: {(dr−1

d−1 ) · K + 1 | eif∗(y) ≥
K occurred positively in ϕ and r is the intermittence of eif∗}.
Remark: For all of the above bounds, if the corresponding set is empty, we define
the bound to be 0.

rt

(a) T : a binary-tree heap
S: the set of shaded nodes

rt

(b) tailorS(T ): the tailored
tree represented by shaded
nodes and dashed edges

x

y

(c) critical nodes and criti-
cal paths

Fig. 5. A binary tree example of tailored trees and critical nodes and paths

Tailored Tree and Monotonicity. As a key concept in the decidability proof,
the small model is formalized via tree tailoring : a tree model can be tailored to
obtain a smaller model.

Definition 6 (Tailored tree). Let T = (N, pf, df) be tree, and let S ⊂ N be a
subset, then the tailored tree tailorS(T ) can be defined as (N ′, pf′, df′), where (i)
N ′ = S ∪ {lca(S′) | S′ ⊆ S} where lca(S′) is the lowest common ancestor of
S′; (ii) pf′(x, dir) = lca(N ′ ∩ Tx.dir) for any x ∈ N ′ and dir ∈ Dir, where Tx.dir
is the subtree of T rooted by x.dir; and (iii) df′ = df

∣
∣
N ′×DF

.
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Note that N ′ is LCA-closed, the lowest common ancestor lca(N ′ ∩ T.dir)
defined by pf′(x, dir) always belongs to N ′. As an example, Fig. 5a shows a tree-
shaped heap T and a subset S of nodes (the shaded ones); Fig. 5b shows the
tailored tree tailorS(T ) constructed from S. The edges of the tailored tree are
represented using dashed edges.

Now with tailored tree formally defined, we can prove the monotonicity of
non-measure functions/predicates, a very important property for our decidability
proof. We prove the following three lemmas.

Lemma 2 (Monotonicity for increasing/decreasing function). Let mif∗

(or mdf∗) be an increasing (or decreasing) function w.r.t. Σ. Let T be a Σ-tree
and let tailorS(T ) be the tailored tree w.r.t. a subset of nodes S. Then mif∗(T ) ≥
mif∗(tailorS(T )) (or mdf∗(T ) ≤ mdf∗(tailorS(T ))).

Lemma 3 (Monotonicity for increasing IntSet function). Let T be a Σ-
tree and let tailorS(T ) be the tailored tree w.r.t. a subset of nodes S. Then for
any increasing set function sf∗, sf∗(tailorS(T )) ⊆ sf∗(T ).

Lemma 4 (Monotonicity for general predicate). Let T be a Σ-tree and let
tailorS(T ) be the tailored tree w.r.t. a subset of nodes S. Then for any general
predicate gp∗, gp∗(T ) implies gp∗(tailorS(T )).

Critical Path. While measure-related functions/predicates do not have witness
nodes, their evaluation can be determined by a set of paths, which we call critical
paths.

Definition 7 (Critical Node and Critical Path). Let T = (N, pf, df) be a
nonempty Σ-tree and y ∈ N be a node. Let lif∗ be a Max-based measure function.
Then y is a critical node of T w.r.t. lif∗ if one of the following conditions holds:

1. lif∗(y) ≥ lif∗(z) for any other sibling node z;
2. there is a measure-related predicate mp∗ whose recursive definition involves

a subformula of the form lif∗(x.dir1) − lif∗(x.dir2) ≥ K, and there is a node
x ∈ N such that:
– either K ≥ 1, lif∗(x.dir1) − lif∗(x.dir2) = K, y = x.dir2 and x.dir1 is a

critical node;
– or K ≤ 0, lif∗(x.dir1) − lif∗(x.dir2) = K − 1, y = x.dir1 and x.dir2 is a

critical node.

For the second case, we also call y a critical child of x. Moreover, a critical path
w.r.t. lif∗ is a path from a child of T to a leaf consisting of critical nodes only.

As an example, Fig. 5c shows a binary tree rooted by x. The shaded nodes
are critical nodes and curved edges are two critical paths w.r.t. height∗. (See
definition of height∗ in Fig. 3.)

Lemma 5 (Length bound for critical paths). Let lif∗ be a Max-based func-
tion with intermittence r and with a local constraint υ, let T be a d-ary tree.
Then for any critical path of T w.r.t. lif∗, the number of nodes satisfying υ on
the path is at least � lif∗(T )−1

(d−1)Cr+1�, where C is the balance bound of lif∗.
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3.2 Tailorability

The tailorability of various functions/predicates is the crux of guaranteeing the
small model property, which in turn guarantees the decidability. As mentioned
before, non-measure functions/predicates can be easily preserved as long as the
tailoring does not affect witness nodes.

Lemma 6 (Tailorability for non-measure functions and general predi-
cates). Let T = (N, pf, df) be a tree, S ⊂ N be a subset of nodes.

Then if the height of T is greater than P + F + |S|, there is a tailored tree
T ′ of T such that

(i) T ′ contains all nodes of S;
(ii) f∗(T ′) = f∗(T ) for any increasing/decreasing Int function f∗;
(iii) gp∗(T ′) ↔ gp∗(T ) for any general predicate gp∗.

Proof See [1]. ��
For a Max-based function, a large tree can be tailored by removing exactly

one node from every critical path; hence the function value is reduced by 1.
Similarly, Sum-based functions can also be reduced by 1 through tailoring.

Lemma 7 (Tailorability for Max-based function). Let T = (N, pf, df) be a
d-ary tree, S ⊂ N be a subset of nodes. Let lif∗ be a Max-based measure function
with intermittence r and balance bound C. Then if lif∗(T ) > (P +M +F + |S|+
1) · ((d − 1)Cr + 1) , there is a tailored tree T ′ of T such that

(i) T ′ contains all nodes of S;
(ii) f∗(T ′) = f∗(T ) for any increasing/decreasing Int function f∗;
(iii) gp∗(T ′) ↔ gp∗(T ) for any general predicate gp∗;
(iv) lif∗(T ′) = lif∗(T ) − 1;
(v) mp∗(T ′) ↔ mp∗(T ) for any lif∗-related predicate mp∗.

Proof. Let the definition of lif∗ be ite
(
isNil(x), 0, . . . + iter(υ

[
x
]
, 1, 0)

)

Consider an arbitrary critical path w.r.t. lif∗ in T . By Lemma 5, the number of
nodes in the path satisfying the local constraint υ from the definition of lif∗ is
at least

� lif∗(T ) − 1

(d − 1)Cr + 1
� ≥ � (P + M + F + |S| + 1) · ((d − 1)Cr + 1)

(d − 1)Cr + 1
� = P +M + F + |S| + 1

Let N be the set including all these nodes. We denote a node in N as nj

if it is the j-th highest one in the set. For each j, consider the set of nodes
Nj

def
= {n | n ≺ nj ∧ n 
� nj+1}, where n ≺ nj denotes that n is a descendant of

nj . Intuitively, Nj is the root or a descendant of a sibling of nj+1. Notice that
there are at least P + M + F + |S| + 1 such sets and they are all disjoint, i.e.,
there is a set of at least P + M + F + 1 nodes such that for every node j in the
set, Nj ∩ S = ∅. Furthermore, consider the witness node for every f∗(T ), where
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f∗ is an increasing or decreasing Int function, among the remaining at least
P +M +F +1 nodes, at least P +M +1 ones are nodes for which corresponding
set Nj does not contain any witness nodes. Moreover, as the number of all
predicates is P + M , there is at least one node l such that nl and nl+1

2 agree
on the evaluation of all general predicates and lif∗-related predicates.

Now we can replace the subtree rooted by nl with the subtree rooted by nl+1

to form a tailored tree Tl. Notice that Tl holds the first three properties for the
desired tailored tree:

1. Tl retains all nodes of S, as Nj ∩ S = ∅.
2. f∗(Tl) = f∗(T ) for any increasing or decreasing f∗.
3. gp∗(Tl) if and only if gp∗(T ) for any general predicate gp∗.

The reason for properties (i) and (ii) to hold is straightforward. For property
(iii), consider three situations:

1. if gp∗(T ) is true, so is gp∗(Tl) by Lemma 4.
2. if gp∗(T ) is false and gp∗(nl) is true, then T does not satisfy gp due to a path

not affected by the tailoring. Hence gp∗(Tl) remains false.
3. if gp∗(T ) is false and gp∗(nl) is false, by our assumption about l, nl and nl+1

agree on the evaluation of all general predicates. Hence gp∗(nl+1) is also false.
Then by Lemma 4, gp∗(Tl) is also false.

Moreover, as nl and nl+1 agree on all predicates, the tailoring also preserves any
lif∗-related predicate mp.

This tailoring also removes exactly one node from N for the critical path
we are considering. One can continue this tailoring for other critical paths until
all critical paths have been shortened and the value of lif∗ is reduced by 1.
We claim that the resulting tree is just the desired tailored tree T ′. As each
tailoring guarantees the first three properties, we only need to show the last two
properties. Property (iv) is obvious: all critical paths of z are shortened and
lif∗(z) is reduced by 1. For Property (v), we prove it by a bottom-up induction
for any node z under which a tailoring took place. The evaluation of any lif∗-
related predicate mp∗(z) is not affected: if the subtree under z replaced another
subtree rooted by z′, mp∗(z) if and only if mp∗(z′) is true; otherwise, there was
a separate tailoring for each critical child of z. Therefore

– by induction hypothesis, mp∗(z.dir) is preserved for any mp∗ and any dir;
– local Int terms are not affected, as z is unchanged during the tailoring;
– for any increasing or decreasing function f∗ and any child T.dir, the value of

f∗(T.dir) is preserved during every tailoring and still unchanged;
– similarly, gp∗(T.dir) for any general predicate gp∗ is unchanged;
– for any critical child T.dir, lif∗(T.dir) only occurs in subtractive formulae in

the recursive definition for lif∗(x). Notice that lif∗(T.dir) is decreased by 1
and so is any other critical lif∗(T.dir′), the evaluation of these subtractive
formulae will be unaffected. ��

2 Let nl+1 be nil if |N | ≤ l.
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Lemma 8 (Tailorability for Sum-based function). Let T = (N, pf, df) be a
d-ary tree, S ⊂ N be a subset of nodes. Let eif∗ be a Sum-based measure function
with intermittence r. Then if eif∗(T ) > 2 · (|S| + F + 2P ) − 1, there is a tailored
tree T ′ of T such that

(i) T ′ retains all nodes of S;
(ii) f∗(T ′) = f∗(T ) for any increasing/decreasing Int function f∗;
(iii) gp∗(T ′) ↔ gp∗(T ) for any general predicate gp∗;
(iv) eif∗(T ′) = eif∗(T ) − 1;

Proof. Let the definition of eif∗ be ite
(
isNil(x), 0, . . . + iter(υ

[
x
]
, 1, 0)

)
.

Let N be the set including all nodes satisfying υ. Note that |N | = eif∗(T ) ≥
2 · (|S| + F + 2P ). Consider those nodes in N but not above two other nodes

in N from two different branches: N ′ def
= {n | n ∈ N , 
 ∃n1, n2, dir1, dir2 : dir1 
=

dir2 ∧n1 ≺ n.dir1 ∧n2 ≺ n.dir2}. Similar to the proof of Lemma7, for each node
n ∈ N ′, T can be tailored by removing the subtree rooted by n or replaced with
its subtree preserving all nodes from N ′. We denote the set of removed nodes
Nn. Moreover, it is not hard to see that |N ′| ≥ � |N |+1

2 � ≥ |S| + F + 2P + 1.
Now we remove from N ′ every node n such that Nn ∩ S 
= ∅ or Nn contains

the witness node for f∗(T ) for a increasing or decreasing Int function f∗. Let
the set of the remaining nodes in N ′ be N ′′. As the number of removed nodes
from N ′ is at most |S| + F , |N ′′| ≥ 2P + 1. Therefore there are at least two
nodes n1, n2 ∈ N ′′ such that n1 and n2 agree on all general predicates. If n1 and
n2 are on the same path and n1 is above n2, then we tailor Nn1 ; otherwise we
tailor Nn2 . WLOG, assume the tailoring replaces n2 with n′

2 and forms T ′. The
tailoring satisfies all desired properties:

1. T ′ retains all nodes of S as Nn2 does not contain any node of S.
2. T and T ′ agree on all increasing/decreasing functions as all witness nodes are

retained.
3. T and T ′ also agree on all general predicates: for any gp∗, if n2 and n′

2 agree
on gp∗, the preservation can be propagated up to the root of T . Otherwise,
gp∗(n2) is false and gp∗(n′

2) is true. Notice that n1 and n2 are not on the
same path in this situation – otherwise n′

2 is between n2 and n1 and does not
satisfy gp∗. Then n1 is not affected by the tailoring and gp∗(n1) remains false
and propagates up to the root: gp∗(T ) remains false.

4. By the definition of N , n2 is the only node in Nn2 that satisfies the local
constraint ε; hence eif∗(T ′) = eif∗(T ) − 1. ��

3.3 Decidability

Now we are ready to show the small model property for Dryaddec.

Theorem 1. Let ϕ be a Σ-formula in Dryaddec. Then there is a height bound
hϕ such that ϕ is satisfiable if and only if it can be satisfied by trees with height
at most hϕ.
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Proof. According to Lemma 1, we assume ϕ is normalized and satisfiable. Con-
sider any m disjoint trees T1 through Tm satisfying ϕ. For any Ti, we construct a
subset of nodes Si as follows: for every literal j ∈ sf∗(xi) where sf∗(x) is an IntSet
function recursively defined as ite

(
isNil(x), ∅,

( ⋃
dir sf∗(x.dir)

) ∪ ST
[
x
])

,

there must be a witness node y such that j ∈ Ti

[
y
]
. We add y to Si. For a fixed

location variable xi, there are up to En atomic formulae of the form j ∈ sf∗(xi).
Hence there are up to En nodes in the subset Si constructed for Ti.

Now if xi is related to a Max-based measure function, we claim the following
height bound: hϕ = (En+P +M +F +1)·((d−1)Cr+2)+Dht+(m−1)Dsub−1.
for a set of variables J including xi. We define J recursively as the smallest set
satisfying the following properties:

– xi belongs to J ;
– if lif∗(x1) − lif∗(x2) ≥ K occurs in ϕ and the inequation is tight, i.e., the

model we are considering satisfies lif∗(x1) − lif∗(x2) = K, then x2 belongs to
J if x1 does.

Similarly, if xi is related to a Sum-based measure function eif∗, we claim the
following size bound: Uϕ = 6(En + F + 2P ) − 3 + 2Dsz + 2(m − 1)Dsub. Note
that the size bound is trivially a height bound as well. The proofs for the two
bounds hϕ and Uϕ can be found at [1].

If xi is not related to any measure function, we claim a height bound En +
P + F . When Ti’s height is greater than the bound, by Lemma6, it can be
tailored to T ′

i and have all set-inclusions, non-measure Int functions and general
predicates preserved.

Now we obtain a tree T ′
i with strictly fewer nodes. By assumption, Ti is the

smallest model and T ′
i should not satisfy ϕ. In the rest of the proof, we will show

they do satisfy ϕ; and the contradiction concludes the proof.
As ϕ is quantifier-free, we only need to show that for any literal in ϕ, if Ti

satisfies it, so does T ′
i . We prove this for each type of literals:

Measure-Related Predicate. For any measure-related predicate mp∗(xj) in
ϕ, xj must be involved in a Max-based measure function lif∗ or not involved in
any measure function. Replacing Tj with T ′

j guarantees that lif∗(T ′
j) = lif∗(Tj)−

1, and according to Lemma 7, mp∗(Tj) = mp∗(T ′
j).

Measure-Related Inequation. For any atomic formula f∗(xi) − f∗(y) ≥ K
affected by the tailoring, the second rule for the construction of J guarantees that
xi is in J . If f∗(xi)−f∗(y) is strictly greater than K or less than K, as the value
of f∗(xi) is reduced by only 1 in the course of shrinking, the inequation is still
satisfied or unsatisfied. Otherwise, f∗(xi) − f∗(y) = K, then y is also contained
in J . In that case, f∗(xi) is also reduced by 1. Hence f∗(xi) − f∗(y) ≥ K will
remain satisfied or unsatisfied in T ′

i .
For any atomic formula f∗(x) ≥ K affected by the tailoring, the tailoring

only happens when f∗(x) is greater than K before the tailoring. We have shown
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above that f∗(x) ≥ K is still satisfied after each tailoring. Hence the satisfiability
is preserved.

For any atomic formula f∗(y) ≤ K, the tailorings will make it easier to be
satisfied.

Non-measure Predicate or Function. By Lemmas 7 and 8, any tailoring
described above does not affect the evaluation of any non-measure predicate or
function, including any general predicate and increasing/decreasing function.

Set Inclusion. For any j ∈ sf∗(xj) in ϕ satisfied by Tj , if it occurs positively,
the witness node is in S and will be preserved during the tailoring from Tj to
T ′

j ; hence it is satisfied by T ′
j as well. If Tj does not satisfy j ∈ sf∗(xj), as the set

sf∗(xj) becomes smaller during the tailoring (by Lemma3), T ′
j does not satisfy

j ∈ sf∗(xj).
isNil predicate and other boolean variables. These are not affected by

tree tailoring and obviously unchanged. ��
Corollary 1. The satisfiability problem of Dryaddec is decidable. For a fixed
signature Σ and a fixed set of recursive functions, the problem is in NEXPTIME.

Proof. Given a Dryaddec formula ϕ with maximum constant bound D (includ-
ing subtractive, size and height bounds), by Theorem1, a minimal satisfying
model of the normalized formula consists of m disjoint trees, each of which has a
bounded height O(n+mD), i.e., there are up to 2O(n+mD) nodes in the smallest
model. Hence one can unfold every recursive function/predicate in the formula
for 2O(n+mD) times and leave them uninterpreted. The resulting formula is equi-
satisfiable with ϕ and obviously decidable as it is in the theory of quantifier-free
uninterpreted functions and linear integer arithmetic (QF UFLIA), which is NP-
complete. As the size of the QF UFLIA formula is 2O(n+mD), the satisfiability
of Dryaddec is decidable and is in NEXPTIME.

If Σ does not involve any Max-based measure function, then the size of
the tree and the QF UFLIA formula is bounded by O(n + mD), and the time
complexity becomes NP-complete. ��

4 Experiments

To demonstrate the expressivity of Dryaddec and the efficiency of the decision
procedure, we implemented the decision procedure and solved 220+ Dryaddec

formulae. These formulae encode various problems from three verification/syn-
thesis scenarios: natural proof verification, fusion of recursive tree traversals,
and synthesis of CLIA functions. The implementation is SMT-based: for each
formula, we first analytically computed the height bound; then the decision pro-
cedure encoded the Dryaddec formula to a QF UFLIA formula with the com-
puted bound, and invoked an SMT solver to solve the formula.
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Applications. The first set of 61 Dryaddec formulae is for program verifi-
cation. We aim to verify the functional correctness of five tree-manipulating
programs, i.e., every routine should ensure that the returned tree after inser-
tion remains a corresponding data-structure. We have described insertToLeft in
Sect. 1; BST-insert, Treap-insert, AVL-insert and RBT-insert are self-explanatory.
We manually broke down each program into basic blocks and wrote all of the
Natural Proof Verification Conditions (NPVC) following the NPVC-generation
algorithm adapted from [26]. For sanity checking, we also manually implanted
some artificial bugs to the programs and created the corresponding NPVCs.

The second set of 48 formulae is for checking the fusibility of recursive tree
traversals. Fusion of tree traversals arises in numerous settings [8,17,18,27,31,
37,43,44,47] for performance concern. One of the crucial parts for this fusion
process is to check the fusibility of two traversals, i.e., if there exists a fused
traversal that has identical behavior with the original two traversals. We used
Dryaddec to check all possible fusions of two pairs of traversals: a pair of height-
based, mutually recursive traversals and another pair of a post-order traversal
execute before a pre-order traversal. Neither can be handled by state-of-the-art
checkers [48]. Please find more details of encoding fusibility to Dryaddec at [1].

The last set of 112 formulae is for synthesizing Conditional Linear Integer
Arithmetic (CLIA) functions. The goal is to synthesize a sequence of arith-
metic operations that implements an unknown function described by a formula.
Dryaddec formulae are created by our in-house Syntax Guided Synthesis SyGuS
synthesizer [13] as queries raised from the Counter-Example Guided Induc-
tive Synthesis (CEGIS) algorithm. We adopted 23 benchmarks from the 2017
SyGuS [2] competition, for which the queries fall into Dryaddec. The detail of
the CEGIS algorithm and the Dryaddec encoding can be found at [1].

Table 1. Height/Size bounds for different scenarios (Metrics defined in Fig. 4)

Scenario Signature E P M F r C Dsub Bound

BST mutation bst∗, keys∗,max∗,min∗ 1 1 0 2 0 0 0 n+ 3

Treap mutation treap∗, prts∗,max prt∗ 2 1 0 3 0 0 0 n+ 4

keys∗,max key∗,min key∗

AVL mutation height∗, avl∗ 0 0 1 0 1 2 3 3m − 2

RBT mutation bh∗, rbt∗ 0 0 1 0 2 1 3 3m − 2

CLIA {exp∗
specf ,F | ∅ ⊂ F ⊆ G} 0 2|G| − 1 0 0 0 0 0 |G| · |specf |

Fusion dp∗, schd∗ 0 2 0 F 0 0 0 F + 2

Bound Optimization. We implemented the decision procedure with a set of
optimizations. The height/size bound derived in Theorem1 is general and loose,
affecting the decision procedure’s scalability. We developed many optimization
strategies for different situations. Every strategy is automatically applied when
the corresponding condition is satisfied. Table 1 shows the best bounds we obtain
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for each scenario after all applicable optimizations. Below we explain the main
optimization strategies we developed.

To check the satisfiability of a formula ϕ, we first converted ϕ to the Disjunc-
tive Normal Form (DNF) and computed the height/size bound for each disjunct
separately, as ϕ is satisfiable if and only if one of the disjuncts is satisfiable. This
helps us compute a better bound in many situations, as for each disjunct, at
least one or more factors used in the bound computation, e.g., n, m, Dht, Dsz

and Dsub, can be reduced.
Analyzing how variables occur in ϕ can also be helpful. For example, the

number of location variables m only contribute to the bound with the term
(m − 1)Dsub. This term is concise only if there is a chain of variables x1, . . . , xm

such that for any i < m, there is a literal lif∗(xi) − lif∗(xi+1) ≥ K in ϕ
with a positive K. Hence the number m can be improved to |V | + 2 where
V = {x | there are y1, y2 and positive K1,K2 such that lif∗(x) − lif∗(y1) ≥
K1 and lif∗(y2) − lif∗(x) ≥ K2 occur in ϕ}.

Moreover, when a location variable is involved in the regular height∗ function,
the local constraint υ is true and trivially satisfied by all nodes. Hence in the
proof of Theorem 1, the claim lif∗(xi) − L ≤ En + P + M + F can be improved
to lif∗(xi) = 0. As the intermittence r is trivially 1, the height bound can be
improved to (En + P + M + F + 1) · ((d − 1)C + 1) + Dht + (m − 1)Dsub.

We also observed that the definitions of avl∗ and rbt∗ do not involve any
positive constant, e.g., there is no formula lif∗(x.dir) − lif∗(x.dir′) ≥ K with
positive K. For these measure-related predicates, if they only occur positively in
a Dryaddec formula ϕ, the height bound computed in Lemma7 can be improved,
because we only need to tailor those paths with maximum number of nodes
satisfying the corresponding measure function lif∗’s local constraint υ. Once all
of these paths are tailored, the value of lif∗ is reduced by 1; moreover, these
tailorings make the measure-related predicates easier to be satisfied. Hence the
balancedness factor (d − 1)Cr + 1 can be skipped and the height bound for
Lemma 7 becomes P + F + |S|; the height bound for lif∗-related variables in
Theorem 1 also can be improved to (2En + 2P + 2F + 1) + Dht + (m − 1)Dsub.

For CLIA synthesis, with a set of counterexamples G, there are 2|G| − 1
predicates and the height bound should be 2|G| − 1 according to Theorem 1.
However, we can easily show an alternative bound which is usually better: |G| ·
|specf | where |specf | is the number of distinct f -terms in ϕ, e.g., those terms of
the form f(v1, . . . , vn): no matter how large a decision tree T is, concretizing the
|specf | terms for each counterexample will lead to up to |specf | leaf nodes and
the whole set G will lead to up to |G| · |specf | leaf nodes in T . Let this set of
leaves be S and we can tailor T to tailorS(T ), which is of height up to |G| · |specf |
and does not affect the evaluation of any f -term.

Performance. Our implementation leverages Z3 [33], a state-of-the-art SMT
solver as the backend QF UFLIA solver. The experiments were conducted on a
server with a 40-core, 2.2 GHz CPU and 128 GB memory running Fedora 26.
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Table 2. Performance for program verification and fusibility checking

Category Formulae D
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(K
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)
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BST insert
nil, rec l pre, rec r pre ≤48 5(11) ≤161 <1 (⊥) Nrec l post, rec r post

rec r post bug 48 5(11) 161 0.3 (100.5) Y

Treap insert
nil, rec l pre, rec r pre, rec l prt le, ≤108 7(17) ≤1,696 <12 (⊥) Nrec r prt le, rec l r rtt, rec r l rtt

rec l prt le bug, 88 7(17) 1,172 0.7 (89.8) Y

AVL insert

nil, rec l pre, rec r pre, rec l no rtt,

≤197 7(10) ≤399 <1 (<6) N
(balancedness)

rec l r rtt, rec r no rtt, rec r l rtt,
rec l lr rtt, rec r rl rtt,
rec l df 0, rec r df 0

rec r rl rtt bug 197 7(10) 399 2.7 (63.2) Y

AVL insert nil, rec l pre, rec r pre,
≤134 5(11) ≤271 <1 (⊥) N(sortedness) rec l no rtt,, rec r no rtt, rec l r rtt,

rec r l rtt, rec l lr rtt, rec r rl rtt

RBT insert

nil, rec l pre, rec r pre, rec l l blk,

≤150 7(10) ≤464 <1 (<6) N
(balancedness)

rec l r rd, rec l ll rd, rec l all blk,
rec r r blk, rec r l rd, rec r rr rd,
rec r all blk, rec l lr rd, rec r rl rd

l r rd bug 142 7(10) 279 0.4 (9.4) Y
nil, rec l pre, rec l l blk, rec r pre,

≤136 5(11) ≤271 <1 (⊥) NRBT insert rec r r blk, rec l r rd, rec l lr rd,
(sortedness) rec l ll rd, rec l all blk, rec r l rd,

rec r rl rd, rec r rr rd, rec r all blk
InsertToLeft nil, rec pre, rec post ≤28 7 ≤216 <1 N

Fusion schd lrab, schd rlab 4 5 84 <1 N

(post pre)
schd lrba, schd rlba 4 5 84 <1 Y
unfusible schd(20) 4 6 <216 <1 Y

Fusion schd lra1b2, schd rla1b2,
4 7 604 <3 N

(mutl rec)
schd lrb2a1, schd rlb2a1

unfusible schd(20) 4 9 <3,304 <7 Y

Table 2 summarizes the experimental results on correctness verification and
tree traversal fusion. For each Dryaddec formula, we report the formula size, the
analytically computed height bound, the size of the encoded Z3 constraint in KB,
the time spent by Z3 in seconds (⊥ for timeout to 30 min) and the satisfiability
result. Bounds computed from Theorem 1 and corresponding Z3 running time
are shown in parentheses if Bounds computed from Theorem1 are not equal
to the optimized bounds. For the program verification examples, the NPVCs
generated from different basic blocks vary in their sizes, but share the same height
bound. Experiments show that the height bound is critical for the performance
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Table 3. Performance for SyGuS benchmarks synthesis

Category Formulae Dryaddec size Time(s)

Multiple functions fg fivefuncs(3), fg sixfuncs(3), fg sevenfuncs(3), <279 <1

fg eightfuncs(3), fg ninefuncs(3),

fg tenfunc1(3), fg tenfunc2(3)

Polynomial fg polynomial1(3), fg polynomial2(3), <60 <1

fg polynomial3(3), fg polynomial4(4)

Other CLIA fg max2(7), fg VC22 a(17) <2,227 <1

INV ex11-new(18), ex11(17), ex14 simp(3), ex14 vars(3), <936 <1

formula22(1), formula25(1), formula27(1),

treax1(3), trex1 vars(3), vsend(4)

of our decision procedure. Our bound optimization can significantly decrease
the bounds, making the decision procedure scale well to solve all benchmarks.
Table 3 lists the names of CLIA synthesis problems, each followed by the number
of formulae raised to solve it, the Dryaddec formula size and synthesis time. All
queries for CLIA synthesis are solved in negligible time.

5 Related Work

It is well known that the First-Order Logic (FOL) of finite graphs is undecid-
able [51], and the decidability can only be obtained by restricting the logic or the
class of graphs. There is a rich literature on logics over tree-like structures [7,21].

PALE [32] has been developed to verify all structures that can be expressed
using graph types [21], by reducing problems to the MONA system [12]. Nonethe-
less, PALE and other similar techniques [11,29,57] do not reason with the data
stored in the structure. Separation logic [35,45] has been a popular logic for
reasoning with heap structures. Many decidable fragments have been identified.
There has been significant efforts on decidable logic for structure properties of
list-like structures. SLP [34] and SeLoger [6,10] are designed to check validity
of the entailment problem for separation logic over pointers and lists. Iosif et
al. [14] extend separation logic with recursive definitions to define structures of
bounded tree-width, and guarantee the decidability by classical MSO reasoning.

The last decade has seen logics for reasoning about both the structure prop-
erties and data properties. The Lisbq [22] logic used in the Havoc system is
a well known decidable logic; it obtains decidability by syntactically restrict-
ing the reachability predicates and universal quantification. The CSL [3] logic is
designed in a similar vein, with a different set of syntactic restrictions that allow
it to express doubly-linked lists. Neither Lisbq nor CSL can handle basic tree
data-structures such as binary search trees. AFR [15] is also a decidable frag-
ment of first-order logic with transitive closure for list-like structures. The GRIT
logic [40,41] is capable to handle tree structures; its decidability is obtained by
reducing the separation logic to a decidable fragment of first order logic. GRIT
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is decidable for reasoning local data properties, such as sortedness, but mea-
surements of trees cannot be expressed. The Strand logic [24,25] combines a
powerful tree logic with an arbitrary data-logic. If the underlying data-logic is
decidable, a fragment of Strand is also decidable. As the first decidable logic
for binary search trees, a main limitation of Strand is it cannot express any tree
measurement. In other words, AVL trees or red black trees cannot be defined.
The underlying logic in the type checker Catalyst [19] is decidable but Cata-
lyst cannot handle measurements either. In contrast, combining term algebra
and Presburger arithmetic [28,58] yields decidable theories that can model tree
balancedness of red black trees, but not sortedness.

More recently, several automatic verification systems for heap-manipulating
programs have been developed. Liquid Types [20,46] handle measurements by
folding or unfolding the recursive definitions systematically and then treat the
refined types as uninterpreted functions. As the number of unfolding or folding
needed is unbounded, the system has to give up either termination or complete-
ness. Inherited the approach from Liquid Types, LiquidHaskell [52–55] cannot
guarantee termination and completeness at the same time either. Apart from
Dryad and natural proofs, by which our decidable logic is inspired, [49,50] and
[4] exploit recursive definitions and proof tactics that unfold the definitions tac-
tically. These approaches can handle arbitrary combinations of data, shape and
measurement properties for trees, but give up general decidability, as mentioned
in Sect. 1 and explained below.

Recall the insertToLeft example we described in Sect. 1. To reason about the
recursively defined full-treeness and tree-size in Leon, one has to define an ad
hoc abstraction function α that maps trees to the domain (Int, Boolean), whose
first and second elements represent the tree size and full-treeness, respectively.
Then Leon can decidably verify the insertToLeft example only if α is sufficiently
surjective (see Definition 7 of [49]), which is not the case. To show α is not
sufficiently surjective, it suffices to find a positive integer p such that for an
arbitrarily large tree t with α(t) = (i, b), the property |α−1(i, b)| > p cannot be
characterized by a linear arithmetic formula Mi,b(c). Now let t be an arbitrarily
large non-full tree such that α(t) = (i, false). Notice that i, as the first part of the
abstraction, represents the size of the tree t and is arbitrarily large, too. Then the
term |α−1(i, b)| essentially means the number of different non-full trees with size
i. As the total number of binary trees of size i can be computed combinatorially
as (2i)!

(i+1)!·i! and there is a single full tree when i = 2k − 1 for some k. Hence, the
property |α−1(i, false)| > p can be essentially captured by the following formula

Mi,false ≡ (2i)!
(i + 1)! · i!

− ite(∃k : i = 2k − 1, 1, 0) > p

Obviously, this Mi,false is too complicated and not equivalent to any linear arith-
metic formula. Therefore, the abstract domain (Int, Boolean) representing size
and full-treeness is not sufficiently surjective and hence cannot be reasoned by
Leon in a decidable fashion.
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The more recent following work [23,38] either only handle tree with bounded
size in a decidable fashion or can only verify the red-black properties and the
black-height of the tree, i.e., they cannot verify the functional correctness of AVL
or red-black trees manipulating programs. A more recent work [56] related to
Liquid Types also shows decidability for transparent formulae; but the formulae
handled in our experiments are usually non-transparent.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. 1837023.
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Abstract. This paper presents an algorithm for the structure embed-
ding problem: given two finite first-order structures over a common rela-
tional vocabulary, does there exist an injective homomorphism from one
to the other? The structure embedding problem is NP-complete in the
general case, but for monadic structures (each predicate has arity ≤ 1)
we observe that it can be solved in polytime by reduction to bipartite
graph matching. Our algorithm, MatchEmbeds, extends the bipartite
matching approach to the general case by using it as the foundation of
a backtracking search procedure. We show that MatchEmbeds outper-
forms state-of-the-art SAT, CSP, and subgraph isomorphism solvers on
difficult random instances and significantly improves the performance of
a client model checker for multi-threaded programs.

1 Introduction

This paper introduces and addresses the structure embedding problem, an algo-
rithmic problem in finite model theory. The task is to determine whether a given
first-order structure contains an isomorphic copy of another (e.g., if both struc-
tures in question are graphs, this is exactly the subgraph isomorphism problem).
The structure embedding problem is NP-complete in general, but applications
in software model checking demand algorithms that work well on instances that
arise in practice.

A finite relational structure (simply structure in the following) consists of a
finite set (the structure’s universe) and a collection of relations over that set.
For example, a graph is a structure where the universe is the set of vertices and
which has a single binary relation, incidence. Structures are objects of interest
in the fields of finite model theory and the theory of databases. A structure
embedding is an injective homomorphism from one structure to another, and the
structure embedding problem is to determine whether such an embedding exists
between two given structures.

In the context of model checking, the structure embedding problem arises in
abstract state space exploration of parameterized concurrent programs—multi-
threaded programs with arbitrarily many threads each running the same code.
Analogously to the way that the state of a (non-parameterized) program can be
modeled by a valuation of a finite set of predicates, the state of a parameterized
c© Springer Nature Switzerland AG 2019
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program can be modeled by a structure: the universe of the structure is a set
of threads, and each relation represents a collection of program properties that
hold. For example, a structure with universe {1, 2, 3} and two monadic relations
X = {1} and Y = {2, 3} might represent a configuration with three threads
{1, 2, 3} where thread 1 is at location X and threads 2 and 3 are at location
Y . Inter-thread relationships are represented with higher-arity predicates—e.g.,
a linear order on process identifiers might be represented by a binary relation
PidLt = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}. The structure embedding problem is exactly the
problem of determining whether one such abstract state subsumes another (and
so can be pruned from the state expiration).

Predicate automata are an automaton model that has been proposed for
use in verification of multi-threaded programs [8,9], that utilizes structures to
model program states. The state space of a predicate automaton is infinite, and
the emptiness problem—the fundamental problem of interest for these automata
— is not decidable in general. However, Farzan et al. [8] give a semi-algorithm
that can determine emptiness of a predicate automaton without enumerating all
reachable states, employing ideas from well-structured transition systems [1,10].
The idea is to exploit structure embeddings to prune the state space: if there is
an embedding from a structure A to another B and A cannot reach an accepting
state, then neither can B. By retaining only those states in the search space that
are minimal w.r.t. embedding, it is often possible to make the search space finite.
In particular, for monadic predicate automata (in which each relation has arity
≤ 1, corresponding to a program property that refers to the local variables of
only one thread), this is always the case.

A single predicate automaton emptiness problem can involve thousands of
structure embedding queries, and each structure embedding query can poten-
tially take exponential time. Fortunately, there are two properties that make
the situation less dire: first, we expect each embedding query to be small (e.g.,
we would not expect to observe a configuration involving hundreds of threads);
second, we can expect structures to be dominated by monadic predicates (i.e.,
the correctness argument of a multi-threaded program somewhat rarely requires
inter-thread properties).

This paper presents MatchEmbeds, an algorithm for the structure embed-
ding problem that is based on the observation that the embedding problem for
monadic structures can be solved in polynomial time by reduction to bipartite
graph matching. We develop a practical algorithm for general structure embed-
ding that uses bipartite graph matching as the backbone of a backtracking search
procedure. Graph matching is used to inform the backtracking search procedure
both on which decision points to branch on and which decisions to make. We
show that this algorithm is practical for both structure embedding problems
that result from predicate automaton emptiness checking and difficult randomly
generated instances.

Paper Organization. The remainder of the paper is structured as follows.
Section 2 formalizes the structure embedding problem and presents the main
contribution of this paper: an efficient algorithm for the structure embedding
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problem. Section 3 discusses various heuristics and implementation issues that
are important for practical performance. Section 4 presents experimental results,
which compares our embedding algorithm against state-of-the-art SAT, Con-
straint Satisfaction Problem (CSP), and subgraph isomorphism solvers. Section 5
discusses related work, and Sect. 6 concludes.

2 Structure Embedding

This section describes our algorithm for the structure embedding problem.
We begin by formalizing finite relational structures and embeddings. We then
describe a reduction of the special case of monadic structure embedding to bipar-
tite graph matching. Finally, we show how to use bipartite graph matching as
the core of a backtracking search algorithm for the general structure embedding
problem.

2.1 Finite Relational Structures and the Embedding Problem

First we recall the definition of finite relational vocabularies and structures:

Definition 1 (Vocabulary, structure). A (finite relational) vocabulary
σ = 〈Q, ar〉 is a pair consisting of a finite set of predicate symbols Q =
{q1, . . . , qn} and a function ar : Q → N associating an arity to each predi-
cate symbol. We say that σ is monadic if for each predicate symbol q ∈ Q, the
arity of q is at most 1.

A (finite) σ-structure A = 〈A, {qA}q∈Q〉 consists of a finite universe A
together with an interpretation qA ⊆ Aar(q) of each predicate symbol q ∈ Q as a
relation over A of arity ar(q).

Example 1. Consider the class of non-deterministic finite automata (NFA) over
the alphabet Σ = {a, b}. This class of NFAs can be represented as σNFA(Σ)-
structures, where σNFA(Σ) is the vocabulary consisting of two monadic predi-
cates Start and Final (representing the start and final states of an automaton,
respectively), and two binary relations Δa and Δb (representing the transition
relation on the letters a and b, respectively).

For example, the automaton pictured below to the left (which recognizes
sequences consisting of pairs of a and b followed by an even number of as) can
be represented by the σNFA(Σ)-structure F pictured below to the right.

12 3

4 5

a

b b

ab a

a

a
b b F � 〈{1, 2, 3, 4, 5},StartF,FinalF,ΔF

a ,ΔF
b 〉,

where:
StartF � {1}
FinalF � {4}

ΔF
a � {〈1, 2〉, 〈1, 5〉, 〈3, 1〉, 〈4, 5〉, 〈5, 4〉}

ΔF
b � {〈1, 3〉, 〈1, 4〉, 〈2, 1〉, 〈4, 4〉, 〈5, 5〉}
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Next, we define structure homomorphisms and embeddings. Intuitively, one
structure embeds into another if a “copy” of it appears in the second structure
(modulo renaming of universe elements). Formally,

Definition 2 (Homomorphism, embedding). Let σ = 〈Q, ar〉 be a vocab-
ulary, and let A and B be σ-structures. A homomorphism is a function
h : A → B such that for all q ∈ Q and all 〈a1, . . . , aar(q)〉 ∈ qA, we have
〈h(a1), . . . , h(aar(q))〉 ∈ qB. We say that a homomorphism is an embedding if
h is injective.

Note that the usual notion of embedding from model theory addi-
tionally requires that a “reverse homomorphism” condition hold: if
〈h(a1), . . . , h(aar(q))〉 ∈ qB then we must have 〈a1, . . . , aar(q)〉 ∈ qA. This con-
dition is not required within the scope of this paper, but if it is desired it can be
encoded by introducing for each relation q in the vocabulary a second relation
qC that holds the complement of q: a function that is homomorphic w.r.t. qC is
reverse homomorphic w.r.t. q.

The structure embedding problem is as follows: given two finite struc-
tures over a common relational vocabulary, determine whether there is an embed-
ding from one to the other. The structure embedding problem is NP-complete,
following immediately from the fact that subgraph isomorphism is a special case.

2.2 Monadic Structure Embedding

Although the structure embedding problem is NP-complete in the general case, it
can be solved in polytime for monadic structures. This section describes a poly-
time reduction from monadic structure embedding to bipartite graph matching,
which can be solved in O(N5/2) time (where N is the number of vertices) [13].

First, recall the definitions of bipartite graphs and matchings:

Definition 3 (Bipartite graph, matching). A bipartite graph G =
〈U, V,E〉 consists of two sets of vertices U and V and a set of edges E ⊆ U ×V .
A matching in G is a set M ⊆ E of edges such that no two edges share a
common vertex. A matching M is total if its cardinality is equal to that of U . A
total matching defines an injective function fM : U ↪→ V where for each u ∈ U ,
fM (u) is defined to be the unique v ∈ V such that 〈u, v〉 ∈ M .

The reduction of the monadic structure embedding problem to bipartite
graph matching is based on the observation that the homomorphism condition
acts on each element of the universe independently. That is, a function h : A → B
is a homomorphism of monadic structures iff for each a ∈ A, h(a) satisfies all
the monadic predicates in B that a does in A (and additionally, the nullary
predicates that hold in A also hold in B, which is trivially checked). To capture
this idea, we introduce signatures and signatures graphs.
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Definition 4 (Signature, Signature graph). Let σ = 〈Q, ar〉 be a vocab-
ulary, let A be a σ-structure, and let a ∈ A be a member of its universe. The
signature sig(A, a) of a in A is defined to be

sig(A, a) � {q ∈ Q : ∃〈a1, . . . , an〉 ∈ qA.∃i.a = ai}

Let A and B be structures over a common vocabulary. The signature graph
of A and B is a bipartite graph Sig(A,B) = 〈A,B,E〉 where the vertices E �
{〈a, b〉 ∈ A × B : sig(A, a) ⊆ sig(B, b)}.

The intuitive idea behind the above definition is that b is a candidate target
of a homomorphism for a iff sig(A, a) ⊆ sig(B, b). The signature graph Sig(A,B)
draws an edge from each element of A’s universe to its candidate targets in B.
There is an embedding from A to B precisely when it is possible to select a
distinct candidate target for each element of the universe—that is, there exists
a total matching for Sig(A,B). Summarizing:

Observation 1. Let A and B be structures over a common vocabulary σ.

1. For any embedding f : A ↪→ B, the graph of f (the set {〈a, f(a)〉 : a ∈ A}) is
a total matching in Sig(A,B).

2. If σ consists only of monadic predicates, then for every total matching M in
Sig(A,B), fM is an embedding.

Example 2. Two monadic structures A and B over the vocabulary consisting of
two monadic predicates q and r appears below to the left. In the center is the
signature graph Sig(A,B); the signature of each element appears below it. To
the right are the two total matchings of the signature graph (equivalently, the
two embeddings of A into B).

A � 〈{1, 2, 3}, qA, rA〉,
B � 〈{1, 2, 3}, qB, rB〉
where:

qA � {1}
rA � {2, 3}
qB � {1, 2, 3}
rB � {1, 3}

1

2

3

{q}

{r}

{r}

1

2

3

{q, r}

{q}

{q, r}

A B Total Matchings:
M1 = {〈1, 2〉, 〈2, 1〉, 〈3, 3〉}
M2 = {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}

2.3 General Structure Embedding

This section presents the MatchEmbeds algorithm, the main contribution of this
paper. MatchEmbeds is a backtracking search algorithm that uses bipartite graph
matching to guide search. The algorithm is designed to be fast on monadic struc-
tures, and have good practical performance on general structures. In the case that
MatchEmbeds is applied to monadic structures, it operates in polytime, effectively
applying the reduction to matching described in the previous section. In general
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r

(a) Structure A

1 5

4 2 3

q

q

q

r r

(b) Structure B

1

2

3

4

{p, q}

{q}

{q, r}

{r}

1

2

3

4

5

{p, q}

{q, r}

{p, q}

{q}

{q, r}

A B

(c) Signature graph Sig(A,B).

M1 = {〈1, 1〉, 〈2, 4〉, 〈3, 2〉, 〈4, 5〉}
M2 = {〈1,1〉, 〈2,4〉, 〈3,5〉, 〈4,2〉}
M3 = {〈1, 3〉, 〈2, 4〉, 〈3, 2〉, 〈4, 5〉}
M4 = {〈1, 3〉, 〈2, 4〉, 〈3, 5〉, 〈4, 2〉}
M5 = {〈1, 1〉, 〈2, 3〉, 〈3, 2〉, 〈4, 5〉}
M6 = {〈1, 1〉, 〈2, 3〉, 〈3, 5〉, 〈4, 2〉}
M7 = {〈1, 3〉, 〈2, 1〉, 〈3, 2〉, 〈4, 5〉}
M8 = {〈1, 3〉, 〈2, 1〉, 〈3, 5〉, 〈4, 2〉}

(d) Total matchings (Embeddings).

Fig. 1. Running example.

(non-monadic structures) it can (in the worst case) take time proportional to the
number of total matchings in the signature graph for the instance.

First, we give an example showing why the reduction to bipartite graph
matching does not work for general structures:

Running Example 1. Consider a vocabulary σ consisting of one monadic relation
p and two binary relations q, r, and the two σ-structures A and B visualized in
Fig. 1(a) and (b). Members of the monadic relation p are illustrated with double
circles; the binary relations are illustrated with labeled edges.

The signature graph Sig(A,B) is depicted in Fig. 1(c). All edges (dotted and
solid) belong to Sig(A,B); the solid edges belong to an embedding, dotted do not.
Observe while Sig(A,B) has eight total matchings, only one of them corresponds
to an embedding.

Intuitively, the reason that the reduction to bipartite graph matching does
not work for general structures is that the homomorphism condition for relations
of arity greater than one is not captured by the signature graph. As a result, for
a given candidate matching M there may be tuples belonging to relations of the
source structure that have no corresponding tuple in the image of fM . This idea
is encapsulated by the following definition of conflict :

Definition 5 (Conflict set). Let A and B be structures over a common vocab-
ulary σ = 〈Q, ar〉, and let f : A → B be a function. The conflict set of f is the
set

conflict(f) � {q(a1, ..., an) : q ∈ Q, 〈a1, ..., an〉 ∈ qA, 〈f(a1), ..., f(an)〉 /∈ qB}.
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Note that f is a homomorphism iff its conflict set is empty.

Running Example 2. Conflict sets for M1, . . . ,M8.
conflict(fM1) � {q(1, 3)} conflict(fM5) � {q(1, 2), q(1, 3)}
conflict(fM2) � ∅ conflict(fM6) � {q(1, 2)}
conflict(fM3) � {q(1, 2)} conflict(fM7) � {q(1, 2)}
conflict(fM4) � {q(1, 2), q(1, 3)} conflict(fM8) � {q(1, 2), q(1, 3)}

The MatchEmbeds algorithm searches the space of total matchings of
Sig(A,B), trying to find a matching that corresponds to an embedding (follow-
ing point 1 of Observation 1). If a given candidate matching is not an embedding,
its conflict set tells us what went wrong, which we can use to guide the search
away from the current candidate matching and hopefully other candidates that
will fail for the same reason. The choices that can be made to guide search away
from a failed candidate matching are encapsulated by decisions:

Definition 6 (Decision). Let A and B be structures over a common vocabulary
σ, G = 〈A,B,E〉 a bipartite graph over A and B, and M a total matching on G.
A decision of M is an edge 〈a, b〉 ∈ M such that (1) the degree of a is greater
than one in G (i.e., there is some other choice available for a), and (2) there is
some conflict q(a1, . . . , aar(q)) ∈ conflict(fM ) that involves a (a = ai for some
i).

MatchEmbeds represents a search space of candidate matchings as a bipar-
tite graph G. It can split the search space by choosing a decision 〈a, b〉 and either
committing to it (by removing every edge incident to a and b in G excluding
〈a, b〉) or eliminating it (by removing 〈a, b〉 from G). But in either case, we would
like to avoid exhaustively searching through all candidate matchings. Further-
more, when we explore the branch of the search space in which we commit to the
decision 〈a, b〉 (which we know was part of a conflict in the “current” candidate
matching) we would like to be able to make progress—to remove matchings from
the search space that fail for the same essential reason. Both of these goals are
accomplished by employing constraint propagation, a classic technique in CSP
solving (more precisely, generalized arc consistency) [23, Chap. 6]. The idea is to
identify edges in G that cannot be part of any embedding and to remove them
(and thereby eliminate any matching that uses them). We formalize this idea
with the notion of consistent graphs (which do not contain such edges):

Definition 7 (Consistency). Let A and B be structures over a common vocab-
ulary σ = 〈Q, ar〉. Given a bipartite graph G = 〈A,B,E〉, we say that an
edge 〈a, b〉 ∈ E is consistent with 〈a1, . . . , aar(q)〉 ∈ qA when for all positions
i ∈ [1, ar(q)] such that a = ai, there is some 〈b1, . . . , bar(q)〉 ∈ qB such that b = bi

and for all positions j ∈ [1, ar(q)], 〈aj , bj〉 ∈ E. We say that G is consistent
when for all 〈a, b〉 ∈ E, all q ∈ Q, and all α ∈ qA, 〈a, b〉 is consistent with α.

Definition 8 (Maximum Consistent Sub-graph). Let A and B be struc-
tures over a common vocabulary σ. Given a bipartite graph G = 〈A,B,E〉, the
maximum consistent sub-graph of G is a graph G′ = 〈A,B,E′〉 such that
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(1) E′ ⊆ E (2) G′ is consistent (3) there is no G′′ such that 1 and 2 hold and
|G′| < |G′′| (G′′ contains more edges than G′). For any G, we define filter(G)
to be the maximum consistent sub-graph of G.

Efficient implementation of filter is discussed in Sect. 3. The crucial property
of filtering is that it preserves all embeddings:

Proposition 1. Let A and B be structures and let G = 〈A,B,E〉 be a bipartite
graph. For any embedding f : A ↪→ B such that G contains the graph of f (for
all a ∈ A, 〈a, f(a)〉 ∈ E), filter(G) also contains the graph of f .

1

2

3

4

1

2

3

4

5

A B

Running Example 3. The picture to the right illus-
trates the maximum consistent subgraph of the signa-
ture graph from the running example (Fig. 1(c)). The
edge 〈2, 1〉 is inconsistent with the constraint q(1, 2)
(i.e., 2 cannot map to 1 because 2 has an incoming
q-edge in A and 1 has no incoming q-edge in B); simi-
larly, the edge 〈2, 3〉 is inconsistent with the constraint
q(1, 2). The edges 〈2, 1〉 and 〈2, 3〉 are removed from the
signature graph, which eliminates half of the candidate
total matchings (M5 through M8). The one total match-
ing corresponding to an embedding (M2) remains, along
with three other candidate total matchings.

Now we have all of the machinery necessary to define our algorithm. We
define MatchEmbeds in terms of the recursive sub-procedure embeds as shown
in Algorithm 1. At a high-level, embeds explores the space of total matchings
in the given bipartite graph G, searching for an embedding (G is initially the
signature graph, Sig(A,B)). We first try to compute a total matching on G.
If we fail then we backtrack, returning false if no further decision is left to
backtrack. Otherwise, we have a candidate total matching M and we check if
fM is an embedding. If so, we return true; otherwise, we select a decision 〈a, b〉
and branch on it.

Some more care is needed to understand how a decision 〈a, b〉 is selected
from M . How can we be assured that there is some decision to select? When
control reaches the decision selection point, we know that (1) G is consistent,
(2) it contains a total matching M , and (3) fM is not an embedding. Since fM

is not an embedding, it must have at least one conflict—say q(a1, . . . , aar(q)).
Some 〈ai, fM (ai)〉 must be a decision, because if none are then G is inconsistent
with 〈a1, . . . , aar(q)〉. Thus, there is always at least some decision to choose. How
do we choose which one? While any choice is enough to ensure correctness of
MatchEmbeds, in practice we found that choosing a decision 〈a, b〉 that min-
imizes the degree of a works well (this is essentially the minimum remaining
values heuristic in CSP literature).

Next, we remark on the design choice that MatchEmbeds explores the branch
that commits to the decision 〈a, b〉 first (after all, we know that 〈a, b〉 is involved
in a conflict). The reason is two-fold. First, observe that for a binary proposition
p(a1, a2) to be involved in a conflict, both 〈a1, fM (a1)〉 and 〈a2, fM (a2)〉 must
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Algorithm 1. MatchEmbeds
Data: A and B finite structures over a relational vocabulary σ = 〈Q, ar〉.
Result: true ⇐⇒ there exists an embedding from A to B.

Function embeds(G)
G ← filter(G)
M ← maximum matching(G)
if |M | �= |G.A| then

return false
end
if fM is an embedding then

return true
end
Select a decision 〈a, b〉 of M
if embeds(G \ {〈u, v〉 ∈ E : u = a xor v = b}) then

return true
else

return embeds(G \ {〈a, b〉})
end

if there is some q ∈ Q with ar(q) = 0, qA �= ∅, and qB = ∅ then
return false

else
return embeds(Sig(A,B))

end

be decisions (otherwise, G is inconsistent)—we must change one of the decisions,
but which one is arbitrary. In either case, the same matching M cannot be com-
puted in the next recursive call to the algorithm. (For a conflict involving an
n-ary predicate, we must decide on n − 1 decisions in the conflict to ensure we
discard the candidate matching). Second, observe that we need not recompute
a matching from scratch: many edges may be shared between the previous can-
didate and the next one. Our implementation uses the algorithm of Ford and
Fulkerson [11] to compute matchings, which benefits from starting from a partial
matching consisting of the edges of the previous candidate matching that were
not removed by filter.

Running Example 4. Figure 2 illustrates the execution of MatchEmbeds on the
embedding instance from the Running Example. We start by computing a total
matching M on G. We observe that fM is not an embedding, and compute its
conflicts and decisions. We select the decision 〈3, 2〉 and filter the graph—the
result is empty. Unable to compute a total matching, we backtrack and blame
the decision 〈3, 2〉; we remove it from the graph and once again filter. We then
compute another total matching on the graph. This matching corresponds to an
embedding from A to B, so we return true.
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Compute Matching:
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Compute Conflicts:

conflict(fM ) = {q(1, 3)}

decisions of M :
{〈1, 1〉, 〈3, 2〉}
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Compute Conflicts

conflict(fM ) = ∅

return true

Fig. 2. The operation of MatchEmbeds on the running example.

3 Discussion

This section discusses some additional ideas that are important for the practical
performance of MatchEmbeds. We also discuss a data structure for organizing
a collection of structures for a multi-source single-target variation of the struc-
ture embedding problem, which is useful for our target application of testing
emptiness of predicate automata.

Refined Signatures. Definition 4 shows how to associate a bipartite graph with
a pair of structures A and B over a common vocabulary σ = 〈Q, ar〉 by drawing
an edge from a ∈ A to b ∈ B iff the set of predicates that involve a in A—the
signature of a in A—is a subset of the predicates that involve b in B. A simple
generalization of this idea is to define a partial order 〈P,≤〉 and a function sig(·, ·)
that maps a structure and a member of its universe into P such that

1. If h : A ↪→ B is an embedding, then sig(A, a) ≤ sig(B, h(a)), and
2. If sig(A, a) ≤ sig(B, b) then for all monadic q ∈ Q such that a ∈ qA we have

b ∈ qB.

The associated bipartite graph for such a refined notion of signature is formed
by drawing an edge from a to b iff sig(A, a) ≤ sig(B, b).

Signatures can be used to encode various properties that are monotone w.r.t
homomorphism (e.g., the size of the connected component of a binary relation
to which an element belongs). Using a more refined notion of signature can
yield smaller signature graphs, which results in graph matching being a more
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informative heuristic. In our implementation of MatchEmbeds, we use the partial
order (Q × N) → N (i.e., multisets of predicates indexed by the position an
element appears), with

sig(A, a)(q) � |{(〈a1, . . . , aar(q)〉, i) : 〈a1, . . . , aar(q)〉 ∈ qA ∧ ai = a}|
E.g., for the special case of a binary predicate e, sig(A, a)(e) is the total degree
of a in the graph 〈A, eA〉.
An Algorithm for Enforcing Consistency. A crucial factor in the practical
performance of MatchEmbeds is the algorithm filter that enforces consistency of
a graph. To support this operation we make use of an auxiliary bipartite graph
Gq = 〈qA, qB, Eq〉 for each predicate q of arity ≥ 2. Our implementation of
filter repeatedly iterates over each Gq as well as the graph G = 〈A,B,E〉 while
performing the following update rules:

1. If (〈a1, . . . , aar(q)〉, 〈b1, . . . , bar(q)〉) ∈ Eq and 〈ai, bi〉 /∈ E for some i, remove it
from Eq.

2. If 〈a, b〉 ∈ E, 〈a1, . . . , aar(q)〉 ∈ qar(q) with a = ai, and there is no edge
〈〈a1, . . . , aar(q)〉, 〈b1, . . . , bar(q)〉〉 ∈ Eq with b = bi, remove 〈a, b〉 from E.

The filter algorithm keeps applying these two rules until no more apply (a fixed
point is reached).

A Structure Embedding Database. In the context of predicate automaton
emptiness checking, the problem of interest is to check whether any structure
within a given set of structures (i.e., the states of the automaton that have
already been explored) embeds into another given structure (i.e., some new can-
didate state). To solve this problem, we require a data structure that stores a
set of structures, and that supports an embedding query operation that can test
if any member of this set embeds into a given structure (ideally without simply
testing embedding for each structure in the set).

We use k-d trees [2] to organize the database of structures, and use range
queries to support multi-source single-target embedding problems. The idea is
to associate each structure A with a vector v(A) ∈ N

d (for some fixed dimension
d) such that if A embeds into B, then v(A) ≤ v(B). By storing structures
in a k-d-tree-based map that is keyed by these vectors, we can support multi-
source embedding queries by using a range query to search for structures keyed
by vectors less than a given target vector, and attempt structure embedding
only for the subset of structures returned. In our implementation, we use |Q|-
dimensional binary vectors where v(A)q = 0 if qA = ∅ and v(A)q = 1 otherwise.

4 Experiments

In this section, we evaluate the performance of MatchEmbeds by comparing it
against three CSP solvers (Gecode [24], HaifaCSP [27], and Google’s or-tools
[20]), two SAT solvers (Lingeling [3] and CryptoMiniSat [26]), and two subgraph
isomorphism solvers (Boost’s implementation of VF2 [19] and Glasgow [16]).
Our experiments are designed to answer three questions:
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1. Does MatchEmbeds improve the performance of its intended client appli-
cation of subsumption checking in state-space exploration of parameterized
concurrent programs?

2. Does the k-d tree data structure improve the performance of many-to-one
structure embedding queries in predicate automata emptiness checking?

3. Is MatchEmbeds capable of solving difficult problem instances?

4.1 Predicate Automata Emptiness

We integrated MatchEmbeds into a prototype implementation of the software
model checking algorithm proposed in [8]. The model checking algorithm oper-
ates by iteratively constructing a predicate automaton that recognizes a safe
set of executions and checking whether all program traces are contained inside
the safe one (so a single verification task involves many predicate automaton
emptiness tests, each of which involves many structure embedding instances).
We experimented with small synthetic benchmark programs that were designed
to stress-test the structure embedding procedure. While these programs are small
and synthetic it allows us to control both the universe and arity of predicates
involved in any structure. We used the API provided with Gecode and Boost to
integrate it into the prototype. We used the text interface provided by HaifaCSP,
or-tools, Lingeling, and CryptoMiniSat which bears a performance penalty.

Count Threads: we consider a family of programs wherein the main thread
spawns some number of threads N , each of which atomically increments a global
variable count, and then finally asserts that count is no greater than N . We
expect the count threads benchmark to produce monadic structures, but to vary
in size with many structures having a universe size close to N , as we need to
explore the execution of all threads to verify that the assertion holds.

main():

count = 0

for i = 1 to N:

fork thread

assert(count <= N)

thread():

count = count + 1

Secret Sharing: we consider a family of programs wherein all threads execute
a protocol that results in having a shared secret. The significance is that the
shared secret forces the use of a binary predicate that expresses that two threads
have the same secret value. The correct protocol is shown in main safe below:
it allocates a secret positive number, spawns an arbitrary number of threads,
sends it to each using the to variable, then checks if it has received a message
in the from variable. If so, it asserts that the received message is equal to its
secret. The incorrect protocol is shown in main bug. It does the same, except
that it computes a new secret for every N threads, where N is a parameter to
the system. The assertion may fail if at least N threads are spawned. The correct
version can be verified in 0.77 s with MatchEmbeds, 0.78 with VF2, 0.80 with
Gecode, 5.36 with Lingeling, 11.02 with CryptoMiniSat, 30.99 with HaifaCSP,
and 41.25 with or-tools.
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main safe():

local secret = *

assume(secret > 0)

from = 0

while (*):

to = secret

fork thread

while (to > 0): skip

if (from > 0):

assert(from == secret)

main bug():

from = 0

while (*):

local secret = *

assume(secret > 0)

for (i = 1 to N):

to = secret

fork thread

while (to > 0): skip

if (from > 0):

assert(from == secret)

thread():

local m = to

to = 0

from = m

We expect the secret sharing benchmark to produce mostly binary structures,
that form a hub-and-spoke topology, since the local threads only interact with
the main thread.

Fig. 3. Proof space benchmarks: count threads (Left), secret sharing (Right). Solid line
indicates k-d tree, dashed line indicates list data structure.

In Fig. 3, we compare the results of each tool, with and without the use of
the k-d tree data structure, on the Count Threads and Secret Sharing paramet-
ric benchmarks. In the Count Threads benchmark, MatchEmbeds substantially
outperforms all other solvers, verifying up to 85 threads; HaifaCSP and Crypto-
MiniSat, the two next closest, reached up to 25. In the Secret Sharing benchmark
we see a different story: almost identical performance from each solver, but a
large performance gain from the k-d tree. When using the k-d data structure,
only a small fraction—less than 1/50th—of the time was spent on embedding
queries. In contrast, without the k-d tree data structure almost the entirety
of the verification task was spent solving embedding instances. We see similar
improvements in the Count Threads benchmark when using MatchEmbeds. For
the 30 thread secret sharing benchmark, we see that the k-d tree only performs
220 thousand embedding queries while the naive method explores 318 million
embeddings. We note a similar reduction in number of embedding queries for
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all benchmarks. We suspect the similar performance of all solvers in the Secret
Sharing benchmark is due to the topology of the structures resulting in easy
embedding instances.

4.2 Hard Instances

The previous experiment demonstrates that MatchEmbeds is able to very quickly
solve the (typically easy) embedding problems that arise in predicate automa-
ton emptiness checking. The second question we would like to answer is whether
MatchEmbeds also works well for larger, more difficult instances. To answer this
question, we compared the performance of MatchEmbeds against SAT, CSP,
and subgraph isomorphism solvers on a suite of hard randomly generated bench-
marks.

(a) Monadic Structures (b) Unlabeled Graphs

(c) Binary Structures (c) Ternary Structures

Fig. 4. Embedding instances solved within time for each benchmark.
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4.3 Random Embedding

Results. We randomly generated a suite of difficult monadic, binary, and ternary
structure embedding problems, pictured in Fig. 4. For each monadic instance, the
source universe size is 40, target universe size is 50, and the vocabulary consists of
3 monadic predicates; the suite has 53 satisfiable and 47 unsatisfiable instances.
For each binary instance, the source universe size is 20, target universe size is
30, and the vocabulary has 3 monadic and 3 binary predicates; the suite has 46
satisfiable, 49 unsatisfiable, and 5 unsolved instances. For each ternary instances,
the source universe size is 10, the target universe size is 30, the vocabulary had
3 monadic, 3 binary, and 3 ternary predicates; the suite has 35 satisfiable, 32
unsatisfiable, and 33 unsolved instances.

Cactus plots comparing the performance of the structure embedding solvers
on the random embedding instances are pictured in Fig. 4. In a cactus plot, the
x-axis denotes the total number of instances solved, and the y-axis denotes time.
A point (x, y) denotes that within a timeout of y, x of the instances can be
solved.

For monadic structures, both HaifaCSP and MatchEmbeds perform well: all
instances can be solved in less than a second—their graphs are barely visible
above the x-axis; the next best solvers, CryptoMiniSat and lingeling, solved 87
and 86 instances respectively. For binary structures, MatchEmbeds is able to
solve 95 instances, solving 60 of these in under one second. CryptoMiniSat,the
next best solver, solved 64 instances and required substantially longer to solve 40
of those instances. VF2 solves 58, OrTools 56, Lingeling 53, HaifaCSP 31, and
Gecode 27 in the 100s time limit. For the ternary benchmark, MatchEmbeds
was able to solve 65 instances where the next best solvers, OrTools and Gecode
could solve only 29 instances, taking more time on many of those instances. VF2
does not appear in the ternary figure as it failed to solve any instances.

Method. We now describe our methodology for randomly generating hard prob-
lem instances.

Generalizing the Erdős-Rényi method for generating random graphs, we gen-
erate random structures as follows: given as parameters a universe size n, a finite
relational vocabulary σ = 〈Q, ar〉, and a density function d : Q → [0, 1], we gen-
erate a random structure A(n, σ, d) by iterating over all k-tuples (a1, . . . , ak) ∈
{1, . . . , n}k and including the proposition q(a1, . . . , an) in A(n, σ, d) with prob-
ability d(q). We generate a random embedding problem by generating two such
random structures (with the same vocabulary, but possibly different universe
sizes and density functions).

We now turn to the problem of how to randomly sample parameters (universe
sizes and predicate densities) that result in hard problem instances, following the
insight of Cheeseman et al. that hard random instances lie near the phase shift—
the parameters used to generate the instances have probability ∼0.5 to produce
satisfiable instances [5]. Similarly to McCreesh et al.’s method for generating
hard subgraph isomorphism instances [17], we fix the source and target universe
sizes and the vocabulary, and search only over densities. We aim to sample
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density functions that achieve near parity between the number of satisfiable and
unsatisfiable embedding instances.

Our method is based on the assumption that parameters with similar
expected number of solutions also have similar probabilities of there existing
at least one solution. The expected number of solutions for a given set of
parameters, which we denote E(n,m, dA, dB), has a simple closed form formula
(which we derive below). Using this formula, we find a target expected number
T (n,m, dA, dB) experimentally, using a binary search for an expected number
such that the ratio between satisfiable and unsatisfiable instances, estimated by
generating 10 instances at random, is nearly 1/2 (there is a 5-5 or 6-4 split).
We then generate a random hard instance as follows. First, we randomly sample
parameters that achieve (nearly) the target number of solutions by using stochas-
tic gradient decent to minimize |T (n,m, dA, dB)−E(n,m, dA, dB)|. Specifically,
we uniformly at random pick a parameter, and perform 1 iteration of stochastic
gradient descent using the partial derivative w.r.t. the chosen parameter, and
repeat this process until E converges (within 0.005) to T . We then use these
parameters to produce random embedding problems until we find one that is
non-trivial (at least one solver takes more than 1 s to solve). To generate the
benchmark suites pictured in Fig. 4, we repeat this process 100 times.

We conclude with a derivation of a formula to calculate the expected number
of embeddings for a random embedding problem. Observe that the number of
injective functions from a set of size n to a set of size m is given by m!/(m−n)!.
For any given injective function h, recall that an ar(q)-tuple belongs to qA with
probability dA(q) and its image, 〈h(a1), . . . , h(aar(q))〉, belongs to qB with prob-
ability dB(q); thus the probability that h satisfies the homomorphism condition
for a given predicate q and ar(q)-tuple is dA(q)dB(q) + (1 − dA(a)). Since there
are nar(q) such tuples and each event is independent, we raise the probabil-
ity to the nar(q) power to get the probability of all ar(q)-tuples satisfying the
homomorphism conditions for q. Taking the product over all q ∈ Q, then gives
the probability that h is a homomorphism. We can multiply this probability
by the total number of injective functions to arrive at the function E that com-
putes the expected number of embeddings for structures sampled using the given
parameters:

E(n,m, dA, dB) =
m!

(m − n)!

∏

q∈Q

(dA(q)dB(q) + (1 − dA(q)))nar(q)

4.4 Unlabeled Subgraph Isomorphism

(Unlabeled) subgraph isomorphism is a special case of the structure embedding
problem that has received considerable attention (see Sect. 5). Figure 4(b) com-
pares the performance of CSP, SAT, and subgraph isomorphism solvers on a suite
of 200 hard random subgraph isomorphism instances from [17]. We included the
Glasgow subgraph isomorphism solver in this benchmark, as it was the leading
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solver in [17]; it is excluded from our other experiments because it does not sup-
port labeled subgraph isomorphism. In this benchmark, all source graphs consist
of 30 vertices and all target graphs contain 150 vertices. Glasgow outperforms
all other solvers on these instances, solving 118; MatchEmbeds performs second
best, solving just 13 instances in the 1000 s time limit. All other solvers solved at
most one instance. The poor performance of MatchEmbeds (relative to the pre-
vious experiments) is expected: MatchEmbeds matching-based heuristic search
is uninformative in this setting. Since the signature of any vertex in an unla-
beled graph is exactly the total degree of that vertex and random graphs are
likely to have many vertices with similar degree, the expectation is that signature
graphs will be dense and MatchEmbeds will have little information to exploit.
We expect more informative signatures to result in MatchEmbeds performing
better on unlabeled graphs.

4.5 Encoding Structure Embedding into CSP

A constraint satisfaction problem consists of a finite set of variables X =
{x1, . . . , xn}, with each variable xi ∈ X associated with a finite domain Di

that determines which values that xi, and a finite set of constraints among those
variables. Given two structures A and B over a common vocabulary 〈Q, ar〉,
we construct the following CSP. We introduce a variable xa for each a ∈ A
with domain Da = {b ∈ B : sig(A, a) ⊆ sig(B, b)}. We add the constraint
alldifferent(X), which asserts that each a must map to a unique b (i.e.
∀xa, xa′ ∈ X.xa �= xa′). Then for each 〈a1, . . . , an〉 ∈ qA we introduce a con-
straint Cα =

∨
〈b1,...,bn〉∈qB(

∧
i xai

= bi) to ensure the homomorphism condition.
The CSP is satisfiable iff A embeds into B.

4.6 Encoding Structure Embedding into SAT

Let A and B be structures over a common vocabulary 〈Q, ar〉. For each edge
〈a, b〉 in the signature graph 〈A,B,E〉 = Sig(A,B), we introduce one propo-
sitional variable pa,b, with the interpretation that pa,b is set iff a maps to b
in an embedding from A to B. For each a ∈ A we introduce a constraint∨

〈a,b〉∈E pa,b to encode that a must have an image. We encode that a has at
most one image ensuring that for each a ∈ A, at most one of {pa,b|b ∈ Adj(a)}
holds, using the sequential counter encoding of that at-most-1 constraint [25].
Similarly, we enforce injectivity by ensuring that for each b ∈ B, at most one of
{pa,b|a ∈ Adj(b)} holds. Finally, for each q ∈ Q and 〈a1, ..., an〉 ∈ qA, we intro-
duce a constraint

∨
〈b1,...,bn〉∈qB(pa1,b1 ∧· · ·∧pan,bn) to encode the homomorphism

condition. The resulting formula is satisfiable iff A embeds into B.

4.7 Encoding Structure Embedding into Labeled Subgraph
Isomorphism

Given a structures A with vocabulary 〈Q, ar〉, we generate a graph G(A). For
each q ∈ Q we introduce a vertex label, lq and for each i ∈ [1, ar(q)] we introduce
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an edge label lqi. Then for each universe element, a ∈ A, we introduce a vertex a
in G. Additionally, for each tuple α ∈ qA, we introduce a vertex vα and for each
i ∈ [1, ar(q)] we introduce an edge 〈vα, ai〉 with edge label lqi. Note, for both
the binary and monadic embeddings, the VF2 implementation allows labeling
vertices and edges with sets of labels and using set inclusion for matching vertex
and edge labels, we are able to directly encode monadic and binary structures
without adding any additional vertices and edges (i.e. l(v) = {q : v ∈ qA} and
l(〈u, v〉) = {q : 〈u, v〉 ∈ qA}).

5 Related Work

Constraint Satisfaction Problems. Constraint satisfaction problems (CSPs)
are a broad class of combinatorial problems that includes structure embedding. A
good introduction appears in [23, Chap. 6]. MatchEmbeds employs several ideas
that are commonly used in resolution algorithms for CSPs, including backtrack-
ing search, filtering (constraint propagation), and heuristics for decision selection
(variable and value selection). The hypothesis of our work, validated in Sect. 4,
was that by exploiting the injectivity feature of structure embedding we could
outperform general-purpose CSP solvers.

Of particular relevance to structure embedding is work on the alldifferent
constraint, which requires a specified subset of variables in the problem to be
assigned distinct values (mirroring the injectivity condition of structure embed-
dings). The work most relevant to ours is Régin’s domain consistency algorithm
for alldifferent. Régin’s algorithm uses biparite graph matching to discover
all edges in a value graph of a CSP (analogous to the signature graph of a struc-
ture embedding problem) that do not belong to any total matching and deletes
them. Efficient algorithms for weaker notions of consistency (namely bounds
consistency) have also been developed [15,21]. A survey on the alldifferent
constraint can be found in [12]. Considering the CSP solvers included in Sect. 4:
HaifaCSP implements Régin’s algorithm [22] and Gecode and or-tools imple-
ment the algorithm of Lopez-Ortiz et al. [15]. The superior performance of
HaifaCSP (particularly for monadic structures) demonstrates the importance
of the alldifferent constraint.

A commonality of these works is that they are constraint propagation tech-
niques: they infer additional constraints on the problem that must be satisfied by
any solution. In contrast, the algorithm presented in Sect. 2.3 uses graph match-
ing as the central search mechanism, guiding both which decisions to make and
when to make them (value and variable selection in the terminology of constraint
programming). Our algorithm exploits the fact that structure embedding prob-
lems involve an alldifferent constraint on all variables, which makes matching
more informative for structure embedding than it is for general CSPs.

Subgraph Isomorphism. Given two graphs G and H, the subgraph isomor-
phism problem is to determine if there exists a subgraph of H that is isomorphic
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to G, or equivalently, to determine whether there exists an injective homomor-
phism from G to H. Subgraph isomorphism has a number of applications, includ-
ing subcircuit identification [18] and finding motifs in biochemical graph data
[4]—see [6] for a broad survey of techniques for and applications of subgraph iso-
morphism. An accessible account describing the differences between some sub-
graph isomorphism algorithms and an experimental comparison between them
can be found in [14].

The subgraph isomorphism problem is a special case of structure embedding,
where the vocabulary of structures is fixed to the vocabulary of graphs consisting
of a single binary incidence relation. A reduction from structure embedding to
labelled subgraph isomorphism (wherein the signature consists only of monadic
and binary predicates) is also possible through constraint binarization [23, Chap.
6]. However, the applications of subgraph isomorphism differ from the setting
of this paper: typically, the source graph is small and the target is very large,
and the problem of interest is to enumerate all injective homomorphisms. In
this paper, the problem of interest is the decision problem to determine whether
there is at least one injective homomorphism, and the expectation is that the
source and target are of similar size.

A common theme in algorithms for subgraph isomorphism is to exploit local
edge structure. In contrast, the algorithm we propose exploits the global struc-
ture of the problem by using graph matching as the foundation of the backtrack-
ing search. We are not aware of an existing algorithm for subgraph isomorphism
that operates in polytime for labelled graphs without edges, which is the ana-
logue of monadic structures. We see from Fig. 4 that VF2 is not competitive on
monadic structures, unable to exploit any local edge structure.

6 Conclusion

In this paper we presented MatchEmbeds, a practical algorithm for the problem
of testing whether one finite relational structure embeds into another. The core
idea is to use bipartite graph matching to drive a backtracking search proce-
dure. The algorithm operates in polytime for monadic structures, but may take
exponential time for general structures. The procedure has been shown to be
effective for problems that arise in practice and for difficult random instances.

It would be interesting to apply matching-based search to other problems
where injectivity constraints are important. For instance, in entailment checking
for separation logic formulas, separately conjoined heap cells in a source formula
must map to separately conjoined heap cells in a target formula. Entailment
checking for the list fragment can be done in polytime using graph homomor-
phism [7], but entailment checking for formulas with existential quantifiers may
benefit from matching-based search.
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Abstract. We introduce and evaluate an algorithm for an ic3-style
software model checker that operates entirely at the level of equality
with uninterpreted functions (EUF). Our checker, called euforia, tar-
gets control properties by treating a program’s data operations/relations
as uninterpreted functions/predicates. This results in an EUF abstract
transition system that euforia analyzes to either (1) discover an induc-
tive strengthening EUF formula that proves the property or (2) produce
an abstract counterexample that corresponds to zero, one, or many con-
crete counterexamples. Infeasible counterexamples are eliminated by an
efficient refinement method that constrains the EUF abstraction until
the property is proved or a feasible counterexample is produced. We
formalize the EUF transition system, prove our algorithm correct, and
demonstrate our results on a subset of benchmarks from the software
verification competition (SV-COMP) 2017.

1 Introduction

Control properties are an integral part of software verification. The 2014 Apple
Secure Transport “goto fail” bug [1] provides a compelling illustration:

extern int f();
int g() {

int ret = 0;
/* ... */
goto out; /* this line was inadvertently added */
ret = f();

out:
return ret;

}

In this simplified version of the bug, the function f() implements a security check
that returns 0 on success. g() is supposed to call f(); however, f() is never called
because there is an (inadvertent) jump directly to g()’s return statement. To
prove the absence of this bug, one would like to verify the property that every
success path actually calls f() (i.e., that f() is called whenever g() returns
0). This property does not require reasoning precisely about what f() does with
c© Springer Nature Switzerland AG 2019
C. Enea and R. Piskac (Eds.): VMCAI 2019, LNCS 11388, pp. 363–385, 2019.
https://doi.org/10.1007/978-3-030-11245-5_17
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data; it only requires reasoning about control paths. Consequently, this property
is a control property.

A variety of important properties are control properties. For instance, many
operating systems require that secure programs drop elevated privileges as soon
as those privileges are no longer needed. Such a rule is a control property because
it has little to do with details about particular privileged operations. Instead,
the rule only requires reasoning about when privilege drops occur relative to the
unprivileged parts of a program [2]. Similarly, verifying a locking discipline does
not require reasoning about the data being protected; it only requires reasoning
about when locking and unlocking occurs relative to when data is accessed or
modified [3]. Typestate properties [4] are also control properties.

The typical approach for verifying control properties is predicate abstrac-
tion [5,6], which casts the state space of a program into a Boolean space defined
by a set of predicates over program variables. The primary challenge with pred-
icate abstraction lies in the selection of predicates. All of the necessary infor-
mation about data and control must be inferred using a finite set of predicates.
Searching the predicate space has an exponential cost because adding a new
predicate doubles the size of abstract state space. To make matters worse, pred-
icate abstraction does not directly abstract operations, which can lead to time-
consuming solver queries for complex operations – even though many complex
operations are irrelevant for control properties.

Instead, we propose a more direct abstraction. Rather than projecting pro-
gram state onto an interpreted predicate space, we syntactically abstract it into
a set of constraints over the theory of equality with uninterpreted functions
(EUF). This means that our abstraction can happen at the operation level (e.g.,
addition, subtraction, comparison, etc.) reducing the complexity of queries sent
to the solver. Moreover, EUF reduces the number of bits in the search space
(by abstracting bit vector terms), and has efficient implementations. The Aver-
roes verifier [7] showed that such an approach works well for checking control
properties in hardware designs.

This paper adapts ic3-style model checking with EUF abstraction to
software. We find this gives performance benefits by reducing the number
of refinement iterations in a counter-example-guided abstraction refinement
(CEGAR) [8,9] loop, while keeping the Boolean state space smaller. We make
the following contributions:

– euforia, a ground-up implementation of a complete software model checking
algorithm inspired by Averroes (Sect. 3);

– detailed descriptions of euforia’s novel cube expansion method (Sect. 3.1)
and refinement (Sect. 3.2), including new proofs of correctness and termina-
tion for finite state systems (Sect. 3.3),

– experimental evaluation on 752 from SV-COMP ’17 (Sect. 4), showing that
euforia outperforms a related predicate abstraction algorithm, ic3ia [10],
on control property benchmarks.
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2 Software Data Abstraction

Our goal is safety verification: showing that all reachable states of a program
are safe, or producing a counterexample test case. Kesten and Pnueli [11] made
a distinction between control abstraction and data abstraction: while the for-
mer abstracts observations of computation sequences, the latter abstracts data
values. We are targeting properties that involve verifying the control flow of a
program, not its data, and thus we focus on abstracting data values using EUF
theory.

This section describes the logic of EUF, how we represent a program (pre-
cisely) as a concrete transition system, and how we create an (over-approximate)
abstract transition system from that concrete transition system.

2.1 Background

Equality with Uninterpreted Functions Our setting is standard quantifier-free,
first-order logic (FOL) with the standard notions of theory, satisfiability, validity,
entailment, and models. Inspired by Kroening’s presentation in [12], we begin
with a review of the EUF logic. The EUF logic grammar is presented here:

non-terminal production explanation
term ::= x | y | z | · · · 0-arity term, sans serif face

| F(term1, term2, . . . , termn) uninterpreted function (UF)
| ITE(formula, term1, term2) if-then-else

atom ::= term1 = term2 equality atom
| x | y | z | · · · Boolean atom
| P(term1, term2, . . . , termn) uninterpreted predicate (UP)

formula ::= atom
| ¬atom negation
| formula1 ∧ formula2 conjunction
| formula1 ∨ formula2 disjunction

Atomic formulas (atoms) are made up of Boolean identifiers, uninterpreted predi-
cates (UPs), and (possibly-negated) equalities between terms. Formulas are made
up of terms combined with arbitrary Boolean structure. For simplicity, but with-
out loss of generality, we only consider formulas in negation normal form. A literal
is a (possibly-negated) atom containing no occurrences of ITE. A clause is a dis-
junction of literals. A cube is a conjunction of literals. a |= b means that a entails
b. We write uninterpreted objects – terms x, functions F, and predicates P – in
sans serif face. The semantics of these formulas is standard.

Transition Systems. The front-end of our checker euforia translates a C pro-
gram into a bit-precise transition system. A transition system [13,14] is a tuple
(X,Y, I, T ) consisting of a (non-empty) set of state variables X = {x1, . . . , xn},
a (possibly empty) set of input variables Y = {y1, . . . , ym}, and two formulas: I,
the initial states, and T , the transition relation. Formulas over state variables are
identified with the sets of states they denote; for example, the formula (x1 = x2)
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denotes all states where x1 and x2 are equal, and other variables may have any
value. The set of next-state variables is X ′ = {x′

1, x
′
2, . . . , x

′
n}. For a formula σ,

the set Vars(σ) denotes the set of state variables free in σ (respectively, Vars′(σ)
denotes set of next-state variables in σ). We may write σ as σ(X) when we
wish to emphasize that the free variables in σ are drawn solely from the set X,
i.e., Vars(σ(X)) ⊆ X. Any formula σ(X ′) (also written σ′) refers to the result of
substituting for the current-state variables in σ(X) with the corresponding next-
state variables from X ′, e.g., (x1 = x2)′ is (x′

1 = x′
2). The system’s transition

relation T is a formula

T (X,Y,X ′) ≡
∧

1�i�n

(x′
i = fi (X,Y )) (1)

where fi (X,Y ) is a term denoting the next-state function for xi ∈ X.
We write σ(X) T−→ ω(X) if each state in σ transitions to some state in ω under

T , i.e., σ ∧ T |= ω′. An execution of a transition system is a (possibly-infinite)
sequence of transitions σ0(X) T−→ σ1(X) T−→ σ2(X), . . . such that σ0(X) |= I(X).

A safety property is specified by a predicate, P (X). The model checking prob-
lem is to check whether any state satisfying ¬P (X) is reachable through an
execution of T . A counterexample to a safety property P (X) is a k-step execu-
tion such that σk(X) |= ¬P (X).

A concrete transition system (CTS) is defined over bit vector state vari-
ables and operations in the quantifier-free logic of bit vectors (QF_BV from SMT-
LIB [15]). euforia encodes a C program into a CTS using standard meth-
ods [16,17].

2.2 EUF Transition Systems

Inspired by the work of Burch and Dill [18] for microprocessor verification, our
approach is to abstract a program’s concrete operations (resp. conditions) by
uninterpreted functions (resp. predicates), and to replace constants by 0-arity
terms (Kroening also gives a detailed overview of EUF abstraction [12], pp. 61ff).
Concrete constants (e.g., 1, −3) are represented as unique uninterpreted 0-arity
terms (K1,K-3); data operations such as addition, division, and bit-extraction
are represented with correspondingly-named UFs; relational operators are rep-
resented as UPs; and bit-vector variables x are represented by 0-arity terms x̂,
and given a hat to distinguish them from constants. Boolean variables are rep-
resented directly in EUF. We abstract P into P̂ and I into Î in the same way
as other formulas. For example, using state variables X = {x, a}, we represent
the transition relation T (X, ∅,X ′) ≡ (x′ = ITE(x > a, x, 1 + a)) ∧ (a′ = x) as
T̂ (X̂, ∅, X̂ ′) ≡ (x̂′ = ITE(GT(x̂, â), x̂,ADD(K1, â)))∧ (â′ = x̂), over state variables
X̂ = {x̂, â}.

This abstraction can be formally defined by an abstraction function A�·� that
performs a linear-time, syntax-directed, structure-preserving transformation of
the CTS (described in [12]). The resulting abstract transition system (ATS)
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(X̂, Ŷ , Î, T̂ ) consists of state variables X̂ = {x̂1, x̂2, . . . , x̂n}, input variables Ŷ =
{ŷ1, ŷ2, . . . , ŷm}, initial state Î, and transition relation T̂ defined by n next-state
terms f̂1(X̂, Ŷ ), . . . , f̂n(X̂, Ŷ ) according to:

T̂ (X̂, Ŷ , X̂ ′) ≡
∧

1�i�n

(
x̂′
i = f̂i(X̂, Ŷ )

)
(2)

Abstract formulas over-approximate their concrete counterparts. Recovering the
concrete formulas is easy: 0-arity terms (which stand for concrete constants
and variables) are mapped to their concrete countererparts; UFs and UPs are
mapped to their concrete operations by name. Consider a concrete formula σ(X)
and its EUF abstraction σ̂(X̂). The relation of the concrete and abstract systems
is |= σ̂ =⇒|= σ: the concretization σ of any valid EUF formula σ̂ is valid [12].
Therefore, if the abstract system cannot reach an unsafe state, then the concrete
system will also never reach it. A concrete state is a complete assignment to bit
vector and Boolean variables. An abstract state is a pair 〈π,A〉 where π is a
partition of all the terms in the ATS and A is a complete assignment to the UPs
and Boolean variables.

The EUF abstraction partitions the set of all concrete states. Each concrete
state is represented by a single abstract state but abstract states may represent
zero, one, or many concrete states. For instance, given a transition system with
one 32-bit integer state variable, x, and a single transition equation,

x′ = 1 + x concrete transitions

x̂′ = ADD(K1, x̂) abstract transitions

the abstract state space is defined over the term set {x̂,K1,ADD(K1, x̂)} and
consists of the following 5 states and their corresponding concrete states:1

Abstract state/partition Concrete state(s)
π1 = {x̂ | K1 | ADD(K1, x̂)} x �= 1 and x �= 0
π2 = {x̂,ADD(K1, x̂) | K1} ∅ (infeasible)
π3 = {x̂ | K1,ADD(K1, x̂)} x = 0
π4 = {x̂,K1 | ADD(K1, x̂)} x = 1
π5 = {x̂,K1,ADD(K1, x̂)} ∅ (infeasible)

We should note that while the CTS is deterministic, the abstraction causes the
ATS to be non-deterministic.

3 euforia: Model Checking EUF Transition Systems

euforia builds on the model checker ic3 [19] by extending it to EUF and wrap-
ping it inside a CEGAR loop that refines the abstract transition system. The
algorithm’s main novelties are that it checks an entirely uninterpreted transition
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euforia(I, T, P ):
Globals:

N current depth
Fi set of cubes, i ∈ {0, 1, . . . , N, N + 1} (FN+1 = F∞)

Ri ≡ ∧N+1
j=i

∧
ĉ∈Fj

¬ĉ reachable set (over-approximate)

1: Î , T̂ , P̂ ← abstract(I, T, P ) � construct abstract transition system
2: N = 0 � initialize global variables
3: push F∞ = true, push F0 = {Î(X̂)} � assume I is a cube
4: while true do
5: if ∃ŝ |= RN ∧ ¬P̂ and BackwardReachability(ŝ) is true then
6: if RefineCounterexample() is true then � found counterexample

7: return BuildCounterexample()

8: else
9: N ← N + 1, add new frame FN = true

10: if Propagate() is true then � found inductive invariant
11: return true

Fig. 1. Entry point to euforia. I, T , and P define a model checking problem. Back-
ward reachability is performed until it converges or discovers an abstract counterexam-
ple, which may trigger a refinement. BuildCounterexample() constructs a concrete
program trace from a feasible abstract counterexample. Ri is a global definition in
terms of the individual frames, stored in F .

system, is guaranteed to terminate, and refines spurious counterexamples auto-
matically. Our implementation is most closely related to pdr (Property Directed
Reachability) [20], a popular variant of ic3.

euforia’s entry point is given in Fig. 1. We highlight algorithm compo-
nents that euforia introduces. As in ic3, the central object in euforia is
an iteratively-deepened sequence of reachable sets, Ri, each denoting an over-
approximation of the set of states reachable in i transitions. The algorithm main-
tains the following invariants:

R0 = Î(X̂) (3)
Ri |= Ri+1 (4)

Ri |= P̂ (X̂) (i < N) (5)
Ri+1 over-approximates the image of Ri (6)

Initially euforia abstracts the concrete transition system and then loops
over three distinct phases: backward reachability (Fig. 2), forward propagation
(Fig. 3), and refinement (Fig. 6). This section will discuss the first two phases;
refinement is discussed in Sect. 3.2.

Backward reachability (Fig. 2) attempts to prove that the property holds for
N transitions or to construct a counterexample. It manages a queue of proof

1 Vertical bars delineate the cells of a partition.
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BackwardReachability(ŝ):

Precondition: cube ŝ |= ¬P̂

1: push 〈ŝ, N〉 onto Q
2: while 〈ŝ, i〉 ← pop from Q do � states ŝ reach bad state
3: if i = 0 then
4: return true � found abstract counterexample

5: if ŝ ∧ Ri is SAT then � ŝ might be reached in i transitions
6: if ¬ŝ ∧ Ri−1 ∧ T̂ ∧ ŝ′ has model M then
7: ẑ ← ExpandPreimage(ŝ′, M) � ẑ reaches ŝ in one step
8: push 〈ẑ, i − 1〉 onto Q � new part of partial counterexample
9: push 〈ŝ, i〉 onto �Q may still be reachable

10: else � ŝ is inductive relative to ¬ŝ ∧ R̂i−1

11: 〈ẑ, m〉 ← GeneralizeBlockedCube(〈ŝ, i〉) � m ≥ i

12: while m < N − 1 and ¬ẑ ∧ Rm−1 ∧ T̂ ∧ ẑ′ is UNSAT do
13: 〈ẑ, m〉 ← GeneralizeBlockedCube(〈ẑ, m〉) �

attempt to block at later frame

14: AddBlockedCube(〈ẑ, m〉)
15: if m < N then
16: push 〈ẑ, m + 1〉 onto Q � may still be reachable at m + 1

17: return false

AddBlockedCube(〈ŝ, i〉):
1: for j ∈ {1, 2, . . . , i} do � test whether ŝ subsumes a cube in an earlier frame
2: if ŝ ⊆ ĉ for any ĉ ∈ Fj then
3: Fj ← Fj \ {c}
4: Fi ← Fi ∪ { } � record that is unreachable in i steps

Fig. 2. Proof obligations are represented as an abstract cube and frame index pair,
〈ŝ, i〉. The proof obligation queue, Q, is a priority queue that orders cubes by frame
index (earliest first) and breaks ties arbitrarily.

Propagate():

1: for i ∈ {1, 2, . . . , N − 1} do � Propagate at level i
2: for ŝ ∈ Fi do
3: if Ri ∧ T̂ ∧ ŝ′ is UNSAT then � ŝ is blocked at Fi+1 or later
4: m ← maximum in {i + 1, i + 2, . . . , N + 1} at which ŝ is blocked
5: AddBlockedCube(〈ŝ, m〉) � propagate cube ŝ to Fm

6: if Fi is empty then
7: return true � invariant found
8: return false

Fig. 3. Just prior to this phase of euforia, RN |= ̂P . N is incremented and then
Propagate is called. In line 4, it is possible that a cube is blocked beyond the next
frame (i+1). euforia examines the unsat core given by the solver to see which frames
were used in order to calculate m.
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obligations that represent potential executions to ¬P̂ . At each iteration,
it chooses a proof obligation pair 〈ŝ, i〉 and performs a counterexample-to-
induction (CTI) query to see if cube ŝ′ is reachable from the current i-step
over-approximation (lines 2–6). If so, our new procedure ExpandPreimage
(Sect. 3.1) generalizes the pre-state and adds it to the queue (lines 6–9). Other-
wise, it generalizes the unreachable cube ŝ to refine the reachability frames (lines
11–14). Note that this over-approximation and refinement is a standard part of
ic3 and is independent of our EUF abstraction and refinement.

Forward propagation (Fig. 3) pushes unreachable cubes forward, attempt-
ing to extend them over more transitions (lines 1–5). On line 6, if two (over-
approximate) reachable sets become identical Ri = Ri+1 (i < N), the algorithm
terminates having discovered an inductive invariant that proves the property by
Eq. (5).

Generalizing Unsatisfiable CTI Queries If the CTI query (line 6 of Fig. 2) is
unsatisfiable, then state ŝ is unreachable in i transitions. We want to generalize
ŝ by finding a set of states (a cube) m̂ ⊇ ŝ that is unreachable and covers more
states than ŝ, if possible. We use a simple greedy scheme for finding a minimal
unsatisfiable set that is given in Fig. 4.

GeneralizeBlockedCube(〈ŝ, i〉):
1: t̂ ← ŝ, j ← i
2: for l̂ ∈ ŝ do
3: m̂ ← t̂ \ l̂ � test if m̂ unreachable if literal l̂ removed

4: if m̂ �|= I(X̂) and ¬m̂ ∧ Rj−1 ∧ T̂ ∧ m̂′ is UNSAT then
5: j ← frame ≥ j at which m̂ is still blocked
6: t ← m � literal l was not necessary

7: return 〈t, j〉

Fig. 4. Generalized blocked cube procedure. euforia, like pdr, examines the unsat
core of the query on line 4 in order to implement line 5.

3.1 Generalizing Satisfiable Counterexample-to-induction Queries

If the CTI query (line 6 of Fig. 2) is satisfiable, euforia generalizes (expands)
the preimage state to a cube that includes many states that satisfy the query.
The purpose of generalization is efficiency: a bad state is often reached by many
states and it is usually more efficient to find counterexamples if state sets contain
as many states as possible.

Example 1. Consider the following transition relation on variables X̂ = {x̂1, x̂2}:

x̂′
1 = f1 where f1 = ITE(x̂1 = x̂2,ADD(x̂1,K1),SUB(x̂1,K3)) (7)

x̂′
2 = f2 where f2 = x̂1 (8)
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ExpandPreimage(ŝ′, M):

1: C ← ∅ � set of constraints
2: for x̂′

i ∈ Vars′(ŝ′) do
3: c ← COI(fi(X̂, Ŷ ), M) � traverse fi to collect M -relevant constraints
4: C ← C ∪ c
5: g ← restrict model M to variables, terms, and predicates in C
6: return g

Fig. 5. Pre-image generalization procedure. M is the model for the CTI query.
COI(f, M) is a model-based cone of influence traversal.

Consider a proof obligation cube ŝ′ ≡ GT(x̂′
1, x̂

′
2) and a model consisting of

partition {x̂1, x̂2, x̂
′
2 | K1,ADD(x̂1,K1), x̂′

1 | K3,SUB(x̂1,K3)} and assignment
GT(x̂1, x̂2) ∧ GT(x̂′

1, x̂
′
2). euforia performs a cone-of-influence (COI) traversal

on f1 and f2 to find relevant constraints, terms, and variables; in this case, it finds
the constraint (x̂1 = x̂2), as well as terms K1,ADD(x̂1,K1), and variables x̂1, x̂2.
It does not find the SUB(· · · ) term because it only traverses the true branch of
the ITE. Relating these constraints, terms, and variables according to the model
yields our generalized pre-image cube: (x̂1 = x̂2) ∧ (ADD(x̂1,K1) = K1) ∧ (x̂1 �=
K1). This has the effect of generalizing away the predicate GT(x̂1, x̂2). We omit
the COI traversal details due to space constraints and because it is relatively
straightforward: for each variable x̂′

i ∈ Vars′(ŝ′), its next-state formula fi(X,Y )
is traversed, collecting constraints required to satisfy the model. Then those
constraints are used to form the pre-state cube.

euforia’s expansion procedure, given in Fig. 5, has two key properties: (1)
it projects only onto constraints from T̂ and (2) it exploits the fact that T̂ repre-
sents each next-state relation as a function in order to perform a COI traversal on
each next-state function fi(X,Y ). This allows us to omit irrelevant state vari-
ables and constraints. Property (1) is important for guaranteeing termination
and (2) is important for efficiency.

CTI expansion is common to many ic3-style checkers. ctigar [21] gener-
alizes by examining the unsatisfiable core of a query that is unsatisfiable by
construction: it asks whether a state has, under the same inputs, some other
successor than the reached one [21]. euforia can’t use this method to generalize
because such a query may be satisfiable over EUF (due to the non-deterministic
nature of UFs). pdr performs generalization using ternary simulation at the
bit level, which is not suitable for the word-level EUF abstract transition sys-
tem. Other checkers have explored theory-specific generalization methods, such
as for linear arithmetic [22,23] and for polyhedra [24]. Yet other checkers gen-
eralize by calculating the weakest precondition for the proof obligation [7,25].
Weakest preconditions (WP) are particularly problematic for EUF, as iterated
applications of WP can cause EUF terms to grow arbitrarily large, leading to
potential non-termination of EUF abstract reachability.
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3.2 Refinement

When BackwardReachability finds an abstract counterexample, it must be
checked for feasibility, potentially refining the abstract state space. An n-step

abstract counterexample (ACX) is an execution Â0

̂T∧̂Y0−−−→ Â1

̂T∧̂Y1−−−→ · · · ̂T∧̂Yn−2−−−−−→
Ân−1

̂T∧̂Yn−1−−−−−→ Ân where each Âi (0 ≤ i ≤ n) is a state cube and Ŷi (0 ≤ i < n)
is a cube constraining input variables. An abstract formula σ̂ is feasible if its
concretization σ is satisfiable over QF_BV. The ACX is spurious for any of the
following reasons:

1. Ai is infeasible for some i, i.e., there are no concrete states that correspond
to the abstract state cube Âi; or

2. Ai−1 ∧ Yi−1 ∧ T ∧ Ai is unsatisfiable for some i, i.e., there are no concrete
transitions that correspond to the abstract state transition; or

3. the concretized counterexample is discontinuous. This will happen if all con-
cretized cubes and transitions are feasible but the transitions “land” on dis-
tinct concrete states in a concretized cube. Below, the circles represent con-
crete cubes and the dots represent concrete states:

Figure 6 shows euforia’s refinement algorithm. RefineCounterexample
first performs feasibility checks on individual transitions to address reasons 1 and
2 (Fig. 6a, lines 1–8), afterward performing symbolic simulation on the counterex-
ample path to address reason 3 (Fig. 6b). If the counterexample is spurious, one
of these feasibility checks will find an unsatisfiable subset of constraints. Learn-
Lemma creates a refinement lemma by abstracting the unsatisfiable subset and
asserting its negation in T̂ .

The details of forward refinement are fiddly but the idea is simple: to deter-
mine if the counterexample is feasible, symbolically simulate the program along
the concretized counterexample path. Beginning in the initial state, our imple-
mentation iteratively computes the next state in a manner reminiscent of image
computation in BDD-based symbolic model checking. Note that there is no path
explosion during this process because we only follow the path denoted by the con-
crete counterexample. If a contradiction is reached, then an unsatisfiable subset
is found and used to learn a lemma.

Specifically, RefineForward (Fig. 6b) represents a symbolic state si as a
pair 〈vi, pci〉 where vi represents a map of state variables to values, and pci is the
path constraint represented as a set of cubes. One transition at a time, it asks
whether the next transition in the abstract counterexample is concretely feasible.
If it is, Simulate (Fig. 6c) computes the next state symbolically, in two steps:
(1) updating variable assignments by symbolically evaluating each next-state
function in T (as was done during cube expansion, Sect. 3.1), (2) updating the
path constraint with any new input constraints, and (3) uniquely renaming all
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RefineCounterexample( Â0

̂T∧ ̂Y0−−−→ Â1

̂T∧̂Y1−−−→ · · ·
̂T∧ ̂Yn−2−−−−−→ Ân−1

̂T∧ ̂Yn−1−−−−−→ Ân ):

1: if n = 1 then
2: if A0 is UNSAT, with unsat core c then � check for 0-step counterexample
3: LearnLemma(c)
4: return false
5: for i ∈ {1, 2, 3, . . . , n} do � test cubes and transitions
6: if Ai−1 ∧ T ∧ Yi−1 ∧ Ai is UNSAT, with unsat core c then
7: LearnLemma(c)
8: return false
9: return RefineForward()

RefineForward() :

1: if I ∧ A0 is UNSAT, with unsat core c then � check initial state
2: LearnLemma(c)
3: return false
4: s1 ← 〈concrete assignment for each state variable, {}〉
5: for i ∈ {2, 3, . . . , n} do � test cubes and transitions
6: if vi−1 ∧ pci−1 ∧ T ∧ Yi−1 ∧ A′

i is UNSAT, with unsat core c then
7: LearnLemma(c)
8: return false
9: si ← Simulate(M, si−1, T, Yi−1, Ai) � M is the model for the query

10: return true � feasible counterexample

(b) Symbolically simulate counterexample

Simulate(M, 〈vi−1, pci−1〉, T, Yi−1, Ai) :

1: v ← empty map
2: for xi ∈ X do
3: update v with value fi[X/vi−1] ↓ M � substitute last values, simplify with M

4: pc ← Yi−1 ∪ {l[X/v] | l ∈ Ai and l[X/v] contains inputs}
5: return 〈RenameInputs(v),RenameInputs(pc)〉

(c) Steps a symbolic state si−1 = 〈vi−1, pci−1〉 forward one step by updating values (v)
and path constraint (pc) using T

LearnLemma(c) :

1: ĉ ← AbstractAndNormalize(c) � abstract and eliminate input variables
2: if c contains no inputs then
3: if Vars(c) ⊆ X then � only present-state vars

4: Simplify and add lemma ¬ĉ(X̂ ′)

5: if Vars(c) ⊆ X ′ then � only next-state vars

6: Simplify and add lemma ¬ĉ(X̂)

7: Simplify and add lemma ¬c

(d) Learns a lemma by abstracting the concrete core c and conjoining c to T

(a) Refinement entry point

Fig. 6. euforia’s refinement procedure, RefineCounterexample
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input variables. The notation fi[X/vi−1] denotes the simultaneous substitution
of state variables in X for their values from vi−1 in fi. For a formula g with
model M , g ↓ M simplifies g to a literal (by removing any complex Boolean
logic) using the model M , similar to our COI procedure (see Sect. 3.1).

As we have said, the symbolic formula created by this process represents a
single execution path through the program being analyzed, with inputs remain-
ing symbolic. If this formula is found to be unsatisfiable, then it is desirable
to find an equivalent formula without symbolic input variables. A full-fledged
quantifier elimination procedure is computationally expensive. Instead, Learn-
Lemma (Fig. 6d) calls AbstractAndNormalize, which (1) performs some
simple equality propagation (which often will eliminate the inputs) and (2)
otherwise under-approximates by substituting for each input variable the last
concrete value that was assigned during symbolic simulation.

euforia’s refinement lemmas fall into two categories: (1) one-step lemmas
learned during individual transition checks (lines 1–8 in Fig. 6a); and (2) forward
lemmas learned during the symbolic simulation of the concrete counterexample
(Fig. 6b). The key fact is that one-step lemmas do not increase the size of the
abstract state space; they merely constrain existing terms, similar to a blocking
clause in ic3. One-step lemmas constrain the behavior of uninterpreted objects
to be consistent with their concrete semantics, i.e., partially interpreting the
uninterpreted operations. Forward lemmas, on the other hand, increase the size
of the abstract state space, similar to predicates added by refinement in predicate
abstraction.

There are many options for performing feasibility checks and deriving suitable
refinements from them if one or more of them fail (e.g., [26–28]). We chose this
refinement procedure because our focus is on assessing the suitability of EUF
abstraction for control properties, and because it’s simple.

3.3 Proof of Correctness

First, we prove that reachability for EUF transition systems terminates. Second,
we show that euforia’s refinement will increase the fidelity of the abstract
system until it represents all concrete states exactly. Since the concrete system
is finite, euforia must eventually terminate.

Theorem 1. BackwardReachability terminates with an answer of true or
false.

Proof. Our proof relies on two facts: (1) the number of models for an abstract
transition system is finite and (2) euforia searches among these models only,
eventually blocking all of them or producing an abstract counterexample.

The set of possible models for a given abstract transition system T̂ is finite.
In fact, if the system has k Boolean state variables and n terms, then the number
of Herbrand models is bounded by 2k · Bn, where 2k is the number of possible
Boolean assignments to k Boolean variables and Bn =

∑n
i=0 S(n, i) is the num-

ber of ways to partition n objects into disjoint sets (the Bell number). S(n, i)
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is the number of ways to partition a set of n objects into i non-empty subsets
(Stirling number of the second kind).

euforia’s preimage generalization procedure, ExpandPreimage (Fig. 5),
searches only among this bounded set of models, since it explicitly uses only
terms from T̂ to construct its preimage cube. If a cube is subsequently blocked
by GeneralizeBlockedCube (Fig. 4), those models will be infeasible. As there
are finitely many models and frames, eventually all cubes will be blocked and
BackwardReachability will terminate.

Theorem 2. euforia’s refinement procedure increases the fidelity of the
abstract transition system (ATS), up to expressing all concrete QF_BV behavior.

Proof. One-step lemmas do increase the fidelity of the ATS but do not increase
the number of terms in the ATS. RefineForward may increase the number of
terms in the ATS, resulting in an increased state space. If the state space size
could grow without bound, euforia would potentially not terminate.

We first show that we can guarantee termination by using a refinement
method simpler than RefineForward. This method learns a lemma from a
single concrete path. Recall that an n-step abstract counterexample is an exe-

cution Â0

̂T∧̂Y0−−−→ Â1

̂T∧̂Y1−−−→ · · · ̂T∧̂Yn−2−−−−−→ Ân−1

̂T∧̂Yn−1−−−−−→ Ân where each Âi is an
abstract state cube (0 ≤ i ≤ n) and Ŷi is an abstract formula constraining input
variables (0 ≤ i < n). Beginning in any single state σ0 ∈ A1∧I, for all 1 ≤ i ≤ n,

1. Check whether σi−1 ∧ T ∧ Yi−1 ∧ A′
i is satisfiable.

2. If so, form new state σi using the concrete assignments to all variables X ′

3. If not, call LearnLemma(c) where c is the unsat subset of the query (1.)

When step 1 is not satisfiable, this procedure will introduce a new abstract
constant (from state σi−1) and a new abstract UF/UP constraint (due to the
transition to A′

i) on that constant. The number of constants is bounded by the
size of bit vector words in the concrete transition system and the number of
constraints is as well (up to modeling every concrete behavior of every UF/UP
in the program).

RefineForward (Sect. 3.2) is essentially the same as this procedure, except
RefineForward attempts to generate stronger lemmas that refute multiple
spurious concrete paths at once.

4 Evaluation

euforia is implemented in 13,700 lines of C++. It uses LLVM 5.0.1 as front-
end for processing C programs, running various optimizations including inlining,
dead code elimination, and promoting memory to registers. It uses Z3 4.5.0 [29]
for EUF solving during backward reachability and Boolector 2.0 [30] for QF_BV
solving during refinement. euforia cannot yet process programs with memory
allocation or recursion. euforia also assumes that C programs do not exhibit
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undefined behavior (signed overflow, buffer overflow, etc.), and may give incor-
rect results if the input program is ill-defined.

We evaluated euforia on 752 benchmarks containing safety property asser-
tions from the SV-COMP’17 competition [31]. 516 are safe and 236 are unsafe.
We ran all the benchmarks on 2.6GHz Intel Sandy Bridge (Xeon E5-2670)
machines with 2 sockets, 8 cores with 64GB RAM. Each benchmark was assigned
to one socket during execution and was given a one hour timeout. All the bench-
marks are C programs in the ReachSafety-ControlFlow, ReachSafety-Loops, and
ReachSafety-ECA sets. Although these sets contain 1,451 total benchmarks, we
elided all the benchmarks that use pointers or arrays, as well as those that took
more than 30 s to pre-process.2 Some static characteristics of these benchmarks
are presented in Fig. 7.
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Fig. 7. Traditional box plots showing quartile ranges and outliers for all benchmark.
Plot (a) shows that the ControlFlow class contains the instances with the most state
variables. The y axis of plot (c) is the number of distinct expressions in ̂T , indicating
that the ECA instances can be huge. In particular, the ECA benchmarks are on average
the largest-size benchmarks; followed by ControlFlow, followed by Loops.

We evaluated euforia against ic3ia [10], an ic3-based checker that imple-
ments implicit predicate abstraction. We chose ic3ia largely because it is similar
to euforia, with one essential difference: it uses predicate abstraction instead
of EUF abstraction. Moreover, as pointed out by Cimatti et al. [10], ic3ia is
superior in performance to state-of-the-art bit-level ic3 implementations as well
as other ic3-Modulo-Theories implementations; and it can support hundreds
of predicates (around an order of magnitude more than what explicit predicate
abstraction tools can practically compute). In order to ensure an apples-to-apples
comparison, we run ic3ia on the exact same model checking problem as euforia,
2 Note that this is pre-processing time, which is the time to optimize and encode the

instances. The instances that take more than 30 s to preprocess are multi-megabyte
source files that come from the ECA set. They are so big that they time out on both
checkers, so we excluded them from our evaluation.
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by dumping the model checking instance (transition system and property encod-
ing) into a vmt3 file, which is readable by ic3ia. Currently, euforia only sup-
ports llvm bitcode as input, so our runtime numbers for euforia include the
time it takes to re-encode the transition system and property, but ic3ia does
not need to do this; thus euforia’s numbers are slightly higher than they could
be (up to 30 s).

Our evaluation sought answers to the following questions:

1. When euforia performs relatively well, why?
2. When euforia performs relatively poorly, why?
3. Does euforia require more clauses than ic3ia to accomplish verification?
4. How does convergence depth compare?
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Fig. 8. Scatter plot of runtimes broken down by benchmark set. Timeout was set to
one hour. Safe benchmarks show with green dots, unsafe with blue x’s. (Color figure
online)

Figure 8 shows our overall results on all benchmarks compared with ic3ia.
euforia and ic3ia are to a certain extent complementary in what they are able
to solve within the timeout. ic3ia uniquely solves 62 benchmarks (17 from Loops
and 45 from ECA, none from ControlFlow); all of these benchmark properties
are about arithmetic and euforia gets stuck inferring weak refinement lemmas.
The properties involve things like proving sorting; complex state updates involv-
ing division, multiplication, and addition; and invariants involving relationships
between addition and signed/unsigned integer comparison. These are bench-
marks expected to be tough for euforia, since we have explicitly abstracted
these operations in order to target control properties. We believe this weakness
can be addressed through a refinement algorithm that infers lemmas related to
arithmetic facts, such as commutativity or monotonicity. These benchmarks help
address research question 2.

euforia’s uniquely solved benchmarks euforia uniquely solves 26 benchmarks;
these cut across the benchmark sets: 9 in Loops, 5 ControlFlow, and 12 ECA.
euforia is on average spending only 13 s in refinement on these benchmarks,
compared to 767 for ic3ia:

3 https://es-static.fbk.eu/tools/nuxmv/index.php?n=Languages.VMT.

https://es-static.fbk.eu/tools/nuxmv/index.php?n=Languages.VMT
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Refinement times on uniquely solved benchmarks

euforia ic3ia (timeout)
average 12.98 766.57
median 0.11 135.95

euforia (timeout) ic3ia
average 937.65 154.27
median 975.41 81.59

On the ControlFlow set (which fits our property target best), euforia solves
5 unique benchmarks and ic3ia solved no uniques. The ControlFlow benchmarks
have the most state variables, moderate UF/UP use, and are medium-sized.
Moreover, euforia requires very little refinement time, supporting our hypoth-
esis that euforia’s EUF abstraction provides a decent means for targeting con-
trol properties.

Benchmarks both solved. Figure 9 shows that, of the 249 benchmarks for which
both checkers terminated, euforia is able to solve the overwhelming majority
faster than ic3ia. Surprisingly, nearly 200 benchmarks among these required
no refinements from euforia, as shown in Fig. 10. This result is perhaps unex-
pected because euforia’s abstraction removes nearly all behavior from program
operators, suggesting that refinement is likely necessary. While much behavior
is abstracted, equality, which is critical for verification, is preserved and some
benchmarks simply need EUF reasoning (i.e., functional consistency), as we’ll
see shortly.
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Fig. 9. Runtime of euforia and ic3ia
on 249 benchmarks for which both
checkers terminated within an hour.
euforia solves most instances more
quickly than ic3ia.

0 1 2 3 4 5 6 7 8 9-359
refinements

0

50

100

150

200

nu
m
be

r
of

in
st
an

ce
s

refinements (timeout 3600s)

ic3ia
euforia

Fig. 10. Number of instances grouped
by how many refinements were required
to solve them, on benchmarks both
checkers finished. The key take away
is that euforia is able to solve many
instances with very few refinements.

It is interesting that for some relatively simple arithmetic benchmarks, ic3ia
diverges and euforia converges. ic3ia begins inferring predicates like (k =
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0), (k = 1), (k = 2), . . .as well as (1 < j), (2 < j), (3 < j), . . . and will continue
this until exhausting all possible values (on 32 bits). A sample program is shown
below:

k = i = 0
while i < n do � k = i is invariant

i ← i + 1; k ← k + 1
j ← n � k = j = n
while j > 0 do � k = j is invariant

assert(k > 0)
j ← j − 1; k ← k − 1

The second while loop’s assertion holds because of the relatively simple property
that (k = j ∧ j > 0) → (k > 0), which also holds in EUF. ic3ia was unable to
discover the relevant predicates, underscoring that choice of predicates is crucial
for predicate abstraction. Several other benchmarks follow a similar pattern.

We hypothesize that euforia can take advantage of certain structure from
the ControlFlow benchmarks. For example, many of the benchmarks implement
a state machine that records its state in an integer state variable. Our abstraction
will keep state machine states distinct, since equality is interpreted and integer
terms are kept distinct. ic3ia on the other hand must learn predicates such as
(s = 4), (s = 5), in order to reason about which state the state machine is in.
Indeed, all predicates that ic3ia learns on this benchmark set are of the form
(x = y) where x is a state variable and y is a constant or a variable; in other
words, it learns no predicates besides simple equalities that euforia preserves
intrinsically.

There are several other factors contributing to euforia’s relatively low run-
time on these benchmarks. euforia’s SMT queries are roughly an order of mag-
nitude faster than ic3ia’s, due to the fact that it is reasoning using EUF and not
bit vectors. euforia’s effort spent per lemma is consistently lower than ic3ia’s
effort spent per predicate: the time spent generating each new lemma is up to 10x
faster than ic3ia. ic3ia performs bounded model checking on the concrete sys-
tem to extract an interpolant to generate new predicates, which is more expensive
than our approach of examining a single error path and finding an unsatisfiable
constraint. For larger transition relations, the difference between query times
increases steadily, and the performance advantage of euforia’s EUF reasoning
becomes more evident. This difference comes out in driver benchmarks which
implement several state machines at once. euforia solves these benchmarks
one or two orders of magnitude faster than ic3ia and finds smaller invariants.
Both checkers refine similarly (i.e., number of refinement lemmas/predicates
introduced is comparable) but euforia exploits that information much more
effectively, as evidenced by ic3ia requiring roughly an order of magnitude more
blocking cubes than euforia.

An interesting outcome of these experiments is that the vast majority of
euforia’s refinement lemmas are one-step lemmas that merely constrain the
behavior of the UFs and UPs in the abstract transition system. In contrast, every
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new predicate that is introduced by ic3ia doubles the size of the state space (i.e.,
it goes from size 2n to 2n+1 when increasing the number of predicates from n to
n + 1).

Figure 11 shows the number of cubes blocked (i.e., clauses added) during
solving. Generally, euforia is able to complete with fewer blocked cubes than
ic3ia, addressing research question 3.

We hypothesized that euforia, due to its abstraction, may require fewer
frames to converge than ic3ia; this is why we asked research question 4. Figure 12
shows the termination depths of euforia and ic3ia. Generally, the termination
depths of both checkers are comparable.
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during solving for all benchmarks
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Fig. 12. Frame depth after conver-
gence for both euforia and ic3ia. The
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the number of different benchmarks
terminating at the given depths.

Overall, euforia performs well on benchmarks testing control properties. In
aggregate, euforia solved 275 out of 752 and timed out on 477. ic3ia solved
311 and timed out on 441.

5 Related Work

Since ic3’s advent in 2011 [19], applications and extensions of the basic algorithm
have flourished. Cimatti and Griggio [22] and Hoder and Bjørner [23] presented
the first software model checkers built in ic3 style. More germane for this paper
is how abstraction has been applied in ic3-style solvers. spacer [32] is imple-
mented in ic3 style using a Horn clause solver and linear rational arithmetic. It
abstracts programs by dropping elements of the transition relation; it’s a kind
of generic abstraction support, but expressing EUF abstraction under such a
model would require a significant amount of extra constraints (to encode func-
tional consistency). ic3 has been adapted to use predicate abstraction, with a
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couple of different refinement schemes. ctigar’s [21] refinement is triggered by
individual queries during backward reachability. ic3ia’s [10] refinement is trig-
gered whenever an abstract counterexample is found and uses interpolation to
derive new predicates. Bjørner and Gurfinkel [33] integrated polyhedral abstract
interpretation with ic3 to compute safe convex polyhedral invariants. Our work
abstracts using EUF, which is a different mechanism from each of these, and is
bit-precise in its concrete representation.

Burch and Dill [18] introduced the use of EUF for pipelined microproces-
sor verification. For software, Babić and Hu [34,35] implemented Calysto, a
CEGAR abstraction that uses EUF to abstract away internal function bodies.
Calysto computes verification conditions (VCs) and function summaries for all
the functions in the program. If the abstraction is too coarse to establish the
property, Calysto finds abstract summaries that are responsible for the spurious
counterexample, and refines them by removing EUF terms and making them
bit-precise. Our refinement differs in that refinement lemmas are lifted to EUF
instead of certain EUF terms becoming bit-precise; moreover, we do not unroll
loops, as Calysto does.

EUF abstraction has been studied extensively, especially for translation vali-
dation and equivalence checking, but not for ic3/pdr applied to checking safety
properties; see [12] for further discussion of EUF abstraction. Similar techniques
to ours were developed by Andraus [36] for hardware verification, particularly
using uninterpreted functions for abstracting wide datapaths. In the context of
hardware model checking, Ho et al. [37] abstract difficult operations by turning
them into inputs; they then use EUF to perform refinement of these previously-
abstracted operations. Our work applies directly to software and abstracts uni-
formly in order to effectively target control properties.

Predicate abstraction [5] is the dominant technique in control property verifi-
cation, e.g., as used in the tools SLAM [3], BLAST [28], and ic3ia [10]. SLAM’s
approach is to abstract the program into a program on Boolean variables alone,
which preserves control and abstracts data with respect to a set of predicates.
SLAM checks its Boolean program with pushdown techniques using Binary Deci-
sion Diagrams (BDDs). BLAST improves the SLAM scheme; it uses interpolants
to discover relevant predicates locally and these predicates are only kept track of
in the parts of the abstract state space where spurious counterexamples occurred.
SLAM requires an exponential number of calls to the theorem prover in the worst
case (or an approximation to the abstraction [38]). IMPACT demonstrated how
to implicitly compute the predicate abstraction, to avoid this cost [39]. EUF
abstraction is nearly “free” in that it does not require any calls to a theorem
prover. Moreover, our approach directly abstracts operations as well as predi-
cates, because we are targeting control properties.

Abstraction in general has been employed extensively to address verifi-
cation complexity [9,40–42]. Counterexample-Guided Abstraction Refinement
(CEGAR) was introduced by Kurshan [8] and refined and generalized by Clarke
et al. [9].
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6 Conclusions and Future Work

We presented an approach for the automatic verification of safety properties
of programs using EUF abstraction. Our approach targets control properties
by abstracting operations and predicates but leaving a program’s control flow
structure intact. EUF abstraction is syntactic; it preserves the structure of the
concrete transition system and can be computed in linear time. We have inte-
grated it with modern incremental inductive solving and proved that it termi-
nates by producing a word-level inductive invariant demonstrating safety or a
true concrete-level counterexample.

Our evaluation shows that euforia is particularly effective on control-
oriented benchmarks. In many cases euforia completes without requiring any
refinements even in the presence of arithmetic operations. In cases where refine-
ment is required, most refinement lemmas are simply constraints on the abstract
transition system that do not increase the size of the state space. This suggests
that EUF abstraction is a natural over-approximation of program behavior when
data state is mostly irrelevant to establishing the truth or falsehood of the desired
safety property.

Going forward, we plan to demonstrate euforia on larger and more diverse
benchmarks. This requires modification to its front-end to add support for pro-
gram constructs such as pointers and arrays, as well as modification to the back-
end to support more efficient checking. We also plan to explore how to leverage
loop identification inside the euforia algorithm, specifically during refinement
to find concrete counterexamples longer than the abstract counterexamples.

Some control properties require reasoning about relatively small amounts
of data operations. Often, specific code fragments in a program are critical for
verifying the property. It may be beneficial in these situations to modify the
refinement procedure so that such fragments are concretized to avoid generating
a large number of refinement lemmas.

During development, we noticed that the front-end is at times generating
code that is sub-optimal for verification. We found a simple example that con-
tains one state variable, and uses only assignments of constants and equality
tests against constants. The property requires only equality reasoning and thus
should not trigger any refinement. Nevertheless, LLVM’s optimizer transforms
this into code that uses a subtraction, and verifying the property requires a refine-
ment. Moreover, recent work [43] has elucidated some drawbacks of static single
assignment (SSA) form, specifically in its name management and input/output
asymmetry. Besides complicating euforia’s encoder implementation, our SSA-
based encoding introduces more state variables and leads to less understandable
verification lemmas. Future work will explore using alternative front-ends tai-
lored for verification.
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Abstract. Frequent configuration churn caused by maintenance,
upgrades, hardware and firmware failures regularly leads to costly out-
ages. Preventing network outages caused by misconfigurations is impor-
tant for ensuring high network availability. Dealing with production dat-
acenters with thousands of routers is a major challenge.

Network verification inspects the forwarding tables of routers. These
tables are determined by the so-called control plane, which is given by
the steady state of the routing protocols. The ability to simulate rout-
ing protocols given router configuration files and thus obtain the control
plane is a key enabling technology.

In this paper, we present FastPlane, an efficient BGP simulator.
BGP support is mandated by modern datacenter designs, which choose
BGP as the routing protocol. The key to FastPlane’s performance is
our insight into the routing policy of cloud datacenters that allows the
usage of a generalized Dijkstra’s algorithm. The insight reveals that these
networks are monotonic, i.e., route advertisements decrease preference
when propagated through the network.

The evaluation on real world, production datacenters of a major cloud
provider shows that FastPlane (1) is two orders of magnitude faster
than the state-of-the-art on small and medium datacenters, and (2) goes
beyond the state-of-the-art by scaling to large datacenters. FastPlane
was instrumental in finding several production bugs in router firmware,
routing policy, and network architecture.

1 Introduction

Preventing network outages caused by misconfigurations is important for ensur-
ing high network availability. It is particularly relevant for public cloud infras-
tructures where an outage can affect thousands of customers [35].

Computing the network control plane is a crucial building block to prevent
outages, as it consists of routing tables (RIBs) that determine network connectiv-
ity. These tables can be automatically inspected to check validity of configuration
intents related to connectivity, as well as fault-tolerance and performance.

The ability to compute control planes from router configuration files and
topology information enables static, dynamic, and design-time verification sce-
narios. Statically, i.e., before deploying a configuration into production, we first
c© Springer Nature Switzerland AG 2019
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compute the control plane and verify its properties. If all checks pass, the config-
uration can be deployed with increased confidence. Some configuration intents
can also be validated when the network is designed. For example, the computed
control plane can demonstrate whether the required level of fault-tolerance and
load-balancing is achievable. Unfortunately, static checks are not sufficient, due
to bugs in router firmware. Hence there is a need for dynamic checking as well,
i.e., once a configuration is already deployed. Cross-checking the computed con-
trol plane with the one from production routers can uncover firmware bugs.

Due to lack of adequate validation tools, frequent configuration churn in dat-
acenter networks caused by maintenance, upgrades, hardware and firmware fail-
ures regularly leads to costly outages. Scaling control plane computation to thou-
sands of datacenter routers and network prefixes is still an open problem [42].

In this paper we present FastPlane, a tool for fast BGP simulation of
large datacenters. Support for BGP is mandated by best practices in modern
datacenter design, where BGP runs on each router [6,31,32]. The key to Fast-
Plane’s scalability is our insight into the routing policy that is revealed through
a study of production configurations deployed by a major cloud provider. The
insight shows that the network is monotonic, i.e., route advertisements decrease
preference when propagated through the network [44]. It allows the deployment
of a generalized form of Dijkstra’s algorithm. FastPlane executes Dijkstra’s
algorithm over route advertisements instead of numeric path weights.

We adapt Dijkstra’s algorithm to directly perform route advertisement prop-
agation. Instead of numeric weight addition when traversing a graph edge, we
apply routing policy determined by configuration files. The order of priority
queue is no longer arithmetic comparison, but route preference order determined
by BGP RFC/vendor specifications. The result corresponds to the control plane
of the datacenter network once it reached a stable state [25].

We evaluated FastPlane on all production datacenters of a major cloud
provider, and compared it with the state-of-the-art control plane verifier Batfish.
For small and medium datacenters, FastPlane is two orders of magnitude faster
than Batfish. For large datacenters, FastPlane finishes in a few minutes while
Batfish either times out after one CPU week or runs out of memory.

Control planes computed by FastPlane exposed several bugs. A bug in the
redistribution policy of connected routes was discovered by comparing computed
RIBs with expected entries specified by network operators. This bug was fixed
in production. A firmware bug that caused the RIB to contain different next-
hops than the forwarding table was caught by cross-checking production against
computed control planes. By similar cross-checking we also discovered a bug in
high level routing architecture that causes a non-deterministic drop in fault-
tolerance and load-balancing. Mitigation measures for this bug are underway.

In summary, we contribute a scalable algorithm for fast BGP simulation of
datacenter networks. It exploits monotonicity of datacenter routing policy, from
which we derive the applicability of a shortest path-based characterization of the
control plane, yet, for the first time, expressed over route advertisements instead
of numeric weights. Our implementation scales to large production datacenters,
which are out of reach for the state-of-the-art.
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RIB:
10.0.0.0/24 -> L0

RIB:
10.0.1.0/24 -> L0

R1
ASN 1 

R2
ASN 2

R3
ASN 3

…

RIB:
(empty)

Fig. 1. Example network with three routers running BGP. We show the initial RIB of
each router, i.e., before any information has been exchanged between neighbors.

! ---------------- Router R1 -----------------------

interface Ethernet0 ! physical port connected to R2

ip address 172.16.0.0/31

1NSAhtiwPGBnur!1retuorpgb

network 10.0.0.0/24 ! export prefix to neighbors

neighbor 172.16.0.1 remote-as 2 ! peer with R2

! ---------------- Router R2 -----------------------

interface Ethernet0 ! physical port connected to R1

ip address 172.16.0.1/31

2NSAhtiwPGBnur!2retuorpgb

! export prefix if any sub-prefix in RIB

aggregate-address 10.0.0.0/16 summary-only

neighbor 172.16.0.0 remote-as 1 ! peer with R1

neighbor 172.16.0.3 remote-as 3 ! peer with R3

Fig. 2. Configuration fragments for routers R1 and R2 in Fig. 1. R1 exports the prefix
used by directly connected servers. R2 aggregates and exports the prefix 10.0.0.0/16
whenever a more specific prefix exists in the RIB. At the same time, R2 blocks adver-
tisement of the more specific prefixes.

2 Datacenters and BGP

Modern datacenter designs choose BGP as the routing protocol to compute
RIBs [2,23,32]. By running BGP each datacenter router participates in a dis-
tributed best path computation, where information about the best paths is
exchanged between direct neighbors. The cost metric is not, however, the number
of hops in the path, but rather a lexicographic order of several path attributes.

Each router has an autonomous system number (ASN). ASNs are used to
keep track of the path an advertisement has taken. Datacenter routers have
different ASNs between layers such that external BGP (eBGP) is used.

We will now show how BGP propagates best path information. Figure 1 shows
an example network with three routers and Fig. 2 shows fragments of two con-
figuration files. RIBs are initialized with locally exported prefixes. For example,
router R1 exports 10.0.0.0/24, and therefore this prefix is inserted in its RIB.
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RIB:
10.0.0.0/24 -> L0

RIB:
10.0.1.0/24 -> L0

R1 R2 R3
RIB:
10.0.0.0/24 -> R1 [s]
10.0.1.0/24 -> R3 [s]
10.0.0.0/16 -> null

10.0.0.0/24

RIB:
10.0.0.0/24 -> L0
10.0.0.0/16 -> R2

RIB:
10.0.1.0/24 -> L0
10.0.0.0/16 -> R2

R1 R2 R3

10.0.0.0/16

10.0.1.0/24(a)

(b)

10.0.0.0/16

Fig. 3. Example of BGP running on the network of Fig. 1. [s] indicates a suppressed
entry, which will not be advertised to the neighbors.

The second step of BGP is to continuously exchange information with neigh-
bor routers about newly learnt prefixes and about prefixes that the router can
no longer reach. In our example, R1 advertises 10.0.0.0/24 to R2 and, similarly,
R3 advertises 10.0.1.0/24 to R2, as can be seen in Fig. 3(a). Since R2 does not
block any advertisement from its neighbors, both of these prefixes are installed
in the RIB of R2.

Router R2 has an “aggregate summary-only” command, which blocks any
sub-prefix of 10.0.0.0/16 from being advertised to neighbors. Therefore, the pre-
fixes received from R1 and R2 are marked with [s] in the RIB, meaning they
are suppressed. Additionally, the aggregated prefix is installed in the RIB.

Router R2 then advertises the new entries in its RIB to its neighbors, as
shown in Fig. 3(b). The only new non-suppressed entry is 10.0.0.0/16 and it is
sent to both neighbors, which install it in their RIBs.

As a final step, routers R1 and R3 try to advertise the new prefix to their
neighbor (R2), but since this prefix was sent to them by R2 and BGP does not
send a prefix back to the router that advertised it, routers R1 and R3 do not
advertise anything further. Therefore, the RIBs in Fig. 3(b) are the stable state
of the network and no further communication occurs until some RIB changes.

Although we have presented the execution of BGP as a sequence of steps,
the protocol does not run in a synchronous way: advertisements can be sent in
any order.

3 Illustration

In this section we illustrate several key aspects of our algorithm. The first exam-
ple introduces the algorithm through a simple step-by-step run and shows how
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R1 R2

R3

R4

10.0.1.0/24 Agg. 10.0.0.0/16 10.0.1.0/24

10.0.0.0/24

Fig. 4. Example network with four routers and prefixes they export. R2 aggregates
10.0.0.0/16.

different prefixes interact with each other. The second one focuses on how the
order of propagation of route advertisements through the network is determined
by our algorithm, and highlights how this order is fundamentally different from
the propagation happening during an actual, distributed execution of BGP. The
last example shows that preference decrease across route advertisement is a nec-
essary condition, as otherwise our algorithm fails to compute a correct answer.

For each example we assume that a router named Ri is configured to have
the AS number i and they run eBGP.

3.1 Prefix Interaction

First we show how our algorithm computes routing tables for the example net-
work of Fig. 4.

Each router R1, R3, and R4 exports a single prefix. Router R2 aggregates
sub-prefixes of 10.0.0.0/16. This prefix is initially not exported by R2 because
R2 has no sub-prefix in its RIB to trigger the aggregation.

In the first step of the algorithm, we collect all seed advertisements, i.e.,
all advertisements that routers in the network export on their own. In this
example, we have three such advertisements that we will represent as tuples
(router , prefix ,AS path). Note that in practice BGP advertisements have many
more attributes, but for the sake of simplicity we omit them. We use 〈〉 to repre-
sent the empty AS path. The seed advertisements are a1 = (R1, 10.0.1.0/24, 〈〉),
a3 = (R3, 10.0.0.0/24, 〈〉), and a4 = (R4, 10.0.1.0/24, 〈〉). These advertisements
are then grouped by prefix as follows.

((10.0.0.0/24, {a3}), (10.0.1.0/24, {a1, a4}))

Our algorithm will now iterate over this list of seeds and consume its elements.
Later we will see how additional items are placed on the list.

Routes are computed for each prefix individually, since routing policies may
differ for different prefixes. We need to start with more specific prefixes and
continue with less specific prefixes, for reasons that will be explained later. In
our example, the list only has two prefixes and they have equal prefix length,
which is 24, so they are incomparable and hence we can pick either of them
arbitrarily. We chose to start with 10.0.0.0/24.
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After we picked the prefix, we consider the corresponding set of seed adver-
tisements, {a3}. Now we propagate this set of advertisements to every router.
That is, every router needs to learn a best path to reach 10.0.0.0/24 at R3.

We show our adaptation of Dijkstra’s shortest path algorithm for this task.
First we initialize a work list WL with the seed advertisements, i.e., WL =
{a3}. Then the algorithm takes advertisements from the work list, one-by-one,
processes them, and iterates until the work list becomes empty. So, we take the
only present element in the work list, a3, and re-advertise it to all neighbors
of R3, which happens to be only router R2. To re-advertise, we create a new
advertisement by copying a3 and prepending R3’s ASN to the AS path, and
obtain a2′ = (R2, 10.0.0.0/24, 〈3〉). This new advertisement is then added to
the work list, hence we obtain WL = {a2′}. After the first re-advertisement we
obtain the following RIB entries.

R2 R3

a2′ = (R2, 10.0.0.0/24, 〈3〉) a3 = (R3, 10.0.0.0/24, 〈〉)

The algorithm then advertises a2′ to R2’s neighbors R1 and R4. Two new
advertisements a1′ = (R1, 10.0.0.0/24, 〈2, 3〉) and a4′ = (R4, 10.0.0.0/24, 〈2, 3〉)
are created. Note how R2’s ASN is prepended to the AS path. The work list
becomes WL = {a1′ , a4′}.

We now reach a new case in our algorithm, in which the work list WL has
more than one element. The choice of the next advertisement to process is impor-
tant. Like in Dijkstra’s algorithm we pick a vertex that is labeled with the
smallest distance value: we need to visit a most preferred advertisement first.
We assume that a partial order relation ≺ captures BGP’s advertisement pref-
erence order. We can obtain ≺ from the description of the BGP’s best path
selection algorithm, which specifies that advertisements with shorter AS paths
are preferable to advertisements with longer AS paths, among other criteria.

The order ≺ is partial, since BGP advertisements are not always comparable.
One of the main reasons we particularly notice lack of totality is that the BGP
best path selection algorithm was designed to be used within a single router,
while our work list contains advertisements that reside at different routers. In
our example, both advertisements in the work list have the same AS path length,
so they are equally preferable. We will break the tie through an auxiliary lexi-
cographic order on names of routers that store the advertisements, i.e., R1 and
R4. As a result, our algorithm deterministically picks a1′ from the work list.

Advertisement a1′ can only be re-advertised back to R2 since R1 has no other
neighbor. However, R2 rejects this advertisement because its own ASN occurs in
the AS path 〈2, 3〉. A similar advertisement rejection happens with a4′ . Finally,
the work list WL becomes empty and the advertisement propagation loop fin-
ishes. We computed four RIB entries, one for each of the routers in the network,
since there are no policies in our example network that block advertisements of
the considered prefix and all routers are reachable from R3.

Now we inspect if aggregation is configured on any of the routers. Router
R2 has an aggregate for 10.0.0.0/16 which was not previously enabled since the
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Fig. 5. Example network with five routers. Only R3 advertises a prefix.

RIB of R2 was empty. With the installation of a2′ in R2’s RIB, the aggregation
becomes active because the prefix of a2′ is a sub-prefix of the aggregate. There-
fore, we generate a new advertisement a2′′ = (R2, 10.0.0.0/16, 〈〉), which tracks
the enabled aggregate. The list with seed advertisements we had before is now
extended to include the new advertisement and its prefix as follows.

((10.0.1.0/24, {a1, a4}), (10.0.0.0/16, {a2′′}))

We are now considering a case when it matters which prefix we take from
the seed list to process next. Note that aggregate advertisements, like a2′′ , are
created and installed due to advertisements for sub-prefixes being installed in
the RIB. The attributes of a2′′ are computed by applying appropriate aggre-
gation functions on the attributes of sub-prefixes. Therefore, we advertise all
sub-prefixes before advertising the aggregate, and hence avoid the problem of
updating advertisement attributes and propagating the effect of such updates
through additional route advertisements. This is why we iterate over the seed list
by starting with more specific prefixes and proceeding with less specific prefixes.

The BGP RFC [41, Sect. 9.2.2.2] mandates that the aggregated AS path
should be the largest common prefix of the AS paths of advertisements of sub-
prefixes. In our example, we set the AS path of the aggregate to 〈〉, which is not
what the BGP specification mandates, but it is how it is implemented by some
relevant vendors, e.g., Cisco.

Our algorithm proceeds with a new run of the modified Dijkstra’s algorithm
that advertises 10.0.1.0/24. The only difference to what we described previously
is that now we have two seed advertisements, a1 and a4. These are inserted in
the work list WL and the rest of the algorithm proceeds as before. Finally, all
advertisements for 10.0.0.0/16 are computed and our algorithm terminates.

The forwarding tables (FIBs) of the routers can be computed from the RIBs
by taking the best advertisements for each prefix. In our example, each router
only has one advertisement for each prefix, so all advertisements are propagated
to the FIB.

3.2 Globally vs. Locally Preferred Advertisements

In this example we show how the order of propagation of route advertisements
used by our algorithm differs from what a (distributed) execution of BGP in
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a real network can choose. This difference is important in ensuring that any
propagated route advertisement will never be superseded by a better one.

To illustrate the above point, we change our example network to include an
additional link from R1 to R4 and an extra router R5, as shown in Fig. 5. We also
add a route map to router R2 that applies to advertisements going out to R4.
This route map augments the AS path by prepending the AS number 2 twice.
The configuration change in router R2 to include this route map is as follows.

route-map prepend permit 10

set as-path prepend 2 2

!

router bgp 2

neighbor 10.1.0.4 route-map prepend out ! R4

In this example, we only have one seed advertisement a3 = (R3, 10.0.0.0/
24, 〈〉). This propagates to R2 as a2 = (R2, 10.0.0.0/24, 〈3〉). Advertisement a2 is
then propagated to the neighbors of router R2, and so we obtain two new adver-
tisements a1 = (R1, 10.0.0.0/24, 〈2, 3〉) and a4 = (R4, 10.0.0.0/24, 〈2, 2, 2, 3〉).
The work list becomes WL = {a1, a4}, together with the RIB entries shown
below. Note that for brevity we only show the AS path in each of the advertise-
ments.

R1 R2 R3 R4 R5

a1 = 〈2, 3〉 a2 = 〈3〉 a3 = 〈〉 a4 = 〈2, 2, 2, 3〉

The next advertisement to explore is a1, since it is more preferred than a4,
i.e., a1 ≺ a4. Advertising a1 to R1’s neighbors results in a new advertisement
a4′ = (R4, 10.0.0.0/24, 〈1, 2, 3〉), while R2 drops the advertisement from R1 due
to the occurrence of its ASN in the AS path of a1. We now have two competing
advertisements at R4. One was received from R1, a4′ , and the other from R2,
a4. A router only advertises a most preferred advertisement, which in this case is
a4′ since a4′ ≺ a4 as the AS path 〈1, 2, 3〉 for a4′ is shorter than 〈2, 2, 2, 3〉 for a4.
Therefore, we replace a4 with a4′ in the work list to get WL = {a4′}. We point out
that advertisement a4 is nevertheless stored in the RIB of R4, but is not adver-
tised further. Finally, the algorithm computes a5 = (R5, 10.0.0.0/24, 〈4, 1, 2, 3〉)
for R5. The final result is that each router has one entry in the RIB, except R4
which has two entries, where one is singled out as a best advertisement.

In this example we observed that since the work list stores advertisements
across all routers, when we take the globally most preferred advertisement for
exploration, the exploration of the most preferred advertisement within a given
router may be delayed. Here we speak of a global preference order. It is essential
for avoiding recomputation of advertisements due to arrival of more preferred
ones, as it happens when BGP runs in a distributed setting over real networks
in which a router propagates an advertisement that is most preferred among the
locally present ones. In this case we speak of a local preference order.

In contrast, when running BGP on our example and following the local order
on the RIBs containing advertisements a1, . . . , a5, R4 may advertise a4 before it
receives a4′ , which leads to a5′ = (R5, 10.0.0.0/24, 〈4, 2, 2, 2, 3〉). After the adver-
tisement of a4, R1 may advertise a1 to R4 which results in a4′ appearing on R4.
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Fig. 6. Example network, where only router R1 advertises a prefix. R3 has a route
map that increases local preference on incoming advertisements from R6.

At this point R4 discovers that a4 is no longer the most preferred advertisement,
while a4′ is. So it needs to ask R5 to withdraw advertisement a5′ . In a larger
network, by transitivity all advertisements that were sent out because of a4′

would need to be withdrawn, which could be a significant effort.
By following the global order, instead of the local ones, our algorithm never

withdraws advertisements, which helps in scaling to large datacenter networks.

3.3 Necessity of Monotonic Increase of Preference

We showed how our algorithm avoids recomputation of advertisements by prop-
agating only globally optimal advertisements. However, this procedure is only
correct if the routing policy produces advertisements that never increase in pref-
erence. This means that the preference of a route advertisement at the destina-
tion router cannot be higher than the preference of the originating advertisement
at the source router. However, some features supported by BGP routing policies
can lead to violation of this property.

The following example illustrates the necessity of the monotonic increase
property, and shows that without it our algorithm computes an incorrect result.

We consider the network in Fig. 6. Router R3 has a route map that increases
the local preference of advertisements incoming from R6 to 200, while the default
value is usually 100. The route map is as follows.

route-map in_r6 permit 10

set local-preference 200

!

router bgp 3

neighbor 10.1.0.3 route-map in_r6 in

Note that the BGP best path selection algorithm states that the advertisement
with the highest local preference is preferred. If advertisements have an equal
value of the local preference attribute, then the advertisement with the shortest
AS path is preferred.

Since we now need to track the local preference attribute, we will represent
advertisement as tuples (router , prefix , local pref ,AS path).
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The seed advertisement is a1 = (R1, 10.0.0.0/24, 100, 〈〉). Our algorithm
propagates a1 from R1 to R2 and R5 resulting in a2 = (R2, 10.0.0.0/24, 100, 〈1〉)
and a5 = (R5, 10.0.0.0/24, 100, 〈1〉). The resulting work list is WL = {a2, a5}.

As a2 and a5 are equally preferred, our algorithm picks the advertisement
located at the router with the lowest identifier (in order to stay determin-
istic), which is a2 in this case. We propagate a2 to R3 and obtain a3 =
(R3, 10.0.0.0/24, 100, 〈2, 1〉) and WL = {a3, a5}. We then take a5 from the
work list and compute a6 = (R6, 10.0.0.0/24, 100, 〈5, 1〉) and WL = {a3, a6}.
Afterward we take a3 and compute a4 = (R4, 10.0.0.0/24, 100, 〈3, 2, 1〉) and
WL = {a4, a6}. The resulting RIBs (with just the local preference and AS path
attributes) are shown below.

R1: a1 = (100, 〈〉) R2: a2 = (100, 〈1〉) R3: a3 = (100, 〈2, 1〉)
R4: a4 = (100, 〈3, 2, 1〉) R5: a5 = (100, 〈1〉) R6: a6 = (100, 〈5, 1〉)
We now arrive at the problematic part. When we take a6 from the work

list and advertise it to R3, the incoming route map at R3 sets the local
preference of the incoming advertisement to 200. Therefore we obtain a3′ =
(R3, 10.0.0.0/24, 200, 〈6, 5, 1〉). This advertisement is more preferred than a3 that
was received previously from R2, i.e., a3′ ≺ a3 since 200 > 100. This means that
R3 now has a more preferred advertisement than the one previously present in
its RIB and therefore the new advertisement needs to be propagated, with all
the related withdrawals and re-advertisements, while a3 is still kept in the RIB.

Unfortunately, we already propagated a3 to R4 by following the global pref-
erence order. To fix the problem, we would need to remove a4 from R4’s RIB,
as well as remove any advertisements transitively derived from a4, potentially
spanning the whole network. However, due to the monotonic increase assump-
tion, our algorithm does not anticipate such an issue and hence is not able to
delete RIB entries. As a consequence, we obtain a wrong result for this network.

To summarize, our algorithm only produces a correct result when the net-
work’s routing policies ensure monotonic increase of preference. Fortunately, sev-
eral studies (including ours) confirm that industrial datacenter networks have
this property.

4 Algorithms

In this section we describe an algorithm for efficient simulation of BGP in data-
center networks. Our algorithm is based on Dijkstra’s shortest path algorithm,
and adapts it to our setting by using BGP route advertisements to track distance,
comparing distances using BGP path selection function, and updating distance
using BGP route maps. We also show how to deal with equal-cost multi-path
routing (ECMP) and aggregation.

4.1 Generalizing Dijkstra’s Algorithm

We begin by revisiting Dijkstra’s algorithm, in order to fix a particular version
as there are different ways of setting up and maintaining the distance and work
list data structures. See Fig. 7.
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function Dijkstra
input
E : V × V – set of edges
v0 : V – initial vertex
length : V × V → N – edge length

vars
dist : V → N – distance from source to other vertexes
queue : P(V ) – queue with vertexes pending processing

begin
dist(v0) := 0
queue := {v0}
while queue �= ∅ do
u = argmin<

w∈queue dist(w)
queue := queue \ {u}
for each v ∈ E(u) do
if v /∈ dom(dist) ∨ dist(u) + length(u, v) < dist(v) then
dist(v) := dist(u) + length(u, v)
queue := queue ∪ {v}

done
done
return dist

end

Fig. 7. Dijkstra computes the shortest path between a source vertex in the graph
and all other vertexes. E(u) is the set of neighbors of u. arg min< chooses a minimum
with respect to the relation <.

Dijkstra’s algorithm works as follows. It initializes the distance from the
source vertex to itself as zero and adds the vertex to the queue (lines 1–2). Then
it iterates over the queue until it is empty. At each iteration of the loop it picks
the vertex u from the queue with the smallest distance from the source vertex
(lines 3–5). The algorithm then iterates over each neighbor v of vertex u and
updates the best known distance so far to v if it is the first path we discover
to v or if the previously known path was longer (lines 6–10). When the queue
becomes empty, the function returns function dist which contains the shortest
distance from vertex v0 to all the other reachable vertexes in the graph (line 12).

We gave a brief description of how Dijkstra’s algorithm works. It is important
to note that the result is a labeling of vertexes with a natural number: the
shortest distance from the source to that vertex. We will now consider a few
operations in Dijkstra’s algorithm in a more general setting. In particular, we
will consider the labels of vertexes to be of an arbitrary type D , with the ordering
≺ between these labels. We assume that a function trans can be used to compute
labeling of a neighboring vertex. The generalized version of Dijkstra’s algorithm
is shown in Fig. 8.

The deviations from Dijkstra’s algorithm are as follows. For initialization
(lines 1–2), we now take the initial label of the source vertex d0 as input, instead
of setting it to zero. Secondly, the order of extraction of vertexes from the queue
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function GDijkstra〈D〉
input
E : V × V – set of edges
v0 : V – initial vertex
d0 : D – initial label
trans : D × V × V → D – transform label along an edge
≺ : P(D × D) – label ordering

vars
dist : V → D – distance from v0 to other vertexes
queue : P(V ) – queue with vertexes pending processing

begin
dist(v0) := d0
queue := {v0}
while queue �= ∅ do
u = argmin≺

w∈queue dist(w)
queue = queue \ {u}
for each v ∈ E(u) do
if v /∈ dom(dist) ∨ trans(dist(u), u, v) ≺ dist(v) then
dist(v) := trans(dist(u), u, v)
queue := queue ∪ {v}

done
done
return dist

end

Fig. 8. GDijkstra computes min. labels that reach each vertex from v0 labeled by d0.

is given by a label order ≺ given as input (line 4). Finally, the new label com-
puted for a neighbor is computed by the trans function given as input instead of
computing a path length explicitly (line 7–8). Old and new labels are compared
with ≺ as well.

We relate Dijkstra’s algorithm with the generalized version as follows.

Dijkstra(E, v0, length) = GDijkstra〈N〉(E, v0, 0, λd u v.d + length(u, v), <)

Here we set the initial label of the source vertex to zero. The label of a neighbor
is the label of the current vertex u, i.e., the distance between source and u, plus
the length of the path from u to v.

We now state the correctness of the generalized Dijkstra’s algorithm.

Theorem 1. If ≺ is a strict partial order and function trans is monotonically
increasing, i.e.,

∀d ∀(u, v) ∈ E : ¬(trans(d, u, v) ≺ d),

then GDijkstra labels each vertex with a minimal label that can be computed
by traversing the set of edges E starting at vertex v0 with label d0 and using
function trans to label edges.
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4.2 Advertising a Single Prefix

We now show how to simulate BGP for the advertisement of a single prefix using
our generalized version of Dijkstra’s algorithm.

Vertexes correspond to routers and edges the peering relations established
between them. The label type D will be route advertisements. The source vertex
will be the router that exports the prefix. The source label will be an initial
advertisement as mandated by the BGP standard, e.g., with empty AS path,
with the origin type indicating how this advertisement was produced, etc.

The order between advertisements is given by ≺BGP . For example, a ≺BGP a′

holds if the local preference of a is greater than that of a′. If a ≺BGP a′ holds, we
say that a is preferred to a′. Order ≺BGP corresponds to the best past selection
algorithm of BGP, which is a lexicographic order on advertisement attributes.

The transform function trans has to do several things. Firstly, it needs to
check if the advertisement can be propagated any further. One example of an
advertisement that is blocked is when there is a summary-only aggregate whose
prefix intersects with the prefix being advertised. This type of aggregates blocks
contributing advertisements (i.e., advertisements of more specific prefixes) from
being propagated to neighbors. Secondly, this function needs to transform the
advertisement for the given neighbor, e.g., prepend its own ASN to the AS path,
and then apply the outgoing route map of the sender and the incoming route
map of the neighbor (if any). Any of these route maps may rewrite some fields
of the advertisement or even block it from being advertised or added to the RIB,
respectively for outgoing and incoming route maps. We need to compute a new
advertisement for each neighbor because routers can have different policies for
different neighbors and incoming route maps may also differ between neighbors.

A simplified version of the transform function can be represented by the fol-
lowing pseudo code. We refer to [47] for an example of a formal discussion. In
the pseudo code we use ∞ to denote a least preferred advertisement with respect
to ≺BGP . We use ∞ to model the case when a route map rejects an advertise-
ment. Such advertisements can be ignored upon the termination of the algorithm,
when installing advertisements into the RIBs of their respective routers.

transBGP (a, u, v) :=
if u should not advertise a then
return ∞

a′ := create advertisement for v from a
a′′ := OutRouteMap(u, a′)
if v should not accept a′′ then
return ∞

return InRouteMap(v, a′′)

In practice, function transBGP can be quite complicated and needs to faith-
fully implement vendor-specific details. For example, there are more cases that
block advertisements from being propagated besides summary-only aggregates,
such as when an advertisement is tagged with the “no export” or“no advertise”
communities, and when an advertisement is received from an iBGP peer it can-
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not be advertised to other iBGP peers. Also, some vendors do not support the
advertisement of IPv4 prefixes to neighbor routers that are connected over IPv6.

A reason to reject an incoming advertisement is, e.g., if the AS path contains
the ASN of the receiving router. This check can only be performed after the
outgoing transformations, since outgoing route maps are allowed to change the
AS path.

Putting everything together, we define a function BGPOne that computes a
RIB for a given prefix. Here v0 is the router that exports the initial advertisement
d0 for the prefix, and E is defined by the BGP peering between routers.

BGPOne(E, v0, d0) := GDijkstra(E, v0, d0, transBGP ,≺BGP )

To be able to use GDijkstra and obtain a correct result, we need to establish
the two assumptions made by the algorithm: (1) ≺BGP is a strict partial order,
and (2) transBGP is monotonically increasing. Assumption (1) holds because
≺BGP is a lexicographic order on advertisement attributes.

In general, transBGP is not monotonically increasing. For example, route
maps may increase local preference, which ranks higher in the best path selection
than the AS path length which usually increases by one when an advertisement
is propagated to a neighbor. In this work, since we target datacenter networks,
we deal with transBGP that is monotonically increasing.

4.3 Computing All Advertisements for a Single Prefix

In the previous section, we showed how to use our generalized version of Dijk-
stra’s algorithm to compute advertisements that are propagated to every router
from a given prefix. This is very close to what BGP actually computes, but not
exactly. BGP records at each router not only the most preferred advertisement it
has received for a given prefix, but also all the received advertisements. This way
the router can, e.g., promote the second best advertisement to become the most
preferred one if the neighbor that sent the original most preferred advertisement
becomes unreachable. As we have done, a router only propagates most preferred
advertisements to its neighbors.

We need a further extension in Dijkstra’s algorithm to keep track of all
advertisements, including non-best ones. The new (and final) generalization is
shown in Fig. 9. This algorithm tracks distance from the source as a set of labels
instead of a single label. It stores at vertex v all labels computed by traversing
paths from the neighbors of v to v, instead of keeping only the smallest label.
The creation of a new label for a neighbor of vertex v continues to depend only
on a minimal label of v as previously (c.f. arguments to trans function).

We note that min≺ dist(v) in this algorithm in line 7 is exactly the same value
as dist(v) in the previous algorithm GDijkstra in line 7. Therefore, the only
change in behavior of GDijkstraSet is in line 9. Previously we only stored
the minimal label found so far, so the assignment of dist(v) was inside the if
statement. Now, we moved the assignment out of the if statement such that the
assignment is executed regardless whether the new label is ≺-better than the
previous one.
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function GDijkstraSet〈D〉
input
E : V × V – set of edges
v0 : V – initial vertex
d0 : D – initial label
trans : D × V × V → D – transform label along an edge
≺ : P(D × D) – label ordering

vars
dist : V → P(D) – distance from v0 to other vertexes
queue : P(V ) – queue with vertexes pending processing

begin
dist(v0) := {d0}
queue := {v0}
while queue �= ∅ do
u = argmin≺

w∈queue(min≺ dist(w))
queue := queue \ {u}
for each v ∈ E(u) do
if v /∈ dom(dist) ∨ trans(min≺ dist(u), u, v) ≺ (min≺ dist(v)) then
queue := queue ∪ {v}

dist(v) := {trans(min≺ dist(u), u, v)} ∪ (dist(v) if v ∈ dom(dist) else ∅)
done

done
return dist

end

Fig. 9. GDijkstraSet computes a set of minimal labels at each vertex, as well as
keeps track of all labels that are propagated to a vertex, a so called one-hop history.

We now define BGP tracking all advertisements in terms of the set-tracking
generalization of Dijkstra’s algorithm.

BGPAll(E, v0, d0) := GDijkstraSet(E, v0, d0, transBGP ,≺BGP )

The function BGPAll correctly computes propagation of a single prefix in an effi-
cient way. The network must, however, respect the monotonic increase property
we mentioned previously.

We now state the correctness of BGPAll.

Theorem 2. Given a monotonically increasing BGP network, BGPAll com-
putes a stable state of RIBs in the network.

In this section we assumed that there is only one source router for each prefix.
This is not true in general, however. For example, we may want to load balance
traffic for a service between different racks in a datacenter, and so the routers of
all such racks have to advertise the same prefix corresponding to the service.

Extending the given algorithm for multiple sources is straightforward. Instead
of taking a single source vertex and advertisement, the algorithm can take a set
instead. Then the queue is populated with all the advertisements and these will
be explored in order.
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4.4 Computing RIBs for All Prefixes

In the previous section we presented an algorithm to compute BGP advertise-
ments for a single prefix. We now show an algorithm that computes BGP adver-
tisements for all prefixes originating in a monotonic network, and produces the
RIBs for all the routers. The algorithm consists of a loop invoking the single
prefix-propagating algorithm for each prefix and a prefix composition step.

We compute a separate control plane for each prefix since prefixes are
exported at varying locations. Moreover, different routers in a network are often
configured to accept and/or modify advertisements differently depending on the
prefix. Therefore we cannot simply run the set-generalized Dijkstra algorithm
for all prefixes at once.

The algorithm to compute the RIB for all routers is as follows.

RIB := ∅
seeds := InitSeeds()

while seeds 	= ∅ do
(prefix , adverts) := take most specific prefix from seeds
RIB := RIB ∪ {(r, prefix ) �→ a | (r, a) ∈ BGPAll(E, adverts)}
seeds := UpdateSeeds(RIB, prefix , seeds)

done
return RIB

The procedure starts by computing the set of seed advertisements. grouped
by prefix. Seed adverts consist of the prefixes advertised by each router through,
e.g., the network command, or via aggregation of locally installed routes.

The order of iteration through prefixes is relevant for features where there is a
dependency between different prefixes, i.e., features that make advertisement of
prefixes to not be independent of each other. For example, an aggregated prefix,
say 10.0.0.0/8, depends on contributing prefixes, say 10.0.1.0/24. In this case we
need to iterate through more specific prefixes before the less specific ones, e.g.,
we need to execute BGPAll on 10.0.1.0/24 before executing it on 10.0.0.0/8.

Function UpdateSeeds creates and updates existing seed advertisements.
These new and/or updated seeds need to be iterated over later. It is guaranteed,
however, that any new seed is of a less specific prefix than any other already
processed. Since we iterate from more specific to less specific prefixes, we never
miss any update to a seed or explore the same prefix more than once.

4.5 Updating Seed Advertisements

Sometimes there are dependencies between different IP prefixes, and installing
an entry in the RIB may automatically trigger the installation (or update) of an
entry for another prefix.

One such case is aggregation. For example, if a router is configured to aggre-
gate 10.0.0.0/16 but has no initial seed with a sub-prefix, initially 10.0.0.0/16
will not be installed in the RIB since there is no contributing advertisement. If
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later this router receives an advertisement for, e.g., 10.0.0.1/32, the aggregated
prefix becomes active and thus it becomes a seed since it needs to be advertised
to the neighbors.

Another case is when an aggregated prefix is already active and the router
installs another sub-prefix. In this case, we may need to update the seed adver-
tisement for the aggregated prefix since it depends on all contributing advertise-
ments. For example, the origin type of an aggregated advertisement is the result
of combining the origin type of all contributing advertisements. Other attributes
of advertisements are often combined using vendor-specific functions.

Function UpdateSeeds takes the last prefix that was advertised as input
and checks if that prefix is a potential contributor to any aggregated prefix in
the routers. If so, it creates a new seed advertisement for the aggregated prefix
in case it does not exist yet, or updates the existing seed.

It is guaranteed that any created or updated seed advertisement has not been
visited yet by the BGPAll algorithm. This is because the main loop traverses
prefixes from more specific to less specific, and the created/updated seeds have
a less specific address than in the current loop iteration, otherwise the adver-
tisements created in the current iteration could not possibly be contributors to
the created/updated seeds of aggregated prefixes.

5 Evaluation

To evaluate the proposed algorithm, we implemented a prototype called Fast-
Plane in C++17. It supports several router vendors, including Arista, Cisco
(IOS and Nexus), Force10, and Juniper. The range of implemented features
includes BGP (internal and external), communities, BGP multipath, route maps,
prefix aggregation, ACLs, ECMP, static routes, IPv4, and IPv6.

We compare the running time of FastPlane with Batfish [20], which is
the state-of-the-art tool for RIB computation supporting general networks (as
opposed to FastPlane, which only supports monotonic ones). As far as we are
aware, Batfish is the only publicly available tool that can parse significant por-
tions of industrial router configurations and that scales to thousands of routers.

Setup. We took the configuration files for all datacenters (DCs) of a major pub-
lic cloud provider. Overall we collected a few (single digit) GBs of configuration
files containing hundreds of millions of lines.

The network architecture of these DCs is a fat-tree running eBGP between all
routers [23]. The dataset contains DCs with several variants of the architecture,
depending on the DC size and age (since the architecture keeps evolving). We
validated that the monotonicity property holds for all DCs in our dataset.

The machine used to run the experiments had 2x Intel Xeon E5-2660 CPUs
(16 cores total), with 112 GBs of RAM. We used Batfish revision b004dff from
11/Jan/2018, with a limit of 100 GBs of memory for the JVM.
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Fig. 10. CPU time (in seconds) to compute the RIBs and FIBs of all routers in each
datacenter vs. datacenter size (number of routers).

Performance Results. For each datacenter, we computed RIBs and FIBs for
all routers using FastPlane and Batfish, and measured the table size and the
running time. The total number of entries in the RIBs of all devices of a single
datacenter varied between several thousands and hundreds of millions.

We present the CPU time taken to compute the RIBs and FIBs in Fig. 10.
Datacenters are grouped into five buckets, according to their number of routers.
For each bucket we show the average time for the datacenters in that bucket.

Figure 10 shows that FastPlane is about two orders of magnitude faster
than Batfish. Given 100 GBs of memory, Batfish does not scale beyond 2,000
routers. Moreover, Batfish only supports IPv4, while FastPlane supports IPv6
as well.

FastPlane only executes one round of BGP propagation, since it stratifies
the computation. This is possible for monotonic networks. Batfish, on the other
hand, does not pick any particular propagation order, which leads to several
iterations. In our dataset, we see Batfish requiring up to eight BGP iterations.
This shows that choosing the right propagation order has significant impact on
the efficiency of the algorithm.

Besides the higher number of BGP rounds, Batfish is fundamentally slower
than FastPlane for two other reasons: (1) Batfish supports generic BGP net-
works while FastPlane only supports monotonic networks, and (2) Batfish’s
fixed-point check resembles the so-called naive Datalog evaluation (as opposed
to the more efficient semi-naive [13]).

Batfish does not simulate BGP through message passing like C-BGP. Instead,
a router’s RIB is computed by peeking into the neighbor’s RIBs and importing
those (subject to routing policies, and so on). Batfish keeps two sets of RIBs
per router: one from the previous iteration and another for the current iteration,
which is computed based on the neighboring RIBs from the previous iteration.
Therefore, Batfish keeps two RIBs per router in memory at a time.

Validation of BGP Semantics. To increase confidence in our implementation
of BGP, in particular in vendor-specific features, we compared the RIBs and
FIBs computed by FastPlane with the ones from production routers in the
datacenters.
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Since datacenters operate in an open environment and receive external adver-
tisements, we had to define a boundary delimiting what we would simulate.
Routers outside of the given datacenter, i.e., the Internet, other datacenters,
and load balancers, were modeled as dummy BGP neighbors that replayed the
advertisements received by the production routers at the boundary.

This validation was effective. We found several bugs in our semantics of
BGP, differences between the BGP implementations of different vendors, as well
as bugs in the network. After validation, FastPlane computes FIBs and RIBs
that are equivalent to those of several thousand routers we compared against.

One interesting bug we found was a difference in the behavior of BGP aggre-
gation between Cisco and Arista: Arista follows the RFC and sets the AS path to
the longest common prefix of the contributing advertisements’ AS paths, while
Cisco always creates aggregates with empty AS paths.

Production Bugs Found. We give a high-level description of some of the
bugs found in datacenter networks while doing the cross-checking explained in
the previous section.

One of the bugs was in the redistribution policy of connected routes. A net-
work operator specified how the RIB of each device type is expected to look like.
For example, ToRs must have all prefixes exported by load balancers. We then
checked if the computed RIBs matched the expectations, and the check failed. In
particular, there were unexpected advertisements. The routing policy was fixed
to block them, and FastPlane was used to validate the fix before deployment.

We also found a bug in a router’s firmware that resulted in the FIB’s next-
hops to be incorrect for some prefixes, due to a race condition in the code that
updates the FIB. This bug would have been hard to find without FastPlane,
which provides the ground truth for the router behavior.

Another type of bug was a problem with the network architecture. The archi-
tecture allows the network control plane to converge to different stable states,
due to non-determinism. We found that some of these states have reduced load
balancing and fault tolerance. We confirmed that the problem manifests in pro-
duction and a fix is underway.

6 Related Work

Control plane verification is closely related to our work. Existing tools use a vari-
ety of techniques to compute the control plane, including simulation of message
passing of routing protocols, Batfish [20] and C-BGP [40], and SMT encodings
of BGP, Bagpipe [47], MineSweeper [8]. ERA [17] uses BDDs for reachability
analysis between endpoints. ARC [22] and [48] compute an abstraction of the
control plane. These tools are less scalable than FastPlane when applied to
obtain the entire control plane, but they often support more BGP features and
more complex interactions between routing protocols. We believe that our algo-
rithm could be used to scale existing tools to large datacenters, while keeping
the applicability of general methods when needed.
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CrystalNet [34] uses the router’s firmware in a virtualized environment to
compute the control plane. It is bug-compatible with production networks, but
it is significantly more resource intensive and slower than FastPlane.

There also exists static analysis of configuration files, similarly to compiler
warnings. Such tools, e.g., rcp [18], do not compute the control plane.

Another area of network verification is data plane verification [52]. These
tools operate over given FIBs, which can be either be computed from RIBs,
or obtained directly from production routers, which unfortunately precludes
verification before deployment. Tools for data plane verification employ a
range of techniques including specialized algorithms and data structures, e.g.,
HSA [29], NetPlumber [28], VeriFlow [30], ddNF [12], TenantGuard [46], Dat-
alog solvers, e.g., NoD [36], predicate abstraction, e.g., AP [49], SAT solvers,
e.g., Anteater [37] and NetSAT [51], BDDs, e.g., FlowChecker [3], symmetry
reduction [39], localized, per router, properties, e.g., SecGuru [11], and symbolic
execution [14].

Software defined networks (SDNs) offer an alternative to BGP or OSPF, how-
ever they are not yet deployed at datacenter scale. There exist model checkering
tools for SDN controllers, e.g., Kuai [38], VeriCon [7], and SDNRacer [16].

Correct by construction is an alternative approach to network reliability.
Tools for configuration synthesis include Propane [9,10], and Genesis [45]. There
is also work on synthesizing ACLs [27,50]. We anticipate that synthesis tools
could improve scalability by applying our monotonicity observation.

There are new languages to declaratively specify routing behavior, e.g.,
NetKAT [5], and firewalls, e.g., Mignis [1].

There is related work in the area of routing algebras [4,24,25,44]. For exam-
ple, [26] proves that monotonicity of the edge labeling function, which corre-
sponds to our transBGP , with respect to the label order, which is our ≺BGP ,
ensures convergence of the routing protocol. [43] gives a generalization of Dijk-
stra’s algorithm, but using numerical weights, while the generalization in [33] is
for arbitrary, totally ordered, cost functions. [15] also gives a generalization of
Dijkstra’s algorithm, but does not handle aggregation, unlike our algorithm.

[19] gives an algorithm to compute the control plane of an iBGP mesh
with several routers peering with other ASs. [21] gives guidelines for configuring
routers that peer with other organizations to ensure convergence of BGP.

7 Future Work

In this paper we presented an algorithm for computing routing tables that
is applicable only when a certain subset of features of BGP is used. Further
research is needed to broaden and precisely characterize what is the set (or sets)
of features that can be used together and is still compatible with the proposed
algorithm (or similar monotonic reasoning approach).

Dually, further research is needed to characterize protocol features to avoid
in order to support efficient verification. Moreover, there is little understanding
of if/how to replace non-monotonic features by monotonic ones. This could not
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only improve efficiency of network verification, but also speed up convergence
time in production networks, since fewer advertisements would be withdrawn.

Another avenue is a study of non-determinism in control planes. ≺ is some-
times not a total order, which means there may exist different stable states in the
network. This has disadvantages, such as making troubleshooting more difficult.
Our current prototype deliberately computes a single stable state in a consistent,
deterministic way so that the results are reproducible. However, this stable state
may not be identical to the state in which the real network stabilizes.

8 Conclusion

We studied datacenter networks of a major cloud provider and confirmed their
monotonicity. We then presented an efficient algorithm that leverages this fact
to compute routing tables of that kind of networks. The evaluation shows that
our prototype, FastPlane, scales to large production datacenters.
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Abstract. The election of a leader in a network is a challenging task,
especially when the processes are asynchronous, i. e., execute an algo-
rithm with time-varying periods. Thales developed an industrial election
algorithm with an arbitrary number of processes, that can possibly fail.
In this work, we prove the correctness of a variant of this industrial algo-
rithm. We use a method combining abstraction, the SafeProver solver,
and a parametric timed model-checker. This allows us to prove the cor-
rectness of the algorithm for a large number p of processes (p = 5000).
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1 Introduction

Distributed systems, where entities communicate with each other, are booming in
our societies. Drones communicating with each other, swarms of various objects,
intelligent cars... all may face communication and leadership issues. Therefore,
the algorithm that all entities execute should be verified. Thales developed an
industrial election algorithm with an arbitrary number of processes, that can
possibly fail. We cannot describe the code of the actual algorithm for confiden-
tiality issues. Therefore, we consider a modified variant of the algorithm. This
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algorithm focuses on the election of a leader in a distributed system with a
potentially large number of entities or nodes in an asynchronous environment.
Our main contribution is to perform a formal verification of the algorithm cor-
rectness for a large number of nodes. By correctness, we mean the actual election
of the leader after a fixed number of rounds.

We consider here a special form of the general leader election problem [22]:
we assume that, in the network, all the processes (or nodes) have a specific ID
number, and they execute the same code (symmetry) in order to agree which ID
number is the highest one. In the synchronous context where all processes com-
municate simultaneously, the problem is often solved using the “Bully algorithm”
[18]. In the asynchronous context where each process communicates with a spe-
cific period possibly subject to delay variation (jitter), the problem is much more
difficult. Periods can be all slightly different from each other, which makes the
problem particularly complex. For example, a classical distributed leader elec-
tion protocol, where the nodes exchange data using broadcasting, was designed
by Leslie Lamport [20] in the asynchronous context. The correctness of this
algorithm was proved mechanically many times using, e. g., TLA+ tool [21], or,
more recently, using the timed model checking tool Uppaal [10]. However, these
automated proofs work only for a small number p of processes, typically for
p ≤ 10. In this paper, we present a technique to prove the correctness of such
a distributed leader election using automated tools for a large number of nodes
(e. g., p = 5000). The principle of the method relies on the abstraction method
consisting in viewing the network from the point of view of a specific (but arbi-
trary) node, say nodei, and considering the rest of the nodes of the network
as an abstract environment interacting with nodei. In this abstract model, two
basic properties of the algorithm can be proven. However, in order to prove the
full correctness of the leader election algorithm, we will need an auxiliary model,
where some timing information is added to (a raw form of) the abstract model.
Using this auxiliary timed model, we are able to prove an additional property
of the leader election algorithm. Thanks to the three aforementioned properties
added as assumptions, we can then prove the full correctness of the leader elec-
tion algorithm, using the bounded model checker SafeProver [16] on the abstract
model.

The leader election algorithm we use is not Lamport’s algorithm, but a simple
asynchronous form of the Bully algorithm. We consider a specific framework
of network structure and asynchronous form of communications. Basically, we
assume that:

1. the graph is complete (every node communicate with all the other ones).
2. the communications are instantaneous (the time between the sending of a

message and its reception is null), and the nodes exchange data via syn-
chronous one-way unconditional value passing.

3. the processes are visibly faulty, i. e., they always execute the generic code of
the algorithm, trying to elect the leader when they are non-faulty (mode On),
and do nothing when they are faulty (mode Off).
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1.1 Relationship with Thales’ Actual Algorithm

As mentioned above, for confidentiality issue, we cannot reveal the original algo-
rithm developed at Thales. Nevertheless, it is in essence the same as the one we
present. Only the executed code has been modified. In addition, the technique
presented in this paper was designed for and applied to the original algorithm.
To summarize, we present exactly the methodology, up to the content of the
UpdateNode code (that is still similar in spirit).

After its verification using the techniques we present here, the original algo-
rithm has been implemented in C, and is nowadays running in one of the Thales
products. This product embeds a standard processor (in the line of Intel X86),
with some limited RAM, hard drive, Ethernet ports, etc.

1.2 Related Work

The method proposed here makes use of several powerful techniques such as
counter abstraction, bounded model checking and parametric timed model check-
ing for verifying distributed fault-tolerant algorithms, similarly to what has been
recently described, e. g., in [19]. As said in [19]: “Symmetry allows us to change
representation into a counter representation (also referred to as ‘counter abstrac-
tion’): (...) Instead of recording which process is in which local state, we record
for each local state, how many processes are in this state. Thus, we need one
counter per local state �, hence we have a fixed number of counters. A step by
a process that goes from local state � to local state �′ is modeled by decrement-
ing the counter associated with � and incrementing the counter associated with
�′. When the number p of processes is fixed, each counter is bounded by p.”
The work described in [19] makes use of SMT solvers [15] in order to perform
finite-state model checking of the abstracted model.

Our work can be seen as a new application of such techniques to (a variant
of) an industrial election algorithm. Another originality is to combine counter
abstraction, bounded model checking, with parametric timed model checking.

In an orthogonal direction, the verification of identical processes in a net-
work, i. e., a unknown number of nodes running the same algorithm, has been
studied in various settings, notably in the long line of work around regular model
checking [11,17], and in various settings in the timed case [1–3]. However, the
focus of that latter series of works is on decidability, and they do not consider
real-world algorithms, nor do they have tools implementing these results.

Finally, the line of works around the Cubicle model-checker [12–14] performs
parameterized verification of cache memory protocols, that is also parameterized
in the number of processes. However, timing parameters are not present in these
works.

1.3 Outline

The rest of the paper is organized as follows. Section 2 introduces the variant
of the leader election algorithm we consider. Section 3 presents our direct verifi-
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cation method for a small number of nodes. Section 4 presents our abstraction-
based verification for a much larger number of nodes. Section 5 concludes the
manuscript and outlines perspectives.

2 An Asynchronous Leader Election Algorithm

Thales recently proposed a leader election algorithm. This simple leader elec-
tion algorithm is based on the classical Bully algorithm originally designed for
the synchronous framework [18]. Basically, all nodes have an ID (all different),
and the node with the largest ID must be elected as a leader. This algorithm
is asynchronous. As usual, each node runs the same version of the code. We
cannot describe the code of the actual algorithm for confidentiality issues, and
we therefore consider and prove a modified variant of Thales’ original algorithm,
described throughout this section.

2.1 Periods, Jitters, Offset

The system is a fixed set of p nodes N = {node1, . . . , nodep}, for some p ∈ N.
Each node nodei is defined by:

1. its integer-valued ID nodei.id ∈ N,
2. its rational-valued activation period nodei.per ∈ [periodmin, periodmax],
3. its rational-valued first activation time nodei.start ∈ [0, nodei.per] (which

can be seen as an offset, with the usual assumption that the offset must be
less than or equal to the period), and

4. its rational-valued jitter values represent a delay variation for each period
belonging to [jittermin, jittermax], which is a static interval defined for all nodes
and known beforehand.

Observe that all periods are potentially different (even though they are all in
a fixed interval, and each of them remains constant over the entire execution),
which makes the problem particularly challenging. In contrast, the jitter is dif-
ferent at each period (this is the common definition of a jitter), and the jitter
of node i at the jth activation is denoted by jitterji . The jth activation of node
nodei therefore takes place at time tji = tj−1

i + nodei.per + jitterji . We have
besides: t0i = nodei.start.

The concrete values for the static timing constants are given in Table 1.

Example 1. Assume the system is made of three nodes. Assume node1.per = 49.
Recall that a period is an arbitrary constant in a predefined interval. Assume
node1.start = 0.

Assume node2.per = 51 and node2.start = 30.
Assume node3.per = 49 and node3.start = 0.1.
Also assume the jitters for the first three activations of the nodes given in

Table 2.
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Table 1. Constants (in ms)

Constant Value

periodmin 49

periodmax 51

jittermin −0.5

jittermax 0.5

Table 2. Jitter values for Example 1

jitter1 jitter2 jitter3

Node 1 0.5 −0.5 0.5

Node 2 0 0.1 0

Node 3 0.1 0.3 0.5

We therefore have t01 = 0, t11 = 49.5, t21 = 97.5, t31 = 147.5, t02 = 30, t12 = 81,
t22 = 132.1, t32 = 183, t03 = 0.1, t13 = 48.6, t23 = 98.4, t33 = 147.6. The first
activations of the nodes are depicted in Fig. 1. Due to both uncertain periods
and the jitters, it can happen that, between two consecutive activations of a
node, another node may not be activated at all: for example, between t03 and t13,
node 1 is never activated, and therefore node 3 will not receive a message from
node 1 during this interval. Conversely, between two consecutive activations of a
node, another node is activated twice: for example, between t13 and t23, node 1 is
activated twice (i. e., t11 and t21), and therefore node 3 may receive two messages
from node 1 during this interval.

Finally note that, in this example, the number of activations since the system
start for nodes 1 and 3 is always the same at any timestamp, up to a difference
of 1 (due to the jitters) because they have the same periods. In contrast, the
number of activations for node 2 will be smaller than that of nodes 1 and 3 by
an increasing difference, since node 2 is slower (period: 51 instead of 49). This
phenomenon does not occur when periods are equal for all nodes, and makes
this setting more challenging.

Remark 1. The rest of this paper assumes the constant values given in Table 1.
However, our method remains generic for constants of the same order of magni-
tude. Here, the variability of the periods is reasonably limited (around 4 %). A
variability of more than 40 % will endanger the soundness of our method, as our
upcoming assumption that between any three consecutive activations of a node,
all nodes execute at least once, would not hold anymore.

2.2 IDs, Modes, Messages

We assume that all the IDs of the nodes in the network are different. Each node
executes the same code. Each node has the ability to send messages to all the
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t
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t03 t13 t23 t33

Fig. 1. Activation of three nodes with uncertain periods and jitters

nodes in the network, and can store (at least) one message received from any
other node in the network. Nodes are either in mode On and execute the code
at each activation time, or do nothing when they are in mode Off. (This models
the fact that some nodes in the network might fail.) A node in mode On is in
one of the following states:

– Follower: the node is not competing to become leader;
– Candidate: the node is competing to become leader;
– Leader: the node has declared itself to be the leader.

Each transmitted message is of the form: message = (SenderID, state) where
state is the state of the sending node.

2.3 The Algorithm

At each new activation, nodei executes the code given in Algorithm 1. In short,
if the Boolean flag nodei.EvenActivation (which we can suppose being initially
arbitrary) is true, then the code line 1–line 15 is executed. In this code, the
node first reads its mailbox, and checks whether any message contains a higher
node ID than the node ID (line 3–line 7) and, if so, sets itself as a follower (line
6). If no higher ID was received, the node “upgrades” its status from follower
to candidate (line 10), from candidate to leader (line 12), or remains leader if
already leader (line 14).

Finally (and this code is executed at every iteration), the node swaps the
Boolean flag EvenActivation (line 16), prepares a message with its ID and
current state (line 17) and sends this message to the entire network (line 18). We
assume that the Send To All Network function sends a message to all nodes—
including the sender.

We can see that the significant part of the code (line 1–line 15) is only exe-
cuted once every two activations (due to Boolean test nodei.EvenActivation).
This is enforced in order to ensure that each node executes the code after receiv-
ing at least one message from all the other nodes (in mode On). However, note
that each node sends a message at each iteration.

The order of magnitude of the constants in Table 1 gives the immediate
lemma.
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Algorithm 1. UpdateNode(i)
1 if nodei.EvenActivation then
2 allMessages ← ReadMailbox()
3 higherIDreceived ← false
4 foreach message ∈ allMessages do
5 if message.SenderID > nodei.id then
6 statenext ← Follower
7 higherIDreceived ← true

8 if ¬ higherIDreceived then
9 if nodei.state = Follower then

10 statenext ← Candidate
11 else if nodei.state = Candidate then
12 statenext ← Leader
13 else if nodei.state = Leader then
14 statenext ← Leader

15 nodei.state ← statenext

16 nodei.EvenActivation ← ¬nodei.EvenActivation
17 message = {nodei.id;nodei.state}
18 Send To All Network(message)

Lemma 1. Assume a node i and activation times tji and tj+2
i . Then in between

these two activations, node i received at least one message from all nodes.

Proof. From Table 1 and Algorithm 1.

Remark 2. For different orders of magnitudes, we may need to execute the code
once every more than two activations. For example, if we set jittermin = −25 and
jittermax = 25 in Table 1, the code should be executed every three activations for
our algorithm to remain correct.

2.4 Objective

We first introduce the following definitions.

Definition 1 (round). A round is a time period during which all the nodes
that are On have sent at least one message.

Definition 2 (cleanness). A round is said to be clean if during its time period
no node have been switched from On to Off or from Off to On.

The correctness property that we want to prove is:
“When, following a preliminary clean round, 4 new clean rounds
occur, the node with the highest ID is recognized as the leader by
all the nodes in modes On of the network.”

This property is denoted by (P) in the following.
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Remark 3 (fault model). Our model does allow for faults but, according to Defi-
nition 2, only prior to the execution of the algorithm. That is, once it has started,
all nodes remain in On or Off during its entire execution. If in reality there is a
fault during the execution, it suffices to consider the execution of the algorithm
at the next clean round.

3 Direct Verification of the Leader Election Algorithm

In this section, we first verify our algorithm for a fixed number of processes.
We describe here the results obtained by SafeProver on a model M repre-

senting directly a network of a fixed, constant number of p processes (without
abstraction); for a small number p of nodes, we thus obtain a simple proof of
the correctness of the algorithm. The model includes explicitly a representation
of each node of N as well as their associated periods, first activation times,
local memories, and mailboxes of received messages. The code is given in Algo-
rithm2. The mailbox is represented as a queue, initially filled with a message
from oneself.1

During the initialization declaration, we set everything as free variables (with
some constraints, e. g., on the periods) in order to have no assumptions on the
state of the network at the beginning. This ensures that this model is valid
whatever happened in the past, and this can be seen as a symbolic initial state:
this notion of symbolic initial state was used to solve a challenge by Thales [23],
also featuring uncertain periods. We also fully initialize the mailboxes of all
the nodes since we are assuming that we are right after a clean round. The
variable Activation is used as a variable to store how many times a node has been
executed after the last clean round. The code of called function UpdateNode(i)
corresponds exactly to Algorithm 1.

The property (P) we want to prove is formalized as:(∀i ∈ {1, . . . , p}, Activation(i) ≥ 4
) ⇒(∀j ∈ {1, . . . , p}, j �= maxId : nodej .state = Follower

∧ nodemaxId.state = Leader
)

with maxId = arg max({nodei.id | nodei.mode = On}i∈{1,...,p}). Using this
model and SafeProver [16], we obtain the proof of (P) with the times tabulated
in Table 3.2 While this method allows us to formally prove the leader election for
up to 5 nodes, SafeProver times out for larger number of nodes. This leads us
to consider another method to prove the correctness of our algorithm for larger
numbers.

1 An initial empty mailbox would do as well but, in the actual Thales system, this is
the way the initialization is performed.

2 All the experiments reported in this paper have been run on a machine with two
Intel R© Xeon R© CPU E5-2430 at 2.5GHz, with 164GiB of RAM and running a
Debian 9 Linux distribution.
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Algorithm 2. SafeProver code for model M

1 Activation[1, . . . , p] ← [0, . . . , 0]
// Network initialization

2 foreach i ∈ {1, . . . , p} do
3 nodei.id ∈ N

4 nodei.per ∈ [periodmin; periodmax]
5 nodei.start ∈ [0;nodei.per]
6 nodei.state ∈ {Follower,Candidate, Leader}
7 nodei.EvenActivation ∈ {true, false}
8 nodei.mode ∈ {On,Off}
9 nextActivationT ime(i) ← nodei.start

// Mailboxes initializations

10 foreach i ∈ {1, . . . , p} do
// Arbitrary mailbox initialization with a message from oneself

11 nodei.mailbox ← [(nodei.id,Follower)]

12 foreach i ∈ {1, . . . , p} do
13 foreach j ∈ {1, . . . , p} do
14 if nodej .mode = On then
15 nodei.mailbox.enqueue(messagej)

// Main algorithm

16 while true do
17 i ← argmin(nextActivationT ime)
18 if nodei.mode = On then
19 UpdateNode(i)
20 Activation(i) ← Activation(i) + 1
21 jitter ∈ [jittermin, jittermax]
22 nextActivationT ime(i) ← nextActivationT ime(i) + nodei.per + jitter

4 Abstraction-Based Method

We now explain how to construct an abstract model M̂ of the original model M .
This model M̂ clusters together all the p processes, except the process nodei
under study (where i is arbitrary, i. e., a free variable); M̂ also abstracts away
the timing information contained in M . We then use SaveProver to infer two
basic properties P1 and P2 for M̂ .

In a second phase, we consider an auxiliary simple (abstract) model T of M
which merely contains relevant timing information; we then use a parametric
timed model checker to infer a third property (P3) for T . The parametric timed
model checker is required due to the uncertain periods, that can have any value
in [periodmin, periodmax] but remain constant over the entire execution.

In the third phase, we consider again the model M̂ , and integrate P1–P3 to
SafeProver as assumptions, which allows us to infer a fourth property P4. The
properties P1 and P4 express together a statement equivalent to the desired cor-
rectness property P of the leader election algorithm. The advantage of reasoning
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Table 3. Computation times

Nodes Time (s)

p = 4 66.65

p = 5 215.61

p = 6 time out (> 3600)

with abstract models M̂ and T rather than directly to M , is to prove P for a
large number p of processes.

We now describe our method step by step in the following.

4.1 Abstract Model M̂ and Proof of P1-P2

The idea is to model the system as one node nodei (the node of interest) interact-
ing with the rest of the network: nodei receives messages from the other nodes
which are clustered into a single abstract process (see Fig. 2). In the abstract
model M̂ , each node can take any state at any activation, with no regards to
the parity (nodei.EvenActivation), what has been previously sent, what nodei
is sending. We only consider the activation of nodei. The rest of the network is
abstracted by the messages contained in the mailbox of nodei. Since we assume
that at least one clean round has passed, we always have a message from a work-
ing node in the mailbox. The code is given in Algorithm3. (Note its analogy
with the SafeProver code of Algorithm2 for M .) The first four lines define free
variables.

All the other nodes
N \ {nodei}

nodei state

Messages

Fig. 2. Scheme of model ̂M with node i under study interacting with the cluster of all
the other nodes

The list of assumptions that the solver can make on the messages received is
denoted by List of assumptions on messagej . This list is initially empty, and
augmented with “guarantees” (a.k.a.“proven properties”) on the other nodes as
they are iteratively generated by the solver. The first proven properties are:

– P1: (Activation(j) ≥ 2 ∧ nodej .id �= maxId) ⇒ nodej .state = Follower
– P2: (Activation(j) ≥ 2 ∧ nodej .id = maxId)

⇒ nodej .state ∈ {Candidate, Leader}
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Algorithm 3. SafeProver code for abstract model M̂

1 Assume i ∈ {1, . . . , p}
2 Assume nodei.id ∈ N

3 Assume nodei.state ∈ {Follower,Candidate, Leader}
4 Assume nodei.EvenActivation ∈ {true, false}
5 Activation(i) ← 0
6 while true do
7 for j ∈ {1, . . . , p} do
8 messagej ∈ {nodej .id} × {Follower,Candidate, Leader}
9 Assume: List of assumptions on messagej

10 nodei.mailbox.enqueue(messagej)

11 UpdateNode(i)
12 Activation(i) + +
13 Guarantee to prove

In these properties, j is a free variable: therefore, it is “fixed” among one execu-
tion, but can correspond to any of the node IDs. The two properties state that,
after two rounds, a node which has not the largest ID is necessarily a follower
(P1), or a candidate or a leader if it has the largest ID (P2). As said before, P1
and P2 are then integrated to List of assumptions on messagej .

Guarantee to prove contains iteratively P1, then P1 and P2, then P1, P2
and P4.

4.2 Abstract Model T and Proof of P3

To represent the timed abstract model T of M , we use an extension of the for-
malism of timed automata [5], a powerful extension of finite-state automata with
clocks, i. e., real-valued variables that evolve at the same time. These clocks can
be compared with constants when taking a transition (“guards”), or to remain
in a discrete state (“invariants”). Discrete states are called locations. Timed
automata were proven successful in verifying many systems with interactions
between time and concurrency, especially with the state-of-the-art model-checker
Uppaal [10]. However, timed automata cannot model and verify arbitrary peri-
ods: while it is possible to model a different period at each round, it is not
possible to first fix a period once for all (in an interval), and then use this period
for the rest of the execution. We therefore use the extension “parametric timed
automata” [6,8] allowing to consider parameters, i. e., unknown constants (possi-
bly in an interval). IMITATOR [9] is a state-of-the-art model checker supporting
this formalism.

In our method, the timed abstract model T of M is a product of two similar
parametric timed automata representing the node i under study and a generic
node j belonging to N \ {i} respectively. Each parametric timed automaton
contains a single location. The parametric timed automaton corresponding to
nodei uses an activation period peri that we model as a parameter. Indeed,
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recall that the period belongs to an interval: taking a value in the interval at each
round would not be correct, as the period would not be constant. This is where
we need parameters in our method. In addition, we constrain this parameter
peri to belong to [periodmin, periodmax]. Each automaton has its own clock ci that
is used to measure how much time has passed since the last activation. Each
automaton has a discrete variable3 Activation(i) which is initialized at 0 and is
used to count the number of activations for this node. We give the constraint on
ci at the beginning that ci ∈ [0, peri + jittermax]. An activation can occur as soon
as ci reaches peri + jittermin. This is modeled by the guard ci ≥ peri + jittermin

on the transition that resets ci and increment Activation(i). An activation can
occur as long as ci is below or equal to peri + jittermax. This is modeled by the
invariant ci ≤ peri + jittermin on the unique location of the automaton. This
invariant forces the transition to occur when ci reaches its upper bound. This
parametric timed automaton is represented in Fig. 3.4 The other component
representing the cluster of the rest of the nodes is modeled similarly as a generic
component nodej .

nodei

ci ≤ peri + jittermax

Activation(i) := 0
0 ≤ ci ≤ peri + jittermax

ci ≥ peri + jittermin

Activation(i) := Activation(i) + 1

Fig. 3. Component 1 of timed model T

For nodes nodei and nodej , the property that we want to specify corresponds
in the direct model M (without abstraction) of Sect. 3 to:

–
(Activation(i) ≤ 13 ∧ Activation(j) ≤ 13)

⇒ | Activation(i) − Activation(j) | ≤ 2.

In our timed abstract model T , such a property becomes:

–
(P3) : ∀i ∈ {1, . . . , p} Activation(j) ≤ 13 ⇒
− 2 ≤ Activation(j) − Activation(i) ≤ 1.

where Activation(i) denotes the number of activations of node i since the last
clean round.

The value “13” has been obtained experimentally: smaller numbers led the
algorithm to fail (the property was not satisfied). Intuitively, it consists in the
number of activations by which we are sure the leader will eventually be elected.
3 Discrete variables are global Boolean- or integer-valued variables, that can be read
or written in transition guards. If their domain is finite they are syntactic sugar for
a larger number of locations.

4 The color code is that of IMITATOR automated LATEX outputs: clocks are in blue,
parameters in orange, and discrete variables in pink.
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The proof of P3 is obtained by adding to the model an observer5 automaton
checking the value of the discrete variables Activation(i) and Activation(j),
which goes to a bad location when the property is violated. The property is
then verified by showing that the bad location is not reachable. For the values
of the timing constants in Table 1, IMITATOR proves P3 (by showing the non-
reachability of the bad location) in 12 s. Recall that, thanks to our assumption on
the number of nodes, we only used two nodes in the input model for IMITATOR.

In the next part, we show how the addition of P3 as an assumption in the
original abstract model allows to prove the desired property P for a large number
of nodes.

4.3 Proof of P Using P1–P3 as Assumptions

In addition to P1-P2, we now put P3 (Activation(j) ∈ [Activation(i) −
1;Activation(i)+2]) as an element of List of assumptions on messagej used in
the SafeProver code of M̂ (see Algorithm 3). SafeProver is then able to generate
the following property:

P4 : (Activation(i) ≥ 4 ∧ nodei.id = maxId) ⇒ nodei.state = Leader

Property P4 states that the node with the highest ID will declare itself as Leader
after at most 4 activations. Besides, property P1 states that a node, not having
the highest ID, is in the state Follower within at most 2 activations. Proper-
ties P1 and P4 together thus express a statement equivalent to the desired cor-
rectness property P. The global generation of properties (P1), (P2) and (P4) by
SafeProver takes the computation times tabulated in Table 4. As one sees, the
computation time is now smaller by an order of magnitude than the ones given
in Table 3, thus showing the good scalability of our method.

Table 4. Computation times

Nodes Time (s)

p = 500 13.34

p = 1000 45.95

p = 5000 623.46

Remark 4. Note that verifying the model for 5,000 nodes also gives a guarantee
for any smaller of nodes. Indeed, we can assume that an arbitrary number of
nodes are in mode Off, and remain so, which is equivalent to a smaller number
of nodes.
5 An observer is an additional automaton that can synchronize with the system (using
synchronized actions, clocks or discrete variables values), without modifying its
behavior nor blocking it. See e. g., [4,7].
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4.4 Discussion

Soundness We briefly discuss the soundness of the algorithm. First, note that the
assumptions used above have been validated by the system designers (i. e., those
who designed the algorithm). Second, SafeProver validated the assumptions, i. e.,
proved that they were not inconsistent with each other (which would result in
an empty model).

Now, the abstraction used in Sect. 4.2, i. e., to consider only two nodes, is the
one which required most human creativity. Let us briefly discuss its soundness.
Our abstraction allows to model the sending of any message, which includes the
actual message to be sent in the actual system. The fact that a message was
necessarily received in the actual system between two (real) executions of the
node under study is given by the fact that all nodes necessarily execute at least
once in the last two periods (see Lemma 1). Of course, this soundness is only
valid under our own assumptions on the variability of the period, considering
the constants in Table 1: if the period of one node is 1 while the other is 100,
our framework is obviously not sound anymore.

Parametric vs. parametrized model checking. As shown in Table 4, we verified
the model for a constant number of nodes. This comes in contrast with the recent
work on parameterized verification (e. g., [2,12,13]). However, while these latter
consider a parameterized number of nodes, they consider non-parametric timed
models; in contrast, we need here parametric timed models to be able to represent
the uncertainty on the periods. Combining both worlds (parameterized number
of nodes with parametric timed models) would be of interest—but remains a
very challenging objective.

5 Conclusion

We described a method combining abstraction, SafeProver and parametric timed
model-checking in order to prove the correctness of a variant of an asynchronous
leader election algorithm designed by Thales. Our approach can efficiently verify
the leader election after a fixed number of rounds for a large number p of pro-
cesses (up to p = 5000). The method relies on the construction of two abstract
models M̂ and T of the original model M . Although it is intuitive, it could be
interesting to prove formally that each abstraction is correct in the sense that it
over-approximates all the behaviors of M .

Perspectives

Many variants of the algorithm can be envisioned (loss of messages, non-
instantaneous transmission, non-complete graph topology, . . . ). The fault model
could also be enriched. It will then be also interesting to propose extensions of
our abstraction-based method to prove the correctness of such extensions.

The correctness of the method relies on the order of magnitude of the con-
stants used (Remark 1). For different intervals, it might be necessary to both
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adapt the algorithm (read messages only every k activations) but also the
assumptions used in the proof using abstraction, a manual and possibly error-
prone process. A more general verification method would be desirable.

In addition, the number of activations in our correctness property (“after 13
activations, the leader is elected”) was obtained using an incremental verification
(values of up to 12 all gave concrete counterexamples). As a future work, we
would like to automatically infer this value too, i. e., obtaining the minimal
value of activations before a leader is guaranteed to be elected.

Finally, adding probabilities to model the fault of nodes will be of interest.

Acknowledgment. We thank anonymous reviewers for very useful remarks and sug-
gestions.
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8. André, É.: What’s decidable about parametric timed automata? Int. J. Softw.
Tools Technol. Transf. (2019, to appear)
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23. Sun, Y., André, É., Lipari, G.: Verification of two real-time systems using para-
metric timed automata. In: Quinton, S., Vardanega, T. (eds.) Proceedings of the
6th International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS 2015), July 2015

https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-319-68690-5_6
https://doi.org/10.1007/978-3-319-68690-5_6
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-319-41579-6_2
https://doi.org/10.1007/978-3-319-41579-6_2


Application of Abstract Interpretation
to the Automotive Electronic Control

System

Tomoya Yamaguchi1(B), Martin Brain2, Chirs Ryder3, Yosikazu Imai4,
and Yoshiumi Kawamura1

1 Toyota Motor Corporation, 1200, Mishuku, Susono, Shizuoka, Japan
tomoya.yamaguchi@toyota.com, yoshiumi kawamura@mail.toyota.co.jp

2 University of Oxford, Wolfson Building, Parks Road, Oxford, UK
martin.brain@cs.ox.ac.uk

3 Diffblue, 10 St. Ebbs Street, Oxford, UK
chris.ryder@diffblue.com

4 Nu-soft, 3-24-2 Shinyokohama, Kouhoku, Yokohama, Kanagawa, Japan
imai@nu-soft.jp

Abstract. The verification and validation of industrial automotive sys-
tems is increasingly challenging as they become larger and more complex.
Recent automotive Electric Control Units (ECUs) have approximately
one half to one million of lines of code, and a modern automobile can
contain hundreds of controllers. Significant work-hours are needed to
understand and manage systems of this level of complexity. One par-
ticular challenge is understanding the changes to the software across
development phases and revisions. To this end, we present a code depen-
dency analysis tool that enhances designer understanding. It combines
abstract interpretation and graph based data analysis to generate visual-
ized dependency graphs on demand to support designer’s understanding
of the code. We demonstrate its value by presenting dependency graph
visuals for an industrial application, and report results showing signifi-
cant reduction of work-hours and enhancement of the ability to under-
stand the software.

1 Introduction

In recent years, functional requirements for automotive control systems have
become far more sophisticated. This necessitated the development of more com-
plex and larger scale control software, which lead to a significant increase in
work-hours. Figure 1 shows the amount of work-hours for control software devel-
opment based on our project management data, which reveals that work hours
almost doubled from 2012 to 2017. Based on this trend, the work-hours are
expected to increase considerably in the near future.

One of the causes of the considerable increase in work-hours is that much
time is spent understanding complex vehicle systems that are composed of many
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smaller subsystems, which we call unit-systems. The designer’s interests are to
grasp the vehicle system architecture, the unit-system architecture, and the
impact of their revisions or extensions at the program level. Therefore, accu-
rate and comprehensive visualization of abstractions of the software will help
to increase the designer’s understanding and will mitigate the increase in work-
hours.

In this paper, we present a tool that provides various view graphs that can
support the designer’s understanding of the system by using a static analysis
technology. Characteristics of our tool include the following: (1) ability to con-
trol the scalability and preciseness based on the designer’s interest, and (2) a
guarantee of soundness (there are no missed dependencies). Traditional code
analysis does not guarantee absolute precision. On the other hand, legacy static
analysis guarantees precision but is not scalable. Thus we developed an abstract
interpretation technology, which is based on static analysis methods, to our tool.
In addition, a graph-based data base is exploited to manage enormous depen-
dency for large scale code.

Specific contributions of the paper are:

– Explaining background on automotive control system software and the corre-
sponding industrial challenges that the support the designer’s understanding
to maintains our product quality under situation of increasing work-hours
trend (Sect. 2).

– Algorithmic and implementation innovations needed for scalable and precise
abstract interpretation (Sect. 3).

– An overview of the C Analysis Tool (CAT) developed (Sect. 4).
– Results of the application of our tool to the actual control system code

(Sect. 5).

2 The Challenges of Modern Automotive Software

2.1 Architecture of Automotive Software

Figure 3 shows the software architecture of a modern vehicle. The vehicle system
consists of several unit-systems, like the engine and the transmission, which have
their own ECU; each ECU communicates via a CAN network. The majority
of ECUs are implemented in C. The largest unit-system in the vehicle is the
engine ECU, and we use it as a recurring example. The engine ECU has multiple
features, such as ignition, injection, and variable valve control. Each feature
contains program modules that are divided into functional units, each of which
are collections of several functions. The functions that compose the modules are
allocated to tasks for the Operating System (OS), which manages time driven
and event driven tasks.

A key characteristic of the software is the scale; each ECU has up to half
a million of lines of code (LoC). Several thousand global variables are used for
inter-function communication, which results in module interdependency and a
high level of code complexity. Pointer access is used as little as possible in the
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application layer, but many pointer accesses occur at the lower layer, like for
sensor data, or ROM (Read Only Memory)/RAM (Random Access Memory)
access. About five hundred such pointers are used in the lower layer.

Fig. 1. Magnification of work-hour
based on 2012.

Fig. 2. Design development of automo-
tive software development.

Fig. 3. Architecture of automotive control system.

2.2 Development Process

Figure 2 shows the automotive software development process for the Electronic
Control Unit (ECU). Our process uses a version of the typical V-model design
process. Since complex physical phenomena, such as the vehicle dynamics, are
the target of the control algorithms, prototypes of the physical components are
used to develop system software. The prototype development tends to be incre-
mental, focused on components, while re-using, and extending legacy systems.
The system design involves iterative development of the prototype, along with
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evaluation, while validating operation of the control system in actual usage envi-
ronments. Due to the use of iterative prototypes and corresponding control algo-
rithms, a spiral-up type process is incorporated into the system design process
on the left side of the V-model.

Our development process involves various testing activities that are applied
on the right side of V-model. Those tests include evaluation of the software
on actual vehicles, engine test beds, HILS (Hardware-in-the-Loop-Simulation),
and SILS (Simulation-in-the-Loop-Simulation). Those tests are more intense
(demanding, in terms of system performance) and exhaustive than the evalu-
ation at the system design phase and are employed to achieve and maintain
quality up to the final product test phase.

A main source of inefficiency in our process is the rework involved to return
to an earlier phase of the development process, in the left side of V-model, from
a test process, in the right side of V-model. The most costly rework occurs
when returning to the system design phase from the system test phase, due to
the many development and testing steps that have already been performed to
reach the testing phase. Thus making well defined system designs is important
to reduce the amount of rework. In that sense, misunderstanding the system
design is one of the significant causes of the rework. Accordingly, a good review
process, founded on a firm understanding of the implementation, is required to
help limit the amount of rework.

The designer will benefit from the following, either for a new development or
for extending an existing system design.

1. Understanding the software architecture: It is important to decide which mod-
ule or function should be revised beforehand. In that sense, the developer
needs to understand the entirety of the program architecture on every level,
such as the function, the module, the sub-system, and the system levels.

2. Impact analysis of the revised variables or the calibration parameters: The
designer is interested in what kind of influence their own design revision has
to the system. The impact analysis is necessary in the Design Review Based
on Failure Mode (DRBFM) [1] to prevent the revision leading to unexpected
behaviors when revising variables or re-calibration of parameters.

The review process is basically done in manual or semi-manual manner, such
as reading a natural language of the specification or using the grep command in
for C code. When considering the module or function level graph, this process
can be sufficient, since the scale is small. However, if the system level graph is
considered, the manual process becomes a development bottleneck, because the
system scale is large, and the corresponding system graph is created manually.

2.3 Technical Issue and Approach

In order to automate the software architecture analysis and impact analysis,
we present a method based on static analysis. The required functionality and
challenges are as follows.
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Program 1. Code example for
struct/union.

1 struct st {
2 int m1;
3 int m2;
4 };
5
6 extern int g_in;
7 struct st g_st;
8 int g_out1 , g_out2 , g_out3;
9

10 void main(void){
11 if (g_in == 1)
12 g_st.m1 ++;
13
14 if (g_in == 2)
15 g_st.m2 ++;
16
17 g_out1 = g_st.m1;
18 g_out2 = g_st.m2;
19 g_out3 = g_st.m1 + g_st.m2;
20 }

Program 2. Code example for closed
loop.

1 extern int g_in1;
2 extern int g_in2;
3 int g_x1;
4 int g_x2;
5
6 void main(void) {
7 if (g_in1)
8 g_x2 = 0;
9

10 g_x1 = g_x2;
11
12 if (g_in2)
13 g_x2 = g_x1;
14 }

Dependency Analysis. To understand the ECU program architecture, we need
to generate the “unit-system dependency graph” by using exhaustive depen-
dency analysis in the reviewing phase. This is like a map for software architec-
ture, which aids in understanding the software. The software directory com-
position, shown in Fig. 3, is not sufficient because it does not contain essential
program information like function calls or global variable reads/writes; pro-
gram (Control and Data) dependencies are needed to make a more helpful
graph [2]. Particular challenges are;
1. The analysis must scale to a half million lines of code and handle several

thousand global variable.
2. At some levels of detail we require precise handling of nested struct and

union variables. These often contain flags indicates important conditions,
like whether the engine is idling or whether the engine is in a fuel-cut
mode. Program 1 shows an example. It has struct st on L1 and the
members are accessed in main function several times.

3. It is necessary to consider the software as a closed-loop system. In that
case, the entry function is called repeatedly in the embedded controller;
therefore, it is necessary to consider the previous status of global variables.
Program 2 shows an example. When main on L6 is called repeatedly for
the closed-loop system, 2nd call of L10 depends 1st call of L13 in specific
case. We call this capability the periodic option, which is an option for
our data dependency analysis.

Pointer Resolution. The dependency analysis must be able to handle both
data and function pointers. Pointer analysis is challenging in general, but
this functionality is a key requirement for static analysis tools and means
that purely syntactic approaches to dependency analysis will not work. False
negatives for pointer analysis are not allowed, because it results in missing
important cases. We require flow, loop, array, and struct/union awareness.
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Program 3. Code example for pointer.

1 #define ARRAY_SIZE 4
2 const int cAarray[ARRAY_SIZE] = { 10, 20, 30, 40};
3 int gArray1[ARRAY_SIZE ];
4 int gArray2[ARRAY_SIZE ];
5
6 void main(){
7 const int* p0 = cAarray;
8 int* p1 = gArray1;
9

10 for (int i=0; i<ARRAY_SIZE; i++){
11 *p1 = cAarray[i];
12 gArray2[i] = *p0;
13 p0++;
14 p1++;
15 }
16 }

Program 4. Code example for function pointer.

1 struct st {
2 int (*req)(char , char *);
3 };
4
5 int f1( char , char *);
6 int f2( char , char *);
7 const struct st fptbl1 []={
8 { f1 },
9 { f2 },

10 };
11
12 int g1(char , void*);
13 int g2(char , void*);
14 int (* const fptbl2 [])(char , void *) = {
15 g1,
16 g2,
17 };
18
19 void func(int id, int len , char* buf ){
20 const struct st *p = &fptbl1[id];
21 p->req(len , buf);
22 }

Program 3 is an example demonstrating the variable pointer use-case. It has
array on L2-4, and loop on L10, furthermore pointer accesses on L7 and L8.
Program 4 demonstrates the function pointer use-case. It has function pointer
on L20, and arrow access by using function pointer “p” on L21.
A designer can typically resolve a pointer manually within 15 min. Usually,
the designer manually resolves only what they deem interesting, which usu-
ally exists at the module level. However, if the vehicle or system graph is
considered in an initial phase of development, all pointers should be resolved
to clarify all dependency. In this case, the work hours are estimated at about
125 h (=15 min * 500 pointers). This is an unreasonable amount of work-hours
to spend resolving pointers.
The embedded ECU does not have un-resolvable pointers because it is a safety
critical system and does not use dynamic memory allocation. Even consider-
ing pointers in loop statements, there are no unbounded loops because the
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number of loops are based on constant values, like the number of banks,
cylinders, and the look-up table size.

Program Slicing. We attempt to apply program slicing [3] to the “unit-system
dependency graph” for the impact analysis. This is similar to a path-planning
problem. Often the generated graphs are too large to understand. To address
that, we expect a kind of extraction functionality that allows the designer to
focus on their interests. Program slicing is a kind of forward and backward
analysis on dependency. Our expected use-case is impact analysis from the
revised variables or the calibration parameters to understand the influence
of their revisions. The challenging aspect is to handle enormous dependency
from a half million lines of code and on-demand access for forward and back-
ward analysis.

As many of these challenges require understanding parts of the semantics
of the program, purely syntactic approaches to the dependency graph are not
sufficient. To this end, we use abstract interpretation, which can produce scal-
able and precise results and further guarantee soundness regarding pointer and
dependency analysis. To support the enormous information management on the
slicing requirements, we use a non-relational database. In the next section, we
describe the key technique: abstract interpretation.

3 Abstract Interpretation

Abstract Interpretation [4] is a mathematical framework for designing, develop-
ing and understanding static analysis techniques [5]. It provides general results,
based on order theory, that guarantee soundness and termination of an analysis
given a few basic properties of the data structures and functions used. These
allow the development of a new analysis to be reduced to developing one data
structure and two (optionally three) functions:

Domain. A domain is a mathematical object that represents a set of possible
program states. The conventional approach to implementing abstract inter-
pretation analyses to create a data-structure for the domain. Commonly this
is a non-relational domain, a map from variable to an abstract representation
of their possible values (for example intervals, or sets of dependencies).

Transform. A function that takes the domain representing the state before an
instruction and generates the domain representing the possible program states
after. This is the abstract version of executing one step of the program. The
transform function covering all possibilities (in this case, tracking all depen-
dencies) is one of the key criteria for a sound analysis. Obviously the details
of transformation will depend on the domain, for example, if the domain uses
intervals then the transform function will perform interval arithmetic.

Merge. A function that takes two domains and combines them into one that
includes things represented by either (but may contain more). In the case
of intervals, this would be merging the two intervals. Merge is the over-
approximate version of a union and allows control-flow paths to be merged,
a key criteria for termination.
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Widen. A key result in abstract interpretation is that the fixed-point of an
(over-)approximation is an (over-)approximation of a fixed-point. So just by
iterating the analysis, loops can be handled in a correct and terminating
manner. Depending on the domain, direct iteration can take too long, so
a widening function is often used to accelerate the process. In the case of
intervals this might be setting the upper or lower bounds to their max.

3.1 Variable-Sensitivity Domain

As this project needs to compute dependencies for each variable individually and
does not need to track the relationships between them, it is sufficient to use a
non-relational domain. This means that we can represent the state of a program
a given location using one map which stores an object for each variable. Doing
so allows us a uniform and simple way of handling one of the requirements –
a variable level of sensitivity in the analysis depending on whether it is being
analyses at feature, module or task function level.

By implementing a common object interface, we can use dynamic dispatch
to control the objects, and thus the precision, used to track arrays, pointers,
structs, unions and combinations of them. When the program is analysed at the
large scale, we can smash arrays, tracking one dependency set per arrays, and
switch seamlessly to per-element dependencies at smaller scales. Similarly, we
can switch from just dependencies to tracking constant value or intervals for
each variable as well to increase precision for more detailed analyses.

Although this approach is less general than conventional approaches using
separate value, array and pointer analyses and reduced products or open combi-
nations [14], it scales better and handles large, complex, global data-structures
(for example, pointers to arrays that are members of structs) in a clean and sim-
ple manner. It also simplifies various implementation and algorithmic improve-
ments discussed below.

3.2 Copy-on-Write Data Structures

As we need to generate dependencies for every location in the program and
keep these in memory to handle periodic analysis as described above, memory
is a significant concern. If we are to store 1,000,000 domains (one per line of
code), each tracking up to 10,000 variables (not counting per-element analysis of
arrays), then every byte required by a dependency set will need 10 GB of RAM.

Here the “one big map” approach of the variable sensitivity domain is of great
use. Although we have to store domains for every program location, the majority
of them are largely similar to the domains at preceding locations. By using a
custom copy-on-write map data-structure, we only have to store the difference
between two domains, which makes the memory consumption tractable. The
authors believe a similar approach is implemented in Astrée [15] although the
details are not public. This also gives a fast way of iterating across the differences
between two domains.
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Program 5. The need for three way merging

1 int gState;
2
3 void func (void) {
4 // Does not modify gState
5 }
6
7 void task(void) {
8 gState = INIT;
9 func();

10
11 // Other functionality
12
13 gState = FINAL;
14 func();
15 }

3.3 Three-Way Merge

Conventional abstract interpretation is context-insensitive, so each call to a func-
tion will merge the calling state with the starting state of the function. For
programs with fixed and tight scoping rules, this is not necessarily a problem.
However when handling a large number of global variables it causes an interest-
ing problem.

Consider the Program5. The first call to func will correctly track the depen-
dencies and the constant value of gState. The second call to func will merge
in its value of gState which causes a problem on function return: even though
the function does not alter gState its value and dependencies will be set to the
merge of all possible calling locations. In the case of low-level utility functions
this can cause very significant loss of precision, particularly when unwinding
loops.

To avoid this problem without the cost of performing full context-sensitive
analysis, we use the dependencies and modification information implicitly stored
in the copy-on-write data structures. On function return, rather than just merg-
ing the state at the end of the callee into the caller, we identify each of the
variables (array elements, struct fields, etc. depending on the sensitivity) that
has changed between the start and end of the callee and merge only those into
the caller state, resulting in a three-way merge.

4 C Analysis Tool

Figure 4 shows the C Analysis Tool (CAT) architecture. The CAT basically con-
sists of three components. The CPROVER [7] component compiles ECU code
and executes the abstract interpretation and finally outputs the instruction level
of dependency. The Orient-DB [8] component is a non-relational database and
deals with the enormous dependency information and analyzes forward and back-
ward analysis based on the dependency on demand to implement the slicing. The
visualization component converts instruction-level of dependency to a more user-
friendly level. The visualization back-ends can be accessed via a Java-API, and
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the user can operate it from their own environment or an Integrated Develop-
ment Environment (IDE) like MATLAB R©, Eclipse R©, Visual Studio R©, Win-
dows R©CMD and so on. Those components are explained in detail in following
sections.

Fig. 4. C Analysis Tool architecture.

4.1 CPROVER

CPROVER [7] is an open-source C++ framework for building C, C++ and Java
analysis and verification tools. It provides components for compilation, program
transformation and analysis, abstract interpretation, symbolic execution and
SMT solving. For instance, C Bounded Model Checker (CBMC) [9] is a well-
known bounded model checker and is implemented using CPROVER.

goto-cc CPROVER has a compiler goto-cc which supports gcc [10] equivalent
compiler options. This means goto-cc can compile C-code by just changing
the command gcc to goto-cc in a make-file, which has a high advantage in
industrial application. The goto-cc produces a “goto-program”, which is a kind
of intermediate representation (see Fig. 5). In our CAT tool, the goto-cc is used
in CPROVER compiler ((1) in Fig. 4).

goto-analyzer is the abstract interpreter from CPROVER. It operates on goto-
programs and thus is language independent. The goto-analyzer supports three
types of abstract domain, which are the constant domain, the variable sensitivity
domain, and the dependency domain.

Constant Domain ((2) in Fig. 4): Finds unwinding-bounds for the loops, then
it unwinds the original code. The command is goto-analyzer --constant

Variable Domain ((3) in Fig. 4): Simplifies and removes the data and func-
tion pointers with array and struct/union awareness. The command is
goto-analyzer --variable --structs --arrays
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Fig. 5. Goto-program.

Dependency Domain ((4) in Fig. 4): Extracts the instruction level depen-
dency from the pointer-resolved goto-program. It supports typical control
dependency and data dependency with array and struct/union awareness. In
addition, it supports the recurrent data dependency, which is an embedded
specific option. Typically, the embedded controller calls a task repeatedly and
considers the status of the previous control step as necessary. The command
is goto-analyzer --dependence-graph-vs
--structs --arrays --periodic-task.

The CAT exploits the constant and variable sensitivity domains to handle
loops and pointers and the dependency abstract interpreter for extracting pro-
gram dependency. Finally, that outputs the dependency at the instruction-level
to Orient-DB.

4.2 Orient-DB

The Orient-DB [8,11] handles the dependency information that comes from a half
million lines of code and CPROVER’s abstract interpreter (goto-analyzer).
The sum of the control and data dependencies is approximately relations 445,000
from a half million lines of code. In general, applying a database is reasonable to
handle such an enormous amount of information. One feature is that we apply
the oriented graph based database “Orient-DB”. This is because the code depen-
dency is considered as a directed graph. Each instruction can be considered a
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Fig. 6. Orient-DB data architecture.

“vertex”, and each dependency can be considered an “edge”. From that per-
spective, the impact analysis can be implemented as a backward and forward
analysis from any slicing criterion.

Figure 6 shows the data structure that is stored in Orient-DB. The vertices
represent the instruction, the function, the global variable, and the local variable.
Those are based on the C-code intermediate format from the goto-program. In
addition, the file directory and the file are included to support the directory
and file-level merging in the visualization layer. The edges represent the call,
the control that expresses the instruction ordering, variable read, and write as
in a typical program data dictionary. In addition to that, the data and control
dependency that come from the dependency abstract interpreter are registered.

The Orient-DB supports the edge based backward and forward analysis. CAT
exploits that for Backward and Forward Analysis ((5) in Fig. 4).

4.3 Visualization

The visualization component relates Visualization ((6) in Fig. 4). The Orient-
DB can extract the vertices that correspond to instructions from the goto-
program with any Orient-DB commands. It is easy to imagine that such an
instruction-level graph may be difficult to understand. In practice, it is more
detail than required to understand the software architecture for most cases.

The designers need to understand the system-level, but they mainly focus
on a particular module they are developing. Thus, the graph vertex that relates
the module they are developing should be provided in detail; like the mod-
ule or function-level, other vertices should be abstract like the sub-system or
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Fig. 7. Example of visualization process.

system-level. In that sense, this component is allowed to violate the CPROVER
and Orient-DB’s data-structure (Fig. 6) and generates the visualized graph so
that it is easy to understand. In this layer, vertices can be merged or expanded
to and level, like function, file, and folder-level, using a manual command. In
accordance with the vertex merging, the edges that include the control, data
dependency and the function call are merged as an edge automatically (See
Fig. 7). The output graph format is GraphMl [12]. yEd Graph Editor [13] is
used as a viewer, and the Graph layout is used independently from the CAT to
show the result. This component is also implemented in Java.

5 Experiment of CAT with Automotive Unit-System

We evaluate the CAT’s unit-system dependency graph generation and the impact
analysis with actual code. We choose the engine ECU that is the largest scale in
the vehicle system and has a half million of LoC. All experiments were run on
a workstation computer with Intel R© Xeon R© CPU E5-2690, 2.9 GHz, 8 cores, 2
processor, and 256 GB RAM on OS Ubuntu 16.04.

5.1 Result of Analysis for Small Examples

This section explains the result of CPROVER goto-analyzer in Sect. 4.1.

Dependency Analysis. The result of dependency analysis goto-analyzer
--dependence-graph-vs of Program 1 is shown in Fig. 8, which indicates the
data dependency has offset of struct member.

The result of dependency analysis of Program2 is also shown in Fig. 9, which
indicates the control, data, and periodic dependency (shown as “later” on edge
from L13 to L10 node) are extracted correctly. Above results indicate the require-
ments those are mentioned in Sect. 2.3 are satisfied. All those dependencies are
exported in JSON format and stored to Orient-DB.
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Fig. 8. Dependence result of Program1 Fig. 9. Dependence result of Program 2

Program 6. Unwound code of Program 3.

1 const signed int cAarray [4l]={ 10, 20, 30, 40 };
2 signed int gArray1 [4l];
3 signed int gArray2 [4l];
4
5 void main(){
6 const signed int *p0=cAarray;
7 signed int *p1=gArray1;
8 signed int i=0;
9 if(!(i >= 4)){

10 *p1 = cAarray [( signed long int)i];
11 gArray2 [( signed long int)i] = *p0;
12 p0 = p0 + 1l;
13 p1 = p1 + 1l;
14 i = i + 1;
15 if(!(i >= 4)){
16 *p1 = cAarray [( signed long int)i];
17 gArray2 [( signed long int)i] = *p0;
18 p0 = p0 + 1l;
19 p1 = p1 + 1l;
20 i = i + 1;
21 if(!(i >= 4)){
22 *p1 = cAarray [( signed long int)i];
23 gArray2 [( signed long int)i] = *p0;
24 p0 = p0 + 1l;
25 p1 = p1 + 1l;
26 i = i + 1;
27 if(!(i >= 4)){
28 *p1 = cAarray [( signed long int)i];
29 gArray2 [( signed long int)i] = *p0;
30 p0 = p0 + 1l;
31 p1 = p1 + 1l;
32 i = i + 1;
33 __CPROVER_assume (!(i < 4));
34 }
35 }
36 }
37 }
38 }

Pointer Resolution. The first step of pointer resolution using CAT is unwind-
ing the loops. Program6 shows the result of loop resolving goto-analyzer
--constant of Program 3 in Sect. 2.3 by using the constant abstract interpreter.
The for loop on L10 in Program3 is unwound and converted to if statements.
Program 7 shows the result of pointer resolving goto-analyzer --variable
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Program 7. Pointer resolved code of Program 3.

1 const signed int cAarray [4l]={ 10, 20, 30, 40 };
2 signed int gArray1 [4l];
3 signed int gArray2 [4l];
4
5 void main(){
6 const signed int *p0=cAarray;
7 signed int *p1=gArray1;
8 signed int i=0;
9 gArray1 [0l] = 10;

10 gArray2 [0l] = 10;
11 p0 = &cAarray [1l];
12 p1 = &gArray1 [1l];
13 i = 1;
14 gArray1 [1l] = 20;
15 gArray2 [1l] = 20;
16 p0 = &cAarray [2l];
17 p1 = &gArray1 [2l];
18 i = 2;
19 gArray1 [2l] = 30;
20 gArray2 [2l] = 30;
21 p0 = &cAarray [3l];
22 p1 = &gArray1 [3l];
23 i = 3;
24 gArray1 [3l] = 40;
25 gArray2 [3l] = 40;
26 p0 = &cAarray [4l];
27 p1 = &gArray1 [4l];
28 i = 4;
29 __CPROVER_assume (( _Bool)1);
30 }

--structs --arrays of Program 6. This result shows the abstract interpreter
can resolve complex pointer accesses that include loop and array access.

Program 8 also shows the result of function pointer resolving of Pro-
gram 4. Actually because of implementation difficulties, it is solved by using a
heuristic method goto-instrument --remove-function-pointers. The func-
tion pointer access p->req(len, buf) on L21 in Program4 should be function
f1 or f2. However, this heuristic method solves as all possible function; f1, f2,
g1, or g2 in over-abstract (See L20–L50 in Program8). Potentially the abstract
interpreter can reduce the set of possibilities and it is one direction of future
development.

5.2 Visualization for Automotive Unit-System

Figure 10 shows the engine unit-system dependency graph, where the red-line
shows the extracted result of program slicing. The slicing criteria is an important
variable for the engine control software and for the back-forward control and
data-dependency analysis. The top segment of this figure shows the feature layer.
The middle segment shows the module graph. The bottom segment shows the
function and global variable graph. This figure shows the unit-system level, the
feature level, and the module level hierarchically and with the designer preferred
abstraction. The result shows that the program slicing gives the information the
designer should focus on.

The time and memory consumption was evaluated while generating Fig. 10.
First, the CAT compiling CPROVER compiler ((1) in Fig. 4) takes about 24 min.
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Program 8. Pointer resolved code of program 4.

1 struct st;
2 signed int f1(char , char *);
3 signed int f2(char , char *);
4 void func(signed int id, signed int len , char *buf);
5 signed int g1(char , void *);
6 signed int g2(char , void *);
7
8 struct st{
9 signed int (*req)(char , char *);

10 };
11
12 const struct st fptbl1[2l];
13 const struct st fptbl1[2l]={ { .req=f1 }, { .req=f2 } };
14 signed int (* const fptbl2[2l])(char , void *);
15 signed int (* const fptbl2[2l])(char , void *)={ g1, g2 };
16
17 void func(signed int id, signed int len , char *buf){
18 const struct st *p=& fptbl1[( signed long int)id];
19 p->req;
20 if(!(p->req == f2))
21 {
22 if(p->req == (signed int (*)(char , char *))g1)
23 goto __CPROVER_DUMP_L2;
24
25 if(p->req == f1)
26 goto __CPROVER_DUMP_L3;
27
28 if(p->req == (signed int (*)(char , char *))g2)
29 goto __CPROVER_DUMP_L4;
30 }
31
32 f2((char)len , buf);
33 goto __CPROVER_DUMP_L5;
34
35 __CPROVER_DUMP_L2:
36 ;
37 g1((char)len , (void *)buf);
38 goto __CPROVER_DUMP_L5;
39
40 __CPROVER_DUMP_L3:
41 ;
42 f1((char)len , buf);
43 goto __CPROVER_DUMP_L5;
44
45 __CPROVER_DUMP_L4:
46 ;
47 g2((char)len , (void *)buf);
48
49 __CPROVER_DUMP_L5:
50 ;
51 }

The abstract interpreters, the constant abstract interpretation ((2) in Fig. 4),
the variable abstract interpreter ((3) in Fig. 4), and Dependency Abstract Inter-
preter ((4) in Fig. 4), which are for the dependency analysis, take about 7 h and
consumes a maximum of 198 GB memory. Forward and backward analysis ((5)
in Fig. 4) and Visualization ((6) in Fig. 4) take up to a few minutes.

In total, the CAT takes about 8 h while consuming up to 198 GB RAM. It is
done fully automatically and means the CAT can reduce work-hours dramatically
compare with manual or semi-manual manner. Furthermore, it is practically
impossible to extract such exhaustive dependency information manually.
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Fig. 10. Engine unit-system dependence graph. (Color figure online)

5.3 Examination of Preciseness and Scalability

In this section, we discuss the exhaustiveness of the abstract interpreter and the
Orient-DB. Table 3 shows the scalability of the abstract interpretation. It shows
the calculation time and memory consumption from several levels: task, module,
and function. Every entry is the largest function in each levels. The related
preciseness combinations are shown in Table 1. Each LoC refers to the scale
of the code. The LoC is estimated from the goto-program, which completely
resolves the loop and the context. Figure 11 shows the memory consumption
Fig. 12 shows the trends of time and for each abstract interpreter.

This result illustrates the possibility that the abstract interpreter can coor-
dinate the scalability and the preciseness according to the designers PC spec.
One of contributions of CAT is the decrease in work-hours for pointer-resolving,
which is expected to take about 125 h to resolve five hundred pointers manually
(Sect. 2.3). As row “Unit #1-4” and column “Variable Time” shows, the variable
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Fig. 11. Memory consumption. Fig. 12. Time consumption.

Table 1. Combination of preciseness options.

Preciseness Flow Context Loop Recurrent

#1 �
#2 � �
#3 � �
#4 � � �
#5 � � �
#6 � � � �

Table 2. Evaluation of Orient-DB.

# Criterion # Extracted Time [ms]

instructions

1 146 68

2 419 146

3 536 188

42 3,562 1,065

88 5,949 1,349

abstract interpreter resolves the pointers from the largest unit entry in around
50 min. Actually we need to solve several unit entries, even though it can resolve
in about 2 h.

The program slicing is implemented using Orient-DB’s backward and forward
analysis on the oriented graph. There are 200 thousand instructions treated as
vertices, 410 thousand control/data dependencies, which are treated as edges.
We have not compared any data bases; however Table 2 shows Orient-DB can
extract 5,949 instructions from 8 slicing criteria on a half million items related
to dependency in 1,349 ms. The search speed is extremely fast and well satisfied
our use-case.

5.4 Discussion of Preciseness and Scalability

As demonstrated above, CAT can provide the unit-system dependency graph
(See Fig. 10). In this section, we discuss the CAT’s components; CPROVER,
Orient-DB, and Visualization.

CPROVER mainly provides the abstract interpreter, which is one of two key
technical items. The abstract interpreter solves the pointer and the dependency
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Table 3. Evaluation of abstract interpretation.

Entry Pre. LoC Constant Variable Dependence

Memory [MB] Time Memory Time Memory Time

Module #1 4,715 540 00:00:04 12,015 00:04:45 14,395 00:04:42

#2 5,766 558 00:00:04 26,460 0:0:5:45 22,849 00:05:02

#3 7,182 8,843 00:03:49 10,137 00:03:19

#4 8,779 3,158 00:01:07 6,280 00:01:30

#5 14,364 19,740 00:07:10

#6 17,558 11,975 00:02:50

Feature #1 35,090 2,528 00:00:13 33,756 00:15:02 49,033 00:18:12

#2 34,874 3,222 00:00:23 89,819 00:21:51 92,351 00:27:39

#3 43,285 17,664 00:07:41 44,260 00:15:34

#4 50,072 15,770 00:06:46 55,348 00:17:10

#5 86,570 88,239 00:32:28

#6 100,144 109,197 00:38:56

Unit #1 115,126 10,200 00:00:50 64,753 00:53:01 96,699 00:47:14

#2 123,881 16,390 00:02:06 154,118 00:49:36 Out of memory

#3 132,663 48,008 00:40:41 99,864 00:39:33

#4 155,178 153,872 00:46:15 Out of memory

#5 265,326 198,149 01:16:06

#6 310,356 Out of memory

at the instruction level. Table 3 shows the possibility of coordinating the scal-
ability and the preciseness; however, the scalability still remains an issue. The
abstract interpreter consumes up to 198 GB of memory, furthermore, Unit #1,
#4, and #6 are out of memory. Actually, Unit #5 satisfies our visualization use-
case (the context sensitivity or more precise analysis is not needed.). In general,
that is too heavy to perform on a standard desktop PC, but the performance
requirement can be overcome by sharing the Orient-DB repository via a network
as the host. In this case, the computing demand on the local PC is not as high.

From this experience, not only the large program scale (half million LoC)
but also the many (several thousands of) global variable impacts the scalability.
There are two main reasons for this. First, the domain information for each
global variable cannot be released because they are “global” variables. Second,
every global variable domain (status) needs to be stored for each instruction.
This means the memory consumption is a multiplication of the number of global
variables and LoC, approximately. The embedded controller cannot avoid using
the global variable, and we typically cannot expect to decrease the LoC. The
only way is to lessen the domain scale and update the domain objects.

The essential advantages of abstract interpretation are the soundness and the
ability to trade off the preciseness with the computation time. The ideal usage
is applying the abstract interpreter in a hierarchical fashion; meaning, in the
early phase, use a less precise (scalable) abstract interpreter to simplify (erase
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dead code, simplify pointers), then in the later phase, gradually apply a precise
(less scalable) abstract interpreter to the simplified code. The CAT exploits the
abstract interpreter in this way; however, our design of data structures for the
Orient-DB (Fig. 6) deals with the most precise instruction-level of the informa-
tion and does not consider intermediate information like unwound-bounds and
pointer simplifying. More sophisticated data-structures that can deal with the
history of the result from the abstract interpreter are needed to better exploit
the abstract interpreter.

In the visualization component, the on-demand access that is supported by
the Orient-DB realizes a user preferred level for the graph (Fig. 7) to provide
the enormous dependency information from a half million lines of code. On the
other hand, the graph placement is a further issue related to the large size of
the graph. The yEd Graph Editor is used in this paper separately from CAT
and the default placement setting is used, but the preference for the placement
depends on the domain. We need to consider those settings for each domain to
deploy CAT. The yEd allows user specific placement settings. We expect it can
implement this by using the yEd API.

5.5 Future Work

Authors think the CAT tool achieved a trial level, even though still there remain
improvement items. The biggest advantage of the CAT is that is capable to
extracting the exhausting dependence analysis which includes pointer analysis
with just one night. We have already presented a demo to designers. They are
also interested in the capabilities of scalability and, the result of program slicing;
even though it is the function level graph, the slicer extracts well because of the
statement level of dependence analysis is done in behind. (See bottom of Fig. 10,
the slicer does not extract all of input edges at func 6.)

We are planning trial with 3 domains; Vehicle Control, Engine and Fuel Cell
domain. The vehicle control domain is rapidly increasing the work-hours due to
applying Automated Driving Technology. The engine still remains the largest
scale of controller in automotive. The fuel cell system is also complex system
which involves FC stack, Battery, and Electric motor. We expect the around
8,000 h reduction of work-hours per an ECU development when the CAT is
deployed.

6 Conclusion

In this paper, we focus on the enhancement of control software development
processes in the early development phases. The technical difficulty relates to
the management of up to half a million lines of code per ECU. We applied an
advanced static analysis method, abstract interpretation, to address function
pointers and variable pointers and to extract an instruction-level of dependency.
We systematize this process in the CAT tool, which uses CPROVER and Orient-
DB. The CAT tool can handle a half million lines of code, resolve 500 pointers,
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and extract a half million dependencies within 8 h. CAT provides system graphs
to understand software architecture on demand. CAT is a flexible and sophisti-
cated tool for reviewing code in early development phases.
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Abstract. The state space explosion problem is among the largest
impediments to the performance of any model checker. Modelling lan-
guages for compositional systems contribute to this problem by plac-
ing each instruction of an instruction sequence onto a dedicated transi-
tion, giving concurrent processes opportunities to interleave after every
instruction. Users wishing to avoid the excessive number of interleav-
ings caused by this default can choose to explicitly declare instruc-
tion sequences as atomic, which however requires careful considerations
regarding the impact this might have on the model as well as on the
properties that are to be checked. We instead propose a preprocessing
technique that automatically identifies instruction sequences that can
safely be considered atomic. This is done in the context of concurrent
variable-decorated Markov Decision Processes. Our approach is compat-
ible with any off-the-shelf probabilistic model checker. We prove that our
transformation preserves maximal reachability probabilities and present
case studies to illustrate its usefulness.

Keywords: State space explosion · Atomicity
Partial order reduction · Concurrency · Interleavings · Model checking

1 Introduction

Concurrency problems are notoriously difficult to study. One important reason
is that activities local to a single component can interleave in arbitrary order
with those of others, which is a root cause of the state-space explosion problem.

One of the earliest attempts to alleviate this problem is a feature of Holz-
mann’s language Promela [16], exploited in the model checker Spin. Promela
contains an atomic keyword, to be used by the modeller to group sequences
of computations so that they are executed atomically, i.e. without the need to
store intermediate states, which would otherwise contribute to state space explo-
sion. Nowadays, model checkers like Uppaal allow the modeller to place entire
C-code fragments as effects on single transitions [4]. As another example, Lnt,
the modern language of the Cadp model checking framework [10], provides a
dedicated “procedure” construct, the semantics of which ensure that the effect
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of each procedure body does not span more than a single transition. Apart from
interesting semantic questions (what if the body does not terminate, what if
it cannot be made atomic?), these solutions burden the modeller with deciding
which computations to group together.

Instead, partial order reduction techniques (POR) take over the task of iden-
tifying local computations that can be considered independent, and thus need
to be explored in only one of their interleavings as opposed to all interleavings.
POR techniques usually fall into one of two categories: Static POR [12,18,21],
running mostly before state space exploration (hence the name “static”), com-
putes so-called persistent sets, that are subsets of the transitions enabled in the
different states of the system. Exploration then does not follow all the transi-
tions enabled in a state, but only the ones in the persistent set of that state.
Dynamic POR [1,9] on the other hand aims at materialising persistent sets dur-
ing state space exploration, which promises to be more precise, as information
about concrete executions is available and does not need to be overapproximated
as much. POR has also been adapted to the probabilistic setting [2,3,7,8,11].

The present paper describes a technique that achieves reductions comparable
to those of POR, but is actually geared towards automated placement of atomic’s
in the model source code. Executed as a preprocessing step prior to the actual
model checking, our approach analyses the model statically, in order to identify
instruction sequences inside components that can safely be made atomic. This
places the instructions on a single transition in the state space, instead of taking
multiple steps that would multiply when interleaved.

We present our technique for variable-decorated, concurrent probabilistic
models and probabilistic model checking. In this setting, the model checker usu-
ally constructs a Markov decision process that needs to be stored explicitly and
very often is of prohibitive size. Symbolic or SAT-based approaches do not work
particularly well here [15,20], basically because numerical computations need to
be performed at the end.

We call our approach “syntactic partial order compression”, because it has
the same goal as partial order reduction, i.e. to rule out redundant interleav-
ings. In general, POR techniques appear more capable of reducing the num-
ber of interleavings than the placement of atomic’s, because POR can freely
choose between interleavings that involve several components of the system,
whereas an atomic sequence is restricted to allowing only one component to
make progress. We expect that the latter will often not suffice to preserve the
property of interest, while the former still can, i.e. POR can still find oppor-
tunities for reduction when placing an atomic is just not sound anymore. In
contrast to most POR techniques however, our approach does not require the
model checker to cooperate (e.g. by pruning state space exploration) and thus
can be used with any off-the-shelf tool. Furthermore, traditional POR techniques
do not work well in our particular setting, rooted in the fact that probabilistic
decisions (inside components) alternate with interleaving of components, and
the resulting tree-shaped executions contain cross-dependencies that are diffi-
cult to account for [11]. Therefore, POR techniques have so far not delivered true
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success stories for probabilistic models. Recent work in this realm [8] did explore
POR to find and syntactically enforce particular representative interleavings —
but the results of this approach do not translate to atomic’s, which we aim at.

Our main contribution is a perspicuous three-step approach that transforms
a parallel composition of processes without ever materializing the product pro-
cess: First, a generation step builds up a set of so-called chains for each process.
A chain is a sequence of alternating nondeterministic and probabilistic decisions
in one component, with the main requirement being that schedulers that never
interrupt this sequence by any transitions from other components still achieve
the same maximum reachability probability for the state-formula in question.
We give a wellformedness condition for these chain sets, largely independent of
how they are actually generated. Second, as a filtering step we describe an opti-
mization problem aimed at finding a subset of the generated chains that admits
as few interleavings as possible without changing said probability. Lastly, the
fusion step turns the remaining chains into proper probabilistic transitions again,
whereby sequences of decisions are compacted into atomic decisions, obtaining
a syntactic representation of the transformed system.

2 Preliminaries

We start off by reviewing the basics of variable-decorated Markov decision pro-
cesses in the style of Modest [5,13], building upon [14], which we recommend
for further details and elaborate discussions of the concepts.

Basic Structures. Throughout the paper we assume a finite set V ar of variables
with countable domains Dom(x) for all x ∈ V ar and a set Exp of expressions over
these variables, the detailed syntax and semantics of which are not of importance.
We assume Bxp ⊆ Exp to comprise boolean expressions ranging over {tt,ff} and
Axp ⊆ Exp to denote arithmetic expressions ranging over Q. The set V al :=
V ar → Dom(V ar) of valuations contains all mappings of variables to values of
their domains, i.e. for each v ∈ V al we have ∀x ∈ V ar : v(x) ∈ Dom(x).

For x ∈ V ar and e ∈ Exp we call x := e an assignment. Two assignments
x1 := e1 and x2 := e2 are called consistent iff x1 �= x2 or �e1�(v) = �e2�(v)
for all v ∈ V al, where �e�(v) ∈ V al → V al is the function that evaluates
expression e given valuation v. The set Upd of all updates contains all sets of
pairwise consistent assignments. Consistency allows the definition of a function
�u� ∈ V al → V al updating valuations after simultaneous evaluation of the
assignments in u.

For a set S we call elements of S → Axp symbolic probability distributions
over S and the values these functions return weight expressions.
Given a function f the set Supp (f) contains the arguments f is defined for.
For all sets S of the form S = A × B we define S⊥ := (A × B)⊥ := A⊥ × B⊥

and if S is not a cartesian product we set S⊥ := S ∪ {⊥}, where ⊥ /∈ S is a
distinct placeholder element. Tuples (⊥, . . . ,⊥) will be abbreviated with ⊥. For
sequences s, t ∈ S∗ we call s a prefix of t and write s 	 t iff ∃t′ : t = s · t′.
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For a, b ∈ N we define [a : b] := {i ∈ N | a ≤ i ≤ b} and for vector variables
we usually use the notation �v = (v1, . . . , vn).

MDPs with Variables. Our models are based on parallel compositions of Markov
Decision Processes (MDP), enhanced with variables, guards and probability
expressions [13,14]:

Definition 1 (VMDP). A Markov decision process with variables (VMDP)
is a tuple (Loc, A,E, linit) where Loc is a finite set of locations, A ⊇ {τ} is
a finite alphabet, including the silent action τ , and linit ∈ Loc is the initial
location. Furthermore, E ∈ Loc → P(Bxp × A × (Upd × Loc → Axp)) maps
each location to a set of transitions, which each consist of a guard g ∈ Bxp, a
label α ∈ A and a symbolic probability distribution m ∈ Upd × Loc → Axp that
weighs pairs of updates and target locations. We denote the set of all transitions
by T :=

⋃
l∈Loc E(l).

l1

l2

τ [consumed < total]

consumed := consumed + 1

τ
l3

1/3 : xi := 2

1/3 : xi := 3

1/3 : xi := 1

τ
l4

1/3 : yi := 2

1/3 : yi := 3

1/3 : yi := 1

l5

τ
[ x

i
≤

y
i
]

τ [xi > yi]

(xi, yi) := (yi, xi)

τ

l6

1 − (1 − ei) · yi−xi
2

(1 − ei) · yi−xi
2

:
ei := min(ei + 0.1, 1)

broken := broken + 1

l7
τ hi := hi + 1

τ [t ≥ hi]

processed := processed + 1

lc

τ
[t

≤
n
]t

:=
t
+

1

Fig. 1. A VMDP network modelling Example 1

As examples, consider the two processes depicted in Fig. 1: Locations are con-
nected by transitions, which are decorated with their label and nontrivial guard.
Distributions m with |Supp (m) | > 1 are represented by splitting up transitions
at • and labeling arcs with their probability expressions and updates. Each pro-
cess transitions between locations: Given its current location l and a valuation v,
a transition (g, α,m) ∈ E(l) is picked nondeterministically, under the condition
that its guard expression is satisfied by v. Then, the weights assigned by m are
evaluated over v, turning weight expressions into actual probabilities, based on
which the new location l′, along with an update u is chosen. The process then
transitions to l′ and updates v to v′, according to u.
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The fact that probability distributions are symbolic (i.e. probabilities depend
on the current valuation of variables) contributes to the expressiveness of the
formalism, as we will see in Example 1. For the purposes of this paper, we require
that all symbolic probability distributions m be well-formed, i.e. they satisfy

∀v ∈ V al, (u, l) ∈ Supp (m) : 0 ≤ �m(u, l)�(v) ∧ ∑
(u,l)∈Supp(m)�m(u, l)�(v) = 1

Violations of this condition will be considered modelling errors in practise, caus-
ing Modest to reject the model.

Networks of VMDPs. So far, we have not said a lot about the action labels
α ∈ A. They become significant when we consider networks of VMDPs. From
now on we will deal with finite sets of VMDP’s Ci = (Loci, Ai, Ei, liniti):

Definition 2 (VMDP network semantics). A VMDP network is a tuple
N = (C, vinit) consisting of an initial valuation vinit ∈ V al and a finite set
C = {C1, . . . , CN} of VMDP components. We call S := (Loc1× . . .×LocN )×V al
the state space of N , with initial state sinit := ((linit1 , . . . , linitN ), vinit) ∈ S.

We write (�l, v)
�g,�α,�p,�u−−−−→ (�l′, v′) iff there is α ∈ A and P ⊆ [1 : N ], such that

1. If α = τ , then |P | = 1, otherwise P = {i | α ∈ Ai}.
2. For all i ∈ P we have αi = α and (gi, α,m) ∈ Ei(li) for some m with

m(ui, l
′
i) = pi, such that �gi�(v) = tt and �pi�(v) > 0.

3. For all i ∈ [1 : N ] \ P we have li = l′i and (gi, αi, pi, ui) = ⊥
4. v′ = �

⋃
i∈P ui�(v)

A (finite) path in N to sn is a sequence of the form

π = sinit
�g0, �α0,�p0,�u0−−−−−−−→ s1

�g1,�α1,�p1,�u1−−−−−−−→ s2 . . .
�gn−1,�αn−1,�pn−1,�un−1−−−−−−−−−−−−−−→ sn ∈ Paths

and we set state(π) := sn.

In a network, the executions of VMDPs interleave, i.e. the order in which they
progress is chosen nondeterministically. Definition 2 however mandates common-
alphabet synchronization in the style of Hoare [6], making steps in the network
fall into one of two categories: Either a silent τ -step is made by one single
process, or a different, nonsilent action label is chosen, requiring all processes
with this label in their alphabet to participate and execute a step synchronously.
In addition to communicating via synchronizing actions, processes also share all
the variables in V ar and can read and write them to exchange information.
Similar to the wellformedness of symbolic probability distributions above we
require that networks never lead to a state in which updates according to rule
4 would be inconsistent. Even after strengthening this condition to make it
easily implementable (e.g. in Modest), it remains a very light restriction and
is relevant only for non-τ steps.
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Example 1 (Factory). A factory receives a delivery of machine parts that are to
be welded together in pairs. Part sizes are randomly distributed. A number of
workers start out with a certain amount of experience with this type of task.
Working in parallel, they grab pairs of parts and process them, which takes one
hour per pair. The less experienced a worker is and the more two parts differ in
size, the more likely it is that the worker makes a mistake and breaks the parts.

Figure 1 depicts a model for Example 1: A global clock keeps track of time during
an n-hour day, while each worker is represented by a dedicated process (indexed
with i): Starting in l1, the worker obtains a pair of parts, unless all have been
obtained already. From l2 to l4 he measures the parts. From l4 to l5 measures
are sorted: xi should refer to the shorter part length. Based on the difference
in part lengths and his current level of experience, the worker will then either
succeed or fail in welding parts together, the latter of which will make him gain
experience. Both success and failure take one hour (l6 to l7) which is why the
worker can obtain another job only after the clock has progressed.

Note that at each location li a worker process might be nondeterministically
interrupted by others. To avoid the enormous number of interleavings that these
locations give rise to the modeller might want to manually compact subsequent
transitions into one. This error-prone transformation would require duplicating
parts of the model and thus lead to a less concise representation, justifying the
desire for a tool that performs such a transformation “under the hood”.

Probabilistic Reachability. Model analysis is often concerned with the question
of reachability, i.e. whether there is a path of the system such that at some point
of the path the system state satisfies a given condition. We denote such queries
by ♦ ϕ, where ϕ is a predicate over states. By Paths(♦ ϕ) we denote the set of
finite paths containing a state s satisfying ϕ.

Since exploring paths of the system usually involves probabilistic choices it
makes sense to not only ask for the existence of paths satisfying ♦ϕ, but for the
probability P(♦ϕ) with which one of these paths is chosen. These probabilities
depend on the way that nondeterministic choices are resolved and thus can be
defined only given a scheduler S ∈ Sched which is a function S → T⊥

1 × . . .×T⊥
N ,

such that whenever S((�l, v)) = (g1, α1,m1, . . . , gN , αN ,mN ) we have

(�l, v)

⎛
⎜⎝

g1

...
gN

⎞
⎟⎠,

⎛
⎜⎝

α1

...
αN

⎞
⎟⎠,�p,�u

−−−−−−−−−−−−→ (�l′, v′)

for some �p, �u, �l′, v′ with ∀i ∈ [1 : N ] : mi(ui, l
′′
i ) = pi.

Intuitively, a scheduler thus resolves nondeterministic choices by selecting tran-
sitions that are enabled in the current network state. We define Paths(S) to be
the smallest set satisfying the following conditions:

1. sinit ∈ Paths(S)
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2. If sinit
�g0, �α0,�p0,�u0−−−−−−−→ s1 . . .

�gn−1,�αn−1,�pn−1,�un−1−−−−−−−−−−−−−−→ sn ∈ Paths(S) and we have

S(sn) = (�g, �α, �m), then for all steps sn
�g,�α,�p,�u−−−−→ sn+1 we also have

sinit
�g0, �α0,�p0,�u0−−−−−−−→ s1 . . .

�gn−1,�αn−1,�pn−1,�un−1−−−−−−−−−−−−−−→ sn
�g,�α,�p,�u−−−−→ sn+1 ∈ Paths(S)

Remark 1. In full generality, schedulers base their decisions not only on the
current state, but the complete sequence of visited states and transitions, and
can randomize their decision. In our context this does however not add any
power [19], which is why we restrict to pure memoryless schedulers.

This is what we need to properly define reachability probabilities:

For π = (�l0, v0)
�g0,�α0,�p0,�u0−−−−−−−→ (�l1, v1) . . .

�gn−1,�αn−1,�pn−1,�un−1−−−−−−−−−−−−−−→ (�ln, vn) ∈ Paths:

P(π) :=
∏

0≤i<n

∏

1≤j≤N

�pi,j�(vi) and PS(♦ ϕ) :=
∑

π∈Paths(S)∩Paths(♦ ϕ)

P (π)

P(π) can be seen as a short-hand notation for the measure value P(Cyl(π)) of
the cylinder Cyl(π) composed of all maximal paths prefixed by π. It is easy to see
that this definition meets Carathéodory’s extension theorem so that P defines
a unique measure over the σ-algebra generated by the finite paths. In partic-
ular, the set max	(Paths(S)) of (possibly infinite) prefix-maximal paths is a
measurable set and Paths(♦ϕ) identified as Cyl(Paths(♦ϕ)) is also measurable.
Moreover, PS(·) = P(max	(Paths(S)) ∩ ·) is a probability measure.
In this paper we will focus on quantitative reachability properties:

Pmax(♦ ϕ) := max
S∈Sched

PS(♦ ϕ) or Pmin(♦ ϕ) := min
S∈Sched

PS(♦ ϕ)

Example 2. For the scenario modelled in Fig. 1 interesting queries include the
probability Pmax(♦(processed = total∧ t ≤ b)) of finishing work within a certain
time horizon and the probability Pmax(♦(processed = total∧broken = 0)) of not
breaking any parts. Since model checkers are able to output the schedulers that
achieve extremal probabilities, these queries correspond to finding strategies of
how to distribute work packages among the workers.

Chains. The key data structure of our approach is the concept of a chain:

Definition 3 (Branches, links and chains). For a transition t = (g, α,m)
we denote the branches of t by Br(t) := {(u, l′, p) | m(u, l′) = p}. Each branch
b ∈ Br(t) corresponds to a link t · b and we denote the set of all links in the
network by L. Two links t1 · (u, l′, p), t2 · b2 are called consecutive iff t2 ∈ E(l′).
A chain is a finite sequence t0 · b0 · t1 · b1 · · · tn · bn of consecutive links.

Example 3. Consider the arrows from l2 to l3 in Fig. 1: Together they depict a
transition that we refer to as t. The three segments between • and l3 represent
the branches of t. Every route from l2 to l3 depicts a link. A link itself is already
a chain. But also any finite route in Fig. 1 that starts at a location and ends at
a location is a chain, as it is a sequence of links.
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If |Br(t)| = 1 we call t Dirac and write t ∈ Tnd, omitting the • in the graphical
representation. We call a location l pure iff l ∈ Locp := {l ∈ Loc | |E(l)| ≤ 1}.

The goal of our approach is to identify certain chains as “uninterruptible”,
i.e. to establish that while a process is inside such a chain, one can refrain
from switching control to a different process, without losing behavior relevant
for the reachability property in question. By collapsing these chains into single
transitions one obtains a new network that thus admits fewer interleavings than
the original one, while preserving the property.

Mobility. To establish chains as “uninterruptible” we use the concept of mobility:

Definition 4 (Mobility). Let i, j ∈ [1 : N ] with i �= j and t1 ∈ Ei(l1), t2 ∈
Ej(l2) with b1 ∈ Br(t1), b2 ∈ Br(t2). We say that t1 · b1 is forward-commutative

with t2 ·b2 iff for all states s and all step sequences s
�g1,�α1,�p1,�u1−−−−−−−→ s′

1
�g2,�α2,�p2,�u2−−−−−−−→ s′′

that involve t1 · b1 followed by t2 · b2 (i.e. projecting the first step on process i
gives t1 · b1 and projecting the second step on process j gives t2 · b2) we also have

s
�g2,�α2,�p2,�u2−−−−−−−→ s′

2
�g1,�α1,�p1,�u1−−−−−−−→ s′′ for some s′

2 and

P
(
s

�g1,�α1,�p1,�u1−−−−−−−→ s′
1

�g2,�α2,�p2,�u2−−−−−−−→ s′′
)

= P
(
s

�g2,�α2,�p2,�u2−−−−−−−→ s′
2

�g1,�α1,�p1,�u1−−−−−−−→ s′′
)

.

If s � ϕ ∧ s′
1 � ϕ ∧ s′′ � ϕ we also require s′

2 � ϕ. Backward-commutativity
is defined by swapping 1 and 2 above. t1 · b1 is called mobile iff it is forward-
commutative and backward-commutative with all links from other processes.

Mobility of links is what allows us to reorder paths such that the links of a
chain appear as one contiguous sub-path in the proofs of Sect. 4. Since it ensures
that we neither lose behavior, nor miss states that satisfy ϕ, we can be sure to
preserve maximal reachability probabilities.

Remark 2. Definition 4 is related to the notion of independence usually found in
POR literature [1,3,17]: Intuitively, two transitions t1, t2 are independent if for
any state where they are both enabled, both executions t1 · t2 and t2 · t1 can be
performed and lead to the same state distribution. The difference is that while
mobility is defined on the syntactic level of links, independence talks about steps
between concrete states (i.e. vectors of locations, paired with valuations).

3 Algorithm

Our syntactic partial order compression approach comprises three steps: In Step
A we identify a set of candidate chains that are sufficient for spanning the rel-
evant behavior. Since some of these chains are redundant, Step B is then con-
cerned with selecting a subset of chains that eliminates a maximal number of
interleavings. Finally Step C compiles the remaining chains into a new VMDP
network. We assume a given input VMDP network N to start with.
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Step A: Chain Generation

The objective of this step is to collect a finite set C of chains that can be turned
into atomic transitions without altering probabilistic reachability. C should sat-
isfy the following requirements:

Definition 5 (Chain set validity). Given a property of the form Pmax(♦ ϕ),
a chain set C is called valid iff it satisfies the following conditions:

1. For each chain c = t1 · b1 · · · tn · bn ∈ C we have:
(a) c does not contain any link more than once.
(b) If n > 1, c comprises τ -actions only and all its links are mobile.
(c) There is k ∈ [1 : n], s.t. b1, . . . , bk−1 are Dirac and lk, . . . , ln ∈ Locp.
(d) For each state s with s � ϕ and every path segment

s
�g0, �α0,�p0,�u0−−−−−−−→ s1

�g1,�α1,�p1,�u1−−−−−−−→ s2 . . .
�gn−1,�αn−1,�pn−1,�u|c|−1−−−−−−−−−−−−−−−→ s|c|

that involves c as a sequence of steps in one of the processes of N , we
have s|c| � ϕ → ∀i ∈ [1 : |c| − 1] : si � ϕ.

2. For each process Ci and each sequence λ of consecutive links originating in
liniti , there is γ ∈ C∗, s.t. λ 	 γ.

3. For each chain t1 ·b1 · · · tk ·bk · tk+1 ·bk+1 · · · tn ·bn ∈ C and b′
k ∈ Br(tk)\{bk},

there is t1 · b1 · · · tk · b′
k · t′1 · b′

1 · · · t′m · b′
m ∈ C for some t′1, b

′
1, . . . t

′
m, b′

m.

Condition 1a ensures acyclicity of chains. Condition 1b allows us to reorder
paths of N such that chain c emerges as one contiguous path segment, see Sect. 4.
Condition 1c rules out chains that contain a probabilistic choice before a nonde-
terministic one. This is necessary because chains will eventually be turned into
atomic transitions again, that according to Definition 2 need to be picked non-
deterministically before their probabilistic choices are made, thus not allowing
schedulers to base their nondeterministic decision on the outcome of the proba-
bilistic choice, which is not yet available. This condition echoes the need to add
additional conditions to Peled’s ample set approach [18] to preserve all relevant
schedulers in probabilistic partial order reduction [2,3,7]. Condition 1d rules out
chains during the execution of which ϕ is briefly satisfied in some intermedi-
ate state, without being also satisfied upon entering or leaving the chain. This
prevents such intermediate states from being lost when chains are converted to
atomic links. Condition 2 makes sure that control flow inside components is pre-
served, i.e. all paths through the locations of a component can still be realized by
sequences of chains. Together with Condition 3, that preserves the probabilistic
branching structure of components, it ensures that we can produce a syntacti-
cally well-formed result in Step C. Notice that all links bearing a nonsilent label
will only be represented in C as chains of length 1.

Example 4. In Fig. 1 the only link in the clock process, as well as the links from
l1 to l2 and from l7 to l1 in the worker constitute chains of length 1. The 9 paths
from l2 to l4 constitute chains of length 2. The 4 paths from l4 to l7 are chains
of length 3. This chain set satisfies the conditions of Definition 5. Condition 1c
rules out chains running through l4.
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Algorithm 1. Chain generation
function CollectChains(component Ci)

C ← ∅ � Collected chains
T ← {linit} ; V ← ∅ � Locations to visit, locations visited
function Continue(prefix,l)

terminal ← tt � Is |E(l)| = 0 ?
total ← tt � Was prefix continued for all outgoing links of l?
for all t ∈ E(l), b = (u, l′, p) ∈ Br(t) do

terminal ← ff
if valid(prefix, t, b) then Continue(prefix · t · b, l′)
else total ← ff

if prefix �= ε ∧ (terminal ∨ ¬total) then � Yield prefix as chain?
C ← C ∪ {prefix}
T ← T ∪ ({l} \ V )

while T �= ∅ do
l ← pop(T ); T ← T \ {l}
V ← V ∪ {l}
Continue(ε, l)

return C

We give one possibility of generating a set C according to the above conditions in
Algorithm 1: It basically performs a depth-first search through every component,
extending chain prefixes as long as possible and starting new empty prefixes at
locations where a chain ended. The latter already ensures condition 2.

The predicate valid(c, t ·b) is implemented such that the concatenation c · t ·b
satisfies conditions 1b, 1c, 1d and does not contain more than one link with the
same source location, to satisfy 1a and ensure termination. Conditions 1a and 1c
are local syntactic checks. Condition 1b can be conservatively overapproximated
in many ways. Our implementation considers both orders in which two links can
be combined and performs syntactic checks that imply the necessary conditions
in Definition 4. Similarly, we overapproximate Condition 1d, by ensuring that
chains contain at most one link that writes to variables occuring in ϕ.

A careful look at Condition 3 reveals that it is actually not ensured by Algo-
rithm1: For example, there might be a chain c covering a sequence of transi-
tions, as depicted in Fig. 2. Since c contains the link t · b, the condition requires
a counterpart c′ that agrees with c up to l and then contains the probabilistic
alternative t·b′. This counterpart is missing in Fig. 2. However, since Algorithm 1
starts new chains at exactly those locations where previously generated chains
end and because it satisfies Condition 2, we know that chains c1 and c2 as in the
figure must have been generated, which also entails the generation of c3. Thus
there is at least a subset of C that does preserve all conditions including 3, which
is sufficient as an input for the next step.
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l
t

b
b′

c

c3

c1 c2

Fig. 2. c violates Condition 3, because ¬valid(c1, t · b′). Algorithm 1 thus generated c1

as a chain, which put l into its agenda T and caused generation of c2 and c3.

Step B: Chain Filtering

The output of Step A is a chain set C that satisfies Definition 5, except for
Condition 3. To enforce the latter we need to select a subset of C that satisfies
it, a problem that can always be solved as we have argued in the previous
section. Since we strive for the selection of a subset that reduces the number
of interleavings as far as possible, we are dealing with an optimization problem
that we cast as a {0, 1}-weighted MAX-SAT instance.

However, Condition 3 is not the only reason for optimizing a subset of C:
A simple iteration over the syntax as in Algorithm 1 will generate redundant
chains in C, because it has to start new chains in all directions at the end
of every chain generated so far, unless sophisticated bookkeeping keeps track
of the path-segments already covered, complicating step A significantly. As an
example see Fig. 2, where c is subsumed by c1 · c3. Experiments have shown
that not eliminating these redundancies by optimization can not only prevent
reduction of the number of interleavings but even increase it, because there are
more nondeterministic choices to enumerate.

Constraints. We need to preserve the conditions of Definition 5. Condition 1 is
trivially satisfied for all subsets of C and thus does not need to be encoded.
Condition 3 can be encoded easily, because for every chain c the number of
chains c′ that need to be selected as a consequence of selecting c according to
the condition is usually rather small.

Condition 2 does need to be encoded, because discarding chains in C might
make certain control flow paths unrealizable. For this purpose we propose Algo-
rithm2. This algorithm attaches so-called bundles to the links of each process.
A bundle B attached to a link t · b represents a set of finite paths that all start
in the initial location and end with t · b. A solution to the optimization problem
must select a set S of chains that all contain t · b. The chains selected in this way
are the ones remaining at the end of step B.

The algorithm starts by attaching bundles to the initial links. For every newly
created bundle attached to a link, successor bundles for all successor links are
created, which is why branches and loops lead to links being attached more tha
none bundle. The constraints generated for bundles make sure that the sets S for
subsequent bundles “fit together”: A chain c can be selected for a bundle attached
to t · b only if c is select for the predecessor bundle as well (“continuation”), or if
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t·b is the very first link in c and the predecessor bundle selected a chain ending in
the link that it is attached to (“initiation”). Termination is guaranteed because
for every link there is only a finite number of chains that contain it, bounding
the number of bundles attached to it. Correctness of Algorithm 2 can be proven
by structural induction over paths.

Algorithm 2. Generation of constraints that encode chain set invariant 2
for all t ∈ T, b ∈ Br(t) do bundles(t · b) ← ∅
for all t ∈ E(linit), b ∈ Br(t) do

B ← {c ∈ C | ∃c′ : c = t · b · c′}
bundles(t · b) ← bundles(t · b) ∪ {B}
AddConstraint(

∨
c∈B uB,c) � At least one chain must be used to cover t · b

k ← 0
repeat

for all consecutive links ti · bi, t · b and B ∈ bundles(ti · bi) do
BT ← {c ∈ B | ∃c′ : c = c′ · ti · bi} � Chains terminated with ti · bi
B′

C ← {c ∈ B | ∃π, σ : c = π · ti · bi · t · b · σ} � Chains continued from ti · bi
B′

I ← {c ∈ C | ∃c′ : c = t · b · c′} � Chains initiated with t · b
B′ ← B′

C ∪ B′
I

bundles(t · b) ← bundles(t · b) ∪ {B′}
AddConstraint(Ik ∨ Ck) � Initiate new chain, or Continue previous one
AddConstraint(Ik ↔ ∨

c∈B′
I

uB′,c)

AddConstraint(Ck ↔ ∨
c∈B′

C
uB′,c)

AddConstraint(Ik → ∨
c∈BT

uB,c)

AddConstraint(∀c ∈ B′
C : uB′,c → uB,c)

k + +

until fixpoint � Exists because there can be only finitely many B

Objective. Intuitively, the goal of Step B is to minimize the number of times a
process can be “interrupted” by the scheduler, giving other processes opportu-
nity to interfere and thus burdening the model checker with a great number of
interleavings. More technically this means that when given the choice of how to
“emulate” a path λ ∈ L

∗ by a concatenation γ ∈ C∗ of chains, we should attempt
to pick γ such that it contains a minimal number of positions in which one chain
ends and another begins, because these are exactly the positions where a sched-
uler might choose to interrupt a process. To encode this intuition, we chose the
summation over all variables Ik generated by Algorithm 2 as the primary objec-
tive to be minimized. This choice is justified by the fact that setting a variable
Ik to true basically means that there is a set of path prefixes that can only be
continued by leaving one chain and entering into a new one. Of course counting
interruptions with this heuristic is biased by being performed on the syntactic
representation of the model, but we expect it to lead to reasonable results as
long as the control flow of processes is not too unusual. As a secondary objective
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we minimize the total number of selected chains, hoping to obtain a compact
syntactic representation of the transformation result.

Step C: Chain Fusion

Having obtained a chain set C that satisfies Definition 5, all that remains is
to compile chains to a proper VMDP network again, for which we give Algo-
rithm3. Starting at the initial location, the algorithm follows chains to reachable
locations, building up the transformed network along the way.

Algorithm 3. Compilation of a set of chains to a VMDP network
function Compile(component (Loc, A, E, linit), chain set C)

T ← ∅ � Locations to visit
L ← ∅ ; E′ ← ∅ � New locations, New transitions
function map(location l)

l′ ← L[l]
if l′ = ⊥ then

l′ = new Location()
T ← T ∪ {l′}

return l′

l′init ← map(linit)
while T �= ∅ do

l ← pop(T ); T ← T \ {l}
l′ ← map(l)
E(l′) ← { fuse(map, cs) | cs ∈ ndchoices(l)}

return ({L[l] | l ∈ Loc}, A, E, l′init)

ndchoices(l) contains subsets of the chains starting in location l. It reflects
the possible control flow choices a scheduler can make inside a component: A
subset cs is in ndchoices(l) iff there is a mapping of locations to transitions, such
that cs is precisely the set of all chains starting in l that contain only selected
transitions:

cs(S) := {t0 · b0 · . . . tn · bn ∈ C | t0 ∈ E(l) ∧ ∀i ∈ [0 : n] : ti ∈ S}
ndchoices(l) := {cs(S) | S ⊆ T ∧ ∀l ∈ Loc : |S ∩ E(l)| = min(|E(l)|, 1)}
fuse(map, cs) converts each such subset cs into a transition of the new

model: Every c ∈ cs is traversed, maintaining a record of the updates seen so
far, in order to substitute variables in guards, weight expressions and subsequent
updates. In the case of guards, the results of the substitutions are then conjoined,
while in the case of weight expressions they are multiplied. After all chains have
been traversed in this fasion, for each chain there is thus one guard g, one
combined update u and one weight expression p. The guard of the resulting
transition is the conjunction of all g. Weight expressions need to be normalized
before they can be combined with updates and target locations to form the
branches of the new transition. Since all nonatomic chains contain only τ -labels
synchronization does not complicate fuse.
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Remark 3. Instead of compiling a new model in this fashion, we could as well
resort to the textual representation of the original model (if any), in order to
declare instruction sequences along chains atomic. This, however, can turn out to
be even more cumbersome than the very technical computation in Algorithm 3,
depending on the generated chains and the syntactic structure of the modelling
language. As an example, consider a piece of code like

a; b; if (c) then d else e; f; g;

If the sequence a b d f g can safely be made atomic, but a b e f g cannot,
it is not clear what parts of the code to enclose in an atomic block. Chains that
span across loops can be even harder to represent in syntax.

4 Correctness

In this section, we prove that the transformation given in the previous section
is sound, i.e. that maximal reachability probabilities are preserved.

In the following, mathematical objects indexed by r will refer to the reduced
network. Our goal in this section is to relate PS(♦ϕ) and PSr (♦ϕ), respectively
for S ∈ Sched and Sr ∈ Schedr. Note that despite its similar notation, ♦ϕ
refers to different sets of paths Paths(♦ϕ) and Pathsr(♦ϕ). The reduced system
is composed of transitions built from the filtered chain set Cf ⊆ C.

For a transition t ∈ Ti, we set ↓t := (⊥, . . . ,⊥, t,⊥ . . . ⊥) ∈ (T⊥
1 × . . .×T⊥

N )T

and define ↓b equivalently for branches b. We extend the notation to links and sets
or sequences thereof. For any path π we denote similarly by ↓π the underlying
sequence of vectors of transitions and branches.

Finally, we extend this translation to the whole set Cf :

⇓Cf = {↓c | c ∈ Cf with τ -actions} �
{(t1, . . .) · (b1, . . .) | α ∈ A, (ti, bi) ∈ Cf if α ∈ Ai, (ti, bi) = ⊥ otherwise}

Note that special care has to be taken for chains of length 1 that represent
non-silent actions, that have to be “synchronized” with each other in ⇓Cf .

Without loss of generality, and for the sake of clarity, we assume in this
section that all schedulers are history-dependent. This means, that a scheduler
S is defined for a whole path π instead of only its last state. This assumption
does not interfere with the optimal value of the reachability property, while at
the same time allows us to reason and manipulate the sub-tree of a set of paths,
without interfering with previous transitions taken by the scheduler.

Soundness. In order to establish correctness of the transformation, we want to
simulate any run of the reduced network in the original one, which basically
means that the transformation introduced no new behavior. However, we can
already notice that our reduction may introduce new deadlock situations, that
are fortunately harmless for the reachability properties we are considering:
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Example 5. Composing the process on the left of Fig. 3 with itself (under syn-
chronization over actions a and b) yields a system that is free of deadlocks. Reduc-
ing the depicted chain in both components results in a composition of the pro-
cess on the right with itself. Here, deadlock is possible. Fortunately, because we
are interested in reachability properties, this newly introduced deadlock doesn’t
influence the value of Pmax(♦(x = 1)).

l2

l3

l1 l4

τ

τ

a x := 1

b x := 1

l2

l3

l1 l4

τ

τ

a x := 1

b x := 1

Fig. 3. Reducing the chain over l1l2l3 turns the process on the left into the process on
the right.

Lemma 1 (Simulation of the reduced system). Let Sr ∈ Schedr a sched-
uler of the reduced system. We can construct S ∈ Sched for the original system
such that PS(♦ϕ) = PSr (♦ϕ).

Proof. Basically, S has to follow the moves made by Sr. For this purpose, we
define S(π) for any π ∈ Paths by induction on |π|. The following invariant will
hold during the induction:

Invariant 1. If PS(π) > 0 then π = π′ · ρ for some π′,ρ and there are πr ∈
Pathsr, cs returned from ndchoices and c ∈ cs ⊆ Cf , s.t.

↓π′ ∈ ⇓Cf
∗ ∧ ↓ρ 	 ↓c ∧ |ρ| < |c| ∧ state(πr) = state(π′)

∧ S(πr) = tcs ∧ PS(π′) = PSr (πr)

where tcs denotes the transition resulting from fuse(map, cs).

Intuitively, π′ represents the already chain-reconstructed path in N matched
by πr in Nr, while ρ is the next prefix of a valid chain to be added to π. The
empty path starting in the initial state satisfies the invariant. Let us consider π
satisfying the invariant.

– If PS(π) = 0, we define S(π) arbitrarily, and easily check that any successor
of π still satisfies the invariant, since it is also not reachable.
From now on, we assume that PS(π) > 0 and define π′, ρ, πr as above.

– If |ρ| = 0 and Sr(πr) is a transition of the original system, we simply define
S(π) = Sr(πr) and check that the invariant is still satisfied by all successors
(we can add the same branch to π,π′ and πr).
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– Otherwise, ↓ρ 	 ↓c which means a chain has to be continued. We define
S(π) = (↓c)[|↓ρ| + 2] = �t as the next transition vector to be played. For any
branch b ∈ Br(t), there exists c′ ∈ cs such that ↓ρ · ↓(t, b) 	 ↓c′. Moreover
if the equality holds, the chain is over. In this case, in order to preserve the
invariant, we define ρ′ = ε, and due to the way c′ is compiled into a simple
link in Nr by Algorithm 3, the probability stays equal to probability of the
sequence of individual links in c′ from state(π) in N .

Completeness. We now establish that our transformation is complete, i.e. that
any run in the initial network can still be reproduced in the reduced system, up to
interleavings that do not contribute to the reachability property in question.
This direction is more challenging, and essentially relies on the conditions in
Definition 5. Most of all, the key ingredient is the ability for a scheduler to
postpone any Dirac transition after a probabilistic one:

Lemma 2. Let S ∈ Sched, t · b Dirac and mobile and π ∈ Paths. Let s ∈ S

such that π
↓t,↓b−−−→ s and �t′ := S(π

↓t,↓b−−−→ s). We can rewrite S into S′ such that:

– For all π′ ∈ Paths with π �	 π′, S(π′) = S′(π′) and PS(π′) = PS′
(π′)

– For all π′, and for all �b′, s′, S′(π
�t′,�b′−−→ s′ ↓t,↓b−−−→ π′) = S(π

↓t,↓b−−−→ s
�t′,�b′−−→ π′)

and PS(π
↓t,↓b−−−→ s

�t′,�b′−−→ π′) =
∑

s′′∈S
PS′

(π
�t′,�b′−−→ s′′ ↓t,↓b−−−→ π′).

Proof. Intuitively, the state is already determined to be s after ↓t, so the sched-
uler can postpone this transition and play the (possibly) probabilistic one first,
thanks to mobility.

Lemma 3. Let S ∈ Sched. We can build S̃ ∈ Sched such that PS(♦ϕ) ≤
PS̃(♦ϕ) and such that ∀π : PS̃(π) > 0 ⇒ ↓π ∈ ⇓Cf

∗.

l0 l1 l2 l3
0.5

0.5

Fig. 4. Example of an increasing reachability probability after applying Lemma 3: Con-
sider the scheduler running the second component once, then the first component for-
ever. Probability of eventually reaching l3 is 0.5 as the second component may remain
in l2 forever. After transformation, the scheduler has to follow each chain entirely which
yields possible reachability probabilities 0 and 1.

Proof. We define S̃(π) by induction on |π|. See Fig. 5 for illustration.

– If S(π) = �t is a transition of the original system that was kept in the reduced
one, we immediately define S̃(π) = �t which satisfies the property.
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– Otherwise, S(π) is a transition that has now been subsumed by a set of chains.
More precisely, for each i ∈ [1 : N ], the next transition run on component
Ci will represent the beginning of a fixed given chain ci. Let us consider the
maximal extension ππ′ such that π′ contains only Dirac links from one of the
ci. (not necessarily from the same component). Two cases can occur:

• Either the system is deadlocked: ππ′ has no successor. We swap the Dirac
transitions, which are assumed to be mobile, in order to write ↓π′ =
↓c′

1 · · · ↓c′
N with for each i, c′

i a prefix of ci. We then apply Condition 1d
to show that if ϕ doesn’t hold at state(π), it cannot hold anywhere in π′

either, so that for any scheduler S̃ already defined up to π and arbitrarily
defined later, PS(♦ϕ) ≤ PS̃(♦ϕ).

• Otherwise, we consider i ∈ [1 : N ] such that Ci is the first process to have
fired the last Dirac transition of its current chain. Let us consider the
set of chains cs ⊆ Cf corresponding to the sequence of non-deterministic
choice made by Ci. The rest of the run for Ci is indeed determined: It
consists in a finite sequence of probabilistic transitions according to the
chains of cs. We apply Lemma 2 recursively on each link of cs to move
it towards the beginning of the trace. This is possible because each link
is assumed to be mobile and has to be swapped only with probabilistic
transitions of other components. Thus, we have defined a scheduler S̃

such that PS̃(ππ′) implies that there exists c ∈ cs such that ↓c 	 ↓π′.

Remark 4. The transformation as stated in Lemma 3 may strictly increase the
reachability probability. As an example consider Fig. 4. We note however that
this can only happen for non-optimal schedulers, as pointed out by Lemma1 so
maximal reachability probability is still preserved.

C1

C2

Cn

..
.

1

1

1

1

1

1

1 1

1

1 1

1

Fig. 5. Illustration of the proof strategy for Lemma 3. Here, the first component to
terminate a chain is C2, represented by the first non-Dirac transition. All links of the
chain are then “pulled” to the beginning of the run. This transformation is achieved by
permuting links in C2 with links of the other components. The latter links are indeed
assumed by minimality to be Dirac and so can always be postponed with Lemma 2.

Remark 5. The reduced model may lack deadlocks exhibited by the original
system: Consider the network comprising only the process on the left of Fig. 6,
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with only one non-trivial chain going through l1l2l3. Clearly, the system can
deadlock in location l2, which is why Pmin(♦(x = 2)) = 0. After transformation
(depicted on the right), the guard becomes ff which leads to Pmin(♦(x = 2)) = 1.
This is why we restrict ourselves to maximal reachability probabilities, where
a scheduler has no incentive to trigger a deadlock as it will only reduce the
reachability probability.

l1 l3

l2

τ x := 2

τ x := 1
τ [x = 0]x := 2

l1 l3
τ x := 2

τ [1 = 0]x := 1

Fig. 6. A network comprising only a single process, with one nontrivial chain, before
and after transformation

We conclude this section by establishing the correctness of our transformation:

Theorem 1. The following equality holds for reachability objectives ♦ϕ:

Pmax,Nr
(♦ϕ) = Pmax,N (♦ϕ)

Proof. Lemma 1 ensures that our transformation does not introduce new behav-
ior and thus Pmax,Nr

(♦ϕ) ≤ Pmax,N (♦ϕ). Equality follows with Lemma3, allow-
ing us to convert any N -scheduler into an Nr-scheduler with a reachability prob-
ability at least as high as the one in the original system.

5 Case Studies

We have implemented our approach in the model-checking framework Mod-
est [5,13]. Experiments were conducted on an OpenSUSE Linux machine with
an Intel Core i7-6700 CPU (3.40 GHz) and 32 GB of working memory. We con-
sidered two different exemplary cases: On the one hand, we looked at the Factory
example, depicted in Fig. 1. This is a genuine VMDP network and it is not man-
ually hand-optimized for model-checking, contrary to essentially all existing case
studies around. In addition, we looked at an example on flow control, from the
context of the SPIN model checker. This is a non-probabilistic case study, and we
use it to demonstrate in how far our approach can place atomics mechanically.

Factory. To illustrate the nature of our transformation and its ability to reduce
state space size, we applied it to instances of the network in Fig. 1. The algorithm
generated the chain set described in Example 4. We had Modest answer the
query Pmax(♦(processed = 4 ∧ broken = 0)) on both the original and the trans-
formed model. Table 1 shows our results for different numbers of workers: While
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the exponential growth in both state space size as well as model-checking run-
time caused by the additional interleavings that each new worker introduces can
in principle not be avoided by our transformation, the reduction ratio increases
with the number of workers. For more than 4 workers, Modest gives up for lack
of memory on the original system, while it still succeeds to answer the query on
the transformed system for 5 and for 6 workers.

For 6 workers our algorithm took only about one second of runtime, including
the optimization problem in step B, and used only negligible amounts of working
memory. Even more encouraging, the performance of our algorithm would not
be affected at all by changes to constants such as the total number of work items
in the factory, that have a dramatic impact on the state space size.

Table 1. Resource usage for model checking the network from Fig. 1 before and after
our transformation

# Workers 1 2 3 4 5 6

Original # States 1 558 164 264 5 207 980 59 873 864 ? ?

MC time <1 s 1.2 s 48 s 10m 50 s ? ?

Transformed # States 719 56 291 1 187 248 9 994 337 38 657 750 104 937 279

MC time <1 s 0.7 s 16 s 2m 19 s 9m 07 s 25 m 25 s

Reduced by # States 54% 66% 77% 83% ? ?

MC time 0% 42% 67% 79% ? ?

Flow Control. The model checker Spin comes, among others, with a Promela
example file pftp.pml. In this model, a sender and a receiver communicate over
a lossy channel, supported by a flow control layer that prevents message loss
and reordering. Holzmann discusses the model in the original Spin book [16]
and notes that whenever possible, one should surround parts of the code by
atomic blocks, to “reduce the complexity of the validation”. Our goal in this
case study was to omit the atomic keyword and have our algorithm infer the
corresponding chains automatically.

We slightly modified the model: Spin’s special timeout predicate (that is
used to resend messages when no other transition in the system is enabled) was
replaced by a constant true, because its non-compositional semantics is difficult
to capture in Modest. Furthermore, we changed the model by disabling white
messages, so as to have the MDP-focussed model-checking engine of Modest
scale better in the absence of (nontrivial) probabilities. We then translated the
Spin model to an isomorphic VMDP network, ignoring all the atomic keywords.

Applying our algorithm to the translated model had the expected effects:
Most of the atomic blocks of the original could be recovered in the form of
chains, with one restriction: Chains stop at channel accesses, because we had
to model those by reads and writes to global variables. Notably, Holzmann’s
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atomics can span across channel accesses, but lose atomicity (only) in case a
channel access blocks (which again is a non-compositional feature). A small
number of the chains we generate are hard to translate into Promela atomics,
e.g. because they start in front of a loop and end inside it.

Despite not recovering the original atomics precisely, we achieve a dramatic
reduction in state space size: Checking whether any assertions in the model
are violated Modest explored 15 922 533 states of the original model, but only
4 588 039 on the transformed one, a reduction by 70%. In total the algorithm
generated 99 chains, all of which remained after filtering, which used 72 056
MAXSAT variables and 147 176 clauses. Again, steps A, B and C together took
about one second of runtime and negligible amounts of memory.

For comparison we applied Spin to our variants of pftp.pml. Table 2 shows
that the atomic keywords we manually derived from the generated chains reduce
state space considerably (about 24%), though not as much as the original
atomic’s in [16]. The first column shows that, surprisingly, Spin benefits from
atomic keywords far less than Modest benefits from our transformation. This
may again be rooted in the fact that Modest is optimized for probabilistic
model checking. The second column reveals that even under partial order reduc-
tion the usage of atomic keywords can reduce state space size considerably. This
suggests that one should use our technique in addition to POR.

Table 2. Spin state space sizes for our variants of pftp.pml, with and without POR

Without POR With POR

No atomics 97 652 15 062

Chain atomics 74 442 12 088

Holzmann’s atomics 46 773 11 248

6 Conclusion

We have presented an automated approach to fusing transition executions prior
to model checking, within models of concurrent probabilistic processes, so as to
alleviate the state space explosion problem. The probabilistic setting makes this
task particularly challenging, owed to the tree-shaped structure of probabilistic
executions. However, our approach is readily applicable to the nonprobabilistic
setting, too, where it effectively yet mechanically detects instruction sequences
that can be made atomic without altering reachability properties, as demon-
strated on Holzmann’s flow control example. Furthermore, the Factory case
study demonstrates that on concurrent probabilistic examples the state-space
compression factor achieved becomes more drastic the larger the models get.

A comparison to Spin’s implementation of partial order reduction demon-
strated that while our approach achieves less state space reduction than POR,
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using it in addition to existing POR implementations can still increase the reduc-
tion ratio considerably. Notably, we were unable to report successes of our tech-
niques on established examples, mainly because those have been highly optimised
by hand, leaving no room for detecting further transitions to fuse.

There are several avenues extending this first work on syntactic partial order
compression. Condition 1b constraining chains in Definition 5 could for instance
be relaxed by replacing it by a more precise analysis. As a matter of fact, some
transitions may never happen concurrently so that less independence require-
ments have to be met in order to establish a chain. We are working on an abstract
interpretation-based approach to collect state information statically and exploit
it for justifying chains even across synchronizing actions and accesses to global
variables. Furthermore, we plan to investigate how to extend beyond reacha-
bility properties. Our approach does at this point add deadlocks to the model
(see Remark 5), which implies that minimum probabilities are not preserved.
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Abstract. We study the termination problem for nondeterministic
probabilistic programs. We consider the bounded termination problem
that asks whether the supremum of the expected termination time over
all schedulers is bounded. First, we show that ranking supermartingales
(RSMs) are both sound and complete for proving bounded termination
over nondeterministic probabilistic programs. For nondeterministic prob-
abilistic programs a previous result claimed that RSMs are not complete
for bounded termination, whereas our result corrects the previous flaw
and establishes completeness with a rigorous proof. Second, we present
the first sound approach to establish lower bounds on expected termina-
tion time through RSMs.

1 Introduction

In this work we consider nondeterministic probabilistic programs and the termi-
nation analysis problem for them. We present results that show how martingale-
based approaches provide sound and complete method for such analysis, and
can also derive quantitative bounds related to termination time. We first present
probabilistic programs, then the termination problems, next the previous results,
and finally our contributions.

Probabilistic Programs. Probabilistic aspects in computation is becoming increas-
ingly important, and analysis of programs with probabilistic aspects has received
significant attention in the recent years [5,6,12,15,21,24,28,52,55]. In proba-
bilistic programs the classical imperative programs are extended with random
value generators. The random value generators produce random values accord-
ing to some desired probability distribution. Probabilistic programs provide
a flexible framework to model a wide variety of applications, such as analy-
sis of stochastic network protocols [4,41], robot planning [35], etc. The for-
mal analysis of probabilistic systems and probabilistic programs is an active
research topic across different disciplines, such as probability theory and statis-
tics [22,33,39,49,51], formal methods [4,41], artificial intelligence [35,36], and
programming languages [5,6,12,15,21,23,24,28,52,55].
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Termination Problems. The most basic and fundamental notion of liveness for
static analysis of programs is the termination problem. In the absence of prob-
abilistic behavior, the termination problem asks whether a program always
terminates. For nonprobabilistic programs, the proof of termination in finite
time coincides with the construction of ranking functions [25]. Many different
approaches exist for construction of ranking functions for termination analysis of
nonprobabilistic programs [9,18,50,54]. In the presence of probabilistic behav-
ior the notion of termination problem needs to be extended. Two natural and
basic extensions are as follows: first, the almost-sure termination question asks
whether the program terminates with probability 1; second, the bounded termi-
nation question asks whether the expected termination time of the program is
bounded. While the bounded termination implies almost-sure termination, the
converse is not true in general. In this work we focus on the bounded termination
problem.

Previous Results: Nonrecursive Probabilistic Programs. We describe the most
relevant previous results for termination of probabilistic nonrecursive programs.

– Finite probabilistic choices. First, in [43,44] quantitative invariants were used
to establish termination for probabilistic programs with nondeterminism, but
restricted only to finite probabilistic choices.

– Infinite probabilistic choices without nondeterminism. The approach of [43,44]
was extended in [12] to ranking supermartingales to obtain a sound (but
not complete) approach for almost-sure termination for infinite-state prob-
abilistic programs with infinite-domain random variables. The above app-
roach was for probabilistic programs without nondeterminism. The connec-
tion between termination of probabilistic programs without nondeterminism
and Lyapunov ranking functions was considered in [8]. For probabilistic pro-
grams with countable state space and without nondeterminism, the Lyapunov
ranking functions provide a sound and complete method to prove bounded
termination [8,26].

– Infinite probabilistic choices with nondeterminism. In the presence of nonde-
terminism for bounded termination, the Lyapunov-ranking-function/ranking-
supermartingale method were claimed to be incomplete, and a partial com-
pleteness results has been established for subclass of ranking supermartin-
gales [24]. A proof-rule based approach has also been proposed for probabilis-
tic programs with loops [38]. Automated approaches for synthesizing linear
and polynomial ranking supermartingales have been established in [12,14,15].
A martingale based approach for high probability termination and nontermi-
nation has also been considered [16].

The problem of deciding termination of probabilistic programs is undecidable,
and its precise undecidability characterization has been studied in [37].

Important Open Questions. Given the many important results established in the
literature, there are still several fundamental open questions.

– A sound and complete martingale-based approach for bounded termination
for nondeterministic probabilistic programs is an important open question.
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– While ranking supermartingales can provide upper bounds for expected ter-
mination time, whether they can be used to derive lower bounds remains
open.

We address these fundamental questions in this work.

Our Results. We consider probabilistic programs with nondeterminism. Our main
contributions are as follows.

– Bounded termination: soundness and completeness. We show that a ranking-
supermartingale based approach is both sound and complete for the bounded
termination problem for probabilistic programs with nondeterminism. Note
that [24, Theorem 5.7] claimed that ranking supermartingales are incomplete
for probabilistic programs with nondeterminism. A counterexample was used
as the witness for the incompleteness claim in [24]. We present an explicit
ranking supermartingale for the counterexample (see Example 2) to show
that the counterexample is invalid, and establish completeness for nonde-
terministic probabilistic programs for bounded termination. The significance
of our result is as follows: it presents a sound and complete approach for
nondeterministic probabilistic programs, thus clarifies the understanding of
ranking-supermartingale approach in the presence of nondeterminism. More-
over, we also show that our results extend even in the presence of recursion
(i.e., for recursive probabilistic programs with nondeterminism).

– Quantitative bounds. We present the first sound approach to obtain lower
bounds on expected termination time of nondeterministic probabilistic pro-
grams using ranking supermartingales. In detail, we show that lowerly-
bounded ranking supermartingales present the above sound approach, and
demonstrate the necessity of the lowerly-bounded condition.

We note that previous works, such as [12,14,15], present algorithmic approaches
to construct special classes (e.g. linear, polynomial) of ranking supermartingales.
Thus ranking supermartingales often lead to automated approaches, and we
establish that in general such approaches are both sound and complete.

2 Preliminaries

We first introduce some basic concepts in probability theory, and then present
the syntax and semantics of nondeterministic probabilistic programs.

2.1 Basic Notations and Concepts

We denote by N, N0, Z, and R the sets of all positive integers, nonnegative
integers, integers, and real numbers, respectively.

Probability Space. A probability space is a triple (Ω,F , P), where Ω is a
nonempty set (the so-called sample space), F is a sigma-algebra over Ω (i.e.,
a collection of subsets of Ω that contains the empty set ∅ and is closed under
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complementation and countable union), and P is a probability measure on F ,
i.e., a function P : F → [0, 1] such that (i) P(Ω) = 1 and (ii) for all set-sequences
A1, A2, · · · ∈ F that are pairwise-disjoint (i.e., Ai ∩ Aj = ∅ whenever i �= j) it
holds that

∑∞
i=1 P(Ai) = P (

⋃∞
i=1 Ai). Elements A ∈ F are usually called events.

An event A ∈ F is said to hold almost surely (a.s.) if P(A) = 1.

Random Variables. A random variable X from a probability space (Ω,F , P)
is an F-measurable function X : Ω → R ∪ {−∞,+∞}, i.e., a function satisfying
the condition that for all d ∈ R ∪ {−∞,+∞}, the set {ω ∈ Ω | X(ω) < d}
belongs to F . By convention, we abbreviate +∞ as ∞.

Expectation. The expected value of a random variable X from a probability
space (Ω,F , P), denoted by E(X), is defined as the Lebesgue integral of X w.r.t
P, i.e., E(X) :=

∫
X dP; the detailed definition of Lebesgue integral is somewhat

technical and is omitted here (cf. [57, Chap. 5] for a formal definition). In the
case that range X = {d0, d1, . . . , dk, . . . } is countable with distinct dk’s, we have
that E(X) =

∑∞
k=0 dk · P(X = dk).

Characteristic Random Variables. Given random variables X0, . . . , Xn from
a probability space (Ω,F , P) and a predicate Φ over R ∪ {−∞,+∞}, we
denote by 1Φ(X0,...,Xn) the random variable such that 1Φ(X0,...,Xn)(ω) = 1 if
Φ (X0(ω), . . . , Xn(ω)) holds, and 1Φ(X0,...,Xn)(ω) = 0 otherwise. By definition,
E

(
1Φ(X0,...,Xn)

)
= P (Φ(X0, . . . , Xn)). Note that if Φ does not involve any vari-

able, then 1Φ can be deemed as a constant whose value depends only on whether
Φ holds or not.

Filtrations and Stopping Times. A filtration of a probability space (Ω,F , P)
is an infinite sequence {Fn}n∈N0 of sigma-algebras over Ω such that Fn ⊆
Fn+1 ⊆ F for all n ∈ N0. A stopping time (from (Ω,F , P)) w.r.t {Fn}n∈N0

is a random variable R : Ω → N0 ∪ {∞} such that for every n ∈ N0, the event
R ≤ n belongs to Fn.

Conditional Expectation. Let X be any random variable from a probability
space (Ω,F , P) such that E(|X|) < ∞. Then given any σ-algebra G ⊆ F , there
exists a random variable (from (Ω,F , P)), conventionally denoted by E(X|G),
such that

(E1) E(X|G) is G-measurable, and
(E2) E (|E(X|G)|) < ∞, and
(E3) for all A ∈ G, we have

∫
A

E(X|G) dP =
∫

A
X dP.

The random variable E(X|G) is called the conditional expectation of X given
G. The random variable E(X|G) is a.s. unique in the sense that if Y is another
random variable satisfying (E1)–(E3), then P(Y = E(X|G)) = 1. We refer to [57,
Chap. 9] for more details.

Discrete-Time Stochastic Processes. A discrete-time stochastic process is
a sequence Γ = {Xn}n∈N0 of random variables where the Xn’s are all from
some probability space (say, (Ω,F , P)); we say that Γ is adapted to a filtration
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{Fn}n∈N0 of sub-sigma-algebras of F if for all n ∈ N0, the random variable Xn

is Fn-measurable.

Difference-Boundedness. A discrete-time stochastic process Γ = {Xn}n∈N0 is
difference-bounded if there is c ∈ [0,∞) such that for every n ∈ N0, |Xn+1−Xn| ≤
c almost-surely.

Stopping Time ZΓ . Given a discrete-time stochastic process Γ = {Xn}n∈N0

adapted to a filtration {Fn}n∈N0 , we define the random variable ZΓ by ZΓ (ω) :=
min{n | Xn(ω) ≤ 0} where min ∅ := ∞. Note that by definition, ZΓ is a stopping
time w.r.t {Fn}n∈N0 .

Martingales. A discrete-time stochastic process Γ = {Xn}n∈N adapted to a
filtration {Fn}n∈N0 is a martingale (resp. supermartingale, submartingale) if for
every n ∈ N0, E(|Xn|) < ∞ and it holds almost-surely that E(Xn+1|Fn) = Xn

(resp. E(Xn+1|Fn) ≤ Xn, E(Xn+1|Fn) ≥ Xn). We refer to [57, Chap. 10] for
more details.

In this paper, we construct super/submartingales Γ from probabilistic pro-
grams and use them to prove termination and lower bound properties of the
programs. In our setting, ZΓ will correspond to termination time of a proba-
bilistic program.

Discrete Probability Distributions over Countable Support. A discrete
probability distribution over a countable set U is a function q : U → [0, 1] such
that

∑
z∈U q(z) = 1. The support of q is defined as supp(q) := {z ∈ U | q(z) > 0}.

We use discrete probability distributions for samplings of values.

2.2 The Syntax for Nondeterministic Probabilistic Programs

Due to page limit, we present a brief description of our syntax. Our program-
ming language involves two types of variables: program variables and sampling
variables. Program variables are normal variables, while each sampling variable
is bound to a discrete probability distribution. Statements in our language are
similar to C programming language: assignment statements are indicated by
‘:=’; ‘skip’ is the special statement that does nothing; if-branches (resp. while-
loops) are indicated by ‘if ’ (resp. ‘while’) together with a logical formula (as the
condition) and possibly ‘then’ and ‘else’ branches; demonic nondeterministic
branches are indicated by ‘if ’, the special symbol ‘�’ and the two nondetermin-
istic ‘then’ and ‘else’ branches. The detailed syntax that also covers recursion
can be found in [13, p. 13].

Remark 1. The syntax of our programming language is quite general and covers
major features of imperative probabilistic programming. For example, our syntax
is the same as [37] considered for studying theoretical complexity on termination
of probabilistic programs, as well as similar to the popular probabilistic program-
ming language from [30] (the only difference is that the language of [30] has extra
observe statements). Finally, we use standard control-flow graphs (CFGs) as the
basis of our semantics and then present results directly on CFGs (see Sect. 2.3).
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Thus our results are not specific to any syntax, but applicable to all probabilistic
imperative programs with CFG-based semantics. �

2.3 The Semantics for Nondeterministic Probabilistic Programs

We use control-flow graphs (CFGs) and discrete-time Markov decision processes
(MDPs) to specify the operational semantics of nondeterministic probabilistic
programs. To avoid measurability issues arising from real-valued variables, for
simplicity we only consider integer-valued variables in our semantics.

We first introduce the notions of valuations and propositional arithmetic
predicates as follows.

Valuations and Propositional Arithmetic Predicates. Let V be a finite
set of variables. A valuation over V is a function ν from V into Z. The set of
valuations over V is denoted by V alV . A propositional arithmetic predicate (over
V ) is a logical formula φ built from (i) atomic formulae of the form e �� e′ where
e, e′ are arithmetic expressions over V and ��∈ {<,≤, >,≥}, and (ii) logical
connectives such as ∨,∧,¬. The satisfaction relation |= between a valuation ν
and a propositional arithmetic predicate φ is defined through evaluation and
standard semantics of logical connectives such that ν |= φ holds iff φ holds when
all variables in V are replaced by theirs corresponding values in ν.

Then we describe the notion of control-flow graphs (CFGs).

Definition 1 (Control-Flow Graphs (CFGs)). A control-flow graph (CFG)
is a tuple which takes the form

(L, 
in, 
out, Vp, Vr,→) (1)

where:

– Vp (resp. Vr) is a finite set of program variables (resp. sampling variables);
– L is a finite set of labels partitioned into the set Lb of branching labels, the

set La of assignment labels and the set Ld of nondeterministic labels;
– 
in (resp. 
out) is the initial label (resp. terminal label);
– → is a relation whose every member is a triple of the form (
, α, 
′) for which


 ∈ L (resp. 
′ ∈ L) is the source label (resp. target label) of the triple and α is
either a propositional arithmetic predicate φ over Vp if 
 ∈ Lb, or an update
function u : V alVp ×V alVr → V alVp if 
 ∈ La, or the nondeterminism symbol
� if 
 ∈ Ld.

Informally, a CFG specifies how labels (program counters) and values for
program variables change along the execution of a program. In addition, it is
intuitively clear that every nondeterministic probabilistic program can be equiv-
alently transformed into a CFG. Transformation from programs to CFGs can be
found in e.g. [14,15].
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Below we illustrate an example for probabilistic programs and CFGs.

1 0 ≤ n ≤ 10
2 n := n +Bernoulli (0.5; 1,−1)

3

1 2

3

0 ≤ n ≤ 10

(n, r) �→ n + r

¬(0 ≤ n ≤ 10)

Fig. 1. A probabilistic program (left) with its control-flow graph (right)

Example 1. Consider the program depicted in the left part of Fig. 1, where n is
a program variable and Bernoulli (0.5; 1,−1) is a sampling variable. Its CFG is
given in the right part of the figure. We use “0 ≤ n ≤ 10” for a shorthand of
“n ≥ 0 ∧ n ≤ 10”. The semantics of Bernoulli (0.5; 1,−1) is a sampling from the
two-point probability distribution q such that q(1) = q(−1) = 1

2 . Basically, the
program executes around the value held by n. First, the program starts at the
program counter 1. Second, if the value of n falls in [0, 10] then the program
enters the while loop (the arc from 1 to 2 in the CFG), otherwise the program
terminates. Third, in the while loop, the value of n is incremented by a random
value that observes the probability distribution of the sampling variable r, then
the program goes back to the start (the program counter 1). �

Based on CFGs, we illustrate the semantics of nondeterministic probabilistic
programs as follows. Below we fix a nondeterministic probabilistic program W
with its CFG taking the form (1). We first define the notion of configurations.

Definition 2 (Configurations C). A configuration c is a pair (
, ν) where 
 ∈
L and ν ∈ V alVp . We say that the configuration c is terminal if 
 = 
out, and
nondeterministic if 
 ∈ Ld. The set of configurations is denoted by C.

To demonstrate the formal semantics of probabilistic programs, we also need to
assign exact probability distributions to sampling variables. To this purpose, we
introduce the notion of sampling functions. A sampling function Υ is a function
assigning to every sampling variable r ∈ Vr a discrete probability distribution
over Z; the associated joint discrete probability distribution Υ over V alVr is then
defined by Υ (μ) :=

∏
r∈Vr

Υ (r)(μ(r)) for μ ∈ V alVr .
Now given a sampling function Υ , the semantics of a probabilistic pro-

gram W is described by a Markov decision process (MDP) (cf. [4, Chap. 10])
MW = (SW ,Act,PW ) as follows. Informally, MW describes the probabilistic
execution of the program W such that (i) the states SW of MW are configu-
rations reflecting both the current program counter and the values for program
variables, (ii) the actions Act are either normal (i.e., absence of non-determinism)
or the then/else-branch that refers to the choice at a non-deterministic label,
and (iii) the probabilistic transition function PW describes the probabilistic
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transitions between configurations. Due to lack of space, we put the detailed
definition of the MDP MW in [13, Definition 5].

Nondeterminism in MDPs are resolved by schedulers. To introduce the notion
of schedulers, we first describe the notion of histories upon which schedulers make
decisions.

Definition 3 (Histories). A history is a finite sequence ρ = c0 . . . cn (n ≥ 0)
of configurations such that for all 0 ≤ k < n, we have PW (ck, a, ck+1) > 0 for
some a ∈ Act. We denote the ending configuration cn of the history ρ by ρ↓.
Below we present the standard notion of schedulers. Informally, a scheduler
resolves nondeterminism at nondeterministic configurations by choosing a dis-
crete probability distribution over actions that specifies the probabilities to take
each action. In this paper, the schedulers are considered demonic in the sense
that they always try to make the expected termination time longer.

Definition 4 (Schedulers). A scheduler σ is a function which maps every
history ρ to a discrete probability distribution σ(ρ) over all possible successor
configurations of ρ↓.

The Final Semantics. Based on schedulers, applying a scheduler σ to MW yields
an infinite-state discrete-time Markov chain MW,σ where the state space is the
set of all histories and the probability transition function is determined by the
counterpart from MW and the scheduler σ. With an initial configuration c, the
semantics of the MDP MW is then defined as the probability space (Λ,H, Pσ

c )
induced by the Markov chain MW,σ where (i) the sample space Λ consists of all
infinite sequences {ρn}n∈N0 of histories such that (a) ρ0 = c and (b) for all k ∈
N0, there is some configuration c′ such that ρk+1 = ρk · c′, (ii) the sigma-algebra
H is generated by all cylinder sets for which a cylinder set consists of all infinite
sequences of histories sharing a common prefix, and (iii) the probability measure
P

σ
c is uniquely determined by the initial configuration c and the probability

transition function from the Markov chain MW,σ (which in turn depends on the
MDP MW and the scheduler σ). See [4, Chap. 10] for details.

Infinite Runs. We shall call elements from Λ infinite runs. By definition, each infi-
nite run {ρn}n∈N0 can be equivalently expressed as the unique infinite sequence
{cn}n∈N0 of configurations such that ρn = c0 . . . cn for all n ≥ 0. For the sake
of technical convenience, we treat each infinite run {ρn}n∈N0 as its correspond-
ing infinite sequence {cn}n∈N0 of configurations. Intuitively, such a sequence
{cn}n∈N0 describes an execution of the probabilistic program in the sense that
the nth configuration in the execution is cn.

Expectation for (Λ,H, Pσ
c ). We use the notation E

σ
c (−) to denote expectation for

random variables over elements from Λ w.r.t the probability measure P
σ
c (with

the initial configuration c and the scheduler σ).
Finally, we discuss other operational semantics for probabilistic programs

that will be crucial to our completeness result.

Remark 2. There are two possible operational semantics for probabilistic
programs.
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– Standard MDP Semantics. In the MDP semantics, the probability space is
defined over infinite runs. Moreover, each scheduler defines a probability mea-
sure. In this setting, there is only one termination time random variable T
(cf. Definition 5), but each scheduler σ defines a probability measure P

σ
c .

– Alternative Semantics. In an alternative semantics (cf. [24]) the probability
space is defined directly over sampled values. In this setting, there is only one
probability measure P (generated by the samplings) but many termination
time random variables T σ (each corresponds to a scheduler σ).

Although these two semantics seems similar, they are different. For example, in
the standard MDP semantics, the assertion “the program terminates within a
bounded amount of time” can be expressed as supσ E

σ(T ) < ∞, while in the
alternative semantics it is expressed as E(supσ T σ) < ∞. In general, supσ E

σ(T )
can be smaller than E(supσ T σ) and it is possible that the former is finite and
the latter is infinite. The standard MDP semantics is also more applicable as it
preserves the local information of nondeterminism by assigning to each scheduler
a probability measure. In this work we follow the standard MDP semantics. �

3 Termination Problems

In this section, we define the notions of finite and bounded termination over
nondeterministic probabilistic programs. Below we fix a probabilistic program
W with its associated CFG in the form (1) and a sampling function Υ . We recall
the probability spaces (i.e., (Λ,H, Pσ

c )’s) defined in the previous section where σ
is a scheduler and c is an initial configuration.

We first present two definitions of termination times of a probabilistic pro-
gram.

Definition 5 (Termination-Time Random Variable and Function). The
termination-time random variable T is a random variable on Λ defined by:

T ({(
n, νn)}n∈N0) := min {n ∈ N0 | 
n = 
out}
for any infinite sequence {(
n, νn)}n∈N0 of configurations (as an infinite run),
where min ∅ := ∞ (this case corresponds to program nontermination where no

n is 
out). The termination-time function T : C → [0,∞] is given by T (c) :=
supσ E

σ
c (T ) for all configurations c, where σ ranges over all schedulers.

Thus, T is the random variable that measures the amount of computational
steps until termination, while T is the function that takes the supremum of
expected termination times over all schedulers. Below we further define the
notion of finite and bounded termination.

Definition 6 (Finite and Bounded Termination). We say that the pro-
gram W is: finitely terminating from an initial configuration c if E

σ
c (T ) < ∞

for all schedulers σ; furthermore, it is boundedly terminating from an initial
configuration c if T (c) = supσ E

σ
c (T ) < ∞.
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Remark 3 (Finite vs Bounded Termination). We note that there is an impor-
tant conceptual difference between finite and bounded termination. While finite
termination requires the expected termination time to be finite for all sched-
ulers, the bounded termination requires the supremum of the expected termina-
tion time to be finite. In other words, the bounded termination is the uniform
bounded version of finite termination. Bounded termination implies finite termi-
nation, but not vice-versa. For example, there can be schedulers σ1, σ2, σ3, . . .,
such that for σi the expected termination time is i; thus for every scheduler the
expected termination time is finite, but the supremum is unbounded. For an
explicit example see the example in the first paragraph, right column on Page 2
in [24]. Finite termination is also called positive a.s. termination in the literature.
However, to clarify the important difference between finite vs bounded version of
expected termination time we refer to them as finite and bounded termination,
respectively. In this work we focus on bounded termination problem, consider
ranking supermartingales (a special class of stochastic processes) and show that
they are sound and complete for bounded termination. �

4 Bounded Termination: Soundness and Completeness

In this section, we consider the notion of ranking supermartingales (RSMs) for
proving bounded termination of probabilistic programs with nondeterminism.
Our contributions for this section, which are the main results of this work, are
two-fold: (i) we show that RSMs in general form are sound for proving bounded
termination; (ii) we prove that RSMs in general form are complete for proving
bounded termination, in contrast to the previous claim from [24]. In the whole
section, we fix a nondeterministic probabilistic program W together with its CFG
taking the form (1) and a sampling function Υ . We define V alr := supp

(
Υ

)
.

4.1 The Soundness Result

We first recall the notion of RSMs. Intuitively, an RSM is a nonnegative stochas-
tic process with decreasing conditional expectation until the value of the process
becomes zero.

Definition 7 (Ranking Supermartingales [12,15,24]). A discrete-time
stochastic process Γ = {Xn}n∈N0 adapted to a filtration {Fn}n∈N0 is a rank-
ing supermartingale (RSM) if there exists ε ∈ (0,∞) such that for all n ∈ N0,
the following conditions hold:

– (integrability) E(|Xn|) < ∞;
– (nonnegativity) it holds a.s. that Xn ≥ 0;
– (ranking) it holds a.s. that E(Xn+1|Fn) ≤ Xn − ε · 1Xn>0.

Thus, an integrable stochastic process Γ is an RSM if it is nonnegative and
its values decrease in conditional expectation when the step n increases. The
following known result relates RSMs Γ with the bounded-terminating behaviour
of the stopping times ZΓ . It serves as an extension of Foster’s Theorem [8,26].
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Theorem 1 ([24, Lemma 5.5]). Let Γ = {Xn}n∈N0 be a ranking supermartin-
gale adapted to a filtration {Fn}n∈N0 with ε given as in Definition 7. Then
P(ZΓ < ∞) = 1 and E(ZΓ ) ≤ E(X0)

ε .

To apply Theorem 1, one needs to embed RSMs into probabilistic programs.
To resolve this issue, the notion of linear/polynomial ranking-supermartingale
maps (RSM-maps) (see [12, Definition 6] and [15, Definition 8]) plays a key
role. Below we generalize linear/polynomial RSM-maps to RSM-maps in general
form.

Definition 8 (RSM-maps). A ranking-supermartingale map (RSM-map) is
a function h : C → [0,∞] satisfying that there exists ε ∈ (0,∞) such that for all
configurations (
, ν), the following conditions hold:

(B1) if 
 = 
out, then we have h(
, ν) = 0;
(B2) if 
 ∈ La \{
out} and (
, u, 
′) is the only triple in → with source label 
 and

update function u, then we have ε +
∑

μ∈V alr Υ (μ) · h (
′, u(ν, μ)) ≤ h(
, ν);
(B3) if 
 ∈ Lb \ {
out} and (
, φ, 
1), (
,¬φ, 
2) are the two triples in → with

source label 
 and propositional arithmetic predicate φ, then we have 1ν|=φ ·
h(
1, ν) + 1ν|=¬φ · h(
2, ν) + ε ≤ h(
, ν);

(B4) if 
 ∈ Ld \{
out} and (
, �, 
1), (
, �, 
2) are the two triples in → with source
label 
, then we have max{h(
1, ν), h(
2, ν)} + ε ≤ h(
, ν).

(d · ∞ := ∞ for d ∈ (0,∞], 0 · ∞ := 0 by convention.)

Intuitively, an RSM-map is a function whose expected values decrease by a
positive stepwise amount ε along the execution of a probabilistic program. For
example, the condition (B2) means that the expected value taken by h after
the execution of an assignment statement decreases by at least ε compared with
the current value taken by h; (B3) means that the value taken by h after the
conditional branch decreases by at least ε; (B4) means that the value taken by h
after the nondeterministic branch decreases by at least ε no matter which branch
is taken. We incorporate the infinity ∞ to cover the situation that the supremum
of the expected termination time may not be finite.

Below we demonstrate the soundness of RSMs for bounded termination
through RSM-maps. There is also a related soundness result established in [24],
see Remark 5 below.

Lemma 1 (Soundness). For all RSM-maps h with ε given as in Definition 8
and for all configurations c, we have that T (c) ≤ h(c)

ε .

Proof (Proof Sketch for Lemma 1). We generalize the proof idea in [15]. Infor-
mally, the soundness result holds as the existence of an RSM-map leads to the
existence of an RSM that witnesses the bounded termination of the program.
First, we define the random variables lbn, valxn for n ∈ N0, x ∈ Vp so that given
any infinite run ω, lbn(ω) represents the label (i.e. the program counter) at the
nth step, while valxn(ω) represents the value of the program variable x at the nth
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step. We write valn(ω) for the valuation which maps every program variable x
to valxn(ω). Then we consider any RSM-map h with ε given as in Definition 8 and
any initial configuration c = (
, ν). The case when h(c) = ∞ is straightforward.
So the non-trivial case is that of h(c) < ∞. Let σ be any scheduler. Define the
stochastic process Γ = {Xn}n∈N0 by:

Xn(ω) := h (lbn(ω), valn(ω)) (2)

for all n and all infinite runs ω. By Definition 8, we have that for all ω, Xn(ω) > 0
iff lbn(ω) �= 
out; it follows immediately that T = ZΓ . Thus, once we show that Γ
is an RSM (under P

σ
c ), we can apply Lemma 1 and obtain the result. Intuitively,

we have that Γ is an RSM since conditions (B2)–(B4) somehow specify the
ranking condition of an RSM (see Definition 7). Then by applying Lemma1,
we obtain that E

σ
c (T ) = E

σ
c (ZΓ ) ≤ E

σ
c (X0)

ε = h(c)
ε . Thus, T (c) ≤ h(c)

ε by the
arbitrary choice of σ. Note that each Xn is nonnegative so the integrability is
equivalent to saying that E

σ
c (Xn) < ∞. The integrability proof follows from

an inductive argument saying that E(Xn+1) ≤ E(Xn), which in turn is derived
from the decreasing amount ε. Then, we obtain directly from E(X0) = h(c) < ∞
that every Xn is integrable. The detailed proof that also works for recursion is
available in [13, Lemma 1]. �
Remark 4 (RSM-maps and Bounded Termination). From Lemma 1 it follows
that to prove that the program W is boundedly terminating from an initial
configuration c, it suffices to construct an RSM-map h (possibly in a specific
form) satisfying that h(c) < ∞. �
Remark 5 (Novelty of Our Soundness Result). In previous works such as [12,15],
RSM-maps linear or polynomial in program variables serve as a sound approach
for proving bounded termination of probabilistic programs. We present a general
result to show that RSM-maps in general form are also sound for bounded termi-
nation. The main novelty is to ensure that general RSM-maps induce integrable
stochastic processes, which naturally holds for linear and polynomial RSM-maps.
We also note that there is a soundness result established in [24], however, it is
orthogonal to our results as we follow different semantics (see Remark 2). �

4.2 The Completeness Result

Lemma 2 (Completeness). T is an RSM-map with corresponding ε = 1 (cf.
Definition 8).

Informally, our completeness result says that the termination time function itself
is an RSM-map. This has the following consequence: if the program W is bound-
edly terminating from some initial configuration c (i.e. T (c) < ∞), then one can
always find an RSM-map h (in general form) satisfying h(c) < ∞ by taking
h simply to be T . Note that the existence of such an RSM-map witnesses the
bounded-terminating behaviour of the program W (cf. Remark 4). In this sense,
Lemma 2 shows that RSMs are complete for proving bounded termination of
probabilistic programs.
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Proof. By the definition of RSM-maps, we need to prove that the function T
satisfies the properties (B2)–(B4) for which ε = 1. (Note that (B1) directly holds
for T from definition.) This follows directly from the MDP semantics. In detail,
the fact that (B2)–(B4) hold follows from the one-step properties of MDPs.
For example, the condition (B2) holds since it is intuitive that the expected
termination time is an averaged sum over all successor configurations; (B4) holds
since the supremum expected termination time should be the maximum among
the two nondeterministic branches. �
Our completeness result is non-trivial as it corrects a previous incompleteness
claim from [24, Theorem 5.7]. Below we compare our results with the previous
incompleteness claim.

Remark 6 (Comparison with [24]). The result of [24, Theorem 5.7] claims that
under the standard MDP semantics, RSMs are not complete for bounded termi-
nation over nondeterministic probabilistic programs. We proved that the claim is
wrong and established the completeness of RSMs for bounded termination. Note
that a relative completeness result is established in [24, Theorem 5.8] under their
alternative semantics (cf. Remark 2). Since we consider the MDP semantics, this
relative completeness result is orthogonal to the focus of our work. �
In [24], the incompleteness claim was supported by a “counterexample”. In the
following example, we present however an explicit RSM-map for the “counterex-
ample”. This invalidates the incompleteness claim.

Example 2. Consider the probabilistic program depicted in Fig. 2 which results
from adapting the example in [24, Figure 1] by using the parameters in the second
paragraph on Page 2, right column of [24]. In the figure, n, i, c are program vari-
ables and Bernoulli (0.5) is a sampling variable that samples to either 0 or 1 both
with probability 1

2 . In [24, Theorem 5.7], this program is used as the counterex-
ample to witness the incompleteness of RSMs for proving bounded termination
of nondeterministic probabilistic programs under standard MDP semantics. In
contrast, we present an exponential RSM (as an RSM-map h) with corresponding
ε = 1 for this program in Fig. 3. In the table, the column “Invariant” specifies log-
ical formulae at labels that reachable valuations satisfy when the program starts
from label 1, while “The RSM-map h” presents an RSM-map h label by label,
e.g., the RSM-map at the label 5 is specified by h(5, n, i, c) = 2n+1 + 2 · n + 13.
In the invariant column, we abbreviate “i ≥ 0 ∧ n ≥ 0” as “i, n ≥ 0”. With
the help of the “invariant” column, one can verify from definition that h is an
RSM-map. For example, at label 3 we have from the invariant i = 0∧n = 0 that
16 = h(4, 0, 0, 0)+1 ≤ h(3, 0, 0, c) = 17 which fulfills the (B2) condition; at label
6, we have 1+0.5·(2n+2+2·n+18)+0.5·(2·n+4) ≤ 2n+1+2·n+12 which fulfills the
(B2) condition that 1+0.5 ·h(7, n, i, 0)+0.5 ·h(7, n, i, 1) ≤ h(6, n, i, c); from label
8 to label 4, we have 1+h(4, n+1, i, 0) ≤ h(8, n, i, 0) for (B2); at label 4 the con-
dition (B3) holds directly from the function at label 5, 12 in the table. Note that
although we replace uniform distribution (in the original program) by Bernoulli
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distribution to fit our integer setting, the RSM-map given in Fig. 3 remains to be
effective for the original program as it preserves probability value for the guard
c < 0.5. �

1 n := 0 2 i := 0
3 c := 0
4 c = 0
5 �
6 c := Bernoulli (0.5)
7 c = 0
8 n := n + 1

9 i := n

10 i := 2n 11 c := 1

12 i > 0
13 i := i − 1
14

Fig. 2. The counterexample
in [24]

h

1 true 19
2 n = 0 18
3 i = 0 ∧ n = 0 17

4 i, n ≥ 0
1c=1 · (2 · i+ 2)+

1c=0 · (2n+1 + 2 · n+ 14)
5 i, n ≥ 0 ∧ c = 0 2n+1 + 2 · n+ 13
6 i, n ≥ 0 ∧ c = 0 2n+1 + 2 · n+ 12

7 i, n ≥ 0
1c=0 · (2n+2 + 2 · n+ 18)+

1c=1 · (2 · n+ 4)
8 i, n ≥ 0 ∧ c = 0 2n+2 + 2 · n+ 17
9 i, n ≥ 0 ∧ c = 1 2 · n+ 3
10 i, n ≥ 0 ∧ c = 0 2n + 4
11 i, n ≥ 0 ∧ c = 0 2 · i+ 3
12 i, n ≥ 0 2 · i+ 1
13 i ≥ 1 ∧ n ≥ 0 2 · i
14 i = 0 ∧ n ≥ 0 0

Fig. 3. The RSM-map for Example 2

We summarize our soundness and completeness result as follows.

Theorem 2 (Soundness and Completeness). RSM-maps are sound and
complete for bounded termination over non-deterministic probabilistic programs.

Remark 7 (Decidability). A sound and complete approach does not imply decid-
ability as it only guarantees the existence of RSM-maps in general form for
bounded termination. While termination of probabilistic programs is undecid-
able in general [37], yet RSMs present a sound and complete approach. �

5 Quantitative Results on Bounded Termination

In this section, we present results showing how RSMs can establish quantitative
results related to termination of probabilistic programs. Our main contribution
of this section shows that lowerly-bounded RSMs, a subclass of RSMs, can be
used to derive lower bounds on expected termination time.

Lower Bounds on Expected Termination Time. We first present a result
(Proposition 1) which shows that difference-bounded RSMs Γ can derive lower
bound on the expected value of the stopping time ZΓ . This proposition serves
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as the theoretical backbone for deriving a lower bound for expected termination
time. Moreover, we present an example (Example 3) showing that the difference-
boundedness condition of Proposition 1 is necessary, and without such condition
the desired result does not hold. Then we define the notion of lowerly-bounded
RSM-maps, and in Theorem3 show that they can derive tight lower bounds
on expected termination time. Finally we present an example (Example 4) to
illustrate the application of Theorem3.

Proposition 1. Consider any difference-bounded ranking supermartingale Γ =
{Xn}n∈N0 adapted to a filtration {Fn}n∈N0 with ε given as in Definition 7. If

– for every n ∈ N0, it holds for all ω that Xn(ω) = 0 implies Xn+1(ω) = 0, and
– The Lower Bound Condition. there exists δ ∈ (0,∞) such that for all n ∈ N0,

it holds a.s. that E(Xn+1|Fn) ≥ Xn − δ · 1Xn>0,

then E(ZΓ ) ≥ E(X0)
δ .

Note that by definition, we have that δ ≥ ε. Below we sketch the proof ideas
for Proposition 1.

Proof (Proof Sketch for Proposition 1). The key idea is to construct a difference-
bounded submartingale from Γ and apply Optional Stopping Theorem. We first
define the stochastic process {Yn}n∈N0 by: Yn = Xn + δ · min{n,ZΓ }, and prove
that it is a difference-bounded submartingale from the Lower Bound condition.
Then, we apply Optional Stopping Theorem to the supermartingale {−Yn}n∈N0

and the stopping time ZΓ , and obtain that −E (XZΓ
+ δ · ZΓ ) = E(−YZΓ

) ≤
E(−Y0) = E(−X0). It follows from XZΓ

= 0 a.s. that E(ZΓ ) ≥ E(X0)
δ . �

In Proposition 1 the difference-bounded condition is a prerequisite, and in the
following example we show that the prerequisite is a necessary condition.

Example 3 (Necessity of Difference-boundedness). The difference-bounded con-
dition in Proposition 1 cannot be dropped. Consider the family {Yn}n∈N0 of
independent random variables defined by: Y0 := 3 and each Yn (n ≥ 1) satis-
fies that P

(
Yn = 2n−1

)
= 1

2 and P
(
Yn = −2n−1 − 2

)
= 1

2 . Let the stochastic
process Γ = {Xn}n∈N0 be inductively defined by: X0 := Y0 and for all n ∈ N0,
we have Xn+1 := 1Xn>0 · (Xn + Yn+1). Let {Fn}n∈N0 be the filtration such
that each Fn is the smallest sigma-algebra that makes all Y0, . . . , Yn measur-
able, so that Γ is adapted to {Fn}n∈N0 . Then we obtain that for all n ∈ N0,
we have E(Xn+1|Fn) − Xn = −1Xn>0 . Moreover, for all n and ω, we have
Xn(ω) = 0 ⇒ Xn+1(ω) = 0. However, E(ZΓ ) = 2 < E(X0)

1 . �
Now we introduce the notion of lowerly-bounded RSM-maps which serve as the
main technical notion for proving lower bounds on expected termination time.

Definition 9 (Lowerly-bounded RSM-maps). An RSM-map h : C → [0,∞]
is lowerly-bounded RSM-map if there exist δ, ζ ∈ (0,∞) such that for all con-
figurations (
, ν) satisfying h(
, ν) < ∞, the following conditions hold:
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(B5) if 
 ∈ La \{
out} and (
, u, 
′) is the only triple in → with source label 
 and
update function u, then we have that δ +

∑
μ∈V alr Υ (μ) · h (
′, u(ν, μ)) ≥

h(
, ν), and |h (
′, u(ν, μ)) − h(
, ν)| ≤ ζ for all μ ∈ V alr;
(B6) if 
 ∈ Lb \ {
out} and (
, φ, 
1), (
,¬φ, 
2) are the two triples in → with

source label 
 and propositional arithmetic predicate φ, then we have that
1ν|=φ · h(
1, ν) + 1ν|=¬φ · h(
2, ν) + δ ≥ h(
, ν);

(B7) if 
 ∈ Ld \{
out} and (
, �, 
1), (
, �, 
2) are the two triples in → with source
label 
, then we have that max{h(
1, ν), h(
2, ν)} + δ ≥ h(
, ν).

Informally, an RSM-map h is lowerly-bounded if (i) its change on values between
the current step and the next step is bounded by some real number ζ along all
possible program executions and (ii) the gap between the expected value of the
next step and the current value is no greater than δ. The constant ζ guarantees
that the RSM induced by h is difference-bounded, while the constant δ is related
to the Lower Bound condition in Proposition 1. For example, the condition (B5)
means that the difference between the current value h(
, ν) and the next value
h (
′, u(ν, μ)) is bounded by ζ for any sampled values μ, while the gap between
the expected next-step value

∑
μ∈V alr Υ (μ) · h (
′, u(ν, μ)) and the current value

h(
, ν) should be no greater than δ. In (B6), (B7) we only have the gap condition
as the bound on value changes follows implicitly from the conditions (B3), (B4)
for RSM-maps.

By Theorem 1, RSM-maps serve as a sound approach for proving bounded
termination (cf. Lemma 1). Below we prove through Proposition 1 that lowerly-
bounded RSM-maps serve as a sound approach for proving lower bounds on
expected termination time. This extends the metering functions proposed in [29].

Theorem 3 (Lower Bounds on Expected Termination Time). For any
lowerly-bounded RSM-map h with δ, ζ given as in Definition 9, T (c) ≥ h(c)

δ for
all configurations c such that h(c) < ∞.

Proof (Proof Sketch). Fix an initial configuration c such that h(c) < ∞. Consider
any lowerly-bounded RSM-map h with corresponding δ, ζ. Define the stochastic
process Γ = {Xn}n∈N0 as in (2). From the proof of Lemma1, we have that Γ is an
RSM with T = ZΓ for any schedulers, thus T (c) ≤ h(c)

ε < ∞. By the bound ζ, we
further have that Γ is difference-bounded under any schedulers. Pick a scheduler
σ that always choose the nondeterministic branch 
′ satisfying h(
, ν) = h(
′, ν)
for any history ending in a nondeterministic configuration (
, ν). Then from
the constant δ and the conditions (B5)–(B7), we obtain that E(Xn+1|Fn) ≥
Xn−δ ·1Xn>0. It follows that Γ satisfies the prerequisites of Proposition 1. Hence
by applying Proposition 1, we obtain that E

σ
c (T ) = E

σ
c (ZΓ ) ≥ E

σ
c (X0)

δ = h(c)
δ .

Since T (c) ≥ E
σ
c (T ), we have T (c) ≥ E

σ
c (T ) ≥ h(c)

δ . �

Remark 8. We consider the lower bound of T (c) (i.e., the supremum of all
expected termination times) instead of the infimum. This is because we have
demonic nondeterminism which always tries to make the program nonterminat-
ing or the termination time longer. �
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Below we illustrate an example on how one can derive lower bounds on expected
termination time. This example shows that we can derive exact lower bounds
from Theorem 3.

Example 4. Consider the program in Example 1. To derive a lower bound on
expected termination time, we construct a lowerly-bounded RSM-map h in
Table 1. First, one can verify that h is an RSM-map with ε = 1 (see Definition 8).
This can be observed from the facts that (i) the condition (B3) holds at the label
1 as the loop guard is 0 ≤ n ≤ 10, while (ii) the condition (B2) holds at the label
2 as for 0 ≤ n ≤ 10, it holds that 1+0.5·h(1, n+1)+0.5·h(1, n−1) = h(2, n). (For
n �∈ [0, 10], the value h(2, n) is not relevant and we simply let this value to be the
infinity.) Second, from the equality that 1 + 0.5 · h(1, n + 1) + 0.5 · h(1, n − 1) =
h(2, n) for 0 ≤ n ≤ 10, we can also set δ = 1 for h in Definition 9. Finally,
since the interval [0, 10] is bounded, we can choose a sufficiently large ζ that
fulfills the conditions in Definition 9. Thus, h is also lowerly-bounded. Hence by
Theorem 3 and Lemma 1, we have that given any initial configuration c = (1, n),
h(c)

ε ≥ T (c) ≥ h(c)
δ . Since δ = ε, we have T (c) = h(c). Thus, our lower bound

through Theorem3 is tight on this example. �

Table 1. A Lowerly-Bounded RSM-map h for Example 1

Label The RSM-map h

1 1 + 1−1≤n≤11 · 2 · (n + 1) · (11 − n)

2 1 + 10≤n≤10 · (2 · (n + 1) · (11 − n) − 1) + 1n≤−1∨n≥11 · ∞
3 0

Remark 9 (Significance of lower bounds). While RSMs provide upper bounds
on expected termination time (see Lemma 1), there has been no RSM-based
techniques for lower bounds for expected termination time. The significance
of lower bounds is that together with upper bounds they provide guarantees
on expected termination time. In particular, if the lower and upper bounds
are asymptotically same, then they provide tight (i.e., asymptotically optimal)
bounds on expected termination time. Example 4 illustrates that there are exam-
ples where our approach provides such tight bounds for expected termination
time. The lower bounds for expected termination time has been considered in
other approaches (see Remark 10 below), and we present the first RSM-based
approach for lower bounds for expected termination time for probabilistic pro-
grams. �
Remark 10 (Proof-rule Based Approaches). As far as we know, the only known
approach to derive lower bounds on expected termination time is based on the
notion of proof rules [38,48]. Compared with their approaches, our approach
based on RSMs. �
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6 Extensions: Continuous Sampling and Recursion

In this section we show that our soundness and completeness results extend
in several directions. In particular we show extension to probabilistic programs
with (a) continuous sampling and (b) recursion.

Continuous Sampling. The extension of our results to continuous sampling is
simple and straightforward, but technical, has following three steps.

1. First, we use general state space Markov chains [46] as our semantics. To
this end, we need to define measurable schedulers so that a scheduler is mea-
surable if it is a measurable function from histories into actions (see e.g.
standard textbooks [7, Chap. 2] for measurability). Then given any initial
configuration and a measurable scheduler, we need to define measurable ker-
nel functions that specify the probabilities from a current configuration to a
region of next configurations. These kernel functions will determine a unique
general state space Markov chain. This is standard measurability aspects for
Markov chains.

2. Second, for soundness we need to define measurable RSM-maps so that an
RSM-map is measurable if it is a measurable function from the measurable
space of configurations into the Borel measurable space of real numbers,
and change the infinite summation

∑
μ∈V alr Υ (μ) · h (
′, u(ν, μ)) in (B2) by

the Lebesgue integral
∫

h (
′, u(ν, μ)) dμ, where the dμ here is the probabil-
ity measure for samplings. By adopting this definition, our soundness proof
directly extends to continuous sampling, for which we use Fubini’s Theo-
rem [7, Chap. 3] (for multidimensional integrals) to show that (E3) holds,
i.e., the conditional expectation of h (
′, u(ν, μ)) is

∫
h (
′, u(ν, μ)) dμ. Thus

the only extension is to switch from sum to integrals, which is technical rather
than conceptual.

3. Finally, for completeness we simply need to prove that the measurability of
the termination time function T , while the fact that T still satisfies the con-
ditions (B1)–(B4) follows from applying Fubini’s Theorem at (B2). This can
be observed as follows. By definition, T (c) = supσ E

σ
c (T ). Then there exists a

sequence of measurable schedulers σ1, σ2, . . . such that T (c) = lim
n→∞ E

σn
c (T ).

Note that for each measurable scheduler σ, the function c �→ E
σ
c (T ) is measur-

able as we have (i) each function c �→ E
σ
c (min{m,T}) (m ∈ N0) is measurable

since the function computes expected values in a bounded horizon (i.e., m),
and (ii) lim

m→∞ E
σ
c (min{m,T}) = E

σ
c (T ) (from Monotone Convergence Theo-

rem). Thus we have T is measurable as measurability is preserved under limit.
Again the extension is technical but straightforward application of standard
results.

Theorem 4. RSM-maps are sound and complete for bounded termination over
nondeterministic probabilistic programs, even with continuous sampling.

Recursion. Our results also extend to nondeterministic recursive probabilistic
programs. We consider value passing recursive probabilistic programs (i.e., we
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have call-by-value setting and no return statements). In the presence of recursion,
we extend RSM maps to recursive RSM maps. Intuitively, recursive RSM maps
extend RSM maps by adding an additional condition that sum the values taken
for the function calls. The soundness and completeness result also extends to the
recursive case (detailed demonstration in [13, Theorem 1]).

Theorem 5. Recursive RSM-maps are sound and complete for bounded termi-
nation over nondeterministic probabilistic programs with recursion.

7 Related Works

Termination Approaches. In [53] the termination of concurrent probabilistic pro-
grams with finite state space was considered as a fairness problem, and the
precise probabilities did not play a role in termination. A sound and complete
method for proving termination of weakly finite state programs was given in [23].
The above approaches do not apply to programs with countable state space in
general. For countable state space and almost-sure termination a characteriza-
tion through fixed-point theory was presented in [31], which is irrelevant to our
approach. The analysis of nonprobabilistic program and the termination problem
has also been extensively studied [9,10,18,19,29,42,50,54].

Supermartingale Based Approach. The most relevant works related to super-
martingale based approach and their predecessor, such as [8,12,14–16,24,43,44],
has been discussed in the introduction (Sect. 1). Compared with those results, the
most significant difference is that our result considered completeness of ranking
supermartingales for proving bounded termination. Besides bounded termina-
tion, special classes of (ranking) supermartingales have also been considered as
a sound approach for almost-sure termination [1,45], while a potential-function
based sound approach similar to ranking supermartingales has also been pro-
posed in [47] to derive upper bounds on expected cost.

Proof-Rule Based Approach. In this work we consider the supermartingale based
approach for probabilistic programs. An alternative approach for termination
analysis is based on the notion of proof rules [32,34,38,48]. For example, [38]
presents a complete proof-rule based approach for probabilistic while loops, but
no recursion, and [48] presents sound proof rules for probabilistic programs
with recursion, but no completeness result. Both these works do not consider
continuous sampling variables. In contrast, our completeness result extends to
probabilistic programs with recursion and continuous variables. The proof-rule
and martingale-based approaches complement each other, and has their own
advantages. A detailed comparison is as follows. The proof-rule based approach
itself does not depend on invariants (cf. e.g. [17,20]) and synthesize quantita-
tive invariants, whereas the supermartingale approach usually require invariants
(generated with approaches such as [12,14,15]). In contrast the advantage of
the supermartingale-based approach are as follows: (a) the supermartingale-
based approach leads to algorithmic results, such as polynomial-time algo-
rithms [14,15], and (b) the supermartingale-based approach also yield results
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to reason about tail-bound on probabilities of termination [12,15,40]. A deep
investigation of combining proof-rule based and supermartingale based approach
is an interesting direction for future work.

Comparison with the Recent Work [2]. A recent work [2] studies termination for
probabilistic term rewriting systems in the same principle of RSMs. The work
considers only discrete probability setting and the bounded expected deriva-
tion height which is specialized for term rewriting systems. Instead our results
can handle (i) both probability distribution over countable variables, as well as
continuous variables, and (ii) the program termination problem. Moreover, our
results that handle countable variables as well as recursion have already been
announced in January, 2017 [13, Lemmas 1, 2 and Theorem 1] (before the results
of [2] were announced in [3]), which subsumes the results of [2].

8 Conclusion and Future Work

In this work we studied termination of nondeterministic probabilistic programs.
We show that RSMs are sound and complete for proving bounded termina-
tion; in particular, the completeness result corrects a previous incompleteness
claim in [24]. Then, we showed that under additional restrictions, ranking super-
martingales can serve as a sound approach for deriving lower bounds on expected
termination time. An interesting direction is the deep investigation of combining
the proof-rule based approach and the RSM based approach.
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Abstract. In this paper we consider state reachability in networks com-
posed of many identical processes running a parametric timed broadcast
protocol (PTBP). PTBP are a new model extending both broadcast pro-
tocols and parametric timed automata. This work is, up to our knowl-
edge, the first to consider the combination of both a parametric net-
work size and timing parameters in clock guard constraints. Since the
communication topology is of utmost importance in broadcast proto-
cols, we investigate reachability problems in both clique semantics where
every message reaches every processes, and in reconfigurable semantics
where the set of receivers is chosen non-deterministically. In addition,
we investigate the decidability status depending on whether the timing
parameters in guards appear only as upper bounds in guards, as lower
bounds or when the set of parameters is partitioned in lower-bound and
upper-bound parameters.

1 Introduction

The application of model-checking to real-life complex systems faces several
problems, and for many of them the use of parameters, i.e., symbolic constants
representing an unknown quantity can be part of the solution. First, for big
systems, the so-called state-space explosion limits the practical applicability of
model-checking. Such big systems however are in general specified as the com-
position of smaller systems. A particularly interesting setting is the one in which
all the components are identical, such as in many communication protocols. The
number of involved components can then be abstracted away as a parameter,
with the hope of both overcoming the state-space explosion, and obtaining more
useful answers from the model-checking process, such as “for which sizes of the
system does some property hold?”. Second, the earlier in the development phase
verification can be applied, the less costly will fixing the problems be. On the
other hand, the earlier the verification is applied, the less information we have
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on the final system, in particular on many timing features, such as transmission
times, watchdogs, etc. Parameters can also be useful here by abstracting away
the precise values of some yet unknown features, and at the same time allowing
their dimensioning.

In this paper, we propose to combine two different types of parameters,
namely the number of identical processes and the timing features, and study the
decidability of classic parametric decision problems in the resulting formalism.
Both types of parameters, when introduced separately in timed automata-based
formalisms, result in hard problems undecidable even in restricted settings.

Timed automata [5] extend finite-state automata with clocks, i.e., real-valued
variables that can be compared to constants in guards, and reset along transi-
tions. Parametric timed automata (PTA) [6] allow to replace constants with
unknown parameters in timing constraints. The most basic verification ques-
tion, “does there exist a value for the parameters such that some location is
reachable” is undecidable with as few as 1 integer- or rational-valued parame-
ter [11,23], or when only 1 clock is compared to a unique parameter [23] (with
additional clocks); see [7] for a survey. The main syntactic subclass of PTA for
which decidability is obtained is L/U-PTA [20], in which the set of parameters
is partitioned into lower-bound parameters (i.e., parameters always compared as
a lower bound in a clock guard) and upper-bound parameters (always as upper
bounds). L/U-PTA have been shown [20] to be expressive enough to model clas-
sical examples from the literature, such as root contention or Fischer’s mutual
exclusion algorithm for instance.

Broadcast protocol networks [15–18], allow treating the size of a network as
an unknown parameter. Here also the most simple basic verification question
“does there exist a value for the parameter such that some location is reachable
by a process” is undecidable when considering arbitrary communication topolo-
gies [16]. However one can regain decidability by considering different communi-
cation topology settings. One option is to limit the topologies to cliques (every
process receives every message) [16–18]. Another is to consider reconfigurable
broadcasts in which the set of receivers is chosen non-deterministically at each
step [15]. A timed version of this broadcast protocol was studied in [2]. In the
clique topology for this network, the reachability problem is decidable only when
there is a single clock per process.

Contributions. In this work, we provide one more level of abstraction to the
formalisms of the literature by proposing parametric timed broadcast protocols
(PTBP), i.e., a new formalism made of an arbitrary number of identical timed
processes in which timing parameters can be used. A combination of two kinds
of parameters seems natural, for example when designing and verifying commu-
nication protocols. Indeed, those protocols are required to work independently
of the number of participants (hence the parametric size of networks) and the
time constraints in each process are of paramount importance and thus could
be tweaked in early development thanks to timing parameters. This work is,
up to our knowledge, the first to consider the combination of both a paramet-
ric network size and timing parameters in clock guard constraints. We consider
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the following problems: does there exist a number of processes for which the
set of timing parameter valuations allowing to reach a given location for one
run (“EF”), or for all runs (“AF”) is empty (or universal)? This gives rise to 4
problems: EF-emptiness, EF-universality, AF-emptiness and AF-universality. As
PTBP can be seen as an extension of both broadcast protocols and parametric
timed automata, undecidability follows immediately from the existing undecid-
ability results known for these two formalisms. However, combining decidable
subclasses of both formalisms is challenging, and does not necessarily make the
EF and AF problems decidable for PTBP.

The communication topology is of utmost importance in broadcast protocols,
and we therefore investigate reachability problems depending on the broadcast
semantics. In the reconfigurable semantics (where the set of receivers is chosen
non-deterministically), AF-emptiness and AF-universality are decidable for 1-
clock PTBP, and undecidable from 3 clocks even for L/U-PTBP with the same
parameters partitioning as in L/U-PTA (the 2-clock case is equivalent to a well-
known open problem for PTA). The AF results may not seem surprising, as they
resemble equivalent results for PTA. However, EF-emptiness and EF-universality
becomes undecidable even for 1-clock PTBP: this result comes in contrast with
both non-parametric timed broadcast protocols and PTA for which the 1-clock
case is decidable.

In the clique semantics (where every message reaches every process), we show
that AF problems are undecidable even without any clock. Then, as it is known
that 2 clocks (and no parameter) yield undecidability, we study EF problems over
1 clock. We investigate the decidability status depending on whether the timing
parameters in guards appear only as upper bounds in guards (U-PTBP), as
lower bounds (L-PTBP) or when the set of parameters is partitioned in lower-
bound and upper-bound parameters (L/U-PTBP). We show that L/U-PTBP
become decidable for EF-emptiness (but not universality) when the parameter
domain is bounded. For EF-universality, decidability is obtained only for L-
PTBP and U-PTBP for a parameter domain bounded with closed bounds. The
decidability border between L/U-PTA with a bounded parameter domain with
closed bounds, and L/U-PTA with closed bounds was already spotted in [10],
for liveness properties. Our contributions are summarized in Table 1 (p. 20).

Related Work. The concept of identical processes has been addressed in vari-
ous settings, such as regular model checking [12], or network of identical timed
processes [1,3,4].

To the best of our knowledge, combining two types of parameters (i.e., dis-
crete and continuous) was very little studied—with a few exceptions. In [13], an
attempt is made to mix discrete and continuous timing parameters (in an even
non-linear fashion, i.e., where parameters can be multiplied by other parame-
ters). However, the approach is fully ad-hoc and addresses an extension of PTA,
for which problems are already undecidable. In [14,22], security protocols are
studied with unknown timing constants, and an unbounded number of partici-
pants. However, the focus is not on decidability, and the general setting is unde-
cidable. In [9], action parameters (that can be seen as Booleans) and continuous
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timing parameters are combined (only linearly though) in an extension of PTA;
the mere emptiness of the sets of action and timing parameters for which a
location is reachable is undecidable. In contrast, we exhibit in this work some
decidable cases.

Outline. We introduce necessary definitions in Sect. 2. We then study the empti-
ness and the universality problems for which a state is reachable and unavoidable
respectively, in reconfigurable semantics (Sect. 3) and clique semantics (Sect. 4).
We then investigate a restriction of the protocols, namely the L/U restriction
(Sect. 5). We conclude in Sect. 6.

2 Definitions

We denote by N, Q+, and R+ the sets of all natural, non-negative rational, and
non-negative real numbers respectively. [a, b] denotes the interval containing all
rational numbers x such that x ≤ b and x ≥ a. As usual, we write (a, b] to
exclude a from this set and [a, b) to exclude b (in which case we allow b = +∞).
We denote by IQ+ the set of all rational intervals.

Given a set E, and an integer n ∈ N we denote Vn(E) the set of all vectors
composed by n elements of E. We denote V(E) the set of all vectors i.e., V(E) =
∪n∈NVn(E).

Given a set of clocks X, a valuation of X is a function of X → R+. We denote
by V(X) the set of all valuations of X or just V when X is clear from the context.
The valuation assigning 0 to all clock is written 0. Given a valuation v ∈ V and
a real number t we denote by v + t the valuation v′ such that for all x ∈ X,
v′(x) = v(x) + t, and v − t (if it exists ) the valuation such that (v − t) + t = v.
Given a set of clocks X and a set of parameters P we write G(X,P) for the set
of all sets of constraints of the form x �� a with x ∈ X, �� ∈ {<,≤,=,≥, >} and
a ∈ Q+ ∪ P.

We denote by Updates(X) the set of updates of the clocks, where an update
is a function up : V → V such that for all x ∈ X, either up(v)(x) = v(x) or
up(v)(x) = 0. When convenient we represent the update function with the set
{x1, . . . , xk} representing that clocks x1 to xk are reset to 0 while other clocks
(here xi with i > k) are left unchanged.

Given a clock valuation v ∈ X → R+ and a rational valuation of the variables
p : P → Q+ we say that the valuation v satisfies a guard g ∈ G(X,P), written
v |=p g if for all x �� a ∈ g either a ∈ Q+ and v(x) �� a or a ∈ P and v(x) �� p(a).

We now introduce parametric timed broadcast protocols (PTBP), which are
timed broadcast protocols [1] extended with timing parameters in clock guards.
Equivalently, PTBP can be seen as a PTA [6] augmented with communication
features.

Definition 1 (Parameterized timed broadcast protocol). A Parameter-
ized timed broadcast protocol (PTBP) is a tuple N = (Q,X, Σ,P, q0,Δ) where:

– Q is a finite set of states;
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q0

c

f

1 2 3 g
??f

!!f, {x}

??p ??p ??p x < tl, ε

x ≥ pt, !!p, {x}

Fig. 1. Example of a (L/U-)PTBP

– X is a finite set of clocks;
– Σ is the finite communication alphabet;
– P is a finite set of timing parameters;
– q0 ∈ Q is the initial state; and
– Δ ⊆ Q × G(X,P) × Act × Updates(X) × Q is the edge relation, where Act is

the set of actions composed of:
• internal actions: ε;
• broadcasts of a message m ∈ Σ: !!m; and
• reception of a message m ∈ Σ: ??m.

A PTBP is a U-PTBP, L-PTBP, or L/U-PTBP if all timing parameters appear
only as upper bounds in guards (i.e., of the form x < λ or x ≤ λ), only as
lower bounds (i.e., of the form x > λ or x ≥ λ), or if the set of parameters P is
partitioned into lower-bound and upper-bound parameters, respectively.

A bounded PTBP is a pair (N , bounds) where N is a PTBP and bounds:P →
IQ+ are bounds on the parameters that assign to each parameter λ an inter-
val [inf , sup], (inf , sup], [inf , sup), or (inf , sup), with inf , sup ∈ N. We use
inf (λ, bounds) and sup(λ, bounds) to denote the infimum and the supremum
of λ, respectively. A bounded PTBP is a closed PTBP if, for each parameter
λ, its ranging interval bounds(λ) is of the form [inf , sup]. Otherwise it is open
bounded. Abusing notation we say that a parameter valuation p belongs to a
bound bounds, written p ∈ bounds, if for all parameters λ, p(λ) ∈ bounds(λ).

Example 1. An example of a PTBP is given in Fig. 1. This PTBP is composed
of an initial state q0, two states f and c representing a factory and a client,
three counting states 1, 2 and 3 and a goal state g. The set of clocks is the
singleton {x} and the communication alphabet is composed of two messages p
and f . There are two timing parameters pt and tl representing respectively the
production time and the time limit. Notice that this PTBP is in fact an L/U-
PTBP since the parameter pt appears only in guards as a lower bound and tl
only as an upper bound.

We now define the semantics of parameterized networks of PTBP. This
semantics is illustrated in Example 2 after the formal definition.

A network is composed of a multitude of processes all running the same
protocol N . Let N denote the number of processes, or size of the network.

Formally, a configuration γ of a network running a parametric timed broad-
cast protocol N = (Q,X, Σ,P, q0,Δ) is a vector γ ∈ V(Q × V). Intuitively, a
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configuration γ with γ[i] = (q, v) means that the process i is in state q and with
clock valuation v.

Given a configuration γ with N processes and a process i, we write
state(γ[i]) for the state and val(γ[i]) for the valuation such that γ[i] =
(state(γ[i]), val(γ[i])). Abusing notation we extend state to the whole config-
uration i.e., state(γ)[i] = state(γ[i]) for i ∈ {1, . . . , N}.

Note that the representation of configuration as vectors is only for practical
reasons, the processes are identical and do not have ids.

We say that a configuration γ is initial if all processes are in the initial state
and their clocks are all set to 0 i.e., for all i, γ[i] = (q0,0).

Given a timing parameter valuation, the transition relation on configurations
is intuitively defined as follows: First a delay is chosen and all the clocks in the
network are increased by this delay. Then one of the processes performs a possible
action i.e., an action for which the guard is satisfied given its clock valuation
and the valuation of the timing parameter. Two cases follow. Either the action
is internal and only this process moves and updates its clocks accordingly, or
the action is a broadcast and a set of receivers is chosen. It this latter case, the
sender moves and updates its clocks and all the chosen receivers also move and
update their clocks accordingly.

More formally, given a timing parameter valuation p and a configuration
γ ∈ VN (Q × V), there are transitions for all t ∈ R+, i ∈ {1, . . . , N}, δ =
(q1, g, a, up, q2) ∈ Δ, and R ⊆ {1, .., N} such that:

elapse of time there is a valuation γt ∈ VN (Q × V) such that ∀j ∈ {1, . . . , N},
γt[j] = (q, v + t) where (q, v) = γ[j], and

execution of the action the following conditions are satisfied:
the action is enabled state(γt[i]) = q1 and val(γt[i]) |=p g, and
execution of the action the transition leads to a configuration γ′ such that

– the active process performed the action: γ′[i] = (q2, up(val(γt[i]))),
– unconcerned processes are unaffected: ∀j ∈ {1, . . . , N} \ (R ∪ {i}),

γ′[j] = γt[j], and
– either

• a is an internal action (a = ε) and the receiving processes are
unaffected: ∀j ∈ R \ {i}, γ′[j] = γt[j]; or

• a =!!m and ∀j ∈ R \ {i}, if there exists an edge
(state(γt[j]), g′, ??m, up′, q′) such that val(γt[j]) |=p g′, then the
process receives the message and γ′[j] = (q′, up′(val(γt[j]))). Oth-
erwise the process is unaffected and γ′[j] = γt[j].

When such a transition exists, it is written γ
t,i,δ,R−−−−→p γ′ or simply γ →p γ′.

Notice that we consider non blocking broadcast i.e., if a process is in the
receiver set but has no available reception edge, the process is unaffected and
the network behaves as if this process was not in the receiver set.

An execution ρ is a sequence of transitions starting in an initial configuration
γ0, ρ = γ0 →p γ1 →p · · · . An execution is maximal if it is infinite or if it ends
in a configuration from which there is no possible transition.
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Notice that once an initial configuration is fixed, the number of processes
does not change along an execution. However the semantics is infinite for several
reasons: first there is an infinite number of initial configurations (i.e., of network
sizes); second, there is also an infinite number of possible parameter valuations;
third, given a network size and parameter valuation, clock valuations assign real
values to clocks and are thus uncountable.

Given PTBP N , a network size N and a timing parameter valuation p, we
denote by E(N , N, p) the set of all maximal executions for the valuation p with
N processes.

We say that a maximal execution ρ = γ0 →p γ1 →p · · · reaches a state q,
written ρ |= ♦q, if there exists an index n such that q ∈ state(γn).

Example 2. We give an example of a possible execution for a network composed
of 4 processes running the protocol given in Example 1. In this example tl = 9
and pt = 3. The edge used during a transition is here only represented by the
associated action for readability.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q0, 0
q0, 0
q0, 0
q0, 0
q0, 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0.1,1,f,∅−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f, 0
q0, 0.1
q0, 0.1
q0, 0.1
q0, 0.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

4.1,2,f,{3,5}−−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f, 4.1
f, 0

c, 4.2
q0, 4.2
c, 4.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1.3,1,p,{5}−−−−−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f, 0
f, 1.3
c, 5.5
q0, 5.5
1, 5.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1.8,2,p,{1,3,4,5}−−−−−−−−−−−−→

1.8,2,p,{1,3,4,5}−−−−−−−−−−−−→

⎛
⎜⎜⎜⎝

f, 1.8
f, 0
1, 7.3
q0, 7.3
2, 7.3

⎞
⎟⎟⎟⎠

1.2,1,p,{5}−−−−−−−−→

⎛
⎜⎜⎜⎝

f, 0
f, 1.2
1, 8.5
q0, 8.5
3, 8.5

⎞
⎟⎟⎟⎠

0,5,ε,∅−−−−−→

⎛
⎜⎜⎜⎝

f, 0
f, 1.2
1, 8.5
q0, 8.5
g, 8.5

⎞
⎟⎟⎟⎠

Remark 1. Notice that even if the notations are slightly different, PTBP net-
works fully extend both PTA [6] and timed broadcast protocols [1]. Indeed, PTA
are PTBP networks of size one and timed networks are PTBP networks without
timing parameters.

In this paper, we consider parameterized reachability problems: we ask
whether there exists a network size N satisfying a given reachability property.
We consider existential (EF) and universal (AF) reachability properties that ask,
given goal state qf , whether this state is reached by some (EF) or all (AF) execu-
tions. Moreover we also consider variants on the quantifier on timing parameters
and ask whether the property holds for all parameter valuations (universality)
or for none (emptiness).

Thus, given a bounded PTBP (N , bounds) and a state qf we consider the
following problems:

∃-EF-emptiness ∃N ∈ N, � ∃p ∈ bounds,∃ρ ∈ E(N , N, p), ρ |= ♦qf

∃-EF-universality ∃N ∈ N,∀p ∈ bounds,∃ρ ∈ E(N , N, p), ρ |= ♦qf

∃-AF-emptiness ∃N ∈ N, � ∃p ∈ bounds,∀ρ ∈ E(N , N, p), ρ |= ♦qf

∃-AF-universality ∃N ∈ N,∀p ∈ bounds,∀ρ ∈ E(N , N, p), ρ |= ♦qf

For convenience, we will omit the bounds when they are irrelevant and con-
sider these problems in the case of general PTBP. In the following, the bounds
will only be relevant in Sect. 5.
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In the next section we investigate these problems in the general semantics
defined above. This semantics is called reconfigurable since the communication
topology (modeled by the reception sets) can be reconfigured at each step. How-
ever, in broadcast protocol networks with a parametric number of processes, the
communication topology plays a decisive role on decidability status. We will thus
investigate another communication setting, in Sect. 4, in which every message is
received by all the other processes i.e., the reception set R is always equal to
{1, . . . , N}. These networks are called clique networks.

Example 3. Considering the PTBP given in Example 1 and the target state g.
The execution presented in Example 2 shows that the answer for the ∃-EF-
emptiness problem is positive whenever the bounds allow for tl = 9 and pt = 3
in the reconfigurable semantics. Notice that in the clique semantics, it is not
possible to reach g unless pt ∗ 3 < tl. Indeed in the clique semantics when a
first process moves to f , all the other processes receive the message f and thus
move to c. Thus, at least three pt time units are necessary in order to receive 3
messages p.

Notice also that in this example, in both semantics, both ∃-AF problems
would give negative answers since there is always an execution that forever sends
p in the bottom self-loop and never uses the internal transition leading to g. Thus
such an execution never reaches g.

3 Reconfigurable Semantics

3.1 AF Problems in the Reconfigurable Semantics

The reconfigurable semantics of broadcast networks, where the set of receivers
can be chosen non-deterministically, makes the AF problems equivalent to the
same problems in networks of size 1. This is due to the fact that in the recon-
figurable semantics nothing prevents messages to be sent to an empty set of
receivers. The following theorem is a direct consequence of previous known
results on parameterized timed automata and this previous remark.1

Theorem 1. ∃-AF-emptiness and ∃-AF-universality are decidable for 1 clock
PTBP but undecidable for (L/U)-PTBP with 3 clocks or more.

3.2 EF Problems in the Reconfigurable Semantics

We start by recalling some known results on networks composed of an arbitrary
number of timed processes. In [4] the authors considered timed networks and
proved that the reachability problem (∃-EF) is decidable with one clock per
process and undecidable for two clocks per process [3]. Note that timed networks
have a different semantics than the one we use in this paper since they use rules

1 The proof of the results that can be obtained using existing techniques in a more or
less straightforward manner can be found in the appendix.
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and not broadcasts. However the reconfigurable semantics can be easily encoded
in the rules of timed networks. This gives us the decidability of the ∃-EF problem
(without timing parameters and with one clock per process).

Theorem 2 ([3,4]). ∃-EF is decidable for PTBP without parameters and with
one clock per process and undecidable with two clocks per process.

A direct consequence of this theorem is the undecidability of the ∃-EF prob-
lems for PTBP with two clocks.

Lemma 1. The ∃-EF-emptiness and ∃-EF-universality problems are
undecidable for PTBP with two clocks.

Moreover, we show below that the undecidability even holds for PTBP with
a single clock. This is a major difference with both parameterized networks and
PTA, where the restriction to one clock leads to decidability [6]. Also observe
that our result does not rely on the reconfigurable semantics particularly.

Theorem 3. The ∃-EF-emptiness and ∃-EF-universality problems are
undecidable for PTBP with one clock.

Proof. The proof is by reduction of the halting and boundedness (respectively)
problems for two-counter machines.

First, in this proof we will assume that the parameter λ only takes integer
values. This is not a restriction since we can add a gadget at the beginning of the
PTBP to check such property. This gadget is an adaptation of similar gadgets
from the PTA community to the case of PTBP, and is given in [8].

Given a two-counter machine, we define a protocol P separated in three
parts, the controller part (in charge of tracking the current instruction), the
counters part (to model the counters behaviors) and an idle part that allows to
use additional processes when needed.

The value of the counters is encoded (up to the value of parameter λ minus 1
here for technical reasons) by the difference between the clock value of the pro-
cesses in states representing counters and the clock value of the processes in the
controller part.

Formally, P is defined as follows:

– Q = {q0, error, ci, nc1i, nc2i, zt1j
i , zt2j

i , dec1j
i , dec2j

i , inc1j
i , inc2j

i , inc3j
i , idle |

j ∈ {1, 2}, i ∈ {1, 2}} ∪ {kj | k ∈ K, j ∈ {1, 2, 3, 4}}
– Σ = {tick, inci, deci, zti, ci, oci, nci | i ∈ {1, 2}}
– P = {λ}
– X = {x}
– Δ is defined as described below.

Let us describe Δ: On every transition, there is a guard x ≤ λ which is omitted
to clarify notations; similarly, when a guard is true or when there is no reset,
we omit them in the transition. The construction is represented in Fig. 2. Δ is
composed of the following transitions:
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Initialization. (q0, x = 0, ε, k1
0), for i ∈ {1, 2}, (q0, x = 0, ε, ci), (q0, x =

0, ε, idle)
The processes can chose non-deterministically to either move to the controller
part, the counters part, or the idle part (Fig. 2a).

Decrement of counter i. For a decrement instruction k : decr Ci goto k1, we
define the following transitions in Δ (depicted in Fig. 2b):

– For the controller: (k1, x = 1, !!deci, k
2) (k2, x = λ, !!tick, {x := 0}, k1

1)
The controller “announces” that the instruction is a decrement (using
!!dec1) when its clock is equal to 1 (guard x = 1) and then announces
when its clock reaches the value of the parameter (guard x = λ).

– For the counter involved (i): (ci, x > 1, ??deci, dec1i
i), (dec1i

i, x =
λ, ε, {x := 0}, dec2i

i) (dec2i
i, x = 1, ε, {x := 0}, dec3i

i) (dec3i
i, ??tick, ci)

When the processes representing the counter i receive the message corre-
sponding to the decrement, they move to an intermediary state, then reset
their clock when it reaches λ and reset it another time when the clock
reaches 1. This way, the difference with the controller clock has decreased
by one. Notice that, if x = 1 when they receive the decrement message
(meaning that the counter has value 0), they cannot take the transition.

– For the counter not involved (3−i): (cj , ??deci, dec1j
i ) (dec1j

i , x = λ, {x :=
0}, decj2j

i ) (dec2j
i , ??tick, cj).

The processes encoding the counter not involved just reset their clock
when it reaches λ, thus the difference remains constant.

Increment of counter i. For an increment instruction k : incr Ci goto k1,
the construction is almost symmetric to decrement, but involves an addi-
tional technicality—and therefore we give it below. We define the following
transitions in Δ (depicted in Fig. 2c):

– For the controller: (k1, x = 1, !!inci, k
2) (k2, x = λ, !!tick, {x := 0}, k1

1)
The controller announces that the instruction is an increment when its
clock is equal to 1 and then announces when its clock reaches the value
of the parameter.

– For the counter involved:
The clock value should be reset at λ − 1, but such a guard is not allowed
and is not possible to encode with just one clock. As an additional tech-
nicality, we thus rely on a non-deterministic guess, that is the checked by
a new process. This is done as follows:
For the current counter processes (ci, x < λ, ??inci, inc1i

i), (ci, x =
λ, ??inci, error), (inc1i

i, !!nci, inc2i
i) (inc2i

i, x = λ, !!oci, idle).
The processes encoding the counter receive the increment message
and then guess non-deterministically that their clock value is λ − 1
and send a message nci. In order to check that the guess was right,
they then announce when their clock reaches λ by sending message
oci, and the processes move to idle. The value of the counter will
then be encoded by the new processes. Notice that if the clock value
is already equal to λ, then we reached the maximal possible value,
and the processes move to the error state error.
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For the new counter process (idle, ??nci, {x := 0}, nc1i) (nci, x =
1, ??oci, nc2i) (nc2i, ??tick, ci).
To check that the guess was right, we use the idle processes that when
receiving the message nci reset their clock. They are then allowed to
encode the counter if they receive the confirmation oci when their
clock is equal to 1 (thus the guess was correct).

– For the counter not involved: (cj , ??inci, inc1j
i ) (inc1j

i , x = λ, {x :=
0}, incj2j

i ) (inc2j
i , ??tick, cj).

The processes encoding the counter not involved just reset their clock
when it reaches λ.

Zero-test. For a zero-test instruction k : if Ci = 0 then goto k1 else goto k2,
we define the following transitions:

– For the controller (k1, x = 1, !!zti, k
2) (k2, x = λ, ??ci, k

3) (k2, x <
λ, ??ci, k

4) (k3, x = λ, !!tick, {x := 0}, k1
1) (k4, x = λ, !!tick, {x := 0}, k1

2).
The controller announces that the instruction is a zero-test when its clock
is equal to 1, and then waits for a notification ci from the counter. Depend-
ing when this notification arrives, when x = λ (meaning the counter has
value 0) or when x < λ (meaning the counter has positive value), the
controller moves to the corresponding intermediary states.

– For the counter involved (ci, ??zti, zt1i
i) (zt1i, x = λ, !!ci, {x := 0}, zt2i

i)
(zt2i

i, ??tick, ci).
The processes encoding the counter involved, after receiving the instruc-
tion, send a notification ci when their clock reaches λ.

– For the counter not involved (cj , ??zti, zt1j
i ) (zt1i, x = λ, ε, {x := 0}, zt2j

i )
(zt2j

i , ??tick, cj).
The processes encoding the counter not involved just reset their clock
when it reaches λ.

Finally, there is an additional transition (idle, ε, {x := 0}, idle) used to keep the
clock of idle processes below p(λ).

Given a valuation p of the parameter, we say that a configuration γ of the
network encodes a configuration (k, v1, v2) of the two-counter machine if for all i,
γ[i] = (q, x) then either x > p(λ) or q ∈ {c1, c2, k1, idle}. Moreover all processes
with a clock lower than p(λ) and not in state idle must agree on their clock
valuation if they have the same state. Finally, if γ[i] = (k1, z) then for all i′ such
that γ[i′] = (c1, y) we have v1 = y − z and similarly for v2.

Given an execution ρ, and a time t we denote by ρT=t the configuration
obtained when considering ρ at global time t. Notice that ρT=t may not be a
configuration that appears in ρ since it can be a configuration obtain during the
elapsing of time in a transition.

We will prove that, for any execution ρ, either ρT=k∗p(λ)+1/2 is not defined
(the execution time never reaches k ∗ p(λ) + 1/2) or ρT=k∗p(λ)+1/2 encodes sk,
i.e., the kth configuration of the two-counter machine.

We start by some remarks on the shape of possible executions.
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q0

c1

c2

k1
0

idle

x = 0, ε

x = 0, ε
x
=
0, ε

x =
0, ε

(a) Initialization

k1 k2 k1
1

x = 1, !!dec1 x = λ, !!tick, {x := 0}

c1

dec111

dec211

dec311

x
>
1 ∧

x
<

λ,
??

de
c1 x

=
λ, ε, {x

:=
0}

x = 1, ε
, {x

:=
0}

??tick

c2

dec121

dec221

??
de

c1 x
=

λ
,ε,{

x
:=

0}??tick

(b) decrement: k : decr C1 goto k1

k1 k2 k1
1

x = 1, !!inc1 x = λ, !!tick, {x := 0}

c1 inc111 inc211 idle
x < λ, ??inc1 !!nc1 x = λ, !!oc1

nc21 nc11 idle
??nc1, {x := 0}x = 1, ??oc1

??tick

c2 inc121

inc221

??inc1

x = λ, ε,
{x := 0}??tick

(c) Increment: k : incr C1 goto k1

k1 k2

k3

k4

k1
z

k1
nz

x = 1, !!zt1

x
=

λ,
??

c1

x < λ, ??c1

x = λ, !!tick, {x := 0}

x = λ, !!tick, {x := 0}

c1 zt111

zt211

??zt1

x = λ, !!c1
, {x := 0}??tick

c2 zt121

zt212

??zt1

x = λ, ε,
{x := 0}??tick

(d) Test to zero: k : if C1 = 0 goto kz else goto knz

Fig. 2. Representation of the construction
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1. If two processes are in the controller part, then their clocks are equal mod-
ulo p(λ). Indeed, in the controller part, the clock is reset only when it
reaches p(λ).

2. It follows that, by definition of the protocol, the message tick is sent only at
time units multiple of p(λ).

3. Moreover, the instruction messages (inci, deci, zti) are only sent at global
time units of the form k ∗ p(λ) + 1.

4. Consider a process in state ci with clock value lower than p(λ). Assume that
the global time is of the form k ∗ p(λ) + 1. If this process does not receive an
instruction message without delay, it will not be able to receive any before
time (k+1)∗p(λ)+1, thus it cannot take any transition before (k+1)∗p(λ)+1.
Note that at this time, its clock will be greater than p(λ), thus the guard
prevents it to take any transition for the rest of the execution.

5. With the same idea, if the process is in an intermediary state
nc2i, dec2j

i , dec3i
i, inc2j

i , zt2i
i, zt2j

i and does not receive a tick message at time
k ∗ p(λ), we are certain that at time (k +1) ∗ p(λ) its clock will be above p(λ)
and it will thus be stuck forever.

6. Similarly if a process is in state dec1j
i , dec1i

i, dec2i
i, inc1j

i , k
2 and does not reset

the clock when it is possible it will be stuck forever.
7. If an increment is requested by the controller part but the counter value is

already equal to p(λ) − 1 i.e., the clock value of the counter process is equal
to p(λ), then the processes are sent to an error state and thus for the rest of
the execution there will not be any processes in the counter part.

8. Similarly, if an increment is requested while no processes are left in the idle
state, then the execution gets stuck in the next zero test.

In other words, if a process does not behave correctly, its clock will increase
over p(λ) and the process will be stuck forever.

Example 4. Before going further, let us first give some example of the behavior
of the network encoding the two-counter machine.

Successful decrement k: decr c1 goto k1 with v2 ≥ v1 and v2+1 ≤ p(λ) (those
assumptions only matter for the order of the transitions).

⎛
⎝

k1, 0
c1, v1
c2, v2

⎞
⎠ 1,1,!!dec1,{2,3}−−−−−−−−−−−→

⎛
⎝

k2, 1
dec111, v1 + 1
dec121, v2 + 1

⎞
⎠ λ−(v2+1),3,ε,∅−−−−−−−−−−−→

⎛
⎝

k2, λ − v2

dec111, v1 + λ − v2

dec221, 0

⎞
⎠

v2−v1,2,ε,∅−−−−−−−−→
⎛
⎝

k2, λ − v1

dec211, 0
dec221, v2 − v1

⎞
⎠ 1,2,ε,∅−−−−−→

⎛
⎝

k2, λ − v1 + 1
dec211, 0

dec221, v2 − v1 + 1

⎞
⎠ v1−1,1,!!tick,{2,3}−−−−−−−−−−−−−−→

⎛
⎝

k1
1, 0

c1, v1 − 1
c2, v2

⎞
⎠

Failed decrement k: decr c1 goto k1 with v2 ≥ v1 and v2 + 1 ≤ p(λ).
⎛
⎝

k1, 0
c1, 0
c2, v2

⎞
⎠ 1,1,!!dec1,{2,3}−−−−−−−−−−−→

⎛
⎝

k2, 1
c11, 1

dec121, v2 + 1

⎞
⎠ λ−(v2+1),3,ε,∅−−−−−−−−−−−→

⎛
⎝

k2, λ − v2
c1, λ − v2

dec221, 0

⎞
⎠

Notice that for the rest of the execution the process 2 will be stuck in c1,
unable to perform any action, nor to receive any message.
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Let us now show by induction on k that either ρT=(k+1)∗p(λ)+1/2 is not defined
or ρT=k∗p(λ)+1/2 encodes sk.

The case k = 0 is direct. By definition it is easy to see that ρT=1/2 encodes γ0.
Assume that the property holds for k. Let ρ be an execution such that

ρT=k∗p(λ)+1/2 encode sk. By the above remarks we have seen that if the net-
work does not behave in the correct way it will get stuck before the next p time
unit thus ρT=(k+2)∗p(λ)+1/2. The only thing left to show that the reduction is
correct is that the clocks are reset at the right time to correctly model increment
and decrement and that zero tests are correct. For the latter, it is easy to see
that by construction the controller part goes to the kz instruction if and only if
its clock is equal to the counter clock hence the counter is equal to 0, otherwise
it moves to knz. For the former, the clocks evolve as in [21]. The only difference
is for the increment where we need to introduce a new process used to guess
when the clock value of the counter is equal to p(λ) − 1.

We thus obtain that if the controller part can reach kacc then since the
execution correctly encodes the run, the run must terminate. Conversely if the
run is infinite, for any N and any p, any execution will either be infinite (and
correct) thus never reaching kacc, or eventually get stuck either because of an
error in message, or because the counter clock is equal to 1 during an increment,
or because there will not be enough processes in the idle state.

This concludes the proof that ∃-EF-emptiness is undecidable for 1-clock
PTBP in the reconfigurable semantics.

For ∃-EF-universality, notice that the error state error is reachable only if
an increment is requested when the counter value is equal to p(λ) − 1. Thus if
the error state is reached for all parameter valuations, this means that the run
is unbounded. Conversely if the run is unbounded for all parameter valuations,
at some point the counter value is equal to p(λ) − 1 during an increment and
thus the error state is reachable. To conclude on the undecidability of ∃-EF-
universality, we just have to recall that we consider rational valuations for the
parameters, but in this proof we only used integer valuations. This does not harm
the proof of undecidability since we can modify the aforementioned gadget given
in [8] by replacing the state not integer by error. This modification ensures that
error is reachable for any non integer valuation and the above argument that it
is reachable for all integer valuations if and only if the two-counter machine is
unbounded. �

4 Clique

In broadcast protocol networks with a parametric number of processes, the topol-
ogy of message communication plays a decisive role on the decidability status. In
this section, we thus investigate a communication setting in which every message
is received by all the other processes. We call these networks clique networks.

Formally, the semantics of a clique network is the restriction of the semantics
given in Sect. 2 to internal transitions and broadcast transitions in which the set
of receivers is always composed of all processes.
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4.1 AF Problems in the Clique Semantics

We first rule out the ∃-AF problem for the clique semantics, as we can show
from [19] that it is undecidable already without any clock.

Theorem 4. The ∃-AF problem is undecidable for PTBP with no clock in the
clique semantics.

Proof. In [19, Chap. III, Theorem 3.5] it is shown that one can reduce the halting
problem of a two-counter machine (which is undecidable [24]) to the AF problem
in a clique network without clocks.

Intuitively the reduction goes as follows: the values of the counter are encoded
by the number of processes in a given state. Increment and decrement of counter
are easy to encode since in the clique semantics when one process sends a message
everyone receives it, thus we can ensure that only one process performs the incre-
ment or decrement. The difficulty comes from the zero tests. Indeed, since we
cannot force processes to answer we cannot differentiate between the case where
there is no process encoding a counter and the case where the processes do not
answer. To tackle this problem, zero tests are implemented non-deterministically:
if we choose that the counter is zero, a message is sent. If it was not the case,
then the processes encoding the counter value move to an error state. In the
case we choose that the value is not zero, the network is locked until a process
encoding the counter sends a message or a process moves to the error state. This
encoding ensures that every run that does not encode truthfully the two-counter
machine reaches the error state. Thus by adding a transition from the halting
state of the counter machine toward the error state, we can ensure that every
path reaches the error state if and only if the two-counter machine halts. �

4.2 EF Problems in the Clique Semantics

Recall that the proof of Theorem 3 does not rely on the reconfigurable seman-
tics particularity. In fact the strong synchronization of processes in the clique
semantics makes it even easier. We thus obtain the following lemma:

Lemma 2. The ∃-EF-emptiness and ∃-EF-universality problems are
undecidable for PTBP.

This undecidability does not hold in the case where each parameter appears
either always as an upper bound or always as a lower bound in guards (but not
both). We thus consider in the following the case of L/U-PTBP.

5 1-Clock L/U-PTBP

Since the L/U restriction brings some decidability to PTAs, we focus in this
section on L/U-PTBP. Recall that L/U-PTA are expressive enough to model
classical examples from the literature [20], such as root contention or Fischer’s
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mutual exclusion algorithm. As a consequence, L/U-PTBP make an interesting
subclass of PTBP.

Due to the undecidability results of [1] for processes with 2 clocks (already
without parameters), we consider in this section L/U-PTBP with one clock only.
When considering L/U-PTBP, we can get the following monotonicity result on
the timing parameter valuations.

Lemma 3. Given N an L/U-PTBP with one clock, a network size N ∈ N,
and a parameter valuation p, for all valuations p′ such that for all upper-bound
parameters λu, p(λu) ≤ p′(λu) and for lower-bound parameters λl, p(λl) ≥ p′(λl)
we have that ∀ρ ∈ E(N , N, p), ∃ρ′ ∈ E(N , N, p′) such that ρ is a prefix of ρ′.

Proof. The proof is direct from the semantics definition. Notice that we do not
have full inclusion of E(N , N, p) in E(N , N, p′) since we consider maximal execu-
tions and it may be the case that some executions of E(N , N, p) appear only as
prefixes of executions of E(N , N, p′). Notice also that this holds in both semantics
(reconfigurable and clique). �

A direct consequence of Lemma 3 and the decidability of the EF problem
for PTBP with a single clock and without parameters is the decidability of the
∃-EF-emptiness problems for L/U-PTBP with one clock.

Lemma 4. The ∃-EF-universality problem is decidable for closed bounded L/U-
PTBP with one clock in both semantics.

Proof. Let N be an L/U-PTBP with one clock, and bounds be the closed bounds
on the parameters. Let pmin be the minimal permissive valuation i.e., the valu-
ation such that for all upper-bound parameters λu, pmin(λu) = inf (λu, bounds)
and for all lower-bound parameters λl, pmin(λl) = sup(λl, bounds). By definition
we have pmin ∈ bounds.

We define the PTBP without parameters Nmin as N but replacing each
occurrence of an upper-bound parameter λu by inf (λu, bounds) and each occur-
rence of a lower-bound parameter λl by sup(λl, bounds). It is then easy to see
that E(N , N, pmin) = E(Nmin, N).

Assume that for all N there is no execution reaching qf in E(Nmin, N); then
the above equality implies that the answer to ∃-EF-universality is false.

Conversely assuming that there exists an execution reaching qf in E(Nmin, N)
for some N , we obtain by the equality and the monotonicity Lemma3 that this
execution is a prefix of an execution of E(N , N, p) for any valuation p.

Thus the ∃-EF-universality problem for N is equivalent to the ∃-EF prob-
lem for Nmin and thus is decidable in the clique semantics (see [1]) and in the
reconfigurable semantics (see Theorem 2). �

For the ∃-EF-emptiness problem, we can remove the assumption on the closed
bounds.

Lemma 5. The ∃-EF-emptiness problem is decidable for (open or closed)
bounded L/U-PTBP with one clock in both semantics.
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Proof. Let N be an L/U-PTBP with one clock, and bounds be the bounds on
the parameters. As for the ∃-EF-universality problem, we define a protocol Nmax

with the difference that non-strict guards involving open bounded parameters are
changed to strict guards. We define the PTBP without parameters Nmax as N
but for all upper-bound parameters λu if bounds(λu) is of the form (inf , sup] or
[inf , sup] then every occurrence of λu is replaced by sup. Otherwise if bounds(λu)
is of the form (inf , sup) or [inf , sup) then every guard of the form x < λu or
x ≤ λu is replaced by the guard x < sup. We operate similarly for lower-bound
parameters.

Using the same argument as for the monotonicity Lemma 3 it is easy to see
that for any valuation p ∈ bounds, any execution ρ in E(N , N, p) is a prefix of
some execution in E(Nmax, N). Thus if some execution reaches qf for some N
and some p in E(N , N, p), there is also an execution reaching qf in E(Nmax, N).

The other direction is more subtle. Assume that there exists an execution ρ
reaching qf in E(Nmax, N). Let ρ′ be a finite prefix of ρ reaching qf . We define
a valuation p ∈ bounds that contains an execution identical to ρ′ as follows: Let
λu be an upper-bound parameter. Either bounds(λu) is of the form (inf , sup] or
[inf , sup] and we define p(λu) = sup. Or bounds(λu) is of the form (inf , sup) or
[inf , sup). In this case, let vu be the maximal value of clock x along ρ′ when x
is compared in a guard which was formerly x �� λu. By definition of Nmax we
know that vu < sup. We thus define p(λu) = vu + ε with ε > 0, ε+ vu < sup and
ε > inf − vu (it exists since necessarily inf < sup).

We operate in a symmetrical way for lower-bound parameters: vl is the mini-
mal value of clock x along ρ′ when x is compared in a guard which was formerly
x �� λl and p(u) = vu − ε with vu − ε > inf , ε > 0 and ε < sup + vu (it exists
since necessarily sup > inf ).

It is easy to see that for this valuation, ρ′ is a prefix of some execution in
E(N , N, p). Hence, the ∃-EF-emptiness problem for N is equivalent to the EF
problem for Nmax and thus decidable in the clique semantics [1] and in the
reconfigurable semantics (Theorem 2). �

In contrast with the ∃-EF-emptiness problem, the monotonicity result is not
enough to show decidability of the ∃-EF-universality problem for L/U-PTBP
with open bounds. In fact we can even show that the problem becomes undecid-
able for general L/U-PTBP in the clique semantics. More precisely it is unde-
cidable for U-PTBP with one parameter with open left bound, and for L-PTBP
with one unbounded parameter.

Theorem 5. The ∃-EF-universality problem is undecidable for open bounded
L/U-PTBP with one clock in the clique semantics.

Proof. We reduce from the halting problem of two-counter machines. The idea is
to encode a two-counter machine, the number of processes in a particular state is
used to encode the counter value. Thanks to the clique semantics, increment and
decrement of counters are easy to simulate. However, zero tests are not possible
since there is no way to distinguish between the fact that no process is modeling
a counter and the fact that they just do not send a message. We thus allow the
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simulation to guess whether the counter is zero or not zero non-deterministically;
in case of a wrong guess we are able to detect it thanks to the clique semantics.
In this case, at least one process is stuck in an error state, we then use the timing
parameter to repeat the simulation an unbounded (but finite) number of times
before moving to the target state. To be able to reach the target state, we thus
have to be able to correctly simulate the two-counter machine without wrong
guess.

Formally, given a two-counter machine M = (K,k0,kacc) we define a PTBP
P as follows:

– Q = {q0, idle, ci, c
d
i , c

i
i, c

z
i , err, qf | i ∈ {1, 2}}∪{k, k′ | k ∈ K} where, q0 is the

initial state, idle is a waiting state for the processes encoding the counters, ci

is the state used to encode the value of counter Ci, ci
i and cd

i are intermediary
states for increment and decrement of counter ci, cz

i is an intermediary state
used for the zero test, a state k is used to encode that the simulation reached
instruction k of the machine and k′ is an intermediary state, err is a sink
state used to detect error in the simulation, finally qf is the target state.

– X = {x} and P = {λu, λl}.
– Σ = {inci, deci, zi, nzi, ok, end | i ∈ {1, 2}} where inci, deci, zi, and nzi stand

respectively for increment, decrement, zero, and not zero of counter ci, ok is
a message to acknowledge that the action was performed correctly, and end
is the message sent at the end of the simulation to either restart a simulation
or reach the target state.

– Δ is defined as follows (for simplicity the guard and update of the clock are
omitted when trivial, i.e., the true guard and no reset):
Initialization. (q0, !!ok, k0) ∈ Δ, (q0, ??ok, idle) ∈ Δ.
Increment of counter i. For an increment instruction k : incr Ci goto k1,

we add to Δ the transitions: (k, !!inci, k
′), (k′, ??ok, k1), (idle, ??inci, c

i
i),

(ci
i, !!ok, ci) (ci

i, ??ok, idle).
Decrement of counter i. For a decrement instruction k : decr ci goto k1,

we add to Δ the transitions: (k, !!deci, k
′), (k′, ??ok, k1), (ci, ??deci, c

d
i ),

(cd
i , !!ok, idle) (cd

i , ??ok, ci).
Zero-test of counter i. For a zero-test instruction k : if ci =

0 goto kz else goto knz, we add to Δ the transitions: (k, !!zi, kz),
(k, !!nzi, k

′), (k′, ??ok, knz), (ci, ??zi, err), (ci, ??nzi, c
z
i ) (cz

i , !!ok, ci),
(cz

i , ??ok, ci).
End of simulation.

(kacc, x < λu, !!end, {x := 0}, k0) (idle, x > λl, ??end, qf ) (ci, ??end, idle).

Given a configuration γ of the network, we say that it encodes a configuration
(k, v1, v2) of the two-counter machine if there is one process in state k and vi

processes in states ci for i ∈ {1, 2}. If we omit the end of simulation part, this
reduction is similar to the one found in [19, Chap. III, Theorem 3.5]; we therefore
proceed with less details on this part. In short, every execution of the network
is of one of the three kinds:

Correct simulation. The execution correctly encodes the run of the two-
counter machine.
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Lack of processes. The controller is stuck in an intermediary state while per-
forming an increment, i.e. there was no process left in the idle state when the
controller sent the inci message, thus it is stuck waiting for an ok message
that no one can send.

Wrong zero-test. Along the execution, the controller wrongly assumed the
value of a counter. Either it guessed a non-zero value and it is stuck waiting
for an ok message, or it guessed zero when it was not—in which case at least
one process moved to the error state.

Notice now that to reach the target state qf a process in idle must receive
the message end after its clock value is greater than parameter λl. But the end
of simulation part requires that the controller clock is lower than parameter λu.
Thus when reaching state kacc, in order to be able to let more time elapse, the
controller has to send the message end which leads to a configuration where there
is no process in the counter states and the controller is in the initial state of the
two-counter machine. This configuration thus encodes the initial configuration
of the two-counter machine. The controller then must simulate another time the
two-counter machine before being able to send end again.

Thus, given a valuation p of the parameters, to reach qf at least p(λl)/p(λu)
messages end must be sent by the controller. In other words, p(λl)/p(λu) (correct
or incorrect) simulations of the two-counter machine must be performed before
reaching qf . We have seen before that every incorrect simulation either gets
stuck, or sends at least a process in the error state. Hence, given a network
size N , if for a valuation p such that p(λl)/p(λu) > N the state qf is reached,
then at least one simulation was correct, thus the two-counter machine halts.

This proves the undecidability of the EF-universality problem with 0 as an
open lower bound for λu. Indeed, if there exists a network of size N which
satisfies the EF-universality, then it is possible to reach qf for all valuation
and in particular for a valuation such that p(λl)/p(λu) > N . For the other
direction, if the machine halts, there exists a size of network (m + 2 where m
is the maximal sum of the two-counter value along the execution) that ensures
that qf is reachable for any valuation p with p(λu) > 0. Indeed, the controller
can simulate the two-counter machine correctly (since it has enough processes to
model the counters) in 0 time unit, wait a positive delay but less than λu time
unit, and repeat this until the clock value of the processes in idle is greater than
λl. This is possible since every time the controller sends the message end the
configuration obtained is the same as the one obtained after the initialization
(the first message ok). �
Lemma 6. ∃-EF-universality in the clique semantics is undecidable already
with a single clock for U-PTBP with open bounds on the left, and L-PTBP with
infinity as right bound.

Proof. The proof of Theorem5 uses an open bounded L/U-PTBP. Moreover
we only used the fact for all size of network N there exists a valuation of the
parameter p such that p(λl)/p(λu) > N . Thus the proof can be adapted with only
one upper-bound parameter λu (resp. lower-bound parameter λl) by replacing
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Table 1. Summary of our contributions (bold green: decidable; red italic: undecidable)

λl by 1 in the protocol (resp. λu by 1). This still ensures that there exists a
valuation such that 1/p(λu) > N (resp. p(λl) > N). �

6 Conclusion

Up to our knowledge this work is the first to consider two different sets of param-
eters at the same time. Both parameterized number of processes and parametric
clocks are difficult to deal with and number of problems are undecidable for each
of these systems. However we have shown that the combination of the decidable
subclasses leads to some decidable problems. Our contributions are summarized
in Table 1; i-c (resp. i-L/U) denotes PTBP (resp. L/U-PTBP) with i clocks
per process. In Table 1b, cb and ob denote formalisms with a closed bounded
parameter domain and an open bounded parameter domain.

The open 2-clock case in the reconfigurable semantics is a well-known open
problem, with connections to open problems of logic and automata theory [6].
The other open case in Table 1 we are interested in solving is ∃-EF-universality
for 1-L/U-PTBP in the reconfigurable semantics with open bounds. In addi-
tion, EF problems are still open for bounded 1-clock PTBP (Theorem3 requires
unbounded parameters), and for 1-c L/U with unbounded parameters in the
clique semantics. Finally, for the decidable subclasses we exhibited, it remains
to be studied whether exact synthesis can be achieved, i.e., obtaining the set of
sizes of processes and timing parameter valuations for which EF or AF holds.

More general future works include considering other semantics such as asyn-
chronous broadcast or different communication topologies (reconfigurable under
constraint, restricted to graph of bounded width, . . . ), as well as the reachabil-
ity problem for all sizes of networks (instead of the existence of a network size):
while it seems straightforward for EF problems, it remains to be done for AF
problems. Another quantifier of interest is the number of processes reaching the
target: so far, we considered the existence of one process reaching the target. All
processes reaching the target is also of interest.

Acknowledgement. The authors warmly thank Nathalie Bertrand for fruitful dis-
cussions on the topic of this paper.
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8. André, É., Delahaye, B., Fournier, P., Lime, D.: Parametric timed broadcast pro-
tocols (long version) (2018). http://arxiv.org/
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Abstract. This paper presents an approximation approach to verifying
counter systems with respect to properties formulated in an expressive
counting extension of linear temporal logic. It can express, e.g., that
the number of acknowledgements never exceeds the number of requests
to a service, by counting specific positions along a run and imposing
arithmetic constraints. The addressed problem is undecidable and there-
fore solved on flat under-approximations of a system. This provides a
flexibly adjustable trade-off between exhaustiveness and computational
effort, similar to bounded model checking. Recent techniques and results
for model-checking frequency properties over flat Kripke structures are
lifted and employed to construct a parametrised encoding of the (approx-
imated) problem in quantifier-free Presburger arithmetic. A prototype
implementation based on the z3 SMT solver demonstrates the effective-
ness of the approach based on problems from the RERS Challange.

1 Introduction

Counting is a fundamental principle in the theory of computation and well-
established in the study and verification of infinite-state systems. The concept
is ubiquitous in programming, and counting mechanisms are a natural notion
of quantitative measurement in specification formalisms. For example, they are
useful for expressing constraints such as “the number of acknowledgements never
exceeds the number of requests” or “the relative error frequency stays below some
threshold”. An established and well-studied framework for correctness specifica-
tion is linear temporal logic (LTL) [30]. Therefore, various counting extensions
were proposed [6,8,13,25] that allow for imposing constraints on the number of
positions along a run that satisfy some property. These extensions target differ-
ent kinds of system models, and vary in the type of events that can be counted
and the constraints that can be expressed.
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This paper is concerned with verifying properties expressed in the counting
temporal logic CLTL. This extension of LTL features a generalised temporal until
operator U[.] for evaluating a counting constraint within its scope. For example,
consider the property that between two system resets, two events e1 and e2 (say,
related sensor events) should be correlated linearly. The CLTL formula

G(¬reset U[2e1−e2≥−10] reset)

would specify that there are not more than twice as many occurrences of e1 than
there are of e2, with an absolute margin of 10. Notice that this property is not
regular. The events e1 and e2 may be atomic or again characterised by some
temporal (counting) property. The definition used1 here extends that of [25]
by admitting not only natural but arbitrary integer coefficients in constraints.
Without this extension, the logic was shown to be more concise but not more
expressive than LTL. Moreover, in the present work, CLTL is interpreted over
counter systems instead of Kripke structures and allows for imposing arithmetic
constraints also on (linear combinations of) the counter values, similar to the
formalisms considered in [11,16,18].

Towards making the extended features of this specification language avail-
able for program verification, we propose an approach to the existential model-
checking problem of CLTL over counter systems, i.e. deciding for some counter
system whether it admits a run satisfying a given formula. Both system model
and logic are very powerful, and the problem is undecidable. However, we avoid
the often made compromise of recovering decidability by means of essential
restrictions to the specification language. Instead, we use an approximation
scheme based on an extension of recent work [13] that has laid the theoreti-
cal basis for a decision procedure in the special case of structures that are flat.
Flatness demands, essentially, that cycles of the system cannot be alternated
during an execution. It is thus a strong restriction but decreases the computa-
tional complexity of verification tasks significantly. To benefit from the improved
complexity while being generally applicable, our approach verifies flat under-
approximations of a specific depth given as parameter. Similarly to bounded
model checking [4,5], the parameter allows the user to flexibly adjust the trade-
off between exhaustiveness and computational effort. An essential advantage of
flat under-approximations is that they represent sets of complete (infinite) runs
instead of only a finite number of bounded prefixes. They can be understood
as a bounded unfolding of loop alternations, represented symbolically. When
increasing the approximation depth to include one more alternation, an infinite
number of additional runs is represented, and verified at once. Considering first
a small depth and increasing it only if no witness was found allows for finding
“simple” witnesses quickly where they exist, even for complex path properties
that cannot be evaluated on prefixes. The underlying theory provides a bound
on the maximal depth that needs to be considered in the case of a flat system.

1 To avoid cluttered notation when respecting various existing naming schemes, the
denotation CLTL is reused, despite semantic differences.
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The method is (necessarily) incomplete in the general case but can nevertheless
be directly applied.

Contributions. As conceptual basis, we first extend the theory of model-
checking counting logics on flat structures developed in [13], where only fre-
quency constraints and Kripke structures were considered. Symbolic models
called augmented path schemas were introduced to represent sets of runs. We
extend the definitions and techniques to apply to more general counting con-
straints and flat counter systems while preserving the previous complexity
bounds. This is a consequent continuation of the development of the theory.
From the user perspective, it is a valuable extension, since CLTL provides a much
more flexible specification language and counter systems an extended application
domain. It is particularly important for the practical application of the method.

Subsequently, based on the lifted theory, we describe an explicit formula-
tion of the (approximated) model-checking problem in quantifier-free Presburger
arithmetic (QPA). Recall that Presburger arithmetic is first-order logic over the
integer numbers with addition. Its satisfiability problem is decidable [31] and
in the case of the quantifier-free fragment in NP [7]. Importantly, the theory of
QPA is well-supported by a number of competitive SMT-solvers (cf. [10]). Our
construction is parametrised by the depth of the flat approximation that is to
be verified, and the resulting QPA formula is linear in the problem size and the
chosen depth.

We have implemented the incremental model-checking procedure based on
the QPA encoding and the z3 SMT solver [29]. Verification tasks of the RERS
Challenge [22] and counting variations were used to evaluate the effectiveness of
our approach.

Related Work. In [6] an LTL extension to express relative frequencies, called
fLTL, was studied. It features a generalised until operator that can be under-
stood as a variant of the U[.] operator restricted to a specific class of counting
constraints. Various other classes were studied in the context of CTL [26]. One
of the corresponding CTL variants, denoted CCTL±, admits integer coefficients
and thus represents the branching-time analog to CLTL, although interpreted
over finite Kripke structures. The difference between linear and branching time
is crucial, however. Satisfiability, and hence model checking Kripke structures,
is undecidable for fLTL [6] (and hence for CLTL) but decidable for its branching-
time analog fCTL and even CCTL± [13,26]. Counting extensions were also studied
for regular expressions in [1,20]. The notion of flat (or weak) systems was inves-
tigated as a sensible restriction to reduce the computational complexity of vari-
ous verification problems. Considering (finite) Kripke structures, model-checking
LTL properties, which is PSpace-complete [32], becomes NP-complete under the
flatness condition [24]. It follows from [6] that model-checking fLTL, and thus
all more expressive counting logics, is undecidable. Over flat Kripke structures,
the problem is in NExp and even an extremely powerful counting extension of
CTL* was shown to become decidable [13]. A similar impact is observable for
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(infinite state) counter systems. While reachability is already undecidable for
two-counter systems [28], results from [12] provide that flatness recovers decid-
ability with an arbitrary number of counters (see also [11]). Later, it was shown
in [15] that LTL properties (including past) can generally be evaluated in NP
(see also [17]). The authors also make the suggestion to consider flat systems as
under-approximations, which is addressed here.

Increasing the depth of a flat under-approximation is similar to so-called
loop acceleration in symbolic verification. It aims at stepping over an arbitrary
number of consecutive iterations of a loop during state space exploration, by
symbolically representing its effect. Since this is particularly effective for simple
loops, flatness is a desired property [2] also in this setting. Unfortunately, accel-
eration typically concerns the computation of reachability sets [2,3,9,21,23] and
is thus insufficient when analysing path properties as expressible in (extensions
of) LTL. For accelerating the latter, flat systems, and path schemas in particular,
provide a suitable symbolic model since they represent entire runs.

Outline. First, Sect. 2 provides basic definitions. In Sect. 3, a generalised notion
of augmented path schemas is introduced and employed to lift the decidability
results of [13]. It provides the basis for Sect. 4 describing the parametrised encod-
ing of the model-checking problem into QPA. Section 5 reports on our implemen-
tation of the approach and Sect. 6 concludes.

2 Counting in Linear Temporal Logic

Constraints and Counter Systems. For x, y ∈ Z let [x, y] denote the (poten-
tially empty) interval {x, x+1, . . . , y} ⊂ Z. A constraint over a set X is a linear
arithmetic inequation τ ≥ b where τ =

∑n
i=0 aixi, n ∈ N, b, ai ∈ Z, and xi ∈ X

for i ∈ [0, n]. For convenience, we may use relation symbols ≤, <, and >, denoting
arithmetically equivalent constraints, e.g. 2x1 +x2 < 3 denotes −2x1 −x2 ≥ −2.
The dual of a constraint τ ≥ b is denoted by τ ≥ b and defined as the equivalent
of τ < b. For a valuation θ : X → Z, we denote by �τ�(θ) :=

∑n
i=0 aiθ(xi)

the arithmetic evaluation of τ . Satisfaction is defined as θ |= τ ≥ b if and only
if �τ�(θ) ≥ b. Constraint sets are interpreted as conjunction and satisfaction is
defined accordingly. The set of all constraints over X is denoted C(X). For con-
venience, arithmetic operations are lifted point-wise to integer-valued functions
of equal domain.

Let Λ be a set of labels and CS a finite set of system counters. A counter
system (CS) over Λ and CS is a tuple S = (S,Δ, sI , λ) where S is a finite set
of control states, sI ∈ S is the initial state, λ : S → 2Λ is a labelling function,
and Δ ⊆ S × Z

CS × 2C(CS) × S is a finite set of transitions carrying an update
μ : CS → Z to the system counters and a finite set of guards Γ ⊆ C(CS) over
them. A configuration of S is a pair (s, θ) comprised of a state s ∈ S and a
valuation θ : CS → Z. A run of S is an infinite sequence ρ = (s0, θ0)(s1, θ1) . . . ∈
(S × Z

CS )ω such that (s0, θ0) = (sI ,0) and for all positions i ∈ N there is a
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transition (si, μi, Γi, si+1) ∈ Δ such that θi+1 = θi + μi and θi+1 |= Γi. The set
of all runs of S is denoted runs(S).

Let λ# : S∗ → N
Λ denote the accumulation of labels in a multi-set fashion,

counting the number of occurrences of each label on a finite state sequence
w ∈ S∗ by λ#

P (w) : 	 �→ |{i ∈ [0, |w| − 1] | 	 ∈ λ(w(i))}| for all 	 ∈ Λ. The
set of successors of a state s ∈ S in S be denoted by sucS(s) := {s′ ∈ S |
∃μ,Γ : (s, μ, Γ, s′) ∈ Δ}, and the corresponding transitive and reflexive closure
by suc∗

S(s). A (finite) path in S is a (finite) state sequence w = s0s1 . . . with
si+1 ∈ sucS(si) for all 0 ≤ i < |w|. A finite path w = s0 . . . sn is simple if no
state occurs twice, it is a loop if s0 ∈ sucS(sn), and a row if no state is part of
any loop in S. The counter system S is flat if for every state s ∈ S there is at
most one simple loop s0 . . . sn with s0 = s. Let the size of S be denoted by |S|
and defined as the length of its syntactic representation with numbers encoded
binary.

Counting LTL. We consider linear temporal logic extended by counting con-
straints in the style of [25]. In contrast, however, we admit arbitrary integer
coefficients. Moreover, the semantics is defined in terms of runs of counter sys-
tems and the logic provides access to the counter valuation by means of Pres-
burger constraints. Let AP and C be fixed, finite sets of atomic propositions
and counter names, respectively. The set of CLTL formulae (denoted simply by
CLTL) is defined by the grammar

ϕ ::= true | p | γ | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕU[τ≥b] ϕ

τ ::= a · ϕ | τ + τ

for atomic propositions p ∈ AP , guards over counter names γ ∈ C(C) and
integer constants a, b ∈ Z. Additional abbreviations may be used with expected
semantics, in particular false := ¬true, ϕUψ := ϕU[1·true≥0] ψ and F[τ≥b] ϕ :=
trueU[τ≥b] ϕ. We may write CLTL(C ′) for the restriction to formulae that only
use counter names from some specific set C ′ ⊆ C. By sub(ϕ) we denote the set
of subformulae of ϕ (including itself).

Let S = (S,Δ, sI , λ) be a counter system over counters CS with a run ρ =
(s0, θ0)(s1, θ1) . . . and i ≥ 0 a position on ρ. Observe that expressions of the form
τ ≥ b are in fact arithmetic constraints from the set C(CLTL). The satisfaction
relation |= is defined inductively as follows. For plain LTL formulae, the usual
definition applies. Additionally, for (τ ≥ b) ∈ C(CLTL(CS)), γ ∈ C(CS), and
ϕ,ψ ∈ CLTL(CS) let

(S, ρ, i) |= γ :⇔ θi |= γ

(S, ρ, i) |= ϕU[τ≥b] ψ :⇔ ∃j≥i : (S, ρ, j) |= ψ and �τ�(#S,ρ
i,j−1) ≥ b

and ∀i≤k<j : (S, ρ, k) |= ϕ

where #S,ρ
i,j : CLTL → N denotes the function mapping a CLTL formula χ to the

number
#S,ρ

i,j (χ) := |{k | i ≤ k ≤ j, (S, ρ, k) |= χ}|
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of positions on ρ between i and j satisfying it. Notice that this is well-defined
because the mutual recursion descends towards strict subformulae. We write
(S, ρ) |= χ if (S, ρ, 0) |= χ and S |= χ if there is ρ ∈ runs(S) with (S, ρ) |= χ.

The logic fLTL [6] features a dedicated frequency-until operator U
a
b for a, b ∈

N and a ≤ b > 0 that can be considered as restricted variant of U[.]. An fLTL

formula ϕU
a
b ψ specifies that a formula ϕ holds at least at a fraction 0 ≤ a

b ≤ 1
of all positions before some position satisfying ψ. This is equivalently expressed
in CLTL by trueU[b·ϕ−a·true≥0] ψ.

Model Checking. We target the existential model-checking problem for CLTL.
Given a counter system S and a CLTL formula Φ the task is to decide whether
S |= Φ, i.e., to compute if S contains a run satisfying Φ. The problem is unde-
cidable for two reasons: First, counter systems extend Minsky machines [28] and
even LTL can express their undecidable (control-state) reachability problem. Sec-
ond, CLTL extends fLTL and checking a universal Kripke structure encodes its
undecidable satisfiability problem [6]. We therefore approach a parametrised
approximation of the problem that considers only runs with a specific shape,
namely those represented by so-called path schemas. A path schema [15,27] is
characterised by a (connected) sequence u0v0u1v1 . . . unvn of paths ui and cycles
vi of S. It represents all those runs ρ of S that traverse a state sequence of the
form u0v

�0
0 . . . un−1v

�n−1
n−1 unvω

n . Restricting the length of such a schema effectively
controls how complicated the shape of the considered runs can be. In particular,
it bounds the cycle alternation performed by a run.

Definition 1 (Flat model checking). Let S = (S,Δ, sI , λ) be a counter sys-
tem and n ∈ N. The flat approximation of depth n of S is the set FA(S, n) ⊆
runs(S) such that, for all ρ = (s0, θ0)(s1, θ1) . . . ∈ runs(S),

ρ ∈ FA(S, n) ⇔ ∃u0,v0,...,um,vm∈S∗ : |u0v0u1v1 . . . umvm| ≤ n

∧ ∃k0,...,km−1∈N : s0s1 . . . = u0v
k0
0 . . . um−1v

km−1
m−1 umvω

m.

The flat model-checking problem is to decide for a given CLTL formula ϕ,
whether there is a run ρ ∈ FA(S, n) with (S, ρ) |= ϕ, denoted FA(S, n) |= ϕ.

A flat approximation FA(S, n) induces a flat counter system F such that
FA(S, n) = runs(F) and thus a series (Fn)n∈N of flat counter systems repre-
senting an increasing number of runs of S. Flat model checking can hence be
understood as verifying the nth system in this series providing the computational
benefits of flatness in the concrete case. As mentioned earlier, this is similar to
bounded model checking, where the approximation is prefix-based and represents
only a finite number of runs.

3 Model Checking CLTL over Flat Counter Systems

This section is dedicated to lifting the technique for model-checking fLTL over
flat Kripke structures [13] to CLTL and flat counter systems. The central aspect
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is the definition of augmented path schemas (APS) and the notion of consistency.
We observe that consistent APS are suitable witnesses for runs because they are
of bounded size and exist if a formula is satisfied. The QPA encoding of the
flat-model-checking problem presented in Sect. 4 builds on these definitions. To
simplify notation, we fix in this section a counter system S = (SS ,ΔS , sI , λ)
and a CLTL formula Φ, both over counters CS . Augmented path schemas [13]
extend path schemas by a labelling that provides additional information, as well
as counters and guards to constrain the set of runs of an APS beyond a specific
shape. The following definition extends that of [13] to take the counters and
guards of S into account. See Fig. 1 for an example.

s0
p

s1 s2

s3
p

s4
q

1
0

)

−2
1

)
c ≥ 0

d ≥ 5 (13) (4) (6) (ω)

L1 L2 L1 L3

Fig. 1. A counter system S over propositions AP = {p, q} as labels and counters {c, d},
and (a sketch of) an APS P in S that alternates the loops L1 = s0 and L2 = s1s2s3 of
S. Associating with each loop of P a number of iterations (potentially) identifies one
specific run of S that is represented by P.

Definition 2 (APS). An augmented path schema (APS) in S is a structure
P = (Q,ΔP , λP , org) where

– (Q,ΔP , q0, λP) is a flat counter system over Q = {q0, . . . , qn}, for some n ∈
N, with labelling λP : Q → 2sub(Φ)∪AP and simple path q0 . . . qn;

– org : Q → SS maps every state to an origin such that λP(q) ∩ AP =
λS(org(q)) ∩ AP and org(q0) = sI ;

– for each transition (q, μ, Γ, q′) ∈ ΔP there is (org(q), μ̂, Γ̂ , org(q′)) ∈ ΔS with
Γ̂ ⊆ Γ and μ̂(c) = μ(c) for all c ∈ CS ;

– ΔP = Δfwd ∪̇ Δbwd is comprised of forward- and backward transitions where
• Δfwd = {(q0, μ0, Γ0, q1), . . . , (qn−1, μn−1, Γn−1, qn)},
• there is (qn, μn, Γn, qn′) ∈ Δbwd, for n′ ≤ n, closing the last loop, and
• for all (qj , μ, Γ, qi), (qk, μ′, Γ ′, qh) ∈ Δbwd we have i ≤ j, h ≤ k, and the

corresponding loops qhqh+1 . . . qk and qiqi+1 . . . qj are disjoint; and
– for each loop L = qiqi+1 . . . qi+� there is a front row F = qi−�−1 . . . qi−1

and, if i + 	 < n, a rear row R = qi+�+1 . . . qi+2�+1 with identical labelling
λP(qi−�−1) . . . λP(qi−1) = λP(qi) . . . λP(qi+�) = λP(qi+�+1) . . . λP(qi+2�+1).

The paths, loops, rows, and runs of P are those of the underlying counter
system where the latter are restricted to those visiting the last state qn of P.
The mapping org is lifted from states to paths and runs as expected, restricting
the valuations to the counters CS of S. Then, for every run ρ of P, the sequence
org(ρ) is a run of S starting in org(qI) = sI . We denote by lastl(P) := qn′ . . . qn
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the last loop of P. Observe that the definition requires each loop to be preceded
and (except for lastl(P)) succeeded by state sequences that may be considered
as an unfolding regarding the labelling sequence. These front and rear rows are
needed for technical reasons to cover edge-cases in reasoning on the first and last
loop iteration, respectively.

We are interested in APS that provide a semantically correct labelling
because they allow us to reason syntactically on where a particular formula
is satisfied.

Definition 3 (Correctness). A state q ∈ Q of an APS P is correctly labelled
with respect to a CLTL formula ϕ ∈ sub(Φ) if for all runs ρ = (q0, θ0)(q1, θ1) . . . ∈
runs(P) and all positions x ∈ N with qx = q we have (S, org(ρ), x) |= ϕ ⇔ ϕ ∈
λP(q).

This notion is very strict in the sense that the annotation must always be in
line with the CLTL semantics. Observe that there may not even exist a correct
labelling for a particular state: if the latter resides on a loop it may occur more
than once on some run and a formula Φ may hold at one of them but not at
the other (e.g., because Φ imposes a minimal number of iterations to follow).
However, an APS in S that is actually correctly labelled witnesses the existence
of a run satisfying Φ in case it is non-empty and its initial state is labelled by
Φ. In [13], the syntactic criterion called consistency was introduced in order to
characterise APS that are labelled correctly with respect to fLTL formulae. We
generalise the definition and the results to CLTL, i.e., from relative frequencies
to arbitrary linear constraints and from Kripke structures to counter systems.

Consider an APS P = (Q,ΔP , λP , org) using counters CP ⊇ CS where
q0 . . . qn is the unique simple path traversing all states of P. The criterion distin-
guishes the syntactical forms of a CLTL formula based on the top most operator
and identifies for each case syntactical conditions that certify satisfaction or
violation of a corresponding formula. Further subordinate cases formulate indi-
vidual conditions to matching the various situations that may apply to a control
state, e.g., whether it is on a loop or not. Before presenting the formal definition,
let us discuss the rationale of the individual conditions.

Consistency for Non-until Formulae. The simplest case is that of propo-
sitions, because these labels are correct by definition. Recall that constraints
γ ∈ C(CS) over system counters, e.g. c1 − 2c2 ≥ 0, are not only valid atomic
CLTL formulae but also valid transition guards. Therefore, the reasoning on their
satisfaction can directly be moved to the level of the counter system. If all incom-
ing transitions of a state q ∈ Q are guarded by some constraint γ, then every
valid run necessarily satisfies it whenever visiting q. Similarly, if these transitions
are guarded by the dual constraint γ, then γ can not hold at any occurrence of
q on any run.

If Φ is a Boolean combination, correctness can be established locally for any
state q when inductively assuming that q is labelled correctly by all the strict
subformulae. For example, a negation ¬ϕ holds on all runs at all positions of a
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state q if and only if on all runs ϕ does not hold at q. With the assumption that
the labelling with respect to ϕ is correct, labelling q by ¬ϕ is correct if and only
if q is not labelled by ϕ, and vice versa. Similar reasoning applies to conjunctions
and the temporal operator X.

Consistency for Until Formulae Using Balance Counters. For counted
until formulae, we also make use of the counting capabilities of the system model,
although the reasoning is more involved. Consider Φ to have the form ϕU[τ≥b] ψ,
and let q, q′ ∈ Q be row states such that q′ ∈ suc∗

P(q) is a successor of q and
(correctly) labelled by ψ. Assume that the states in-between q and q′ are correctly
labelled by ϕ. In order to establish that Φ holds at state q on any run, it remains
to enforce the counting constraint on the intermediate segment. To this end, also
assume that P features a counter cτ,q that tracks the value of the term τ as a
balance that starts with zero at q and is updated according to the effect that each
individual state would have on the value of τ . For example, if τ = p1 −2p2, then
the counter is updated by +1 on every outgoing transition of a state labelled
by p1, because this is what each such state contributes to the term value. The
counter would be update by −2 on the outgoing transitions, if the state is labelled
by p2, and consequently by 1 − 2 = −1 if it carries both labels. Then, upon
reaching q′ along some run, the counter cτ,q would hold precisely the value of
the counting term τ evaluated on the intermediate path taken from q to q′. If the
incoming (forward) transition of q′ is now labelled by the guard ct,q ≥ b, then
Φ can be assumed to hold whenever a valid run visits q because q′ is certainly
visited and will then serve as witness. Dually, if all such potential witness states
q′ are guarded instead by the dual constraint ct,q < b, then there is no way a
valid run could satisfy Φ when visiting q.

Definition 4 (Balance counter). Let P = (Q,ΔP , λP , org) be an APS in S
with counters CP . Let τ be a constraint term over sub(Φ), and q ∈ Q a row state
in P. A balance counter for τ and q in P is a counter cτ,q ∈ CP that is updated,
on all transitions (q1, μ, Γ, q2) ∈ ΔP , by

μ(cτ,q) =

{
0 if q1 �∈ suc∗

P(q)
�τ�(λ#

P (q1)) otherwise.

In combination with appropriately guarded states, balance counters allow us
to reason syntactically about the satisfaction of Φ. Such counters are particularly
useful to track the value of a term across an entire loop, even if some runs of P
iterate it more often than others.

Static Consistency Conditions for Until Formulae. If there is no entire
loop between two states q and q′, using a counter is still possible but not nec-
essary. Each run passes precisely once the (unique) path between q and q′, so
whether or not q′ witnesses satisfaction of Φ at q can be determined statically,
independently of the precise course of the run in other parts. While the existence
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of a balance counter and appropriate guards imply that a formula is satisfied,
it would be too restrictive to consider this as only option. There are situations
where satisfaction of a formula can not be witnessed by a balance counter. For
example, if a witness state q′ is part of a loop, a corresponding guard may be
satisfied at one of its occurrences on a run but not at all of them. While the con-
sistency criterion is intended to be strong enough to imply correctness, it shall
also admit a sufficiently large class of APS to represent all reasons for satisfaction
(and violation). Therefore, the definition admits also the static reasoning.

A further case treated explicitly concerns the effect of the last loop. If travers-
ing it once exhibits a positive effect on the evaluation of τ , then it dominates the
effects of all other loops, since it is traversed infinitely often. Therefore, if it can
be reached from q and traversed once without violating ϕ, and contains some
witness state labelled by ψ, then Φ is necessarily satisfied when a run reaches q.

Finally, the last case considered by the consistency criterion is concerned
with the satisfaction of Φ when visiting states that are situated directly on a
loops: If Φ holds at the first occurrence of a state q on a run and at the last,
then the formula holds also at all occurrences of q in-between. The reason is,
essentially, that the effect of one iteration of a loop on the value of the term
τ is always the same (at least, if the labelling by all subformulae is correct, as
we have assumed). Therefore, the worst (i.e., smallest) value of τ is encountered
either in the first or the last iteration. Augmented path schemas are defined to
feature for each loop a preceding and a succeeding row that are exact copies
and can be considered as unfoldings. Hence, if these are correctly labelled with
respect to Φ, then the loop labelling inherits their correctness.

Using the above reasoning, it can be shown that the following definition of
consistency is a sufficient criterion for correctness. It extends that of [13] to the
present context and accounts for the various subtleties arising from the different
cases.

Definition 5 (Consistency). Let P = (Q,ΔP , λP , org) be an APS in S with
|Q| = n, simple path q0 . . . qn−1, and ϕ a CLTL formula. A state qi ∈ Q is
ϕ-consistent if ϕ ∈ AP is an atomic proposition or

(A) ϕ = (τ ≥ b) ∈ C(C), all incoming transitions (q, μ, Γ, qi) ∈ ΔP are guarded
by ϕ ∈ Γ if ϕ ∈ λP(qi) and by ϕ ∈ Γ otherwise, and if i = 0, then
ϕ ∈ λP(qi) ⇔ 0 ≥ b.

For non-atomic formulae ϕ, the state qi is ϕ-consistent if for all ψ ∈ sub(ϕ)\{ϕ}
all states q ∈ Q are ψ-consistent and one of the following condition B to D
applies.

(B) ϕ = χ ∧ ψ and ϕ ∈ λP(qi) ⇔ χ, ψ ∈ λP(qi); or ϕ = ¬ψ and ¬ψ ∈ λP(qi) ⇔
ψ �∈ λP(qi).

(C) ϕ = Xψ and Xψ ∈ λP(qi) ⇔ ψ ∈ λP(q), for all q ∈ sucP(qi).
(D) ϕ = χU[τ≥b] ψ and one of the following holds:

1. ϕ ∈ λP(qi), �τ�(λ#
P (lastl(P)) > 0, ψ ∈ λP(q) for some q ∈ lastl(P), and

χ ∈ λP(q′) for all q′ ∈ suc∗
P(qi).



Flat Model Checking for Counting LTL 523

2. The state qi is not part of a loop. If ϕ �∈ λP(qi), then ψ �∈ λP(qi) or 0 < b.
Further, if ϕ �∈ λP(qi), then
(i) there is some k ≥ i such that χ �∈ λP(qk) and, for each j ∈ [i, k],

|sucP(qj)| = 1 and ψ ∈ λP(qj) ⇒ �τ�(λ#
P (qi . . . qj−1)) < b or

(ii) P contains a balance counter cτ,i ∈ CP for τ and qi, and the guard
(cτ,i < b) ∈ Γ for all (q, μ, Γ, qj) ∈ ΔP where j > i, ψ ∈ λP(qj), and
∀k∈[i,j−1] : χ ∈ λP(qk).

If ϕ ∈ λP(qi), then there is k ≥ i with ψ ∈ λP(qk), ∀j∈[i,k−1] : χ ∈ λP(qj),
and

(iii) �τ�(λ#
P (qi . . . qk−1)) ≥ b and ∀j∈[i,k−1] : |sucP(qj)| = 1, or

(iv) k > i and P contains a balance counter cτ,i ∈ CP for τ and qi, and
the unique transition from qk−1 to qk has the form (qk−1, μ, Γ ∪{cτ,i ≥
b}, qk) ∈ ΔP .

3. qi is on some loop L of P, and qi−|L| and qi+|L| (if L �= lastl(P)) are
ϕ-consistent.

The APS P, a loop, or a row in P are ϕ-consistent if all their states are ϕ-
consistent, respectively.

Using a structural induction on a CLTL formula ϕ we can show that if some
state of an APS is ϕ-consistent, then the state is correctly labelled by that
formula. The base cases those of atomic propositions and guards, concerning
condition A of Definition 5. The remaining conditions cover the inductive cases
for the potential shape of ϕ and rely on the fact that the definition demands all
states to be consistent with respect to each strict subformula of ϕ. The proof
relies on a thorough investigation of each syntactic case in combination with
various specific situations that states can be found in, as discussed above. It has
to deal with the sometimes quite subtle interplay between temporal counting
constraints and iterated loops and we omit the technicalities of the proof here
in favour of conciseness.

Theorem 6 (Correctness). If a state q of an APS P in S is ϕ-consistent,
then it is labelled correctly with respect to ϕ.

Consequently, a non-empty APS in S of which the initial state is Φ-consistent
and labelled by Φ witnesses that S |= Φ.

Existence of Consistent APS in Flat Systems. Although consistency
imposes a very specific shape, it can be shown that for a significant class of
systems there is always a Φ-consistent APS (of bounded size) if the formula Φ is
satisfied. The construction for fLTL over flat Kripke structures [13] extends with
Definition 5 to CLTL.

Assume S is flat and let σ ∈ runs(S) be a run that satisfies Φ. In the fol-
lowing we sketch how to construct a Φ-consistent APS in S that contains (a
representation of) σ and is thus labelled by Φ at its initial state. It is known
that each path in a flat structure can be represented by some path schema of
linear size [2,15]. Hence, let P be an APS containing a run ρ ∈ runs(P) with
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orgP(ρ) = σ and thus satisfying Φ. The states of this APS can now recursively
be labelled by the subformulae of Φ as semantically determined by ρ.

The conditions of Definition 5 can be realised for Φ under the assumption,
that the labelling has been completed for each strict subformula. The construc-
tion distinguishes which case applies to Φ. If Φ is an atomic proposition, nothing
needs to be done since the labelling is consistent by definition. Boolean combi-
nations can be realised by simply adjusting the labelling locally for each state
of P, e.g., including Φ = ¬ϕ in the labelling of a state if and only if it is not
labelled by ϕ. Assume Φ has the form Xϕ. Depending on whether the successor
states of a state q are labelled by ϕ or not, q is labelled by Xϕ or not. Notice
that all successors of a state have the same labelling because either there is only
one or the state is the last state of some loop. In the latter case, the successors
are the first states of the loop and its rear copy and thus share the same labelling
(cf. Definition 2).

For the remaining types of formulae, i.e., until formulae and constraints over
system counters, the structure of P may have to be altered, in order to provide
a consistent labelling and to retain a valid run ρ (as representation of σ). The
essential difficulties concern loop states because these may occur at more than
one position on ρ. A subformula ϕ may then be satisfied at some, but not all
of these positions. For example, consistency for a constraint formula γ = τ ≥ b
and a state q demands to add γ or its dual to every incoming transition of q,
depending on whether we want to label it by γ or not. Clearly, the guards can
simply be added and this would settle consistency. However, if γ is satisfied at
one occurrence of q on ρ but not at another, the guards would be violated at one
of these positions and ρ would not be valid anymore. To establish consistency for
until formulae, we may have to add a fresh balance counter to the system and
similar issues may arise. It may therefore be necessary to introduce copies of a
state in order to distinguish the positions of the state and label them differently
in the APS. The important observation is that during the iteration of a loop the
validity of a formula ϕ at some state switches at most once, assuming the APS
is labelled consistently by all subformulae already. Therefore, loops may have
to be duplicated once for each subformula, one copy where on all iterations ϕ
holds and one where it does not. The recursive labelling procedure may therefore
increase the size of P exponentially.

Theorem 7 (Existence). If S is flat and S |= Φ then there is a non-empty and
Φ-consistent APS in S with initial state labelled by Φ and of at most exponential
size in S and Φ.

Notice that, even if S is not flat, each run contained in the flat approximation
FA(S, n) of S can by definition be represented by an APS in S of size n. Therefore,
the construction applied to FA(S, n) also yields an exponential witness.

Corollary 8. If FA(S, n) |= Φ then there is a non-empty and Φ-consistent APS
in S with initial state labelled by Φ and of at most exponential size in n and Φ.
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4 From Flat Model Checking to Presburger Arithmetic

For solving the flat model-checking problem of a counter system S = (S,Δ, sI , λ)
over counters CS and a CLTL(CS) formula Φ, the developments in the previ-
ous section devise the search for an augmented path schema P in S that is
Φ-consistent, labelled initially by Φ and non-empty. In the following we sketch a
formulation of this search in quantifier-free Presburger arithmetic, aiming at an
SMT-based implementation.

The idea is to encode an APS of size n ∈ N and a run of it as valuation of a
set of first-order variables. We construct a formula fmc(S, Φ, n) that is satisfiable
if there is a run ρ ∈ FA(S, n) satisfying Φ and such that any solution represents
a valid witness that S |= Φ. Without restriction, we need only to represent APS
P = (Q,ΔP , λP , org) where the states are natural numbers Q = [0, n − 1]. The
natural ordering implicitly determines the unique maximal simple path in P. It
hence suffices to encode explicitly the beginning and end of loops, the origin and
labelling of each state, as well as a valid run. Further, the formula expresses the
satisfaction of all encountered guards and the consistency criterion.

For convenience, we use not only first-order variables for integer numbers but
also boolean, enumeration and natural number types (sorts). They can, theoret-
ically, be encoded into integers but are more readable and directly supported
by, e.g., the z3 SMT solver. We use notation of the form var : X to denote that
some variable symbol var is of some sort X. Mappings with some finite domain Y
can be represented by variable vectors of length |Y | that we denote concisely by
single variable symbols var : XY . The shorthand ite(cond,prop, alt) represents
the if-then-else construct. Figure 2 depicts an example of an APS P and its rep-
resentation in terms of first-order variables and their valuation. For every state
i ∈ Q, we encode the positions of loops in terms of a variable typi : {�, �, �, �}
that indicates whether it is outside (�), inside (�), the beginning (�), or the
end (�) of a loop. We use �i to abbreviate typi = � for � ∈ {�, �, �, �}. The
origin is represented by a variable orgi : S and the labelling by lbli : {0, 1}sub(Φ),
describing the set λP(i) ⊆ sub(Φ). The formula

fmc(S, Φ, n) := aps(S, n) ∧ run(S, n) ∧ consistency(n,Φ) ∧ Φ ∈ lbl0

specifies the shape of P, a run and that the initial state is labelled by Φ. The
formula components are discussed next.

Basic Structure of APS. The basic structure is easily specified as QPA for-
mula aps(S, n). It states that sI is the origin of the first state (org0 = sI), that
loops are delimited by � and �, and that the labelling of states by propositions
coincides with that of S.

A way to express that the backward transitions from the last to the first
state of the loops has a correspondence in S is to build a constraint over all
pairs of states from Q. This is, however, quadratic in n and we therefore use
a propagation scheme introducing n additional variables orgAtEndi : S. We let
them equal orgi where typi = � and otherwise be copied from orgAtEndi+1,
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Fig. 2. Example of the encoding of the run and path schema from Fig. 1 with consistent
labelling by ϕ = trueU[p−¬p≥0] q. It demonstrates propagation of counter values and
the maximal witness position for ϕ. Some variables are omitted for conciseness.

thus propagating backward the origin of the last state of every loop. The for-
mula

∧n−1
i=0 �i → ∨

(s,μ,Γ,s′)∈Δ orgAtEndi=s ∧ orgi=s′ then guarantees that all
backward transitions exist in S. Forward transitions are specified similarly. We
assume a minimal loop length of 2 due to distinct positions for the first (�) and
the last (�) state of each loop but single-state loops can still be represented (cf.
Fig. 2) while increasing the upper bound for the size of path schemas only by one
state per loop. Definition 2 demands that loops be surrounded by identical rows
which are not represented explicitly in the encoding. Instead, runs are required
to traverse each representation of a loop at least three times, the first represent-
ing the front, the last representing the rear and the remaining representing the
actual loop traversals. The construction distinguishes between the first, second,
and last iteration where necessary.

To allow for a simplified presentation, let us assume that there is at most
one transition between every two states of S, thus being uniquely identified by
orgi and orgi+1. The assumption could be eliminated by adding 2n additional
variables determining explicitly which transition is selected for the represented
APS.

Runs. The formula run(S, n) specifies the shape and constraints of a run in
the encoded schema. Variables itri : N indicate how often state i ∈ Q is visited
and are thus constraint to equal 1 outside loops and to stay constant inside each
loop. Infinite iteration of the last loop is represented by the otherwise unused
value 0.



Flat Model Checking for Counting LTL 527

To ensure that the represented run is valid it has to satisfy all the guards at
any time. The variables valFsti, valSeci, valLsti : ZCS∞ hold the counter valuations
at state i ∈ Q when the represented run visits it for the first, the second and
the last time, respectively. Due to flatness each loop is entered and left only
once. Since the guards of the counter system are linear inequalities and the
updates are constant, it suffices to check them in the first and last iteration of
a loop. For a term τ =

∑�
j=0 ajcj and a variable symbol var : ZCS let τ [var] :=

∑�
j=0 aj · var(cj) denote the substitution of the counter names by the variable

symbol (representing the value of) var(cj). The formula
∧n−1

i=1

∧
(s,μ,Γ,s′)∈Δ orgi−1 = s ∧ orgi = s′

→ ∧
(τ≥b)∈Γ τ [valFsti] ≥ b ∧ (¬�i → τ [valLsti] ≥ b)

then specifies that the encoded run satisfies the guards whenever taking a forward
transition. Notice that the (forward) transition from state i − 1 to state i is not
taken at the beginning of the last iteration of a loop and thus, its guard must not
be checked for the corresponding valuation. Instead, the guards of the backward
transition pointing to i must be satisfied from the second iteration on, and are
expressed similarly.

It remains to actually specify the counter valuations along the run. By defi-
nition, valFst0 = 0. Outside of loops (�) we impose valFsti = valSeci = valLsti =
valLsti−1+μ where μ is the update of the transition from i−1 to i. Inside (�, �) we
let valFsti = valFsti−1 + μ, valSeci = valSeci−1 + μ and valLsti = valLsti−1 + μ.
At the beginning (�) of a loop the value in the first iteration is propagated
as outside (valFsti = valLsti−1 + μ), but for the second iteration we impose
valSeci = valFstAtEndi + μ where μ comes from the incoming backward tran-
sition and is applied to the last value of the previous iteration propagated as
above using variables valFstAtEndi.

Having a direct handle on the valuations in the first and second iteration
(in terms of the variables valFsti and valSeci) as well as the total number of
loop iterations (itri), it is tempting to specify the valuations in the last iteration
simply by

valLsti = valFsti + (valSeci − valFsti) · (itri − 1).

Unfortunately, this formula uses multiplication of variables and hence exceeds
Presburger arithmetic. Instead, the updates over the second to last loop iteration
are accumulated in an explicit variable lUpdi such that valLsti can be set to
valFsti + lUpdi. We express this accumulation by the formula

∧

i∈[1,n−2]
(s,μ,Γ,s′)∈Δ

⎛

⎝
(�i ∧ orgi−1 = s ∧ orgi = s′ → lUpdi = μ · itri − μ)

∧ (�i ∧ orgi−1 = s ∧ orgi = s′ → lUpdi = μ · itri − μ + lUpdi+1)
∧ (�i ∧ orgAtEndi = s ∧ orgi = s′ → lUpdi = μ · itri − μ + lUpdi+1)

⎞

⎠

.

Essentially, the multiplication by itri is distributed over the individual transition
updates along the loop. This is admissible because the individual updates μ
appear in the formula not as variables but as constants. In the formulation above,
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lUpdi is always zero for states i on the last loop but this is no problem because
this particular situation can be handled using valFsti and valSeci. Observe also
that the variable lUpdi holds only intermediate results inside and at the end
of loops and is undefined outside. Only for states i that are the beginning of
a loop, it holds the precise accumulated loop effect and this value is used for
propagation as above.

Using lUpdi, the calculation of the valuations in the last iteration of a loop is
now specified by valLsti = valFsti + lUpdi. In the infinitely repeated last loop of
the schema, there is no actual last iteration, but the variables are nevertheless
used to indicate the limit behaviour by specifying

∧

c∈CS

(valFsti(c) = valSeci(c) = valLsti(c))
∨ (valFsti(c) > valSeci(c) ∧ valLsti(c) = −∞)
∨ (valFsti(c) < valSeci(c) ∧ valLsti(c) = ∞).

Consistency. The formulae constructed above describe a non-empty augmented
path schema in S of which the first state is labelled by Φ. In the following,
we develop the components of the formula consistency(S, n, Φ) expressing the
different cases of Definition 5. Consistency for Boolean combinations (condition
B) can almost literally be translated to QPA. Concerning condition A, constraints
of the form τ ≥ b are not modelled explicitly. Rather, the formula

(τ ≥ b) ∈ lbli ↔ τ [valFsti] ≥ b ∧ τ [valLsti] ≥ b

imposes for each i that the represented run satisfies the constraints as if they
were guards on all incoming transitions on any state labelled by an atomic con-
straint. To express condition C, variables lblAtBegi : 2sub(Φ) propagate labelling
information from the start of a loop towards the end. The condition for formulae
Xϕ ∈ sub(Φ) is then specified by (Xϕ ∈ lbln−1 ↔ ϕ ∈ lblAtBegn−1) and for
0 ≤ i ≤ n − 2 by

ite
(
Xϕ∈lbli, ϕ∈lbli+1 ∧ (�i → ϕ∈lblAtBegi), ϕ�∈lbli+1 ∧ (�i → ϕ �∈lblAtBegi)

)
.

Until Condition D1. Consider a formula ϕ = χU[τ≥b] ψ ∈ sub(Φ). We first set up
some propagations to be able to express condition D1. To access the accumulated
value of τ on a single iteration of the last loop we introduce variables accτ

i for
i ∈ Q. Let the formula accu(n, τ) be defined as

(accτ
n−1 = τ [lbln−1]) ∧ ∧n−2

i=0 ite(itri = 0, accτ
i = accτ

i+1 + τ [lbli], accτ
i = accτ

i+1).

It implies that accτ
0 holds the effect of the last loop on the value of τ . Condi-

tion D1 requires that χ holds globally at all reachable states. For loop states this
concerns not only larger states (with respect to ≥). The whole loop must be
labelled by χ. Using variables prpgχ

i and globχ
i for i ∈ Q the formula

glob(n, χ) := (prpgχ
n−1 ↔ χ ∈ lbln−1) ∧

(∧n−2
i=0 prpgχ

i ↔ prpgχ
i+1 ∧ χ ∈ lbli

)

∧(globχ
0 ↔ prpgχ

0 ) ∧ ∧n−1
i=1 globχ

i ↔ ite(�i ∨ �i, prpgχ
i , globχ

i−1)
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propagates this information through the structure by implying that globχ
i is true

if and only if χ is labelled at all states reachable from i. The information whether
ψ holds somewhere on the last loop is made available in terms of the variable
onLastψ by

fin(n, ψ) := onLastψ ↔ ∨n−1
i=0 itri = 0 ∧ ψ ∈ lbli.

Then, condition (D1) is expressed by

conD1(ϕ, i) := ϕ ∈ lbli ∧ accτ
0 > 0 ∧ onLastψ ∧ globχ

i .

Until Condition D2. Condition D2 demands the existence or absence of a wit-
ness state proving that ϕ = χU[τ≥b] ψ holds. As before, it would be inefficient
to model balance counters and the guards required by the criterion explicitly.
Instead, a formulation is developed that assures that the encoded APS can be
assumed to have the necessary counters and guards. For example, assume some
state i is to be labelled by ϕ and consider the best (maximal) value of the term
τ on a path starting at state i and leading to some state satisfying ψ, without
violating χ in between. If that value is at least b, then there is a state at which
a balance counter cτ,i for i and τ would have precisely that value and checking
the constraint cτ,i ≥ b would succeed. On the other hand, if the best value is
below b, then there is no such state. Even, the dual constraint could be added
to any potential witness state and the encoded run would still be valid.

We introduce variables maxFstϕi : Z∞ and maxLstϕi : Z∞ for each i ∈ Q.
For the first and last occurrence of state i, respectively, they are supposed to
hold the maximal value possibly witnessing satisfaction of the constraint, the
symbolic value −∞ expressing non-existence. Recall that these positions repre-
sent only rows as the first and last iteration of loops represent their front and
rear, respectively. Notice also that the latter value is not defined for positions
belonging to the last loop. Then, condition D2 can be expressed for state i in
terms of the formula conD2(ϕ, i) defined as

(ϕ ∈ lbli ↔ maxFstϕi ≥ b) ∧ ((ϕ ∈ lbli ↔ maxLstϕi ≥ b) ∨ itri = 0).

Maximal Witness. The optimal witness value is obtained by a suffix optimum
backward propagation from the end to the start of the represented schema. Its
QPA formulation witnessMax(n, ϕ) is comprised of three parts: the computation
of the potentially propagated value, the calculation of the accumulated loop effect
on the value of τ as necessary part of that, and the actual selection. Concerning
the selection, the best value is propagated backwards, as long as χ holds. When
the chain breaks, no witness position is properly reachable and the best value
is set to −∞. Each state of the schema where ψ holds is a potential witness
for preceding states. Thus, if the propagated value is less than 0, this state will
generally provide a better value for τ than any of its successors. For example, for
the case χ, ψ ∈ lbli the formula specifies that maxLstϕi = max(updLstϕi , 0) where
variables updLstϕi are assumed to hold the value propagated from state i + 1.

The overall effect of (all iterations of) a loop on the value of τ is made
accessible in terms of variables sumEffτ

i where i is the first state of a loop. It is
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obtained by summing up the individual contribution τ [lbli] ·(itri −3) of each loop
state i bound to variables effτ

i . The effect is multiplied only by itri − 3 since the
first (front), second (auxiliary), and last (rear) iteration is already accounted for
explicitly. In order to circumvent multiplication of variables in the formula, the
variables effτ

i are themselves defined by distributing the factor (itri −3) over the
sum of monomials of the term τ . Assuming τ to have the form τ =

∑m
k=0 akχk

the loop effect is hence specified by
(∧n−2

i=1 ite(�i, sumEffτ
i = effτ

i , sumEffτ
i = sumEffi−1 + effτ

i )
)

∧∧n−1
i=0 ite(χ0 ∈ lbli, efft,0

i = a0 · itri − 3a0, efft,0
i = 0)

∧∧m
k=1 ite(χk ∈ lbli, efft,k

i = efft,k−1
i + ak · itri − 3ak, efft,k

i = efft,k−1
i )

where the variables effτ
i = efft,m

i are to be considered identical. Then, we can
formulate the actual computation of the (potentially) propagated optimum using

(�i → updFstϕ
i = updLstϕ

i = maxFstϕ
i+1 + τ [lbli])

∧(
�i → updLstϕ

i = maxFstϕ
i+1 + τ [lbli] ∧ updFstϕ

i = maxAuxAtBegϕ
i + τ [lbli]

∧updAuxϕ
i = maxLstϕ

i + sumEffτ
i

)

∧(
�i ∨ �i → updLstϕ

i = maxLstϕ
i+1 + τ [lbli] ∧ updFstϕ

i = maxFstϕ
i+1 + τ [lbli]

∧ updAuxϕ
i = maxAuxϕ

i+1 + τ [lbli]
)
.

To evaluate condition D(2)i and D(2)iii an additional set of auxiliary variables
maxAuxϕ

i and updAuxϕ
i is used that represents, intuitively, the first real iteration

of a loop. The maximal value is, effectively, propagated through the rear of the
loop, then extrapolated over all iterations to the last position on the auxiliary
iteration (by adding the accumulated loop effect) and finally through the front
row. Since the value at the last state at the auxiliary iteration depends on that
at the first state in the last iteration, the latter is propagated from the beginning
to the end of the loop using variables maxAuxAtBegϕ

i , similar to the origin above.
Finally, the discussed parts can be combined to express consistency for a

formula χU[τ≥b] ψ by

glob(n, χ) ∧ accu(n, t) ∧ fin(n, ψ) ∧ witnessMax(n, χU[τ≥b] ψ)

∧∧n−1
i=0 conD1(χU[τ≥b] ψ, i) ∨ conD2(χU[τ≥b] ψ, i).

The structure of the encoding assures that the actual loops are always identically
labelled to their front and rear rows. Thus, by assuring those are consistent, all
loops automatically satisfy condition D3. This completes the construction of the
formula consistency(S, n, Φ) and thereby that of fmc(S, n, Φ).

Properties of the Encoding. A solution to fmc(S, Φ, n) yields a Φ-consistent
APS in S and a run, implying by Theorem6 that S |= Φ. Corollary 8 implies
that if the flat approximation FA(S, n) contains any run satisfying Φ, then
fmc(S, Φ, 2p(n)) is satisfiable (for a fixed polynomial p) at latest.
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Theorem 9. (i) If fmc(S, Φ, n) is satisfiable, then S |= Φ. (ii) If FA(S, n) |= Φ,
then fmc(S, Φ, 2p(n)) is satisfiable.

The encoding hence provides an effective means to solve the flat model-checking
problem based on QPA satisfiability checking. A major concern of our construc-
tion is to keep the formula as small as possible. Examining the indexing scheme
of variables, we observe that their number is linear in |Φ| + |S| and n. The
length of most parts of the formula fmc(S, Φ, n) only depends linearly on n or
n · |Δ| ≤ n · |S|. The parts encoding the guards in S further depend (linearly) on
the size of the guard sets associated to the transitions, more precisely, linearly
on the total length of all guards. The components of consistency(S, n, Φ) are of
linear size in n · |S| or n · |sub(Φ)|. Those concerning atomic constraints and until
formulae depend on the length of the constraint terms present in Φ.

Theorem 10 (Formula size). The length of fmc(S, Φ, n) is in O(n(|S|+ |Φ|)).

5 Evaluation

In order to evaluate whether flat model checking and the QPA-based encoding
can be used to perform verification tasks, we have implemented the procedure
and applied it to a set of problems provided by the RERS Challenge [22].

The tool flat-checker2 takes a CLTL specification, a counter system to be
verified in DOT format [19] and the approximation depth (schema size) and per-
forms the translation of the verification problem to a linear arithmetic formula.
The SMT solver z3 [29] is used to compute a solution of the formula, if possi-
ble, that is subsequently interpreted as satisfying run and presented adequately
to the user. The tool is developed in Haskell and provides a search mode that
automatically increases the depth up to a given a bound, in order to potentially
find a small witness quickly, before investing computation time in large depths.
A successful search can be continued to find a witness of smallest depth.

The RERS Challenge 20173 poses problems as C99 and Java programs that
provide output depending on read input symbols and internal state. The pro-
grams have a regular structure but are inconceivable with reasonable effort. It
features a track comprising 100 LTL formulas to be checked on a program (Prob-
lem 1) that is representable as a counter system by treating integer variables as
counters. The counting mechanism of CLTL admits a more specific formulation
of a correctness property, making it more restrictive or permissive than a plain
LTL formula. For example, a typical pattern in the RERS problem set has the
form ¬pU q, stating q occurs before p. It can be relaxed to state, e.g., p occurs at
most 5 times (F[p≤5] q) or less often than r (F[p−r<0] q). A stronger formulation
would be that q must occur more often before p (¬pU[q≥5] q or ¬pU[r−q≥5] q).
To evaluate our procedure on counting properties, we constructed variations of
formulae from the LTL track that express relaxed or strengthened versions of the
properties.
2 https://github.com/apirogov/flat-checker.
3 http://www.rers-challenge.org/2017/.

https://github.com/apirogov/flat-checker
http://www.rers-challenge.org/2017/
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By checking negated properties, counterexamples were found at an approxi-
mation depth of at most 128 for all violated formulae, while most formulae could
be falsified quickly. From the original 52 falsifiable LTL formulae, 43 were falsified
after less than 200 seconds per formula at depth at most 64, the remaining 9 took
at most 32 min per formula and depth 128. A batch analysis of the whole set of
100 formulae at depth 200 took a total of four days running time (Desktop PC,
Intel i5-750 CPU, 4 GB RAM). Some derived CLTL formulae took significantly
longer to be evaluated than the original LTL formulation. However, in most cases,
the introduction of counting constraints did not increase the evaluation effort
significantly.

6 Conclusion

The concise representation of runs in terms of augmented path schemas allows
for an accelerated evaluation of complex path properties expressed in a powerful
specification framework with counting as first-class feature. We therefore believe
that flat approximation provides a promising technique that deserves further
investigation. The underlying theory provides that the procedure is complete on
flat systems and, practically, an existing witness will be found eventually unless
all of them have an infinitely aperiodic shape. It can also be used as (incomplete)
approach to the satisfiability and synthesis problems of CLTL.

Although it may eventually hinder problem-specific optimisations, the SMT-
based implementation benefits from the engineering effort put into solvers. The
configurability of, e.g., z3 using specific tactics, provides potential for future
improvements. It remains to develop and compare different encoding variants.
Especially, formulations that admit incremental solving could speed up the veri-
fication process. The primary ambition of our approach is to verify the expressive
class of CLTL properties. Our evaluation suggests that this is feasible and, more-
over, that flat model checking is well applicable in a general verification context
such as the RERS Challenge.

Lifting the theoretical foundation to linear constraints and counter systems as
a class of infinite-state models is a consequent advancement of the theory of path
schemas. Characterising CLTL model-checking over flat systems in Presburger
arithmetic fills a gap between corresponding results for temporal logics with and
without counting [13–15].
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Abstract. Symbolic computation using BDDs and bisimulation min-
imization are alternative ways to cope with the state space explosion
in model checking. The combination of both techniques opens up many
parameters that can be tweaked for further optimization. Most impor-
tantly, the bisimulation can either be represented as equivalence classes
or as a relation. While recent work argues that storing partitions is more
efficient, we show that the relation-based approach is preferable. We do
so by deriving a relation-based minimization algorithm based on new
coarse-grained BDD operations. The implementation demonstrates that
the relational approach uses fewer memory and performs better.

Keywords: Bisimulation minimization · Symbolic model checking
BDDs · Decision diagrams · Parallel computing

1 Introduction

Model checking [1] proves a system’s correctness by analyzing its behavior as a
transition system, i.e., taking a model theoretical view of the system. As the size
of the transition system, or state space, is the bottleneck in this technique, many
reduction methods are used to manage large state space. In the current paper,
we combine bisimulation minimization [3] with symbolic representations [6] in
binary decision diagrams (BDDs) [5].

The state spaces of systems typically contain many states that have different
in data valuations, yet identical behavior. This notion of “bisimilar” states is
defined as an equivalence relation, which in turn induces a partition of (coarsest)
blocks of bisimilar states. Bisimulation minimization algorithms reduce the size
of the transition systems by merging bisimilar states.

Bisimulation minimization algorithms can thus represent the bisimulation
relation as either a (coarsest) partition or an equivalence relation. Fisler and
Vardi [13] argue that symbolic relation-based algorithms are not feasible, because
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in practice the BDD that represents the equivalence relation grows too large. For
this reason, the latest research gravitated towards the partition-based approach.
For instance, Van Dijk and Van de Pol [11] present a parallel symbolic partition-
based bisimulation algorithm. They state that partition BDDs, like the one used
in their algorithm, should in practice remain smaller than equivalence relation
BDDs.

The current paper presents a relation-based algorithm, which is derived from
first principles. Our algorithm is similar to the algorithm proposed by Cia-
rdo [19], but was found independently. We present the derivation of the key
symbolic operations offering more details of its inner workings. Moreover, the
derived operations are coarse, avoiding BDD unique and cache table pollution
by skipping intermediary results, similar to what has been done before for image
computation [24]. Additionally, we present a parallel version in the spirit of Van
Dijk and Van de Pol [11]. The algorithm is used to compare for the first time
the relation-based approaches to the partition-based approaches.

Surprisingly, the experimental results show that the relation-based
approaches use less memory and perform better than the partition-based
approaches. We argue that the variable interleavings allowed in the relational
approach can explain these unexpected results.

The current paper is structured as follows. In Sect. 2 we will explain the
notions of transition systems, bisimulation minimization, and BDDs in more
detail. Section 3 presents the parallel relation-based symbolic bisimulation algo-
rithm, along with its derivation. Related work, and in particular Van Dijk’s
algorithm, are discussed in Sect. 4. Our experiments and their results are pre-
sented in Sect. 5. Section 6 concludes this thesis with a discussion.

2 Background

Labelled transition systems. A labelled transition system, or LTS for short, is a
directed graph with labelled edges. LTSs are commonly used in model checking
to model different kinds of systems. The nodes of an LTS represent the system’s
states. The labelled edges represent actions or events which cause the system to
transition to another state.

Definition 1. A labelled transition system (LTS) is a tuple (S,A,→) consisting
of a set of states S, a set of action labels A, and a transition relation → ⊆
S × A × S. Instead of (s, a, t) ∈ →, we write s

a−→ t.

Example 1. A sliding tile puzzle is a combination puzzle in which the player has
to construct an image by rearranging square tiles that depict parts of the image.
The tiles are lain on a rectangular grid in which one space is left empty. The
player can rearrange the tiles by sliding adjacent tiles into the empty space. The
sliding tile puzzle considered in this example consists of a 2 by 2 grid and three
identical tiles. The tiles can be lain in four different arrangements, as shown in
Figure 1a. Each arrangement may be seen as a different state of the puzzle. In
each state one tile can be slid horizontally (h) and one tile can be slid vertically
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(v). By sliding a tile, the state of the puzzle changes. The LTS which models
this puzzle is shown in Figure 1b. Each state of the puzzle is represented by a
node and each move is represented by a labelled transition. Formally, the LTS
consists of the following sets:

S = {s1, s2, s3, s4}
A = {h, v}
→ = {(s1, h, s2), (s1, v, s3), (s2, h, s1), (s2, v, s4), (s3, h, s4), (s3, v, s1), (s4, h, s3), (s4, v, s2)}

Fig. 1. The four arrangements of a simple sliding tile puzzle (a) and its LTS (b).

Bisimulation. Due to concurrent behavior, an LTS typically contains multiple
(distinct) states with the same behavior. Fortunately, we can find and remove
these redundant nodes by computing a bisimulation relation.

Definition 2. A binary relation R ⊆ S × S over the set of states of an LTS
(S,A,→) is a bisimulation relation if whenever (s, t) ∈ R and a ∈ A,

1. for all s′ with s
a−→ s′, there exists a t′ such that t

a−→ t′ and (s′, t′) ∈ R
2. for all t′ with t

a−→ t′, there exists a s′ such that s
a−→ s′ and (s′, t′) ∈ R

We say that s is bisimilar to t and write s ∼ t if there exists a bisimulation R
with (s, t) ∈ R.

Corollary 1. The bisimilarity relation ∼ is an equivalence relation.

To obtain reduction through bisimulation minimization, two bisimilar states can
be merged, preserving a well-defined subset of all branching-time behavior of the
system [9,15,18,21]. The bisimilarity relation ∼ is the largest possible bisimula-
tion relation over an LTS, and is more commonly known as the maximal bisim-
ulation. Because the maximal bisimulation is an equivalence relation, the size of
an LTS can be minimized by computing the maximal bisimulation and merging
all states that are in the same equivalence class.
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Example 2. Consider the LTS shown in Fig. 2a. First off, note that every state
is always bisimilar to itself. Consequently, states s3 and s4 are also bisimilar,
as their outgoing transitions, (s3, c, s5) and (s4, c, s5), have the same label and
s5 ∼ s5. Thus, it is possible to merge these two states. This is done by first
adding all incoming transitions of s4 to s3 and then removing s4 from the LTS.
The result is depicted in Fig. 2b. Observe that the incoming transitions of a state
do not affect its behavior.

Example 3. Figure 2c shows the bisimulation minimization of Fig. 1b.

Fig. 2. An LTS (a) and its minimized equivalent (b) And the minimization of Fig. 1b.

Binary decision diagrams. BDDs were introduced by Bryant [5] as canonical
representations of Boolean functions that can easily be manipulated. A Boolean
function f : Bn → B takes n ≥ 0 arguments x1, x2, . . . , xn ∈ {0, 1} and returns
either a 1 or a 0 (true or false). We can restrict f with respect to one of its
arguments xi by assigning the value 0 or 1 to it, notation fxi and fxi

respectively.
These so-called cofactors are defined as follows.
fxi

(x1, . . . , xn) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn) and
fxi

(x1, . . . , xn) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)
The Shannon decomposition [22] of f can now be defined as follows.

f(x1, . . . , xn) = xi · fxi + xi · fxi

Definition 3. A binary decision diagram (BDD) is a rooted directed acyclic
graph comprising internal decision nodes and leaves with value 0 or 1. Internal
nodes have as attributes a variable label and two child nodes called its “low” and
“high” child.

Definition 3 defines the BDD data structure. A BDD is called ordered if the
variable labels are encountered in the same order for every directed path down
the root. A BDD is called reduced if it contains no redundant nodes (nodes
with the same low and high child) and no duplicate nodes (two nodes with the
same label, low child, and high child). Given a fixed variable ordering, a reduced
ordered BDD is a canonical representation of a Boolean function. From this
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Fig. 3. A non-reduced (a) and reduced (b) BDD representing the function
f(x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

point forward we will use the term BDD to refer to reduced ordered BDDs, as
is common in the literature.

Figure 3 shows an example of a non-reduced BDD and its reduced equivalent.
The low and high child of an internal node can be found by following the dashed
and solid arrows originating in the node respectively. Paths which go from the
root of a BDD down to a leaf specify different variable assignments. Whenever
we traverse from a node to its low (or high) child, we assign 0 (or 1) to the
variable contained in the node. The bottom nodes (rectangles) represent the
function evaluation.

In essence, non-reduced BDDs are binary trees which enumerate all possible
variable assignments of a Boolean function. Reduced BDDs remove from this
binary tree all isomorphic subgraphs and all nodes for which the low and high
edges point to the same node. The variables over which a BDD is defined are
usually expressed using a vector notation: x = x1, . . . , xn, where we assume the
order x1 < . . . < xn. If a path jumps over a certain variable, then it does not
matter which value is assigned to the variable. For instance, in the BDD shown
in Fig. 3b the edge from x1 to x3 skips variable x2, hence both 1, 0, 0 and 1, 1, 0
are assignments to x1, x2, x3 evaluating to 1 according to this BDD.

Viewed conversely, a BDD represents a set of assignments to its variables.
For instance, the BDD in Fig. 3b assigns to x1, x2, x3 the set {001, 010, 100, 110}.

BDD Operations. Besides concise representations of Boolean functions, BDDs
also provide efficient implementations of Boolean operations, such as disjunction
∨ (union ∪) and conjunction ∧ (intersection ∩). These Boolean operations can
even be realized in time linear to the number of nodes in the BDD (whereas the
BDD might represent exponentially many assignments in the number of vari-
ables). Given two BDDs F and G, and a binary set operation <op>, we can
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compute a BDD representing the result of F <op> G using Algorithm 1. This
recursive algorithm is based on the Shannon decomposition of F <op> G

F <op> G = x · (Fx <op> Gx) + x · (Fx <op> Gx)

It recursively traverses F and G at the same time, creating nodes in the result
BDD as it backtracks. The algorithm assumes that F and G utilize the same
variable ordering. The first line in the algorithm checks for the terminal case
where F and G are both leafs. Here a leaf containing the value of F <op> G
is returned. If F or G is not a leaf, then Line 3 determines the lowest variable
label x (min) of nodes F and G (the function var returns ∞ if called on a
leaf). Lines 4–6 create a node with label x whose children are the results of
the recursively calls to Fx <op> Gx and Fx <op> Gx. This node represents the
Shannon decomposition of F <op> G with respect to x. Note that if the variable
label of F (or G) is greater than x, then Fx = Fx = F (or Gx = Gx = G)
because the BDD contains no nodes with label x. In summary, this algorithm
builds up a BDD which follows the structure of the Shannon decomposition of
F <op> G and has the same variable ordering as F and G.

To merge duplicate nodes, a unique table is used to store every created node.
The call to BDD node at Line 6 checks whether the node that needs to be created
already exists in the unique table before constructing a new one. It also makes
sure that the low and high child are not the same, by returning either high or
low if this is the case. These checks assure that the result BDD is reduced.

Dynamic programming is used to make the BDD operations polynomial in
the number of BDD nodes. A separate operation cache is used to store the result
of every function call. Line 2 checks whether the result of the current call has
already been computed and Line 7 stores a new result in the cache. Due to
dynamic programming, the apply operation is linear in the number of nodes.

Given an LTS (S,A,→), the complement of BDD B(x ) is defined as S − B.
Complements can even be computed in constant time [4]. Furthermore, through
the following identities, existential/universal quantification can also be imple-
mented in BDDs in polynomial time (in the number of nodes) as well.

∃x : F = Fx ∪ Fx ∀x : F = Fx ∩ Fx

Algorithm 1. apply(F,G, <op>)
1: if (F = 0 ∨ F = 1) ∧ (G = 0 ∨ G = 1) then return F <op> G

2: if (F, G, <op>) in cache then return cache[(F, G, <op>)]

3: x ← min(var(F ), var(G))
4: low ← apply(Fx, Gx, <op>)
5: high ← apply(Fx, Gx, <op>)
6: result ← BDD node(x, low, high)
7: cache[(F, G, <op>)] ← result
8: return result
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Symbolic Model Checking with BDDs. Model checkers automatically prove that a
system M satisfies a specification ϕ, by analyzing the LTS of M according to the
propositions in ϕ. McMillan et al. [6] were the first to introduce a symbolic algo-
rithm for model checking by representing the system’s LTS as a BDD. States of
the system are represented as assignments to Boolean variables x := x1, . . . , xn

(after bit blasting), and can therefore be represented by a BDD over those vari-
ables (an assignment evaluates to 1 when the state is in the LTS). Transitions
can be represented as a relation, by copying all variables in the system to a
primed version: x ,x ′ := x1, . . . , xn, x′

1, . . . , x
′
n.

Given BDDs S(x ) and R(x ,x ′), representing a subset of LTS states (ini-
tial states or those satisfying some proposition in the specification ϕ) and the
transition relation, the model checker then has to compute fix points to prove it
satisfies ϕ. This is done using image computation of the set S under a relation R:

∃x : (S ∩ R)[x ′ := x ]

Fig. 4. The three steps performed in the image computation of S under R (S.R).

This operation consists of three steps as illustrated in Fig. 4. First, the inter-
section of S and R is determined. This results in a BDD containing all transitions
in R with a source in S. Next, the source states are removed from this BDD by
existential quantification over x . The result of this abstraction is a BDD con-
taining the image of S under R. As a last step, the x ′ variables are renamed
to x variables by the relabelling operation ([x ′ := x ]). In practice, the three
steps can be combined into one operation with a worst case linear runtime in
the number of nodes.

Example 4. Consider a sliding tile puzzle which consists of just one tile and a
2 by 1 grid. This puzzle can be represented by an LTS with S = {s1, s2} and
(unlabelled) transition relation → = {(s1, s2), (s2, s1)}. Thus, the puzzle can
only go back and forth between two states. The states are encoded by a string
of two variables, x1x2, which represent the two grid positions with xi = 1 iff a
tile is at grid position 1. We encode s1 by 10 and s2 by 01. The transitions are
encoded by concatenating the source state with the target state.
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Fig. 5. The five BDDs that are involved in the computation of the image of S1 under R.

Let S1 be a BDD which encodes {s1} over x = x1, x2, and let R be a BDD
which encodes → over x and x ′. Figure 5 shows the image computation of {s1}
under →. The final BDD represents {s2}.

3 A Relation-Based Symbolic Bisimulation Algorithm

The current section first derives a fix point computation that establishes the bis-
milarity relation. It then goes on to derive coarse BDD operations to implement
the algorithm more efficiently. Finally, the algorithm is parallelized.

The Relational Fix Point Computation. Given an LTS (S,A,→), our algorithm
computes a non-bisimilarity relation �∼, i.e., the complement of the relation
defined in Definition 2, similar to Liu and Smolka [17]. In order to construct
�∼, the algorithm maintains a relation R which contains all pairs of non-bisimilar
states that have been found thus far. R is initialized as the empty set. Pairs of
non-bisimilar states are iteratively added to R until a fix point is reached, at
which point R equals �∼. For this purpose, the following functions are used

fa(R) := {(s, t) | ∃s′ ∈ S : (s a−→ s′ ∧ �t′ ∈ S : (t a−→ t′ ∧ (s′, t′) /∈ R))} ∪
{(s, t) | ∃t′ ∈ S : (t a−→ t′ ∧ �s′ ∈ S : (s a−→ s′ ∧ (s′, t′) /∈ R))}, and

f(R) :=
⋃

a∈A

fa(R)

R is called a fix point of f if f(R) = R. The function f is a monotonic with
respect to ⊆ and (P(S × S),⊆) forms a complete lattice. Therefore, according
to the Knaster-Tarski Lemma [16], there exists a (unique) least fix point of f .
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In order to compute fa two sets of pairs of states need to be determined. Let

Ya := {(s, t) | ∃s′ ∈ S : (s a−→ s′ ∧ �t′ ∈ S : (t a−→ t′ ∧ (s′, t′) /∈ R))}, and

Za := {(s, t) | ∃t′ ∈ S : (t a−→ t′ ∧ �s′ ∈ S : (s a−→ s′ ∧ (s′, t′) /∈ R))}
such that fa(R) := Ya ∪ Za. R is initially symmetric, as the empty set is a
symmetric relation. If R is symmetric then Za = Y −1

a , and thus the result
of fa(R) is also symmetric. Therefore, R is symmetric during every step of the
construction of �∼. Furthermore, this means that Za can be determined by taking
the converse of Ya.

Algorithm 2 presents our symbolic bisimulation algorithm bisim. As input,
bisim takes a BDD S and a set of relational BDDs T , indexed by the action
labels a ∈ A, splitting the transition relation on the actions. At Line 1, R is
initialized to the empty set. The algorithm then computes the least fix point in
the loop starting at Line 2. Line 3 stores a copy of R, Lines 4–7 extend R using
a chaining approach, and Line 8 checks if a fix point is reached. After a fix point
is found, the complement of R is returned by Line 9.

Algorithm 2. bisim(S,A, (Ta)a∈A)
1: R ← ∅
2: repeat
3: R′ ← R
4: for all a ∈ A do
5: Xa ← {(s′, t) | �t′ : ((t, t′) ∈ Ta ∧ (s′, t′) /∈ R)}
6: Ya ← {(s, t) | ∃s′ : ((s, s′) ∈ Ta ∧ (s′, t) ∈ X)}
7: R ← R ∪ Ya ∪ Y −1

a

8: until R = R′

9: return R

The rest of this section explains how the operations at Line 5 and 6 can be
implemented as two single coarse-grained BDD operations. We omit the well-
known implementation of the converse relation Y −1 at Line 7, that is required
as the last step for computing fa(R).

Note that Algorithm 2 uses a chaining approach [23] to implement the union
over all actions, instead of a strict breadth-first search (BFS). Chaining imme-
diately adds new results to R for each action (as on Line 7), using these results
for the next action (see Fig. 6), whereas BFS would first store those sub-results
in a queue. For BDDs, chaining can be much more efficient [23].

BDD Operations for Computing Non-Bisimilar States. New pairs of non-
bisimilar states are determined in two steps. First, we derive the BDD operation
which computes a relation: Xa := {(s′, t) | �t′ : ((t, t′) ∈ Ta ∧ (s′, t′) /∈ R)}.

This BDD operation is called the ∀preimage operation, as (s′, t) ∈ Xa implies
that ∀t′ ∈ {t′ | (t, t′) ∈ Ta} : (s′, t′) ∈ R. It takes as arguments two BDDs R and
T , which are both defined over variables x and x ′. Its result BDD X should again
be defined over x and x ′. Note that the source states of T , which are defined
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Fig. 6. The extension of R using chaining (above), as used by Algorithm 2, vs BFS
(below).

over x , form the target states of X, which are defined over x ′. The source states
of T cannot be redefined over x ′, as these variables are already used to encode
the target states of R and T . The source states of T must therefore be relabelled
to a new set of variables x ′′. As a final step, the operation relabels these states
once more to x ′ in order to define the result over the desired variables. We find
the following operation:

∀preimage(R, T ) := (�x ′ : (T [x := x ′′] ∧ ¬R))[x ′′ := x ′]

To derive the recursive BDD algorithm, we abstract a single variable x from the
formula using Shannon decomposition and rewrite until recursive calls can be
identified. As x can be a part of either x , x ′, or x ′′, we identify three cases.

Case x ∈ x : ∀preimage(R, T ) := (�x ′ : (T [x := x ′′] ∧ ¬R))[x ′′ := x ′]

= x((�x ′ : (T [x := x ′′] ∧ ¬R))[x ′′ := x ′])x ∨ x((�x ′ : (T [x := x ′′] ∧ ¬R))[x ′′ := x ′])x
= x((�x ′ : (T [x := x ′′] ∧ ¬Rx))[x

′′ := x ′]) ∨ x((�x ′ : (T [x := x ′′] ∧ ¬Rx))[x
′′ := x ′])

= x · ∀preimage(Rx, T ) ∨ x · ∀preimage(Rx, T )

Case x′ ∈ x ′ : ∀preimage(R, T ) := (�x ′ : (T [x := x ′′] ∧ ¬R))[x ′′ := x ′]

= (�x ′ : ((T [x := x ′′] ∧ ¬R)x′ ∨ (T [x := x ′′] ∧ ¬R)x′ ))[x ′′ := x ′]
= (�x ′ : ((Tx′ [x := x ′′] ∧ ¬Rx′ ) ∨ (Tx′ [x := x ′′] ∧ ¬Rx′ )))[x ′′ := x ′]
= (¬(∃x ′ : (Tx′ [x := x ′′] ∧ ¬Rx′ ) ∨ ∃x ′ : (Tx′ [x := x ′′] ∧ ¬Rx′ )))[x ′′ := x ′]
= (�x ′ : (Tx′ [x := x ′′] ∧ ¬Rx′ ) ∧ �x ′ : (Tx′ [x := x ′′] ∧ ¬Rx′ ))[x ′′ := x ′]
= (�x ′ : (Tx′ [x := x ′′] ∧ ¬Rx′ ))[x ′′ := x ′] ∧ (�x ′ : (Tx′ [x := x ′′] ∧ ¬Rx′ ))[x ′′ := x ′]
= ∀preimage(Rx′ , Tx′ ) ∧ ∀preimage(Rx′ , Tx′ )

Case x′′ ∈ x ′′ : ∀preimage(R, T ) := (�x ′ : (T [x := x ′′] ∧ ¬R))[x ′′ := x ′]

= (x′′(�x ′ : (T [x := x ′′] ∧ ¬R))x′′ ∨ x′′(�x ′ : (T [x := x ′′] ∧ ¬R))x′′ )[x ′′ := x ′]
= (x′′(�x ′ : (T [x := x ′′]x′′ ∧ R)) ∨ x′′(�x ′ : (T [x := x ′′]x′′ ∧ ¬R)))[x ′′ := x ′]
= (x′′(�x ′ : (Tx[x := x ′′] ∧ ¬R)) ∨ x′′(�x ′ : (Tx[x := x ′′] ∧ ¬R)))[x ′′ := x ′]
= (x′′(�x ′ : (Tx[x := x ′′] ∧ ¬R)))[x ′′ := x ′] ∨ (x′′(�x ′ : (Tx[x := x ′′] ∧ ¬R)))[x ′′ := x ′]
= x′(�x ′ : (Tx[x := x ′′] ∧ ¬R))[x ′′ := x ′] ∨ x′(�x ′ : (Tx[x := x ′′] ∧ ¬R))[x ′′ := x ′]
= x′ · ∀preimage(R, Tx) ∨ x′ · ∀preimage(R, Tx)
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The terminal cases of ∀preimage are found by assigning values 0 or 1 to R and T :
∀preimage(0, 1) = 0 and ∀preimage(1, T ) = ∀preimage(R, 0) = 1. The algorithm
which results from these derivations is shown in Algorithm 3. (The parallel call
structure is discussed in Sect. 5.)

Algorithm 3. ∀preimage(R, T )
1: if R = 0 ∧ T = 1 then return 0
2: if R = 1 ∨ T = 0 then return 1
3: if (R, T, ∀preimage) in cache then return cache[(R, T, ∀preimage)]

4: x ← min(var(R), var(T ))
5: if x ∈ x ∧ x = var(R) then
6: do in parallel:
7: low ← ∀preimage(Rx, T )
8: high ← ∀preimage(Rx, T )
9: result ← BDD node(x, low, high)

10: else if x ∈ x ∧ x = var(T ) then
11: do in parallel:
12: low ← ∀preimage(R, Tx)
13: high ← ∀preimage(R, Tx)
14: result ← BDD node(x ′(x), low, high)
15: else
16: do in parallel:
17: low ← ∀preimage(Rx, Tx)
18: high ← ∀preimage(Rx, Tx)
19: result ← apply(low, high, ∩)

20: cache[(R, T, ∀preimage)] ← result
21: return result

Lines 1 and 2 check for terminal cases. Line 4 selects the lowest variable
label x of nodes R and T . As stated before, x can be a part of either x , x ′, or
x ′′. The use of x ′′ variables can be avoided by distinguishing the source states
of R and T with a simple check. This is done by changing the case x ∈ x to
x ∈ x ∧ x = var(R) and changing the case x ∈ x ′′ to x ∈ x ∧ x = var(T ). Lines
5–19 create nodes in the result BDD according to the three recursive definitions
of ∀preimage which follow from the derivations. The expression x ′(x) in Line 14
maps the variable x to its primed equivalent in x ′, e.g. x ′(xi) = x′

i. Lines 3 and
20 add the usual caching to the BDD operation. Line 21 returns the result.

Next, we derive a BDD operation for: Y := {(s, t) | ∃s′ : ((s, s′) ∈ T ∧(s′, t) ∈
X)}. The operation computes the composition of the relations T and X, and
is thus named the relcomp operation. It takes as arguments the BDDs T and
X, which are both defined over variables x and x ′. The result is a BDD which
represents Y and which is defined over variables x and x ′. The operation matches
the target states of T with the source states of X. Thus, these should be defined
over the same variables. Both the target states of T and the source states of X
are therefore relabelled to x ′′. We find the following operation and again derive
an algorithm for the operation by abstracting a single variable from this formula.
Again, there are three cases.
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relcomp(T,X) := ∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′])

Case x ∈ x : relcomp(T,X) := ∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′])

= x(∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′]))x ∨ x(∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′]))x
= x(∃x ′′ : (Tx[x

′ := x ′′] ∧ X[x := x ′′])) ∨ x(∃x ′′ : (Tx[x
′ := x ′′] ∧ X[x := x ′′]))

= x · relcomp(Tx, X) ∨ x · relcomp(Tx, X))

Case x′ ∈ x ′ : relcomp(T,X) := ∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′])

= x′(∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′]))x′ ∨ x′(∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′]))x′

= x′(∃x ′′ : (T [x ′ := x ′′] ∧ Xx′ [x := x ′′])) ∨ x′(∃x ′′ : (T [x ′ := x ′′] ∧ Xx′ [x := x ′′]))
= x′ · relcomp(T,Xx′ ) ∨ x′ · relcomp(T,Xx′ ))

Case x′′ ∈ x ′′ : relcomp(T,X) := ∃x ′′ : (T [x ′ := x ′′] ∧ X[x := x ′′])

= ∃x ′′ : ((T [x ′ := x ′′] ∧ X[x := x ′′])x′′ ∨ (T [x ′ := x ′′] ∧ X[x := x ′′])x′′)
= ∃x ′′ : ((T [x ′ := x ′′]x′′ ∧ X[x := x ′′]x′′) ∨ (T [x ′ := x ′′]x′′ ∧ X[x := x ′′]x′′))
= ∃x ′′ : ((Tx′ [x ′ := x ′′] ∧ Xx[x := x ′′]) ∨ (Tx′ [x ′ := x ′′] ∧ Xx[x := x ′′]))
= ∃x ′′ : (Tx′ [x ′ := x ′′] ∧ Xx[x := x ′′]) ∨ ∃x ′′ : (Tx′ [x ′ := x ′′] ∧ Xx[x := x ′′])
= relcomp(Tx′ ,Xx) ∨ relcomp(Tx′ ,Xx)

Algorithm 4. relcomp(T,X)
1: if T = 0 ∨ X = 0 then return 0
2: if T = 1 ∧ X = 1 then return 1
3: if (T, X, relcomp) in cache then return cache[(T, X, relcomp)]

4: x ← min(var(T ), var(X))
5: if x ∈ x ∧ x = var(T ) then
6: do in parallel:
7: low ← relcomp(Tx, X)
8: high ← relcomp(Tx, X)
9: result ← BDD node(x, low, high)

10: else if x ∈ x ′ ∧ x = var(X) then
11: do in parallel:
12: low ← relcomp(T, Xx)
13: high ← relcomp(T, Xx)
14: result ← BDD node(x, low, high)
15: else
16: x ← x (x), x′ ← x ′(x)
17: do in parallel:
18: low ← relcomp(Tx′ , Xx)
19: high ← relcomp(Tx′ , Xx)
20: result ← apply(low, high, ∪)

21: cache[(T, X, relcomp)] ← result
22: return result
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The terminal cases of relcomp are: relcomp(T, 0) = relcomp(0,X) = 0 and
relcomp(1, 1) = 1. Algorithm 4 constructs Y using these derivations. The use of
the variables x ′′ can be avoided by changing the case x ∈ x to x ∈ x∧x = var(T )
and changing the case x ∈ x ′ to x ∈ x ′ ∧ x = var(X).

Both the ∀preimage and relcomp operation require one symbolic step, i.e.,
∩ and ∪, as witnessed by the call to apply in the recursion. This follows from
the existential quantifier in their definition and makes the complexity of the
operations quadratic in the number of BDD nodes (as for ∃).

Parallel Fix Point Computation. The bisim algorithm can be further parallelized
by concurrently performing the computation of fa for each action a, instead of
looping over all actions. This approach employs a BFS extension of R, rather
than an extension by chaining (which is inherently sequential). Algorithm5 dis-
plays the version of bisim which implements this approach.

The parallelization of the loop which computes fa is handled by the function
parLoop, shown in Algorithm6. It takes similar inputs as the bisim algorithm:
a BDD R which represents non-bisimilar state pairs and a list T of BDDs rep-
resenting transition relations which are separated on action labels.

Instead of considering each transition relation in T sequentially, the algorithm
decomposes T into two halves. It then recursively calls itself on both halves, and
computes the results in parallel. This takes place on Lines 6–8. The union of the
two results is returned at Line 9. When T only contains one transition relation,
the recursive procedure is stopped. Lines 2–5 return the result of fa(R) for the
action corresponding to the transition relation contained in T .

The recursive decomposition applied in parLoop yields a task dependency
graph as shown in Fig. 7. It is not immediately clear if the bisimP algorithm
is more efficient than the standard bisim algorithm. The parallelization of the
extension of R should cause bisimP to have a better scalability than bisim,
but chaining is usually the more efficient approach [23]. The two algorithms are
therefore compared empirically in Sect. 5.

Algorithm 5. bisimP(S, T )
1: R ← ∅
2: repeat
3: R′ ← R
4: R ← R ∪ parLoop(R, T )
5: until R = R′

6: return R
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Algorithm 6. parLoop(R, T )
1: n ← |T |
2: if n = 1 then
3: X ← ∀preimage(R, T[1])
4: Y ← relcomp(T[1], X)
5: return Y ∪ Y −1

6: do in parallel:
7: L ← parLoop(R, T[1 :

⌊
n
2

⌋
])

8: H ← parLoop(R, T[
⌊
n
2

⌋
+ 1 : n])

9: return L ∪ H

Fig. 7. A task dependency graph of parLoop for an input LTS with A = {a, b, c, d}.

4 Related Work

The relation-based approach used in Algorithm 2/5 was pioneered by Boauli
and de Simone [3] and later generalized by Liu and Smolka [17]. Their results
showed small improvements over the existing explicit methods. Another symbolic
relation-based algorithm was introduced by Mumme and Ciardo [19]. Their algo-
rithm functions much like our bisim algorithm, although found independently.
Mumme and Ciardo’s algorithm differs from Algorithm 2 (bisim) in four ways.
First, the algorithm does not employ high-level BDD operations, requiring inter-
mediate symbolic computations which pollute the cache. Second, the algorithm
is sequential. Third, the algorithm does not apply the converse operation utilized
in bisim (see Line 7). As a consequence, the computation of non-bisimilar pairs
of states requires two extra symbolic steps. Fourth, the algorithm improves on
chaining by implementing saturation [7].

Also, Dalsgaard et al. [8] use Liu and Smolka’s general approach [17] to dis-
tribute the computation of bisimulation minimization. In essence, this algorithm
therefore is also relation-based.

The second approach to bisimulation minimization uses signatures to iter-
atively refine a partition representing the bisimilar equivalence classes. This
partition-based approach is used in explicit algorithms by Paige and Tarjan [20],
and in symbolic algorithms by Wimmer et al. [25] and Van Dijk [11] among
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others. The algorithm presented by van Dijk is, as far as we are aware, the only
parallel symbolic bisimulation algorithm.

The algorithm maintains a partition π initialized with a single block con-
taining S before it is refined using the transition relation. The partition π is
represented by a BDD P (s, b), which encodes a state s followed by a block num-
ber (= equivalence class label) b. The symbolic partition refinement operation
efficiently reuses block numbers to avoid trashing the BDD cache, a solution that
improved over the state of the art by up to a factor 50 for the considered inputs.

It is stated by Van Dijk and by Fisler and Vardi [13] that partition-based
BDDs form a smaller representation of the maximal bisimulation than relation-
based BDDs. This statement is based on the number of variables which are
used in partition- and relation-based BDDs. If an LTS contains n states, then a
relation-based R will require �2 · log2 n� variables to encode all pairs of states.
The number of variables used in partition-based BDD P depends on the number
of equivalence classes in the partition, but is always in between �log2(n)� and
�2 · log2(n)�. The number of nodes in a BDD can grow exponentially in the
number of used variables. Therefore, the researchers concluded that partition-
based BDDs are generally smaller.

The benefits of bisimulation minimization in the context of state space reduc-
tion prior to or during the verification of invariance properties are examined by
Fisler and Vardi in [13]. They compare three algorithms which verify the invari-
ance properties of a model while computing its maximal bisimulation on-the-fly
(or online). Thus, if the input does not verify, the model checking process can
be stopped prematurely (without even exploring, minimizing and storing all
reachable states). Fisler and Vardi found in previous work [14] that the cost of
bisimulation minimization often exceeds the cost of model checking by a consid-
erable margin. They hoped that their new approach would be more efficient than
model checking without the use of bisimulation minimization. Unfortunately, the
results show that using bisimulation minimization as either a part of, or as a
preprocessor to, model checking invariant properties is not profitable. However,
this does not mean that bisimulation minimization can not be beneficial in other
verification contexts, such as offline distributed verification [2].

5 Experimental Evaluation

We repeated the experiment ran by Van Dijk and Van de Pol in [11] to study
the difference in performance between bisim, bisimP and Van Dijk’s state-of-
the-art algorithm. In the experiment, the maximal bisimulation is computed for
six LTS models which portray Kanban production systems [25]. The smallest
model contains 256 states and 904 transitions, while the largest model contains
264,515,056 states and 1,689,124,864 transitions.

The experiment was performed on a machine that contains two Intel Xeon
E5-2630v3 CPUs with eight cores each. To evaluate the parallel speedup of each
algorithm, the experiment was run once using only one core and once using
all sixteen cores. At the start of the experiment, 2.625 GB of memory space
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is allocated for the two hash tables which contain the unique table and the
operation cache. The maximum size of each hash table was limited to 84 GB.

Implementation. The bisim and bisimP algorithms (Algorithms 2 and 5) and
the ∀preimage and relcomp BDD operations were implemented in Sylvan [10],
a parallel BDD library written in C. Sylvan offers (internally) parallel BDD
operations, by splitting the recursive calls into fine-grained tasks, which are
scheduled by Lace [12]. We used the same approach to implement the recursive
calls listed in Algorithms 3 and 4 as parallel calls. Thus, all BDD operations
performed in our two algorithms are fully parallel.

The bisimP algorithm also features high-level parallelism by creating a task
dependency graph of BDD operations themselves. We implemented these parallel
calls as separate tasks in Lace, which ensures that the fine-grained internal tasks
and the high-level (external) calls are all executed in parallel, while maintaining
the partial order stipulated by the dependency graphs.

We did not succeed with implementing the bisim and bisimP without the
coarse-grained BDD operations from Algorithms 3 and 4. Therefore, we could
not compare the individual gains achieved by the development of these coarse
operations. Since [24] showed an up to 40% percent performance and space sav-
ings improvement for an integrated image BDD operation (RelProdS), we can
reasonably expect at least a similar improvement from our coarse BDD opera-
tions. In fact, the benefit likely exceeds that amount, because the bisimulation
computation in small steps requires the introduction of doubly primed variables
(and RelProdS does not).

Results. The results of the experiment are presented in Table 1. The run times
shown in the table are the averages of 16 runs. Entries containing a dashed line
(-) went over the time limit, which was set to 2400 s. The number behind the
algorithm name in the column header indicates the number of cores that were
used in the experiment. The speedup of each algorithm is determined per model
by dividing the sequential run time by the parallel run time.

Table 1. Results of the experiments. The shown run times are the average of at least
16 runs. The timeout is set to 2400 s.

Model Time (s) Speedups

Van Dijk 1 Van Dijk 16 bisim 1 bisim 16 bisimP 1 bisimP 16 Van Dijk bisim bisimP

kanban01 0.07 0.09 0.02 0.08 0.03 0.11 0.78 0.25 0.27

kanban02 0.17 0.61 0.72 1.93 1.42 1.71 0.28 0.37 0.83

kanban03 3.66 3.18 7.14 5.83 18.67 7.18 1.15 1.22 2.60

kanban04 53.84 24.60 42.81 18.38 194.17 39.45 2.19 2.33 4.92

kanban05 549.47 201.82 216.82 55.44 1223.02 157.65 2.72 3.91 7.76

kanban06 - 1758.71 724.84 147.12 - 576.85 - 4.93 -
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For the three largest models bisim provides the best results. The parallel
execution of bisim on the kanban06 model is almost 4 times faster than the
parallel execution of bisimP and almost 12 faster than the parallel execution of
Van Dijk’s algorithm. Also, bisim is the only algorithm that can compute the
maximal bisimulation of the kanban06 model within the time limit using only
one core. The speedups of both bisim and bisimP are higher than the speedup of
Van Dijk’s algorithm, indicating a better scalability. As expected, bisimP does
have a better speedup than bisim. For kanban01 and kanban02 the speedup is
less than 1, thus here the overhead of parallelizing is greater than the benefits.

Fig. 8. Number of nodes contained in R per iteration for the execution of bisim and
bisimP on the kanban05 model.

Longer run times of symbolic algorithms are generally caused by BDDs that
grow larger. The graphs in Fig. 8 depicts the number of nodes in R during the
execution of bisim and bisimP . At its peak, the BDD used in bisimP is about 4
times as large as the BDD used in bisim. It appears that the chaining heuristic
used in bisim keeps R much smaller than the breadth first heuristic employed in
bisimP . We also measured the peak size of the BDDs X and Y , which are used
to compute the pairs of non-bisimilar states with which R is extended. For bisim,
X contains 1,965,391 nodes and Y contains 1,165,512 at its peak. The peak sizes
of bisimP are much higher, with 11,405,465 nodes for X and 16,761,754 nodes
for Y .

The kanban05 model contains 16,772,032 states, which, after bisimulation,
are divided over 5,033,631 equivalence classes. We therefore expected that the
permutation BDD used in Van Dijk’s algorithm would be smaller than the equiv-
alence relation BDD used in bisim, as it requires less variables to represent the
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Fig. 9. Number of nodes contained in the relation BDD R for bisim and in the partition
BDD P and signatures BDD σ for Van Dijk’s algorithm.

maximal bisimulation. However, the graph shown in Fig. 9 reveals that the per-
mutation BDD becomes much larger than the equivalence relation BDD (note
the logarithmic scale). The signatures BDD grows even larger still, and is at its
peak at least 50 times as large as any BDD used in bisim. We presume that
the equivalence relation BDDs stay smaller because of their interleaved variable
ordering. In the permutation BDD, all block variables are located below the state
variables making sharing between blocks impossible. In the signatures BDD, the
action variables are located in between the state and block variables as well.
Encoding different objects underneath each other in a BDD typically causes the
BDD to blow up in size. So, even though the permutation BDD contains less
variables, it still grows much larger than the equivalence relation BDD. Also,
the permutation and signatures BDDs do not decrease in size at any time dur-
ing the execution of the algorithm. This is likely caused by the fact that Van
Dijk’s algorithm adds new block variables at the bottom of the BDDs during its
execution.

The size of the signatures BDD is crucial for the time efficiency of Van Dijk’s
algorithm, as it is used in both the permutation refinement and the signature
computation step. One iteration of Van Dijk’s algorithm takes one symbolic step,
while a single iteration in bisim could require at most 2 · |A| symbolic steps.
Coincidentally, both algorithms terminate after 31 iterations for the kanban05
model. Thus, the difference in size between the BDDs used in the two algorithms
seems to outweigh the difference in symbolic steps.

To validate our results, we converted the partitions of Van Dijk’s algorithm to
an equivalence relation. Unfortunately, this conversion was too time consuming



A Parallel Relation-Based Algorithm 553

to verify the results of the two largest models. All other results were successfully
validated.

6 Conclusions

We have presented an algorithm for parallel symbolic bisimulation minimization,
which stores the bisimilar states in a relation rather than as a partition of equiva-
lence classes. We realized key parts of the algorithm through novel coarse-grained
BDD operations derived from the specification using the Shannon decomposition.
The correctness of derived algorithms follows therefore immediately. Moreover,
our coarse-grained BDD operations increase performance by avoiding pollution
in the computer and unique tables, especially since an algorithm using fine-
grained operations would require additional doubly primed variables.

We have compared the performance of our algorithm to that of the state-of-
the-art parallel symbolic bisimulation algorithm, which is partition-based. The
surprising result is that our relation-based algorithm outperforms the partition-
based algorithm by at least one order of magnitude for large models. The con-
sensus in the literature is that partition-based algorithms require fewer variables
and should therefore also result in smaller BDDs. However, our results suggest
that the opposite is true. We hypothesize that the interleaving of (primed and
unprimed) variables in the BDD representing the bisimulation relation results
in more sharing than partition-based approaches can deliver.

As future work, we advocate an investigation of the other bisimulation
approaches discussed in Van Dijk and Van de Pol [11]. Furthermore, we are
interested in the application of the saturation heuristic on BDDs. We suspect
also that the number of symbolic steps in our algorithms can be reduced by
encoding transition labels in the BDD, as Van Dijk does.
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{stefan.haar,juraj.kolcak}@lsv.fr

2 National Institute of Informatics, Tokyo, Japan
3 LRI UMR 8623, Univ. Paris-Sud – CNRS, Université Paris-Saclay, Orsay, France
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Abstract. Parametric models abstract part of the specification of
dynamical models by integral parameters. They are for example used
in computational systems biology, notably with parametric regulatory
networks, which specify the global architecture (interactions) of the net-
works, while parameterising the precise rules for drawing the possible
temporal evolutions of the states of the components. A key challenge is
then to identify the discrete parameters corresponding to concrete models
with desired dynamical properties. This paper addresses the restriction
of the abstract execution of parametric regulatory (discrete) networks
by the means of static analysis of reachability properties (goal states).
Initially defined at the level of concrete parameterised models, the goal-
oriented reduction of dynamics is lifted to parametric networks, and is
proven to preserve all the minimal traces to the specified goal states.
It results that one can jointly perform the refinement of parametric net-
works (restriction of domain of parameters) while reducing the necessary
transitions to explore and preserving reachability properties of interest.

1 Introduction

Various cyber and physical systems are studied by the means of discrete dynam-
ical models which describe the possible temporal evolution of the state of the
components of the system. Defining such models requires extensive knowledge
on the underlying system for specifying the rules which generate the admis-
sible state transitions over time. Usually, and especially for physical systems,
such as biological networks for which discrete models are extensively employed
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[1,8,9,12,18,24], it is common to lack such precise knowledge, making an accu-
rate specification of discrete models challenging.

With parametric models, part of the specification of the rules for generating
the discrete transitions is encoded as (integral) parameters. Thus, a parametric
model abstracts a set of concrete parameterised models, this set being charac-
terised by the domain of parameter values.

In this paper, we focus on Parametric Regulatory Networks (PRNs), also
known as Thomas Networks [2,4,15,23], which are commonly employed for mod-
elling qualitative dynamics of biological systems. PRNs allow separating biologi-
cal knowledge on the pairwise interactions (the architecture of the network) from
the rules of interplay between the interactions, usually less known.

In the literature, PRNs are mainly used as a basic framework for identifying
fully parameterised models (i.e., Boolean and multilevel networks) which satisfy
dynamical properties typically generated from experimental data. This identifi-
cation task, related to so-called model inference and process mining [5,16,17,21],
consists in transforming an abstract parametric model into a set of con-
crete parameterised models verifying desired dynamical properties. For PRNs,
state-of-the-art methods rely on parameter enumeration [13], coloured model-
checking [14], logic programming and Boolean satisfiability [10,19], and Hoare
logic [3].

However, the exhaustive identification of parameters is often limited to small
models, as the set of parameterised models can turn out to be too large to be
exhaustively enumerated and further analysed.

In [15], we introduced a semantics of PRNs enabling the refinement of a
PRN by restricting the domain of its parameters without having to enumerate
concrete models, keeping them in a compact abstract representation instead.
The refinement is performed according to concrete discrete state transitions: the
domain of parameters is restricted so that it abstracts all the concrete models
in which the state transition is admissible. Essentially, such semantics of PRNs
enable efficient exploration of dynamics of a set of parameterised models.

This exploration suffers from the same bottleneck as individual parameterised
models: the number of reachable states grows exponentially with the number of
components and thus, becomes intractable for large networks. The exploration
of the reachable state space is usually performed to verify dynamical properties.
Consequently, various model reduction methods have been designed on concrete
parameterised models to enhance the tractability of their verification [6,11,20,
22]: by reducing the transitions to consider, these methods limit the reachable
state space to explore while guaranteeing the correctness of the verification.

In this paper, we address the combination of refinement operations on para-
metric models with model reductions initially defined at the level of concrete
individual models. Essentially, the challenge consists in lifting up such model
reductions so they can be performed at the abstract level of parametric models,
while ensuring the correctness of their refinement.

We focus on reachability properties, i.e., starting in an initial configuration,
the ability to eventually reach a given (partial) configuration. On the one hand,
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we are interested in refining PRNs to accurately identify concrete parameterised
discrete network models that verify the reachability property; on the other hand,
we want to take advantage of goal-driven exploration of dynamics of parame-
terised models to ignore transitions which do not influence the reachability of
the goal, enhancing the tractability of the analysis.

The refinement of PRNs we consider for reachability properties has been
introduced in [15]. It consists in dynamically drawing transitions allowed by at
least one concrete model, and subsequently restricts the domain of parameters
to exclude models which do not allow the drawn transition. The generation of
transitions is done directly from the abstract representation of the set of concrete
models, and therefore involves no enumeration of parameterised models.

The goal-oriented model reduction we consider has been introduced in [20] at
the level of parameterised network models. Given a reachability property (goal),
the method relies on static analysis by abstract interpretation to identify transi-
tions which are not involved in any minimal trace leading to the goal. Here the
minimality refers to the absence of a sub-trace. Whereas deciding reachability
properties in parametrised models (namely automata networks) is a PSPACE-
complete problem [7], the goal-oriented model reduction has a complexity poly-
nomial in the number of components and exponential in the in-degree of com-
ponents in the networks (components having a direct influence on a single one).

In this article we present a lifting of the goal-oriented reduction from
parametrised models to sets of models with shared architecture, represented by
parametric models. To this end, we introduce a directed version of PRNs which
allow us to efficiently capture model reduction without the need to explicitly
enumerate all possible transitions. We conduct the reduction itself on abstract
dynamics of PRNs where instead of enumerating all enabled transitions, we only
consider the minimal necessary condition for each component to change value.

The introduced reduction method can be applied on-the-fly to speed up reach-
ability checking in parametric models. Thanks to the preservation of all minimal
traces, it is guaranteed to capture all parametrised models capable of reproduc-
ing the coveted behaviour.

Outline. Section 2 recalls the definition of parametric regulatory networks, their
dynamics, constraints on influences and finally presents a generalised parametri-
sation set semantics. In Sect. 3, the goal-oriented model reduction procedure
is extended from parametrised models to parametric models. Directed version
of PRNs is introduced for this purpose alongside an abstraction of dynamics
designed to alleviate the reduction complexity. Section 4 supplies an algorithm
for computing a suitable abstraction of PRN dynamics used in the reduction
procedure. Finally, Sect. 5 summarises the results and possible extensions.

Notations. We use
∏

to build Cartesian products between sets. As the ordering
of components matters,

∏
is not commutative. Hence, we write

∏≤
x∈X for the

product over elements in X according to a total order ≤. To ease notations, when
the order is clear from the context, or when either X is a set of integers, or a set
of integer vectors, on which we use the lexicographic ordering, we simply write
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∏
x∈X . Given a sequence of n elements π = (πi)1≤i≤n, π̃

Δ= {πi | 1 ≤ i ≤ n} is
the set of its elements. Given a vector v = 〈v1, . . . , vn〉, v[i�→y] is the vector equal
to v except on the component i, which is equal to y.

2 Parametric Regulatory Networks

Regulatory networks are finite discrete dynamical systems where the compo-
nents evolve individually with respect to the value of (a few) other components,
their regulators. The value of components in regulatory networks ranges in a
finite discrete domain, usually represented as {0, ...,m} for some m ∈ N, thus
extending Boolean networks [24]. The evolution of components is then defined by
discrete functions which associate to the global states of the network the value
towards which each component tends.

Thus, defining regulatory networks requires knowledge on which components
influence each others, and how the value of each component is computed from
the value of its regulators. Parametric Regulatory Networks (PRNs) allow to
decouple this specification by having on the one hand a fixed architecture of the
network, so-called influence graph, and on the other hand discrete parameters,
which when instantiated specify the functions of the regulatory network.

2.1 Influence Graph and Constraints

The influence graph encodes the directed interactions between the components of
the regulatory networks: a component u having a direct influence on component
v means that in some states of the regulatory network, the computation of the
value of node v may depend on the value of u. Importantly, if the component
w has no direct influence of v, then the computation of the value on v never
depends on the value of w.

Definition 1 (Influence Graph). An influence graph G is a tuple (V, I)
where V is a finite set of n nodes (components) and I ⊆ V × V is a set of
directed edges (influences).

For each v ∈ V we denote the set of its regulators by n−(v) Δ=
{u ∈ V | (u, v) ∈ I}.

Besides the existence/absence of direct influences between components, it is
usual to have some knowledge about the nature of the influences. Two kinds of
constraints are generally considered: signs and observability.

Influence signs are captured by monotonicity constraints. An influence
(u, v) ∈ I is positive-monotonic, denoted +, if the sole increase of the value
of the regulator u cannot cause a decrease of the computed value of the target v.
Symmetrically, an influence (u, v) ∈ I is negative-monotonic, denoted −, if the
sole increase in the value of u cannot cause an increase in the computed value
of v. An influence (u, v) ∈ I is observable, denoted o, if there exists a state in
which the sole change of the value of u induces a change of the computed value
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of v. Thus observability enforces that u does have an influence on the value of
v, in some states of the regulatory network. Remark that observability does not
imply positive/negative monotonicity – e.g., when the value of v is computed as
the exclusive disjunction XOR between its own value and the value of u.

Let us denote a set of influence constraints for an influence graph (V, I) as
R ⊆ I ×{+,−, o}. An example of influence constraint set is given in Fig. 1(a) as
labels on edges of the influence graph.

2.2 Parametrisation

Let us consider an influence graph G = (V, I) among n components and a set
of influences constraints R. Let us denote by m ∈ N

n the vector specifying the
maximum discrete value of each component: the states of the regulator networks
span

∏
v∈V {0, . . . , mv}. The computation of the value of each component of a

regulatory network is constrained by G, R and m. In particular, G imposes that
the value of a component depends only on its regulators.

A regulator state ω of a component v ∈ V is a vector specifying the value of
each regulator of v. We denote the set of all regulator states of a component as
Ωv

Δ=
∏

u∈n−(v){0, . . . ,mu}. Intuitively, a regulator state of a component v is a
projection of a global state of the network (states of all components) to just the
regulators of v, that fully determine its evolution.

A parameter 〈v, ω〉 then represents a target value towards which component
v ∈ V evolves in regulator state ω ∈ Ωv. We denote the set of all parameters as
Ω

Δ=
⋃

v∈V {v} × Ωv.
A parametrisation P is a vector assigning a value to each parameter. The

set of all parametrisations associated to an influence graph G and a maximum
value vector m is therefore given by P(Gm) =

∏�
〈v,ω〉∈Ω{0, . . . , mv} where � is

an arbitrary, but fixed total order on parameters. The set of all parametrisations
satisfying both the influence graph G = (V, I) and influence constraints R with
maximum value vector m is then defined as:

P(GR
m)

Δ
= {P ∈ ∏�

〈v,ω〉∈Ω
{0, . . . , mv} | ∀u, v ∈ V,

(u, v, +) ∈ R ⇒ ∀ω ∈ Ωv, ∀k ∈ {1, . . . , mu} : Pv,ω[u�→k]
≥ Pv,ω[u�→k−1]

(u, v, −) ∈ R ⇒ ∀ω ∈ Ωv, ∀k ∈ {1, . . . , mu} : Pv,ω[u�→k]
≤ Pv,ω[u�→k−1]

(u, v, o) ∈ R ⇒ ∃ω ∈ Ωv, ∃k ∈ {1, . . . , mu} : Pv,ω[u�→k]
�= Pv,ω[u�→k−1]

}

2.3 Parametric Regulatory Networks

A Parametric Regulatory Network (PRN) gathers an influence graph G, influence
constraints R, and maximum value vector m, to which can then be associated
a subset of parametrisations P(GR

m). A (parametrised) regulatory network can
then be defined by a couple (GR

m, P ) where P ∈ P(GR
m).
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Definition 2. A parametric regulatory network (PRN) is a tuple (G,m,R),
written GR

m, where G is an influence graph between n components, R is a set of
influence constraints, and m ∈ N

n is a vector of the maximum values of each
component.

The set of states of GR
m is denoted by S(GR

m) Δ=
∏

v∈V {0, . . . , mv}.
The set of (local) transitions of GR

m is denoted by: Δ(GR
m) Δ= {(vi → vj , ω) |

v ∈ V ∧ ω ∈ Ωv ∧ i, j ∈ {0, . . . ,mv} ∧ |i − j| = 1}. We use V ((vi → vj , ω)) = v
to denote the component whose value is changed by transition (vi → vj , ω) ∈
Δ(GR

m). Furthermore, s((vi → vj , ω)) = s(vi → vj) = j − i denotes the sign of
the transition (value change).

A transition (vi → vj , ω) ∈ Δ(GR
m) is enabled in state x ∈ S(GR

m) if xv = i
and ωv(x) = ω, where ωv(x) is the projection of state x to the regulators of v.
Given a state x and a transition t enabled in x, x · t denotes the state x[v �→j] ∈
S(GR

m) obtained by firing transition t in x.
Finally, a transition (vi → vj , ω) ∈ Δ(GR

m) is enabled by a parametrisation
set P ⊆ P(GR

m) if there exists a parametrisation P ∈ P such that the parameter
value Pv,ω = j + a · s(vi → vj) for some a ∈ N0.

Example 1. An example of a PRN GR
m composed of an influence graph G = (V, I)

and vector m = {1}|V | is depicted in Fig. 1. Based on the influences in G and
maximum values in m, all regulator states of each component, which correspond
to parameters of GR

m are determined. The table in Fig. 1(b) lists all the param-
eters alongside an example parametrisation P ∈ P(GR

m). GR
m combined with P

identifies a unique parametrised network (GR
m, P ). The dynamics of (GR

m, P ) are
given in Fig. 1(c).

We capture the basic semantics of a PRN by traces, which correspond to
different possible behaviours of the network.

Definition 3 (Trace). Given a PRN GR
m and set of parametrisations P ⊆

P(GR
m), a finite sequence π = (π1, . . . , π|π|) of transitions in Δ(GR

m) is a trace
of GR

m starting in state x ∈ S(GR
m) iff ∀i ∈ {1, . . . , |π|} : πi is enabled in state

x · π1 · . . . · πi−1 and by parametrisation set P.
To simplify notation, we use •π = x and π• = x · π1 · . . . · π|π|. Moreover, let

π:i = (π1, . . . , πi), πi: = (πi, . . . , π|π|) and πi:j = (πi, . . . , πj) denote the prefix,
suffix and infix sub-traces of π respectively.

With P ∈ P(GR
m) and P = {P}, the above definition gives the traces of the

parametrised regulatory network (GR
m, P ). In the general case, each transition is

independently enabled with respect to any parametrisation in P.

2.4 Parametrisation Set Semantics

With the basic PRN semantics (Definition 3), two transitions are allowed to fire
consequently in a single trace despite no single parametrisation enabling both of
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them. To forbid such behaviours, semantics have been introduced for PRNs that
associate each trace (set of transitions) with a set of parametrisations [15]. Said
trace can then be extended only by transitions enabled under some parametri-
sation from the associated set.

The purpose of parametrisation set semantics is to discriminate transitions
based on their causal history. This is done by progressive restriction of the set
of parametrisations to admissible parametrisations. Following [15], we consider
a parametrisation P to be admissible if all transitions in the set (causal history)
are enabled under P . However, we allow for a more lenient definition to make
room for over-approximation.

Definition 4 (Parametrisation Set Semantics). Given a PRN GR
m, a func-

tion Ψ : 2Δ(GR
m) → 2P(G

R
m) is a parametrisation set semantics of GR

m iff:

1. ∀T ⊆ Δ(GR
m) : {P ∈ P(GR

m) | ∀t ∈ T : P enables t} ⊆ Ψ(T ),
2. ∀T, T ′ ⊆ Δ(GR

m) : T ⊆ T ′ ⇒ Ψ(T ′) ⊆ Ψ(T ).

A trace π of the PRN GR
m is realisable according to the parametrisation set

semantics if and only if Ψ(π̃) �= ∅.
A best abstraction ΨC producing parametrisation sets of exactly all the

parametrisations that allow each transition in the input set has been defined
in [15]. To facilitate practical application, as the number of parametrisations
may be in the worst case double exponential in the number of components, [15]
has tackled the semantics ΨA over-approximating parametrisation sets by convex
covers, keeping track of only a maximal and minimal element and thus avoiding
the need to enumerate parametrisations explicitly. More formally, let us first
reintroduce the parametrisation order.

Definition 5. The parametrisation order on vectors of length k is the partial
order ≤ defined as follows:

a ≤ b
Δ⇔ ∀i ∈ {0, . . . , k − 1} : ai ≤ bi

The parametrisation set given by ΨA is a couple of parametrisations (L,U)
representing the lower and upper bound. Formally, (L,U) = {P ∈ P(GR

m) |
L ≤ P ∧ U ≥ P} is a bounded convex sublattice of all vectors of length |Ω|
with the parametrisation order. In [15], a method has been provided to compute
the tightest lower and upper bounds for a given set of transitions and influence
constraints without the need to explicitly enumerate the parametrisations.

Naturally, checking whether a particular parametrisation belongs to the
abstracted set can be done simply by comparing it with the bounds. Similarly,
determining whether a transition is enabled (by any parametrisation) can be
done without explicit enumeration of the parametrisations. In fact, it is enough
to compare against the corresponding parameter value of the relevant bound,
e.g. Uv,ω ≥ k + 1 is the sufficient and necessary condition for the transition
(vk → vk+1, ω) to be enabled.
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Fig. 1. Influence graph with influence constraints as labels, parameters and dynamics
of a possible parametrisation of PRN GR

m.

In this article, we consider any parametrisation set semantics compatible
with Definition 4, however, special attention is given to ΨA as it can be used
with the restriction method without the need to enumerate the parametrisations
explicitly.

3 Goal-Oriented Reduction

In this section, we extend the goal-oriented model reduction procedure from
parametrised models (in particular, automata networks) [20] to the parametric
models.
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3.1 Minimal Traces

Given a PRN GR
m and a state x ∈ S(GR

m), we say a value � ∈ {0, . . . , mg} of a
component g ∈ V is reachable from x iff either xg = � or there exists a realisable
trace π with •π = x and π•

g = �.
We are interested in reachability by minimal traces. Adapted from [20], a

realisable trace is minimal for g
 reachability if there exists no other realisable
trace reaching g
 with a subsequence of transitions.

Definition 6 (Minimal Trace). Given a parametrised PRN (GR
m, P ), a trace

π of (GR
m, P ) is minimal w.r.t. reachability of goal g
 from state x if and only if

there exists no other trace ρ satisfying x = •ρ, ρ•
g = �, |ρ| < |π| and existence

of an injection φ : {1, . . . , |ρ|} → {1, . . . , |π|} such that ∀i, j ∈ {1, . . . , |ρ|} : i ≤
j ⇒ φ(i) ≤ φ(j) and ρi = πφ(i).

An important property of minimal traces is their independence on the exact
parametrisation. More precisely, using parametrisation set semantics, if a trace
is minimal for at least one parametrisation, then it is minimal for any other
parametrisation under which it is enabled.

Property 1 (Parametrisation Independence of Minimal Traces). Let GR
m be a

PRN and π a realisable trace minimal in (GR
m, P ) for some P ∈ Ψ(π̃). Then, π

is minimal in any (GR
m, P ′) where P ′ ∈ Ψ(π̃).

Proof. P ′ ∈ Ψ(π̃) guarantees π is a proper trace of (GR
m, P ′). We conduct the

rest of the proof by contradiction. Let thus ρ be a trace in (GR
m, P ′) satisfying

the conditions in Definition 6. From the existence of the injection φ we get ρ̃ ⊆ π̃
and from the definition of parametrisation set semantics Ψ(π̃) ⊆ Ψ(ρ̃). ρ is
therefore realisable in (GR

m, P ) meaning that π is not minimal in (GR
m, P ) which

is a contradiction.

Property 1 allows us to speak of a realisable trace of a PRN as minimal
without the need to explicitly state the parametrisation which is witness to the
minimality.

3.2 Directed Parametric Regulatory Networks

The goal-oriented reduction for parametrised models is facilitated by pruning
transitions which are guaranteed to not be used by any minimal trace reaching
the goal [20]. The PRN definition could be extended to allow for pruning the
transition set to subsets T ⊆ Δ(GR

m). Unlike the case of general parametrised
models, however, the transitions of a PRN only allow to change the value of a
component by steps of size 1. As such, if a transition increasing the value of a
component v ∈ V to k ∈ {0, . . . , mv} is to be pruned, all transitions increas-
ing the value of v beyond k can surely be pruned as well, and symmetrically
for decreasing transitions. Thus, instead of removing individual transitions of
PRNs, we disable increasing, respectively decreasing, value of a component in a
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given regulator state beyond a certain value (or entirely). This is facilitated by
keeping record of the activation (increase) and inhibition (decrease) limits for
each component in vectors lA and lI respectively.

Definition 7 (Directed Parametric Regulatory Network). A directed
parametric regulatory network (DPRN) is a tuple G = (GR

m, lA, lI), where GR
m

is a parametric regulatory network, lA ∈ (N ∪ {−∞})|Ω| is a vector of activation
limits for each regulator state ω ∈ Ωv and lI ∈ (N0 ∪ {∞})|Ω| is a vector of
inhibition limits for each regulator state ω ∈ Ωv.

The set of states of G is equal to the set of states of the underlying PRN:
S(G) = S(GR

m).
The set of transitions of G is a subset of the PRN transitions satisfying the

activation and inhibition limits lA and lI respectively. Formally, Δ(G) ⊆ Δ(GR
m)

such that:

∀t = (vi → vj , ω) ∈ Δ(GR
m) : t ∈ Δ(G) Δ⇔

{
i < lAω if s(t) = +1
i > lIω if s(t) = −1

One may remark that by using parametrisation set semantics, it is already
possible to restrict the activation or inhibition of components in individual reg-
ulator states while just using PRNs. While it is true that an equivalent set of
enabled transitions can be achieved both by restricting the parametrisation set
and by DPRN, the semantics of the two restrictions are different.

The parametrisation set semantics serves primarily to keep track of
parametrisations capable of reproducing certain behaviour(s), and thus restrict
the set of enabled transitions based on their causal history. On the other hand,
the lA and lI of DPRN mark components whose activation or inhibition (beyond
a certain value) is not necessary to reach a given goal (via a minimal trace). A
parametrisation that allows changing a component value beyond the limit, thus
allowing behaviour which does not lead to the established goal may still allow
a different sequence of transitions leading to the goal. We want to retain such
parametrisations, thus the “useless” behaviour which does not lead to the goal
cannot be restricted in the parametrisation set semantics. Therefore, keeping
the information about parametrisations and about the activation and inhibition
limits independently is key.

The complete independence of parametrisation set semantics and the limit
vectors lA and lI allows us to employ both in parallel. The extension of both
traces (Definition 3) and parametrisation set semantics (Definition 4) from PRNs
to DPRNs is thus natural.

3.3 Objectives

The reduction for parametrised models relies on identifying sub-goals, or objec-
tives, local in terms of individual components. We reintroduce the concept of a
(local) objective for the parametric model.
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Definition 8 (Objective). Given an DPRN G, an objective vi � vj is a pair
of values i, j ∈ {0, . . . , mv} of a component v ∈ V .

An objective vi � vj is valid in a starting state x ∈ S(G) iff i = j or a
realisable trace π of the parametrised DPRN exists, such that •π = x, π•

v = j
and ∃k ∈ {0, . . . , |π| − 1} : •πkv = i.

i � j is used to denote vi � vj if the component v ∈ V is obvious from the
context.

Each objective vi � vj captures either increase or decrease of the value of

the component. Formally, the sign of an objective s(vi � vj)
Δ= sign(j − i).

By requiring the witness of objective validity to be a realisable trace instead
of just a trace of enabled transitions, we retain only behaviours which are present
in at least one parametrised model.

The objective represents a change of value of only one component v ∈ V . A
realisable trace reproducing such a change may, however, require to also change
value of other components, namely the regulators of v. Each objective is thus
associated to a set of transitions which may be used to complete it, and from
which the required regulator values can be obtained.

3.4 Regulation Cover Sets

Depending on the parametrisation set semantics, it may be a common occur-
rence for a particular value change to be enabled by numerous regulator states
(recall that enabling is existential w.r.t. parametrisations). Such cases lead to
a substantial redundancy in individual transition enumeration as the value of
only a subset of regulators may be enough to determine whether a value change
is enabled or not. To this end we introduce a definition of a partial regulator
state, which is used to represent a (minimal) condition for a value change to be
enabled.

Definition 9 (Partial Regulator State). A partial regulator state ℵ of com-
ponent v ∈ V is a vector ℵ ∈ ∏

u∈n−(v){0, . . . , mu} ∪ {∗} assigning a value or a
wildcard character ∗ to each regulator u of v. By abuse of notation, ℵ is also a
set of regulator states, more precisely ℵ ⊆ Ωv such that for all ω ∈ Ωv:

ω ∈ ℵ Δ⇔ ∀u ∈ n−(v) : ωu = ℵu ∨ ℵu = ∗

The set of all partial regulator states of v ∈ V is denoted as Av.

Partial regulator states can be utilised to abstract the DPRN dynamics while
minimising the number of repetitions of each value of each regulator. We capture
these abstractions by the means of sets of partial regulator states, called regula-
tion cover sets, representing the enabling condition of a given value change. We
impose two conditions on regulation cover set of value change c. First, the set has
to cover all regulator states ω such that (c, ω) is enabled. In other words, for each
such regulator state there must exist one or more partial regulator states which
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specify the value of each regulator in ω. Second, no bad regulator state ω such
that (c, ω) is not enabled is subsumed by any of the partial regulator states in
the cover set. These two conditions not only guarantee that the abstract dynam-
ics enable exactly the same value changes as the concrete dynamics, but also
preserve the regulator information, i.e. each value of each regulator that appears
in the enabling conditions. The regulator information is necessary to accurately
determine which regulator values are necessary to complete an objective.

Definition 10 (Regulation Cover Set). Let G be a DPRN and P a para-
metrisation set from the parametrisation set semantics, and let c = vi → vj be
an arbitrary value change of a component v ∈ V . A set of partial regulator states
Ac ⊆ Av is a cover set of c iff the following is satisfied:

– ∀ω ∈ Ωv : (c, ω) is enabled under P: ∀u ∈ n−(v) : ∃ℵ ∈ Ac : ω ∈ ℵ∧ωu = ℵu.
– ∀ω ∈ Ωv : (c, ω) is not enabled: ∀ℵ ∈ Ac : ω /∈ ℵ.

Any regulation cover set, including the concrete regulation cover set {ω |
ω ∈ Ωv : (c, ω) is enabled}, may be used for the purposes of the reduction pro-
cedure. The aim of the regulation cover set being to minimise the number of
individual regulator values which appear across all of the partial regulator states,
an algorithm that computes regulator cover sets with no more regulator value
specifications than the concrete regulation cover set is introduced in Sect. 4.

3.5 Reduction of Directed Parametric Regulatory Networks

Our reduction procedure essentially relies on associating to objectives the set
of (partial) transitions which are necessary to realise the objective within the
corresponding components of the PRN. Starting from the final (goal) objec-
tive, the procedure then recursively collects objectives related to the identified
transitions.

Since PRNs allows only unitary value changes, the realisation of an objective
vi � vj involves a monotonic change of value of component v from i to j, where
each change of value depends on specific (partial) regulator state. This coupling
of a value change with a corresponding partial regulator state is referred to as a
partial transition.

Definition 11 (Objective Transition Set). Let G be an DPRN parametrised
by P, and let vi � vj be an objective for v ∈ V . The objective transition set

τ(vi � vj) is defined as τ(vi � vj)
Δ= ∅ whenever i = j, otherwise,

τ(vi � vj)
Δ= {(vk → vq,ℵ) | s(vk → vq) = s(vi � vj) ∧ ℵ ∈ Avk→vq

∧ max{k, q} ≤ max{i, j} ∧ min{k, q} ≥ min{i, j}}
Given an initial state x ∈ S(G), the valid objective transition set of an objective
vi � vj in state x is a subset of the objective transition set τx(vi � vj) ⊆
τ(vi � vj) such that: (c,ℵ) ∈ τx(vi � vj)

Δ⇔ ∀u ∈ n−(v) : ℵu �= ∗ ⇒ xu � ℵu is
valid in state x.
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The (valid) objective transition sets extend to sets of objectives in the natural
manner: τ(O) =

⋃
O∈O τ(O).

Remark that the definition of a valid objective transition set benefits from
the use of partial regulator states. Indeed, instead of having to check validity of
an objective for each regulator, only the minimal necessary subset of regulators
is considered. Checking objective validity consists of searching for a realisable
trace, which translates to finding all possible extensions (enabled transitions)
of a trace. As enabled transitions can be retrieved using ΨA without explicitly
enumerating the parametrisations, the validity check is compatible with ΨA.

The goal-oriented reduction of DPRNs can then be defined by recursively
collecting objectives from partial transitions (B) and refining the component
activation and inhibition limits accordingly.

Definition 12 (Reduction Procedure). The goal-oriented reduction of a
DPRN G = (GR

m, lA, lI) for an initial state x ∈ S(G) and a goal g
 is the DPRN
G′ = (GR

m, lA
′
, lI

′) with lA
′ and lI

′ being defined as follows, ∀v ∈ V,∀ω ∈ Ωv:

lA
′
ω =max({k ∈ {0, . . . , mv} | ∃(vk−1 → vk,ℵ) ∈ τx(B) : ω ∈ ℵ} ∪ {−∞})

lI
′
ω =min({k ∈ {0, . . . , mv} | ∃(vk+1 → vk,ℵ) ∈ τx(B) : ω ∈ ℵ} ∪ {∞})

where B is the smallest set of objectives satisfying the following:

1. xg � � ∈ B
2. ∀O ∈ B : ∀(vk → vq,ℵ) ∈ τx(O) : ∀u ∈ n−(v) \ {v} : ℵu �= ∗ ⇒ xu � ℵu ∈ B
3. ∀O ∈ B : ∀(vk → vq,ℵ) ∈ τx(O) : ∀vi � vj �= O ∈ B : vq � vj ∈ B.

Example 2. Consider the parametric regulatory network GR
m introduced in

Example 1 converted to a DPRN G = (GR
m, lA, lI) in an unrestrictive manner

(lA = {1}V and lI = {0}V ), and a parametrisation set containing only two
parametrisations P = {P, P ′}, where P is the parametrisation from Example 1
and P ′ differs from P only in value of P ′

a,〈b=1,c=0,d=0〉 = 0. Furthermore, let
a = 1 be a goal and x = 〈a = 0, b = 0, c = 0, d = 0〉 an initial state.

In Fig. 2 we recall the dynamics of G given as a state space graph. Note that
the second parametrisation P ′ is also shown within the graph as opposed to the
one in Example 1.

In our example, there are three minimal traces from the initial state x reach-
ing the goal a = 1:

〈0000〉 b+,〈0〉−−−−→ 〈0100〉 a+,〈100〉−−−−−→ 〈1100〉
〈0000〉 b+,〈0〉−−−−→ 〈0100〉 c+,〈1〉−−−−→ 〈0110〉 a+,〈110〉−−−−−→ 〈1110〉
〈0000〉 b+,〈0〉−−−−→ 〈0100〉 c+,〈1〉−−−−→ 〈0110〉 b−,〈1〉−−−−→ 〈0010〉 a+,〈010〉−−−−−→ 〈1010〉

All the listed traces share a common prefix, however, they are all minimal
as a different regulator state is used to activate a each time, thus each of the
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Fig. 2. States and transitions of (G, {P, P ′}) depicted as nodes and edges of a state
space graph respectively. Transitions changing the value of b and d are displayed
schematically. Transitions only enabled by a single of the parametrisations are marked
accordingly. Bold font and lines indicate states and transitions used by at least one
minimal trace from the initial state to the goal.

traces has at least one unique transition. One may further remark that the first
(shortest) minimal path is only available under parametrisation P , however,
thanks to Property 1 this has no impact on the reduction procedure itself.

Observe that node d never activates in any of the minimal traces. This follows
from the fact that a is never allowed to activate while d is active. Thus, if d
activates it has to deactivate again before the goal can be reached. As d has
no impact on the value of the other components besides a, such an activation
and deactivation loop can always be stripped from the trace to obtain a smaller
trace, unlike the loop by b in the third (longest) trace, which is necessary for the
activation of c. One might thus expect the activation of d to be pruned during
the reduction procedure, which is, indeed the case:

We start with B := {a0 � a1} according to rule (1) of Definition 12.
Inference of the regulator cover set used for τx(a0 � a1) = {(a0 → a1,ℵ) |

ℵ ∈ Aa0→a1} = {(a0 → a1, 〈100〉), (a0 → a1, 〈010〉), (a0 → a1, 〈110〉)} is illus-
trated in Example 3. Then, by rule (2) of Definition 12, the following objectives
are included in B := B ∪ {b0 � b0, b0 � b1, c0 � c0, c0 � c1, d0 � d0}.

For arbitrary component v, the objective v0 � v0 has an empty valid tran-
sition set τx(v0 � v0) = ∅ and thus neither of rules (2) or (3) are applicable.
For the remaining b0 � b1 and c0 � c1 rule (2) produces only duplicate objec-
tives (b0 � b0 and b0 � b1, respectively). Rule (3), however, may be applied to
b0 � b1 and c0 � c1 to bridge them to b0 � b0 and c0 � c0, respectively, to
include objectives B := B ∪ {b1 � b0, c1 � c0}.

Only duplicate objectives are obtained by application of either rule (2) or (3)
on the newly added b1 � b0 and c1 � c0. Thus, the reduction concludes with
B = {a0 � a1, b0 � b0, b0 � b1, b1 � b0, c0 � c0, c0 � c1, c1 � c0, d0 � d0},
with valid transition set τx(B) = {(a0 → a1, 〈100〉), (a0 → a1, 〈010〉), (a0 →
a1, 〈110〉), (b0 → b1, 〈0〉), (b1 → b0, 〈1〉), (c0 → c1, 〈1〉), (c1 → c0, 〈0〉)}. One may
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observe that the computed transition set indeed covers all the transitions used
by any of the minimal traces (thick edges in Fig. 2).

Finally, the limit vectors for the new DPRN G′ = (GR
m, lA

′
, lI

′) are computed
as follows:

lA
′
= 〈a = 1, b = 1, c = 1, d = −∞〉

lI
′
= 〈a = ∞, b = 0, c = 0, d = ∞〉

Observe that component d is indeed completely forbidden from acting in the
reduced model, considerably decreasing the reachable state space that has to be
explored. Notice that deactivation of a is also disabled, however, in our Boolean
case this has no practical effect w.r.t. reachability of a = 1.

3.6 Correctness

Following the interpretation of the reduction procedure and thanks to the mono-
tonicity of value updating, a transition (c, ω) remains enabled in G′ iff at least
one partial transition (c,ℵ) exists in τx(B) with ω ∈ ℵ. This leads us to formulate
the soundness theorem of the reduction procedure, guaranteeing that all tran-
sitions of all minimal traces are preserved and thus, in turn, all minimal traces
are preserved.

Theorem 1. Let G be a DPRN, and let a realisable trace π of G be minimal for
an initial state x ∈ S(G) and goal g
. Then, for any transition (c, ω) ∈ π̃ there
exists at least one partial transition (c,ℵ) ∈ τ(B) such that ω ∈ ℵ, where B is
constructed according to Definition 12.

The proof of the theorem relies on showing that any transition which is not
preserved is part of a cycle on any trace leading to the goal, and as a consequence
does not belong to any minimal trace. The formal proof is given in the appendix
available at https://arxiv.org/src/1811.12377/anc/appendix.pdf.

4 Regulation Cover Set Inference

In this section we introduce a heuristic for construction of regulation cover sets
whose size, w.r.t. specified regulator values across all partial regulator states,
does not exceed the size of the concrete regulation cover set.

Let Aena = {ℵ ∈ Av | ∀ω ∈ ℵ : (c, ω) is enabled} be the set of all partial regu-
lators states which contain no bad regulator states. For each i ∈ {0, . . . , |n−(v)|}
let Ai = {ℵ ∈ Av | |{u ∈ n−(v) | ℵu = ∗}| = i} to be the set of all partial regu-
lator states with exactly i regulator values equal to ∗.

The algorithm consists of choosing partial regulator state set, Aext, to cover
each (concrete) regulator state enabling the value change. This is done sepa-
rately for each regulator state in an increasing order of a weight function. The
weight function represents flexibility of covering the regulator state, i.e. there are

https://arxiv.org/src/1811.12377/anc/appendix.pdf
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Algorithm 1. Pseudocode of the algorithm computing regulation cover set.
function Weight(ω)

return |{ℵ ∈ (A1 ∩ Aena) \ Armv | ω ∈ ℵ}| + |{ℵ∈A1∩Aena|ω∈ℵ}|
|n−(v)|+1

end function

function ComputeCoverSet(c = vk → vq)
Ac ← ∅
Armv ← ∅
while A0 �= ∅ do

ω ← ω′ ∈ (A0 ∩ Aena) \ Armv

with Weight(ω′) = min{Weight(ω′′) | ω′′ ∈ (A0 ∩ Aena) \ Armv}
Aext ← ∅
i ← |n−(v)| − 1
while ω is not covered by Ac ∪ Aext do

Aext ← (Ai ∩ Aena) \ Armv

i ← i − 1
end while
Ac ← Ac ∪ Aext

Armv ← Armv ∪ {ℵ ∈ Av | ω ∈ ℵ}
end while
return Ac

end function

more partial regulator states in Aena containing a regulator state with a larger
weight than the ones covering regulator state with smaller weight. The weights
are dynamic as the partial regulator states get removed (Armv) throughout the
algorithm. The Aext for each regulator state is computed by testing candidate
sets of partial regulator states from Ai in decreasing order on i. A cover set for
each regulator state is guaranteed to exist as for i = 0 the candidate set is a
singleton set containing the regulator state itself. Once a suitable cover set is
found for a particular regulator state, it is included in the regulation cover set
Ac and all partial regulator states containing the regulator state are excluded
from further computation.

As the weight function gives only a partial order on the regulator states, the
algorithm is forced to make nondeterministic choices. This occurs, however, only
in cases when the choices are isomorphic. As such, the partial order given by
weights can be extended to a total order arbitrarily, e.g. by underlying lexico-
graphic order. The pseudocode of the algorithm to construct regulation cover
sets is given in Algorithm 1.

The correctness of the algorithm comes directly from the construction. No
bad states may be included as the algorithm works only with the set of partial
regulator states which include no bad states. On the other hand, all regulator
states which enable the value change are fully covered as the algorithm ensures
this for each of them individually.

The resulting cover set computed by Algorithm1 contains no more explicit
regulator value specifications than the concrete regulation cover set. This is a
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consequence of the order of regulator states covering. Suppose a regulator state ω
is covered by several partial regulator states which contain more regulator value
specifications than ω itself. Each partial regulator state ℵ ∈ A1 with ℵu = ∗ is
shared with exactly mu − 1 other regulator states. Thus, the partial regulator
states included to cover ω can be utilised while covering mu − 1 other regulator
states. Finally, since Weight(ω) ≥ 2 is the smallest weight among all uncovered
regulator states, all the other uncovered regulator states are also sharing partial
regulator states among themselves, thus closing the loop and guaranteeing the
regulator value specification debt eventually gets “payed off”.

The fractional part of the weight function is included to introduce bias
towards states that have less partial regulator states in the beginning (due to
sharing with more bad states). If there are two regulator states ω and ω′ such
that �Weight(ω)� = �Weight(ω′)� but Weight(ω) < Weight(ω′), we know
that both of them have equally many partial regulator states to choose from for
their respective cover sets. However, more of the partial regulator states con-
taining ω′ have been removed and thus, quite possibly included in the regulation
cover set Ac. ω′ is therefore in all likelihood already covered to a higher degree
than ω and possibly, has more covering options. The bias thus ensures ω is cov-
ered first in order to avoid introducing potentially redundant partial regulator
states into the regulation cover set.

Both principles making up the weight function are illustrated in Example 3.

Example 3. Consider the same directed parametric regulatory network G as in
Example 2.

We now show the regulation cover set computation for value changes of com-
ponent a. Let us start with a0 → a1. The initial configuration and first two
iterations, consisting of covering of the first two regulator states, of the algo-
rithm are schematically depicted in Fig. 3.

Figure 3 lists all regulator states of component a as nodes in a graph. Bold
font indicates the three regulator states which enable the increase of a. The
partial regulator states from A1 correspond to edges in the graph, connecting
contained regulator states. Thick edges indicate partial regulator states which
contain no bad regulator states. Partial regulator states from A2 could in turn
be viewed as squares in the diagram, all of them containing at least one bad
regulator state in our case. In the graphical representation of regulator states,
a partial regulator state belonging to Ai is a i-dimensional hypercube in the
Boolean case, or a i-dimensional hyper-rectangular cuboid in the general case.

The graph representation in Fig. 3 allows for easy visualisation of the weight
function. The weight corresponds to number of thick, non-dashed edges plus, the
number of thick edges divided by |n−(a)|+1, in our case 4. Consequently, in the
initial configuration (Fig. 3(a)) the regulator states 〈100〉 and 〈010〉 have equal
(minimal) weight. This is justified by their perfectly symmetrical position.

Figure 3 illustrates the run of the algorithm assuming lexicographic order
is used to distinguish between regulator states with equal weights. In the first
iteration 〈010〉 is covered using itself for the extension set Aext = {〈010〉} as
the only partial regulator state with more unspecified regulator values, 〈∗10〉,
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Fig. 3. Regulator states of component a during computation of regulation cover set for
value change a0 → a1. Only the leftmost edges in (a) are labelled by the corresponding
partial regulator states 11∗, 1∗1 and ∗01 for the sake of readability. Bold text and lines
indicate (partial) regulator states which enable the value change (Aena). Underlined
regulator state is the state covered in the respective iteration and dashed lines represent
removed partial regulator states (Armv).

alone does not fully cover 〈010〉. Figure 3(b) depicts the situation after the first
iteration, including the removed partial regulator states (dashed lines).

In the second iteration 〈100〉 is covered in the exact same fashion, owning to
the symmetric position w.r.t. 〈010〉. The result is shown in Fig. 3(c).

No partial regulator states remain for the last regulator state 〈110〉 except
the regulator state itself. Thus, 〈110〉 also gets covered explicitly. The algo-
rithm therefore concludes with the concrete regulation cover set Aa0→a1 =
{〈010〉, 〈100〉, 〈110〉}, which, in fact, is the optimal solution in our case.

Let us now consider also the decreasing case a1 → a0. Again, we illustrate
the running of the algorithm using graph representation of the regulator states
of a. All iterations up to the final one of the algorithm using lexicographic order
on regulator states of equal weight are given in Fig. 4.

The algorithm begins with covering the regulator state 〈000〉. Unlike in the
case of increasing a, a nonempty candidate extension set exists for partial reg-
ulator states on level A2 containing a single element {〈∗0∗〉}. This partial reg-
ulator state alone, however, does not suffice to cover 〈000〉 and extension set
{〈00∗〉, 〈∗00〉} is used instead as indicated by double lines in Fig. 4(b). Notice
that in this case, the node 〈000〉 gets covered by two partial regulator states
having one more regulator value specification (a total of 4 specifications against
the explicit 3).

According to the weight function, 〈100〉 gets covered next. 〈∗0∗〉 is no longer
available, thus the first nonempty candidate extension set is {〈10∗〉}. Although
〈10∗〉 alone is not enough to fully cover 〈100〉, the cover set Aa1→a0 already
contains 〈∗00〉 which covers 〈100〉 completely in combination with 〈10∗〉. Thus,
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Fig. 4. Regulator states of component a during computation of regulation cover set for
value change a1 → a0. Bold text, lines and shaded areas indicate (partial) regulator
states which enable the value change (Aena). The underlined regulator state is the state
covered in the respective iteration. Dashes represent removed partial regulator states
(Armv) and double lines represent partial regulator states included in the regulation
cover set (Aa1→a0).

〈100〉 gets covered by including only 2 additional regulator value specifications,
effectively “paying-off” the depth incurred while covering 〈000〉.

Covering 〈011〉 and subsequently 〈111〉 is identical to that of 〈000〉 and 〈100〉.
Both of them thus get covered by three partial regulator states 〈0∗1〉, 〈∗11〉
and 〈1∗1〉 as shown in Fig. 4(d) and (e). Furthermore, 〈00∗〉 and 〈0∗1〉, fully
cover 〈001〉 and 〈10∗〉, 〈1∗1〉 fully covers 〈101〉. As such, the remaining two
regulator states are covered with empty extension sets and the final solution uses
12 regulator value specifications as opposed to the 18 required by the explicit
representation.

The fractional part of the weight function is crucial to distinguish between
〈001〉, 〈101〉 and 〈011〉, 〈111〉 after the second iteration (Fig. 4(c)). Covering 〈001〉
or 〈101〉 before 〈011〉 and 〈111〉 would include either 〈∗∗1〉 or 〈∗01〉, depending on
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the exact order, in the final regulation cover set. As both of them are redundant,
this would lead to a suboptimal solution.

Algorithm 1 is quasilinear in the number of regulator states and quadratic
in the number of regulators. Its main complexity comes from computing the
extension sets Aext. Whether a regulator state ω ∈ Ωv is covered by some
Ac ∪ Aext can be checked in O(|n−(v)|). Each ω requires at most |n−(v)| such
tests (but usually much less). As such, the extension set can be computed in
O(|n−(v)|2) and thus, for all the regulator states: O(|Ωv| · |n−(v)|2). Finally, the
quasilinear complexity comes from the need to keep the regulator states in a
priority queue giving us the final complexity of O(|Ωv| · (log(|Ωv|)+ |n−(v)|2)).

Algorithm 1 does not require explicit enumeration of parametrisations when
coupled with the parametrisation set semantics ΨA. The parametrisation set is
only used to determine which regulator states enable the value change (queries
to Aena). This information is readily available using ΨA in the form of parameter
values of the relevant bound.

5 Discussion

The goal-oriented model reduction procedure for parametrised models has been
extended to parametric regulatory networks. The parametric reduction proce-
dure is compatible with a large family of parametrisation set semantics functions,
including the over-approximating semantics introduced for PRNs in [15], without
the need to enumerate the parametrisations explicitly.

The reduction method can be applied alongside the model refinement pro-
cedure based on unfolding [15]. The parametric reduction can be applied on-
the-fly within PRN unfolding in the same fashion the reduction procedure for
parametrised networks is applied in Petri net unfoldings [6]. The application
to PRN unfoldings suffers from the same challenge with cut-off events as the
parametrised version with Petri net unfoldings. The challenge arises from the
need to keep track of the transition set as the model evolves (transitions are
pruned) by the reduction procedure along the unfolding process. Moreover, a
similar challenge is already present in PRN unfoldings due to parametrisation
sets [15]. Two different methods are used to tackle the issue. In [6], if more tran-
sitions are encountered during the unfolding, the respective branch is reiterated
with the new transition set. In [15], a new branch is introduced into the unfolding
for the new parametrisation set instead. Both of the methods are applicable for
transitions (respectively, lA and lI) in PRN unfoldings with model reduction.

The parametric reduction is an independent procedure and can be applied
in any other setting besides the mentioned coupling with model refinement.
Moreover, should complexity be a concern, several possibilities to abstract the
procedure exist. The regulation cover set allows for a different algorithm, or even
to relax the definition itself. Or, the condition for a trace to be realisable can
be dropped from the validity criterion for objectives to avoid having to check
against parametrisation sets. Both of the suggested approximations are sound
as adding new transitions has no effect on minimal traces.
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Future work includes the refinement of the interplay between parametric
model reduction and model refinement, further applications and extensions of
the parametric model reduction itself and application of goal-oriented reduction
to a wider variety of parametric models.
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Abstract. Hierarchical block diagrams (HBDs) are at the heart of
embedded system design tools, including Simulink. Numerous transla-
tions exist from HBDs into languages with formal semantics, amenable to
formal verification. However, none of these translations has been proven
correct, to our knowledge.

We present in this paper the first mechanically proven HBD transla-
tion algorithm. The algorithm translates HBDs into an algebra of terms
with three basic composition operations (serial, parallel, and feedback).
In order to capture various translation strategies resulting in different
terms achieving different tradeoffs, the algorithm is nondeterministic.
Despite this, we prove its semantic determinacy: for every input HBD,
all possible terms that can be generated by the algorithm are semanti-
cally equivalent. We apply this result to show how three Simulink trans-
lation strategies introduced previously can be formalized as determiniza-
tions of the algorithm, and derive that these strategies yield semantically
equivalent results (a question left open in previous work). All results are
formalized and proved in the Isabelle theorem-prover and the code is
publicly available.

1 Introduction

Dozens of tools, including Simulink [28], the most widespread embedded system
design environment, are based on hierarchical block diagrams (HBDs). Being a
graphical notation (and in the case of Simulink a “closed” one in the sense that
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the tool is not open-source), such diagrams need to be translated into other
formalisms more amenable to formal analysis. Several such translations exist,
e.g., see [2,12,24,29,30,34,39,41,43,44] and the related discussion in Sect. 2. To
our knowledge, none of these translations has been formally verified. This paper
aims to remedy this fact.

Our work builds upon the Refinement Calculus of Reactive Systems (RCRS),
a publicly available compositional framework for modeling and reasoning about
reactive systems [17,18]. RCRS is itself implemented on top of the Isabelle the-
orem prover [31].

RCRS uses Simulink as one of its front-ends, and includes a tool that trans-
lates Simulink diagrams to RCRS theories [16]. This Translator implements three
translation strategies from HBDs to an algebra of components with three basic
composition operators: serial, parallel, and feedback. The several translation
strategies are motivated by the fact that each strategy has its own pros and
cons. For instance, one strategy may result in shorter and/or easier to under-
stand algebra terms, while another strategy may result in terms that are easier to
simplify by manipulating formulas in a theorem prover. But a fundamental ques-
tion is left open in [16]: are these translation strategies semantically equivalent,
meaning, do they produce semantically equivalent terms? This is the question
we study and answer (positively) in this paper.

The question is non-trivial, as we seek to prove the equivalence of three com-
plex algorithms which manipulate a graphical notation (hierarchical block dia-
grams) and transform models in this notation into a different textual language,
namely, the algebra mentioned above. Terms in this algebra have intricate formal
semantics, and formally proving that two given specific terms are equivalent is
already a non-trivial exercise. Here, the problem is to prove that a number of
translation strategies T1, T2, . . . , Tk are equivalent, meaning that for any given
graphical diagram D, the terms resulting from translating D by applying these
strategies, T1(D), T2(D), . . . , Tk(D), are all semantically equivalent.

This equivalence question is important for many reasons. Just like a compiler
has many choices when generating code, a HBD translator has many choices
when generating algebraic expressions. Just like a correct compiler must guar-
antee that all possible results are equivalent (independently of optimization or
other flags/options), the translator must also guarantee that all possible alge-
braic expressions are equivalent. Moreover, the algebraic expressions constitute
the formal semantics of HBDs, and hence also those of tools like Simulink. There-
fore, this determinacy principle is also necessary in order for the formal Simulink
semantics to be well-defined.

In order to formulate the equivalence question precisely, we introduce an
abstract and nondeterministic algorithm for translating HBDs into an abstract
algebra of components with three composition operations (serial, parallel, feed-
back) and three constants (split, switch, and sink). By abstract algorithm we
understand an algorithm that produces terms in this abstract algebra. Concrete
versions for this algorithm are obtained when using it for concrete models of the
algebra (e.g., constructive functions). The algorithm is nondeterministic in the
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sense that it consists of a set of basic operations (transformations) that can be
applied in any order. This allows to capture various deterministic translation
strategies as determinizations (refinements [5]) of the abstract algorithm.

The main contributions of the paper are the following:

1. We formally and mechanically define a translation algorithm for HBDs.
2. We prove that despite its internal nondeterminism, the algorithm achieves

deterministic results in the sense that all possible algebra terms that can be
generated by the different nondeterministic choices are semantically equiva-
lent.

3. We formalize two translation strategies introduced in [16] as refinements of
the abstract algorithm.

4. We formalize also the third strategy (feedbackless) introduced in [16] as an
independent algorithm.

5. We mechanically prove the equivalence of these three translation strategies.
6. We make our results publicly available at https://github.com/hbd-

translation/TranslateHBD.

To our knowledge, our work constitutes the first and only mechanically
proven hierarchical block diagram translator. Moreover, our method is compo-
sitional and our abstract algorithm can be instantiated in many different ways,
encompassing not just the three translation strategies of [16], but also any other
HBD translation strategy that can be devised by combining the basic composi-
tion operations defined in the abstract algorithm.

2 Related Work

Model transformation and the verification of its correctness is a long standing
line of research, which includes classification of model transformations [3] and the
properties they must satisfy with respect to their intent [26], verification tech-
niques [1], frameworks for specifying model transformations (e.g., ATL [19]), and
various implementations for specific source and target meta-models. Extensive
surveys of the above can be found in [1,3,11].

Several translations from Simulink have been proposed in the literature,
including to Hybrid Automata [2], BIP [39], NuSMV [29], Lustre [41], Boo-
gie [34], Timed Interval Calculus [12], Function Blocks [24], I/O Extended Finite
Automata [43], Hybrid CSP [44], and SpaceEx [30]. It is unclear to what extent
these approaches provide formal guarantees on the determinism of the trans-
lation. For example, the order in which blocks in the Simulink diagram are
processed might a-priori influence the result. Some works fix this order, e.g., [34]
computes the control flow graph and translates the model according to this com-
puted order. In contrast, we prove that the results of our algorithm are equivalent
for any order. To the best of our knowledge, the abstract translation proposed
hereafter for Simulink is the only one formally defined and mechanically proven
correct.

https://github.com/hbd-translation/TranslateHBD
https://github.com/hbd-translation/TranslateHBD
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The focus of several works is to validate the preservation of the semantics
of the original diagram by the resulting translation (e.g., see [9,24,35,36]). In
contrast, our goal is to prove equivalence of all possible translations. Given that
Simulink semantics is informal (“what the simulator does”), ultimately the only
way to gain confidence that the translation conforms to the original Simulink
model is by simulation (e.g., as in [16]).

In general, our approach can be considered as a means in the certification and
qualification of compilers by mechanical formal verification. Several works tackle
the formal verification of compilers for programming languages: CompCert [25]
is a verified compiler for a subset of C with the Coq interactive theorem prover
[40], while the verification of a compiler for Lustre with Coq is considered in
[4,10]. The aim of these works is to show that the semantics of the original
program is preserved during the different compilation phases until the generated
assembly code, while we provide a semantics for HBDs and we prove it correct
with respect to the different translation choices.

Further comparison of our approach to additional related works and in par-
ticular works on category theory such as [6,13,21–23,37,38,42] is included in [32]
and is omitted from here due to space limitations. To our knowledge, none of
these works has been mechanically formalized nor verified.

3 Preliminaries

For a type or set X, X∗ is the type of finite lists with elements from X. We denote
the empty list by ε, (x1, . . . , xn) denotes the list with elements x1, . . . , xn, and
for lists x and y, x · y denotes their concatenation. The length of a list x is
denoted by |x|. The list of common elements of x and y in the order occurring
in x is denoted by x ⊗ y. The list of elements from x that do not occur in y is
denoted by x � y. We define x⊕ y = x · (y � x), the list of x concatenated with
the elements of y not occurring in x. A list x is a permutation of a list y, denoted
perm(x, y), if x contains all elements of y (including multiplicities) possibly in a
different order. For a list x, set(x) denotes the set of all elements of x.

In the sequel we refer to constructive functions as used in the constructive
semantics literature [8,20,27]. Constructive functions enjoy important proper-
ties, in particular with respect to feedback composition, and are one of the
concrete models for the abstract algebra of HBDs introduced in Sect. 5. The for-
mal definition of constructive functions is omitted due to lack of space and the
reader is referred to [32].

4 Overview of the Translation Algorithm

A block diagram N is a network of interconnected blocks. A block may be a
basic (atomic) block, or a composite block that corresponds to a sub-diagram. If
N contains composite blocks then it is called a hierarchical block diagram (HBD);
otherwise it is called flat. An example of a flat diagram is shown in Fig. 1a. The
connections between blocks are called wires, and they have a source block and a
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target block. For simplicity, we will assume that every wire has a single source
and a single target. This can be achieved by adding extra blocks. For instance,
the diagram of Fig. 1a can be transformed as in Fig. 1b by adding an explicit
block called Split.

Let us explain the idea of the translation algorithm. We first explain the idea
for flat diagrams, and then we extend it recursively for hierarchical diagrams.

A diagram is represented in the algorithm as a list of elements correspond-
ing to the basic blocks. One element of this list is a triple containing a list of
input variables, a list of output variables, and a function. The function com-
putes the values of the outputs based on the values of the inputs, and for now it
can be thought of as a constructive function. Later this function will be an ele-
ment of an abstract algebra modeling HBDs. Wires are represented by matching
input/output variables from the block representations.

Add Delay •

(a) Original block diagram

Add
x

Delay
y

Split
z

u v

(b) Naming wires and adding Split block

Add
x

Delay

y
Split

z
u v

s s′

(c) Adding state variables

Add
x

Id

u
z

Delay

y

s′s

A

(d) One step of the algorithm

Fig. 1. Running example: diagram for summation.

A block diagram may contain stateful blocks such as delays or integrators.
We model these blocks using additional state variables (wires). In Fig. 1, the
only stateful block is the block Delay. We model this block as an element with
two inputs (x, s), two outputs (y, s′) and function (y, s′) := (s, x) (Fig. 1c). More
details about this representation can be found in [16].

In summary, the list representation of the example of Fig. 1 is the following:
(
Add,Delay,Split

)
, where: Add = ((z, u), x, [z, u � z + u]),

Delay = ((x, s), (y, s′), [x, s � s, x]), Split = (y, (z, v), [y � y, y]).

The algorithm works by choosing nondeterministically some elements from
the list and replacing them with their appropriate composition (serial, parallel,
or feedback). The composition must connect all the matching variables. Let us
illustrate how the algorithm may proceed on the example of Fig. 1; for the full
description of the algorithm see Sect. 6. Symbols ◦, ‖ and feedback used below
denote serial, parallel and feedback compositions, respectively, and they will be
formally introduced in Sect. 5.1.
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Suppose the algorithm first chooses to compose Add and Delay. The only
matching variable in this case is x, between the output of Add and the first
input of Delay. The appropriate composition to use here is serial composition.
Because Delay also has s as input, Add and Delay cannot be directly connected
in series. This is due to the number of outputs of Add that need to match the
number of inputs of Delay. To compute the serial composition, Add must first be
composed in parallel with the identity block Id, as shown in Fig. 1d. Doing so, a
new element A is created:

A = ((z, u, s), (y, s′), Delay ◦ (Add ‖ Id))

Next, A is composed with Split. In this case we need to connect variable y (using
serial composition), as well as z (using feedback composition). The resulting
element is A′:

A′ =
(
(u, s), (v, s′), feedback

(
(Split ‖ Id) ◦ Delay ◦ (Add ‖ Id)

))

where we need again to add the Id component for variable s′.
As a different nondeterministic choice, the algorithm may first compose Split

and Add into B:

B = ((y, u), (x, v), (Add ‖ Id) ◦ (Id ‖ [v, u � u, v]) ◦ (Split ‖ Id))

Split Add

z

x

v

y

u

B

(a) First step: composing Split and Add

B Delay

x

s′

v

u

s

y

(b) Second step: composing B and Delay

Fig. 2. A different composition order for the example from Fig. 1.

In this composition, shown in Fig. 2a, we now need in addition to the Id compo-
nents, a switch ([v, u � u, v]) for wires v and u. Next the algorithm composes B
and Delay (Fig. 2b):

B′ =
(
(u, s), (s′, v), feedback

(
(Delay ‖ Id) ◦ (Id ‖ [v, s � s, v]) ◦ (B ‖ Id)

)
.
)

As we can see from this example, by considering the blocks in the diagram
in different orders, we obtain different expressions. On this example, expression
A′ is simpler (it has less connectors) than B′. In general, a diagram, being a
graph, does not have a predefined canonical order, and we need to show that the
result of the algorithm is the same regardless of the order in which the blocks
are considered.
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We make two remarks here. First, the final result of the algorithm is a triple
with the same structure as all elements on the original list: (input variables,
output variables, function), where the function represents the computation per-
formed by the entire diagram. Therefore, the algorithm can be applied recursively
on HBDs. Second, the variables in the representation occur at most twice, once
as input, and once as output. The variables occurring only as inputs are the
inputs of the resulting final element, and variables occurring only as outputs
are the outputs of the resulting final element. This is true in general for all dia-
grams, due to the representation of splitting of wires. This fact is essential for
the correctness of the algorithm as we will see in Sect. 6.

5 An Abstract Algebra for Hierarchical Block Diagrams

We assume that we have a set of Types. We also assume a set of diagrams Dgr.
Every element S ∈ Dgr has input type t ∈ Types∗ and output type t′ ∈ Types∗. If
t = t1 · · · tn and t′ = t′1 · · · t′m, then S takes as input a tuple of the type t1×. . .×tn
and produces as output a tuple of the type t′1 × . . . × t′m. We denote the fact
that S has input type t ∈ Types∗ and output type t′ ∈ Types∗ by S : t

◦−→ t′.
The elements of Dgr are abstract.

5.1 Operations of the Algebra of HBDs

Constants. Basic blocks are modeled as constants on Dgr. For types t, t′ ∈ Types∗

we assume the following constants:

Id(t) : t
◦−→ t Split(t) : t

◦−→ t · t Sink(t) : t
◦−→ ε Switch(t, t′) : t · t′ ◦−→ t′ · t

S T S T

feedback(Id(a) ‖ S ; Switch(a, a) ‖ Id(t) ; Id(a) ‖ T ) S ; T=

Fig. 3. Two flat diagrams and their corresponding terms in the abstract algebra.

Id corresponds to the identity block. It copies the input into the output. In the
model of constructive functions Id(t) is the identity function. Split(t) takes an
input x of type t and outputs x · x of type t · t. Sink(t) returns the empty tuple
ε, for any input x of type t. Switch(t, t′) takes an input x · x′ with x of type t
and x′ of type t′ and returns x′ · x. In the model of constructive functions these
diagrams are total functions and they are defined as explained above. In the
abstract model, the behaviors of these constants is defined with a set of axioms
(see below).
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Composition Operators. For two diagrams S : t
◦−→ t′ and S′ : t′ ◦−→ t′′, their

serial composition, denoted S ; S′ : t
◦−→ t′′ is a diagram that takes inputs of

type t and produces outputs of type t′′. In the model of constructive functions,
the serial composition corresponds to function composition (S ; S′ = S′ ◦ S).
Please note that in the abstract model we write the serial composition as S ; S′,
while in the model of constructive functions the first diagram that is applied to
the input occurs second in the composition.

The parallel composition of two diagrams S : t
◦−→ t′ and S′ : r

◦−→ r′,
denoted S ‖ S′ : t · r

◦−→ t′ · r′, is a diagram that takes as input tuples of
type t · r and produces as output tuples of type t′ · r′. This parallel composition
corresponds to the parallel composition of constructive functions.

Finally we introduce a feedback composition. For S : a · t
◦−→ a · t′, where

a ∈ Types is a single type, the feedback of S, denoted feedback(S) : t
◦−→ t′, is

the result of connecting in feedback the first output of S to its first input. Again
this feedback operation corresponds to the feedback of constructive functions.

We assume that parallel composition operator binds stronger than serial
composition, i.e. S ‖ T ; R is the same as (S ‖ T ) ; R.

Graphical diagrams can be represented as terms in the abstract algebra, as
illustrated in Fig. 3. This figure depicts two diagrams, and their corresponding
algebra terms. As it turns out, these two diagrams are equivalent, in the sense
that their corresponding algebra terms can be shown to be equal using the axioms
presented below.

5.2 Axioms of the Algebra of HBDs

In the abstract algebra, the behavior of the constants and composition operators
is defined by a set of axioms, listed below (fn denotes n applications of function
f , so for example feedback2(·) = feedback(feedback(·))):
1. S : t

◦−→ t′ =⇒ Id(t) ; S = S ; Id(t′) = S

2. S : t1
◦−→ t2 ∧ T : t2

◦−→ t3 ∧ R : t3
◦−→ t4 =⇒ S ; (T ; R) = (S ; T ) ; R

3. Id(ε) ‖ S = S ‖ Id(ε) = S
4. S ‖ (T ‖ R) = (S ‖ T ) ‖ R
5. Id(t) ‖ Id(t′) = Id(t · t′)
6. S : s

◦−→ s′ ∧ S′ : s′ ◦−→ s′′ ∧ T : t
◦−→ t′ ∧ T ′ : t′ ◦−→ t′′

=⇒ (S ‖ T ) ; (S′ ‖ T ′) = (S ; S′) ‖ (T ; T ′)
7. Switch(t, t′ · t′′) = Switch(t, t′) ‖ Id(t′′) ; Id(t′) ‖ Switch(t, t′′)
8. S : s

◦−→ s′ ∧ T : t
◦−→ t′ =⇒ Switch(s, t) ; T ‖ S ; Switch(t′, s′) = S ‖ T

9. feedback(Switch(a, a)) = Id(a)
10. S : a · s

◦−→ a · t =⇒ feedback(S ‖ T ) = feedback(S) ‖ T

11. S : a · s
◦−→ a · t ∧ A : s′ ◦−→ s ∧ B : t

◦−→ t′

=⇒ feedback(Id(a) ‖ A ; S ; Id(a) ‖ B) = A ; feedback(S) ; B

12. S : a · b · s
◦−→ a · b · t

=⇒ feedback2(Switch(b, a)‖ Id(s) ; S ; Switch(a, b)‖ Id(t)) = feedback2(S)
13. Split(t) ; Sink(t) ‖ Id(t) = Id(t)
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14. Split(t) ; Switch(t, t) = Split(t)
15. Split(t) ; Id(t) ‖ Split(t) = Split(t) ; Split(t) ‖ Id(t)
16. Sink(t · t′) = Sink(t) ‖ Sink(t′)
17. Split(t · t′) = Split(t) ‖ Split(t′) ; Id(t) ‖ Switch(t, t′) ‖ Id(t′).

Due to space limitations, the intuition behind these axioms is explained and
illustrated with figures in [32].

6 The Abstract Translation Algorithm and Its
Determinacy

6.1 Diagrams with Named Inputs and Outputs

The algorithm works by first transforming the graph of a HBD into a list of
basic components with named inputs and outputs as explained in Sect. 4. For
this purpose we assume a set of names or variables Var and a function T : Var →
Types. For v ∈ Var, T(v) is the type of variable v. We extend T to lists of variables
by T(v1, . . . , vn) = (T (v1), . . . , T (vn)).

Definition 1. A diagram with named inputs and outputs or io-diagram for
short is a tuple (in, out , S) such that in, out ∈ Var∗ are lists of distinct variables,
and S : T(in) ◦−→ T(out).

In what follows we use the symbols A,A′, B, . . . to denote io-diagrams, and
I(A), O(A), and D(A) to denote the input variables, the output variables, and
the diagram of A, respectively.

Definition 2. For io-diagrams A and B, we define V(A,B) = O(A) ⊗ I(B) ∈
Var∗.

V(A,B) is the list of common variables that are output of A and input of B,
in the order occurring in O(A). We use V(A,B) later to connect for example in
series A and B on these common variables, as we did for constructing A from
Add and Delay in Sect. 4.

6.2 General Switch Diagrams

We compose diagrams when their types are matching, and we compose io-
diagrams based on matching names of input and output variables. For example
if we have two io-diagrams A and B with O(A) = u · v and I(B) = v · u, then we
can compose in series A and B by switching the output of A and feeding it into
B, i.e., (A ; Switch(T(u),T(v)) ; B).

In general, for two lists of variables x = (x1 · · · xn) and y = (y1 · · · yk)
we define a general switch diagram [x1 · · · xn � y1 · · · yk] : T(x1 · · · xn) ◦−→
T(y1 · · · yk). Intuitively this diagram takes as input a list of values of type
T(x1 · · · xn) and outputs a list of values of type T(y1 · · · yk), where the out-
put value corresponding to variable yj is equal to the value corresponding to the
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first xi with xi = yj and it is arbitrary (unknown) if there is no such xi. For
example in the constructive functions model [u, v � v, u, w, u] for input (a, b)
outputs (b, a,⊥, a).

To define [ � ] we use Split, Sink, and Switch, but we need also an additional
diagram that outputs an arbitrary (or unknown) value for an empty input. For
a ∈ Types, we define Arb(a) : ε

◦−→ a by Arb(a) = feedback(Split(a)). The
diagram Arb is represented in Fig. 4.

•

Fig. 4. The diagram Arb.

We define now [x � y] : T(x) ◦−→ T(y) in two
steps. First for x ∈ Var∗ and u ∈ Var, the diagram
[x � u] : T(x) ◦−→ T(u), for input a1, . . . , an outputs
the value ai where i is the first index such that xi = u.
Otherwise it outputs an arbitrary (unknown) value.

[ε � u] = Arb(T(u))

[u · x � u] = Id(T(u)) ‖ Sink(T(x))

[v · x � u] = Sink(T(v)) ‖ [x � u] (if u �= v)

[x � ε] = Sink(T(x))

[x � u · y] = Split(T(x)) ; ([x � u] ‖ [x � y])

6.3 Basic Operations of the Abstract Translation Algorithm

The algorithm starts with a list of io-diagrams and repeatedly applies opera-
tions until it reduces the list to only one io-diagram. These operations are the
extensions of serial, parallel and feedback from diagrams to io-diagrams.

Definition 3. The named serial composition of two io-diagrams A and B,
denoted A ; ; B is defined by A ; ; B = (in, out , S), where x = I(B) � V(A,B),
y = O(A) � V(A,B), in = I(A) ⊕ x, out = y · O(B) and

S = [in � I(A) · x] ; D(A) ‖ [x � x] ; [O(A) · x � y · I(B)] ; [y � y] ‖ D(B).

The construction of A from Sect. 4 can be obtained by applying the named serial
composition to Add and Delay.

Figure 5a illustrates an example of the named serial composition. In this case
we have V(A,B) = u, x = (a, b), y = (v, w), in = (a, c, b), and out = (v, w, d, e).
The component A has outputs u, v, w, and u is also input of B. Variable u is the
only variable that is output of A and input of B. Because the outputs v, w of A
are not inputs of B they become outputs of A ; ; B. Variable a is input for both
A and B, so in A ; ; B the value of a is split and fed into both A and B. The
diagram for this example is:

[a, c, b � a, c, a, b] ; A ‖ Id(T(a, b)) ; [u, v, w, a, b � v, w, a, u, b] ; Id(T(v, w)) ‖ B

The result of the named serial composition of two io-diagrams is not always an
io-diagram. The problem is that the outputs of A ; ; B are not distinct in general.
The next lemma gives sufficient conditions for A ; ; B to be an io-diagram.
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Lemma 1. If A,B are io-diagrams and (O(A) � I(B))⊗O(B) = ε then A ; ; B
is an io-diagram. In particular if O(A)⊗O(B) = ε then A ; ; B is an io-diagram.

The named serial composition is associative, expressed by the next lemma.

Lemma 2. If A,B,C are io-diagrams such that (O(A) � I(B))⊗O(B) = ε and
(O(A) ⊗ I(B)) ⊗ I(C) = ε, then (A ; ; B) ; ; C = A ; ; (B ; ; C).

Next we introduce the corresponding operation on io-diagrams for the parallel
composition.

Definition 4. If A,B are io-diagrams, then the named parallel composition of
A and B, denoted A |||B is defined by

A |||B = (I(A) ⊕ I(B), O(A) · O(B), [I(A) ⊕ I(B) � I(A) · I(B)] ; (A ‖ B)).

Figure 5b presents an example of a named parallel composition. The named
parallel composition is meaningful only if the outputs of the two diagrams have
different names. However, the inputs may not necessarily be distinct as shown
in Fig. 5b.

As in the case of named serial composition, the parallel composition of two
io-diagrams is not always an io-diagram. Next lemma gives conditions for the
parallel composition to be io-diagram and also states that the named parallel
composition is associative.

Lemma 3. Let A, B, and C be io-diagrams, then

1. O(A) ⊗ O(B) = ε ⇒ A |||B is an io-diagram.

2. (A |||B) |||C = A ||| (B |||C).

Next definition introduces the feedback operator for io-diagrams.
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(a) A named serial composition. (b) A named parallel composition.

Fig. 5. Examples of named compositions.

Definition 5. If A is an io-diagram, then the named feedback of A, denoted
FB(A) is defined by (in, out , S), where in = I(A) � V(A,A), out = O(A) �
V(A,A) and

S = feedback|V(A,A)|([V(A,A) · in � I(A)] ; S ; [O(A) � V(A,A) · out ]).
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Fig. 6. Example of named feedback composition.

The named feedback operation of A connects all inputs and outputs of A with
the same name in feedback. Figure 6 illustrates an example of named feedback
composition. The named feedback applied to an io-diagram is always an io-
diagram.

Lemma 4. If A is an io-diagram then FB(A) is an io-diagram.

6.4 The Abstract Translation Algorithm

We have now all elements for introducing the abstract translation algorithm. The
algorithm starts with a list A = (A1, A2, . . . , An) of io-diagrams, such that for
all i �= j, the inputs and outputs of Ai and Aj are disjoint respectively (I(Ai) ⊗
I(Aj) = ε and O(Ai) ⊗ O(Aj) = ε). We denote this property by io−distinct(A).
The algorithm is given in Algorithm1. Formally the algorithm is represented
as a monotonic predicate transformer [15], within the framework of refinement
calculus [5].

Computing FB(A) in the last step of the algorithm is necessary only if A
contains initially only one element. However, computing FB(A) always at the
end does not change the result since, as we will see later in Theorem 1, the FB
operation is idempotent, i.e. FB(FB(A)) = FB(A). In the presentation of the
algorithm, we have used the keyword choose for the nondeterministic choice ,
to emphasize the two alternatives.

Note that, semantically, choice (b) of the algorithm is a special case of choice
(a), as shown later in Theorem 1. But syntactically, choices (a) and (b) result in

input: A = (A1, A2, . . . , An) (list of io-diagrams)
while |A| > 1 :

choose between options (a) and (b) :
(a) [A := A′ | ∃ k,B1, . . . , Bk, C : k > 1 ∧

perm(A, (B1, . . . , Bk)·C) ∧ A′ = FB(B1 ||| . . . |||Bk)·C ]
(b) [A := A′ | ∃ A,B, C : perm(A, (A,B) · C) ∧

A′ = FB(FB(A) ; ; FB(B)) · C ]
A := FB(A′) (where A′ is the only remaining element of A)

Algorithm 1. Nondeterministic algorithm for translating HBDs.
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different expressions that achieve different performance tradeoffs as observed in
Sect. 4 and as further discussed in [16]. The point of the Translator is to be indeed
able to generate semantically equivalent but syntactically different expressions,
which achieve different performance tradeoffs [16].

The result for the running example from Sect. 4 can be obtained by apply-
ing the second choice of the algorithm twice for the initial list of io-diagrams
([Add,Delay,Split]), first to Add and Delay to obtain A, and next to A and Split
to obtain

(
(u, s), (v, s′), feedback

(
(D(Add) ‖ Id) ; D(Delay) ; ((Split) ‖ Id)

))

As opposed to the example from Sect. 4, the elements are composed serially in
the order occurring in the diagram.

6.5 Determinacy of the Abstract Translation Algorithm

The result of the algorithm depends on how the nondeterministic choices are
resolved. However, in all cases the final io-diagrams are equivalent modulo a
permutation of the inputs and outputs. To prove this, we introduce the concept
io-equivalence for two io-diagrams.

Definition 6. Two io-diagrams A,B are io-equivalent, denoted A ∼ B if they
are equal modulo a permutation of the inputs and outputs, i.e., I(B) is a permu-
tation of I(A), O(B) is a permutation of O(A) and

D(A) = [I(A) � I(B)] ; D(B) ; [O(B) � O(A)]

Lemma 5. The relation io-equivalent is a congruence relation, i.e., for all io-
diagrams A,B,C:

1. A ∼ A
2. A ∼ B ⇒ B ∼ A
3. A ∼ B ∧ B ∼ C ⇒ A ∼ C.
4. A ∼ B ⇒ FB(A) ∼ FB(B).
5. O(A) ⊗ O(B) = ε ⇒ A |||B ∼ B |||A.
6. If io−distinct(A1, . . . , An) and perm((A1, . . . , An), (B1, . . . , Bn)) then

A1 ||| . . . An ∼ B1 ||| . . . Bn.

To prove correctness of the algorithm we also need the following results:

Theorem 1. If A,B are io-diagrams such that I(A) ⊗ I(B) = ε and O(A) ⊗
O(B) = ε then

(1) FB(A |||B) = FB(FB(A) ; ; FB(B)) and (2) FB(FB(A)) = FB(A).
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(a) Composing A and B in parallel and
then in feedback
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(b) Composing A and B in series and
then in feedback

Fig. 7. Named feedback of parallel composition is equivalent to named feedback of
serial composition.

The proof of Theorem1 is quite involved and requires several properties of dia-
grams (see the RCRS formalization [18] for details). Figure 7 illustrates a sim-
plified application of Theorem1 (1). In the general case of this theorem there
are possibly multiple wires between A and B. There may also be wires between
the outputs and inputs of A, and B, and these wires may also be inter-mixed.

We can now state and prove one of the main results of this paper, namely,
determinacy of Algorithm 1.

Theorem 2. If A = (A1, A2, . . . , An) is the initial list of io-diagrams satisfying
io−distinct(A), then Algorithm1 terminates, and if A is the io-diagram computed
by the algorithm, then

A ∼ FB(A1 ||| . . . |||An)

7 Proving Equivalence of Two Translation Strategies

To demonstrate the usefulness of our framework, we return to our original moti-
vation, namely, the open problem of how to prove equivalence of the translation
strategies introduced in [16]. Two of the translation strategies of [16], called
feedback-parallel and incremental translation, can be seen as a determinizations
(or refinements) of the abstract algorithm of Sect. 6, and therefore can be shown
to be equivalent and correct with respect to the abstract semantics. (The third
strategy proposed in [16], called feedbackless, is significantly different and is pre-
sented in the next section.)

The feedback-parallel strategy is the implementation of the abstract algo-
rithm where we choose k = |A|. Intuitively, all diagram components are put in
parallel and the common inputs and outputs are connected via feedback oper-
ators. On the running example from Fig. 1c, this strategy will generate the fol-
lowing component:

((u, s), (v, s′), feedback3([z, x, y, u, s � z, u, x, s, y]
; D(Add) ‖ D(Delay) ‖ D(Split) ; [x, y, s′, z, v � z, x, y, v, s′]))

The switches are ordering the variables such that the feedback variables are first
and in the same order in both input and output lists.
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The incremental strategy is the implementation of the abstract algorithm
where we use only the second choice of the algorithm and the first two compo-
nents of the list A. This strategy is dependent on the initial order of A, and we
order A topologically (based on the input - output connections) at the beginning,
in order to reduce the number of switches needed.

Again on the running example, assume that this strategy composes first Add
with Delay, and the result is composed with Split. The following component is
then obtained:

((u, s), (v, s′), feedback(D(Add) ‖ Id ; D(Delay) ; D(Split) ‖ Id)

The Add and Split components are put in parallel with Id for the unconnected
input and output state respectively. Next all components are connected in series
with one feedback operator for the variable z.

The next theorem shows that the two strategies are equivalent, and that they
are independent of the initial order of A.

Theorem 3. If A and B are the result of the feedback-parallel and incremental
strategies on A, respectively, then A and B are input - output equivalent (A ∼ B).
Moreover both strategies are independent of the initial order of A.

Since both strategies are refinements of the nondeterministic algorithm, they
both satisfy the same correctness conditions of Theorem 2.

8 Proving Equivalence of A Third Translation Strategy

The abstract algorithm for translating HBDs, as well as the two translation
strategies presented in Sect. 7, use the feedback operator when translating dia-
grams. As discussed in [16], expressions that contain the feedback operator are
more complex to process and simplify. For this reason, we wish to avoid using
the feedback operator as much as possible. Fortunately, in practice, diagrams
such as those obtained from Simulink are deterministic and algebraic loop free.
As it turns out, such diagrams can be translated into algebraic expressions that
do not use the feedback operator at all [16]. This can be done using the third
translation strategy proposed in [16], called feedbackless.

While the two translation strategies presented in Sect. 7 can be modeled as
refinements of the abstract algorithm, the feedbackless strategy is significantly
more complex, and cannot be captured as such a refinement. We therefore treat
it separately in this section. In particular, we formalize the feedbackless strategy
and we show that it is equivalent to the abstract algorithm, namely, that for the
same input, the results of the two algorithms are io-equivalent.

8.1 Deterministic and Algebraic-Loop-Free Diagrams

Before we introduce the feedbackless strategy, we need some additional
definitions.
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Definition 7. A diagram S is deterministic if [x � x, x] ; (S ‖ S) = S ; [y �
y, y]. An io-diagram A is deterministic if D(A) is deterministic.

The definition of deterministic diagram corresponds to the following intuition.
If we execute two copies of S in parallel using the same input value x, we should
obtain the same result as executing one S for the same input value x.

The deterministic property is closed under the serial, parallel, and switch
operations of the HBD algebra.

Lemma 6. If S, T ∈ Dgr are deterministic and x, y are lists of variables such
that x is distinct and set(y) ⊆ set(x), then [x � y], and S ; T , and S ‖ T are
also deterministic.

It is not obvious whether we can deduce from the axioms that the determin-
istic property is closed under the feedback operation. However, since we do not
use the feedback operation in this algorithm, we do not need this property.

Definition 8. The output input dependency relation of an io-diagram A is
defined by

oi rel(A) = set(O(A)) × set(I(A))

and the output input dependency relation of a list A = [A1, . . . , An] of io-
diagrams is defined by

oi rel(A) = oi rel(A1) ∪ . . . ∪ oi rel(An)

A list A of io-diagrams is algebraic loop free, denoted loop free(A), if

(∀x : (x, x) �∈ (oi rel(A))+)

where (oi rel(A))+ is the reflexive and transitive closure of relation (oi rel(A)).

If we apply this directly to the list of io-diagrams from our example A =
[Add,Delay,Split] we obtain

oi rel(A) = {(x, u), (x, z), (y, x), (y, s), (s′, x), (s′, s), (z, y), (v, y)}
and we have that (z, z) ∈ (oi rel(A))+ because (z, y), (y, x), (x, z) ∈ oi rel(A),
therefore A is not algebraic loop free. However, the diagram from the example is
accepted by Simulink, and it is considered algebraic loop free. In our treatment
oi rel(A) contains pairs that do not represent genuine output input dependencies.
For example output y of Delay depends only on the input s, and it does not
depend on x. Similarly, output s′ of Delay depends only on x.

Before applying the feedbackless algorithm, we change the initial list of blocks
into a new list such that the output input dependencies are recorded more
accurately, and all elements in the new list have one single output. We split
a basic block A into a list of blocks A1, . . . , An with single outputs such that
A ∼ A1 ||| . . . |||An. Basically every block with n outputs is split into n single
output blocks.

We can do the splitting systematically by composing a block A with all
projections of the output. For example if A = (x, (u1, . . . , un), S), then we can
split A into Ai = (x, ui, S ; [u1, . . . , un � ui]). Such splitting is always possible:
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Lemma 7. If A is deterministic, then A1, . . . , An is a splitting of A, i.e.

A ∼ A1 ||| . . . |||An.

However, this will still introduce unwanted output input dependencies. We solve
this problem by defining the splitting for every basic block, such that it accu-
rately records the output input dependency. For example, we split the delay
block into Delay1 and Delay2:

Delay1 = (s, y, [s � s]) = (s, y, Id) and Delay2 = (x, s′, [x � x]) = (x, s′, Id)

The Split block is split into Split1 and Split2:

Split1 = (y, z, [y � y]) = (y, z, Id) and Split2 = (y, v, [y � y]) = (y, v, Id)

The blocks Delay1, Delay2, Split1, and Split2 are all the same, except the naming
of the inputs and outputs. The Add block has one single output that depends
on both inputs, so it remains unchanged.

After splitting, the list of single output blocks for our example becomes

B =
(
Add,Delay1,Delay2,Split1,Split2

)

and we have

oi rel(B) = {(x, u), (x, z), (y, s), (s′, x), (z, y), (v, y)}.

Now B is algebraic loop free.

Definition 9. A block diagram is algebraic loop free if, after splitting, the list
of blocks is algebraic loop free.

We assume that every splitting of a block A into B1, . . . , Bk is done such
that A ∼ B1 ||| . . . |||Bk.

Lemma 8. If a list of blocks A = (A1, . . . , An) is split into B = (B1, . . . , Bm),
then we have

A1 ||| . . . |||An ∼ B1 ||| . . . |||Bm.

For the feedbackless algorithm, we assume that A is algebraic loop free, all io-
diagrams in A are single output and deterministic, and all outputs are distinct.
We denote this by ok fbless(A).

Definition 10. For A, such that ok fbless(A), a variable u is internal in A if
there exist A and B in A such that O(A) = u and u ∈ set(I(B)). We denote the
set of internal variables of A by internal(A).

Definition 11. If A and B are single output io-diagrams, then their internal
serial composition is defined by

A � B = if set(O(A)) ⊆ set(I(B)) then A ; ; B else B

and
A � (B1, . . . , Bn) = (A � B1, . . . , A � Bn)
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We use this composition when all io-diagrams have a single output, and for an
io-diagram A, we connect A in series with all io-diagrams from B1, . . . , Bn that
have O(A) as an input.

The internal serial composition satisfies some properties that are used in
proving the correctness of the algorithm.

Lemma 9. If ok fbless(A,B,C) then ((A�B)�(A�C)) ∼ ((B�A)�(B�C))

Lemma 10. If ok fbless(A) and A ∈ set(A) such that O(A) ∈ internal(A) then

ok fbless(A � (A � A)) and internal(A � (A � A)) = internal(A) − {O(A)}.

8.2 Functional Definition of the Feedbackless Strategy

Definition 12. For a list x of distinct internal variables of A, we define by
induction on x the function fbless(x,A) by

fbless(ε,A) = A and fbless(u · x,A) = fbless(x,A � (A � A))

where A is the unique io-diagram from A with O(A) = u.

Lemma 10 shows that the function fbless is well defined.
The function fbless is the functional equivalent of the feedbackless iterative

algorithm that we introduce in Sect. 8.3.

Theorem 4. If A = (A1, . . . , An) is a list of io-diagrams satisfying ok fbless(A),
x is a distinct list of all internal variables of A (set(x) = internal(A)), and
(B1, . . . , Bk) = fbless(x,A) then

FB(A1 ||| . . . |||An) ∼ (B1 ||| . . . |||Bn).

This theorem together with Lemma 8 show that the result of the fbless function
is io-equivalent to the results of the nondeterministic algorithm. This theorem
also shows that the result of fbless is independent of the choice of the order of
the internal variables in x.

The proof of Theorem4 is based on Lemmas 9 and 10, and is available in the
RCRS formalization – https://github.com/hbd-translation/TranslateHBD.

8.3 The Feedbackless Translation Algorithm

The recursive function fbless calculates the feedbackless translation, but it
assumes that the set of internal variables is given at the beginning in a spe-
cific order. We want an equivalent iterative version of this function, which at
every step picks an arbitrary io-diagram A with internal output, and performs
one step:

A := A � (A � A)

The feedbackless algorithm is given in Algorithm 2.

https://github.com/hbd-translation/TranslateHBD
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input: A = (A1 . . . , An) (list of io-diagrams satisfying ok fbless(A))
while internal(A) �= ∅:

[A := A′ | ∃ A ∈ set(A) : O(A) ∈ internal(A) ∧ A′ = A � (A � A) ]
A := B1 ||| . . . |||Bk (where A = (B1, . . . , Bk))

Algorithm 2. Feedbackless algorithm for translating HBDs.

The feedbackless algorithm is also nondeterministic, because it allows choos-
ing at every step one of the available io-diagrams with internal output. As we
will see in Sect. 8.4, this nondeterminism allows for different implementations
regarding the complexity of the generated expressions.

C

D

SplitBA
a b

c

d

u

v

w

Fig. 8. Example for efficient implementation of feedbackless.

Theorem 5. If A = (A1 . . . , An) is a list of io-diagrams satisfying ok fbless(A),
then the feedbackless algorithm terminates for input A, and if A is the output of
the algorithm on A, then

FB(A1 ||| . . . |||An) ∼ A.

Theorem 6. For a deterministic and algebraic loop free block diagram, the feed-
backless algorithm and the nondeterministic algorithm are equivalent.

8.4 On the Nondeterminism of the Feedbackless Translation

We have seen already that different choices in the nondeterministic abstract
algorithm result in different algebraic expressions, e.g., with different numbers
of composition operators. We show in this section that the same is true for the
feedbackless translation algorithm. In particular, consider a framework like the
Refinement Calculus of Reactive Systems [16], where the intermediate results
of the algorithm are symbolically simplified at every translation step. Different
choices of the order of internal variables could result in different complexities of
the simplification work. We illustrate this with the example from Fig. 8.

After the splitting phase, the list of blocks for this example is

A =
(
(u, a,A), (a, b,B), (b, c, Id), (b, d, Id), (c, v, C), (d,w,D)

)

and the set of internal variables is

internal(A) = {a, b, c, d}.
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If we choose the order (c, d, b, a), then after first two steps (including inter-
mediate simplifications) we obtain the list:

(
(u, a,A), (a, b,B), (b, v, C), (b, w,D)

)

After another step for internal variable b we obtain:
(
(u, a,A), (a, v, simplify(B ; C)), (a,w, simplify(B ; D))

)

where the function simplify models the symbolic simplification. Finally, after
applying the step for the internal variable a we obtain:

(
(u, v, simplify(A ; simplify(B ; C))), (u,w, simplify(A ; simplify(B ; D)))

)
(1)

In this order, we end up simplifying A serially composed with B twice. This is
especially inefficient if A and B are complex. If we choose the order (c, d, a, b),
then in the first three steps we obtain:

(
(u, b, simplify(A ; B)), (b, v, C), (b, w,D)

)

At this point the term A ; B is simplified, and the simplified version is composed
with C and D to obtain:

(
(u, v, simplify(simplify(A ; B) ; C)), (u,w, simplify(simplify(A ; B) ; D))

)
(2)

If we compare relations (1) and (2) we see the same number of occurrences of
simplify, but in relation (2) there are two occurrences of the common subterm
simplify(A ; B), and this is simplified only once.

As this example shows, different choices of the nondeterministic feedback-
less translation strategy result in expressions of different quality, in particular
with respect to simplification. It is beyond the scope of this paper to examine
efficient deterministic implementations of the feedbackless translation. Our goal
here is to prove the correctness of this translation, by proving its equivalence
to the abstract algorithm. It follows that every refinement/determinization of
the feedbackless strategy will also be equivalent to the abstract algorithm, and
therefore a correct implementation of the semantics. Once we know that all pos-
sible refinements give equivalent results, we can concentrate in finding the most
efficient strategy. In general, we remark that this way of using the mechanisms of
nondeterminism and refinement are standard in the area of correct by construc-
tion program development, and are often combined to separate the concerns of
correctness and efficiency, as is done here.

9 Implementation in Isabelle

Our implementation in Isabelle uses locales [7] for the axioms of the algebra. We
use locale interpretations to show that these axioms are consistent. In Isabelle
locales are a powerful mechanism for developing consistent abstract theories
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(based on axioms). To represent the algorithm we use monotonic predicate trans-
formers. To prove correctness of the algorithm we use Hoare total correctness
rules.

The formalization contains the locale for the axioms, a theory for construc-
tive functions, and one for proving that such functions are a model for the
axioms. An important part of the formalization is the theory introducing the
diagrams with named inputs and outputs, and their operations and properties.
The formalization also includes a theory for monotonic predicate transformers,
refinement calculus, Hoare total correctness rules for programs, and a theory for
the nondeterministic algorithm and its correctness.

In total the formalization contains 14797 lines of Isabelle code of which 13587
lines of code for the actual problem, i.e., excluding the code for monotonic pred-
icate transformers, refinement calculus, and Hoare rules. The formalization is
available at https://github.com/hbd-translation/TranslateHBD.

10 Conclusions and Future Work

We introduced an abstract algebra for hierarchical block diagrams, and an
abstract algorithm for translating HBDs to terms of this algebra. We proved that
this algorithm is correct in the sense that no matter how its nondeterministic
choices are resolved, the results are semantically equivalent. As an application,
we closed a question left open in [16] by proving that the Simulink translation
strategies presented there yield equivalent results. Our HBD algebra is reminis-
cent of the algebra of flownomials [14] but our axiomatization is more general, in
the sense that our axioms are weaker. This implies that all models of flownomials
are also models of our algebra. Here, we presented constructive functions as one
possible model of our algebra.

Our work applies to hierarchical block diagrams in general, and the de facto
predominant tool for embedded system design, Simulink. Proving the HBD
translator correct is a challenging problem, and as far as we know our work
is the only one to have achieved such a result.

We believe that our results are reusable in other contexts as well, in at
least two ways. First, every other translation that can be shown to be a refine-
ment/special case of our abstract translation algorithm, is automatically correct.
For example, [34,44] impose an order on blocks such that they use mostly serial
composition and could be considered an instance of our abstract algorithm. Sec-
ond, our algorithms translate diagrams into an abstract algebra. By choosing
different models of this algebra we obtain translations into these alternative
models.

As future work we plan to investigate further HBD translation strate-
gies, in addition to those studied above. Currently the RCRS Translator can
only partially handle diagrams with algebraic loops, i.e., with instantaneous
circular dependencies. Fully dealing with diagrams with algebraic loops is a
non-trivial problem, because of the subtleties of instantaneous feedback for
non-deterministic and non-input-receptive systems [33]. For deterministic and

https://github.com/hbd-translation/TranslateHBD
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input-receptive systems, however, the model of constructive functions should
be sufficient. Another future research goal is to unify the proof of the third
translation strategy with that of the other two which are currently modeled as
refinements of the abstract translation algorithm.

This work covers hierarchical block diagrams in general and Simulink in par-
ticular. Any type of diagram can be handled, however, we do assume a single-rate
(i.e., synchronous) semantics. Handling multi-rate or event-triggered diagrams is
left for future work. Handling hierarchical state machine models such as State-
flow is also left for future work.

As mentioned in Sect. 2, there are many existing translations from Simulink
to other formalisms. It is beyond the scope of this paper to define and prove
correctness of those translations, but this could be another future work direction.
In order to do this, one would first need to formalize those translations. This
in turn requires detailed knowledge of the algorithms or even access to their
implementation, which is not always available. Our work and source code are
publicly available and we hope can serve as a good starting point for others who
may wish to provide formal correctness proofs of diagram translations.

Acknowledgments. We would like to thank Gheorghe Ştefănescu for his help with
the algebra of flownomials.
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26. Lúcio, L., et al.: Model transformation intents and their properties. Softw. Syst.
Model. 15(3), 647–684 (2016)

27. Malik, S.: Analysis of cyclic combinational circuits. IEEE Trans. Comput.-Aided
Des. 13(7), 950–956 (1994)

28. MathWorks: Simulink. https://www.mathworks.com/products/simulink.html
29. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating Simulink models

into input language of a model checker. In: Liu, Z., He, J. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006). https://doi.org/10.
1007/11901433 33

30. Minopoli, S., Frehse, G.: SL2SX translator: from Simulink to SpaceEx models. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, HSCC 2016, pp. 93–98. ACM, New York (2016)

https://doi.org/10.1007/3-540-18771-5_49
https://doi.org/10.1007/978-1-4471-0479-7
https://doi.org/10.1007/978-1-4471-0479-7
https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-3-319-89963-3_12
https://doi.org/10.6084/m9.figshare.5900911
https://doi.org/10.6084/m9.figshare.5900911
http://www.eclipse.org/atl/
https://www.mathworks.com/products/simulink.html
https://doi.org/10.1007/11901433_33
https://doi.org/10.1007/11901433_33


600 V. Preoteasa et al.

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

32. Preoteasa, V., Dragomir, I., Tripakis, S.: Mechanically proving determinacy of
hierarchical block diagram translations. CoRR, abs/1611.01337 (2018)

33. Preoteasa, V., Tripakis, S.: Towards compositional feedback in non-deterministic
and non-input-receptive systems. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2016, pp. 768–777. ACM, New
York (2016)

34. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using Boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7 14

35. Ryabtsev, M., Strichman, O.: Translation validation: from Simulink to C. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 696–701. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 57
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