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Abstract. The growing use of rotating machines operating in non-
stationary conditions gave rise to a greater need to a higher precision for
describing their dynamic behavior. The latter has always been based on
a certain number of simplifying assumptions. In particular, the spinning
speed is considered either constant or following a given law of variation
as a function of time, resulting in a dynamic model that is limited to
specific operating conditions. The aim of this work is to present a more
general dynamic model of rotating machines, which accurately reflects
its behavior in real working conditions. No assumption is made on the
speed of rotation; it is included as an unknown of the dynamic problem
by introducing a degree of freedom combining both the free body rotation
and the torsional deformation. The instantaneous angular speed (IAS) is
then deduced not only from the induced torque, but also from the whole
dynamic behavior of the structure taking into account the periodic geom-
etry (e.g.: gears, bearings) as well as the operating conditions (e.g.: going
through the critical speeds). Making no assumption on the angular speed
leads to a new formulation of the gyroscopic effect strongly present at
very high speeds. This new formulation shows a coupling between the
different degrees of freedom as well as a nonlinear behavior of the struc-
ture. The results of both classic and new formulations are compared
for an architecture of a rotating machine to highlight the utility of the
innovative approach in non-stationary operating conditions.
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1 Introduction

Generally, the assumption of constant speed is made in rotordynamic studies for
the sake of simplicity. This assumption is however very constraining since it allows
the understanding of the behavior of rotors only when the permanent regime is
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achieved. Since the understunding of the rotors behavior in non-stationary work-
ing conditions is important, especially at start-up and shut-down periods, when
the rotor goes through its critical speeds. Many studies have been carried out to
understand the behavior of the rotating machineries in such conditions.

On the one hand, some of those studies were made by imposing an angular
speed following a function of time which is often taken linear or exponential.
Lalanne et al. [1] considered a dynamic model accounting only for the flexu-
ral behavior of the rotor and showed that the more important the accelera-
tion through a critical speed is, the lower is the lateral displacement amplitude.
Yamamoto [2] focused more on the gyroscopic term present in a rotor, whose
magnitude is proportional to the angular speed. He considered a rotating speed
varying periodically resulting on a rotor governed by differnetial equations hav-
ing variable coefficients with time. He showed that contrary to all expectaions,
there accurs no unstable vibrations in such working conditions. Al-Bedoor [3]
studied the coupled torsional and lateral vibrations of unbalanced Jeffcot-rotor
in the case of rotor-to-stator rubbing during start-up period. But he only dealt
with angular speeds below the second critical one in order to simplify the gyro-
scopic effect term.

On the other hand, some other studies were carried with an imposed driving
torque and not with an imposed angular speed. In this case a problem called
’unsufficient torque acceleration’ [4] may be encountered. If not enough torque
is induced to the rotating machinery, the rotor stalls at the first critical speed
and the angular speed gets trapped at resonance. Mastuura [5] was interested
in this kind of working conditions. He considered a rigid rotor with a mass
unbalance and investigated conditions under which the rigid rotor easily passes
through critical speeds without stalling. Li et al. [6] proposed a new method
in the instantaneous frequency domain to find the closed-form solutions of dis-
placement, velocity and acceleration envelopes for passage through resonance.
Their studies were however made under the assumption of constant speed accel-
eration rates for run-up and run-down processes in order to ensure tractable
solutions. Srinivasan [7] focused on modeling the phenomenon of limited-torque
acceleration through critical speed of a Jeffcott rotor, with a non-linear torque
profile.

In this work, a most complete as possible dynamic model based on the finite
element method is developed to describe the rotor dynamic behavior at non-
stationary working conditions. It accounts for tracion-compression, bending and
torsion. An imposed driving torque is induced to the system and no assumption
is made on the angular speed of rotation. This requires the introduction of degree
of freedom combining both the torsional deformation and the rigid body angular
displacement as an unknown of the dynamic problem. The angular speed will
then be deduced, not only fom the imposed time-varying torque, but also from
the working conditions, namely, the passing through the critical speeds.
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2 A New Dynamic Model Formulation for Rotors
Working at Non Stationary Conditions

2.1 System Description

The fixed reference frame is denoted (XYZ) while the inertial reference frame
is denoted (UVW). To describe the general orientation of the cross-section of
the shaft element one first rotates by an angle Φ about the Z−axis then by an
angle θ about the new X’-axis and finally by an angle Ψ about the final W’-axis.
The Finite Element Method is used to model the shaft. The relatioships between
Euler angles and the degrees of freedom of rotation at any point of the shaft in
the global coordinate system are the following:

θx = θ.cos(φ) (1a)

θy = θ.sin(φ) (1b)

θz = φ + ψ (1c)

2.2 Governing Equations of the Rotor

The governing equations are obtained by the application of Lagrange equations
on the expression of the kinetic energy of the different components of the rotor.

The Disk, it is assumed to be rigid, and it is fully characterized by its kinetic
energy associated to the displacement of its center of mass C (uc, vc, wc) and to
the rotational motion of its section. The associated displacement vector is then:

{δc}t = {uc, vc, wc, θxc
, θyc

, θzc}{1,6} (2)

The application of the Lagrange equations on the kinetic energy related to the
disk TD results on the following matrix equation:

d

dt

(
∂TD

∂δ̇

)
− ∂TD

∂δ
= [MD({δc})]

{
δ̈
}

+
[
CD(θ̇zc)

]{
δ̇
}

(3)

such as:

[MD({δc})](6,6) =

⎡
⎢⎢⎢⎢⎢⎢⎣

mD 0 0 0 0 0
0 mD 0 0 0 0
0 0 mD 0 0 0
0 0 0 Id 0 Ip

2 θyc

0 0 0 0 Id − Ip
2 θxc

0 0 0 Ip
2 θyc

− Ip
2 θxc

Ip

⎤
⎥⎥⎥⎥⎥⎥⎦

and
[
CD(θ̇zc)

]
is the classical skew-matrix related to the gyroscopic effects.
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The matrix [MD] is no longer a diagonal matrix as it is the case when studying
the stationary regime, it has extra-diagonal terms variable with time due to the
assumption of non-stationary regime inducing coupling between flexural and
torsional behavior. This matrix is dissociated to a constant diagonal matrix and
a time varying matrix with only time-varying extra-diagonal terms as follows:

[MD({δc})]{6,6} = [MDconst]{6,6} + [MDvar({δc})]{6,6} (4)

The Mass Unbalance. The mass unbalance is defined by its mass mu situated
at a distance d from the geometric center of the shaft C(uc, vc). The application
of the Lagrange equations on its kinetik energy Tu results on the following matrix
equation:

d

dt

(
∂Tu

∂δ̇

)
− ∂Tu

∂δ
= [Mu(θzc)]

{
δ̈
}

+ {Fnlu(θzc)} (5)

where

[Mu(θzc)] = dmu

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 cos(θzc)
0 0 0 0 0 −sin(θzc)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

cos(θzc) −sin(θzc) 0 0 0 d

⎤
⎥⎥⎥⎥⎥⎥⎦

{6,6}

{FNLu
(θzc)}t = −dmu θ̇2zc

{
sin(θzc) cos(θzc) 0 0 0 0

}t

{6,1}

In addition to the classical centrifugal force, due to the non-stationary regime
working condition, an additional mass matrix with time varying components is
also obtained. Again, this matrix reflects a coupling between the flexural behav-
ior and the torsional one.

The Shaft. Using the finite element method, we obtain the following expression
for the kinetic energy over a shaft element:

Tse =
1
2

˙{δe}
t
[Mse ] ˙{δe} + Tgyre (6)

where [Mse ] is the elementary mass matrix including both the classical mass
matrix and the secondary effects of the rotatory inertia matrix. Tgyre is the
gyroscopic effect expression such as:

Tgyre = ρIp

∫ l

0

〈N3〉
{

δθ̇z

}
−

〈
∂N2

∂z

〉
{δv̇}

〈
∂N1

∂z

〉
{δu} dz

+ ρIp

∫ l

0

〈N3〉
{

δθ̇z

} 〈
∂N1

∂z

〉
{δu̇}

〈
∂N2

∂z

〉
{δv} dz

(7)
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where {δu}t = 〈u1, θy1, u2, θy2〉 and {δv}t = 〈v1, θx1, v2, θx2〉 are vectors used
to describe the shaft element flexural behavior in both of the lateral directions.
Whereas {δw}t = 〈w1, w2〉 and {δθz}t = 〈θz1, θz2〉 are used to describe the axial
and torsional dispalements.
N1, N2 and N3 are shape functions vectors such as:

〈N1(z)〉 = 〈1− 3z2

l2
+

2z3

l3
, 0, 0, 0, z− 2z2

l
+

z3

l2
, 0,

3z2

l2
− 2z3

l3
, 0, 0, 0, −z2

l
+

z3

l2
, 0〉

(8a)

〈N2(z)〉 = 〈0, 1− 3z2

l2
+

2z3

l3
, 0, −z+

2z2

l
− z3

l2
, 0, 0, 0,

3z2

l2
− 2z3

l3
, 0,

z2

l
− z3

l2
0, 0, 〉
(8b)

〈N3(z)〉 = 〈0, 0, 0, 0, 0, 1 − z

l
, 0, 0, 0, 0, 0,

z

l
〉 (8c)

In order to be able to write the kinetic energy related to the gyrosopic effect
under a matrix form, we proceed by an integration by parts, which leads to the
following formulation for the gyroscopic effects:

Tgyre = [Sgyre ({δe})]{δ̈e} + {Fnlgyre( ˙{δe})} (9)

where:

[Sgyre ({δe})] = − 〈N3(l)〉t {δe}t [Mg
67(l)]

t − [Mg
67(l)] {δe} 〈N3(l)〉

+
〈

∂N3

∂z

〉t

{δe}t [Mg∗
67 (l)]t + [Mg∗

67 (l)] {δe}
〈

∂N3

∂z

〉 (10)

{Fnlgyre( ˙{δe}, ˙{δe})} = − 〈N3(l)〉t
(

˙{δe}
t
[Mg

67(l)] ˙{δe}
)

− 2
(
〈N3(l)〉 ˙{δe}

)(
[Mg

67(l)] ˙{δe}
)

+
〈

∂N3

∂z

〉t (
˙{δe}

t
[Mg∗

67 (l)] ˙{δe}
)

+ 2
(〈

∂N3

∂z

〉
˙{δe}

)(
[Mg∗

67 (l)] ˙{δe}
)

(11)

such as

[Mg
67(l)]e = ρIp

∫ l

0

(〈
∂N2

∂z

〉t 〈
∂N1

∂z

〉
−

〈
∂N1

∂z

〉t 〈
∂N2

∂z

〉)
dz (12a)

[Mg∗
67 (l)]e = ρIp

∫ l

0

(∫ z

0

(〈
∂N2

∂z

〉t 〈
∂N1

∂z

〉
−

〈
∂N1

∂z

〉t 〈
∂N2

∂z

〉)
dz

)
dz

(12b)
The application of the Lagrange equations on the kinetic energy of the shaft

leads to:

d

dt

(
∂Tse

∂δ̇e

)
− ∂Tse

∂δe
= [Mse ] ¨{δe} + [Sgyre ({δe})]{δ̈e} + {Fnlgyre( ˙{δe})} (13)
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[Sgyre ({δe})] and {Fnlgyre( ˙{δe}) induce a strong non linearity to the system
and couplig between the lateral and torsional degrees of freedom.

The calculation of the strain energy of the shaft and the virtual works of the
bearings, assumed to be with linear stiffness and damping, leads to the classical
stiffness matrix and we finally write the equation of the dynamics of rotating
shaft element such as:

[Mse ] ¨{δe} + [Cse ] ˙{δe} + [Kce ]{δe} = −[Sgyre({δe})]{δ̈e} − {Fnlgyre( ˙{δe})}
(14)

2.3 Equations of the Rotor

Once the contribution of each of the constitutive elements of the rotor calculated,
we consider them thouroughly to write the equation of the dynamic behavior
of the rotor. As we have seen previously, the vector and matrix related to the
gyroscopic effect depends explicitly on the displacement and velocity vectors {δe}
and ˙{δe}. We need then, to evaluate those vectors at each time step before doing
the assembly over all the shaft elements. The choice of an explicit integration
scheme is made. At each time step ti+1, vectors {δ}ti and ˙{δ}ti are assumed to be
known and then the gyroscopic effect terms over an element, namely [Sgyre({δe})]
and {Fnlgyre( ˙{δe})} are calculated and assembled over the whole shaft.

Finally, the equation of motion, in the absence of axial efforts and in the
presence of external ones can be written as follows:

([Ms] + [MDconst
]) ¨{δ}i+1 + [Cs] ˙{δ}i + [Kc]{δ}i =

− ([Sgyr({δ}i)] + [MDvar
({δ}i)] + [Mu(θzc)]i)

¨{δ}i+1

−
[
CD(θ̇zc)

]
i

˙{δ}i
−

(
{Fnlgyr( ˙{δ}i)} + {Fnlu(θzc)}i

)

+ {Fext}i

(15)

where in the left side of the equation, the terms which are constant at each time
step and, in the right side, the ones which need to be apdated at every time step.

3 Results and Discussions

Flexible Rotor with Mass Unbalance

We consider a rotor made of a shaft and a disk with a mass unbalance (Fig. 1)
with the following proporties:

Shaft properties
length L = 0.6 m; cross-sectional radius R1 = 0.02 m; ρ = 7800 kg.m−3;
E = 2.1011 N.m−2
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Fig. 1. Rotor model

The shaft is descritized into 10 finite elemets.

Disk properties
Inner radius R1 = 0.02 m; Outer radius R2 = 0.16 m; Thikness h = 0.03 m;
ρ = 7800 kg.m−3

Position of the disk: node number 7 of the shaft.

Mass unbalance
Mass mu = 1% de la masse du disque; Eccentricity d = 0.1 m

Bearings
kxx1 = kxx2 = kyy1 = kyy2 = 108 N.m−1

cxx1 = cxx2 = cyy1 = cyy2 = 0.01 N.s.m−1

Fig. 2. Plot of the angular velocity for successful and unsuccessful acceleration through
critical speeds
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In this example, the torque is constant at first, it brings the rotor to a speed
of 1000 rpm and afterwards it follows a linear law of variation as a function of
time. The problem of ’limited torque acceleration’ introduded by Gluse [4] for
rigid rotors was encountered in our case. The first critical speed of the rotor is
at ωc1 � 2513 rpm.

Below some torque acceleration rate or damping values the rotor stalls in the
vicinity of the first critical speed. In this case, the rotor generates large deflection
displacements which results in important resistive torque. Which explains the
dependency of the success or failure of the passing through the critical speeds on
the applied driving torque. Figure 2 presents the passing through the first critical
speed of the same rotor for different torque acceleration rates αi,i∈{1,2,3,4}. It
confirms that the more the torque acceleration rate is important, the easier the
passing through critical speeds is.

Fig. 3. Plot of the lateral diplacement amplitude for successful and unsuccessful accel-
eration through critical speeds

It is also shown that, in accordance to the previous works, the higher the
torque acceleration rate is, the lower is the lateral diplacement amplitude (Fig. 3).

4 Conclusion

The rotor dynamic model presented in this paper based on the finite element
methods is a complete model taking into account the shear deformation, the
secondary effects of rotatary inertia and the gyroscopic effects. It accounts for
traction-compression, deflexion and torsion which makes it strongly non-linear
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with different coupling between lateral and torsional degrees of freedom. The
new proposed formulation for the rotor dynamics makes no assumption on the
instantaneous angular speed which implies the possibilty to simulate the rotor
response for any non-stationary working condition with linear or non-linear driv-
ing torques.

If the maximum of the lateral vibrations when going through critical speeds
was investigated in many previous works, no focus was made on the IAS con-
sidered in our case as unknown of the dynamic problem. The next step of the
present work will be the analysis, in non staionary working conditons, of the
IAS which is believed to provide a rich signal containing information not only
about the torsional behavior but also about the lateral one due to the coupling
between the different degrees of freedom as it is shown in the dynamic model.
The rotor model will also be used as an identification tool at non-stationary
working conditions.
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