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Abstract. Condition monitoring is a central aspect in the health assessment and
maintenance of industrial machinery. Vibration analysis is the most widely used
technique for fault detection in rotating machinery. However, the technique can
become difficult to apply in the case of machinery with non-stationary duty
cycles due to the time-varying characteristics of the machine vibrations. The
vibration signature of an incipient fault in rotating machinery is typically weak
when compared to other sources of excitation. Due to these limitations, many
methods have been proposed to increase the signal to noise ratio (SNR) of the
signals as well as their applicability to non-steady operation. These include the
separation of the random fault signatures from the deterministic components in
the signal as well as techniques based on optimising the filtering of the signal to
increase SNR. This work presents a method for extracting weak fault signatures
from non-stationary signals using a reference signal from a parallel operating
component on the same machine. The method, which is based on wavelet de-
noising, employs a reference signal to adapt noise thresholds in the time and
scale domain. Tests were performed using simulated non-stationary vibration
signals. The proposed technique is shown to be effective at increasing the SNR
when combined with envelope analysis to detect and diagnose faults.
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1 Introduction

Faults in rolling-element bearings are among the most common types of failures in
rotating machinery. As such, there is a significant base of research regarding the
detection and diagnosis of these fault using measured vibration signals (Randall and
Antoni 2011). However, due to the low relative power of the fault signature compared
to other sources of vibration many different signal processing techniques have been
employed to increase the SNR. This can prove to be difficult due to the non-stationary
nature of many types of rotating machinery. Machines that undergo changes in oper-
ational conditions (i.e. speed and load) will produce vibrations that cannot be con-
sidered to be stationary or cyclostationary in either the angle or the time domain. This is
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due to interactions between the angle and time dependant characteristics of the signal
(Abboud et al. 2016b).

One common technique for the detection and diagnosis of bearing faults is
envelope analysis. In which, the envelope or amplitude modulation of a high frequency
band of the signal is analyzed in the frequency domain to reveal the frequency of
repeated impulses that can be correlated with the bearing characteristic frequencies
(Randall 2004). When preforming envelope analysis, it is generally desirable to per-
form some preliminary steps to remove non fault related components from the envelope
spectrum. The removal of deterministic components from the original signal can help
enhance the SNR of the inherently random fault signature, this can be done by using
techniques such as synchronous averaging or linear prediction filtering (Kay and
Marple Jr. 1981; McFadden and Toozhy 2000). This can however be difficult for non-
stationary signals due to the nature of the deterministic signal components however
some techniques have been developed to deal with this such as cepstrum pre-whitening
(Borghesani et al. 2013) and the generalized synchronous average (Abboud et al.
2016a).

Wavelet de-noising, sometimes referred to as wavelet shrinkage, is another technique
that can be used to increase the SNRof the raw vibration signal. Usingwavelets to remove
white noise from signals was first proposed by Mallat (1991), (Mallat and Hwang 1992).
It was shown that the local extrema of the wavelet transform modulus can form an
approximate solution to the reconstruction of signals. This is due to the redundancy of
information in the wavelet transform modulus. Wavelet shrinkage using the SureShrink
method was then proposed by Donoho and Johnstone (1995). This allows the removal
of background noise components of the signal using a simple thresholding technique in
the wavelet domain. The de-noised signal can then be reconstructed from the remaining
peak values of the wavelet transform modulus. Donoho also proposed a soft thresh-
olding technique in which all of the wavelet coefficients are shrunk by the threshold
level (those less than the threshold are set to zero), (Donoho 1995). Other thresholding
techniques such as the NeighCoeff method, in which the neighbouring coefficients are
taken into account, can also be used (Cai and Silverman 2001).

Wavelet de-noising has been used to enhance signals for bearing fault detection.
Qiu et al. (2006) compared wavelet thresholding to wavelet filtering for rolling element
bearing prognostics. It was found that filtering works better for impulsive signals,
whereas thresholding works best on smooth signals. However, Bertot et al. (2014)
found that using the thresholding technique on the signal envelope rather than the
broadband signal works well for bearing faults. In Ref. (Zhen et al. 2008) the
Neighcoeff thresholding method was extended to use both inter and intra scale
dependency for detection of bearing faults using a customized wavelet. Mishra et al.
(2016) used stochastic/deterministic wavelet de-noising along with short duration angle
synchronous averaging and envelope analysis to diagnose bearing faults. Wang et al.
(2010) applied the Neighcoeff method to a dual tree wavelet transform to detect
cracked gear teeth and bearing faults.

4 D. Helm and M. Timusk



2 Wavelet Denoising Using a Reference Signal

The method proposed in this work is based on wavelet de-noising, however it uses a
reference signal to adapt the thresholds in the time and scale dimensions. In doing so,
this method significantly reduces the power of random white noise, as well as all signal
components that are shared between the original signal and the reference signal. Using
the reference signal to adapt the thresholds over time also allows this method to quickly
adapt to changing non-stationary signals. In this work the threshold levels for the de-
noising process are taken to be the nearest local extrema of the wavelet transform
modulus of the reference signal. Shared elements between the signal and the reference
can generally be considered to have the same frequency and amplitude characteristics.
However, their phase may be different, and it is for this reason that the threshold must
be based on local extrema, as the wavelet decomposition of two phase shifted versions
of the same signal will not be identical. As mentioned earlier the local extrema forms an
approximate solution to the reconstruction of functions from the wavelet transform
modulus (Mallat 1991; Mallat and Hwang 1992). The proposed method is combined
with envelope analysis to detect faults in bearings. Figure 1 shows a flow chart for the
proposed method. As mentioned earlier Bertot et al. (2014) found that preforming de-
noising on the envelope signal rather than the raw signal works well, however since in
this case we have a priori information about the structure of the noise (gained form the
reference signal) this may not be the case. In using this technique it is necessary to
include a reference signal that closely models the signal to be analyzed. An application
where this is possible is for parallel machinery. When two or more machine compo-
nents are operating in parallel (mechanically identical with the same speed and load)
vibration measurements will be statistically similar with nearly identical deterministic
components, allowing one to be used as a reference signal for the other.

The proposed method of de-noising using a reference signal is similar to another
common method known as Adaptive Noise Cancellation (ANC). In ANC an adaptive
Finite Impulse Response (FIR) filter is used to modify a reference noise signal to
minimize the time domain residual between the signal and the modified reference. In
both cases the reference signal must be closely related to the noise, however the

Fig. 1. Wavelet denoising with a reference signal
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proposed method assumes that the reference signal and the noise have nearly identical
local extrema in the wavelet domain whereas ANC does not. Using ANC, noise
components in the signal that are related to the reference by a linear transfer function
can be removed (Randall and Antoni 2011). Jena et al. (2014) used ANC along with an
adaptive wavelet algorithm to detect gear faults. To do this, the reference signal was a
signal from the same gearbox, running in a healthy state and was run at a constant
speed. In this work the proposed wavelet de-noising scheme is compared to ANC.

3 Simulated Signals

In this work, simulated signals are used to validate the proposed method, as well as to
assess the effects of the different tunable parameters on the methods ability to increase
the signal to noise ratio of the signal. A simulated signal is used because a known fault
signature can be placed in the signal allowing the SNR to be easily calculated both
before and after the de-noising process. The model for the signals used was proposed in
(Abboud et al. 2017). However, the amplitudes were modulated by the intake power
(speed and load), rather than just the speed as given in the original model. The form of
the healthy simulated signal (X(t)) is given in Eqs. 1–4.

X tð Þ ¼ d tð Þþ r tð Þþ b tð Þ ð1Þ

d(t) is the deterministic component shown in Eq. 2, r(t) is the random component given
in Eq. 3 and b(t) is the background noise given in Eq. 4.

d tð Þ ¼ M x tð Þ; L tð Þð Þ
X

i
aicosðz1 � i � h tð ÞþuiÞ

� �
� Hd

g ð2Þ

r tð Þ ¼ M x tð Þ; L tð Þð ÞW tð Þ
X

i
aicosðz1=z2 � i � h tð ÞþuiÞ

� �
� Hr

g ð3Þ

B tð Þ ¼ W tð ÞM x tð Þ; L tð Þð Þ � Hb ð4Þ

Where M is the modulation function, which is the intake power, x(t) is the input
speed, L(t) is the load (input torque), ai and ui are the amplitude and phase of the ith
Fourier coefficients respectively, z1 and z2 are the number of teeth on the input and
output gears respectively, W(t) is white noise with unit standard deviation and H is a
Linear Time Invariant (LTI) system that represents the signal transfer path.

The Bearing signal follows that given in (Abboud et al. 2017) where the fault
signature is a train of impulse response functions spaced with respect to a known ball
pass order and the angular frequency with an added 1% random deviation. The
amplitude of the responses were also modulated by the intake power.

In this work two different signals were generated one healthy and one faulted. Since
the two signals are meant to represent the component signal and a reference from a
parallel operating machine they were constructed to have similar statistics but not be
identical. A 10% random deviation in the amplitude of the signal components was
added such that they are not strictly identical. The phases for the individual signal

6 D. Helm and M. Timusk



components were also set to be different, as it is highly unlikely that they would be
identical in a real world situation. The signals do however share the same speed and
load ramps (Fig. 2). The frequency responses of the different LTI systems are also
identical for each signal. The generated signals have a sampling frequency of 10 kHz.

3.1 Results with Simulated Signal

The SNR was calculated using the squared envelope spectrum of the signal where the
SNR is the ratio of the power of the known ball pass order with respect to the average
power of the entire envelope spectrum. Using this metric, results for the de-noising
method were directly compared for each case.

The original faulted signal before de-noising has a SNR of 11.09 when calculated
as stated above. The envelope spectrum is shown in Fig. 3A. The ball pass order can
clearly be seen in the spectrum, however there are a number of other peaks that are not
a result of the fault. Using the de-noising method proposed in this work the SNR
increases to 14.26, and the spectrum can be seen in Fig. 3B. In this case the peak at the
fault frequency is the largest peak revealed by the envelope.

Fig. 2. Angular frequency and load of simulated signal

A) B)

Fig. 3. Squared envelope spectrums of (A) the original signal and (B) the de-noised signal
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A factor that affects the results of the proposed technique is the type and order of the
wavelet used for decomposition. The SNR for several different wavelets can be seen in
Fig. 4A. This shows the best results using a Fejer-Korovkin (FK) wavelet. Other key
parameters for this method are the order of the wavelet used and the decomposition
level. The change in SNR of the de-noised signal with respect to the wavelet order and
the decomposition lever are shown in Fig. 4B for the FK wavelet. This shows a max-
imum SNR of just over 25 for a decomposition level of 5 and a wavelet order of 22.

As previously discussed, a wavelet de-noising algorithm can employ a hard or soft
thresholding method. In all the results so far a soft thresholding technique has been
used. When switching to hard thresholding the SNR of the de-noised signal decreases
to 21.8.

3.2 Wavelet De-noising vs. ANC

As was discussed earlier it is possible to make a direct comparison between the pro-
posed method and adaptive noise cancellation. Both remove additive noise from a
signal through the use of a reference signal. ANC was applied to the simulated signals

A) B)

Fig. 4. Signal to noise ratio of de-noised signal with respect to, (A) wavelet family and, (B) FK
wavelet order

Fig. 5. SNR of signal after ANC with respect to filter length
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following the theory given in (Jena et al. 2014) and did not produce good results. This
can be seen in Fig. 5, where the SNR is plotted with respect to the filter length. In this
work a Recursive Least Squares filter was used with a forgetting factor of 0.9. This
showed a significant decrease in performance compared to the raw signal especially for
filters with a length greater than three. This is likely due to the highly random nature of
the signals noise, as ANC may work better for removal of more deterministic signal
components.

4 Conclusions

A method for extracting a fault signature from vibration signals using a reference signal
is proposed. The proposed method uses wavelet shrinkage to eliminate elements from
the signal that are shared with the reference signal. This method was shown to increase
the SNR of a simulated signal, as well as favorable performance when compared to
ANC. In future works the effects of the different parameters associated with the wavelet
decomposition on the overall effectiveness of the method must be further investigated.
This method will also be tested on real experimental data from parallel operating
components. Moreover, the sensitivity of the method to minor differences in the
structure of the reference signal relative to the original signal must be investigated, as
this has the possibility to greatly limit the number of possible applications.
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