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Abstract ‘Bursting’, defined as periods of high-frequency firing of a neuron
separated by periods of quiescence, has been observed in various neuronal systems,
both in vitro and in vivo. It has been associated with a range of neuronal
processes, including efficient information transfer and the formation of functional
networks during development, and has been shown to be sensitive to genetic and
pharmacological manipulations. Accurate detection of periods of bursting activity
is thus an important aspect of characterising both spontaneous and evoked neuronal
network activity. A wide variety of computational methods have been developed to
detect periods of bursting in spike trains recorded from neuronal networks. In this
chapter, we review several of the most popular and successful of these methods.
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LTD Long-Term Depression
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1 Introduction

Neuronal bursting, observed as intermittent periods of elevated spiking rate of a
neuron (see Fig. 1), has been observed extensively in both in vitro and in vivo
neuronal networks across various network types and species (Weyand et al. 2001;
Chiappalone et al. 2005; Pasquale et al. 2010). These bursts can be isolated to a
single neuron or, commonly, occur simultaneously across many neurons, in the form
of ‘network bursts’ (Van Pelt et al. 2004b; Wagenaar et al. 2006; Pasquale et al.
2008; Bakkum et al. 2013).

Bursting activity is believed to play a role in a range of physiological processes,
including synapse formation (Maeda et al. 1995) and long-term potentiation (Lis-
man 1997). Analysis of patterns of bursting activity can thus be used as a proxy for
studying the underlying physiological processes and structural features of neuronal
networks. A common method of studying bursting activity in vitro involves the use
of MEA recordings of spontaneous or evoked neuronal network activity (Lonardoni
et al. 2015; Charlesworth et al. 2015; Pimashkin et al. 2011; Van Pelt et al. 2004b).
This approach has been employed to study changes in spontaneous network activity
over development (Wagenaar et al. 2006), and the effect of pharmacological or
genetic manipulations (Eisenman et al. 2015; Charlesworth et al. 2016).

Despite the importance of bursting and its prevalence as a feature used to analyse
neuronal network activity, there remains a lack of agreement in the field about
the definitive formal definition of a burst (Cocatre-Zilgien and Delcomyn 1992;
Gourévitch and Eggermont 2007). There is also no single technique that has been
widely adopted for identifying the location of bursts in spike trains. Instead, a large
variety of burst detection methods have been proposed, many of which have been
developed and assessed using specific data sets and single experimental conditions.
As most studies of bursting activity have been performed on experimental data from
recordings of rodent neuronal networks (Charlesworth et al. 2015; Mazzoni et al.
2007), this type of data has most often been used to assess the performance of burst
detection techniques (Chiappalone et al. 2005; Mazzoni et al. 2007; Gourévitch and
Eggermont 2007).

Recently, it has been shown that networks of neurons derived from human stem
cells can be grown successfully on MEAs and exhibit spontaneous electrical activity,
including bursting (Illes et al. 2007; Heikkilä et al. 2009). Human stem cell-derived

Fig. 1 Example of bursting activity in a spike train recorded from mouse retinal ganglion cells.
Horizontal blue lines show the location of bursts. Scale bar represents 1 s
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MOUSE HUMAN

Fig. 2 Examples of spike trains from mouse and human neuronal networks. Each row represents
the spikes recorded from one electrode and the scale bar represents 30 s. Recordings from human
neuronal networks often exhibit more variable and complex spontaneous activity patterns

neuronal cultures have also been demonstrated to be a suitable alternative to rodent
neuronal networks in applications such as neurotoxicity testing (Ylä-Outinen et al.
2010). This has led to a demand for a robust method of analysing bursting in these
networks, which commonly exhibit more variable and complex patterns of bursting
activity than rodent neuronal networks (Kapucu et al. 2012) (see Fig. 2). Recently,
some burst detection methods have been developed which specifically focus on
analysing bursting activity in these types of variable networks (Kapucu et al. 2012;
Välkki et al. 2017).

2 Physiological Significance of Neuronal Bursting

Neuronal bursting is a frequently observed phenomenon in MEA recordings of
cultures of dissociated neurons, as well as in numerous in vitro systems (Wagenaar
et al. 2006; Pasquale et al. 2008; Weyand et al. 2001; Legéndy and Salcman 1985).
In cultured rodent cortical networks, bursts, and in particular, synchronised ‘network
bursts’ generally arise as a feature of the spontaneous network activity after around
1 week in vitro (Kamioka et al. 1996). Most studies observe that these network
bursts then increase in frequency and size before reaching a peak around 3 weeks
in vitro (Van Pelt et al. 2004a,b; Chiappalone et al. 2006). This peak in network
bursting activity generally corresponds to the period in which the synaptic density
of the network reaches its maximum (Van Huizen et al. 1985; Kamioka et al. 1996;
Van Pelt et al. 2004a). This is followed by a period of shortening of network bursts,
which coincides with a stage of ‘pruning’ or reduction in dendritic spine synapses
and maturation of excitatory connections between neurons (Chiappalone et al.
2006; Illes et al. 2007; Ichikawa et al. 1993; Van Pelt et al. 2005). As well as being
correlated with neuronal network development and maturation, bursting patterns of
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spontaneous activity are also believed to play an important role in regulating cell
survival. High-frequency bursting has been shown to increase neuronal survival in
cortical cultures, while suppression of spontaneous activity has been observed to
greatly increase the rates of programmed cell death (Golbs et al. 2011; Heck et al.
2008).

Bursting has also been observed to be involved in a range of physiological
processes in mature neuronal networks. For example, bursting is believed to be
a more efficient method of information transfer between neurons than single
spikes. Central synapses in various brain regions have been shown to exhibit low
probabilities of neurotransmitter release in response to single presynaptic spikes,
making information transfer by single spikes unreliable (Borst 2010; Branco and
Staras 2009; Allen and Stevens 1994). However, bursts of spikes can lead to
‘facilitation’, a process in which a rapid succession of spikes leads to a build-up
of intracellular Ca2+ in the presynaptic terminal. This increases the probability of
neurotransmitter release and resultant production of EPSPs with subsequent spikes
(Thomson 1997; Krahe and Gabbiani 2004). In addition to being involved in these
mechanisms of short-term plasticity, bursting has also been implicated in long-
term potentiation (LTP) and depression (LTD). For example, in the hippocampus,
postsynaptic bursting at temporally relevant intervals could produce long-term
synaptic changes (Pike et al. 2004; Froemke et al. 2006; Thomas et al. 1998).

It has also been suggested that bursts of spikes transmit information with a higher
signal-to-noise ratio than single spikes (Sherman 2001). Evidence of this has been
seen in a variety of brain regions, such as the hippocampus, where place fields have
been shown to be more accurately defined by bursts than individual spikes (Otto
et al. 1991). Bursting has also been shown to produce sharper sensory tuning curves
(Cattaneo et al. 1981; Krahe and Gabbiani 2004) and more reliable feature extraction
than single spikes (Gabbiani et al. 1996; Sherman 2001; Krahe et al. 2002).

The importance of neuronal bursting has also been demonstrated through its
association with a variety of behaviours in vivo, including visual processing, reward
and goal-directed behaviour and sleep and resting conditions (Cattaneo et al. 1981;
Krahe and Gabbiani 2004; Tobler et al. 2003; Schultz et al. 1997; Schultz 1998;
Evarts 1964; Barrionuevo et al. 1981; McCarley et al. 1983; Weyand et al. 2001;
Steriade et al. 2001). Bursting of hippocampal place cells has also been observed
during exploration of new environments (O’Keefe and Recce 1993; Epsztein et al.
2011). The presence of bursting in these, as well as other memory-related behaviours
(Burgos-Robles et al. 2007; Xu et al. 2012), suggests that bursting plays a specific
role in memory and learning in the adult brain (Paulsen and Sejnowski 2000).

Additionally, bursting activity has been seen to be altered in certain pathological
conditions (Walker et al. 2008; Jackson et al. 2004; Miller et al. 2011; Singh et al.
2016). For example, increased bursting activity has been observed in the basal
ganglia of Parkinson’s patients, with correlations between the level of bursting
activity and the progression of the disease (Lobb 2014; Ni et al. 2001). This suggests
that the study of bursting activity could not only reveal important features of normal
brain function but also how this is altered in diseased states.
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3 Previous Approaches to Burst Detection

Since the development of the first methods to identify bursting in neuronal networks
more than three decades ago, many techniques have been proposed. These methods
take a variety of approaches.

3.1 Fixed Threshold-Based Methods

The simplest approaches involve imposing thresholds on values such as the
minimum firing rate or maximum allowed interspike interval (ISI) within a burst,
and classifying any sequence of consecutive spikes satisfying these thresholds as a
burst. In well-ordered spike trains, these thresholds can be set as fixed values by
visual inspection (Weyand et al. 2001; Chiappalone et al. 2005). Other methods
also incorporate additional thresholds on relevant parameters such as the minimum
interval between two bursts and the minimum duration of a burst, to restrict detected
bursts to those with biologically realistic properties (Nex Technologies 2014).

3.2 Adaptive Threshold-Based Methods

As opposed to having fixed threshold parameters that are chosen by the user, other
burst detection algorithms derive the values of their threshold parameters adaptively
from properties of the data, such as the mean ISI (Chen et al. 2009) or total spiking
rate (Pimashkin et al. 2011). Commonly, this involves the use of some form of the
distribution of ISIs on a spike train. For spike trains containing bursting activity, the
smoothed histogram of ISIs on the train should have a peak in the region of short
ISIs, which represents within-burst ISIs, and one or more peaks at higher ISI values,
representing intraburst intervals. A threshold for the maximum ISI allowed within
a burst can be set at the ISI value representing the turning point in the histogram
(Cocatre-Zilgien and Delcomyn 1992).

Several other adaptive burst detection algorithms also use distributions related
to the ISI histogram to calculate the thresholds for burst detection. Selinger et al.
(2007) and Pasquale et al. (2010) argue that the histogram of log(ISI)s provides a
better separation of within- and between-burst intervals, and use this histogram to
set the threshold for the maximum within-burst ISI at the minimum between the first
two well-separated peaks. Kaneoke and Vitek (1996) use the histogram of discharge
density rather than ISIs for burst detection, while Kapucu et al. (2012) derive the
threshold parameters for detecting bursts in their algorithm from the cumulative
moving average of the ISI histogram.
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3.3 Surprise-Based Methods

Another category of burst detection techniques are the surprise-based methods,
which use statistical techniques to distinguish periods of bursting from baseline
neuronal firing. The earliest of such methods was developed by Legéndy and
Salcman (1985), and detects bursts as periods of deviation from an assumed
underlying Poisson process of neuronal firing. This method critically assumes
Poisson-distributed spike trains, which has been shown to be inappropriate for many
common spike trains, in particular because of the refractory period between spikes
(Câteau and Reyes 2006). Despite this, the Poisson Surprise method has been one
of the most widely used burst detection methods since its development over 30
years ago (398 citations as of June 2018) and is still commonly used for analysing
bursting activity in experimental studies of numerous neuronal network types (Singh
et al. 2016; Pluta et al. 2015; Senn et al. 2014). More recently, other surprise-based
burst detectors have been developed that replace the assumption that baseline firing
follows a Poisson process with other assumptions about the underlying distribution
of spikes (Ko et al. 2012; Gourévitch and Eggermont 2007).

3.4 Other Methods

Other burst detectors take alternative approaches to separate bursting from back-
ground spiking activity. Turnbull et al. (2005) examine the slope of the plot of
spike time against spike number to detect bursts as periods of high instantaneous
slope. Martinson et al. (1997) require bursts to be separated by intervals at least two
standard deviations greater than their average within-burst ISIs, while Tam (2002)
proposes a parameter-free burst detection method, in which sequences of spikes
are classified as bursts if the sum of their within-bursts ISIs is less than the ISIs
immediately before and after the burst.

Numerous studies have also used various forms of hidden Markov models to
analyse neuronal activity patterns (Radons et al. 1994; Chen and Brown 2009;
Abeles et al. 1995). These methods assume that a neuron stochastically alternates
between two or more states, characterised by differences in their levels of activity.
Tokdar et al. (2010) apply this idea to burst detection by modelling neuronal activity
using hidden semi-Markov models.

3.5 Burst Detection Methods

In this section, we will outline a number of key existing burst detection algorithms.
Given the vast number of available burst detection techniques, the following have
been chosen for their relevance and popularity in the existing literature, and repre-
sent examples of each of the approaches to burst detection outlined above (Table 1).
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Table 1 Burst detectors classified by their approach to burst detection

Abbreviation Method Reference

Fixed threshold-based methods

MI MaxInterval Nex Technologies (2014)

Adaptive threshold-based methods

logISI LogISI Pasquale et al. (2010)

CMA Cumulative Moving Average Kapucu et al. (2012)

IRT ISI Rank Threshold Hennig et al. (2011)

Surprise-based methods

PS Poisson Surprise Legéndy and Salcman (1985)

RS Rank Surprise Gourévitch and Eggermont (2007)

RGS Robust Gaussian Surprise Ko et al. (2012)

Other methods

HSMM Hidden Semi-Markov Model Tokdar et al. (2010)

0 3min inter-
burst

interval

max ISI
at start
of burst

min burst
duration

min number
of spikes in

burst

max ISI
in burst

Fig. 3 Illustration of the parameters used by the MaxInterval method

MaxInterval Method (Nex Technologies 2014)
Bursts are defined using five fixed threshold parameters, shown in Fig. 3. The value
of these parameters is chosen a priori, and any series of spikes that satisfy these
thresholds is classified as a burst.

LogISI Method (Pasquale et al. 2010)
The histogram of log(ISI)s on a spike train is computed, using a bin size of 0.1 in
log(ISI) units. Let Ck denote the ISI count in the kth bin of this histogram, which
corresponds to an ISI size of ISIk , and MCV denote a pre-specified threshold value,
known as the maximum cut-off value. The location of the peaks of this histogram
is found using a custom peak finding algorithm described in Pasquale et al. (2010).
The largest peak of the histogram corresponding to an ISI less than or equal to MCV
is set as the intraburst peak, CIBP . If no peak is found in the histogram with ISIk ≤
MCV, the spike train is classified as containing no bursts.

In the case that an intraburst peak is present, the minimum value of the histogram
between the intraburst peak and each of the following peaks, Cpi

(i = 1, . . . , N ), is
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found. For each minimum, a void parameter is calculated that represents how well
the corresponding peak is separated from the intraburst peak, as

void(i) = 1 − Cmini√
CIBP · Cpi

where Cmini
is the minimum value of Ck for IBP < k < pi .

The smallest ISImini
for which void(i) > 0.7 is set as the threshold for the

maximum ISI in a burst, maxISI (see Fig. 4). Any series of at least three spikes
separated by ISIs less than maxISI are classified as bursts. If no point with a void
value above 0.7 is found, or if maxISI > MCV, bursts are detected using MCV as
the threshold for the maximum ISI in a burst and then extended to include spikes
within maxISI of the beginning or end of each of these bursts.

Cumulative Moving Average (CMA) Method (Kapucu et al. 2012)
This method also uses the histogram of ISIs on a spike train. The cumulative moving
average (CMA) at each ISI bin of the histogram is calculated. The CMA of the N th
ISI bin is defined as:

CMAN = 1

N

N∑

k=1

Ck ,
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Fig. 4 Example of log-adjusted ISI histogram with the threshold for intra- and interburst intervals
found using the logISI method
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Fig. 5 Example of ISI histogram with the threshold for intra- and interburst intervals found using
the CMA method. Red line shows the cumulative moving average of the ISI histogram

where Ck is the ISI count in the kth bin. The skewness of the CMA distribution
is used to determine the values of two threshold parameters, α1 and α2, based on
the scale given in Kapucu et al. (2012). The maximum of the CMA distribution,
CMAmax , is found and the value of maxISI is set at the ISI bin at which the CMA
is closest in value to α1 · CMAmax (see Fig. 5). Burst cores are then found as any
sequences of at least three spikes separated by ISIs less than maxISI .

Kapucu et al. (2012) suggest extending these burst cores to include burst-related
spikes. These are found using a second cut-off, set at the value of the ISI bin at
which the CMA is closest to α2 ·CMAmax . Spikes within this cut-off distance from
the beginning or end of the existing burst cores are classified as burst-related spikes.
For this study, only the burst cores detected by this method were examined, omitting
any burst-related spikes.

ISI Rank Threshold Method (Hennig et al. 2011)
In the ISI rank threshold (IRT) method, the rank of each ISI on a spike train relative
to the largest ISI on the train is calculated, with R(t) denoting the rank of the ISI
beginning at time t . The probability distribution, P(C), of spike counts in one-
second time bins over the spike train is also found. A rank threshold, θR , is set to
a fixed value, and a spike count threshold, θC , is calculated from P(C). A burst is
then defined to begin at a spike at time t if the rank of the proceeding ISI satisfies
R(t) < θR and the spike count in the following second, C(t, t +1), exceeds θC . The
burst continues until a spike is found for which C(t, t + 1) <

θC

2 .
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Poisson Surprise Method (Legéndy and Salcman 1985)
The average firing rate, λ, on a spike train is calculated, and the underlying activity
on this spike train is assumed to follow a Poisson process with rate λ. The Poisson
surprise (PS) statistic for any period of length T containing N spikes is calculated as:

S = − log P

where

P = exp

(

−λT

∞∑

n=N

(λT )n

n!

)

is the probability that N or more spikes occur randomly in a period of length T .
A surprise maximisation algorithm described in Legéndy and Salcman (1985)

is then used to find the set of bursts that maximises the PS statistic across the
entire spike train. This involves initially identifying bursts as any sequence of three
consecutive spikes separated by ISIs which are less than half of the mean ISI on
the spike train. Spikes are then added to the end and removed from the beginning
of each of these initial bursts until the sequence of spikes with the maximum PS
statistic is found. Finally, any bursts which have a PS statistic below a pre-defined
threshold level are discarded.

Rank Surprise Method (Gourévitch and Eggermont 2007)
The rank surprise (RS) burst detection algorithm is a non-parametric adaptation of
the Poisson surprise approach. To implement this method, all ISIs on a spike train
are ranked by size, with the smallest ISI given a rank of one. In the absence of any
bursting activity, the ISI ranks should be independently and uniformly distributed.
For any period containing N spikes separated by N − 1 ISIs with ranks rn, . . . ,
rn+N−1, the rank surprise statistic is defined as:

RS = − log(P (DN ≤ rn + . . . + rn+N−1))

where DN is the discrete uniform sum distribution between 1 and N and rn is the
rank of the nth ISI on the spike train.

Bursts are then chosen to maximise the RS statistic across the entire spike
train using an exhaustive surprise maximisation algorithm, outlined in Gourévitch
and Eggermont (2007). A fixed threshold for maxISI is first calculated from the
distribution of ISIs on the spike train. The first sequence of at least three spikes
with ISIs less than maxISI are found, and an exhaustive search of all of the
subsequences of ISIs within this period is performed to find the subsequence with
the highest RS value. If this value is above a fixed minimum significance threshold,
chosen a priori, it is labelled as a burst. This process is repeated on the remaining
ISI subsequences within the period of interest until all significant bursts are found.
Following this, the next sequence of spikes with ISIs below maxISI is examined in
a similar fashion, and this process is continued until the end of the spike train.
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Robust Gaussian Surprise Method (Ko et al. 2012)
In the robust Gaussian surprise (RGS) method, the distribution of log(ISI)s on each
spike train is found and centred around zero. The normalised log(ISI)s from each
spike train in the study are then pooled and the central distribution of this joint
data set is found using a procedure outlined in Ko et al. (2012). A burst detection
threshold for maxISI is set at the 0.5 percentile of this central distribution, which
is estimated as 2.58 times the median absolute deviation of the distribution.

The Gaussian burst surprise value in any interval on a spike train is defined as:

GSB = − log(P )

where P is the probability that the sum of normalised log(ISI)s in the interval is
greater than or equal to the sum of an equal number of i.i.d. Gaussian random
variables with mean and variance equal to that of the central distribution.

Any consecutive sequence of spikes separated by intervals less than maxISI are
classified as burst cores. These burst cores are then extended by adding intervals
to the beginning and end of the burst cores until the sequence with the maximum
value of GSB is found. In the case of overlapping bursts, the burst with the largest
GSB value is retained. Finally, any detected bursts with GSB below a pre-defined
threshold value are discarded. Ko et al. (2012) also propose a similar method for
identifying pauses in spike trains.

Hidden Semi-Markov Model Method (Tokdar et al. 2010)
This method is based on the assumption that neurons switch stochastically between
two states: ‘non-bursting’ (state 0) and ‘bursting’ (state 1), which can be modelled
using a hidden semi-Markov model. The transition times between the two states
are modelled using two Gamma distributions, f IT I

0 and f IT I
1 . Within each of the

states, the ISI times are modelled using two additional gamma distributions, f ISI
0

and f ISI
1 . The parameters of these four distributions are learned from the data. A

custom Markov chain Monte Carlo algorithm described in Tokdar et al. (2010) is
then used to compute the posterior probability that a neuron is in a bursting state at
any given time. A fixed threshold value is chosen a priori, and any periods during
which the posterior probability exceeds this value are classified as bursts.

3.6 Evaluation of Burst Detection Techniques

In Cotterill et al. (2016), we performed a thorough evaluation of the burst detection
methods outlined above. This involved first assessing the methods against a list of
desirable properties that we deemed an ideal burst detector should possess (see
Table 2). This was achieved by generating synthetic spike trains with specific
properties of interest to represent each desirable property. The output of each burst
detector when used to analyse each set of spike trains was then compared to the
‘ground truth’ bursting activity. Figure 6 shows the performance of the chosen burst
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Table 2 Desirable properties for a burst detector

Desirable properties

D1 Deterministic: the method should detect the same bursts over repeated runs on the same
data, to ensure consistency and reproducibility of results

D2 No assumption of spike train distribution: the method should not assume that ISIs follow
a standard statistical distribution, to ensure wide applicability to a variety of spike trains

D3 Number of parameters: the method should have few parameters, to reduce the variability
inherently introduced through parameter choice

D4 Computational time: the method should run in a reasonable amount of time using
standard personal computers

D5 Non-bursting trains: the method should detect few spikes as being within bursts in spike
trains containing no obvious bursting behaviour

D6 Non-stationary trains: the method should detect few spikes as being within bursts in spike
trains with non-stationary firing rates that contain no obvious bursting behaviour

D7 Regular short bursts: the method should detect a high proportion of spikes in bursts in
spike trains containing short well-separated bursts

D8 Non-stationary bursts: the method should detect a high proportion of spikes in bursts in
spike trains containing bursts with variable durations and number of spikes per burst

D8 Regular long bursts: the method should detect a high proportion of spikes in bursts and
accurate number of bursts in spike trains containing long bursts with low within-burst
firing rates

D10 High-frequency bursts: the method should detect a high proportion of spikes in bursts
and accurate number of bursts in spike trains containing a large number of short bursts

D11 Noisy train: the method should classify a high number of within-burst spikes as bursting
and a low number of interburst spikes as bursting in spike trains containing both bursts
and noise spikes

Table reproduced from Cotterill et al. (2016)

detectors on a sample of these properties. Most burst detectors can accurately detect
a small amount of bursting activity in spike trains simulated to contain no bursting
behaviour (Fig. 6a), with the exception of the HSMM and CMA methods, which
detect a significant amount of erroneous bursting. Conversely, most burst detectors
accurately identified most bursting activity in spike trains containing only regular
short bursts (Fig. 6c). However, the RS, IRT and RGS methods performed poorly
here, only detecting a small proportion of the bursting activity.

This approach of assessing the performance of each burst detection method
against desirable properties allowed us to determine a ranking for each of the
burst detectors, in which the rank surprise, robust gaussian surprise and ISI rank
threshold methods ranked particularly poorly (see Table 3). Further assessment of
the burst detectors was then achieved by examining the coherence of the bursts
detected by each method with visually annotated bursts in experimental recordings
of mouse retinal ganglion cells (RGCs). This allowed us to analyse the specificity
and sensitivity of the burst detectors as their input parameters were varied. This
analysis reinforced the low levels of adaptability of the RS, RGS and IRT methods at
analysing this type of data. The HSMM method was also seen to have a consistently
high false-positive rate compared to other burst detectors used to analyse this data.
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Fig. 6 Fraction of spikes in bursts found by each burst detector in 100 synthetic trains with (a) no
bursting (D5), (b) no bursting and non-stationary firing rate (D6), (c) short regular bursts (D7) and
(d) bursts with non-stationary burst lengths and durations (D8). Dotted line shows desired result
from an ideal burst detector; methods close to this line are deemed to work well. In each ‘box-and-
whisker’ plot, boxes show the median ± inter-quartile range (IQR), and whiskers extend to median
± 1.5× IQR. Outliers are represented as points. Figure reproduced with permission from Cotterill
et al. (2016)

Based on these assessments, four burst detectors, namely the MI, logISI, PS and
CMA methods, were chosen as the best performing burst detection methods, and
used to analyse bursting activity in novel recordings of networks of human induced
pluripotent stem cell (hiPSC)-derived neuronal networks over several months of
development. This analysis showed a slight increase in the proportion of bursting
activity observed in these networks as they mature, although this increase was far
lower than that which has been observed in developing rodent neuronal networks
(Charlesworth et al. 2015; Chiappalone et al. 2005; Wagenaar et al. 2006).

From this analysis, we concluded that no existing burst detector possesses all
of the desirable properties required for ‘perfect’ identification of bursting periods
in highly variable networks. The CMA and PS methods possessed many of the
desirable properties, but had limitations such as their tendency to overestimate
bursting activity in spike trains containing sparse or no bursting activity, particularly
those with a non-stationary firing rate.
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Table 3 The performance of each method on the desirable properties specified in Table 2

Burst detection method

Desirable property PS MI CMA RS IRT RGS logISI HSMM

D1 Deterministic � � � � � � � ×
D2 Distribution assumption × � � � � × � ×
D3 Number of parameters � × � � � � � ×
D4 Computational time � � � � � � � ×
D5 Non-bursting 4 1 7 5 6 3 1 8

D6 Non-stationary 6 2 7 4 5 3 1 8

D7 Regular bursting 4 1 2 7 6 7 5 3

D8 Non-stat bursts 4 3 5 7 6 8 2 1

D9 Long bursts 2 4 3 8 5 7 6 1

D10 High frequency 5 1 4 7 6 8 2 3

D11 Noisy bursts 5 1 2 7 6 8 4 2

Total (Relative rank) 30 (4) 13 (1) 30 (4) 45 (8) 40 (6) 44 (7) 21 (2) 26 (3)

For binary properties, D1–D4, each method was judged to either possess the property or not, while
for properties D5–D11, the performance of each method was ranked against the other methods (1
= best, 8 = worst) and summed to produce an overall ranking. Table adapted from Cotterill et al.
(2016)

Overall, the MI and logISI methods showed the most promise for achieving
robust burst analysis in a range of contexts. These methods possessed most
properties we deemed desirable for a burst detection method and were generally
able to achieve high coherence with visually detected bursts in experimental MEA
recordings. These methods, however, still had limitations. The MI method requires
the choice of five parameters, the optimal values of which can be challenging to
determine, particularly when analysing recordings from a variety of experimental
conditions (Cotterill et al. 2016). The logISI method had a tendency to underesti-
mate bursting in some spike trains, particularly those with non-standard bursting
activity.

The overall recommendation from this analysis was to choose a burst detector
from the several high-performing methods outlined above based on the number
of freedom the user wishes to control. The MI method is a good first choice for
these purposes, and despite the large number of parameters this method requires,
these parameters are easy to interpret biologically and adjust to achieve the desired
burst detection results for the specific situations in which it is utilised. If appropriate
parameters cannot be found for the MI method, a high-performing alternative is the
logISI method, which can be implemented without choosing any input parameters.
This method is most effective when there is a clear distinction between the size of
within- and between-burst intervals on a spike train. In cases when this distinction
is not apparent, the PS and CMA methods are reasonably effective alternative
burst detection methods; however, post hoc screening for outliers in terms of burst
duration is advisable when using either of these methods.
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One robust approach to burst detection would be to use several burst detectors
to analyse the data of interest and compare the results of each method. If the
burst detectors are largely in agreement, this provides confidence in the nature of
the bursting activity identified in the experimental data. Any major discrepancies
between the results from the methods can also be used to identify areas where one
or more burst detectors may be performing poorly, which can be further investigated
through inspection of the specific spike trains of interest.

3.7 Network-Wide Burst Detection

As well as single-neuron bursts, synchronous bursting of networks of neurons,
termed ‘network bursts’, are a ubiquitous feature of various neuronal networks. In
rat cortical cultures, these network bursts have been observed to arise from around
1 week in vitro, and comprise the dominant form of spontaneous network activity at
this age (Chiappalone et al. 2005; Van Pelt et al. 2004a). Network bursts increase in
frequency and size before reaching a peak at around 3 weeks in vitro, corresponding
to the period in which synaptic density in the network reaches its maximum (Van
Pelt et al. 2004a,b; Chiappalone et al. 2006).

As well as in rat cortical cultures, the presence of network bursting activity has
also been observed in a variety of other brain regions and species in vitro (Van Den
Pol et al. 1996; Ben-Ari 2001; Rhoades and Gross 1994; Harris et al. 2002; Meister
et al. 1991) and in vivo (Chiu and Weliky 2001; Leinekugel et al. 2002; Weliky
and Katz 1999). Recently, synchronous bursting resembling that in rat cortical
cultures has also been observed in networks produced from human embryonic or
induced pluripotent stem cell-derived neurons, generally arising 8–12 weeks after
differentiation and increasing in frequency over development (Heikkilä et al. 2009;
Odawara et al. 2016; Amin et al. 2016).

3.7.1 Existing Network Burst Detection Techniques

A variety of techniques have been developed to detect these network-wide bursts.
Several of these methods identify bursts as increases in the network-wide firing
rate (Mazzoni et al. 2007; Raichman and Ben-Jacob 2008). These periods, however,
do not necessarily consist of single-neuron bursts across multiple electrodes. Other
methods define network bursts only when single-neuron bursts occur simultaneously
across numerous recorded electrodes (Wagenaar et al. 2006; Pasquale et al. 2010).
For example, Bakkum et al. (2013) combine the spikes detected on all channels of
an MEA into a single spike train and employ the ISI histogram between every nth
spike in this network-wide spike train to determine an appropriate threshold for the
maximum ISI within a network burst. Wagenaar et al. (2005), on the other hand,
detect ‘burstlets’ on each electrode individually using an adaptive threshold based



200 E. Cotterill and S. J. Eglen

on the electrode’s average firing rate. A network burst is then defined as any period
in which burstlets on multiple electrodes overlap.

Network-wide information can also be incorporated into single-neuron burst
detection techniques to improve their performance. Martens et al. (2014) showed
that the peaks corresponding to intra- and interburst spikes in an ISI histogram
were better separated when pooled ISIs from multiple electrodes of an MEA
were included, rather than simply those from a single spike train. They also
proposed a pre-processing technique designed to improve the detection of bursts,
particularly on noisy data. This involves creating a return map, which plots the
ISI immediately preceding each spike (ISIpre) against the ISI following the spike
(ISIpost ). Background spikes lie in the region of this graph with both high ISIpre

and ISIpost , and are removed from consideration by the burst detection method.
The performance of various single-channel burst detection techniques was shown to
be significantly improved when applied to data pre-processed in this way, compared
to the original data (Martens et al. 2014).

Additionally, Välkki et al. (2017) adapted the CMA method of Kapucu et al.
(2012) to incorporate information from multiple MEA electrodes. In this multi-
CMA method, instead of individual histograms for each spike train, the ISI
histogram from the combined ISIs from multiple electrodes is used to calculate the
threshold for burst detection in an identical method to the original CMA method.
This threshold is then used to detect bursts on each electrode individually. The
electrodes that are used for combined analysis by this method can be chosen from
a variety of options, including analysing all electrodes in a single MEA simultane-
ously, analysing the spike trains from a single electrode over several experimental
time points, or analysing all electrodes over all time points in the experiment. This
adaptation has been shown to reduce the number of excessively long sparse bursts
identified by the original CMA method, improving its performance at analysing
highly variable spike trains.

3.8 Summary and Future Directions

In this chapter, we have summarised the main techniques of burst detection. Moving
from an informal definition (“bursts are groups of spikes that are close to each
other in time”) to a formal mathematical definition has proved challenging. Our
experience is that when the datasets are relatively clean, there is good agreement
between methods. However, when the data are noisy, not only do different methods
disagree, different human observers will also disagree. Here, we have outlined
several of the methods that we believe work relatively well, but are fallible when
presented with noisy data. Future work in this area might be centred around
developing methods that are more robust to noisy data. Possible steps towards this
may involve generating more realistic synthetic datasets to train and assess burst
detection techniques, or the incorporation of noise-reducing pre-processing steps
prior to burst detection, such as those developed by Martens et al. (2014).
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Outside of neuroscience, the detection of ‘bursty’ events is also a more general
problem in time series analysis. For example, identifying bursts of gamma rays can
aid in the detection of black holes, and the detection of periods of high trading
volume of a stock is of relevance to regulators looking for insider trading (Zhu
and Shasha 2003). Various techniques have been developed for detecting bursting
periods in these and other data types, including sliding window and infinite state
automaton-based models (Zhu and Shasha 2003; Zhang and Shasha 2006; Kleinberg
2002; Boyack et al. 2004; Kumar et al. 2003). Ideas from these burst detectors
developed in other domains may be useful for informing future approaches to burst
detection in a neuroscience context.

The increasing use of high-density MEAs, which contain up to several thousand
electrodes (Maccione et al. 2014; Lonardoni et al. 2015), to record in vitro neuronal
activity as well as the prevalence of multi-well MEAs in applications such as high-
throughput neurotoxicity screening (Valdivia et al. 2014; Nicolas et al. 2014) and
drug safety testing (Gilchrist et al. 2015) also has implications for burst detection.
In particular, the computational complexity of burst detection methods becomes
increasingly relevant in these high-throughput situations, as does the importance
of minimising the manual intervention required to run the burst detectors, such as
through autonomous parameter selection. The development of online burst detection
techniques that can detect bursting activity in real time is also necessary to facilitate
areas such as the study of real-time learning in embodied cultured networks, and
applications involving bidirectional communication between biological tissue and
computer interfaces (Wagenaar et al. 2005; Bakkum et al. 2004). This is another
area in which ideas adopted from burst detectors developed outside of neuroscience
may benefit the field.

In conclusion, years of study of bursting activity in cultured neuronal networks
has led to the development of many promising burst detection methods. However,
a ‘perfect’ method for analysing bursting activity remains elusive. In the future, the
development of improved burst detection methods will be essential to keep up with
the advances in experimental techniques used to record bursting activity, such as
the use of higher density arrays and availability of recordings from human stem
cell-derived networks.

Acknowledgements EC was supported by a Wellcome Trust PhD Studentship and a National
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Appendix: Other Resources

• Open source R code for the burst detection methods outlined in this chapter are
available at https://github.com/ellesec/burstanalysis and archived at https://doi.
org/10.5281/zenodo.1284064.

https://github.com/ellesec/burstanalysis
https://doi.org/10.5281/zenodo.1284064
https://doi.org/10.5281/zenodo.1284064


202 E. Cotterill and S. J. Eglen

References

Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidemann, E., Tishby, N., et al. (1995). Cortical
activity flips among quasi-stationary states. Proceedings of the National Academy of Sciences
of the United States of America, 92, 8616–8620.

Allen, C., & Stevens, C. F. (1994). An evaluation of causes for unreliability of synaptic
transmission. Proceedings of the National Academy of Sciences of the United States of America,
91, 10380–10383.

Amin, H., Maccione, A., Marinaro, F., Zordan, S., Nieus, T., & Berdondini, L. (2016). Electrical
responses and spontaneous activity of human iPS-derived neuronal networks characterized for
3-month culture with 4096-electrode arrays. Frontiers in Neuroscience, 10, 1–15.

Bakkum, D. J., Radivojevic, M., Frey, U., Franke, F., Hierlemann, A., & Takahashi, H. (2013).
Parameters for burst detection. Frontiers in Computational Neuroscience, 7, 193.

Bakkum, D. J., Shkolnik, A. C., Ben-Ary, G., Gamblen, P., DeMarse, B., & Potter, S. M. (2004).
Removing some ‘A’ from AI: Embodied cultured networks. In F. Iida, R. Pfeifer, L. Steels, &
Y. Kuniyoshi (Eds.), Embodied artificial intelligence (pp. 130–146). Berlin: Springer.

Barrionuevo, G., Benoit, O., & Tempier, P. (1981). Evidence for two types of firing pattern during
the sleep-waking cycle in the reticular thalamic nucleus of the cat. Experimental Neurology, 72,
486–501.

Ben-Ari, Y. (2001). Developing networks play a similar melody. Trends in Neurosciences, 24,
353–360.

Borst, J. G. G. (2010). The low synaptic release probability in vivo. Trends in Neurosciences, 33,
259–266.

Boyack, K. W., Mane, K., & Börner, K. (2004). Mapping Medline papers, genes and proteins
related to melanoma research. In Proceedings Eighth IEEE International Conference on
Computer Vision (pp. 965–971).

Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and
feedback control at single synapses. Nature Reviews Neuroscience, 10, 373–383.

Burgos-Robles, A., Vidal-Gonzalez, I., Santini, E., & Quirk, G. J. (2007). Consolidation of fear
extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex.
Neuron, 53, 871–880.

Câteau, H., & Reyes, A. D. (2006). Relation between single neuron and population spiking
statistics and effects on network activity. Physical Review Letters, 96, 058101.

Cattaneo, A., Maffei, L., & Morrone, C. (1981). Two firing patterns in the discharge of complex
cells encoding different attributes of the visual stimulus. Experimental Brain Research, 43,
115–118.

Charlesworth, P., Cotterill, E., Morton, A., Grant, S. G., & Eglen, S. J. (2015). Quantitative
differences in developmental profiles of spontaneous activity in cortical and hippocampal
cultures. Neural Development, 10, 1–10.

Charlesworth, P., Morton, A., Eglen, S. J., Komiyama, N. H., & Grant, S. G. N. (2016).
Canalization of genetic and pharmacological perturbations in developing primary neuronal
activity patterns. Neuropharmacology, 100, 47–55.

Chen, L., Deng, Y., Luo, W., Wang, Z., & Zeng, S. (2009). Detection of bursts in neuronal spike
trains by the mean inter-spike interval method. Progress in Natural Science, 19(2), 229–235.

Chen, Z., & Brown, E. N. (2009). Discrete- and continuous-time probabilistic models and
algorithms for inferring neuronal UP and DOWN states. Neural Computation, 21(7), 1797–
1862.

Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical
networks show spontaneously correlated activity patterns during in vitro development. Brain
Research, 1093, 41–53.

Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & van Pelt, J. (2005). Burst
detection algorithms for the analysis of spatio-temporal patterns in cortical networks of
neurons. Neurocomputing, 65–66, 653–662.



Burst Detection Methods 203

Chiu, C., & Weliky, M. (2001). Spontaneous activity in developing ferret visual cortex in vivo.
Journal of Neuroscience, 21, 8906–8914.

Cocatre-Zilgien, J. H., & Delcomyn, F. (1992). Identification of bursts in spike trains. Journal of
Neuroscience Methods, 41(1), 19–30.

Cotterill, E., Charlesworth, P., Thomas, C. W., Paulsen, O., & Eglen, S. J. (2016). A comparison
of computational methods for detecting bursts in neuronal spike trains and their application to
human stem cell-derived neuronal networks. Journal of Neurophysiology, 116, 306–321.

Eisenman, L. N., Emnett, C. M., Mohan, J., Zorumski, C. F., & Mennerick, S. (2015). Quantifica-
tion of bursting and synchrony in cultured hippocampal neurons. Journal of Neurophysiology,
114, 1059–1071.

Epsztein, J., Brecht, M., & Lee, A. K. (2011). Intracellular determinants of hippocampal CA1 place
and silent cell activity in a novel environment. Neuron, 70, 109–120.

Evarts, E. V. (1964). Temporal patterns of discharge of pyramidal tract neurons during sleep and
waking in the monkey. Journal of Neurophysiology, 27, 152–171.

Froemke, R. C., Tsay, I. A., Raad, M., Long, J. D., & Dan, Y. (2006). Contribution of individual
spikes in burst-induced long-term synaptic modification. Journal of Neurophysiology, 95,
1620–1629.

Gabbiani, F., Metzner, W., Wessel, R., & Koch, C. (1996). From stimulus encoding to feature
extraction in weakly electric fish. Nature, 384, 563–567.

Gilchrist, K. H., Lewis, G. F., Gay, E. A., Sellgren, K. L., & Grego, S. (2015). High-throughput
cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using
microelectrode arrays. Toxicology and Applied Pharmacology, 288, 249–257.

Golbs, A., Nimmervoll, B., Sun, J.-J., Sava, I. E., & Luhmann, H. J. (2011). Control of programmed
cell death by distinct electrical activity patterns. Cerebral Cortex, 21, 1192–1202.

Gourévitch, B., & Eggermont, J. J. (2007). A nonparametric approach for detection of bursts in
spike trains. Journal of Neuroscience Methods, 160(2), 349–358.

Harris, R. E., Coulombe, M. G., & Feller, M. B. (2002). Dissociated retinal neurons form
periodically active synaptic circuits. Journal of Neurophysiology, 88, 188–195.

Heck, N., Golbs, A., Riedemann, T., Sun, J.-J., Lessmann, V., & Luhmann, H. J. (2008) Activity-
dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cerebral Cortex,
18, 1335–1349.

Heikkilä, T. J., Ylä-Outinen, L., Tanskanen, J. M. A., Lappalainen, R. S., Skottman, H., Suuronen,
R., et al. (2009). Human embryonic stem cell-derived neuronal cells form spontaneously active
neuronal networks in vitro. Experimental Neurology, 218(1), 109–116.

Hennig, M. H., Grady, J., van Coppenhagen, J., & Sernagor, E. (2011). Age-dependent homeostatic
plasticity of GABAergic signaling in developing retinal networks. Journal of Neuroscience,
31(34), 12159–12164.

Ichikawa, M., Muramoto, K., Kobayashi, K., Kawahara, M., & Kuroda, Y. (1993). Formation
and maturation of synapses in primary cultures of rat cerebral cortical cells: An electron
microscopic study. Neuroscience Research, 16, 95–103.

Illes, S., Fleischer, W., Siebler, M., Hartung, H.-P., & Dihné, M. (2007). Development and pharma-
cological modulation of embryonic stem cell-derived neuronal network activity. Experimental
Neurology, 207, 171–176.

Jackson, M. E., Homayoun, H., & Moghaddam, B. (2004). NMDA receptor hypofunction produces
concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
Proceedings of the National Academy of Sciences of the United States of America, 101, 8467–
8472.

Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P. C., & Kawana, A. (1996) Spontaneous periodic
synchronized bursting during formation of mature patterns of connections in cortical cultures.
Neuroscience Letters, 206, 109–112.

Kaneoke, Y., & Vitek, J. L. (1996). Burst and oscillation as disparate neuronal properties. Journal
of Neuroscience Methods, 68(2), 211–223.



204 E. Cotterill and S. J. Eglen

Kapucu, F. E., Tanskanen, J. M. A., Mikkonen, J. E., Ylä-Outinen, L., Narkilahti, S., & Hyttinen,
J. A. K. (2012). Burst analysis tool for developing neuronal networks exhibiting highly varying
action potential dynamics. Frontiers in Computational Neuroscience, 6, 38.

Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In Proceedings of 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 91–101).

Ko, D., Wilson, C. J., Lobb, C. J., & Paladini, C. A. (2012). Detection of bursts and pauses in spike
trains. Journal of Neuroscience Methods, 211(1), 145–158.

Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews Neuroscience,
5, 13–23.

Krahe, R., Kreiman, G., Gabbiani, F., Koch, C., & Metzner, W. (2002). Stimulus encoding and
feature extraction by multiple sensory neurons. Journal of Neuroscience, 22, 2374–2382.

Kumar, R., Road, H., Jose, S., Road, H., Jose, S., Drive, R., et al. (2003). On the bursty evolution
of blogspace. In International World Wide Web Conference (pp. 568–576).

Legéndy C. R., & Salcman, M. (1985). Bursts and recurrences of bursts in the spike trains of
spontaneously active striate cortex neurons. Journal of Neurophysiology, 53(4), 926–939.

Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., & Buzsáki, G. (2002).
Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 296, 2049–2052.

Lisman, J. E. (1997). Bursts as a unit of neural information: Making unreliable synapses reliable.
Trends Neuroscience, 20(1), 38–43.

Lobb, C. J. (2014). Abnormal bursting as a pathophysiological mechanism in Parkinson’s disease.
Basal Ganglia, 3, 187–195.

Lonardoni, D., Di Marco, S., Amin, H., Maccione, A., Berdondini, L., & Nieus, T. (2015). High-
density MEA recordings unveil the dynamics of bursting events in cell cultures. Conference
Proceedings: Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, 2015, 3763–3766.

Maccione, A., Hennig, M. H., Gandolfo, M., Muthmann, O., van Coppenhagen, J., Eglen, S. J.,
et al. (2014). Following the ontogeny of retinal waves: Pan-retinal recordings of population
dynamics in the neonatal mouse. The Journal of Physiology, 592(7), 1545–1563.

Maeda, E., Robinson, H. P., & Kawana, A. (1995). The mechanisms of generation and propagation
of synchronized bursting in developing networks of cortical neurons. The Journal of Neuro-
science, 15(10), 6834–6845.

Martens, M. B., Chiappalone, M., Schubert, D., & Tiesinga, P. H. E. (2014). Separating burst
from background spikes in multichannel neuronal recordings using return map analysis.
International Journal of Neural Systems, 24(04), 1450012.

Martinson, J., Webster, H. H., Myasnikov, A. A., & Dykes, R. W. (1997). Recognition of
temporally structured activity in spontaneously discharging neurons in the somatosensory
cortex in waking cats. Brain Research, 750, 129–140.

Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007) On
the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2, e439.

McCarley, R. W., Benoit, O., & Barrionuevo, G. (1983). Lateral geniculate nucleus unitary
discharge in sleep and waking: State- and rate-specific aspects. Journal of Neurophysiology,
50, 798–818.

Meister, M., Wong, R. O. L., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action
potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–943.

Miller, B. R., Walker, A. G., Barton, S. J., & Rebec, G. V. (2011). Dysregulated neuronal activity
patterns implicate corticostriatal circuit dysfunction in multiple rodent models of Huntington’s
disease. Frontiers in Systems Neuroscience, 5, 26.

Nex Technologies. (2014). NeuroExplorer Manual. Nex Technologies.
Ni, Z. G., Bouali-Benazzouz, R., Gao, D. M., Benabid, A. L., & Benazzouz, A. (2001). Time-

course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity
after 6-OHDA-induced dopamine depletion in rats. Brain Research, 899, 142–147.

Nicolas, J., Hendriksen, P. J. M., van Kleef, R. G. D. M., de Groot, A., Bovee, T. F. H., Rietjens,
I. M. C. M., et al. (2014). Detection of marine neurotoxins in food safety testing using a
multielectrode array. Molecular Nutrition and Food Research, 58, 2369–2378.



Burst Detection Methods 205

Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016). Physiological maturation and drug
responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-
term culture. Science Reports, 6, 1–14.

O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the
EEG theta rhythm. Hippocampus, 3, 317–330.

Otto, T., Eichenbaum, H., Wible, C. G., & Wiener, S. I. (1991). Learning-related patterns of
CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal longterm
potentiation. Hippocampus, 1, 181–192.

Pasquale, V., Martinoia, S., & Chiappalone, M. (2010). A self-adapting approach for the detection
of bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience,
29(1–2), 213–229.

Pasquale, V., Massobrio, P., Bologna, L. L., Chiappalone, M., & Martinoia, S. (2008). Self-
organization and neuronal avalanches in networks of dissociated cortical neurons. Neuro-
science, 153, 1354–1369.

Paulsen, O., & Sejnowski, T. J. (2000). Natural patterns of activity and long-term synaptic
plasticity. Current Opinion in Neurobiology, 10, 172–179.

Pike, F. G., Meredith, R. M., Olding, A. W. A., & Paulsen, O. (2004). Postsynaptic bursting is
essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses
in rat hippocampus. The Journal of Physiology, 518, 571–576.

Pimashkin, A., Kastalskiy, I., Simonov, A., Koryagina, E., Mukhina, I., & Kazantsev, V. (2011).
Spiking signatures of spontaneous activity bursts in hippocampal cultures. Frontiers in
Computational Neuroscience, 5, 1–12.

Pluta, S., Naka, A., Veit, J., Telian, G., Yao, L., Hakim, R., et al. (2015). A direct translaminar
inhibitory circuit tunes cortical output. Nature Neuroscience, 18, 1631–1640.

Radons, G., Becker, J. D., Dülfer, B., & Krüger, J. (1994). Analysis, classification, and coding of
multielectrode spike trains with hidden Markov models. Biological Cybernetics, 71, 359–373.

Raichman, N., & Ben-Jacob, E. (2008). Identifying repeating motifs in the activation of synchro-
nized bursts in cultured neuronal networks. Journal of Neuroscience Methods, 170, 96–110.

Rhoades, B. K., & Gross, G. W. (1994). Potassium and calcium channel dependence of bursting in
cultured neuronal networks. Brain Research, 643, 310–318.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology,
80, 1–27.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward.
Science, 275, 1593–1599.

Selinger, J. V., Kulagina, N. V., O’Shaughnessy, T. J., Ma, W., & Pancrazio, J. J. (2007). Methods
for characterizing interspike intervals and identifying bursts in neuronal activity. Journal of
Neuroscience Methods, 162(1–2), 64–71.

Senn, V., Wolff, S. B. E., Herry, C., Grenier, F., Ehrlich, I., Gründemann, J., et al. (2014). Long-
range connectivity defines behavioral specificity of amygdala neurons. Neuron, 81, 428–437.

Sherman, S. M. (2001). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in
Neurosciences, 24, 122–126.

Singh, A., Mewes, K., Gross, R. E., DeLong, M. R., Obeso, J. A., & Papa, S. M. (2016). Human
striatal recordings reveal abnormal discharge of projection neurons in Parkinson’s disease.
Proceedings of the National Academy of Sciences of the United States of America, 113, 9629–
9634.

Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A view from
inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.

Tam, D. (2002). An alternate burst analysis for detecting intra-burst firings based on inter-burst
periods. Neurocomputing, 46, 1155–1159.

Thomas, M. J., Watabe, A. M., Moody, T. D., Makhinson, M., & O’Dell, T. J. (1998). Postsynaptic
complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation.
The Journal of Neuroscience, 18, 7118–7126.



206 E. Cotterill and S. J. Eglen

Thomson, A. M. (1997). Activity-dependent properties of synaptic transmission at two classes of
connections made by rat neocortical pyramidal axons in vitro. The Journal of Physiology, 502,
131–147.

Tobler, P. N., Dickinson, A., & Schultz, W. (2003). Coding of predicted reward omission by
dopamine neurons in a conditioned inhibition paradigm. The Journal of Neuroscience, 23,
10402–10410.

Tokdar, S., Xi, P., Kelly, R. C., & Kass, R. E. (2010). Detection of bursts in extracellular spike trains
using hidden semi-Markov point process models. Journal of Computational Neuroscience,
29(1–2), 203–212.

Turnbull, L., Dian, E., & Gross, G. (2005) The string method of burst identification in neuronal
spike trains. Journal of Neuroscience Methods, 145(1–2), 23–35.

Valdivia, P., Martin, M., LeFew, W. R., Ross, J., Houck, K. A., & Shafer, T. J. (2014). Multi-well
microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology,
44, 204–217.

Välkki, I. A., Lenk, K., Mikkonen, J. E., & Kapucu, F. E. (2017). Network-wide adaptive
burst detection depicts neuronal activity with improved accuracy. Frontiers in Computational
Neuroscience, 11, 40.

Van Den Pol, A. N., Obrietan, K., & Belousov, A. (1996). Glutamate hyperexcitability and seizure-
like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor
blockage in culture. Neuroscience, 74, 653–674.

Van Huizen, F., Romijn, H. J., & Habets, A. M. M. C. (1985). Synaptogenesis in rat cerebral cortex
cultures is affected during chronic blockade of spontaneous bioelectric activity by tetrodotoxin.
Developmental Brain Research, 19, 67–80.

Van Pelt, J., Corner, M. A., Wolters, P. S., Rutten, W. L. C., & Ramakers, G. J. A. (2004). Longterm
stability and developmental changes in spontaneous network burst firing patterns in dissociated
rat cerebral cortex cell cultures on multielectrode arrays. Neuroscience Letters, 361, 86–89.

Van Pelt, J., Vajda, I., Wolters, P. S., Corner, M. A., & Ramakers, G. J. A. (2005). Dynamics and
plasticity in developing neuronal networks in vitro. Progress in Brain Research, 147, 173–188.

Van Pelt, J., Wolters, P. S., Corner, M. A., Rutten, W. L. C., & Ramakers, G. J. A. (2004). Long-
term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
IEEE Transactions on Biomedical Engineering, 51, 2051–2062.

Wagenaar, D., Demarse, T. B., & Potter, S. M. (2005). MeaBench: A toolset for multi-electrode
data acquisition and on-line analysis. In Proceedings of 2nd International IEEE EMBS
Conference on Neural Engineering (pp. 518–521)

Wagenaar, D. A., Pine, J., & Potter, S. M. (2006). An extremely rich repertoire of bursting patterns
during the development of cortical cultures. BMC Neuroscience, 7, 11.

Walker, A. G., Miller, B. R., Fritsch, J. N., Barton, S. J., & Rebec, G. V. (2008). Altered information
processing in the prefrontal cortex of Huntington’s disease mouse models. The Journal of
Neuroscience, 28, 8973–8982.

Weliky, M., & Katz, L. C. (1999). Correlational structure of spontaneous neuronal activity in the
developing lateral geniculate nucleus in vivo. Science, 285, 599–604.

Weyand, T. G., Boudreaux, M., & Guido, W. (2001). Burst and tonic response modes in thalamic
neurons during sleep and wakefulness. Journal of Neurophysiology, 85(3), 1107–1118.

Xu, W., Morishita, W., Buckmaster, P. S., Pang, Z. P., Malenka, R. C., & Südhof, T. C. (2012).
Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous
synaptic transmission. Neuron, 73, 990–1001.

Ylä-Outinen, L., Heikkilä, J., Skottman, H., Suuronen, R., Aänismaa, R., & Narkilahti, S. (2010).
Human cell-based micro electrode array platform for studying neurotoxicity. Frontiers in
Neuroengineering, 3, 1–9.

Zhang, X., & Shasha, D. (2006). Better burst detection. In Proceedings of the 22nd International
Conference on Data Engineering (p. 146).

Zhu, Y., & Shasha, D. (2003). Efficient elastic burst detection in data streams. In Proceedings
of Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 336–345).


	Burst Detection Methods
	Abbreviations
	1 Introduction
	2 Physiological Significance of Neuronal Bursting
	3 Previous Approaches to Burst Detection
	3.1 Fixed Threshold-Based Methods
	3.2 Adaptive Threshold-Based Methods
	3.3 Surprise-Based Methods
	3.4 Other Methods
	3.5 Burst Detection Methods
	3.6 Evaluation of Burst Detection Techniques
	3.7 Network-Wide Burst Detection
	3.7.1 Existing Network Burst Detection Techniques

	3.8 Summary and Future Directions

	Appendix: Other Resources
	References


