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Abstract High-density microelectrode arrays (HD-MEAs) are increasingly being
used for the observation and manipulation of neurons and networks in vitro. Large-
scale electrode arrays allow for long-term extracellular recording of the electrical
activity from thousands of neurons simultaneously. Beyond population activity, it
has also become possible to extract information of single neurons at subcellular
level (e.g., the propagation of action potentials along axons). In effect, HD-MEAs
have become an electrical imaging platform for label-free extraction of the structure
and activation of cells in cultures and tissues. The quality of HD-MEA data depends
on the resolution of the electrode array and the signal-to-noise ratio. In this chapter,
we begin with an introduction to HD-MEA signals. We provide an overview of
the developments on complementary metal-oxide-semiconductor or CMOS-based
HD-MEA technology. We also discuss the factors affecting the performance of HD-
MEAs and the trending application requirements that drive the efforts for future
devices. We conclude with an outlook on the potential of HD-MEAs for advancing
basic neuroscience and drug discovery.

Keywords Action potential · Electrical imaging · Electrical stimulation ·
Extracellular recording · High-density microelectrode arrays

1 Introduction

The next frontier in neuroscience is to map the whole brain and to understand
how the networks of neurons within the brain function (Alivisatos et al. 2013;
Marblestone et al. 2013). This requires developing techniques for simultaneous
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recording of neuronal activity at multiple spatial and temporal scales and for
manipulating the activity of neurons of interest. At the in vitro level, realizing a
high-resolution recording method enables to study neuronal mechanisms and to
characterize brain disease models that can be used for drug discovery. Comple-
mentary metal-oxide-semiconductor or CMOS-based high-density microelectrode
arrays (HD-MEAs) offer a promising platform for high-resolution acquisition
of neuronal data. Thousands of neurons can be simultaneously recorded and/or
electrically stimulated over time scales of microseconds to months. Owing to the
high-density feature, a single neuron can be recorded by hundreds of electrodes.
This facilitates assigning recorded spikes to their source neurons, termed spike-
sorting, and allows for the subcellular mapping of a neuron’s axonal arbor.

Electrical recording of neuronal activity has been popularly used for analyzing
single neurons and neuronal networks (Contreras 2004; Llinas 1988). Electrical
signals produced by neurons can be detected at a distance from the source. Several
recording tools apply to different spatial scales. At the mesoscale, where local
neuronal populations can be analyzed, a popular method is extracellular recording
using metal electrodes. An electrode placed inside a brain slice in vitro or inserted in
the brain in vivo detects electrical signals produced by the surrounding cells. A wide
range of neural phenomena can be observed, from the spiking activity of individual
neurons (extracellular action potentials or EAPs; bandwidth: 300–3000 Hz) to
the slower network activity of small populations (local field potentials or LFPs;
bandwidth: 1–300 Hz), shown in Fig. 1. Additionally, the same electrode can be
used to deliver electrical stimulation to a local area in the brain. While this method
for brain recording and stimulation is relatively easy, the challenge lies in making
sense of the recorded data. With hundreds of possible signal sources surrounding
an electrode, the specificity and selectivity of such technique is poor. Thus,
extracellular recording has been widely used for analyzing population activity. In
contrast, intracellular recording by patch clamp has been the gold standard for
analyzing single neurons and synaptic connectivity of a few cells. However, patch

Fig. 1 Extracellular and
intracellular recording. Left:
Illustration of cells across
cortical layers modified with
permission from Buzsáki et
al. (2012). Right: Signals of
simultaneous extracellular
recording and intracellular
whole-cell patch-clamp
recording modified with
permission from Henze et al.
(2000)
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clamp necessitates intricate skill to perform. The viability of patched neurons lasts
only up to a few hours. Moreover, current implementations of the experimental setup
are bulky. All these limit the capability of the patch-clamp technique to scale for
studying networks of neurons (Wood et al. 2004).

To achieve high-resolution activity mapping of neuronal networks, multiple
electrical sensors tightly spaced in an array can be utilized. Microelectrode arrays
(MEAs, also termed multielectrode arrays) allow for simultaneous long-term
recording of LFPs and EAPs from a population of neurons at submillisecond time
scale. In order to increase spatial resolution, that is, to place thousands of electrodes
per square millimeter, the area taken up by wiring between electrodes-to-readout
circuitry has to be reduced. This has been made possible by using industrial CMOS
technology to create high-density MEAs (HD-MEAs). As an added benefit, readout
circuitry, such as amplifiers and analog-to-digital converters, can be included on the
same substrate as the electrodes in order to improve signal quality. The design of
the on-chip signal conditioning circuitry should consider the electrode impedance
and the possible sources of noise to ensure high quality signals. HD-MEAs with
good signal-to-noise ratio (SNR) can be used to map single neuronal activity at
subcellular resolution and to observe network activity at the same time (Ballini et
al. 2014; Dragas et al. 2017; Frey et al. 2010), illustrated in Fig. 2.

1.1 Terminology

Over the years, a wide repertoire of terms has been used to refer to and distinguish
between all the different forms of MEAs, for example emphasizing the type of
transducers used (multitransistor array, microelectrode array, multielectrode array,
micronail array, capacitive-coupled array, 3D MEA), the type of substrate (active
array, passive array, silicon array, CMOS array), the shape of the device (needle-type
probe, polytrode, neuro dish), the channel count (multichannel array), the electrode
density (HD-MEA) or the application (implantable array, in vivo MEA, in vitro
MEA), and more. We would therefore like to briefly explain the terminology used
in the context of this chapter.

We generalize the term MEA to cover both substrate-integrated planar MEAs
and implantable neural probes. We also include capacitive-coupled devices, such
as multitransistor arrays in the definition of MEAs. We then distinguish between
implantable, in vivo MEAs, such as polytrodes and neural probes, and in vitro
MEAs that generally include a cell culture dish or other types of medium chamber.
We use the term “array” to refer to the actual area that encompasses the transducer
elements only, and we use device or MEA to refer to the entire device. With system,
we refer to the MEA and all required components to operate it, such as the data
acquisition hardware and software. We use the terms “active” and “passive” to
distinguish between devices with active circuit elements, such as transistors, and
devices without such elements.
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Fig. 2 Obtaining network-wide and single-neuron activity maps using CMOS-based HD-MEAs.
(A-D) Networks. (a) Average EAP firing rate as measured by each electrode (26,400 electrodes
in total) shown as pixels colored with a logarithmic gray-scale between 1 and 2 kHz. Red dots
correspond to the electrodes selected for the raster plot in (d). (b) Representation of all 2000
individual neurons identified through spike-sorting the signals. A circle represents each detectable
cell; the edges indicate where the amplitude of the measured signals exceeds −4.5 standard
deviations of the electrode noise. The colors correspond to the amplitude of the most negative peak
detected by the electrodes within the circle. (c) Fluorescence image of transfected cells (around
5% of all cells in the culture). (d) Raster plot of 100 s of activity for 1024 electrodes recorded
simultaneously. Red marker shows the time period in close up view (bursting activity) on the right.
Histogram at the upper right shows the number of spikes per time bin of the burst close up. (e–h)
Single neuron electrical footprint. (e) All electrodes that captured activity attributed to a single
neuron are colored according to the time of arrival of the AP at the electrode locations. (f) The
same electrodes in (e) are colored according to the amplitude of the most negative peak detected.
(g–h) Spike-triggered averages (30–50 averages) of the EAP electrical footprint from the two areas
of the array as indicated by black boxes in (f). All figures modified with permission from Müller
et al. (2015)
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2 CMOS-Based HD-MEA Technology

Since the single extracellular microelectrodes used in the middle of the last century
(Gesteland et al. 1959; Weale 1951), development quickly proceeded to MEAs with
multiple transducers for the purpose of increasing the number of neurons observed
(Csicsvari et al. 2003; Gross et al. 1977; Pine 1980; Thomas et al. 1972) and to
increase reliability of spike sorting (Gray et al. 1918; Harris et al. 2000). Passive
transducer devices based on electrodes embedded in glass or silicon substrates
with fixed wiring to amplifiers for in vitro and also in vivo applications became
commercially available in the late 90s and early years of this century.

A wave of fabrication and semiconductor technological advances paved the
way towards the miniaturization of modern biosensor devices. Microelectrode
arrays have thus been improved by integrating active electronic components in
the same substrate, together with the electrodes. A technology for constructing
integrated circuits is called complementary metal-oxide-semiconductor (CMOS),
hence the term CMOS-based MEAs. Already early on, silicon-based biosensors for
interfacing cells with microelectronics were developed (Bergveld 1970; Parce et al.
1989). Active devices, employing FETs were fabricated and 2D arrays demonstrated
(Besl and Fromherz 2002). Devices using CMOS technology were fabricated
in academic facilities (DeBusschere and Kovacs 2001) and industrial foundries,
usually in conjunction with additional processing steps for biocompatibility reasons
(Berdondini et al. 2002; Eversmann et al. 2003; Franks et al. 2003). Later on, similar
to CMOS cameras, MEAs have been developed with thousands of electrodes,
producing high-density microelectrode arrays (HD-MEAs) while also improving
the signal quality of recordings (Hierlemann et al. 2011; Obien et al. 2015). Tapping
into the large and established CMOS production industry provides an economy of
scale for HD-MEA production.

The key advantage of integrating active electronic components on the same
substrate as the actual electrodes is the possibility of a much higher electrode
number and density. Due to the possibility of using active switches to time multiplex
signals, integrated circuits make it feasible to transfer data from such high channel
counts off chip and to overcome the connectivity limitation of passive devices.
Additionally, such cointegration allows for amplifying the signals with optimal
quality, due to minimal parasitic capacitances and resistances (Hierlemann et al.
2011). The monolithic cointegration also allows for including additional func-
tionality, for example, on-chip spike detection, closed-loop capabilities, electrical
stimulation, electronic chip identification, device calibration, and other types of
sensing modalities, such as temperature, pH, and optical or neurotransmitter sensing
(Baumann et al. 1999; Dragas et al. 2017; Johnson et al. 2013b; Park et al. 2017;
Tokuda et al. 2006).
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2.1 MEA Types

MEA architectures have evolved throughout the years. In general, the electrode-
to-readout routing scheme can be divided into two types: fixed wiring, that is,
each electrode is directly wired to outside of the array, connecting to the signal
conditioning circuit; and multiplexed array, that is, routing from electrodes traverses
switches before reaching the signal conditioning circuit. We further classify the
MEA device types, shown in Fig. 3.

Passive Conventional MEAs have fixed wiring and are passive (i.e., no active
circuit elements, such as amplifiers). Each electrode connects directly to a signal pad
outside the array through a wire. The pads are then connected to external equipment
for signal conditioning. Passive MEAs are typically easier to fabricate and many
different substrates and electrode materials can be used. The user has direct access
to all electrodes simultaneously, however, wiring and electrode geometry limit the
total number of electrodes that can fit in a given area. Examples of passive MEAs

Fig. 3 MEA architectures. This table summarizes the different architectures used for MEAs. (a)
Passive: Fixed wiring with electrodes directly connected to signal pads and no active circuitry. (b)
Fixed wiring with electrodes directly connected to on-chip active circuitry for signal conditioning.
(c) Switch-matrix (SM): Multiplexed array with flexible addressing achieved by adding more
routing resources within the array. (d) Active pixel sensor (APS): Multiplexed array with all
electrodes sampled at fast speeds for a full-frame readout. Modified with permission from (Obien
et al. 2015)
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were developed and used by Alpha MED n.d., Multi Channel Systems GmbH n.d.,
Greschner et al. (2014), Gross et al. (1977), Litke et al. (2004), Nisch et al. (1994),
Oka et al. (1999), Pine (1980), Regehr et al. (1989), Segev et al. (2004), and Thomas
et al. (1972).

Fixed Wiring with On-Chip Circuitry These types of MEAs have electrodes
directly wired to on-chip active circuit elements that are used for signal condi-
tioning, such as amplification and filtering. One variation employs multiplexers to
allow readout of more electrodes despite a limited number of signal output pads.
Multiplexing can be done only if the amplifiers and filters are before the multiplexer.
Although this architecture allows for increased electrode count, the electrode density
cannot be maximized (i.e., direct wiring of each electrode to signal conditioning
circuitry limits how close electrodes can be packed together). Selected fixed wiring
with on-chip circuitry MEA references are (DeBusschere and Kovacs 2001; Greve
et al. 2007; Offenhäusser et al. 1997).

For in vivo MEAs, the connectivity limitation is even more severe, as connections
cannot be wired out on all four sides of the array, but only on one of the narrow
sides. Examples of in vivo passive and fixed wiring devices are (Berényi et al. 2014;
Blanche et al. 2005; Csicsvari et al. 2003; Du et al. 2011; Fujisawa et al. 2008; Gray
et al. 1918; Herwik et al. 2009; Jones et al. 1992; Kipke et al. 2003; Montgomery et
al. 2008; O’Keefe and Recce 1993; Olsson and Wise 2005; Wise et al. 1970)

Switch-Matrix (SM) The switch-matrix (SM) concept uses transistors to imple-
ment switches within the array to route signals from electrodes to readout circuitry
placed outside the actual electrode array.

In the SM concept, these routing means is operated in static mode, meaning that
some electrodes are selected by opening or closing the switches and a recording is
then started without changing the electrode selection. Typically, not all electrodes
detect activity during an MEA experiment, thus choosing a subset of “interesting”
electrodes is possible. A common protocol is to first scan all the electrodes in
successive recordings to determine which electrodes to later continuously record
during an experiment. The advantage of this concept is that large, low-noise
amplifiers can be implemented outside the actual electrode array, allowing to
optimize amplifiers for best possible SNR. SM MEAs have been implemented
and various degree of flexibility that the routing means provide. Very simply row,
column-based selectability has been implemented (Huys et al. 2012). Increased
degree of freedom in selecting subsets of electrodes was achieved for the following
in vivo probes (Lopez et al. 2014, 2016, 2018; Seidl et al. 2011). The availability of
a large set of wires, switches, and local memory allows for even more complex
routing paths that connect a subset of electrodes to the readout and stimulation
channels in a flexible manner. Frey et al. (2010) use 1.2 memory cells on average
per electrode, allowing already fairly complex routing. Ballini et al. (2014) use
2.2 memory cells per electrode, drastically increasing the possibilities in selecting
subsets. Viswam et al. (2016) increased the number of bits per electrode to more
then 3, virtually allowing arbitrarily subset selections. Switch-matrix MEAs were
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developed by Ballini et al. (2014), Dragas et al. (2017), Frey et al. (2010), Huys
et al. (2012), Lopez et al. (2014, 2016, 2018), Seidl et al. (2011) and Yuan et al.
(2018).

Full-Frame Readout (Active Pixel Sensor or APS) Similar to image sensors used
in cameras, all electrodes in active pixel sensor (APS) MEAs can be sampled at
fast speeds in full-frame readout. Typically, rectangular subarrays can be chosen as
regions of interest and sampled at faster rates than full-frame readout. For full-frame
readout, the front-end amplification and filtering have to be before the multiplexing,
meaning that the front-end amplifier has to be located within the pixel itself. This is
because the electrode exhibits high impedance and therefore, without an amplifier,
cannot drive multiplexed readout lines at sufficient speed. The small pixel area
(i.e., available area near each electrode) serves as a limitation to designing very
low noise circuitry for APS MEAs, since small-sized amplifiers inherently generate
larger noise levels. Thus, while all electrodes can be recorded at the same time,
only relatively large signals are detectable from noise. Examples of APS MEAs
are Angotzi (2018), Aziz et al. (2009), Berdondini et al. (2009), Bertotti et al.
(2014), Eversmann et al. (2003, 2011), Heer et al. (2006), Johnson et al. (2013a,
b), Maccione et al. (2013), Ogi (2017), Park et al. (2017), Shahrokhi et al. (2009),
Tsai et al. (2017), and Yuan et al. (2018).

2.2 Developments in MEA Technology

The evolution of MEAs with respect to overall sensing area and electrode densities is
illustrated in Fig. 4a. A variety of historical and current MEA devices are included.
The electrode count is shown with solid lines. The devices are categorized into
“passive” (including both passive and fixed wiring MEAs) and “active” (multiplexed
arrays such as SM and APS HD-MEAs). Recent HD-MEAs (SM and APS) aim to
increase the total number of electrodes and the spatial resolution to allow for ever
more demanding applications to be executed. One parameter used to characterize
the density of MEAs is single-cell separability. Here, we used a threshold of 1000
electrodes per mm2 as the minimum requirement to effectively assign spikes to a
neuron.

The design of on-chip signal conditioning is crucial to achieve high quality
signals. However, due to area availability and power consumption limitations, there
remains a compromise between the quality of recorded signals and the number of
parallel electrodes readout. SM HD-MEAs prioritize signal quality, while APS HD-
MEAs target a high number of parallel readout channels, see Fig. 4b. We consider
10 μVrms as the minimum noise requirement for effective spike detectability.
Figure 4b illustrates the tradeoff between the number of parallel (or quasi parallel)
readout channels and the total input referred noise of the amplification chain. It
shows the fundamental fact that a low-noise front-end amplifier requires both area
and power. Limiting either will inherently increase the noise levels. The power
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Fig. 4 Device comparison. (a) HD-MEA in vivo and in vitro implementations are shown
according to the sensing area size and electrode density. For devices with a regular sensor pitch,
such as most in vitro MEA devices, the total area is calculated as number of electrodes times
the pixel area. For all devices, the number of electrode times the inverse of the electrode density
matches the total area. The light gray lines illustrate the number of electrodes. (b) CMOS-based
MEAs are compared with respect to parallel recording channel count and noise level. The noise
values shown are approximated root-mean-square values stated in the respective citations. Note
that the conditions under which these measurements were taken usually differ significantly (noise
bandwidth, inclusion or exclusion of electrode noise, inclusion of ADC quantization noise, etc.).
This graph only serves as a rough comparison, indicating noise values under both known and
unknown conditions. The waveforms to illustrate the noise levels are simulated and have a spectrum
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budget for the entire device, including all circuitry within the array and surrounding
it, is limited by the amount of produced heat that one can tolerate. For the area
constraints, one has to separately consider the area within the array and surrounding
it. Within the array, the electrode density dictates the available area per pixel.
Outside the array, the area is limited mostly by the fabrication cost.

2.2.1 Electrodes and Transducers

Choosing the materials for the insulator, conductor, microelectrode, and substrate
is crucial, in particular with respect to biocompatibility. Various techniques for
fabricating microelectrodes have been reviewed in Huang et al. (2009), Li et al.
(2003), and Park and Shuler (2003). All materials that will be in contact with or
near cells and tissue need to be tested for toxicity in prolonged periods of time
(Hassler et al. 2011). It is also important to consider the biological experiments
for which the microelectrodes will be used, whether in vivo or in vitro, chronic or
acute recording. Moreover, deciding the type of MEA to use is highly dependent
on the type of recorded signals needed, whether EAPs and/or LFPs or intracellular
action potentials (IAPs), single cell resolution or not. If the MEA is to be used for
stimulation, the charge capacity of electrodes is an important aspect. The electrode
needs to be able to mediate reactions at the electrode–electrolyte interface to allow
electron flow in the electrode to transition into ion flow in the electrolyte towards
stimulating nearby cells (Cogan 2008).

Generally, an important goal of electrode fabrication is to achieve low
impedance. Low electrode impedance results in higher signal-to-noise ratio (SNR),
with a typical target SNR of 5:1 or higher (Cogan 2008). Oppositely, high
electrode impedance combined with a large parasitic capacitance and amplifier
input capacitance (see Sect. 2.3) will negatively affect recordings, especially at
higher frequencies (Cogan 2008; Robinson 1968). In addition, uniformity of the
electrode impedance across an array of electrodes may be important to obtain
consistent data.

Typically, electrodes are made with metallic conductors such as gold (Au),
titanium nitride (TiN), platinum (Pt), stainless steel, aluminum (Al), and alloys like
iridium oxide (IrOx). Since the electrodes used in MEAs are on the micrometer
scale, it is a challenge to achieve low electrode impedance with plain conductors
only. Increasing the effective surface area of electrodes can be achieved by
modification with porous conductive materials such as Pt-black, Au nanostruc-
tures, carbon nanotubes (CNTs), TiN, and conductive polymers like poly(3,4-

�

Fig. 4 (continued) typical for MEA recordings. The simulated spikes in the boxes (left) are
typical spikes for acute brain slice measurements recorded with microelectrodes. The recorded
amplitudes may vary significantly depending on preparation and sensor characteristics. Modified
with permission from Obien et al. (2015)
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ethylenedioxythiophene) (PEDOT). Emerging materials aside from PEDOT and
CNTs include doped diamond and graphene. By modifying the surface, the elec-
trode impedance can be decreased drastically and neuronal recording can be
improved (Cui et al. 2001; Franks et al. 2005; Keefer et al. 2008; Ludwig et al.
2006; Viswam et al. 2014). See Kim et al. (2014) and Nam and Wheeler (2011) for
a review of electrode materials and surface modification.

Nonmetallic electrodes have been mostly used in conjunction with field-effect
transistor (FET)-based transducers (Bergveld 1970; Fromherz et al. 1991). An
OGFET can, for example, be obtained if the fabrication process of an FET is stopped
before depositing the gate material (Jenkner et al. 2004). Easier to fabricate is the
so-called extended-gate FET (EGFET), in which the FET is fabricated without
modification from a standard CMOS process. Metal and via interconnections are
used to extend the gate to the surface of the chip, where an insulated electrode
implements the “extended gate.” Such insulation ensures that no faradaic currents
occur. However, as Hierlemann et al. pointed out, devices with metal electrodes also
usually connect to an FET directly (Imfeld et al. 2008) or through a filter capacitor
(Heer et al. 2006), resulting in a largely capacitive recording situation (Hierlemann
et al. 2011). OGFET, EGFET, and devices that directly connect the electrode to the
first FET usually need to include some measures to properly bias the gate or some
calibration mechanism, which may cause transient currents to flow at the electrode.
Whereas for devices with a capacitively coupled front-end stage, controlling the
electrode input node is generally not needed. Devices with an FET-based transducer,
but using a metalized gate exposed to the liquid, have also been developed (Jobling
et al. 1981).

Recently, ultrasmall electrodes are being developed to record intracellular activ-
ity, including subthreshold signals, as reviewed in (Spira and Hai 2013). This
is achieved by 3D structured electrodes such as silicon nanowires (Robinson et
al. 2013), plasmonic antennas (Dipalo et al. 2018), and Au mushrooms (Hai et
al. 2009) penetrating the cell membrane. Electroporation was shown to facilitate
measurement of intracellular activity (Hai and Spira 2012; Koester et al. 2010).

2.2.2 MEA Recording Hardware

Apart from the electrode array, CMOS devices also require the design of neuronal
amplifiers and some sort of data transmitter, either of the amplified analog signals
or, more typically, of the already digitized data. Generally, a neural amplifier needs
to have high input impedance, which is significantly higher than the electrode
impedance, to ensure signal integrity. The amplifier should be of low power to
prevent substrate heating that could damage cells or tissue. For in vitro MEA
devices, a variety of target applications have to be considered. Therefore, gain and
dynamic range requirements can be quite demanding and should be adjustable, such
as to cover applications with maximal amplitudes of a few hundred microvolts in
acute slice preparations and, on the other hand, up to 10 mV in measurements
from cardiomyocytes. The same also holds true for the flexibility in the recording
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bandwidth. Some applications may require either lower frequency signals or spikes
in the EAP band only, while some experiments target both bands with different gain
requirements at the same time. The circuits need to implement some sort of high-
pass filter to block the large 1/f noise of the electrode–liquid interface typically
observed.

MEA systems can also include digital-to-analog conversion (DAC) and stimu-
lation circuitry (discussed in the next subsection). MEA systems need to include
an interface to transmit the data and receive commands for controlling the system’s
operation. The requirements are different for implantable devices, where usually the
target application is much more defined, but also the power, reliability, and safety
requirements are more stringent. These systems often implement spike detection
or classification and wireless transmission in the system, either as a monolithic
implementation or hybrid approach using multiple ICs. They may also be powered
wirelessly. On the other hand, in vitro MEA systems do not require wireless power
or data transmission, as they can generally be directly wired to the data-receiving
device. In this case, often common interface standards are employed, such as USB
(Multi Channel Systems GmbH), Ethernet (Frey et al. 2010), National Instrument’s
DAQ card (Alpha MED n.d.), CameraLink (Imfeld et al. 2008), or others. Most of
these systems support online storage of the full raw data to hard disks, sometimes
including some form of lossless data compression (Sedivy et al. 2007).

2.2.3 Electrical Stimulation

MEAs allow observation of neural activity, but can also influence and control
activity. Metal electrodes can deliver electrical stimuli directly. CMOS fabrication
allows including electrical stimulation circuitry directly on-chip, in turn allowing
a high degree of flexibility in generating spatiotemporal patterns of stimulation
owing to dense and flexible wiring, higher spatial resolution for stimulation owing
to densely packed electrodes and room for on-chip circuitry to blank or suppress
stimulation artifacts.

Electrical stimulation has been typically applied as a “trigger” for the so-called
stimulus-triggered averaging (Cheney and Fetz 1985). By delivering electrical
pulses through the microelectrode, action potentials (APs) can be triggered from
nearby neurons, with an effective stimulation range depending on the neuron’s
distance from the stimulation site and the amplitude of the pulse. With HD-MEAs,
stimulus-triggered averaging reveals the electrical activity footprint of a single
neuron, that is, signals detected at the electrode sites corresponding to the EAPs
from a single neuron, where negative spikes correspond to the AP initiated at the
axonal initial segment and the positive spikes represent return current, including
the propagation of APs in axons (Bakkum et al. 2013). The stimulation amplitude
has to be sufficient to consistently evoke an AP with small temporal jitter (e.g., a
jitter of 160 μs) (Bakkum et al. 2008). Figure 5a shows how small axonal signals,
typically undetectable from noise, become observable by increasing the number of
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Fig. 5 Stimulation capability of HD-MEAs. (a, b) Stimulus-triggered averaging improves detec-
tion of axonal signals. (a) Evoked spikes detected at three chosen sites (columns) along the same
axon. Each row shows individual traces obtained by increasing the number of averaged trials,
from 1 to 60. Scale bars, 1 ms horizontal, 10 μV vertical. (b) The number of averaged trials
necessary to detect a spike with a given height (0.5–3 times the standard deviation of the noise,
σ) with respect to the detection threshold. (c, d) Electrical stimulation affects recorded signals of
electrodes <100 μm away from the stimulation site. (c) Left: A raw trace recorded at an electrode
neighboring a stimulation electrode (18 μm away) saturated for about 4 ms (flat line). Right: A
raw trace recorded at an electrode located 1.46 mm away from a stimulation electrode did not
saturate. (d) The duration of a saturated signal occurring after stimuli decreases with increasing
distance from the stimulation electrode (mean ± s.e.m.; N = 18 stimulation electrodes from five
HD-MEAs). Stimuli consisted of biphasic voltage pulses between 100 and 200 ms duration per
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trials averaged. The number of trials that must be averaged depends on the spike
amplitude as shown in Fig. 5b.

One issue of electrical stimulation is the occurrence of artifacts in the recording
channels. Stimulation pulses are typically three to four orders of magnitude larger
than the recorded EAPs; the recording channels can pick up the artifacts through
the wiring in the circuitry or through the media to neighboring electrodes. If the
artifact amplitude is large, the amplification circuits may saturate and this prevents
recording neuronal activity until the offset settles back to normal. Figure 5c provides
an example of signal saturation due to stimulation in a SM HD-MEA (Frey et al.
2010). A recording electrode near the stimulation electrode (18 μm away) saturated
for around 5 ms; another electrode located far from the stimulation site (1.5 mm
away) did not saturate. Figure 5d presents the relationship between the distance
from stimulation to recording electrode and the duration of saturation for a 11,011-
electrode MEA (Frey et al. 2010), without employing any artifact suppression
measures. As long as the amplifiers do not fully saturate, artifacts can be suppressed
via software by subtracting the estimated artifact (based on templates, filters or
local curve fitting) from the data (Hashimoto et al. 2002; Wagenaar and Potter
2002). To also allow recording from electrodes on which saturation would occur,
counter measures in hardware have to be employed. One solution is to use a “reset”
switch that can bring back the saturated amplifier into normal operation quickly, by
resetting the high-pass filter of the front-end amplifier (Frey et al. 2010; Heer et al.
2006).

Local delivery of stimulation pulses can be achieved by HD-MEAs. Figure 5e,
f show stimuli activated neuronal responses with high spatiotemporal precision. In
a study to track axonal APs (Bakkum et al. 2013; Radivojevic et al. 2016) several
ten thousands of stimuli used for stimulus-triggered averaging did not damage the
electrodes or the cells. Voltage-mode stimulation was used, although the stimulation
hardware supported both current and voltage modes (Livi et al. 2010).

Combined recording and stimulation capabilities allow for performing closed-
loop experiments, whereby recorded signals are programmed to control the applica-
tion of electrical stimuli. In such experiments, spike detection is performed online,
typically through a dedicated hardware, for example, a desktop with a real-time
operating system or a field-programmable gate array (FPGA) (Hafizovic et al. 2007;
Müller et al. 2013).

�

Fig. 5 (continued) phase and between ±400 and 800 mV amplitude. (e, f) Electrical stimulation
can be delivered locally to axons and evoke action potentials. (e) Locations of stimulation
electrodes that directly evoked (black boxes) or did not evoke (empty or filled gray boxes) APs
detected at a soma located ∼890 μm away. The line arrow indicates the orthodromic propagation
direction. Scale bar, 20 μm. (f) Voltage traces of somatic APs elicited by biphasic voltage stimuli.
Traces in response to eight stimuli are overlaid for each of three stimulation magnitudes (indicated
at the top), plotted for all effective (black) and four ineffective stimulation sites (gray at the bottom).
Stimulation electrode locations are represented as numbered boxes in (e). Scale bar, 200 μV. All
panels and description adapted with permission from Bakkum et al. (2013)
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2.3 Performance of HD-MEAs

Here we discuss the main factors affecting the recording performance of MEAs:
(a) neuron–electrode interface; (b) noise; (c) electrode size and density; and (d)
recording hardware. Figure 6 illustrates the components of the MEA signal flow
(Fejtl et al. 2006; Stett et al. 2003).

2.3.1 Effect of the Neuron–Electrode Interface

The early MEA neuron–electrode interface model assumed a tight seal between
the neuron and the electrode (Weis and Fromherz 1997). However, extracellular
microelectrodes can record EAPs and LFPs at a distance from active neurons,
as observed in acute tissue and in vivo experiments. Likewise, for 2D neuronal
networks grown on a MEA, EAPs can be detected from electrodes distant from the
neuronal source. Thus, the neuron–electrode interface model can be separated into
two parts (see Fig. 7): (1) the fluid side, which considers the effect of the volume
conductor to the extracellular potential at the electrodes and (2) the metal side,
which models the transformation of the extracellular potential through the electrode
to the input of the front-end amplifier.

The distance and orientation of neurons with respect to measuring electrodes
affect the amplitude and shape of the detected signals. The characteristics of the
extracellular space, such as conductivity, anisotropy, and inhomogeneity, influence
the spread of neuronal signals towards the electrodes. These effects can be estimated
using the volume conductor theory illustrated in Fig. 7a. As a first order approxima-
tion, the MEA surface can be considered as an infinite insulating plane, while the
tissue and/or fluid in the MEA dish can be assumed to be infinite, homogeneous,
and isotropic. A neuron’s membrane current can be decomposed into several point
current sources. The method of images can then be applied to Coulomb’s law
to solve the potential Ve at any given electrode e in a volume conductor with
conductivity σ (Ness et al. 2015; Obien et al. 2015):

Fig. 6 MEA recording and stimulation system diagram. A neuron’s signal, typically an action
potential, is transduced through different components of the signal path into a digitally recorded
trace. Similarly, a digital pattern generated from a computer or the MEA hardware applies current
or voltage at the electrode during stimulation. Adapted with permission from Obien et al. (2015)



98 M. E. J. Obien and U. Frey

Fig. 7 MEA neuron–electrode interface divided into (a) fluid side and (b) metal side. (a) The
potential at the electrode sites can be solved using the volume conductor theory. The MEA surface
can be assumed as an insulator such that the method of images applies and can be used to solve the
potential at any point on the MEA surface. The neuron–electrode distance and neuron orientation
influences the signal amplitude and shape detected at the electrodes. High spatial resolution allows
for recording EAPs at several locations of a single neuron, with large negative spikes at the
perisomatic area and positive spikes at the dendritic area (i.e., return current). (b) The voltage
measured at the electrode is transformed by the electrical parameters of the electrode–electrolyte
interface, represented by Ze’ as the effective electrode impedance and Za’ as the effective input
impedance. This model is derived from Hierlemann et al. (2011), Nelson et al. (2008), and
Robinson (1968). Rspread—spreading resistance; Re and Ce—resistance and capacitance of the
electric double layer at the electrode–electrolyte interface; Rm—resistance of the metallic part of
the electrode; Rs and Cs—shunt resistance and capacitance. Adapted with permission from Obien
et al. (2015)

Ve = 1

2πσ

∑ In

rn
.

In represents the nth point current source and rn represents the distance between the
point source and the recording electrode e, with n = 1 . . . N, where N is the number
of individual point sources. For electrodes larger than an ideal point electrode, Ve

can be solved at multiple locations of the electrode’s surface area and then averaged.
This equation can be extended to include the anisotropy and inhomogeneity of brain
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tissue, the saline layer above the tissue, and to use line sources instead of point
sources to represent neuronal membrane currents (Ness et al. 2015).

2.3.2 Noise and SNR

One crucial aspect of the MEA signal flow is how noise is fed into the amplification
chain and how it affects the signal-to-noise ratio (SNR) of the recorded data. SNR is
the key specification for the amplifier design, regardless of the actual amplification
(Jochum et al. 2009). There are several noise sources to consider in analyzing MEA
recordings. It is important to consider where the noise, or interference, is injected in
the signal chain, as the implications on SNR will differ.

Biological Noise A major source of noise comes from the electrical activity of
other cells around the recording electrode (e.g., APs of distant cells) but also ionic
activity (e.g., subthreshold events in neurites of nearby cells) and synaptic noise due
to the stochastic nature of synaptic transmission. Several models of biological noise,
or sometimes also called background noise, have been developed by simulating
uncorrelated single-unit spiking activities or examining multicompartmental neuron
models located at distances far enough away from the electrodes such that the spikes
cannot be resolved (Camuñas-Mesa and Quiroga 2013; Eaton and Henriquez 2005;
Jäckel et al. 2012; Lempka et al. 2011; Martinez et al. 2009). Although such models
replicate the average biological noise in experiments, it is possible that the cell type,
size, and morphology along with the firing rates and correlated activity can affect the
shape of the background signal. For spike analysis, LFP is also considered biological
noise and is filtered out.

Electrode–Electrolyte Interface Noise On top of biological noise, the liquid–
metal interface also adds to noise. At low frequencies, such as below 10 Hz,
processes at the electrode generate noise with a steep roll-off of 1/f or even 1/f2

(Hassibi et al. 2004; Heer 2005). More relevant for electrophysiology are the
frequencies above that, where thermal noise is the main contributor (Gesteland et al.
1959; Liu et al. 2007). The equivalent thermal noise can be calculated as follows:

vn =
√

4 · k · T · Re
(
Z′

e

) · �f ,

where k is the Boltzmann constant, T is the absolute temperature, Re(Ze
′
) is the

real part of the effective electrode impedance, and Δf is the noise bandwidth.
Another source of noise is the 50–60 Hz hum from power lines. This noise is
largely picked up between the microelectrode and the connection to the input of the
preamplifier, due to its high impedance at that frequency. Hence, minimizing the
distance between the electrode and the amplifier is a major design requirement for
MEA circuits (Harrison 2008). Proper grounding and shielding of the MEA setup
can minimize interference.
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Device Noise The device or the system that amplifies and digitizes the signals
further adds to noise. Usually, the front-end amplifier is the most important factor to
consider. A general design objective for such amplifiers is to ensure that the signal
acquisition system does not limit the system performance with regard to noise. As
discussed above, this is a design trade-off in which also power and circuit area may
play a role. For example, if the maximal allowed contribution to noise from the
circuitry is set to 10%, the amplifier noise needs to be 45% or less as compared
to the noise of the electrode. A commonly used figure of merit that captures the
trade-off between noise and amplifiers’ supply current is the noise efficiency factor
(NEF) proposed in Steyaert and Sansen 1987. This figure has also been adapted
to capture the different supply voltages used to allow for a better comparison with
respect to power consumption, coining the term power efficiency factor PEF (Muller
et al. 2012). For in vitro MEAs, area is also of critical importance, as it usually
impacts electrode density and total channel count. The efficient use of the overall
area is reflected in the ratio of the actual array area divided by the overall chip
area (see Fig. 4). Quantization noise is another noise contributor of the hardware. It
originates from the discretization error made at the ADC part of the MEA system.
As an approximation for the quantization noise, typically a value of 1√

12
times the

magnitude of the least significant bit (LSB) is used. Typical ADCs used for MEA
systems have a minimum of 8-bit resolution; systems that employ off-chip ADCs
generally use 16-bit resolution. Finally, the transmission of data may also affect the
quality of the recorded signal (e.g., if a lossy compression has to be used due to
bandwidth constraints).

2.3.3 Effect of Electrode Size and Density

Sizes of published microelectrodes range from 5–50 μm in diameter (Kim et al.
2014) and even >50 μm. The most evident contribution of electrode size to SNR
is the electrode impedance Ze

′, which in turn determines electrode noise. Large
electrodes (>50 μm) have a positive effect on the SNR due to low impedance.
Moreover, large electrodes have a higher possibility of getting physically near the
neurons and of picking up higher amplitude spikes (Camuñas-Mesa and Quiroga
2013); for example, studies by Andersen et al. (2010), Moxon (1999), Paik et al.
(2003), and Ward et al. (2009) claim that larger recording electrodes can record
from more neurons simultaneously. However, the detected amplitude of a large EAP
signal from a neuron is reduced as it is averaged out by nearby smaller amplitude
signals, thus resulting in a lower SNR. Sorting all the signals detected by a single
large electrode to their respective individual sources can also be daunting when
many neurons are nearby.

For recording EAPs, especially for dissociated cell culture experiments, the use
of small electrodes (<15 μm diameter) minimizes averaging. Small electrodes are
inferior against large electrodes in terms of impedance, but this can be improved
by surface modification. For example, the influence of electrode size (<10 μm
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Fig. 8 Comparison of the recording capability of small electrodes at high-density and large
electrodes. (a) The EAPs of three identified neurons (green, red, and blue) detected from each
electrode site (light gray rectangles) are superimposed to a fluorescence image (MAP 2 staining)
of a cell culture on a HD-MEA. Each spike represents the spike-triggered average over 50 trials.
Spikes with amplitude below 50 μV are not shown. White squares represent the location of
hypothetical large electrodes (60 × 60 μm) used for comparison of signals. (b) Raw traces from
small electrodes (1–5) and large electrodes (m, n) indicated in (a). Signals for the large electrodes
(m, n) are estimated by averaging the traces of the small electrodes within the area covered by the
white squares. Estimated signals from (m, n) show reduced amplitudes due to the averaging effect
only. The impedance effect due to electrode size differences may be neglected due to high input
impedance at the first-end amplifier of the HD-MEA, and is thus not considered. Modified with
permission from Müller et al. (2015)

diameter) on recorded signal amplitude significantly decreases by depositing Pt-
black on platinum microelectrodes (Viswam et al. 2014). HD-MEAs have small
electrodes to allow the integration of a large number of sensors in an array. The
dense grid of electrodes in HD-MEAs, shown in Fig. 8, increases the possibility
of having an electrode “at the right spot” while also allowing a single neuron to
be recorded from multiple electrodes. Also, the effective input capacitance can be
significantly smaller in HD-MEAs as compared to passive devices, due to a small
Cs, which in turn allows for a smaller Ce (see Fig. 7b and the next subsection for
more information). As a result, small electrodes are much more preferable in this
situation, with only electrode noise being the limiting factor.

For LFP recording, Nelson and Pouget (Nelson and Pouget 2010) discussed that
the electrode impedance and recording site geometry are not crucial. This is because
LFPs only vary in a spatial scale much larger than the size of electrodes used for
extracellular recordings, for example, by a few hundred micrometers (Katzner et
al. 2009) or even by 1 mm (Destexhe et al. 1999). In addition, LFPs are of lower
temporal frequency, making electrode noise a more important factor as in that range,
it is dominated by 1/f2 noise, which makes larger electrodes more favorable.
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Novel 3D microstructure and nanostructure electrodes aim to detect subthreshold
neuronal signals (e.g., synaptic potentials, membrane oscillations) and membrane
potentials (Spira and Hai 2013). These subthreshold signals cannot be detected
by MEAs; these signals are conventionally measured using patch clamp. The 3D
electrodes seek to achieve either a tight seal with the neuronal membrane or to
temporarily puncture into the membrane and access the intracellular space of a
neuron. With advancements in fabrication techniques, large-scale integration of 3D
microelctrodes and nanoelectrodes is feasible on HD-MEAs (Dipalo et al. 2018).

It is therefore important to choose optimal electrode sizes depending on the
targeted application. In addition, a high density of electrodes will inherently limit
the electrode size.

2.3.4 Effect of the Recording Hardware

HD-MEA circuitry includes amplifiers, filters, and some sort of data transmitter of
either the amplified analog signals or, more typically, of the already digitized data.
The front-end amplifier has a major effect in the performance of the HD-MEA. It
needs high input impedance to ensure signal quality.

A neuronal signal is transduced by an electrode into a current, and this process
depends on the parameters of the effective electrode impedance Ze

′ and effective
input impedance Za

′. We discuss this using the equivalent circuit of the electrode–
electrolyte interface shown in Fig. 7b. Noise (e.g., thermal noise and power line
hum) can be injected into the recorded signal at the liquid–metal interface. Ze

′ is
the total impedance due to Rspread, Re, Ce, and Rm. Rspread represents the effect
of the electrode geometry and liquid conductivity. Re and Ce are the resistance
and capacitance of the electrode double layer formed at the electrode–electrolyte
interface. Rm is the resistance of the metallic part of the electrode. Connected in
series to Ze

′ is Za
′, which is mostly influenced by the input impedance of the

front-end amplifier Za and the shunt capacitance Cs. Cs includes the capacitances
from connectors and wires from the liquid to the amplifier. The shunt resistance
Rs is usually negligible. All these represent the metal side of the neuron–electrode
interface. For more details on the circuit model, see Hierlemann et al. (2011), Nelson
et al. (2008), and Robinson (1968).

Front-end amplifiers are designed to have large Za
′ in order to preserve signal

quality. The ratio between Ze
′ and Za

′ shows how to derive the voltage at the input
of the amplifier as (Nelson et al. 2008):

Vin (ω) = Ve (ω)

1 + (
Z′

e (ω) /Z′
a (ω)

) ,

where Ve(ω) is the total extracellular potential at the electrode, Vin(ω) is the voltage
at the input of the front-end amplifier. Vin will be smaller than Ve, that is, the signal
will be attenuated if Za

′ is not substantially larger than Ze
′.
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In addition to the effect of the input impedance, the circuitry near the cells must
be low powered in order to prevent heating that could damage the cells. Appropriate
settings for gain and dynamic range of the readout depend on the preparation (e.g.,
maximum amplitudes of a few hundred microvolts in acute slice preparations and
up to 10 mV in cardiomyocyte experiments). The recording bandwidth needs to be
flexible to cover both LFP and EAP frequency ranges, depending on the experiment,
in order to avoid filtering out signals of interest.

Many of the circuit requirements can be traded against each other; for example,
one can easily lower the noise by increasing the area or power consumption. The
key challenge therefore is to set the target specifications for the given application
accurately and optimize the systems for it, without overdesigning specific require-
ments.

3 Applications of HD-MEAs

In this section, we discuss specific neuroscience studies from selected experiments.
Measurements done using passive MEAs can also be done using CMOS-based HD-
MEAs. However, the high spatiotemporal resolution of HD-MEAs leads to novel
types of data that were not possible to collect using conventional MEA devices.

In recent years, CMOS-based MEAs have been increasingly used for neuro-
science and biomedical research. Figure 9 lists the currently available CMOS-based
in vitro MEAs, their key specifications, and some experimental preparations for
which they have been applied so far. The two most prominent preparations
investigated using these devices are dissociated cell cultures from snails (Eversmann
et al. 2003), rats (Bakkum et al. 2013; Gandolfo et al. 2010; Hafizovic et al. 2007;
Heer et al. 2007; Lambacher et al. 2010; Lewandowska et al. 2015, 2016; Müller et
al. 2015) and chicken (Hafizovic et al. 2007) and acute retina from mice (Fiscella et
al. 2012, 2015; Franke et al. 2016; Maccione et al. 2014; Menzler and Zeck 2011;
Yonehara et al. 2016), rats (Eickenscheidt et al. 2012; Lloyd et al. 2014; Stutzki et al.
2014), rabbits (Ballini et al. 2014; Fiscella et al. 2014; Zeck et al. 2011), hamsters
(Jones et al. 2015), guinea pigs (Bertotti et al. 2014; Velychko et al. 2014), and
humans (Reinhard et al. 2014). Additionally, data from acute slices of cerebellum
(Frey et al. 2009a; Obien et al. 2014), cortex (Ferrea et al. 2012; Medrihan et al.
2014), and olfactory bulb (Johnson et al. 2013a) have been presented. Cultured
cardiomyocytes were also studied (DeBusschere and Kovacs 2001; Heer et al.
2004; Huys et al. 2012; Imfeld et al. 2008; Sanchez-Bustamante et al. 2008), and
first results from mice organotypic hippocampal slices were presented (Gong et al.
2016). This section reviews recent neuroscience applications of HD-MEAs.



104 M. E. J. Obien and U. Frey

Fig. 9 CMOS-based in vitro MEAs, their key specifications and references to biological appli-
cations for recording and stimulation. The specifications may differ for other device versions.
Modified with permission from (Obien et al. 2015)
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3.1 Electrical Imaging

HD-MEAs can be used to monitor the electrical activity of neurons in a cell culture
or tissue preparation at high-resolution, thus termed here as electrical imaging.
Examples of electrical imaging of a cell culture are shown in Fig. 2. The whole
sample can be electrically imaged to create activity or amplitude maps of active
neurons. Moreover, HD-MEAs with low noise can reveal subcellular resolution
maps of single neurons.

Similarly, electrical imaging can be performed for 3D samples, such as acute
brain slices. Two types of electrical images can be obtained: (a) based on EAPs
shown in Fig. 10 and (b) based on LFPs presented in Fig. 11. The neurons and
network structure in slices are physiologically and biochemically similar to the in
vivo situation.

Depth recording of EAPs from neurons up to 100 μm distance from the MEA
surface has been shown (Egert et al. 2002; Frey et al. 2009b). In Fig. 10 we show
a demonstration of subcellular resolution electrical imaging of single Purkinje cells
(PCs) in acute cerebellar slices (Frey et al. 2009a). To ensure the quality of recorded
signals, proper tissue adhesion on the MEA surface has to be maintained throughout
the experiment (Egert et al. 2002). EAPs were observed along the PC layer, and,
after spike sorting, the EAP footprint of a single PC was analyzed. The negative
spikes were recorded around the perisomatic area of the neuron, while positive
spikes were obtained along the molecular layer corresponding to the dendrites of
the PC.

Large LFPs and oscillations inherent in different states of the brain can also
be imaged at longer time scales. Such recordings have been done for different
brain areas (e.g., hippocampus and suprachiasmatic nucleus). HD-MEAs can easily
capture electrical images of neuronal network activity in slices. For instance,
functional imaging of the dentate gyrus has been demonstrated using HD-MEAs
(Ferrea et al. 2012). Field excitatory postsynaptic potentials (fEPSPs) evoked by
electrical stimulation were detected across different layers of the acute slice, as
shown in Fig. 11.

3.2 Axonal Studies

HD-MEAs with high SNR, such as SM HD-MEAs (Frey et al. 2010; Müller et
al. 2015), allowed for detection and tracking of APs propagating along a neuron’s
axon for the first time (Bakkum et al. 2013), and more recent studies continue
to be performed (Radivojevic et al. 2016, 2017). Axonal signals are difficult to
measure using conventional methods—thin axons are challenging to patch, and
extracellular signal amplitudes are low compared to those from the soma and axon
initial segment. In this work, the propagation of APs along the full arbor of a neuron
has been electrically imaged, shown in Fig. 12a–c. Subsequently, axonal AP velocity
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Fig. 10 High-resolution electrical imaging of spontaneous cerebellar Purkinje cell activity using
HD-MEAs. (a) Activity map of the detectable spike activity in the recording area. Small dots
correspond to the electrodes used for recording (∼30% of the available electrodes). Events
exceeding a threshold of ±36 μV were used to calculate the color-coded event rate. Scale bar:
0.3 mm. (b) Close-up of a region with high activity delimited in (a). All units identified by spike
sorting are marked, that is, the somatic region is blue and the dendritic region is red. Scale bar:
0.1 mm. (c) Schematic of the basic cellular structures in the cerebellar slice (Gray et al. 1918).
Scale bar: 0.1 mm. ML molecular layer, PCL Purkinje cell layer, GL granular layer, CF climbing
fiber, MF mossy fiber, PF parallel fiber, PC Purkinje cell, GgC Golgi cell, SC stellate cell, BC
basket cell. (d) Footprint of a PC selected from the region shown in (b). Scale bar: vertical is
200 μV, horizontal is 1.9 ms. (e) Current source density (CSD) analysis for the cell shown in (d)
at several points in time (green: sink; yellow: source). The sink moves from the soma at 0.4 ms
to the proximal dendrites at 0.6 ms and covers the dendritic area, while the soma repolarizes.
Frequency band: 180–3.5 kHz. (f–h) Matching simulated and measured EAP footprints. All panels
and descriptions adapted with permission from Frey et al. (2009a)

was found to vary within single axons, hinting that axon velocity might contribute
to temporal coding schemes of neuronal information. This capability can help
expand new fields of research, such as axonal information processing and neuronal
computation. Tracking the velocity of axonal signals also provides a new and
promising parameter that can be used for analyzing the effect of different therapies
(e.g., drugs and prolonged electrical stimulation) on the information transfer and
signaling between neurons.
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Fig. 11 Imaging network waves in acute hippocampal slices. (a–c) Functional imaging of the
dentate gyrus, adapted with permission from Ferrea et al. (2012). (a) A corticohippocampal slice
placed atop an APS HD-MEA, with superimposed color-coded fEPSP activity. (b) Close-up on
the activated area in (a). The white tip indicates the site of stimulation using a patch pipette. (d)
Recorded traces of fEPSPs from three chosen electrodes indicated in (b). Electrode 1 is located in
the dendritic layer of the dentate gyrus, electrode 2 in the granular cell layer, and electrode 3 in the
polymorphic layer

HD-MEAs have also been used for precise microstimulation. By taking advan-
tage of the high electrode density, the responses of neurons to different stimulation
patterns and intensity can be investigated, including how best to selectively stimulate
single neurons (Radivojevic et al. 2016), as shown in Fig. 12d–f. Characterization
of how stimulation affects neurons can benefit the design of stimulation therapies
for clinical use.

Other studies amplify the axonal signals by growing the axons through poly-
dimethylsiloxane (PDMS) microtunnels (Habibey et al. 2017; Lewandowska et al.
2015, 2016). PDMS tunnels were attached on top of an HD-MEA and cultured
cortical neurons on each side of the tunnels. In time, many axons naturally enter
and grow through the tunnels. While axonal signals outside of tunnels were also
detectable, tunnels amplify the signals enough to avoid the need to average across
trials and single axonal APs can be observed. By recording the spontaneous
activities of the neurons, axonal signals were significantly amplified by a factor of
20–150.

3.3 Characterization of Novel Cell Types

Emerging breakthroughs in cell biology aim to provide in vitro platforms for
preclinical drug screening and therapy diagnostics. In particular, human induced
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Fig. 12 Triggering and tracking axonal signals with HD-MEAs. (a–c) Adapted with permission
from Bakkum et al. (2013). (a) Antidromic action potential triggered by electrical stimulation at the
axon. Left: Heat map shows stimulation-triggered averages of 60 traces from 95 electrodes. Dark
colored line from top to bottom indicates the antidromic propagation of an AP from the stimulation
site. A subsequent rebound from the soma is also visible. Right: A subset of averaged raw traces.
Scale bars, 1 ms horizontal; 100 μV vertical (b) The electrical footprint of the stimulated neuron
recorded in (a). The gray scale pixels indicate the maximum peak-to-peak amplitude of the APs
detected at each electrode. The red circles denote the locations of the subset of traces in A. The
black arrows show the direction of the AP propagation along the axon, while the blue arrow
indicates the subsequent rebound. The green dot is the location where the green trace in (a) was
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pluripotent stem cell or hiPSC technology enabled to access human cells for in vitro
investigation and to model diseases. HD-MEAs allow for efficient readout of hiPSC-
derived neurons and cardiomyocytes for functional analysis. Culturing hiPSC
derived neurons on HD-MEAs has been proven feasible and the cells remained
viable up to 3 months (Amin et al. 2016). Spontaneous activity and responses
to electrical stimulation were characterized. The authors found that spontaneous
spiking activity of hiPSC derived neurons peaked around 81 DIV and that hiPSC
derived neurons responded to electrical stimulation only at 90 DIV. Low-frequency
electrical stimulations (0.2 Hz, biphasic current with peak-to-peak amplitude of
300 μA) led to an increase in the number of active electrodes (i.e., from 564 ± 28
to 688 ± 21) but decreased the mean firing rate (i.e., 0.66 ± 0.03 to 0.58 ± 0.03
spikes/s). Figure 13 summarizes these results.

The recent advent of CRISPR/Cas9-mediated genome editing has paved the
way for fast development of disease models (Doudna and Charpentier 2014). Mice
models of human diseases can be used to characterize the functional differences
of cells from different parts of the body compared to their healthy counterparts.
HD-MEAs can provide high-throughput and high-quality characterization of cells
in culture and in acute preparations. One application of such characterization is
biomarker identification, which has been done for a human retina disease called
congenital nystagmus caused by FRMD7 gene mutation (Yonehara et al. 2016). A
mouse model of such disease was developed, and light stimulation-evoked responses
of RGCs in the retina were recorded and analyzed in a high-throughput manner.
Using HD-MEAs, it was found that FRMD7 mutation leads to selective loss of
horizontal selection selectivity of RGCs, as illustrated in Fig. 14.

3.4 Closed-Loop Studies

SM HD-MEAs enable simultaneous stimulation and recording of arbitrarily selected
neurons in a network. By changing spike timing between sets of neurons via
electrical simulations, the functional network connectivity was also changed (Müller
et al. 2013). In this study, a reprogrammable event engine unit was programmed into

�

Fig. 12 (continued) recorded from. Scale bar, 100 μm. (c) AP propagation velocity changes, as
shown by the colored dots along the electrical image of the axon. (D-F) Adapted with permission
from Radivojevic et al. (2016). (d) Left: A single neuron’s spike-triggered average footprint. Circle
sizes correspond to logarithmically scaled amplitudes of APs and colors indicate spike time delay
(negative peak) with respect to the spike initiation time of the respective neuron. Right: Stimulation
map over the neuron’s spike-triggered average footprint. Site-specific stimulation thresholds are
color-coded; sites that were stimulated but did not evoke an action potential are colored in gray.
Four sites are labeled “Anti 1–3” and “Ortho,” indicating antidromic and orthodromic stimulation
sites, respectively. (e) Excitability profiles of Anti 1–3 and Ortho sites. (f) Stimulation thresholds
for the most sensitive orthodromic and antidromic sites determined for 13 neurons
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Fig. 13 Spontaneous activity
of hiPSCs. Recorded
extracellular signal traces
show changes in firing rates
during development. The
activity develops from single
spikes (8 DIV), tonic firing
(28 DIV) to bursting, and
synchronized spikes (81, and
90 DIV). Red arrows denote
the start of propagating burst.
Adapted with permission
from Amin et al. (2016)

8 DIV

28 DIV

81 DIV

90
 D

IV
ch 5,56

ch 22,57

ch 52,30

50 ms

1 s

20
0 
µV

15
0 
µV

a field-programmable gate array. The system can detect arbitrary action potential
patterns and use these to trigger electrical stimulations to arbitrary neurons, pro-
viding flexible and submillisecond latency closed-loop feedback. Cross-correlation
analysis of spike trains showed the spike timing of the selectively stimulated neurons
changed, which indicated that plasticity was induced in the network (Fig. 15).

3.5 Combination with Patch Clamp

The combination of HD-MEA and patch-clamp techniques provides a power-
ful approach to map monosynaptic connectivity of neurons in vitro. In such
a combination, a single neuron or multiple neurons can be patched to detect
subthreshold signals, such as postsynaptic potentials (PSPs), while the HD-MEA
can be utilized to activate individual neurons by electrical stimulation. This method
can be effectively applied to investigate local network mechanisms. First results
have been obtained by Jäckel et al., showing contributions of presynaptic neurons,
both excitatory and inhibitory, to PSPs (Jäckel et al. 2017), see Fig. 16. This
combination technique can also be applied to brain slices; however, as cells are
not directly attached on electrodes, higher stimulation amplitudes may be needed to
evoke action potentials, which may activate multiple neurons at once. Additionally,
the combined methods can enable imaging of a neuron’s extracellular potential
signature at subcellular resolution while controlling the cell’s membrane potential.
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Fig. 14 Screening transgenic mouse models of human eye diseases with HD-MEAs. Top: Polar
plots showing the preferred directions (directions of arrows) and direction selectivity index (length
of an arrow) of individual direction-selective retinal ganglion cells in (a) WT and (b) FRMD7tm

retinas. The color code shows the different preferred directions (green = superior, blue = nasal,
purple = inferior, and orange = temporal). (Middle: Raster plots showing the spike responses (each
black line is a spike) of example DS cells in WT and FRMD7tm retinas in response to motion in
eight different directions, indicated by the arrows at the bottom of the plot. Bottom: polar plots of
the normalized mean spike numbers of cells shown in middle panes. The preferred direction and
DSI of each cell are represented by the direction and length of the corresponding (color-coded)
arrow. Adapted with permission from Yonehara et al. (2016)
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Fig. 15 Effect of closed-loop stimulation. (a) Spontaneous activity of two neurons before the
application of the closed-loop stimulation. Spike traces are median waveforms of several spikes
aligned at the negative peak. Top: In green, spike trace from neuron A, the trigger neuron. Middle:
In yellow, spike trance of neuron B, a neuron with correlated spiking activity. Bottom: Cross-
correlation curve of spike times of neuron B with respect to neuron A. Red dotted lines denote the
95% confidence intervals. Around 2000–3000 spikes were used to compute the cross-correlation.
Elevated correlated activity of neuron B was observed around 2.4 ± 0.4 ms after neuron A fired
an AP. (b) Same as (a), but with closed-loop feedback stimulation applied. The time delay of
the spikes between neurons A and B was reduced to around 1.1 ms. Stimulation is applied upon
detection of a spike from neuron A. During stimulation, the trace of neuron A was zeroed out.
(c) Same as (a), but after application of the closed-loop stimulation. The cross-correlation plot
changed after closed-loop stimulation. (d) Schematic of the synaptic connectivity between neurons
A and B and the artificial synapse caused by closed-loop stimulation. (e) Comparison between the
cross-correlation curves before (black) and after (red) the closed-loop stimulation. Adapted with
permission from Müller et al. (2013)

Future developments of the technology may lead to electrically guided automated
intracellular recordings (Annecchino et al. 2017; Kodandaramaiah et al. 2012, 2014;
Suk et al. 2017).

Besides patch clamp, combining HD-MEA recordings with single-cell-targeted
methods via a movable micropipette allows for advanced electrophysiology exper-
iments (e.g., local puffing of compounds (Engle et al. 2012; Sasaki 2013; Sasaki
et al. 2011), virus-stamping (Schubert et al. 2018), and single-cell electroporation
(Boudes et al. 2008; Nevian and Helmchen 2007; Tanaka et al. 2009)). Such
combination techniques will enable a detailed analysis of single cells in functional
neuronal networks. Moreover, pipette-based dye-loading (Eilers and Konnerth
2009) can be used to obtain morphologies of recorded cells on the HD-MEAs.
This enables acquisition of comprehensive information from defined cells towards
developing precise and realistic multicompartment models.
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Fig. 16 Mapping synaptic connectivity through a combination of patch clamp and HD-MEA. (a)
Amplitude map of the spontaneous activity of neurons with selected neurons marked with dots and
numbered. The unselected neurons (unnumbered dots) did not evoke any postsynaptic potential
(PSP) response. Each selected neuron was stimulated with bipolar voltage pulses ranging from 100
to 250 mV amplitude. The location of a single patched neuron is also shown. (b) PSP responses
of the patched neuron (gray: individual traces; colored: median traces) to stimulation of individual
presynaptic neurons. The minimum voltage values needed to evoke PSPs per presynaptic neuron
are shown below the traces. The stimulus timing is also shown below the traces. Adapted with
permission from (Jäckel et al. 2017)

4 Outlook

This chapter shows the current state of CMOS-based HD-MEA research in terms of
technology and applications. Novel types of data can be obtained, which opens up
new waves of possibilities for neuroscience discoveries and medical advancements.
Potential future developments include device hardware improvements, advanced
experimental methods, and new data analysis techniques.

Next generation HD-MEAs may target increased array area, electrode density,
and number of parallel recording/stimulation channels. A larger array area will
extend the observable region of a sample, allowing for simultaneous access to
more neurons in cell cultures and to more distal brain areas in slices. This also
enables opportunities for coculturing different tissues or brain regions. Higher
spatial resolution and more recording channels will assist spike-sorting accuracy
and will potentially increase the number of detectable neurons per square millimeter.
Multiple HD-MEAs can also be combined in a multiwell-plate format, making HD-
MEAs compatible to applications in drug discovery and development.

Aside from improving the devices through resolution and scalability, adding new
functionalities may also be done. Other readout circuitry may also be integrated
in HD-MEA devices (e.g., neurotransmitter and impedance measurement units)
(Dragas et al. 2017). Multimodal measurement of neuronal activity will be helpful
to understand the overall neuronal network function and the interplay between
electrical activity and biochemical release.
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Another promising route is the combination of HD-MEA with different tools
separate from the device, such as optical methods. Fluorescent calcium and voltage
indicators, generic markers, and optogenetics have been used to map and manipulate
brain activity. Similar to extracellular recordings, the presence of many molecules
and compartments in the brain with different optical properties renders optical
recording and analysis challenging. Of interest is to pinpoint the advantages and
constraints of electrophysiological versus optical methods to determine how they
can complement each other. For example, optogenetic manipulation of specific
cellular subpopulations, while measuring the responses of the neurons using HD-
MEAs, will allow for studying functional roles of different classes of neurons (El
Hady et al. 2013). Additionally, the effect of different optogenetic therapies to
compensate for neuronal dysfunction can be tested with HD-MEAs.

Data obtained from next generation HD-MEAs and multimodal experiments
require advanced computational analysis and modeling techniques. Fast implemen-
tations of spike-sorting algorithms and parallel computing are needed to handle the
large amounts of data produced during long-term HD-MEA experiments. Multiscale
modeling, a systems biology technique, may be employed to synchronize events
recorded at different time and spatial scales. Overall, all data analysis methods need
to be optimized to extract meaningful information within a feasible time from the
massive amounts of datasets produced.
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