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Abstract The recent years have seen unprecedented growth in the manufacturing
of neurotechnological tools. The latest technological advancements presented the
neuroscientific community with neuronal probes containing thousands of recording
sites. These next-generation probes are capable of simultaneously recording neu-
ronal signals from a large number of channels. Numerically, a simple 128-channel
neuronal data acquisition system equipped with a 16 bits A/D converter digitizing
the acquired analog waveforms at a sampling frequency of 20 kHz will generate
approximately 17 GB uncompressed data per hour. Today’s biggest challenge is to
mine this staggering amount of data and find useful information which can later be
used in decoding brain functions, diagnosing diseases, and devising treatments. To
this goal, many automated processing and analysis tools have been developed and
reported in the literature. A good amount of them are also available as open source
for others to adapt them to individual needs. Focusing on extracellularly recorded
neuronal signals in vitro, this chapter provides an overview of the popular open-
source tools applicable on these signals for spike trains and local field potentials
analysis, and spike sorting. Towards the end, several future research directions have
also been outlined.
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1 Introduction

Recent technological advancements allowed scientists to have unprecedented access
to biological data. These data come from different organs in the body and have
been effectively utilized in screening and diagnosis of diseases and their treatment
(Mahmud et al. 2018). Brain is the most complex organ in the mammals. Though
it is analog, its capability in decision-making and pattern recognition is higher
than any existing computing machines (Mahmud et al. 2017). To understand
brain’s functionality, diagnose disease, and devise treatments, scientists have been
investigating it using different approaches (Mahmud and Vassanelli 2016). In last
two decades, micro- and nanotechnology underwent an exponential growth in terms
of developing novel miniaturized devices and this allowed neuroscientists to target
large populations of neurons and record from them to decode the activities of
the brain cells (Mahmud et al. 2017; Vassanelli 2011; Vassanelli et al. 2012b,a;
Vassanelli 2014; Schröder et al. 2015; Thewes et al. 2016; Jun et al. 2017). However,
these novel techniques to acquire neuronal signals generate huge amount of data.
And, analyzing this data and mining relevant information is a big challenge. To this
goal, individual research groups have contributed towards the development of auto-
mated, efficient, and intelligent processing methods and disseminated them to the
neuroscientific community (Mahmud and Vassanelli 2016). The interdisciplinary
“Neuroengineering” community (Vassanelli and Mahmud 2016) used these tools to
mine useful information from these large datasets (Mahmud and Vassanelli 2016).
Targeting different applications and needs, these methods deal with processing and
analysis of data coming from single or multiple channels. However, with today’s
increasing number of recording sites accommodated in a single probe, many of
these methods are difficult to rescale and fit to analyze these data. Therefore,
the community is still in need of novel analysis tools targeting multichannel
neurophysiological data coming from high-resolution neuronal probes. This chapter
aims in introducing the reader with available open-source toolboxes capable of
performing processing and analysis of multichannel extracellular neuronal signals
recorded in vitro.

2 State of the Art of Extracellular Neuronal Signal Analysis

Modern neuroscience research has emerged as a data-driven discipline where both
experimental and computational approaches go hand-in-hand (see Fig. 1) (Mahmud
et al. 2018). The two approaches of neuroscience research are bridged through a
relatively new discipline, called data science, which mainly deals with the analytics
of the acquired data, and interpretation of the simulated results and design novel
experiments suggested by the obtained results.
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Fig. 1 Overview of modern
neuroscience research which
comprises of computational
and experimental approaches
to neuroscience through the
data science domain
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Focusing on the extracellular neuronal signals acquired in vitro, this chapter is
going to deal with the data analytics part, and provide an overview of the available
open-source data analytics resources which can be exploited to process and analyze
the recorded signals. Using the in vitro experimental paradigm (see Fig. 2), mainly
two types of signals can be recorded: (1) neuronal spikes and their trains, and (2)
field potentials. Therefore, the following subsections will contain the state-of-the-
art open-source resources categorized by signal types, e.g., field potentials, and
spikes. Despite that the majority of the available resources are application and signal
specific, there exist a few toolboxes which provide methods applicable on multiple
types of signals. For the sake of simplicity, the tools are divided into following two
categories:

• Toolboxes for spike trains and field potentials analysis and
• Toolboxes for spike sorting

It is also worthy to note that majority of the available toolboxes are developed
using MATLAB (Mathworks Inc., Natick, USA; www.mathworks.com) and python
(www.python.org) programming languages due to their diffused usage in the
neuroscience community. In addition, popular programming languages including C,
C++, C#, Delphi7, Java, and R have also been employed in some of the toolboxes.

2.1 Toolboxes for Spike Trains and Field Potentials Analysis

With the growing amount data acquired via simultaneously recorded channels from
an increasing number of neurons, the neuroengineering community has devel-
oped automated toolboxes addressing the required processing and analyses. The
following subsections describe—in alphabetical order—popular publicly available
toolboxes. Table 1 summarizes the different packages with their representative
features.

www.mathworks.com
www.python.org
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Fig. 2 Exemplary overview of the in vitro neuronal signal acquisition and analysis paradigm

2.1.1 Brain System for Multivariate AutoRegressive Time Series
(BSMART)

“BSMART” toolbox is written in MATLAB/C for spectral analysis of neurophys-
iological signals (Cui et al. 2008). It provides multi- or bivariate AutoRegressive
modeling, spectral analysis through coherence and Granger causality, and network
analysis. The main analyses include: adaptive (bi-/multi-)variate autoregressive
model, fast Fourier transform, Granger causality (Granger 1969), coherence, coher-
ent network analysis, and Granger causality network analysis. Available at http://
www.brain-smart.org/.

2.1.2 Chronux

“Chronux” toolbox is developed in MATLAB for the analysis of both point process
and continuous data (Bokil et al. 2010). It provides spike sorting, and local
regression and multitaper spectral analysis of neural signals. The main analyses
include: hierarchical clustering method (Fee et al. 1996), locally weighted sum of
squares (Cleveland 1979), local regression fitting and density estimation (Loader
1999), multitaping method (Thomson 1982), coherence, and spike field coherence.
Available at http://chronux.org/.

http://www.brain-smart.org/
http://www.brain-smart.org/
http://chronux.org/
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Table 1 Popular spike train and field potential processing and analysis toolboxes with their
representative features

Features

Toolbox Lang PF GUI DV DIE AR PDP

BSMART Matlab/C OSML Yes Yes No No

Chronux Matlab LMW Yes No No No

DATA-MEAns Delphi7 W Yes No No No

FIND Matlab OSML Yes Yes No No

ibTB Matlab LMW No No No No

KNSNDM C++ LMW Yes Yes Yes No

MeaBench C++/Matlab L Yes No Yes No

MVGC Matlab OSML No No No No

nSTAT Matlab OSML No No No No

PANDORA Matlab LMW No Yes No EMP

QSpikeTools Matlab ML No No Yes EMP

SigMate Matlab OSML Yes Yes Yes No

sigTOOL Matlab OSML Yes Yes No No

SpiCoDyn C# W Yes Yes No No

SPKTool Matlab OSML Yes Yes No No

STAToolkit Matlab/C LMW Yes No No Yes

ToolConnect C# W Yes Yes No No

Lang Language; PF Platform; GUI DV GUI and data visualization; DIE Data import/export; AR
Artifact removal; PDP Parallel data processing; KNSNDM Klusters, NeuroScope, NDManager;
L Linux; U Unix; M Mac; W Windows; OSML Operating system supported by Matlab; EMP
Embarrassingly parallel

2.1.3 DATA-MEAns

“DATA-MEAns” is a toolbox developed in Borland Delphi 7 (Embarcadero Tech-
nologies Inc., Austin, USA) and MATLAB (Bonomini et al. 2005). It provides
data visualization, basic analysis (i.e., autocorrelations, perievent histograms, rate
curves, PSTHs, ISIs, etc.), and nearest neighbor or k-means clustering. The analyses
include: poststimulus time and perievent histogram estimation, auto- and cross-
correlation, Fano factor and coherence calculation, event synchrony (Quian Quiroga
et al. 2002), and nearest neighbor (Cover and Hart 1967) and K-means (MacQueen
1967) clustering. Available at http://cortivis.umh.es/.

2.1.4 Finding Information in Neural Data (FIND)

“FIND” is a platform-independent framework for the analysis of neuronal data
based on MATLAB (Meier et al. 2008). It provides a unified data import function
from various proprietary formats simplifying standardized interfacing with analysis
tools and provides means for analysis of discrete series of spike events, continuous

http://cortivis.umh.es/
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time series, and imaging data. Also, it allows simulating multielectrode activity
using point-process-based stochastic model. The analyses include: co-variance esti-
mation, point process modeling, pair-wise cross-correlation, asymmetric Savitzky–
Golay filter calculation (Savitzky and Golay 1964), response latency differences
estimation (Nawrot et al. 2003), and spike detection. Available at http://find.bccn.
uni-freiburg.de/.

2.1.5 Information Breakdown ToolBox (ibTB)

“ibTB” is a MATLAB-based toolbox which implements information theory methods
for spike, LFP, and EEG analysis (Magri et al. 2009). It provides informa-
tion breakdown technique to decode the encoding of sensory stimuli by differ-
ent groups of neurons. The major supported analyses include: direct method,
quadratic extrapolation (Strong et al. 1998), Panzeri and Treves method (Panzeri
and Treves 1996) for bias correction, shuffling procedure (Montemurro et al.
2007), bootstrap bias correction (Optican et al. 1991), and Gaussian method
(Misra et al. 2005). The source code can be obtained from the publisher’s web-
site (http://static-content.springer.com/esm/art%3A10.1186%2F1471-2202-10-81/
MediaObjects/1471-2202-10-81-S1.zip).

2.1.6 Klusters, NeuroScope, and NDManager

“Klusters,” “NeuroScope,” and “NDManager” are three integrated modules bundled
together for processing and analysis of spike and field potential signals (Hazan
et al. 2006). Klusters performs spike sorting using KlustaKwik (see Sect. 2.2.3)
and displays 2D projection of features, spike traces, correlograms, and error
matrix view. NeuroScope allows inspection, selection, and event editing of spike
signals as well as local field potentials (LFPs). NDManager facilitates experi-
mental and preprocessing parameter management. The major analyses include:
auto- and cross-correlation estimation, spike detection and sorting, and classifi-
cation expectation–maximization (Celeux and Govaert 1992). Available at http://
neurosuite.sourceforge.net/.

2.1.7 MeaBench

“MeaBench” is a toolbox written mainly in C++ with certain parts written in Perl1

and MATLAB. It is intended for data acquisition and online analysis of commercial
multielectrode array recordings from Multichannel Systems GmbH (Reutlingen,
Germany) (Wagenaar et al. 2005). It allows real-time data visualization, line and

1https://www.perl.org/.

http://find.bccn.uni-freiburg.de/
http://find.bccn.uni-freiburg.de/
http://static-content.springer.com/esm/art%3A10.1186%2F1471-2202-10-81/MediaObjects/1471-2202-10-81-S1.zip
http://static-content.springer.com/esm/art%3A10.1186%2F1471-2202-10-81/MediaObjects/1471-2202-10-81-S1.zip
http://neurosuite.sourceforge.net/
http://neurosuite.sourceforge.net/
https://www.perl.org/
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stimulus artifact suppression, and spike and burst detection and validation. Available
at www.danielwagenaar.net/res/software/meabench/.

2.1.8 Multivariate Granger Causality Toolbox (MVGC)

“MVGC” is a toolbox written in MATLAB that implements Wiener–Granger causal-
ity (G-causality) on multiple equivalent representations of a vector autoregressive
model in both time and frequency domains (Barnett and Seth 2014). The main analy-
ses supported by the toolbox include: ordinary least squares estimation, Wiener (root
mean square) method (Levinson 1946), vector autoregressive maximum likelihood
estimator method, cross-power spectral density, multitaper method, fast Fourier
transform, and unconditional Granger causality. It can be applied to neuroelectric,
neuromagnetic, and fMRI signals and can be obtained from http://www.sussex.ac.
uk/sackler/mvgc/.

2.1.9 nSTAT

“nSTAT” toolbox is coded in MATLAB and performs spike train analysis in
time domain (e.g., Kalman Filtering), frequency domain (e.g., multitaper spectral
estimation), and mixed time–frequency domain (e.g., spectrogram) (Cajigas et al.
2012). The supported analyses include: point process generalized linear model
(Paninski et al. 2007), generalized linear model-based peristimulus time histogram
estimation, Akaike’s and Bayesian information criteria, state-space generalized
linear model, Kalman filtering, multitaper method, and spectrogram. Available at
www.neurostat.mit.edu/nstat/.

2.1.10 PANDORA

“PANDORA” is a MATLAB-based toolbox that extracts user-defined characteristics
from spike train signals and creates numerical database tables from them (Gunay
et al. 2009). Further analyses (e.g., drug and parameter effects, spike shape
characterization, histogramming and comparison of distributions, cross-correlation,
etc.) can then be performed on these tables. However, spike detection and feature
extraction can also be performed. The supported analyses include: rational database
creation from datasets, extraction of spike shape characteristics, Kullback–Leibler
divergence measure (Kullback and Leibler 1951) estimation, and resistor-average
distance (Johnson et al. 2001) estimation. It is available at https://github.com/
cengique/pandora-matlab.

www.danielwagenaar.net/res/software/meabench/
http://www.sussex.ac.uk/sackler/mvgc/
http://www.sussex.ac.uk/sackler/mvgc/
www.neurostat.mit.edu/nstat/
https://github.com/cengique/pandora-matlab
https://github.com/cengique/pandora-matlab
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2.1.11 QSpike Tools

“QSpike Tools” is a Linux/Unix-based cloud-computing framework, modeled using
client–server architecture and developed in MATLAB/Bash scripts,2 for processing
and analysis of extracellular spike trains (Mahmud et al. 2014). It performs
batch preprocessing of CPU-intensive operations for each channel (e.g., filtering,
multiunit activity detection, spike sorting, etc.), in parallel, by delegating them to a
multicore computer or to a computers cluster. The main analyses include: spike
detection and validation, poststimulus time and perievent histogram estimation,
burst detection and validation, and spike sorting through Wave_Clus package (see
Sect. 2.2.11). It can be obtained from https://sites.google.com/site/qspiketool/.

2.1.12 SigMate

“SigMate” is a MATLAB-based comprehensive framework that allows preprocessing
and analysis of EEG, LFPs, and spike signals (Mahmud et al. 2012a). Its main
contribution is in the analysis of LFPs which includes data display, file operations,
baseline correction, artifact removal, noise characterization, current source density
(CSD) analysis, latency estimation from LFPs and CSDs, determination of cortical
layer activation order using LFPs and CSDs, and single LFP clustering. The
main processing and analyses include: various file operations (e.g., file splitting,
concatenation, and column rearranging), latency calculation (Mahmud et al. 2016),
detection of cortical layer activation order (Mahmud et al. 2010), current source
density analysis (Mahmud et al. 2011), classification of single-trial LFPs (Mah-
mud et al. 2012c), and spike analysis. The spike analyses are provided through
Wave_Clus (see Sect. 2.2.11) toolbox. It can be obtained from https://sites.google.
com/site/muftimahmud/codes.

2.1.13 sigTOOL

“sigTOOL” toolbox is written in MATLAB and allows direct loading of a wide range
of proprietary file formats (Lidierth 2009). The usable data file formats originate
from various hardware vendors such as Alpha Omega, Axon Instruments, Blackrock
Microsystems, Cambridge Electronic Design, Heka, MultiChannel Systems, Neu-
roExplorer, NeuroShare native, and Plexon. The major analyses supported by the
toolbox include: auto- or cross-correlation, power spectral analysis, and coherence
estimation in addition to usual spike train analysis (i.e., ISI, event auto- and cross-

2https://en.wikipedia.org/wiki/Bash_(Unix_shell).

https://sites.google.com/site/qspiketool/
https://sites.google.com/site/muftimahmud/codes
https://sites.google.com/site/muftimahmud/codes
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
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correlations, spike-triggered averaging, perievent time histograms, frequencygrams,
etc.). Available at http://sigtool.sourceforge.net/.

2.1.14 SpiCoDyn

“SpiCoDyn” is an open-source windows-only graphical user interface-based tool-
box focusing on functional-effective connectivity analysis and spiking and bursting
dynamics analysis (Pastore et al. 2018). Developed in C#, under the Microsoft .NET
platform, it supports HDF5,3 level 5 MAT files4 and text files. The toolbox provides
optimized implementations of two main transfer entropy algorithms (i.e., delayed
transfer entropy and high-order transfer entropy) and provides analysis platform
for multiple spike trains originating from large number of electrodes. Available at
https://www.nitrc.org/projects/spicodyn/.

2.1.15 Spike Train Analysis Toolkit (STAToolkit)

“STAToolkit” is a MATLAB/C-hybrid toolbox implementing information theoretic
methods to quantify how well the stimuli can be distinguished based on the timing
of neuronal firing patterns in a spike train (Goldberg et al. 2009). The main analyses
include: direct method (Strong et al. 1998), metric space method (Victor and Purpura
1997), binless method (Victor 2002), asymptotically debiased method (Treves and
Panzeri 1995), Jackknife debiased method (Thomson and Chave 1991), debiased
Ma bound method (Ma 1981), best upper bound method (Paninski 2003), coverage-
adjusted method (Chao and Shen 2003), and Bayesian with Dirichlet prior (Wolpert
and Wolf 1995). Available at http://neuroanalysis.org.

2.1.16 SPKTool

“SPKTool” is coded in MATLAB for the detection and analysis of neural spiking
activity (Liu et al. 2011). It performs spike detection, feature extraction, and manual
and semiautomatic clustering of spike trains. Spike detection by thresholding and
raw and nonlinear energy of signal, extraction of various spike features (e.g.,
principal components, peaks, valleys, energy, timestamps, slice of waveforms,
etc.), implementation of popular spike-sorting techniques (e.g., K-means, template
matching, EM of Gaussian mixed model, valley seeking, manual contour based
method, etc.), ISI, Poincare maps, correlation, firing rate histograms, and perievent
rasters and histograms. Available at http://spktool.sourceforge.net/.

3https://support.hdfgroup.org/HDF5/.
4https://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf.

http://sigtool.sourceforge.net/
https://www.nitrc.org/projects/spicodyn/
http://neuroanalysis.org
http://spktool.sourceforge.net/
https://support.hdfgroup.org/HDF5/
https://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf
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2.1.17 ToolConnect

“ToolConnect” is a standalone windows-only tool, developed in C#, targeting to
infer functional connectivity from spike trains data (Pastore et al. 2016). This tool-
box has been optimized for in vitro networks grown on high-density multielectrode
arrays. The implemented analyses include: cross- and partial correlation, and joint
and transfer entropy. Additionally, it contains several add-ons for the visualization
of the functional connectivity graphs as well as extraction of topological features of
the network. Available at https://www.nitrc.org/projects/toolconnect/.

2.2 Toolboxes for Spike Sorting

A great amount of efforts have been put towards the development of sophisticated
tools capable of accurate spike sorting and analysis. Rey et al. (2015), in their
review, outline the primary concepts of spike sorting, the requirements for applying
specific techniques, and most importantly, the shortcomings of currently available
algorithms. Due to the vast amount of methods and tools available for the purpose,
we restrict our discussion only to the popular open-source toolboxes.

2.2.1 EToS

“EToS” or Efficient Technology of Spike sorting is a spike-sorting toolbox aimed
mainly at heterogeneous neural population recordings (Takekawa et al. 2012). It
is written in C++ implementing multimodality-weighted PCA for feature extraction
and variational Bayes for student’s t mixture model for clustering. The spike-sorting
code is parallelized through OpenMP (www.openmp.org) and available at http://
etos.sourceforge.net/.

2.2.2 KiloSort

“KiloSort” is a spike-sorting package developed in MATLAB for handling data
coming from MEAs with large number of recording electrodes (Pachitariu et al.
2016). The package uses template matching for detection and clustering of spikes
and can handle batch processing using both GPUs and CPUs. The source code can
be downloaded from https://github.com/cortex-lab/KiloSort.

2.2.3 KlustaKwik

“KlustaKwik” is a standalone program written in C++ for automatic clustering
analysis (Harris et al. 2000) of high-dimensional spiking data by fitting a mixture

https://www.nitrc.org/projects/toolconnect/
www.openmp.org
http://etos.sourceforge.net/
http://etos.sourceforge.net/
https://github.com/cortex-lab/KiloSort
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of Gaussians and hard expectation–maximization algorithm with unconstrained
covariance matrices (Kadir et al. 2014; Rossant et al. 2016). The package can be
downloaded from https://github.com/klusta-team/klustakwik.

2.2.4 MClust

“MClust” is a spike-sorting toolbox developed in MATLAB. It supports both manual
and automated clustering with possibility to manual feature selection (Redish 2014)
on data recorded from single electrode, stereotrode, and tetrode. It allows manual
corrections to automated clustering results and can be obtained from http://redishlab.
neuroscience.umn.edu/MClust/MClust.html.

2.2.5 NEV2lkit

“NEV2lKit” is a package written in C++ with routines for analysis, visualization,
and classification of spikes (Bongard et al. 2014). It is a preprocessor for the analysis
of intra- and extracellular spiking neuronal signals. The main purposes served by the
toolbox includes: loading ASCII files as well as neural event files (NEV) and extract
spike events from them, PCA-based sorting of spikes based on the spike waveform,
and saving of spike timestamps, unit information, and the spike signals into ASCII
or NEV files. It provides accurate, efficient, and consistency across experiments.
Available at http://nev2lkit.sourceforge.net/.

2.2.6 OSort

“OSort” is a template-based, unsupervised, online spike-sorting algorithm written in
MATLAB (Rutishauser et al. 2006). It uses residual-sum-of-squares-based distance
method and custom thresholds to on-the-fly sort of the recorded spikes. As the
algorithm is online, the tool uses a technique where the clusters are built and adapted
iteratively over the course of the recording. Available at http://www.urut.ch/new/
serendipity/index.php?/pages/osort.html.

2.2.7 SpikeOMatic

“SpikeOMatic” is a spike-sorting package developed in R (Pouzat and Chaffiol
2009). It implements two sophisticated data generation models, namely Gaussian
mixture model (GMM) and dynamic hidden Markov model (DHMM). For statistical
inference for the abovementioned models, the tool makes use of expectation–
maximization for GMM and Markov chain Monte Carlo method for DHMM.
The package can be downloaded from http://www.biomedicale.univ-paris5.fr/
SpikeOMatic/.

https://github.com/klusta-team/klustakwik
http://redishlab.neuroscience.umn.edu/MClust/MClust.html
http://redishlab.neuroscience.umn.edu/MClust/MClust.html
http://nev2lkit.sourceforge.net/
http://www.urut.ch/new/serendipity/index.php?/pages/osort.html
http://www.urut.ch/new/serendipity/index.php?/pages/osort.html
http://www.biomedicale.univ-paris5.fr/SpikeOMatic/
http://www.biomedicale.univ-paris5.fr/SpikeOMatic/
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2.2.8 Spyke

“Spyke” is a python toolbox for visualizing, navigating, and spike sorting of
high-density multichannel extracellular spikes (Spacek et al. 2009). It uses PCA
for dimensionality reduction and modified gradient ascent clustering algorithm
(Fukunaga and Hostetler 1975; Swindale and Spacek 2014) to classify the features.
The sorting method initially assigns each event to a channel and then these channel-
based clusters are subdivided into possible distinguished clusters. Available at http://
spyke.github.io/.

2.2.9 SpyKING CIRCUS

“SpyKING CIRCUS” is a python toolbox aiming to provide spike sorting for high-
density multichannel extracellular spikes (Yger et al. 2018). This semiautomatic
spike-sorting package performs highly parallel code execution to handle large
number of recording electrodes. Based on a greedy template matching approach
and with the help of a smart clustering technique, the package can efficiently
sort spikes from up to 4225 channels. The code is available at https://github.com/
spyking-circus/spyking-circus with a ground truth dataset at https://zenodo.org/
record/1205233/export/hx#.WrORP3XwaV4.

2.2.10 UltraMegaSort2000

“UltraMegaSort2000” is a MATLAB-based toolbox for spike detection and cluster-
ing which implements a hierarchical clustering scheme using similarities of spike
shape and spike timing statistics, and provides false-positive and false-negative
errors as quality evaluation metrics (Fee et al. 1996; Hill et al. 2011). The toolbox
also provides the users with tools to manually correct the automatically generated
clusters. Available at http://physics.ucsd.edu/neurophysics/software.php.

2.2.11 Wave_Clus

“Wave_Clus” is probably the most popular spike-sorting package to date. Developed
in MATLAB, it uses sophisticated wavelet transformation-based time–frequency
analysis for feature selection and a “temperature”-based superparamagnetic clus-
tering (Blatt et al. 1996) method to sort the features into different clusters (Quian
Quiroga et al. 2004). It is available for downloading at https://github.com/csn-le/
wave_clus.

http://spyke.github.io/
http://spyke.github.io/
https://github.com/spyking-circus/spyking-circus
https://github.com/spyking-circus/spyking-circus
https://zenodo.org/record/1205233/export/hx#.WrORP3XwaV4
https://zenodo.org/record/1205233/export/hx#.WrORP3XwaV4
http://physics.ucsd.edu/neurophysics/software.php
https://github.com/csn-le/wave_clus
https://github.com/csn-le/wave_clus
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3 Future Perspectives

In terms of offline processing and analysis of extracellular neuronal signals, the neu-
roscientific community has seen active participation and contribution from diverse
disciplines where individual laboratories developed novel tools and techniques and
shared them with the community. As a result of these great efforts, now it has
been possible to establish some standardized analyses from these available tools.
However, it is noteworthy that, to date, only a few tools are available to the
community which are capable of doing the extracellular neuronal signal processing
and analysis online which is huge bottleneck for future generation closed-loop real-
time systems (Mahmud and Vassanelli 2016).

Also, keeping pace with the technological advancements and speed of the Inter-
net, next-generation online distributed processing and analysis tools are becoming
increasingly essential. Exploiting the existing institutional infrastructures, it might
be possible to transform the interinstitutional competition into multi-institutional
collaboration. In such scenario, a vital requirement is to have secure infrastructures
where multi-institutional neuronal signal analysis facilities shall be capable of
integrating their data and tools seamlessly (Mahmud et al. 2012b) with the option
to protect individual institute’s proprietary data. Additionally, these infrastruc-
tures should support user-friendly interfaces allowing even experimentalists with
minimal information technology skills to explore, navigate, and use provided
scientific data and services. Towards these goals, cloud computing and service-
oriented architectures might be utilized through the distributed infrastructure. These
approaches allow better representation of responsibilities taken by the different users
in accordance to their granted privileges. As an early example of such systems, the
Spike-Sorting Evaluation Project initiative (http://spike.g-node.org/) aims to lay a
platform for evaluating the performance of spike-sorting algorithms through sharing
benchmark data and receiving spike-sorting results for comparison.

Furthermore, considering the growing usage of in vitro MEA technology in appli-
cations contributing to improved quality of life for patients, such as pharmacological
screening and stem-cell-derived neuronal cultures (Tanskanen et al. 2018), it is
becoming increasingly important to standardize experimental protocols and analysis
procedures, and data and code sharing to foster experimental reproducibility and
validation of obtained results for a combined and accelerated maturation of ground-
breaking discoveries.

In our opinion, the development is expected towards:

– Development of novel tools capable of performing online analyses,
– Design and implementation of secure and protected systems,
– Advance on cloud-based web applications,
– Facilitate easy deployment of data,
– Reusability and sharing of tools with adaptability to changing requirements, and
– Empower researchers to share data and functionalities that they want to publish.

http://spike.g-node.org/
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4 Conclusion

With the tremendous growth of neurotechnologies, scientists can acquire data from
multiple levels and multiple sources. This poses a great challenge to the neurosci-
entific community to automatically process and analyze those data in order to find
meaningful conclusions towards understanding brain’s functioning and to devise
translatable technologies towards autonomous diagnosis and treatment strategies
for treating brain diseases. This chapter introduced the reader to the popular open-
source automated methods for processing and analysis of extracellularly recorded
neuronal signals from in vitro devices. Towards the end, some perspective research
lines—where future developments are expected—have also been outlined.
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