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Abstract Nitric oxide (NO) and reactive oxygen species (ROS) are central mes-
sengers in the way plants respond to environmental and hormonal stimuli and for the
configuration of root architecture. ROS determine the boundaries between the
meristem and cell elongation zone of the primary root and act in concert with NO
to promote lateral root primordia maturation and epidermal cell differentiation.
Overall, the capacity of roots to acquire nutrients such as phosphate, nitrate, and
sulfate is determined by NO and ROS via their effects on root hair development and
expression of genes for improving nutritional responses or orchestrating the activ-
ities of proteins of all major hormonal pathways, including auxin, ethylene, jasmonic
acid, brassinosteroids, and abscisic acid. Specifically, ROS target phosphatases and
transcription factors of two main families, MYB and BHLH, these later being
probably recruited by the mediator complex to the promoters of genes for transcrip-
tion. Here, we review the information about the functions and mechanisms of NO
and ROS modulated-root organogenesis, including growth, patterning, and
differentiation.
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1 Root System Architecture and Patterning

The root system provides support to photosynthetic and reproductive organs of
plants and explores the soil to acquire water and nutrients. Its tridimensional
configuration commonly referred to as root architecture depends upon cell division,
elongation and differentiation in the primary root, and branching patterns that
develop postembrionically, all these aspects being fine-tuned regulated by the
growth conditions.

The model plant Arabidopsis thaliana develops a taproot system typical of dicots,
in which the primary root sustains indeterminate growth and forms a dominant axis.
In contrast, multiple embryonic primary and seminal roots are formed in cereals such
as maize, sorghum, and wheat (Martínez-de la Cruz et al. 2015; Rogers and Benfey
2015). Adventitious and/or lateral roots increase the overall root absorptive capacity
since every branch can develop specialized types of epidermal cells termed root
hairs, which are directly involved in water and nutrient uptake (Salazar-Henao et al.
2016; Du and Scheres 2018; Stoeckle et al. 2018).

Roots are very sensitive and respond to light, gravity, acidity or alkalinity,
temperature, and salinity (Mo et al. 2015; Ruiz-Herrera et al. 2015; Ha et al. 2018).
In actively growing root tips, three main regions can be distinguished: the root apical
meristem, an elongation zone, and a differentiation region. In the meristem, cells
proliferate at a high rate throughmitosis, which is sustained by the root stem cell niche
(RSCN), composed by the quiescent center (QC) and peripheral initials or stem cells
that divide asymmetrically for self-renewing (Cederholm et al. 2012). Later on, the
daughter cells enter into the elongation zone where mitosis ceases, increase in size,
and begin to differentiate (Tsukagoshi 2016). The differentiation region is typified by
the formation of root hairs from epidermal cells termed trichoblasts, vascular tissue
formation occurs, and lateral roots initiate from pericycle cells (Salazar-Henao et al.
2016; Du and Scheres 2018). All major root developmental transitions are related to
specific NO and ROS signatures. This chapter updates the knowledge on the func-
tions and mechanisms of NO and ROS in the signaling network that orchestrates root
system development.

NO plays critical roles in plant growth and in all major developmental transitions,
including embryogenesis, seed germination, root system configuration, flowering,
fruit maturation, and leaf senescence (Domingos et al. 2015). Biochemical and
cellular analyses show the presence of NO and NO-derived molecules in roots of
several species, for instance, using fluorescent indicators, like
4,5-diaminofluorescein diacetate (DAF-2DA), which is a cell-permeable compound
that when nitrosylated by NO emits fluorescence (Airaki et al. 2015; Corpas and
Barroso 2015; Yamasaki et al. 2016), has revealed that in Arabidopsis, NO accu-
mulates in the primary root tip, trichoblast cells, and lateral root cap, and its levels
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increase upon treatment with NO donors (Fig. 1). Recent advancements further
support the importance of NO cross talking with hormonal pathways for modulation
of growth and patterning.

ROS comprise superoxide anion (O2
��), hydrogen peroxide (H2O2), singlet

oxygen (1O2), and hydroxyl radical (�OH). These reactive molecules are generated
at organelles, including mitochondria, chloroplasts, and peroxisomes, but also in the
plasma membrane by ROS-generating enzymes, such as the plant homologs of

Fig. 1 NO detection in distinct cell types and zones of the Arabidopsis primary root. Representa-
tive confocal images of primary roots from 7-day-old Arabidopsis (Columbia-0 ecotype) seedlings
that were stained with the specific NO indicator DAF-2DA for NO detection. (a) Primary root. (b)
Root hair initiation in differentiation zone. (c) NO accumulation in trichoblast cells. (d, e) Root tips
under standard growth conditions or supplemented with NO donor SNP, respectively. Arrows in (a)
show NO accumulation in several stages of root hair development and in root cap cells, in (b) mark
a trichoblast that just started to elongate, and in (d) and (e) show the first root hair developed.
Fluorescence signal was detected using a confocal laser scanning microscope and monitored with
an argon laser with an excitation line from 488 to 568 nm and an emission window from 585 to
610 nm. Scale bar ¼ 70 μm in (a, d, e) and 50 μm in (b, c). The green color corresponds to the
detection of NO. Note the correlation between root hair size and NO fluorescence in SNP-treated
seedlings
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respiratory-burst NADPH oxidases and class III peroxidases (Apel and Hirt 2004;
Marino et al. 2012; Corpas et al. 2015; Tsukagoshi 2016). Plants accumulate ROS in
specific root domains and/or in response to physiological or environmental stimuli
(Fig. 2; Xia et al. 2015; Mittler 2017). ROS target DNA, proteins, lipids, and
carbohydrates, causing conformational changes (Stadtman and Levine 2003;
Nowicka et al. 2013; Tian et al. 2018), and their effects on cellular processes are
balanced by the rate of production and cell detoxification via antioxidants or
scavenging enzymes such as superoxide dismutase (SOD), ascorbate peroxidase
(APX), and catalase (CAT). ROS are not inherently toxic, such that the oxidation of
regulatory proteins may improve their function and all types of oxidative modifica-
tions are important for cell, tissue, and organ specification (Foyer et al. 2017; Tian
et al. 2018).

Fig. 2 Roles of NO and ROS in root organogenesis. ROS detection by confocal microscopy using:
(a) fluorescent dye staining H2DCF-DA (20,70-dichlorofluorescein) in the differentiation zone and
(b) the H2O2-specific sensor 35s:Hyper:YFP in the meristem. The image in (b) was acquired at
405 nm wave lengths for Hyper-H2O2-independent excitation and 485 nm for Hyper-H2O2-depen-
dent excitation and an emission line of 530 nm. (c) NO and ROS signaling modulate primary root
growth, root branching, and root hair production. Red/yellow color shows the greater H2O2

concentration within the primary root tip. Scale bars in a and b ¼ 100 μM
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2 Primary Root Growth

Application of sodium nitroprusside (SNP), a NO donor to tomato, cucumber, and
Arabidopsis plants, reduces primary root growth, whereas the NO scavenger
2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks
the action of NO donors and increases root elongation. Characterization of the
Arabidopsis NO-hypersensitive mutant, no overproducer/chlorophyll a/b binding
protein underexpressed 1 (nox1/cue1), showed the correlation between SNP hyper-
sensitivity and formation of a shorter primary root (Correa-Aragunde et al. 2004;
Fernández-Marcos et al. 2011).

In Arabidopsis, low NO levels cause programmed cell death (PCD), whereas NO
accumulation induces DNA damage and cell cycle arrest at G1 and G2/M phases,
restraining root growth (Bai et al. 2012). Shen et al. (2013) showed that the expression
of CYCD3;1 is modulated by NO levels, NO production mutant Atnos/noa1 defective
at Arabidopsis thaliana nitric oxide synthase 1/nitric 101 oxide associated 1 have
repressed the CYCD3;1 gene, whereas its constitutive expression complements the
mutant phenotype and restores normal root development. The undifferentiated status
of root stem cells requires expression of WUSCHEL-related homeobox 5 (WOX5) in
the quiescent center. Sanz et al. (2014) showed that application of NO synthesis
inhibitors reduces WOX5 expression and this effect could be reverted by SNP
supplementation. In addition, the development of the Arabidopsis triple mutant nia1
nia2 noa1 defective on the nitrate reductases 1 and 2 confirmed that decreased NO
production and signaling lead to small root meristems with abnormal divisions.
The mentioned evidences point to NO as a key player in regulating stem cell activity
and root meristem maintenance.

ROS determine the balance among cell proliferation and differentiation in the
Arabidopsis primary root. ROS are distributed within the root tip, particularly in the
meristem and elongation zone (Fig. 2; Tsukagoshi et al. 2010; Hernández-Barrera
et al. 2015). Considerable advances have been made toward identifying the proteins
orchestrating ROS homeostasis in roots. An Arabidopsis P-loop NTPase (APP1)
protein located in mitochondria of root meristems displays ATPase activity and
hydrolyzes nucleoside triphosphates. Mutation of APP1 gene causes a reduction in
ROS levels and increases cell division rate in the QC, which leads to stem cell
differentiation (Yu et al. 2016). Treatments with methyl viologen (MV) and H2O2

normalized root patterning, implying that both an increased rate of cell division in
the QC and stem cell differentiation can be attributed to a low level of ROS. APP1
acts upstream of the key transcription factors scarecrow (SCR) and short root (SHR)
to control the undifferentiated status of the meristem and to fine-tune root stem cell
niche activity. Impairment of root meristem proliferation could also be observed in
Arabidopsis mutants lacking the mitochondrial protease AtFTSH4, for which expo-
sure to high temperatures caused the precocious cessation of root growth, which
correlates with oxidative stress and progressive mitochondria dysfunction
(Dolzblasz et al. 2018).
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Kong et al. (2018) characterized the Arabidopsis prohibitin PHB3, which belongs
into a highly conserved family of proteins that restrict cell proliferation in all three
domains of life. phb3 Arabidopsismutants developed a short root with higher rate of
QC division and meristem differentiation that correlates with both O2

�� and H2O2

accumulation. RNA-seq analysis was performed to compare the root transcriptomes
of WT and phb3mutants, in which the expression of ethylene response factors (ERF)
115, 114, and 109 was highly increased in phb3 roots and was antagonized by
diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases. Tissue-specific gene
expression analysis further indicated that PHB acts through phytosulfokine (PSK)
peptide hormones and independently of the plethora (PLT) transcription factors.
Taken together, these data indicate that ERF115, ERF114, and ERF109 mediate
ROS signaling downstream of PHB3 to control root stem cell niche maintenance.

ROS mediates root meristem function during sensing of pathogens or molecules
derived from microbes. Mabuchi et al. (2018) identified genes regulated by H2O2 in
the meristem and elongation zone, including the transcription factor with basic helix-
loop-helix (BHLH) domains termed upbeat1 (UPB1), which controls the expression
of a set of peroxidases that establish the ROS gradient correlated with root tip
zonation. ROS-induced expression of MYB30, a transcription factor responsive to
pathogens and targets genes involved in the transport of very-long-chain fatty acids
(VLCFAs) in the epidermis and cortex cell layers of the root tip. Comparison of root
growth of wild-type and myb30-2 seedlings to treatment with Flg22, a microbe-
associated molecular pattern (MAMP) that represses growth revealed the resistance
of the mutants, suggesting that a MYB30-dependent regulatory network links root
growth and immunity. This indicates that growth and defense trade-offs are orches-
trated via a single regulatory node, and to this respect, roots colonized with the plant
pathogen Pseudomonas aeruginosa or treatment with the bacterial virulence factor
pyocyanin caused a strong reduction of cell division and elongation (Ortiz-Castro
et al. 2014). In this case, however, pyocyanin modulation of the primary root growth
required the gaseous hormone ethylene for signaling, since the Arabidopsis etr1-1,
ein2-1, and ein3-1 ethylene-related mutants were less sensitive to pyocyanin-
induced root stoppage. Not only bacterial toxins modulate ROS levels in roots,
Pelagio-Flores et al. (2016) while characterizing the role of the neurotransmitter
serotonin as a plant signaling molecule found that the ethylene inhibitor AgNO3

antagonized its growth-repressing effects on Arabidopsis primary roots, whereas
ethylene overproducer 3 mutants were oversensitive to this compound. Thus, ethyl-
ene and ROS are mediators in transducing serotonin and pyocyanin bioactivity.

3 Root Branching

Root branching occurs via the formation of lateral roots, structures formed by de
novo organogenesis from pericycle, an inner tissue within mature roots. Overall,
lateral root formation comprises two main programs: (1) initiation, through which a
lateral root primordium is formed from lateral root founder cells, and (2) emergence,
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which allows the passage of the primordium through at least three overlying cell
layers, the endodermis, cortex, and epidermis, in order to emerge (Du and Scheres
2018; Stoeckle et al. 2018).

NO promotes lateral and adventitious root maturation (Liao et al. 2012; Ma et al.
2014). Early studies demonstrated that application of NO donors, SNP and SNAP, to
hypocotyl explants of cucumber activated de novo root organogenesis. The cellular
components sensitive to NO included Ca2+-dependent protein kinases (CDPKs),
phosphatidic acid (PA), and mitogen-activated protein kinases (MAPKs), which
involve cGMP and Ca2+ as second messengers (Lanteri et al. 2006). Environmental
stimuli, such as CO2, promote lateral root initiation by increasing the production of
NO, which subsequently increases cytosolic Ca2+ concentration-activating plasma
membrane and/or intracellular Ca2+-permeable channels. Besides, NO acts down-
stream of plant hormones to control root organogenesis, including auxin, jasmonic
acid, and ethylene (Fig. 2c). In cucumber, Arabidopsis, and rice, NO donors mimic
the effect of auxin in adventitious root formation, and NO accumulation in lateral
root primordia promoted its maturation (Kolbert et al. 2008; Chen and Kao 2012).
NO is indispensable for crown root primordia formation, whereas a reduction of
intracellular levels blocks this process in rice seedlings (Xiong et al. 2009).

A few Arabidopsis mutants have been identified, which represent valuable tools
for investigating NO biosynthesis and/or signaling, including argh1/2 (arginine
amidohydrolase 1/2), which is defective in an enzyme involved in arginine (Arg)
biosynthesis (Flores et al. 2008). Mutations of either Arabidopsis ARGH1, two genes
result in increased formation of lateral and adventitious roots, accompanied with NO
accumulation. argh1/2 double mutants show higher sensitivity on lateral root for-
mation in response to auxin and increased expression of the auxin-responsive
reporter DR5:GUS in root tips, suggesting that arginine or its derivatives are
potential NO sources to control root morphogenesis (Flores et al. 2008).

The cell wall remodeling of pericycle overlying tissues correlates with ROS
deposition in the apoplast, which overlaps with the expression domains of extracel-
lular ROS donors of the Respiratory burst oxidase homologs (RBOH), and
disrupting or enhancing expression of RBOH promotes or antagonizes lateral root
emergence (Orman-Ligeza et al. 2016). Thus, RBOH-mediated ROS production
establishes the lateral root primordium boundary that facilitates lateral root out-
growth, and it was recently found to depend on the activity of the MYB36 transcrip-
tion factor (Fernández-Marcos et al. 2017). MYB36 is expressed in the endodermis
of primary roots and in developing lateral root primordia, and in myb36-1 mutants,
these structures manifest defective progress after stages IV–V leading to a flat
appearance in contrast to the dome-shaped form of the wild type. MYB36 controls
a set of peroxidase genes, which maintain the ROS balance in cell tissues overlying
the primordium and in this manner fine-tunes its emergence through the parent
layers.

ROS are specifically involved in lateral root outgrowth, since H2O2 supplemen-
tation accelerates lateral root development from newly formed primordia. The effects
of ROS is independent of auxin signaling, because H2O2 could restore lateral root
formation in auxin-related mutants that are defective in cell wall softening and

Nitric Oxide and Hydrogen Peroxide in Root Organogenesis 163



remodeling (Orman-Ligeza et al. 2016). ROS may also act downstream of auxins as
reported for the function of the Arabidopsis peroxisome-localized copper amine
oxidase ζ (CuAOζ), which controls the ROS production essential for lateral root
development. Mutation of CuAOζ results in deficient auxin-induced ROS generation
and pinformed2 (PIN2)-mediated auxin transport (Qu et al. 2017). The UPB1
transcription factor responsible of ROS distribution within the primary root tip is
critical in the branching process as upb1-1 mutants develop a higher number of
emerged lateral roots and, conversely, UPB1 overexpressing roots accumulate more
primordia, which nowadays failed to emerge (Manzano et al. 2014). In addition,
hormonal stimuli that trigger the root branching program rely on ROS to break
lateral root primordium quiescence. Treatment of Arabidopsis roots with neurotrans-
mitters serotonin and melatonin increased lateral root development, which correlated
with higher H2O2 levels (Pelagio-Flores et al. 2011, 2012; Chen et al. 2018). The
compounds modulated expression of genes responsible for G2-M cell cycle transi-
tion, including CDKB1;1, CDKB2;1, CDKB1;1, and CDKB2;1, in a process that
involves ethylene and jasmonic acid signaling (Pelagio-Flores et al. 2016; Chen et al.
2018).

4 Root Hair Development

Root hairs are tubular outgrowths from epidermal cells termed trichoblasts that are
specialized in form and function to take up water and nutrients and represent an
important niche for bacteria inhabiting the rhizosphere. Root hairs develop from a
bulge in the trichoblast, which elongates via tip growth and reaches its maximum size
(up to 1 mm in Arabidopsis) depending upon the plant hormonal status and nutrient
availability in the soil and proceeds through the generation of a high Ca2+ gradient
(Shin et al. 2005; Bhosale et al. 2018; Dindas et al. 2018). For instance, phosphate
starvation increases up to threefold the overall root surface through inducing extra cell
files of root hairs and increasing the growth of these structures in a NO- and
ROS-mediated genetic program (López-Bucio et al. 2003; Ruiz-Herrera et al. 2015;
Gutiérrez-Alanís et al. 2018).

NO promotes epidermal cell differentiation during root hair development of
lettuce (Lactuca sativa) and Arabidopsis (Fig. 1a, d, and e; Lombardo et al. 2006).
SNP application to lettuce plants resulted in almost all rhizodermal cells to be
differentiated into root hairs. Treatment with the synthetic auxin 1-naphthyl acetic
acid (NAA) increased root hair formation that was prevented by the NO scavenger,
cPTIO (Lombardo et al. 2006). Two Arabidopsis mutants associated to NO produc-
tion, namely, Atnos1/noa1 and nia1 nia2 single and double mutants, respectively,
are affected in root hair growth, which could be phenocopied in wild-type plants by
cPTIO (Lombardo et al. 2006). Interestingly, NO was detected inside the vacuole of
root hairs and acts as a critical component for endocytosis, vesicle formation, and
trafficking, nucleus migration, and vacuolar development during root hair growth,
and NO application restored vesicle formation and trafficking in nia1 nia2 mutants.

164 J. Raya-González et al.



Root hair development is increased in Atgsnor1-1 and reduced in Atgsnor1-3 plants
defective on S-nitrosoglutathione (GSNO) reductase (AtGSNOR), which catalyzes
the posttranslational modifications of proteins via the addition of an NO moiety to a
reactive cysteine thiol, to form an S-nitrosothiol (Kwon et al. 2012). Thus,
nitrosylation can be regarded as an instructive signal for tip growth of root epidermal
cells.

Different molecules have been reported to affect ROS homeostasis principally
during root hair development. For instance, treatments with vanadate increases root
hair density and length, and this correlated with induced ROS production. Lin et al.
(2015) investigated the pathways involved in vanadate-induced root hair formation
in Arabidopsis by supplying diphenylene iodonium (DPI), an inhibitor of NADPH
oxidase, and using the NADPH oxidase mutant root hair-defective mutant 2 (rhd2)
that encodes a NADPH oxidase (AtrbohC). Vanadate changed the levels of tran-
scripts related to cell wall formation and ROS signaling and required the NADPH
oxidase. Taken together, these studies support the important role of ROS homeosta-
sis in regulating root hair growth in response to environmental stress.

Several screens identified Arabidopsis mutants lacking root hairs or producing
short-root hairs that helped clarifying the roles of ROS in polar growth. The RHD
(root hair defective) /RSL (root hair defective like) transcription factors control both
the initiation and elongation phases during root hair development. Foreman et al.
(2003) showed that rhd2 regulates root hair growth through the activation of Ca2+

channels (Foreman et al. 2003). On the other hand, RHD6 activates the RSL4/RSL2
transcription factors, which act downstream of auxin to release auxin response
factors (ARFs) ARF5, ARF7, ARF8, and ARF19 from Aux/IAA proteins. Auxin
activation of RSL4 expression was related to changes in ROS homeostasis through
the RBOHC, H, and J proteins and four type III-secreted peroxidases (Mangano et al.
2017, 2018).

Auxin response involves several components of the mediator (MED) transcrip-
tional complex, which acts as a bridge between ARFs and the RNA polymerase
II. Phytochrome and flowering time1 (PFT1) corresponds to the MED25 subunit and
its loss of function renders plants oversensitive to auxin (Raya-González et al. 2014).
Global gene expression analysis revealed the activation of class III peroxidases by
PFT1, while the corresponding Arabidopsis mutants had an altered O2

�� and H2O2

distribution, indicating that PFT1 is critical to maintain redox homeostasis. Normal-
ization of ROS levels rescued the pft1 mutant phenotype, suggesting its essential
prerequisite for root hair patterning through cell wall remodeling genes
(Sundaravelpandian et al. 2013). These results link the MED complex via PFT1/
MED25 to the transcriptional machinery orchestrating ROS distribution.

In plants, protein phosphatases regulate a myriad of cellular processes via
dephosphorylation reactions that affect ROS homeostasis. The starch excess4
(SEX4) and like sex four2 (LSF2) are two glucan phosphatases controlled by the
redox status. LSF2 is located in the chloroplast and cytoplasm and is related to starch
metabolism. Zhao et al. (2016) characterized the lsf2-1mutant, which shows reduced
rates of O2

�� generation and higher levels of H2O2 in response to oxidative stress,
which correlates with root hair growth. LSF2 interacts with mitogen-activated
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protein kinase 8 (MPK8), a known component of ROS homeostasis pathways in the
cytoplasm. Thus, a MAPK cascade may integrate LSF2 function, ROS homeostasis,
and root hair development.

5 Shoot-to-Root Long-Distance Signaling

Roots respond to local soil conditions as well as to systemic signal cues, and this is
important for adaptation and survival to the dynamic environment (Raya-González
et al. 2017). Light is required for photosynthesis and reconfigures plant architecture,
such that different wave lengths are perceived in stems and leaves through red/far-
red photoreceptor phytochromes, or cryptochromes, which mediate primary root
elongation, gravitropism, and hormone responses (Lee et al. 2016). Abscisic acid
(ABA) accumulates in shoots following light exposure and is transported long
distance to roots where it triggers developmental plasticity linked to ROS, antioxi-
dants, and ROS-detoxifying enzymes, specifically during mitosis (de Tullio et al.
2010).

Two reports have clarified the mechanisms by which ABA, imported from shoots
or locally produced in roots, influence meristematic activity, and both involved ROS
as second messengers. Yang et al. (2014) identified a recessive, ABA-oversensitive
Arabidopsis mutant with retarded growth named abo8-1, which is defective in a
pentatricopeptide repeat (PPR) protein responsible for the correct functioning of the
mitochondrial complex I. Interestingly, abo8-1 mutants accumulated more ROS in
root tips than the wild type, and this effect was exacerbated by ABA treatment. High
ROS levels reduced root meristem activity through affecting the expression of genes
that determine stem cell niche identity, whereas the normal growth could be revers-
ibly recovered by treatment with the reducing agent GSH. In the other works, Ha
et al. (2018) showed that in Arabidopsis plants exposed to light, the phyB photore-
ceptor stimulates ABA synthesis in shoots and then the hormone moves to roots and
triggers a peroxidase-mediated ROS detoxification.

UV light may cause damage to DNA and the residing mutations often result in
cell death. Genetic screens aimed at identifying ABA-related genes found the
MED18 subunit of the transcriptional mediator complex, because the med18 loss-
of-function mutant is oversensitive to root growth inhibition by ABA (Zhu et al.
2017). Noteworthy, the med18 mutants show delayed root growth, related to cell
death in the root meristem, which exacerbates with age and/or exposition to DNA
damaging agents (Raya-González et al. unpublished). Cell death was reduced in
med18 seedlings grown in darkness but remained when only the shoot is exposed to
light, suggesting that MED18 acts to protect root meristem cells from local cell
death, and/or in response to root-acting signal (s) such as ABA and/or ROS emitted
by the shoot in response to light stimuli. med18 mutants overexpress the cell
regeneration factor ERF115, which triggers cell division and replenishes the stem
cell pool during root tip regeneration in a similar manner to animal limb recovery,
and in such case the lost part of the body could be replaced through conversion of
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normal cells into stem cells that act as progenitors of the missing tissues (Efroni et al.
2016; Heyman et al. 2016). As mentioned above ERF115 overexpression is found in
phb3mutants that displayed a short-root phenotype dependent of ROS deregulation.
These data evidences the break point between root growth and adaptation to stress,
which is integrated by a complex but fine-tuned pathway in which ABA, MED18/
ERF115 and ROS are key components.

6 Hormone Cross Talk

NO and ROS interact with most signaling pathways underlying hormonal and
nutritional responses in plants, which influence, at least to some degree, the endog-
enous levels of these reactive molecules (Freschi 2013; Sanz et al. 2015; Liu et al.
2018; Sun et al. 2018). Brassinosteroids-auxin-ethylene cross talk activates NO- and
ROS-dependent mechanisms for growth modulation, which occur in a concentration
and tissue-dependent manner. Brassinosteroid (BR) synthesis and signaling enable
root growth and development, but their alteration by either pharmacological or
genetic means induces a short-root phenotype through decreased cell division and
elongation (Wei and Li 2016; Lv et al. 2018). The response of roots to BRs
application correlated with enhanced NO levels and was blocked by cPTIO,
suggesting that NO is required for BR-induced changes in root system architecture
(Tossi et al. 2013). Indeed, the promoting effect of ethylene on adventitious rooting
in cucumber explants could be reverted by cPTIO and NO synthesis inhibitors
(Xu et al. 2017).

Tian et al. (2018) showed that BRs binding to its receptor kinase BRI1 promoted
dephosphorylation of the transcription factor brassinazole-resistant1 (BZR1), and
increased intracellular levels of H2O2, which in turn caused oxidation of BZR1 at a
conserved cysteine residue. This modification promoted the interaction with auxin
response factor6 (ARF6) and phytochrome interacting factor4 (PIF4), which act as
regulators in the auxin and light-signaling pathways, respectively. A genetic screen of
Arabidopsis mutants producing short primary roots identified the det2-9 mutant
defective in a steroid 5α-reductase from the BR synthesis pathway. The det2-9 root
phenotype correlated with reduced cell number in meristem and decreased cell size at
the maturation zone, which was caused by an enhanced rate of ethylene biosynthesis
and was recovered in the det2-9/acs9 double mutant and det2-9/ein3/eil1-1 triple
mutant, which have defects either in ethylene synthesis or ethylene signaling, respec-
tively. These data indicate that ethylene signaling acts downstream of BRs for the
modulation of cell processes that determine primary root growth. Interestingly, the
det2-9 mutant produced more O2

�� than wild type plants through the peroxidase
pathway (Lv et al. 2018).

The alkamides comprise a group of fatty acid amides, which have emerged as
modulators of root development (López-Bucio et al. 2006). Arabidopsis root
explants treated with N-isobutyl decanamide showed higher adventitious root num-
ber and an increase in NO accumulation in zones of adventitious root formation
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(Campos-Cuevas et al. 2008). Later on, Méndez-Bravo et al. (2010, 2011) found that
morphogenetic effects of alkamides decreased by cPTIO application. Interestingly,
Arabidopsismutants defective at theDRR1 (decanamide resistant root 1) locus were
less sensitive in both primary root reduction and lateral root promotion to NO
treatments and bacterial quorum-sensing perception and had decreased senescence
(Morquecho-Contreras et al. 2010), suggesting its role as a modulator in small lipid
amide and NO sensing.

7 Conclusions

NO and ROS production by plants has been traditionally related with adaptation to
stress and defense against pathogens. The emerging view is that accumulation and/or
distribution of these reactive molecules support the basic cellular programs defining
tissue and organ shape (Fig. 2c). Their fundamental role underlies root growth and
development and goes beyond the polarized tip growth of the primary root, lateral
roots, and root hairs.

Major roles of NO have been defined during lateral root formation, and its
alteration causes root apical meristem defects and growth inhibition while reducing
auxin transport. It also orchestrates root architecture configuration in response to
bioactive metabolites such as alkamides, bacterial quorum-sensing signals, and cross
talks with most phytohormone signaling pathways including auxin, ethylene, and
jasmonic acid. The recent characterization of NO-related mutant drr1 of
Arabidopsis, unraveled its critical function in plant senescence, whereas NO pro-
duction through nitrate reductases, NOS, and NOS-related enzymes supports a direct
link among nutrition and metabolism that should influence all major plant phase
transitions.

The environmental and hormonal long-distance communication between shoots
and roots are orchestrated by ROS acting in the meristems. The ongoing character-
ization of Arabidopsis mutants has proven to be useful toward identifying the
signaling players in ROS accumulation/detoxification, for which phosphatases and
MYB and BHLH transcription factors orchestrate gene expression, probably being
recruited by the mediator complex to the promoters of genes for transcription.

A very interesting perspective is that an ABA-ROS signaling could inform the root
of the light quality in leaves to fine-tune cell division and elongation and, evenmore, to
support regeneration of damaged tissues. Global gene expression analysis demon-
strated that the regulatory network orchestrated by ROS is dynamic and specific and
that the phytohormones auxin, ethylene, jasmonic acid, and brassinosteroids influence
positively or negatively ROS levels in the meristem and elongation zones and deter-
mine the rate of growth of primary and lateral roots. Characterization of the activities of
the proteins and other macromolecular targets of ROS may confirm that nitrosylation
and oxidation have fundamental roles in organogenesis and in the way plants react to
the provision of mineral nutrients, such as nitrate, phosphate, and sulfate, which are
required in high amounts to support agriculture.
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