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Abstract Hydrogen peroxide (H2O2) and nitric oxide (NO) are two key molecules
representative of two families of related compounds designated as reactive oxygen
and nitrogen species (ROS and RNS, respectively). Our present knowledge about
where, when, and how these molecules are produced in a specific plant tissue either
under physiological or stress conditions and how they interact support the relevant
crosstalk between these molecules which in many cases are autoregulated through-
out posttranslational modifications. Thus, either S-nitrosation or nitration of different
enzymes of the ROS metabolism including superoxide-generating NADPH oxidase
(NOX) or antioxidant enzymes such as catalase and superoxide dismutase (SOD)
and components of the ascorbate-glutathione cycle may take place under diverse
situations. However, H2O2 and NO may react among them giving rise to a more
powerful toxic species, the hydroxyl radical (�OH), which may react with most
biomolecules (nucleic acids, proteins, and lipids), leading to irreversible damages
within cells. This chapter will provide a comprehensive and easy overview about
H2O2 and NO production, on how these molecules are generated within different cell
compartments, and about their metabolic interaction. A proposed model on how
such interaction between H2O2 and NO may influence the organelles’ signaling
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network under normal physiological and stress conditions and/or developmental
metabolic shifts is discussed.

Keywords Chloroplast · Hydrogen peroxide · Hydroxyl radical · Mitochondrion ·
Nitric oxide · Peroxisome · Reactive oxygen species · Reactive nitrogen species ·
Signaling · S-nitrosoglutathione · S-nitrosylation

Abbreviations

GSNO S-nitrosoglutathione
GSH Reduced glutathione
H2O2 Hydrogen peroxide
NR Nitrate reductase
NO Nitric oxide
ONOO� Peroxynitrite
PTM Posttranslational modification
RNS Reactive nitrogen species
ROS Reactive oxygen species
SNOs S-nitrosothiols

1 Introduction

Hydrogen peroxide (H2O2) and nitric oxide (NO) are two key molecules represen-
tative of two families of related compounds designated as reactive oxygen and
nitrogen species (ROS and RNS, respectively). Both families of molecules partici-
pate in a myriad of plant processes (del Río 2015; Lindermayr 2017; Corpas and
Barroso 2018a), and their relevance in plant cells is well recognized because they are
involved in dual roles under both physiological events (seed and pollen germination,
plant development and growth, stomatal movement, leaf senescence, and fruit
ripening, among others) and in the mechanism of response against biotic and abiotic
stresses. This dual face of both molecules implies their role in signaling processes
during the initial phases of the plant response to diverse situations and as potential
responsible of cellular damages when these molecules are overproduced without
control. Figure 1 summarizes some of the plant processes where both H2O2 and NO
participate at different level. Our present knowledge about where, when, and how
these molecules are produced in a specific plant tissue either under physiological or
stress conditions and how they interact supports the relevant interrelationship
between these molecules which in many cases are autoregulated throughout post-
translational modifications (PTMs). As a matter of fact, these families of molecules
cannot be studied as separated areas because they are interconnected at metabolic
level where many of the enzymes involved in their corresponding metabolisms are
autoregulated by those PTMs. Thus, either S-nitrosation or nitration of different
enzymes of the ROS metabolism including superoxide-generating NADPH oxidase
(NOX) or antioxidant enzymes such as catalase and superoxide dismutase (SOD)

2 J. M. Palma et al.



and components of the ascorbate-glutathione cycle may take place under diverse
situations (Yun et al. 2011; Begara-Morales et al. 2015; Chaki et al. 2015).

Both reactive species (H2O2 and NO) are generated in multiple cell loci
(Foyer and Noctor 2003; Corpas et al. 2015; Gupta et al. 2018a), but their respective
diffusion rates within the cell spaces allow them to move from one organelle to
another. Accordingly, the potential interaction between H2O2 and NO may have
repercussions not only in situ where they are produced but also several dozens of
micrometers away, thus exporting their effect to other cell compartments.

Consequently, the main goal of this chapter is to provide a wide and compre-
hensive overview of the metabolism of these two molecules indicating how they are
produced and how they are interrelated in the plant metabolism. A prospective of the
cell scenario that can be found under physiological and stress conditions will be also
depicted.

2 Generation and Scavenging of H2O2 in Plant Cells

Hydrogen peroxide (H2O2) is one of the main reactive oxygen species (ROS)
basically generated in living beings as a secondary metabolite of the aerobic
metabolism. Early studies in cell organelles found out initially this molecule as the
principal ROS directly generated in chloroplasts, mitochondria, and peroxisomes.
Thus, in chloroplast, the first conclusive reports on the production of H2O2 were
given by Mehler, who discovered that these organelles, besides producing oxygen

Fig. 1 Nitric oxide (NO) and hydrogen peroxide (H2O2) in plant cells participate in complex
processes both under physiological conditions (seed and pollen germination, plant development and
growth, stomatal movement, leaf senescence, fruit ripening, and others) and in the mechanism of
response against biotic and abiotic stresses. They play their roles independently or interacting one
with another under two perspectives, as signaling molecules in the initial phases of their respective
response and as potential responsible of cellular damages when these molecules are overproduced
without control
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by the Hill reaction, also consume it through the so-called Mehler reaction (Mehler
1951). Years later, it was proved that this species was not directly generated in
chloroplasts, but through the dismutation of superoxide radicals (O2

��) sponta-
neously or achieved by the enzymatic system superoxide dismutase (SOD; EC
1.15.1.1) (Asada et al. 1974). Indeed, it was demonstrated that superoxide radicals
are firstly produced, by the autoxidation of reduced ferredoxin at the photosystem
PSI and the plastoquinone level in photosystem PSII, and then dismutated into
H2O2 by the action of either chloroplastic Fe-SOD or CuZn-SODs (Asada 2006;
Corpas et al. 2015). Diverse aspects complementing this scheme have been recently
reviewed (Smirnoff and Arnaud 2018).

Once H2O2 is produced, it is decomposed basically by both stromal and
thylakoidal ascorbate peroxidase (sAPX and tAPX, respectively; EC 1.11.1.11)
(Yoshimura et al. 1999; Shigeoka et al. 2002; Maruta et al. 2016) which could
work in cooperation with the other enzymes of the ascorbate-glutathione cycle, with
consumption of reduced ascorbate and NADPH provided by the Calvin-Benson
cycle. All these actors which play a role in the chloroplast scenario (PSI and PSII
with their respective electron acceptors, ferredoxin, SOD, APX, and the ascorbate-
glutathione cycle) are integrated within the water-water cycle which years ago
postulated Professor Asada’s works (Asada 1999, 2006; Corpas et al. 2015;
Mano et al. 2016) and was accepted worldwide. Peroxiredoxins (Prxs) and
thioredoxins (Trxs) are also systems with coordinated functions among them involved
in the hydrogen peroxide scavenging in chloroplasts (Puerto-Galán et al. 2013). They
can also interact with PSI through the ferredoxin site, thus sharing some connection
points with the water-water cycle (Asada 2006; Nikkanen and Rintamäki 2014).

Globally, all these partners which participate in the H2O2 metabolism within
chloroplasts are key points to modulate the concentration of this ROS for signaling
purposes and confer to this organelle a relevant role in the signal transduction
network within the plant cell (Smirnoff and Arnaud 2018) which will be dependent
on the lighting conditions.

As in chloroplasts, the former reports in the 1960s on ROS in mitochondria
demonstrated the generation of H2O2 in this cell compartment (Jensen 1966a, b), and
still some years later, this issue was corroborated under different conditions (Boveris
and Chance 1973). However, soon after the proposal of superoxide a radical as
precursors of H2O2 in mitochondria was issued (Loschen et al. 1974). Later, a series
of well-designed studies were developed that were focused on complexes I and III
from the mitochondrial electron transport chain (ETC) as sources of O2

��

(Boveris and Cadenas 1982; Turrens 1997; Raha and Robinson 2000; Murphy
2009; Huang et al. 2016). Further detection of Mn-SOD activity in these organelles
(Weisiger and Fridovich 1973) supported this precursory of superoxide radicals as
source of H2O2. A thorough review on this subject can be followed in
Corpas et al. (2015).

In animals, it has been reported that the H2O2 formed at the mitochondrial ETC is
scavenged by a selenium-dependent glutathione peroxidase (SeGPX), which uses
reduced glutathione (GSH) provided by a glutathione reductase (GR) located at the
matrix site (Ursini et al. 1995; Handy et al. 2009; Halliwell and Gutteridge 2015). In
plants, a role of GPX in the mitochondrial H2O2 homeostasis has been also
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referenced (Passaia et al. 2013), but the early report of all enzymatic components of
the ascorbate-glutathione cycle (Jiménez et al. 1997) allowed proposing this path-
way as the main H2O2 processing route in these cell loci (Corpas et al. 2015; Mittova
et al. 2015). Besides, a thioredoxin-peroxiredoxin system has been also reported in
the matrix which could remove H2O2 with the participation of a thioredoxin reduc-
tase that would utilize NADPH provided by a NADP-dependent isocitrate dehydro-
genase as electron donor (Murphy 2009; Corpas et al. 2015; Sevilla et al. 2015).
H2O2 can escape from the organelle and be pumped off to the cytosol where it can be
either detoxified by diverse systems, including peroxisomes when it is released at
high concentration, or driven to signaling processes (Foyer and Noctor 2003;
Smirnoff and Arnaud 2018).

Regarding peroxisomes, this descriptive name was proposed in Professor de
Duve’s laboratories in which it was found that the “microbodies” reported in the
mid-1950s (Rhodin 1954) displayed a very active H2O2 metabolism (de Duve and
Baudhuin 1966). Peroxisomes are organelles with a highly oxidative metabolism
whose main characteristics are the presence of flavin oxidases responsible for the
H2O2 production and catalase (CAT; EC 1.11.1.6), the principal enzyme which
removes H2O2 in the eukaryotic cell. Enzymes such as acyl-CoA oxidase, xanthine
oxidase, urate oxidase, glycolate oxidase (mainly in plants), diamine oxidase, and
polyamine oxidase, among others, have been reported in peroxisomes, all of them
acting as sources of hydrogen peroxide (Corpas et al. 2015, 2019; Smirnoff and
Arnaud 2018). Besides, the relevant presence in peroxisomes of superoxide
dismutase (SOD) activity, either as Mn-SOD, Fe-SOD, or CuZn-SOD, can be also
considered as a significant generator of H2O2 at the cell level (del Río 2011;
Palma et al. 2015; del Río et al. 2018).

As indicated above, peroxisomes bear the H2O2-scavenging catalase as its arche-
typical enzyme. In fact, this protein is considered as the typical marker for peroxi-
somes in biochemistry and cell biology research. However, this plant organelle also
contains the four enzymes of the ascorbate-glutathione cycle (Jiménez et al. 1997;
del Río 2011) which finely tune the concentration of H2O2 within this compartment.
Thus, the peroxisomal APX has been well studied in many species and under
different situations (Corpas et al. 1994, 2015; Yamaguchi et al. 1995; Bunkelmann
and Trelease 1996; Corpas and Trelease 1998; Narendra et al. 2006; Palma et al.
2006).

Some other cell sources of H2O2 have been reported in the cell, including the
plasma membrane and the apoplast and the endoplasmic reticulum (Smirnoff and
Arnaud 2018), but because the main organelles involved in the metabolism of this
ROS (Gupta et al. 2018a) and its relationship with NO are better documented in
chloroplasts, mitochondria, and peroxisomes, we will focus our attention in the
potential signaling networks where these three cell organelles may be integrated.

Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview. . . 5



3 Generation of NO in Plant Cells

Such as it has been mentioned, NO could be considered the most relevant component
of a family of related molecules designated as RNS. However, one of the key points
in the metabolism of NO in plant cells is the identification and subcellular localiza-
tion of the endogenous NO sources. Plants can generate NO by nonenzymatic and
enzymatic mechanisms, but the contribution of each NO source to a specific
physiological process is still unclear (Astier et al. 2018; Corpas and Palma 2018).

Figure 2 shows a simple model of the main recognized NO sources in higher
plants. It is known that the nonenzymatic reduction of nitrite (NO2

�) can lead to the
formation of NO, and this reaction is favored at acidic pH. Thus, NO2

� can also be
chemically reduced by ascorbic acid at pH 3–6 to yield NO. This reaction could
occur at micro-localized pH conditions in barley aleurone layers, in the chloroplast,
and in apoplastic space where ascorbic acid is known to be present (Stöhr et al. 2001;
Stöhr and Stremlau 2006). Another nonenzymatic mechanism proposed for NO
formation is the light-mediated reduction of NO2

� by carotenoids (Bethke et al.
2004).

Related with the enzymatic source of NO, there are two main candidates in higher
plant, nitrate reductase (NR) and L-arginine-dependent nitric oxide synthase (NOS)-
like activity (Corpas and Barroso 2017; Astier et al. 2018). NR is a molybdoenzyme
that reduces nitrate (NO3

�) to nitrite (NO2
�) using NADH as electron donor. Thus, it

has been shown that purified maize NR can generate NO in vitro conditions using
NADH (Yamasaki et al. 1999) and this NO production seems to be implicated in
some physiological processes such as stomatal closure (Chen et al. 2016). However,
there is little information on the direct involvement of NR-derived NO in plant stress
situations. More recently, using the unicellular alga Chlamydomonas reinhardtii as
model photosynthetic organism, it has been demonstrated that the interaction
between the mitochondrial amidoxime reducing component (mARC) and NR can
generate NO from NO2

� where the ARC catalyzes the NO generation from NO2
�

using electrons from NR (Chamizo-Ampudia et al. 2016). On the other hand, the
NOS-like activity in higher plants is characterized to have similar requirements
(L-Arg, NADPH, FMN, FAD, calmodulin, and Ca2+) to that of the mammalian
NOSs (Barroso et al. 1999; Corpas et al. 2004). Nevertheless, in higher plants, no

Fig. 2 Potential enzymatic
and nonenzymatic sources
of NO in higher plant cells.
BH4, tetrabiopterin; CaM,
calmodulin; GSNO, S-
nitrosoglutathione; L-Arg,
arginine; NOS, nitric oxide
synthase; NR, nitrate
reductase; NiR, nitrite
reductase; SNOs,
nitrosothiols
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ortholog genes have been found of any of the classic mammalian NO synthases
(NOSs). In this sense, using also as a model the green alga Ostreococcus tauri it has
been demonstrated the existence of an NOS-like protein (Foresi et al. 2010) whose
occurrence has been extended to another 15 algal species (Jeandroz et al. 2016). On
the other hand, there are evidences which correlated polyamines metabolism with
NO generation (Tun et al. 2006; Wimalasekera et al. 2011; Agurla et al. 2018).

At subcellular level chloroplasts, mitochondria, and peroxisomes are the main
organelles where NO generation has been mainly reported in higher plants. Although
there is other potential place such as the apoplastic space, the available information is
very limited (Stöhr and Ullrich 2002). The presence of NO into chloroplasts has been
demonstrated by different experimental approaches such as electron spin resonance
(ESR) and specific fluorescent probes (Jasid et al. 2006; Puntarulo et al. 2007;
Galatro et al. 2013; Galatro and Puntarulo 2016), and the available data indicate
that the main source of NO in this organelle is a NOS-like protein but not NR
(Tewari et al. 2013; for more details see Chapter “Hydrogen Peroxide and Nitric
Oxide Metabolism in Chloroplasts” of this book).

Plant mitochondria are the major producers of ATP via oxidative phosphorylation
with the O2 being the terminal electron acceptor of the mitochondrial electron
transport chain (ETC). So far the mitochondrial NO generation is through the
reduction of NO2

� where the electron donors could be different depending of the
mitochondrial oxygen tension, principally under hypoxia/anoxia conditions because
the NO2

� reduction to ammonium is inhibited and, consequently, NO2
� is accumu-

lated allowing the NO generation. In this situation the electron donors to generate
NO is through the action of cytochrome c oxidase and other ETC components, such
as complexes III and IV, by using NO2

� (Wulff et al. 2009; Blokhina and Fagerstedt
2010; Igamberdiev et al. 2014; Gupta et al. 2018b). There are also some evidences
indicating that plant mitochondria also generate NO even under normoxic conditions
through alternative oxidase (AOX) (Alber et al. 2017; for more details see
Chapter “Metabolism and Interplay of Reactive Oxygen and Nitrogen Species in
Plant Mitochondria” of this book).

Plant peroxisomes are organelles where the presence of NO generation has been
also shown by different technical approaches including spin-trapping electron para-
magnetic resonance (EPR) spectroscopy and fluorescence-specific probes (Corpas
et al. 2004, 2009). In this case, the experimental biochemical data support that the
NO is generated by an L-arginine-dependent NOS-like activity that requires the
same cofactors of animal NOSs including NADPH, FAD, FMN, calmodulin, and
calcium (Barroso et al. 1999; Corpas et al. 2004). Additionally, different reports
have also provided evidences that plant peroxisomes contain other NO-derived
molecules including S-nitrosoglutathione (GSNO) and peroxynitrite (ONOO�)
(Barroso et al. 2013; Corpas and Barroso 2014a). Furthermore, additional analyses
demonstrate that plant peroxisomes have the capacity to generate NADPH (for a
review see Corpas and Barroso 2018b) and contain both calmodulin (Chigri et al.
2012) and Ca2+ (Costa et al. 2010; Corpas and Barroso 2018a). All these

Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview. . . 7



experimental data are in good agreement with the presence of a NOS protein in
animal peroxisomes (Stolz et al. 2002; Loughran et al. 2005).

4 Interplay Among Cell Organelles by NO and H2O2

Signaling: Overview and Queries

Both H2O2 and NO are able to exert their respective roles both as signal molecules
but also as damaging species by themselves, as already probed and thoroughly
reported (see diverse chapters in this book). But they can also react between them,
thus generating a more powerful ROS, hydroxyl radicals (�OH) according to the
following reaction (Gray et al. 1972; Nappi and Vass 1998):

H2O2 þ NO ! �OHþ HNO2

This could be a feasible mechanism to generate hydroxyl radicals in biological
systems in the absence of transition metals as it occurs in the superoxide-mediated
Fenton reaction, thus providing a new focus to address tissue-specific damage
caused by this ROS (Nappi and Vass 1998). But also, the way on how many
moles of each species is consumed by this reaction opens novel concerns on the
ways to conceive signaling processes leaded by either H2O2 or NO. Thus, in Fig. 3,
as an exemplifying model, the specific interaction of these species generated in plant
peroxisomes with other cell compartments is depicted. Under normal physiological
conditions, catalase (CAT) and ascorbate peroxidase (APX) control the level of
internally generated H2O2 by either a battery of oxidases, superoxide dismutases, or
spontaneous dismutation from superoxide radicals, as well as the H2O2 imported
from other cell loci (Corpas et al. 2015). Due to the presence of peroxisomal
NOS-like activity, the formation of NO usually takes place within the organelle.
Under those circumstances the small H2O2 amount which might escape from the
action of the tandem CAT/APX could react with NO, thus giving rise to certain
levels of �OH, and this radical may exert its damaging effect not only in the own
peroxisome but also in neighboring organelles/loci (Fig. 3a) (Corpas et al. 2015).
However, this potential mechanism seems to be finely regulated since no episodes
promoted through these events have been neither observed nor reported under
normal physiological conditions. This appears to mirror what hypothetically could
take place in peroxisomes (and other organelles) where the simultaneous presence of
diverse ROS and RNS could lead to the formation of singlet oxygen (1O2), hydroxyl
radicals (�OH), peroxynitrite (ONOO�), and other highly reacting molecules if their
formation were not tuned with precision (Corpas et al. 2017).

However, this tight equilibrium could be disturbed under certain conditions such
as those promoted by any kind of stress (biotic and abiotic) as well as by metabolic
changes triggered by shifts in the developmental stages (seed germination, fruit
ripening, etc.) (Corpas and Barroso 2014a; Corpas et al. 2017). Under those

8 J. M. Palma et al.



a

C
H
LO
R
O
PL
AS
T

M
IT
O
C
H
O
N
D
R
IO
N

PE
R
O
XI
SO
M
E

Sp
on

ta
ne

ou
s

di
sm

ut
a

on
fr

om
O

2· -

H
2O

2
H 2O

2
N

O

H
N

O
2

+ 
·O

H
O

xi
da

se
s

(A
CO

X,
 G

O
X,

 U
O

 
DA

O
X,

 o
th

er
s)

SO
Ds

(M
n-

, F
e-

, C
uZ

n-
SO

D
)

CA
T

AP
X

N
O

S-
lik

e
ac

vi
ty

b

C
H
LO
R
O
PL
AS
T

M
IT
O
C
H
O
N
D
R
IO
N

PE
R
O
XI
SO
M
E

Sp
on

ta
ne

ou
s

di
sm

ut
a

on
fr

om
O

2· -

H
2O

2
H 2O

2

H
N

O
2

+ 
·O

H
O

xi
da

se
s

(A
CO

X,
 G

O
X,

 U
O

 
DA

O
X,

 o
th

er
s)

SO
Ds

(M
n-

, F
e-

, C
uZ

n-
SO

D
)

CA
T

AP
X

Si
gn

al
lin

g

Si
gn

al
lin

g

Si
gn

al
lin

g

N
O

S-
lik

e
ac

vi
ty

N
O

c

C
H
LO
R
O
PL
AS
T

M
IT
O
C
H
O
N
D
R
IO
N

PE
R
O
XI
SO
M
E

Sp
on

ta
ne

ou
s

di
sm

ut
a

on
fr

om
O

2· -

H
2O

2
H 2O

2

H
N

O
2

+ 
·O

H
O

xi
da

se
s

(A
CO

X,
 G

O
X,

 U
O

 
DA

O
X,

 o
th

er
s)

SO
Ds

(M
n-

, F
e-

, C
uZ

n-
SO

D
)

CA
T

AP
X

Si
gn

al
lin

g

Si
gn

al
lin

g

Si
gn

al
lin

g

N
O

N
O

S-
lik

e
ac

vi
ty

d

C
H
LO
R
O
PL
AS
T

M
IT
O
C
H
O
N
D
R
IO
N

PE
R
O
XI
SO
M
E

Sp
on

ta
ne

ou
s

di
sm

ut
a

on
fr

om
O

2· -

H 2O
2

H
N

O
2

+ 
·O

H
O

xi
da

se
s

(A
CO

X,
 G

O
X,

 U
O

 
DA

O
X,

 o
th

er
s)

SO
Ds

(M
n-

, F
e-

, C
uZ

n-
SO

D
)

H
2O

2
CA

T
AP

X
N

O
N

O
S-

lik
e

ac
vi

ty

F
ig
.
3

In
te
ra
ct
io
n
of

H
2
O
2
an
d
N
O

in
pe
ro
xi
so
m
es

fr
om

pl
an
t
ce
lls

an
d
th
ei
r
re
pe
rc
us
si
on

s
in

th
e
ce
ll
ph

ys
io
lo
gy

.
H
2
O
2
ca
n
be

ge
ne
ra
te
d
by

sp
on

ta
ne
ou

s
di
sm

ut
at
io
n
an
d
th
ro
ug

h
th
e
ac
tio

n
of

di
ve
rs
e
en
zy
m
es
.T

hi
s
sp
ec
ie
s
is
ba
si
ca
lly

re
m
ov

ed
by

ca
ta
la
se

an
d
as
co
rb
at
e
pe
ro
xi
da
se
.N

O
is
pr
od

uc
ed

in
th
e
or
ga
ne
lle

Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview. . . 9



F
ig
.3

(c
on

tin
ue
d)

by
a
N
O
S
-l
ik
e
ac
tiv

ity
,
an
d
its

re
ac
tio

n
w
ith

H
2
O
2
ca
n
gi
ve

ri
se

to
hy

dr
ox

yl
ra
di
ca
ls
(� O

H
)
w
hi
ch

is
on

e
of

th
e
m
os
t
po

w
er
fu
l
da
m
ag
in
g

re
ac
tiv

e
ox

yg
en

sp
ec
ie
s.
H
2
O
2
an
d
N
O
ca
n
no

to
nl
y
ac
ta
s
si
gn

al
in
g
m
ol
ec
ul
es

at
th
e
pe
ro
xi
so
m
al
le
ve
lb

ut
al
so

in
te
ra
ct
w
ith

ot
he
r
ce
ll
or
ga
ne
lle
s.
(a
)
N
or
m
al

ph
ys
io
lo
gi
ca
lc
on

di
tio

ns
in
w
hi
ch

H
2
O
2
an

N
O
re
ac
ts
in
a
co
nt
ro
lle
d
fo
rm

.(
b)

S
itu

at
io
ns

w
he
re
H
2
O
2
is
ov

er
pr
od

uc
ed
.I
n
su
ch

ca
se
s
th
is
sp
ec
ie
s
m
ay

al
so

ac
ta
s

si
gn

al
m
ol
ec
ul
e.
(c
)
N
O
sy
nt
he
si
s
ex
ce
ed
s
th
e
H
2
O
2
co
nc
en
tr
at
io
n
w
ith

im
ba
la
nc
ed

st
oi
ch
io
m
et
ry

be
in
g
us
ed

fo
r
si
gn

al
in
g
pu

rp
os
es
.(
d)

T
he

ov
er
pr
od

uc
tio

n
of

bo
th
,
H
2
O
2
an
d
N
O
,
le
ad
s
to

th
e
ge
ne
ra
tio

n
of

hi
gh

� O
H

le
ve
ls
w
ith

st
ro
ng

da
m
ag
in
g
ef
fe
ct
s.
A
C
O
X
,
ac
yl
-C
oA

ox
id
as
e;

G
O
X
,g

ly
co
la
te

ox
id
as
e;

U
O
,
ur
at
e

ox
id
as
e;
D
A
O
X
,d

ia
m
in
e
ox

id
as
e;
S
O
D
,s
up

er
ox

id
e
di
sm

ut
as
e;
C
A
T
,c
at
al
as
e;
A
P
X
,a
sc
or
ba
te
pe
ro
xi
da
se
;
N
O
S
,n

itr
ic
ox

id
e
sy
nt
ha
se

10 J. M. Palma et al.



circumstances, the ability of CAT and APX to scavenge all the generated H2O2

might be limited by the inhibition and/or repression of both enzymes, and the
concentration of H2O2 could overtake that of the NO formation. The generation of
�OH could be maintained, but the H2O2 excess could be driven to diverse signaling
processes which involve cell organelles such as chloroplasts, mitochondria, and
others (Fig. 3b). It may also happen that the NO synthesis within peroxisomes
overcomes the H2O2 levels, so, besides the formation of �OH and all its negative
effects, NO could also participate in signaling events (Fig. 3c) through posttransla-
tional modifications facilitated by S-nitrosation and nitration events (Corpas and
Barroso 2014b; Corpas et al. 2017). Finally, the levels of both species could be
considerably enhanced due to activation of the NOS-like activity and lowered CAT
and APX activities, thus rendering an environment where the formation of �OH is
potentiated. In those conditions, the damaging processes would prevail leading to
degradation and disorganization of cell components (Fig. 3d).

It should be kept in mind that all these events may also be triggered by the
interactions between the H2O2 and NO generated in other organelles (chloroplasts,
mitochondria, cytosol, etc.), thus building a complex ROS/RNS network where a
considerable number of actors participate and that can be altered by many factors and
situations. In the following chapters of this book, we will learn more precisely on
how all this metabolic labyrinth is depicted according to the latest contributing
knowledge in this field.

5 Conclusions

Hydrogen peroxide and NO are common metabolites in the cell which are generated
in most organelles. Due to their relative moderate life span and diffusion rates, they
are good candidates to exert independently a role in the signaling network either
directly or indirectly. Nevertheless, both molecules can react in the cell loci where
they are produced (chloroplasts, mitochondria, peroxisomes, and others), thus gen-
erating the more powerful reactive species hydroxyl radical (�OH), which can trigger
deleterious effects for life. Under normal physiological stages, this condition is
somehow balanced by the own cell metabolism, and the action of �OH is controlled.
Under pathological situations and/or unfavorable conditions, this balance could be
broken down displacing the molecular stoichiometry of these species to favor
non-coordinated signaling processes or, even worse, to enhance the production of
�OH promoting a cell-wide damage. The ROS/RNS homeostasis within each cell
organelle would be fundamental to avoid the expansive wave of this eventuality
inside of the cell. Understanding the intimate regulation of the interaction between
H2O2 and NO will be useful to know how important physiological processes such as
fruit ripening, which is regulated by NO (Corpas et al. 2018), occur.
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