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Abstract We analyze some enumerative and asymptotic properties of lattice paths
below a line of rational slope. We illustrate our approach with Dyck paths under a
line of slope 2/5. This answers Knuth’s problem #4 from his “Flajolet lecture” during
the conference “Analysis of Algorithms” (AofA’2014) in Paris in June 2014. Our ap-
proach extends the work of Banderier and Flajolet for asymptotics and enumeration
of directed lattice paths to the case of generating functions involving several dom-
inant singularities and has applications to a full class of problems involving some
“periodicities.” A key ingredient in the proof is the generalization of an old trick by
Knuth himself (for enumerating permutations sortable by a stack), promoted by Fla-
jolet and others as the “kernel method.” All the corresponding generating functions
are algebraic, and they offer some new combinatorial identities, which can also be
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tackled in the A = B spirit of Wilf–Zeilberger–Petkovšek. We show how to obtain
similar results for any rational slope. An interesting case is, e.g., Dyck paths below
the slope 2/3 (this corresponds to the so-called Duchon’s club model), for which we
solve a conjecture related to the asymptotics of the area below such lattice paths. Our
work also gives access to lattice paths below an irrational slope (e.g., Dyck paths
below y = x/

√
2), a problem that we study in a companion article.

Keywords Lattice paths · Generating function · Analytic combinatorics ·
Singularity analysis · Kernel method · Generalized Dyck paths · Algebraic
function · Rational Catalan combinatorics · Periodic support · Bizley formula ·
Grossman formula
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1 Introduction

For the enumeration of simple lattice paths (allowing just the jumps −1, 0, and +1),
many methods are often used, like the Lagrange inversion, determinant techniques,
continued fractions, orthogonal polynomials, bijective proofs, and a lot is known in
such cases [32, 45, 52, 54]. These nice methods do not apply to more complex cases
ofmore generic jumps (or, if one adds a spacial boundary, like a line of rational slope).
It is then possible to use some ad hoc factorization due to Gessel [35] or context-free
grammars to enumerate such lattice paths [28, 47, 50]. One drawback of the grammar
approach is that it leads to heavy case-by-case computations (resultants of equations
of huge degree). In this article, we show how to proceed for the enumeration and
the asymptotics in these harder cases: our techniques are relying on the “kernel
method” which (contrary to the context-free grammar approach) offers access to the
true simple generic structure of the final generating functions and the universality of
their asymptotics via singularity analysis.

Let us start with the history of what Philippe Flajolet named the “kernel method”:
It has been part of the folklore of combinatorialists for some time and its simplest
application deals with functional equations (with apparently more unknowns than
equations!) of the form

K (z, u)F(z, u) = p(z, u) + q(z, u)G(z),

where the functions p, q, and K are given and F,G are the unknown generating
functions we want to determine. K (z, u) is a polynomial in u which we call the “ker-
nel” as we “test” this functional equation on functions u(z) cancelling this kernel.1

1The “kernel method” that we mention here for functional equations in combinatorics has nothing
to do with what is known as the “kernel method” or “kernel trick” in statistics or machine learning.
Also, there is no integral directly related to our kernel. For sure, in our case the word kernel was
chosen as its zeros will play a key role, and also, in one sense, as this kernel has in its core the full
description of the problem and its resolution.
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The simplest case is when there is only one branch, u1(z), such that K (z, u1(z)) = 0
and u1(0) = 0; in that case, a single substitution gives a closed-form solution for G:
namely G(z) = −p(z, u1(z))/q(z, u1(z)).

Such an approach was introduced in 1969 by Knuth to enumerate permutations
sortable by a stack, see the detailed solution to Exercise 2.2.1–4 in The Art of Com-
puter Programming ([43, pp. 536–537] and also Ex. 2.2.1.11 therein), which presents
a “new method for solving the ballot problem,” for which the kernel K is a quadratic
polynomial (this specific case involves just one branch u1(z)).

In combinatorics exist many applications of this method for solving variants of the
above functional equation: one is known as the “quadratic method” in map enumera-
tion, as initially developed in 1965 by Brown during his collaboration with Tutte (see
Sect. 2.9.1 from [9, 24] for the analysis of about a dozen families of maps). During
nearly 30 years, the kernel method was dealing only with “quadratic cases” like the
ones of Brown for maps or of Knuth for a vast amount of examples involving trees,
polyominoes, walks [57], or more exotic applications like the one mentioned by
Odlyzko in his wonderful survey on asymptotic methods in enumeration [25]. Then,
in 1998, the initial approach by Knuth was generalized by a group of four people,
all of them being in contact and benefiting from mutual insights: Banderier in his
memoir [5] solved some problems related to generating trees and walks, and this
later led to the article with Flajolet [8] and to the solution of some conjectures due
to Pinzani in the article with Bousquet-Mélou et al. [6]. At the same time, Petkovšek
analyzed linear multivariate recurrences in [55], a work later extended in [23]. All
these articles contributed to turn the original approach by Knuth into a method work-
ing when the equation has more unknowns (and the kernel has more roots). This
solves equations of the type

K (z, u)F(z, u) =
m∑

i=1

pi (z, u)Gi (z),

where K and the pi ’s are known polynomials, and F and the Gi ’s are unknown
functions.

A few years later, Bousquet-Mélou and Jehanne [21] solved the case of algebraic
equations in F of arbitrary degree:

P(z, u, F(z, u),G1(z), . . . ,Gm(z)) = 0.

The kernel method thus plays a key role in many combinatorial problems. A few
examples are directed lattice paths and their asymptotics [8, 19], additive param-
eters like area [10, 61], generating trees [6], pattern avoiding permutations [49],
prudent walks [4, 27], urn models [60], statistics in posets [20] and many other nice
combinatorial structures…

Independently, in probability theory, in the 1970s,Malyshev invented an approach
now sometimes called the “iterated kernel method.” It can be used to analyze nearest
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neighbor randomwalks in queuing theory. In this context, these lead to the following
type of equations:

K (t, x, y)F(t, x, y) = p0(t, x, y) + p1(t, x, y)F(x, 0) + p2(t, x, y)F(0, y),

where K and the pi ’s are known polynomials, while F is the unknown function we
are looking for. This approach culminated in the book [31], which was later revisited
in the 2000s (e.g., in [46]), also with a more combinatorial point of view in [22]. It is
still the subject of vivid activities, including the extension to higher dimensions [18].
Moreover, the kernel method also gives the transient solution of some birth–death
queuing processes [37].

Also independently, in statistical mechanics, several authors developed other in-
carnations of the kernel method. For example, the WKB limit of the Bethe ansatz
(also called thermodynamical Bethe ansatz) often leads to algebraic equations and to
what is called the algebraic Bethe ansatz [34]. The kernel method is also used in the
study of the Ising model of bicolored maps (see Theorem 8.4.5 in [30], and pushing
further this method led Eynard to his “topological recurrence”), and in many articles
on enumeration related to directed animals, polymers, walks [38–40].

After this short history of the kernel method, we want to show how to use it to
derive explicit counting formulae and asymptotics for directed lattice paths below a
line of rational slope. In the article by Banderier and Flajolet [8], the class of directed
lattice paths in Z

2 was investigated thoroughly by means of analytic combinatorics
(see [33]). Our work is an extension of this article in mainly five ways:

1. Our work involves lattice paths having a “periodic support,” and the comment
in [8, Sect. 3.3] was incomplete for this more cumbersome case; indeed, there
are then several dominant singularities, and we had to revisit in more detail the
structural properties of the roots associated with the kernel method in order to
understand the contribution of each of these singularities. It is pleasant that this
new understanding gives a tool to deal with the asymptotics of many other lattice
path enumeration problems.

2. We get new explicit formulae for the generating functions of walks with starting
and ending at altitude other than 0, and links with complete symmetric homoge-
neous polynomials.

3. We give new closed forms for the coefficients of these generating functions.
4. We have an application to some harder parameters (like the area below a lattice

path).
5. We extend the results to walks below a line of arbitrary rational slope, paving

the way for our forthcoming article on walks below a line of arbitrary irrational
slope [15].

Let us give a definition of the lattice paths we consider:

Definition 7.1 (Jumps and lattice paths) A step set S ⊂ Z
2 is a finite set of vectors

{(x1, y1), . . . , (xm, ym)}. An n-step lattice path or walk is a sequence of vectors
(v1, . . . , vn), such that v j is inS . Geometrically, it may be interpreted as a sequence
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Table 1 The four types of paths: walks, bridges, meanders, and excursions. We refer to these
walks as the Banderier–Flajolet model, in contrast to the model in which we will consider lattice
paths below a rational slope boundary

of points ω = (ω0, ω1, . . . , ωn) where ωi ∈ Z
2, ω0 = (0, 0) (or another starting

point) and ωi − ωi−1 = vi for i = 1, . . . , n. The elements of S are called steps or
jumps. The length |ω| of a lattice path is its number n of jumps.

The lattice paths can have different additional constraints as shown in Table 1.
We restrict our attention to directed paths which are defined by the fact that, for

each jump (x, y) ∈ S , one must have x ≥ 0. The next definition allows to merge
the probabilistic point of view (random walks) and the combinatorial point of view
(lattice paths):

Definition 7.2 (Weighted lattice paths) For a given step set S = {s1, . . . , sm}, we
define the respective system of weights as {w1, . . . ,wm} where w j > 0 is the weight
associated with step s j for j = 1, . . . ,m. The weight of a path is defined as the
product of the weights of its individual steps.

Plan of This Article

• First, in Sect. 2, we recall the fundamental results for lattice paths below a line of
slope α (where α is an integer or the inverse of an integer) and the links with trees.

• Then, in Sect. 3, we give Knuth’s open problem on lattice paths below a line of
slope 2/5.

• In Sect. 4, we give a bijection between lattice paths below any line of rational slope
and lattice paths from the Banderier–Flajolet model.

• In Sect. 5, the needed bivariate generating function is defined and the governing
functional equation is derived and solved: here the “kernel method” plays the most
significant role in order to obtain the generating function (as typical for many
combinatorial objects which are recursively defined with a “catalytic parameter”).

• In Sect. 6, we tackle some questions on asymptotics, thus answering the question
of Knuth.
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• In Sect. 7, we comment on links with previous results of Nakamigawa and
Tokushige, which motivated Knuth’s problem, and we explain why some cases
lead to particularly striking new closed-form formulae.

• In Sect. 8, we analyze what happens for the Duchon’s club model (lattice paths
below a line of slope 2/3), and we extend our formulae to general rational slopes.

2 Trees, Fractional Trees, Imaginary Trees

Due to their fundamental role in computer science trees were the subject of many
investigations, and there exist many alternative representations of this key data struc-
ture. One of the most useful ones is an encoding by “traversing” the tree via a
depth-first traversal (or via a breadth-first traversal). This directly gives a lattice path
associated with the original tree. In fact, what are called “simple families of ordered
trees” (rooted ordered trees in which each node has a degree prescribed to be in a
given set) are in bijection with lattice paths. The reason is the famous Łukasiewicz
correspondence between trees and lattice paths, see Fig. 1.

Basic manipulations on lattice paths also show thatDyck paths (paths with jumps
North and East, see Fig. 2) below the line y = αx (α being here a positive integer),
or below the line y = x/α, are in bijection with trees (of arity α, i.e., every node has
exactly 0 or α children).

The generating function F(z) = ∑
fnzn , where fn counts the number of trees

with n nodes (internal and external ones), satisfies the functional equation F(z) =
zφ(F(z)) , where φ encodes the allowed arities. Thus, we get binary trees: φ(F) =
1 + F2, unary-binary trees: φ(F) = 1 + F + F2, t-ary trees: φ(F) = 1 + Ft , gen-
eral trees: φ(F) = 1/(1 − F). See [33] for more on this approach, also extendible
to unordered trees (i.e., the order of the children is not taken into account).

Because of the bijection with lattice paths, the enumeration of ordered trees solves
the question of lattice paths below a line of integer slope. In the simplest case of
classical Dyck paths, many tools were developed. In 1886, Delannoy was the first to

Fig. 1 The Łukasiewicz bijection between trees and lattice paths: A little fly is travelling along
the full contour of the tree starting from the root. Whenever it meets a new node, one draws a new
jump of size “arity of the node −1” in the lattice path. Without loss of generality, one can always
remove the very last jump (as it will always be a “−1”) and thus we get an excursion which is in
bijection with the initial tree. It is straightforward to reverse this bijection. Additionally, note that
any deterministic traversal of the tree offers such a bijection, so it could be a depth-first traversal,
but also, e.g., a breadth-first traversal
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Fig. 2 Examples of combinatorial structures which are in bijection: ternary trees, excursions of
directed lattice paths with jumps+2 and−1, Dyck paths of North-East steps below the line y = 2x ,
Dyck paths above the line y = 1

2 x , and Dyck paths below the line y = 1
2 x

promote a systematic way to enumerate lattice paths, using recurrences and an array
representation (see [13] for more on this). Then, the Bertrand ballot problem [16]
(already previously considered byWhitworth) and the ruin problem (as studied along
centuries by Fermat, Pascal, the Bernoullis, Huygens, deMoivre, Lagrange, Laplace,
Ampère and Rouché) were a strong motor for the birth of the combinatorics of lattice
paths, one famous solution being the one by André [2] via a bijective proof involving
“good minus bad” paths. Aebly [1] and Mirimanoff [51] gave a geometric variant of
this bijective proof, which corresponds to what is nowadays known as the reflection
principle. Later, the cycle lemma by Dvoretsky and Motzkin [29] proved useful for
many similar problems. During the last century, all these tools were extended and
applied to other cases than the classical Dyck paths, and we will use some of them
in this article.

With respect to the closed form for the enumeration, another powerful tool is
the Lagrange–Bürmann inversion formula (see, e.g., [33]). Applied on T (z) = 1 +
zT (z)t (the equation for the generating function of t-ary trees where z marks internal
nodes), it gives

T (z)r =
∑

k≥0

(
tk + r

k

)
r

tk + r
zk =

∑

k≥0

(
tk + (r − 1)

k

)
r

(t − 1)k + r
zk . (7.1)

Plugging rational values is not directly leading to a power series with integer coef-
ficients, but it “miraculously” becomes the case after basic transformations (Fig. 3).
For example, as observed by Knuth [44], for t = 3/2, one has the following neat
non-trivial identity:

T (z)T (−z) =
(

∑

k≥0

(3k/2
k

)

k/2 + 1
zk

) (
∑

k≥0

(3k/2
k

)

k/2 + 1
(−z)k

)
=

∑

n≥0

(3n+1
n

)

n + 1
z2n . (7.2)
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Fig. 3 It is possible to plug any value for t in T (z), which is known to count trees and lattice paths
when t is an integer. What happens when we consider generalized binomial series of order 3/2 or
of other fractional values? To recycle a nice pun by Don Knuth [44]: Nature is offering nice binary
trees; will imaginary trees one day play a role in computer science?

What could be themeaning of such identities involving “half-trees”? The explana-
tion behind this formula is better seen in terms of lattice paths, and we will shed light
on it in the next sections via the kernel method. Another set of mysterious identities
is, e.g., incarnated by:

ln T (z) = ln
∑

n≥0

(tn
n

)

(t − 1)n + 1
zn =

∑

n≥1

(tn
n

)

tn
zn . (7.3)

In fact, this one is just another avatar of the cycle lemma, which is also the reason
for the link between the generating function of bridges and the generating function
of excursions (a fact also appearing in various disguises, e.g., in the Spitzer formula,
in the Sparre Andersen formula), see [8] for explanations and proofs.

As we have seen, Dyck paths below an integer slope (or structures in bijection
with them) were subject to many approaches, now considered as “folklore.” The first
result for lattice paths below a rational slope camemuch later and is best summarized
by the following theorem:

Theorem 7.1 (Bizley’s formula, Grossman’s formula) The number f (an, bn) of
Dyck paths from (0, 0) to (an, bn) staying weakly above y = a

b x is given by the

following expressions, where c j := 1
a j+bj

(a j+bj
a j

)
:

f (an, bn) = [tn] exp
n∑

j≥0

1

(a + b)

(
(a + b) j

a

)
t j , (7.4)

f (an, bn) =
∑

{
integer partitions of n:∑k

j=1 j e j=n

}

k∏

j=1

(c j )e j

e j ! . (7.5)
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Formula (7.5) was first stated without proof by Grossman in 1950. A proof was
then given by Bizley [17] in 1954. It starts with Formula (7.4), which is an avatar
of the cycle lemma [29] expressed in terms of a generating function. Then, routine
power series manipulation gives Formula (7.5). These formulae (or special cases of
them) have since been rediscovered (and published…)many times. One nicemodern
formulation of the method behind is found in the article by Gessel [35]. There exist
alternative generic formulae as given by Banderier and Flajolet [8], Sato [59], which
simplify for ad hoc cases [11, 28].

This formula admitsmany extensions as one could, for example, add parameters or
take into account certain patterns. This would lead to “rational” Narayana numbers,
“rational” q-analogues, “rational” Mahonian statistics (on lattice paths!), etc.

For each n, Grossman’s formula (7.5) for f (an, bn) involves p(n) summands,
where p(n) is the integer partition sequence of Hardy–Ramanujan fame:

p(n) = [tn]
∏

n≥1

1

1 − tn
∼ 1

4n
√
3
exp

(
π

√
2n

3

)
.

Therefore, this nice closed-form formula of Grossman has many summands if n
is large (computing it will have an exponential cost); it is thus useful to have an
algorithmic alternative to it. Bizley’s formula (7.4) allows to compute f (an, bn) in
quasi-linear time by a power series manipulation. This is also the advantage of other
expressions like the ones given by [8] using the kernel method, on which we will
come back in the next sections.

Formula (7.4) for n = 1 gives f (a, b) = 1
a+b

(a+b
a

)
, also known as the rational

Catalan numbers Cat(a, b). In the last years, many properties of the Dyck paths and
their “Catalan combinatorics” (i.e., the enumeration of the numerous combinatorial
and algebraic structures related to them) were extended to Dyck paths below a line
of rational slope. This new area of research is sometimes called “rational Catalan
combinatorics” [3]. We expect that the recent developments of “rational Catalan
combinatorics” have a generalization to n > 1, but with less simple formulae, as
suggested by Table 2.

3 Knuth’s AofA Problem #4

During the conference “Analysis of Algorithms” (AofA’2014) in Paris in June 2014,
Knuth gave the first invited talk, dedicated to the memory of Philippe Flajolet (1948–
2011). The title of his lecture was “Problems that Philippe would have loved” and he
was pinpointing/developing five nice open problems with a good flavor of “analytic
combinatorics” (his slides are available online.2) The fourth problemwas on “Lattice

2http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf.

http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf
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Table 2 The number f (an, bn) of Dyck walks from (0, 0) to (an, bn) staying weakly below
y = a

b x . To shorten our expressions, we use the shorthand c j := 1
a j+bj

(a j+bj
a j

)
In the rest of the

article, we will see further nice formulae for Dyck paths below a rational slope

paths of slope 2/5,” in which Knuth investigated Dyck paths under a line of slope 2/5,
following the work of [53]. This is best summarized by the two following original
slides of Knuth:

1

1
0

0

if 2 2/55 +
>

≥
– 1–

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

0 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8

0 0 0 0 0 4 9 15 22 30 39

0 0 0 0 0 3 7 12 18 25 33
0 0 0 0 0 0 0 0 18 43 76
0 0 0 0 0 0 0 0 0 0 76

0 0 0 0 0 0 0 15 37 67 106
0 0 0 0 0 0 0 0 0 0 106

, ,

=

= ,[i j [ +j , ,
,

j
j

[ [
/i

if 2 2/55 + ;j /i

if 2 1/55 +
>

≥

≥ ≥

,j /i
if 2 1/55 + ;j /i

A

A

, = =[i [A 0 0 4,[i [B

[iA [iA

1

1. When and we

0
– 1–

,
, +j , ,j[ [[iB [i

i ≥ ≥0 10j

B, =[i j [B

=B

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

 have:

Thus A[x,y] enumerates lattice paths from (0,  ) that stay in
the region
stay in the region

A[5t–1, 2t–1]+B[5t–1, 2t–1] 

Theorem (Nakamigawa, Tokushige, 2012):

where a  1.63026 and b  0.159 (I think).

Empirical observation:

while enumerates the paths thatB2
5xy 2

5< + , [x,  
y< +2

5x
1
5.

2
for all t 1.( )2t

,
7t–1

7t–1

A[5t – 1, 2t – 1]
B[5t – 1, 2t – 1] = (t  ),a

b

t
– +O

≥

=

{

{
0

y]

=

  2

In the next sections, we prove that Knuth was indeed right! In order not to conflict
with our notation, let us rename Knuth’s constants a and b into κ1 and κ2.

4 A Bijection for Lattice Paths Below a Rational Slope

Consider paths in the N2 lattice,3 starting in the origin, and whose allowed steps are
of the type either East or North (i.e., steps (1, 0) and (0, 1), respectively). Let α, β

3We live in a world where 0 ∈ N.
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be positive rational numbers. We restrict the walks to stay strictly below the barrier
L : y = αx + β. Hence, the allowed domain of our walks forms an obtuse cone with
the x-axis, the y-axis and the barrier L as boundaries. The problem of counting walks
in such a domain is equivalent to counting directed walks in the Banderier–Flajolet
model [8], as seen via the following bijection:

Proposition 7.1 (Bijection: Lattice paths below a rational slope are directed lattice
paths) LetD : y < αx + β be the domain strictly below the barrier L. From now on,
we assume without loss of generality that α = a/c and β = b/c where a, b, c are
positive integers such that gcd(a, b, c) = 1 (thus, it may be the case that a/c or b/c
are reducible fractions). There exists a bijection between “walks starting from the
origin with North and East steps” and “directed walks starting from (0, b) with the
step set {(1, a), (1,−c)}.” What is more, the restriction of staying below the barrier
L is mapped to the restriction of staying above the x-axis.

Proof The following affine transformation gives the bijection (see Fig. 4):

(
x
y

)
�→

(
x + y

ax − cy + b

)
.

Indeed, the determinant of the involved linear mapping is −(c + a) 	= 0. What is
more, the constraint of being below the barrier (i.e., one has y < αx + β) is thus
forcing the new abscissa to be positive: ax − cy + b > 0. The gcd conditions ensure
an optimal choice (i.e., the thinnest lattice) for the lattice on which walks will live.
Note that this affine transformation gives a bijection not only in the case of an initial
step set North and East, but for any set of jumps.

The purpose of this bijection is to map walks of length n to meanders (i.e., walks
that stay above the x-axis) which are constructed by n unit steps into the positive x
direction.

Note that if one does not want the walk to touch the line y = (a/c)x + b/c, it
corresponds to a model in which one allows to touch, but with a border at y =
(a/c)x + (b − 1)/c. Time reversal is also giving a bijection between

• walks starting at altitude b with jumps +a,−c and ending at 0,
• and walks starting at 0 and ending at altitude b with jumps −a,+c.

5 Functional Equation and Closed-Form Expressions for
Lattice Paths of Slope 2/5

In this section, we show how to derive closed forms (i.e., explicit expressions) for the
generating functions of lattice paths of slope 2/5 (and their coefficients). First, define
the jump polynomial P(u) := u−2 + u5. Note that the bijection in Proposition 7.1
gives jump sizes +2 and −5. However, a time reversal gives this equivalent model
(jumps −2 and +5), which has the advantage of leading to more compact formulae
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(a) Rational slope model (b) Banderier–Flajolet model

Fig. 4 Example showing the bijection from Proposition 7.1: Dyck paths below the line y =
(2/5)x + 2/5 (or touching it) are in bijection with walks allowing jumps +2 and −5, starting
at altitude 2, and staying above the line y = 0 (or touching it)

(see below). Let fn,k be the number of walks of length n which end at altitude k. The
corresponding bivariate generating function is given by

F(z, u) =
∑

n,k≥0

fn,k z
nuk =

∑

n≥0

fn(u)zn =
∑

k≥0

Fk(z)u
k,

where the fn(u) encode all walks of length n, and the Fk(z) are the generating
functions of walks ending at altitude k. A step-by-step approach yields the following
linear recurrence

fn+1(u) = {u≥0} [P(u) fn(u)] for n ≥ 0,

with initial value f0(u) (i.e., the polynomial representing the walks of length 0), and
where {u≥0} is a linear operator extracting all monomials in u with non-negative
exponents. Summing the terms zn+1 fn+1(u) leads to the functional equation

(1 − zP(u))F(z, u) = f0(u) − zu−2F0(z) − zu−1F1(z). (7.6)

We apply the kernelmethod in order to transform this equation into a system of linear
equations for F0 and F1. The factor K (z, u) := 1 − zP(u) is called the kernel and
the kernel equation is given by K (z, u) = 0. Solving this equation for u, we obtain
7 distinct solutions. These split into two groups, namely we get 2 small roots u1(z)
and u2(z) (the ones going to 0 for z ∼ 0) and 5 large roots which we call vi (z) for
i = 1, . . . , 5 (the ones going to infinity for z ∼ 0). It is legitimate to insert the 2 small
branches into (7.6) to obtain4

4In this article, whenever we thought it could ease the reading, without harming the understanding,
we write u1 for u1(z), or F for F(z), etc.
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zF0 + zu1F1 = u21 f0(u1),

zF0 + zu2F1 = u22 f0(u2).

This linear system is easily solved by Kramer’s formula, which yields

F0(z) = −u1u2 (u1 f0(u1) − u2 f0(u2))

z(u1 − u2)
,

F1(z) = u21 f0(u1) − u22 f0(u2)

z(u1 − u2)
.

Now, let the functions F(z, u) and Fk(z) denote functions associatedwith f0(u) = u3

(i.e., there is onewalk of length 0 at altitude 3) and let the functionsG(z, u) andGk(z)
denote functions associated with f0(u) = u4. One thus gets the following theorem:

Theorem 7.2 (Closed forms for the generating functions) Let us consider walks in
N

2 with jumps −2 and +5. The number of such walks starting at altitude 3 and
ending at altitude 0 is given by F0(z), the number of such walks starting at altitude 4
and ending at altitude 1 is given by G1(z), and we have the following closed forms in
terms of the small roots u1(z) and u2(z) of 1 − zP(u) = 0 with P(u) = u−2 + u5:

F0(z) = −u1u2
(
u41 − u42

)

z(u1 − u2)
, (7.7)

G1(z) = u61 − u62
z(u1 − u2)

. (7.8)

Thanks to the bijection given in Sect. 4 between walks in the rational slope model
and directed lattice paths in the Banderier–Flajolet model (and by additionally re-
versing the time5), it is now possible to relate the quantities A and B of Knuth with
F0 and G1:

An := A[5n − 1, 2n − 1] = [z7n−2]G1(z), (7.9)

Bn := B[5n − 1, 2n − 1] = [z7n−2]F0(z). (7.10)

Indeed, from the bijection of Proposition 7.1, the walks strictly below y = a
c x + b

c
(with a = 2, c = 5) and ending at (x, y) = (5n − 1, 2n − 1) are mapped (in the
Banderier–Flajolet model, not allowing to touch y = 0) towalks starting at (0, b) and
ending at (x + y, ax − cy + b) = (7n − 2, 3 + b). Reversing the time and allowing
to touch y = 0 (thus b becomes b − 1), we see that An counts walks starting at 4,
ending at 1 (the generating function of this sequence is given by G1!) and that Bn

counts walks starting at 3, ending at 0 (the generating function of this sequence is

5Reversing the time allows us to express all generating functions in terms of just 2 roots. If one
does not reverse time, everything works well but the expressions contain the 5 large roots, yielding
more complicated closed forms.
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given by F0!). While there is no nice formula for An or Bn (see, however, [7] and
page 136 for a formula involving nested sums of binomials), it is striking that there
is a simple and nice formula for An + Bn:

Theorem 7.3 (Closed form for the sum of coefficients) The sum of the number of
Dyck paths (in our rational slope model) touching or staying below y = (2/5)x +
1/5 and y = (2/5)x simplifies to the following expression:

An + Bn = 2

7n − 1

(
7n − 1

2n

)
. (7.11)

Proof A first proof of this was given by [53] using a variant of the cycle lemma.
(We comment more on this in Sect. 7.) We give here another proof; indeed, our
Theorem 7.2 (Closed form for the generating functions) implies that

An + Bn = [z7n−1] (
u51 + u52

)
. (7.12)

This suggests to use holonomy theory to prove the theorem. First, a resultant equation
gives the algebraic equation for U := u51 (namely, z7 + (U − 1)5U 2 = 0) and then,
the Abel–Tannery–Cockle–Harley–Comtet theorem (see the comment after Propo-
sition 4 in [7]) transforms it into a differential equation for the series u51(z

2). It is also
the differential equation (up to distinct initial conditions) for u52(z

2) (as u2 is defined
by the same equation as u1) and thus of u51(z

2) + u52(z
2). Therefore, it directly gives

the differential equation for the series C(z) = ∑
n(An + Bn)zn , and it corresponds

to the following recurrence for its coefficients:

Cn+1 = 7

10

(7n + 5)(7n + 4)(7n + 3)(7n + 2)(7n + 1)(7n − 1)

(5n + 4)(5n + 3)(5n + 2)(5n + 1)(2n + 1)(n + 1)
Cn ,

which is exactly the hypergeometric recurrence for 2
7n−1

(7n−1
2n

)
(with the same initial

condition). This computation takes 1 second on an average computer, while, if not
done in this way (e.g., if instead of the resultant shortcut above, one uses several
gfun[diffeq*diffeq] or variants of it in Maple, see [58] for a presentation of
the corresponding package), the computations for such a simple binomial formula
surprisingly take hours.

Some additional investigations conducted by Manuel Kauers (private communi-
cation) show that this is the only linear combination of An and Bn which leads to a
hypergeometric solution (to prove this, you can compute a recurrence for a formal
linear combination r An + sBn , and then check which conditions it implies on r and
s if one wishes the associated recurrence to be of order 1, i.e., hypergeometric). It
thus appears that r An + sBn is generically of order 5, with the exception of a spo-
radic 4An − Bn which is of order 4, and the miraculous An + Bn which is of order
1 (hypergeometric).

However, there are many other hypergeometric expressions floating around: ex-
pressions of the type of the right-hand side of (7.12) have nice hypergeometric closed
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forms. This can also be explained in a combinatorial way; indeed, we observe that set-
ting k = −5 in Formula (10) from [8] leads to 5W−5(z) = Θ(A(z) + B(z)) (where
Θ is the pointing operator). The “Knuth pointed walks” are thus in 1-to-5 corre-
spondence with unconstrained walks (see our Table 1, top left) ending at altitude
−5.

We want to end this section with exemplifying the miracles involved in the sim-
plifications of (7.11). Using the Flajolet–Soria formula [7] for the coefficients of
an algebraic function, we can extract the coefficient of z7n−2 of G1(z) and F0(z) in
terms of nested sums. According to (7.9), this corresponds to An and Bn , which are
thus given by formulae involving respectively 45 and 34 nested sums6 (see Fig. 5).

Then, in the next section, we perform some analytic investigations in order to
prove what Knuth conjectured:

An

Bn
= κ1 − κ2

n
+ O(n−2),

with κ1 ≈ 1.63026 and κ2 ≈ 0.159.

6 Asymptotics

As usual, we need to locate the dominant singularities and to understand the local
behavior there. The fact that there are several dominant singularities makes the game
harder here, and this case was only sketched in [8]. Similarly to what happens in
the rational world (Perron–Frobenius theory), or in the algebraic world (see [7]), a
periodic behavior of the generating function leads to some more complicated proofs,
because additional details have to be taken into account. With respect to walks, it is,
e.g., crucial to understand how singularities spread among the roots of the kernel. To
this aim, some quantities will play a key role: The structural constant τ is defined as
the unique positive root of P ′(τ ), where

P(u) = u−2 + u5

is encoding the jumps, and the structural radius ρ is given as ρ = 1/P(τ ). For our
problem, one thus has the explicit values (Fig. 6):

τ = 7

√
2

5
, P(τ ) = 7

10
7
√
2552, ρ =

7
√
2255

7
.

From [8], we know that the small branches u1(z) and u2(z) are possibly singular
only at the roots of P ′(u). Note that the jump polynomial has periodic support with

6Via the kernel method, as explained in [11], it is possible to express An and Bn with less nested
sums than in Fig. 5 but the corresponding formulae are, however, still of the “ugly” type!
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Fig. 5 The “ugly + ugly = nice” formula. An is counting Dyck paths touching or staying below
the line y = (2/5)x + 1/5, and Bn is counting Dyck paths touching or staying below the line
y = (2/5)x . They are given by complicated “ugly” nested sums, so the miracle is that the sum
An + Bn is nice. We give several explanations of this fact in this article

period p = 7 as P(u) = u−2H(u7) with H(u) = 1 + u. Due to that, there are 7
possible singularities of the small branches

ζk = ρωk, with ω = e2π i/7.

Definition 7.3 We call a function F(z) p-periodic if there exists a function H(z)
such that F(z) = H(z p).

Additionally, we have the following local behaviors:
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Fig. 6 P(u) is the polynomial encoding the jumps, and its saddle point τ gives the singularity
ρ = 1/P(τ ) where the small root u1 (in green) meets the large root v1 (in red), with a square
root behavior. (In black, we also plotted |u2|, |v2| = |v3|, and |v4| = |v5|.) This is the key for all
asymptotics of such lattice paths

Lemma 7.1 (Local behavior due to rotation law) The limits of the small
branches when z → ζk exist and are equal to

u1(z) =
z ∼ ζk

{
τω−3k + Ck

√
1 − z/ζk + O((1 − z/ζk)3/2), for k = 2, 5, 7,

τ2ω
−3k + Dk(1 − z/ζk) + O((1 − z/ζk)2), for k = 1, 3, 4, 6,

u2(z) =
z ∼ ζk

{
τ2ω

−3k + Dk(1 − z/ζk) + O((1 − z/ζk)2), for k = 2, 5, 7,

τω−3k + Ck
√
1 − z/ζk + O((1 − z/ζk)3/2), for k = 1, 3, 4, 6,

where τ2 = u2(ρ) ≈ −.707723271 is the unique real root of 500t35 + 3900t28 +
13540t21 + 27708t14 + 37500t7 + 3125, Ck = − τ√

5
ω−3k , and Dk = τ2

τ 7
2 +1

5τ 7
2 −2

ω−3k .

Proof Wewill show the following rotation law for the small branches (for all z ∈ C,
with |z| ≤ ρ and 0 < arg(z) < π − 2π/7):

u1(ωz) = ω−3u2(z),

u2(ωz) = ω−3u1(z).

Let us consider the function U (z) := ω3ui (wz) (with i = 1 or i = 2, as you pre-
fer!) and the quantity X , defined by X (z) := U 2 − zφ(U ) (where φ(u) := u2P(u)).
So we have X (z) = (ω3ui (ωz))2 − zφ(ω3ui (ωz)) = ω6ui (ωz)2 − zφ(ui (ωz)) (be-
causeφ is 7-periodic) and thusωX (z/ω) = ω(ω6ui (z)2 − z/ωφ(ui (z))) = ui (z)2 −
zφ(ui (z)), which is 0 because we recognize here the kernel equation. This implies
that X = U 2 − zφ(U ) = 0 and thusU is a root of the kernel. Which one? It is one of
the small roots, because it is converging to 0 at 0. What is more, this rootU is not ui ,
because it has a different Puiseux expansion (and Puiseux expansions are unique).
So, by the analytic continuation principle (therefore, here, as far as we avoid the cut
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Fig. 7 The locations of the 7 possible singularities of the small branches (left); the small branch
which is singular at that location (right)

line arg(z) = −π ), we just proved that ω3u1(ωz) = u2(z) and ω3u2(ωz) = u1(z)
(and this also proves a similar rotation law for large branches, but we do not need it).

Accordingly, at every ζk , among the two small branches, only one branch becomes
singular: This isu1 for k = 2, 5, 7 andu2 for k = 1, 3, 4, 6.This is illustrated inFig. 7.

Hence, we directly see how the asymptotic expansion at the dominant singularities
is correlatedwith the one ofu1 at z = ρ = ζ7,whichwederive following the approach
of [8]; this gives for z ∼ ρ:

u1(z) = τ + C7

√
1 − z/ρ + C ′

7(1 − z/ρ)3/2 + . . . ,

where C7 = −
√
2 P(τ )

P ′′(τ )
. Note that in our case P (3)(τ ) = 0 (this funny cancellation

holds for any P(u) = p5u5 + p0 + p−2u−2 ), so even the formula for C ′
7 is quite

simple: C ′
7 = − 1

2C7.
In the lemma, the formula for τ2 = u2(ρ) is obtained by a resultant computation.

For the local analysis of Knuth’s generating functions F0(z) and G1(z) with pe-
riodic support, we introduce a shorthand notation.

Definition 7.4 (Localasymptotics extractor [zn]ζk )Let F(z)be an algebraic function
with p dominant singularities ζk (for k = 1, . . . , p). Accordingly, for each ζk , F(z)
can be expressed as a Puiseux series; that is, there exist r ∈ Q and coefficients cn
(both depending on k) such that

F(z) =
∑

j≥0

c j (1 − z/ζk)
r j , for z ∼ ζk .

Then, we define the local asymptotic extractor [zn]ζk as

[zn]ζk F(z) :=
∑

j≥0

c j [zn](1 − z/ζk)
r j .
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This notation can be considered as “extracting the zn-coefficient in the Puiseux
expansion7 of F(z) at z = ζk ,” and singularity analysis allows to write [zn]F(z) =∑

k[zn]ζk F(z) + o(C−n), for some constant C > |ζk |.
Example 7.1 A sloppy but easy to remember formulation would be to say

[zn]ζk F(z) := [zn](singular expansion of F(z) at z = ζk).

This is well illustrated by the generating function D(z) of Dyck paths defined by
the functional equation D(z) = 1 + z2D(z)2. In this case, we have D(z) = 1−√

1−4z2
2z2

with p = 2 and ζ1 = 1/2 and ζ2 = −1/2. Therefore, we get for any ε > 0

[zn]D(z) = [zn]1/2 D(z) + [zn]−1/2 D(z) + o
(
(2 − ε)n

)

= [zn](−2
√
2)

√
1 − 2z + [zn](−2

√
2)

√
1 + 2z + O

(
2n

n5/2

)
+ o

(
(2 − ε)n

)
.

Proposition 7.2 (Periodic rule of thumb) Let ρ be the positive real dominant singu-
larity in the previous definition. If additionally the generating function F(z) satisfies
a rotation law F(ωz) = ωmF(z) (whereω = exp(2iπ/p), p maximal), then one has
a neat simplification:

[zn]F(z) = p[zn]ρF(z) + o(ρn),

if n − m is a multiple of p. (The other coefficients are equal to 0.)

Proof As F(z) is a generating function, it has real positive coefficients, and therefore,
by Pringsheim’s theorem [33, Theorem IV.6], one of the ζk’s has to be real positive,
called ρ. We relabel the ζk’s such that ζk := ωkρ. Then

[zn]F(z) − o(ρn) =
p∑

k=1

[zn]ζk F(z) =
p∑

k=1

[zn]ζk (ωm)k F(ω−k z)

=
p∑

k=1

(ωm)k(ω−k)n[zn]ρF(z)

=
(

p∑

k=1

(ωk)m−n

)
[zn]ρF(z) = p[zn]ρF(z),

if n − m is a multiple of p, and 0 elsewhere.

We can apply this proposition to F0(z) and G1(z), because the rotation law for
the ui ’s implies: F0(ωz) = ω−2F0(z) and G1(ωz) = w−2G1(z). Thus, we just have
to compute the asymptotics coming from the Puiseux expansion of F0(z) and G1(z)

7In fact, this notation holds for singular expansions of alg-log functions [33], exp-log functions and
more generally for expansions in Hardy fields [36] which are amenable to singularity analysis or
saddle point methods.
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at z = ρ, and multiply it by 7 (recall that it is classical to infer the asymptotics of the
coefficients from the Puiseux expansion of the functions via the so-called transfer
Theorem VI.3 from [33]); this gives:

Theorem 7.4 (Asymptotics of coefficients, answer to Knuth’s problem) The asymp-
totics for the number of excursions below y = (2/5)x + 2/5 and y = (2/5)x + 1/5
are given by:

An = [z7n−2]G1(z) = α1
ρ−7n

√
π(7n − 2)3

+ 3α2

2

ρ−7n

√
π(7n − 2)5

+ O(ρ−7nn−7/2),

Bn = [z7n−2]F0(z) = β1
ρ−7n

√
π(7n − 2)3

+ 3β2

2

ρ−7n

√
π(7n − 2)5

+ O(ρ−7nn−7/2),

with the following constants, where we use the shorthand μ for τ2/τ :

α1 = μ4 + 2μ3 + 3μ2 + 4μ + 5√
5

, β1 = √
5 − α1, β2 = − 9

10

√
5 − α2,

α2 = −1

2

τ 7
2 (13μ4 + 22μ3 + 29μ2 + 36μ + 45)√

5(5τ 7
2 − 2)

− 1

5

15μ4 + 20μ3 + 13μ2 − 8μ − 45√
5(5τ 7

2 − 2)
.

This theorem leads to the following asymptotics for An + Bn (and this is for sure
a good sanity test, coherent with a direct application of Stirling’s formula to the
closed-form formula (7.11) for An + Bn):

An + Bn =
√

5

73π

ρ−7n

√
n3

+ O(n−5/2).

Finally, we directly get

An

Bn
= α1 + 3α2

2(7n−2)

β1 + 3β2

2(7n−2)

+ O(n−2) = α1

β1
+ 3

14

(
α2β1 − α1β2

β2
1

)
1

n
+ O(n−2),

which implies that Knuth’s constants are

κ1 = α1

β1
= − 5

μ4 + 2μ3 + 3μ2 + 4μ
− 1

≈ 1.6302576629903501404248,

κ2 = − 3

14

(
α2β1 − α1β2

β2
1

)
= 3

9800
(13 − 236κ1 − 194κ2

1 − 388κ3
1 + 437κ4

1 )

≈ 0.1586682269720227755147.
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Now a few resultant computations give the algebraic equations satisfied by τ2, κ1
and κ2.Wewill illustrate their derivationwith the requiredMaple commands. In what
follows, these are always set in a typewriter font. First, we compute an annihilating
polynomial for ρ:

> R1:=resultant(numer(1-z*P),numer(diff(P,u)),u);

R1 := 823543 z7 − 12500
Then, we construct from it an annihilating polynomial for ui (ρ).
> R2:=factor(resultant(numer(1-z*P),R1,z));

(
500 u35 + 3900 u28 + 13540 u21 + 27708 u14 + 37500 u7 + 3125

) (−2 + 5 u7
)2

This polynomial contains u1(ρ) = τ and u2(ρ) = τ2 as roots. It factorizes into
smaller polynomials, and these two roots are in separate factors. Thus, we can go on
with the right factorwhichwe save inRtau2. Then,we continuewith the annihilating
polynomial for μ.

> resultant(x*t-t2,subs(u=t,diff(P,u)),t);
> factor(resultant(%,subs(u=t2,Rtau2),t2));
We identify the algebraic relation for μ and save it in Rmu. Finally, we compute

the minimal polynomial for κ1:
> Rmu:=2*uˆ5+4*uˆ4+6*uˆ3+8*uˆ2+10*u+5;
> Rk1:=resultant((x+1)*(uˆ4+2*uˆ3
> +3*uˆ2+4*u)+5,Rmu,u):
> factor(Rk1/igcd(coeffs(Rk1)));

−23 x5 + 41 x4 − 10 x3 + 6 x2 + x + 1
In conclusion, κ1 is the unique real root of the polynomial 23x5 − 41x4 + 10x3 −

6x2 − x − 1, and similar computations show that (7/3)κ2 is the unique real root
of 11571875x5 − 5363750x4 + 628250x3 − 97580x2 + 5180x − 142. The Galois
group of each of these polynomials is S5. This implies that there is no closed-form
formula for the Knuth constants κ1 and κ2 in terms of basic operations on integers
and roots of any degree.

In the next section, we want to establish a link with the results from Nakamigawa
and Tokushige. We will show how Knuth derived his problem and how to establish
more such nice identities.

7 Links with the Work of Nakamigawa and Tokushige

In this section, we show the connection between a result of Nakamigawa and
Tokushige [53] and Knuth’s statement. Furthermore, we derive extensions of this
result.

Let α, β be positive rational numbers. The Nakamigawa–Tokushige model con-
sists of a single boundary L : y = αx + β and a lattice point8 Q = (q1, q2) ∈ Z

2

8In the article [53], Q = (m, n); we changed these coordinates in order to avoid a conflict with our
other notations.
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Fig. 8 The 3 walks of length 6 in the (2/5)x + 2/5 model with δ(w) > 0. The vertical bars mark
the minimal y-distance δ(w). The first walk has δ(w) = 1/5, whereas the last two have δ(w) = 2/5.
All of them are members of W1/5, but only the two last ones belong to W2/5

on L , i.e., q2 = αq1 + β. Furthermore, the walks go in the opposite direction; that
is, they start in Q, use unit steps South and West (i.e., (0,−1) and (−1, 0), respec-
tively) and end in the origin. Let V be the “vast” set of such walks without any
restriction. The enumeration of V is a folklore result: |V | = (q1+q2

q1

)
. Let W ⊂ V be

the set of walks which do not cross the line L and touch it only at Q.

Definition 7.5 (Nearest distance to the boundary) Letw ∈ V be a walk from a point
Q to the point (0, 0). We define theminimum y-distance δ(w) as follows: If the walk
w touches or crosses the boundary y = αx + β after the first step, then let δ(w) = 0,
otherwise let δ(w) be the minimum of αp1 + β − p2, where (p1, p2) runs over all
lattice points on w except Q, see Fig. 8.

Hence, we see that δ(w) = 0 if and only if w ∈ V \ W , and so
∑

w∈V δ(w) =∑
w∈W δ(w). Note, if α and β are positive integers, then

∑
w∈V δ(w) = |W |, because

δ(w) = 1 for all w ∈ W . This gives rise to the interpretation as a weighted sum
corresponding to the number of walks.

For a real t ≥ 0, letWt := {w ∈ W | δ(w) ≥ t}; that is, the walks staying at least a
y-distance of t away from the boundary.Due to the definition, |Wt | is a left-continuous
step function of t , and we get the representation

∫ 1

0
|Wt | dt =

∑

w∈V
δ(w).

It is quite nice that this sum can be further simplified; this is what the next theorem
states:

Theorem 7.5 (Nakamigawa–Tokushige lattice path integral) Let q1, q2 be positive
integers, and let α, β be positive reals with q2 = αq1 + β. Let V be the set of walks
from the origin to the point9 (q1, q2). Then, we have

∫ 1

0
|Wt | dt =

∑

w∈V
δ(w) = β

q1 + q2

(
q1 + q2

q1

)
. (7.13)

9Nota bene: As proven in Lemma 7.2 (Possible starting points on the boundary), if α and β are
irrational, then there is at most one such point. While if α and β are rational (with the right gcd
condition), then there are infinitely many such points.
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Proof This corresponds to [53, Theorem 1 and Corollary 1], where it is proven using
a cycle lemma approach.We give a generalization of this formula in Sect. 8 hereafter,
based on our kernel method approach and Lagrange inversion.

A geometric bijection. If α is a rational slope, i.e., α = a/c for some a, c ∈
N \ {0}, then ∫ 1

0
|Wt | dt = 1

c

∑

t∈T
|Wt |, (7.14)

where T = {δ(w) |w ∈ W } = {1/c, 2/c, . . . , (c − 1)/c}.
This gives rise to the following interpretation10: If w ∈ W , then the first step is a

South step. Then, let w̃ be the walk obtained from w by omitting this step. Therefore,
w̃ is a walk with q1 + q2 − 1 steps, starting from Q − (0, 1) = (q1, q2 − 1) and
ending in the origin. We see that all these walks which never cross or touch L are in
bijection with all walks in W . Now, take a walk w ∈ Wt and its corresponding walk
w̃. As δ(w) ≥ t , we can translate the barrier L by t − 1/c down and the walk w̃ still
does not touch or cross this new barrier L̃ . Hence, all walks in Wt are in bijection
with walks from (q1, q2 − 1) to the origin which stay strictly below the barrier L̃ .

Example 7.2 This is the bijection that Knuth used in order to state his conjecture. In
his case, we have α = β = 2/5 and q1 = 5n − 1, q2 = 2n for n ∈ N \ {0}. We see
thatq2 = αq1 + β. Hence,a = 2 and c = 5which implies T = {1/5, 2/5, 3/5, 4/5}.
In this case, the values 3/5 and 4/5 are playing no role, as |W3/5| = |W4/5| = 0
because β = 2/5 is the maximal value for δ(w) for all walks to the origin. Therefore,∫ 1
0 |Wt | dt can be represented by two summands involving W1/5 and W2/5. They
correspond to the two models A and B with the barriers L1 : y < (2/5)x + 2/5 and
L2 : y < (2/5)x + 1/5, respectively, where the paths start at (5n − 1, 2n − 1) and
move by South andWest steps to the origin. Compare also Fig. 8. Note that in Knuth’s
case the walks move in the opposite direction, which is obviously equivalent.

In general, the number of summands |Wt |, which corresponds to the number of
models in the equivalent formulation, is determined by the size of T minus the
maximal y-distance at (0, 0). Hence, we need to consider T̃ = {t ∈ T | t < β} =
{1/c, . . . , k/c}. This gives k models with walks from (q0, q1 − 1) to the origin which
stay strictly below the boundaries Li : y < αx + (β − (i − 1)/c) for i = 1, . . . , k.
Then, the above reasoning implies that the walks with boundary Li correspond to the
set Wi/c. Thus, counting the walks in these k models and summing them up give the
binomial closed form appearing in the lattice path integral theorem (7.13) divided
by c, compared with (7.14).

Up to now in this section, we explained which different counting models are
connected with the Nakamigawa–Tokushige lattice path integral formula. Now, we
discuss the possible starting points on the boundary and their interplay with the
(ir)rationality of the slope.

10In the original work, a slightly different interpretation is given.
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Lemma 7.2 (Possible starting points on the boundary) Let α, β be positive reals.
Then the equation y = αx + β possesses in the positive integers

1. infinitely many solutions (x, y), if α = a/c, β = b/c with a, b, c ∈ N, and
gcd(a, c)|b;

x = cs − ra, y = as + rc,

with s ≥ S0 := max (ra/c�, −rc/a�), and ra and rc are integers such that raa +
rcc = b;

2. exactly one solution (x, y) = (q1, q2), if α /∈ Q and β = q2 − αq1 > 0;
3. no solution, otherwise.

Proof Let us start with rational slope α = a/c, with a, c ∈ N. In order to get integer
solutions we need a rational β = b/c, with b ∈ N. Then we need to find the solutions
of the following linear Diophantine equation:

cy − ax = b. (7.15)

These solutions exist if and only if gcd(a, c)|b. By the extended Euclidean algorithm
we get integers ra, rc ∈ Z such that

raa + rcc = b.

This is done by first computing numbers r ′
a, r

′
c such that

r ′
aa/ gcd(a, c) + r ′

c/ gcd(a, c) = 1

and multiplying by b. All solutions are then given by the linear combination stated in
the lemma. Due to the special form of (7.15) with a positive and a negative coefficient
in front of the unknowns, it follows that for all s ≥ S0 the solutions are positive.

Finally, let α be irrational. Assume there exist two points Q = (q1, q2) and
P = (p1, p2) fulfilling the assumptions. By taking the difference, we get q2 − p2 =
α(q1 − p1) which implies that for q1 	= q2 we get the contradiction α ∈ Q. But for
q1 = q2 it also holds that p1 = p2 and therefore Q = P .

It is easy to see that this solution exists if and only if β = q2 − αq1 for arbitrary
q1, q2 ∈ N as long as β > 0.

The previous lemma also appeared in [42]; there, Kempner (of Kempner’s series
fame) also mentions that a similar claim holds for the number of algebraic rational
(respectively algebraic) points on y = αx + β when α is algebraic (respectively
transcendental) slope.The lemmagives us all possible integer solutions on aboundary
with rational slope. With this knowledge, we can reformulate the lattice path integral
from Theorem 7.5 in order to give a more explicit result for all possible starting
points and for any slope.
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Theorem 7.6 (Lattice path integral and explicit binomial expression) Let a, b, c
be positive integers such that gcd(a, c)|b. Let ra, rc be integers such that raa +
rcc = b. Then, q1(s) := cs − ra and q2(s) := as + rc define all pairs (q1(s), q2(s))
of integers on the barrier L : y = a

c x + b
c . Furthermore, let V be the set of walks

from (q1(s), q2(s)) to the origin strictly below the barrier L. Then, we have

∫ 1

0
|Wt | dt = b/c

(a + c)s + (rc − ra)

(
(a + c)s + (rc − ra)

as + rc

)
, (7.16)

for s ≥ S0 := max (ra/c�, −rc/a�).
For fixed s, thewalks are ending after q1(s) + q2(s) = (a + c)s + (rc − ra) steps,

start at (q1(s), q2(s)) and go to the origin. In the equivalent formulation, the walks
start at (q1(s), q2(s) − 1) and go to the origin, but we consider k = cβ = b different
boundaries, given by

L1 : y <
a

c
x + b

c
, L2 : y <

a

c
x + b − 1

c
, . . . , Lb : y <

a

c
x + 1

c
.

Example 7.3 Returning to Knuth’s model, we have y < 2
5 x + 2

5 . Thus, the explicit
values are a = b = 2 and c = 5 and the assumptions of Theorem 7.6 (Lattice path in-
tegral and explicit binomial expression) are satisfied, as gcd(a, c) = 1. TheEuclidean
algorithm gives ra = −4 and rc = 2. From Lemma 7.2 on the possible starting point
on the boundary, we deduce the possible integer coordinates on the barrier L:

q1(s) = 5s + 4, q2(s) = 2s + 2,

for s ≥ 0 which represent the starting points of the walks. Finally, Theorem 7.6
directly gives the solution

∫ 1

0
|Wt | dt = 2/5

7s + 6

(
7s + 6

2s + 2

)
.

This value can be equivalently interpreted as the number of walks in k = 2 models
starting from (5s + 4, 2s + 1) and moving to the origin below the barriers

L1 : y <
2

5
x + 2

5
, L2 : y <

2

5
x + 1

5
.

This is exactly Knuth’s problem, where his index t = s + 1.

Formula (7.16) directly yields nice lattice path identities in the manner of Knuth’s
problem. Yet, there are even more formulae of this type that we will reveal in the
next section. But let us start with an interesting (everyday) problem first.
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8 Duchon’s Club and Other Slopes

8.1 Duchon’s Club: Slope 2/3 and Slope 3/2

A Duchon walk is a Dyck path starting from (0, 0), with East and North steps, and
ending on the line y = 2

3 x (see Fig. 9). This model was analyzed by Duchon [28]
and further investigated by Banderier and Flajolet [8], who called it the “Duchon’s
club” model, as it can be seen as the number of possible “histories” of couples
entering a club in the evening,11 and exiting in groups of 3. What is the num-
ber of possible histories (knowing the club is closing empty)? Well, this is ex-
actly the number En of excursions with n steps +2,−3, or (by reversal of the
time) the number of excursions with n steps −2,+3. This gives the sequence
(E5n)n∈N = (1, 2, 23, 377, 7229, 151491, 3361598, . . . ) (OEIS A060941). In fact,
these numbers En appeared already in the article by Bizley [17] (who gave some
binomial formulae, as we explained in Sect. 2). Duchon’s club model should then be
the Bizley–Duchon’s club model; Stigler’s law of eponymy strikes again.

One open problem in the article [28] was the following one: “The mean area is
asymptotic to Kn3/2, but the constant K can only be approximated to 3.43.” Our
method allows to identify this mysterious constant:

Theorem 7.7 (Area below Duchon lattice paths) The average area below Duchon
excursions of length n (lattice paths from 0 to 0, which jumps −2 and +3) is

An ∼ Kn3/2 where K = √
15π/2 ≈ 3.432342124 .

Proof The approach of [10] gives an expression for A(z) = ∑
Anzn in terms of the

two small roots u1(z) and u2(z) of 1 − z(1/u2 + u3) = 0. Then, using the rotation
law gives the singular behavior of A(z) and therefore the asymptotics of An with the
explicit constant K (Fig. 11).

8.2 Arbitrary Rational Slope

The closed form for the coefficient (Theorem 7.3) generalizes to arbitrary rational
slope:

Theorem 7.8 (General closed forms for any rational slope) Let a, b, c be integers
such that gcd(a, c)|b. Let As(k) be the number of Dyck walks below the line of slope
y = a

c x + k
c , ending at (xs, ys) given by

xs = cs − ra, ys = as + rc − 1,

11Caveat: There are no real life facts/anecdotes hidden behind this pun!
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(a) North-East model: Dyck paths be-
low the line of slope 2/3

(b) Banderier–Flajolet model: excursions with+2
and −3 jumps

Fig. 9 Dyck paths below the line of slope 2/3 and Duchon’s club histories (i.e., excursions with
jumps +2,−3) are in bijection. Duchon conjectured that the average area (in gray) after n jumps is
asymptotically equal to Kn3/2; our approach shows that K = √

15π/2

where ra andrc are integers such that raa + rcc = b. Thesenumbers arenon-negative
for s ≥ S0 := max (ra/c�, −rc/a�). Then, we have

b∑

k=1

As(k) = b

(a + c)s + (rc − ra)

(
(a + c)s + (rc − ra)

as + rc

)
.

Proof This result is a direct consequence of Theorem 7.6 (lattice path integral and
explicit binomial expression) and the geometric bijection (7.14).

The enumeration of lattice paths below the line y = a
c x + b

c simplifies even more
in the case a = b. Additionally, we are able to extend the nice counting formula
in terms of binomial coefficients. In order to get these nice formulae, let us first
state what becomes the equivalent of Theorem 7.2 (Closed form for the generating
function) in the case of any rational slope.

Lemma 7.3 (Schur polynomial closed form for meanders ending at a given altitude)
Let us consider walks in N

2 with jumps −a and +c starting at altitude h ≥ a.
Let u1(z), . . . , ua(z) be the small roots of the kernel equation 1 − zP(u) = 0, with
P(u) = u−a + uc. Let F0(z), . . . , Fa−1(z) be the generating functions of meanders
ending at altitude 0, . . . , a − 1, respectively. They are given by

Fi (z) = (−1)a−i−1

z
s(h+1,1a−i−1,0i ) (u1(z), . . . , ua(z)) , (7.17)

where sλ(x1, . . . , xa) is a Schur polynomial in a variables, andλ = (λ1, . . . , λa) is an
integer partition, i.e., λ1 ≥ λ2 ≥ · · · ≥ λa ≥ 0. The notation 1s denotes s repetitions
of 1.

Proof Similar to (7.6) for the given step set, the functional equation is given by

(1 − zP(u))F(z, u) = f0(u) − zu−aF0(z) − zu−a+1F1(z) − . . . − zu−1Fa−1(z).
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Applying the kernel method, one may insert the a small branches into this equation.
Then, onegetsa independent linear equations for thea unknowns F0(z), . . . , Fa−1(z).
Expressing the solutions by Cramer’s rule and rearranging the determinants, one un-
covers the defining expressions for the claimed Schur polynomials (see, e.g., [62,
Chap. 7.15] for an introduction to the relevant notions and notations).

Example 7.4 Let us consider the previous lemma for a = 3.We get the linear system

z

⎛

⎝
1 u1(z) u1(z)2

1 u2(z) u2(z)2

1 u3(z) u3(z)2

⎞

⎠

⎛

⎝
F0(z)
F1(z)
F2(z)

⎞

⎠ =
⎛

⎝
u1(z)h+3

u2(z)h+3

u3(z)h+3

⎞

⎠ .

Solving it with Cramer’s rule and rearranging the determinants, we get

F0(z) = s(h+1,1,1)(u1, u2, u3)

z
,

F1(z) = − s(h+1,1,0)(u1, u2, u3)

z
,

F2(z) = s(h+1,0,0)(u1, u2, u3)

z
,

by the definition of Schur polynomials.

Now,we are able to extend the results of the closed form for the sumof coefficients
(Theorem 7.3) even further. At its heart lies the nice expression (7.12): u51 + u52. We
will see that such a phenomenon holds in full generality, involving a sum of uhi .

Theorem 7.9 (General closed forms for lattice paths below a rational slope y =
a
c x + b

c , with b a multiple of a) Let a, c be integers such that a < c, and let b be
a multiple of a. Let As(k) be the number of Dyck walks below the line of slope
y = a

c x + k
c , k ≥ 1, ending at (xs, ys) given by

xs = cs − 1, ys = as − 1.

Then, it holds for s ≥ 1 and � ∈ N such that (� + 1)a < c that

(�+1)a∑

k=�a+1

As(k) = �a + c

(a + c)s + � − 1

(
(a + c)s + � − 1

as − 1

)
.

Proof Consider walks starting at (0, 0), ending at (xs, ys) and staying below the line
a
c x + 1

c . These are counted by As(1). Let us transform such walks by adding a new
horizontal jump at the end. Note that the first � c

a � jumps must be horizontal jumps.
Thus, we can interpret this walk as one starting from (1, 0), ending at (xs + 1, ys)
staying below the given boundary. But as a horizontal jump increases the distance to
the boundary by a

c , this is equivalent to counting walks starting at (0, 0), ending at
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Fig. 10 Transforming walks by moving the first step to the end of the walk. The red dot at (1, 0)
and the red y-axis mark the new origin

(xs, ys) and staying below the boundary a
c x + a+1

c . This process is shown in Fig. 10.
Such walks are counted by As(a + 1).

Thus, the sequence As(1), As(a + 1), As(2a + 1), . . . can be interpreted as count-
ing walks staying always below the boundary a

c x + 1
c , starting at (0, 0) and ending at

(xs, ys), (xs + 1, ys), (xs + 2, ys), . . ., respectively. In particular, for � ≥ 0we define
these new ending points as (x̃s, ỹs) given by

x̃s = xs + � = cs + � − 1, ỹs = ys = as − 1.

Analogously, the same holds for As(2), . . . , As(a − 1).
For the start, we then follow the line of thought from Theorem 7.3 (Closed form

for the sum of coefficients). Let us first derive the respective generating functions.
Therefore, we apply the bijection from Proposition 7.1, reverse the time and allow
to touch y = 0. Then, the sum

∑(�+1)a
k=�a+1 As(k) can be interpreted as walks of length

x̃s + ỹs = (a + c)s + � − 2, starting at altitude a x̃s − c ỹs + i = �a + (c − a) + i
and ending at altitude i for i = 0, . . . , a − 1. To simplify notation, let us introduce
the constant

h := �a + c .

Then, walks end at h − a + i . Therefore, we are now able to apply Lemma 7.3
(Schur polynomial closed form formeanders ending at a given altitude).Additionally,
by reversing the summation order, we get:

(�+1)a∑

k=�a+1

As(k) = [z(a+c)s+�−2]
a−1∑

j=0

(−1) j

z
s(h− j,1 j ,0a− j−1) (u1(z), . . . , ua(z))

= [z(a+c)s+�−1]
(

a∑

i=1

ui (z)
h

)
. (7.18)
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This surprisingly simple result is due to a nice representation theorem of power
symmetric functions in terms of Schur polynomials: [62, Theorem 7.17.1]. One gets
this equation by setting μ = ∅ and restricting the case to a variables. Note that this
is the analogue of (7.12). It is in one sense the reason for the nice closed forms in
this article.

In contrast to Theorem 7.3 (Closed form for the sum of coefficients), we proceed
now differently by Lagrange inversion [48]. From the kernel method, we know that
the small branches ui (z) satisfy the kernel equation 1 − zP(u) = 0, where P(u) =
u−a + uc for general slope a/c. The entire form of the kernel equation satisfies nearly
a Lagrangian scheme

ui (z)
a = z

(
1 + ui (z)

a+c
)
.

By taking the a-th root, one gets for an auxiliary power series U (x):

U (x) = xφ(U (x)), with φ(u) = (
1 + ua+c

)1/a
.

Let ω 	= 1 be an a-th root of unity (i.e., ωa = 1). Then, we recover the ui (z), i =
1, . . . , a, by

ui (z) = U
(
ωi−1z1/a

)
.

Thus, coming back to (7.18) we are actually interested in

a∑

i=1

ui (z)
h =

a∑

i=1

U
(
ωi−1z1/a

)h =
∑

n≥0

Unz
n/a

(
a∑

i=1

ω(i−1)n

)
= a

∑

n≥0

Uanz
n,

where U (x)h = ∑
n≥0Unxn (in fact, by construction many coefficients Un are 0,

because U (z) has an (a + c) periodic support, but this is not altering our reasoning
hereafter). Considering (7.18) again, we need Uan for n = (a + c)s + � − 1. It is
determined by the above Lagrangian scheme:

Uan = [xa((a+c)s+�−1)]U (x)h

= �a + c

a((a + c)s + � − 1)
[ua((a+c)s+�−1)−1]u�a+c−1

(
1 + ua+c

)(a+c)s+�−1

= �a + c

a((a + c)s + � − 1)

(
(a + c)s + � − 1

as − 1

)
.

Rewriting the binomial coefficient by symmetry, the claim follows.

Example 7.5 Knuth’s original problem was dealing with boundaries y = 2
5 x + k

5 ,
(k = 1, . . . , 4). In particular, we may choose � = 0 and � = 1 to get:
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2∑

k=1

As(k) = 5

7s − 1

(
7s − 1

2s − 1

)
= 2

7s − 1

(
7s − 1

2s

)
,

4∑

k=3

As(k) = 1

s

(
7s

2s − 1

)
.

The first one is the known result, whereas the second one is yet another surprising
identity.

Now, we come back to the asymptotics of Sect. 6. Some key ingredients were
Proposition 7.2 (Periodic rule of thumb) and the rotation law of the small branches.
Happily, such a rotation law holds in general for any slope, and the derived techniques
can also be applied. This is what we present now.

Let P(u) = u−a + uc be the jump polynomial of directed walks. Thus, we have
a small branches ui (z) satisfying the kernel equation 1 − zP(ui (z)) = 0. As before
let τ be the unique positive root of P ′(τ ), and let ρ be defined as ρ = 1/P(τ ). Recall
that the small branches are possibly singular only at the roots of P ′(u). The jump
polynomial has periodic support with period p = a + c as P(u) = u−aH(u p) with
H(u) = 1 + u. Hence, there are p possible singularities of the small branches

ζk = ρωk, with ω = e2π i/p.

The general version of Lemma 7.1 reads then as follows:

Lemma 7.4 (Rotation law of small branches) Let gcd(a, c) = 1. Then there exists a
permutation σ of {1, . . . , p} without fix points and an integer κ (satisfying κa + 1 ≡
0 mod p) such that

ui (ωz) = ωκuσ(i)(z),

for all z ∈ C with |z| ≤ ρ and 0 < arg(z) < π − 2π/p.

Proof We proceed as in the proof of Lemma 7.1. Define U (z) := ωκui (ωz) and a
function X (z) := U a − zφ(U ) with φ(u) := ua P(u). Then a straightforward com-
putation shows that

X (z) = (ωκui (ωz))
a − zφ (ωκui (ωz)) = ωκaui (ωz)

a − zφ(ui (ωz)),

as φ(u) is p-periodic. Therefore, we get by the following transformation

ωX (z/ω) = ωκa+1ui (z)
a − zφ(ui (z)) = 0,

if κa + 1 ≡ 0 mod p, because of the kernel equation. Thus, X = U a − zφ(U ) = 0
and therefore, U (z) is a root of the kernel equation. It has to be a small root, as it
is converging to 0 if z goes to 0. Furthermore, it has to be a different root, as it has
a different Puiseux expansion. By the analytic continuation principle (as long as we
avoid the cut line arg(z) = −π ), the result follows.
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This is the landscape in the complex plane of
|F(z)|, where F is here the generating function of
Duchon’s club excursions. One can see the five
dominant singularities. It is enough to know the
local behaviour near the real positive singularity,
the rotation law implies the same behaviour at the
other dominant singularities.

Fig. 11 Landscape in the complex plane of the generating function of lattice paths

The last lemma allows us to state the following “meta”-result:

Theorem 7.10 (Metatheorem/rule of thumb: enumeration and asymptotics of lat-
tice paths) Constrained 1-dimensional lattice paths have an algebraic generating
function, expressible in terms of Schur functions (a symmetric function involving
the small branches of the kernel). Singularity analysis gives its asymptotic behav-
ior, which is equal to the asymptotics at the dominant real singularity (times the
periodicity whenever the rotation law holds).

We call this a metatheorem because it is rather informal in the description of
the constraints allowed (it could be positivity, prescribed starting or ending points,
to live in a cone, to stay below a line of rational slope, to have some additional
Markovian behavior, to be multidimensional with one border, or in bijection with
any of these constraints …); in all these cases, the spirit of the kernel method and
analytic combinatorics should give the enumeration and the asymptotics. Different
incarnations of this rule of thumb appear in [7, 8, 10, 12, 19], and no doubt that
many new lattice problems on the one hand, and many new combinatorial problems
involving some typeof periodicity on theother hand,will offer additional incarnations
of this metatheorem (Fig. 11).

9 Conclusion

In this article, we analyzed some models of directed lattice paths below a line of
rational slope. As a guiding thread, we first illustrated our method on Dyck paths
below the line of slope 2/5. Beside the (pleasant) satisfaction of answering a problem
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of Don Knuth, this sheds light on properties of constrained lattice paths, including
the delicate case (for analysis) of a periodic behavior.

We can shortly recall the main methods used in this article to attack lattice path
problems:

Firstly, the method of choice of Nakamigawa and Tokushige was the cycle lemma.
It is a classical result for lattice paths which uses the geometry of the problem.
However, its applications are limited to certain cases.

Secondly, a more general result is given in Theorem 7.9 (General closed forms
for lattice paths below a rational slope y = a

c x + b
c ), via the Lagrange inversion.

This directly gives the sought closed form. However, it does not give access to the
asymptotics.

Thus, thirdly, we used the kernel method to express the generating functions
explicitly in terms of (known) algebraic functions. This gave us access to the asymp-
totics and is an alternative way to access the closed forms. Our Proposition 7.2
(Periodic rule of thumb) explains in which way the asymptotic expansions are mod-
ified in the case of a periodic behavior (via some local asymptotics extractor and the
rotation law); we expect this approach to be reused in many other problems.

Also, the method of holonomy theory used in Theorem 7.3 (Closed form for the
sum of coefficients) shows the possible usage of computer algebra to prove such
conjectured identities. This is probably the fastest technique for checking given
identities and can be automatized to a great extent. The interested reader is referred
to the nicely written introductions [41, 56].

Our approach extends to any lattice path (with any set of jumps of positive coordi-
nates) below a line of (ir)rational slope (see [15]). This leads to some nice universal
results for the enumeration and asymptotics. As an open question, it could be natural
to look for similar results for lattice paths (with any set of jumps with positive and
negative coordinates, and not just jumps to the nearest neighbors) in a cone given by
two lines of rational slope. This is equivalent to the enumeration of non-directed lat-
tice paths in dimension 2.Despite the nice approach from the probabilistic school [26,
31] and from the combinatorial school [22] via the iterated kernel method, this re-
mains a terribly simple problem (to state!), but a challenge for the mathematics of
this century.
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