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Abstract We consider the Mt/Mt/1 queue, the multi-server queue (Mt/Mt/ct ),
and queues with jumps of size one and two. Results are extensible to more general
ergodic quasi-birth-death processes (QBDs) with time-varying periodic transition
rates of period one. The estimates are asymptotic in the level of the process (the
length of the queue). These asymptotic estimates highlight the connections between
the asymptotic periodic distribution of a stable queue with time-varying rates and the
same type of queuewith constant rates. The estimates can also be used to approximate
other performance measures such as the waiting time distribution. We illustrate the
method with several examples.
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1 Introduction

Systems with time-varying periodic rates are pervasive. They include telephone call
centers, hospital emergency rooms, airports, any system which exhibits seasonal
behavior whether natural or man-made, ambulances, police and fire service and
many, many others. The recent paper by Schwarz, Selinka and Stolletz [7] provides
both a useful survey of applications and a survey of methods for analyzing queueing
systems with time-varying parameters.

In this paper,we consider theMt/Mt/1queue, themulti-server queue (Mt/Mt/ct ),
and queues with jumps of size one and two. Results are extensible to more general
ergodic quasi-birth-death processes (QBDs) with time-varying periodic transition
rates of period one. The estimates are asymptotic in the level of the process (the
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length of the queue). These asymptotic estimates highlight the connections between
the asymptotic periodic distribution of a stable queue with time-varying rates and the
same type of queuewith constant rates. The estimates can also be used to approximate
other performance measures such as the waiting time distribution. We illustrate the
method with several examples.

The basic approach is to solve for the generating function of the queueing system
using the assumption that if the process is in its asymptotic periodic distribution at
some time t , then the generating function at time t will equal the generating function
at time t + 1. That is, we assume the system is in the periodic analog of steady state.
For more detail on when the asymptotic periodic distribution exists, see [5]. This
will yield a function for the generating function in terms of an integral equation. We
find the poles of this function to create our asymptotic estimates. The poles of the
generating function depend only on the evolution of the system over the course of a
single period.

For the single-server queue, these estimates take a particularly simple form. Let
λ̄ be the average arrival rate in a time period and μ̄ be the average departure rate.
Then an asymptotic estimate for the probability that there are n in the queue at

time t is given by πn(t) ≈ f (t)
(

λ̄
μ̄

)n
. For constant rates, the formula is exact and

f (t) = π0 = 1 − λ̄
μ̄
. In general, f (t) depends on π0(t). Given π0(t), f (t) can be

easily computed for any stable periodic Mt/Mt/1 queue. Similar formulas can be
developed using this approach for more complex quasi-birth-and-death processes.

In Sect. 2, we find the transient solution of the Mt/Mt/1 queue up to an integral
equation. In Sect. 2.1, we find the generating function for the single-server queuewith
periodic rates and use that to find the asymptotic periodic distribution of the number
in the system in terms of an integral equation. In Sect. 2.2, we obtain asymptotic
estimates for the distribution of the number in the queue at time t within the period.
Section 2.3 provides numerical examples for the single-server queue with time-
varying transition rates. In Sect. 3 we find similar quantities for the multi-server
queue with time-varying transition rates. In Sect. 4, we illustrate the method for
another type of queue.

2 Mt/Mt/1 Queue Example

Consider a single-server queue with time-varying arrival and departure rates. Let Xt

represent the number in the queue at time t , and let Xs = i give the length of the
queue at some given initial time s. Define pi,n(t) = P{Xt = n|Xs = i}.

We have the Chapman–Kolmogorov equations:

ṗi,0(t) = −λ(t)pi,0(t) + μ(t)pi,1(t)

ṗi,n(t) = λ(t)pi,n−1(t) − (λ(t) + μ(t))pi,n(t) + μ(t)pi,n+1(t),
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with pi,n(s) = δi=n for some initial time s. We define the generating function
P(z, s, t) = ∑∞

n=0 z
n pi,n(t), then P(z, s, t) satisfies the ordinary differential equa-

tion:

Ṗ(z, s, t) = (λ(t)(z − 1) + μ(t)(z−1 − 1))P(z, s, t) + (μ(t) − z−1μ(t))pi,0(t).

This has solution

P(z, s, t) =
∫ t

s
μ(u)(1 − z−1)pi,0(u)Φ(z, u, t)du + P(z, s, s)ΦY (z, s, t),

where Φ(z, u, t) is defined below. Note that since pi,n(s) = δi=n , P(z, s, s) = zi .
We define the randomized random walk, Yt with jumps to the left occurring at

rate μ(t) and to the right at rate λ(t). Let

M(s, t) =
∫ t

s
μ(u)du

and

Λ(s, t) =
∫ t

s
λ(u)du,

then

P{Yt = n + k|Ys = k} = e−(M(s,t)+Λ(s,t))

(
Λ(s, t)

M(s, t)

)n/2

In(2
√

Λ(s, t)M(s, t)),

where In(·) is the modified Bessel function of the first kind.We denote the generating
function for Yt as ΦY (z, s, t) with

ΦY (z, s, t) =
∞∑

n=−∞
P{Yt = n + i |Ys = i}zn = eΛ(s,t)(z−1)+M(s,t)(z−1−1).

Furthermore, we define

φn(s, t) = P{Yt = n + i |Ys = i}.

Note that φn(s, t) does not depend on i , the location of the random walk at time s.
ΦY (z, s, t) is the solution of the evolution equation:

∂

∂t
ΦY (z, s, t) = ΦY (z, s, t)

(
λ(t)(z − 1) + μ(t)(z−1 − 1)

)

and
Φ(z, s, s) = I.
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We will use the notation [zn](A(z)) to represent the coefficient an of zn in the
series A(z) = ∑

n anz
n (see Flajolet and Sedgewick [1]). The transient solution for

the single-server queue with time-varying transition rates is then given by

pi,n(t) = [zn]P(z, s, t) =
∫ t

s
pi,0(u)μ(u)(φn(u, t) − φn+1(u, t))du + φn−i (s, t).

To find pi,0(u), we solve the Volterra equation

pi,0(t) = [z0]P(z, s, t) =
∫ t

s
pi,0(u)μ(u)(φ0(u, t) − φ1(u, t))du + φ−i (s, t).

2.1 Periodic

Now suppose transition rates are periodic with period one. In this case, we use πn(t)
to designate the asymptotic periodic probability of n in the queue at time t rather
than pi,n(t) for the transient probability. We wish to solve directly for the asymptotic
periodic solution. In that case, P(z, t − 1, t) = P(z, t − 1, t − 1), so

P(z, t − 1, t) =
∫ t

t−1
π0(u)μ(u)(1 − z−1)ΦY (z, u, t)du (1 − Φ(z, t − 1, t))−1

(14.1)
Now,

(I − Φ(z, t − 1, t))−1 =
∞∑
k=0

Φ(z, t − 1, t)k =
∞∑
k=0

Φ(z, t, t + k),

and
Φ(z, u, t)Φ(z, t, t + k) = Φ(z, u, t + k),

so

πn(t) = [zn]P(z, t − 1, t) =
∫ t

t−1
π0(u)μ(u)

∞∑
k=0

(
φn(u, t + k) − φn+1(u, t + k)

)
du.

Although we have an explicit formula for φn(u, t + k) = P{Y (u, t + k) = n}, com-
putation of these quantities is very cumbersome and in general convergence is slow.

In the next section, we describe asymptotic methods for approximating these
infinite sums.
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2.2 Asymptotic Methods

Define λ̄ = Λ(0, 1) = ∫ t
t−1 λ(u)du and μ̄ = M(0, 1) = ∫ t

t−1 μ(u)du. These repre-
sent the expected number of steps to the right (λ̄) or to the left (μ̄) during one period
for the random walk Yt . We have zeros in the denominator of equation (14.1), where

λ̄(z − 1) + μ̄(z−1 − 1) = 0.

This expression has two zeros: z = 1, and z = μ̄/λ̄. z = 1 is a root of both the
numerator and the denominator, so we factor it out:

P(z, t − 1, t) =
∫ t

t−1
π0(u)

μ(u)

μ̄ − λ̄z
ΦY (z, u, t)du

×
( ∞∑

k=1

(λ̄(z − 1) + μ̄(z−1 − 1))k−1

k!

)−1

.

We can rewrite this as

P(z, t − 1, t) =
∞∑
j=0

(
λ̄

μ̄

) j ∫ t

t−1
π0(u)

μ(u)

μ̄
ΦY (z, u, t)duz j

×
( ∞∑

k=1

(λ̄(z − 1) + μ̄(z−1 − 1))k−1

k!

)−1

.

(14.2)

This is suggestive of the relation between the asymptotic periodic solution for the
queue with time-varying parameters and the steady-state solution for the constant
rate queue which is given by

π j = π0

(
λ

μ

) j

=
(
1 − λ

μ

)(
λ

μ

) j

.

To obtain the asymptotic estimate, we use the following result (see [1, p. 228, IV.2]):

[zn] h(z)

(1 − z)
∼ h(1).

So

[zn] h(z)(
1 − λ̄

μ̄
z
) ∼ h

(
μ̄

λ̄

)
.

Hence an asymptotic estimate is given by
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πn(t) ≈ 1

μ̄

∫ t

t−1
π0(u)μ(u)ΦY

(
μ̄

λ̄
, u, t

)
du

(
λ̄

μ̄

)n

= 1

μ̄

∫ t

t−1
π0(u)μ(u) exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(μ̄ − λ̄)

}
du

(
λ̄

μ̄

)n

.

(14.3)

We have shown that

πn(t) ∼
(

λ̄

μ̄

)n

f (t),

where

f (t) = 1

μ̄

∫ t

t−1
π0(u)μ(u) exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(μ̄ − λ̄)

}
du. (14.4)

Note that, if μ(t) = μ̄ and λ(t) = λ̄, the expression simplifies to

πn = π0

(
λ

μ

)n

=
(
1 − λ

μ

)(
λ

μ

)n

.

If we let α(z) = λ̄(z − 1) + μ̄(z−1 − 1), then we obtain

( ∞∑
k=1

(λ̄(z − 1) + μ̄(z−1 − 1))k−1

k!

)−1

= α(z)

1 − eα(z)
.

This has Maclaurin series in α of

α

1 − eα
= 1 − α

2
+ α2

12
− α4

720
+ α6

30240
+ · · · =

∞∑
n=0

Bn

n! αn,

where the Bn’s are the Bernoulli numbers. See, for example, [6, p. 289]. Additional
terms of an asymptotic expansion for the number in queuemay be obtained using this
expansion, since as z → μ̄/λ̄, α → 0. In what follows, we will use the asymptotic
estimate given in Eq. (14.3).

2.3 Numerical Examples for the Mt/Mt/1 Queue

We consider several numerical examples:
These examples collectively illustrate the convergence behavior toward the

asymptotic estimates for the probabilities of the number in queue for three dif-
ferent traffic intensities: ρ = 0.75 (examples 1–3), ρ = 0.9 (examples 4–5), and
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Examples 1 2 3

Arrival rate λ(t) 3 − 2 cos(2π t) 0.3 − 0.2 cos(2π t) 3 − 2 cos(2π t)
Departure rate μ(t) 4 + 2 cos(2π t) 0.4 + 0.2 cos(2π t) 4 − 2 cos(2π t)
λ̄ 3 0.3 3
μ̄ 4 0.4 4

ρ = λ̄
μ̄

0.75 0.75 0.75

Examples 4 5 6

Arrival rate λ(t) 3.6 − 2.8 cos(2π t) 0.36 − 0.28 cos(2π t) 0.4 − 0.3 cos(2π t)
Departure rate μ(t) 4 + 2 cos(2π t) 0.4 + 0.2 cos(2π t) 4 − 2 cos(2π t)
λ̄ 3.6 0.36 0.4
μ̄ 4 0.4 4

ρ = λ̄
μ̄

0.9 0.9 0.1
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Fig. 1 Example 1. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

ρ = 0.1 (example 6); for different rates and for arrival and service intensities that
move together or do not. For each of the examples, the convergence to the asymp-
totic estimate is fairly rapid. The behavior of periodic probabilities for some sets
of parameters is close to the constant rate steady state probabilities, but for other
examples (those with greater rates), the probabilities show greater variability within
the period (Fig. 1).

For each of these six examples, we provide two graphs. One shows the asymptotic
periodic probabilities of having j in the queue for j = 0–5 (solid lines) compared
to the asymptotic estimate of the probability shown as dashed lines. The second
graph shows the estimate for the function f (t) used in the asymptotic estimates for
each of probabilities zero to five compared to the exact f (t), where f (t) is given in
Eq. (14.4). As the number in the queue increases, it can be seen that the quality of
the asymptotic estimate improves (Fig. 2).
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Fig. 2 Example 2. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

3 Example: Multi-server Queue

Next, we consider the multi-server queue with time-varying periodic rates and c
servers. The analysis parallels the analysis for the single-server queue (Fig. 3).

We have the Chapman–Kolmogorov equations
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Fig. 3 Example 3. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j
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ṗi,0(t) = −λ(t)pi,0(t) + μ(t)pi,1(t)

ṗi,1(t) = λ(t)pi,0(t) − (λ(t) + μ(t))pi,1(t) + 2μ(t)pi,2(t)

...

ṗi, j (t) = λ(t)pi, j−1(t) − (λ(t) + jμ(t))pi, j (t) + ( j + 1)μ(t)pi, j+1(t), 0 < j < c

...

ṗi,c−1(t) = λ(t)pi,c−2(t) − (λ(t) + (c − 1)μ(t))pi,c−1(t) + cμ(t)pi,c(t)

ṗi,n(t) = λ(t)pi,n−1(t) − (λ(t) + cμ(t))pi,n(t) + cμ(t)pi,n+1(t), n ≥ c.

We define the generating function P(z, s, t) = ∑∞
n=0 z

n pi,n(t). The function
P(z, s, t) satisfies the ordinary differential equation

Ṗ(z, s, t) = λ(t)
∞∑
n=0

pi,n(t)(z
n+1 − zn)

− μ(t)
c−1∑
n=0

npi,n(t)z
n − cμ(t)

∞∑
n=c

pi,n(t)z
n

+ μ(t)
c−1∑
n=0

npi,n(t)z
n−1 + cμ(t)

∞∑
n=c

pi,n(t)z
n−1

In line 1 on the right-hand side of the preceding equation, we replace the infinite
sum with the generating function for the number in queue. In lines 2 and 3, we add
and subtract like quantities so that we can rewrite the expressions in terms of the
generating function for the number in queue:

Ṗ(z, s, t) = λ(t)(z − 1)P(z, s, t)

+ μ(t)
c−1∑
n=0

(c − n)pi,n(t)z
n − cμ(t)

∞∑
n=0

pi,n(t)z
n

+ μ(t)
c−1∑
n=0

(n − c)pi,n(t)z
n−1 + cμ(t)

∞∑
n=0

pi,n(t)z
n−1.

We replace the series in lines 2 and 3 of the right-hand side of the previous equation
with the generating function for the number in queue:

Ṗ(z, s, t) = (
λ(t)(z − 1) + cμ(t)(z−1 − 1)

)
P(z, s, t)

+ μ(t)
c−1∑
n=0

(c − n)zn(1 − z−1)pi,n(t).

This differential equation has solution



316 B. Margolius

P(z, s, t) =
∫ t

s
μ(u)

c−1∑
n=0

(c − n)zn(1 − z−1)pi,n(u)ΦY (z, u, t)du

+ P(z, s, s)ΦY (z, s, t),

where we denote the generating function for Yt as ΦY (z, s, t) and

ΦY (z, s, t) =
∞∑

n=−∞
P{Yt = n}zn = eΛ(s,t)(z−1)+cM(s,t)(z−1−1).

ΦY (z, s, t) is the solution of the evolution equation

∂

∂t
ΦY (z, s, t) = ΦY (z, s, t)

(
λ(t)(z − 1) + cμ(t)(z−1 − 1)

)

and
Φ(z, s, s) = I.

The transient distribution for number in queue is given by

pi, j (s, t) = [z j ]P(z, s, t)

=
∫ t

s
μ(u)

c−1∑
n=0

(c − n)pi,n(s, u)
(
φ j−n(u, t) − φ j−n+1(u, t)

)
du

+ φ j−i (s, t).

Let
pi (s, t) = [

pi,0(s, t) pi,1(s, t) · · · pi,c−1(s, t)
]

and
φi (s, t) = [

φ−i (s, t) φ−i+1(s, t) · · · φ−i+c−1(s, t)
]
.

Define the matrix function K(s, t)

K(s, t) = [
k0(s, t) k1(s, t) . . . kc−1(s, t)

]
,

where k j (u, t) is the column vector

k j (u, t) = μ(s)

⎡
⎢⎢⎢⎢⎢⎣

c(φ j (s, t) − φ j+1(s, t))
(c − 1)(φ j−1(s, t) − φ j (s, t))

...

2(φ j−c+2(s, t) − φ j−c+3(s, t))
(φ j−c+1(s, t) − φ j−c+2(s, t))

⎤
⎥⎥⎥⎥⎥⎦

.
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Fig. 4 Example 4. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

Then

pi (s, t) =
∫ t

s
pi (s, u)K(u, t)du + φi (s, t),

and

pi, j (s, t) =
∫ t

s
pi (s, u)k j (u, t)du + φ j−i (s, t).

To compute these transient probabilities, we discretize each component of the matrix
function K(s, t) so that we have a matrix of matrices. Let m be the mesh size, then
we weight each component matrix by 1

m .
In the case where transition rates are periodic only the firstm rows of each compo-

nent matrix need be computed. Subsequent blocks of m rows are equal to preceding
blocks shifted m columns to the right. We also weight the diagonal and the top row
of each component matrix by 1

2 . These weights allow us to use matrix multiplica-
tion to apply the trapezoidal rule of numerical integration to solve for the transient
probabilities (Fig. 4).

3.1 Periodic

Now suppose transition rates are periodic with period one. In this case, we use πn(t)
to designate the asymptotic periodic probability of n in the queue at time t rather
than pi,n(t) for the transient probability. We wish to solve directly for the asymptotic
periodic solution. In that case, P(z, t − 1, t) = P(z, t − 1, t − 1), so
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P(z, t − 1, t)

=
∫ t

t−1
μ(u)

c−1∑
n=0

(c − n)zn(1 − z−1)πn(u)ΦY (z, u, t)du (1 − Φ(z, t − 1, t))−1 .

(14.5)

The coefficient on z j gives us the following integral formula for the periodic proba-
bility, π j (t), of j in the queue at time t within the period:

π j (t) =[z j ]P(z, t − 1, t)

=
∫ t

t−1
μ(u)

c−1∑
n=0

(c − n)πn(u)

∞∑
k=0

(
φ j−n(u, t + k) − φ j−n+1(u, t + k)

)
du.

We have zeros in the denominator of equation (14.5), where

λ̄(z − 1) + cμ̄(z−1 − 1) = 0.

This expression has two zeros: z = 1, and z = cμ̄/λ̄. The value z = 1 is a root of
both the numerator and the denominator, so we factor it out:

P(z, t − 1, t) =
∫ t

t−1

c−1∑
n=0

(c − n)znπn(u)
μ(u)

cμ̄ − λ̄z
ΦY (z, u, t)du

×
( ∞∑

k=1

(λ̄(z − 1) + cμ̄(z−1 − 1))k−1

k!

)−1

.

We can rewrite this as

P(z, t − 1, t) =
∫ t

t−1

c−1∑
n=0

(c − n)znπn(u)
μ(u)

cμ̄
ΦY (z, u, t)du

( ∞∑
k=1

(λ̄(z − 1) + cμ̄(z−1 − 1))k−1

k!

)−1 ∞∑
j=0

(
λ̄

cμ̄

) j

z j .

(14.6)

An asymptotic estimate is then given by

π j (t) ≈
∫ t

t−1

μ(u)

cμ̄
ΦY

(
cμ̄

λ̄
, u, t

) c−1∑
n=0

(c − n)πn(u)du

(
λ̄

cμ̄

) j−n
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=
∫ t

t−1

μ(u)

cμ̄
exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(cμ̄ − λ̄)

} c−1∑
n=0

(c − n)πn(u)

(
λ̄

cμ̄

) j−n

du.

(14.7)

We may estimate π j (t) as

π j (t) ≈ f (t)

(
λ̄

cμ̄

) j

,

where

f (t) =
∫ t

t−1

μ(u)

cμ̄
exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(cμ̄ − λ̄)

} c−1∑
n=0

(c − n)πn(u)

(
cμ̄

λ̄

)n
du.

The resulting expression for f (t) in the multi-server case is analogous to that in
the single-server case in Eq. (14.4). For a c server queue, the expression depends on
the first c periodic probabilities for number in queue. The expression reduces to the
single-server expression when c = 1. The queue length probabilities are asymptoti-
cally geometric with rate λ̄

cμ̄ .

4 Example: The Queue with Transitions of Size One and
Two

For this queueing system, the classical single-server queueing system, M/M/1 is
generalized to allow transition rates of size two in addition to the standard transition
rates of size one (Fig. 5).

In terms of the queueing models, these systems each allow customers to arrive or
be served instantly in pairs as well as individually (Fig. 6).

Krinik and Shun [2] have derived the steady-state distributions explicitly and
determined a condition for the existence of a steady-state distribution. Assuming
that a steady-state condition prevails, they determined the canonical performance
measures, including expressions for the average number of customers in either system
or queue. They also derived formulae for the average waiting time that a customer
spends in the system or queue.

In this example, we generalize their model to allow transition rates to vary peri-
odically with period of length one.

We have the Chapman–Kolmogorov equations with β(t) and γ (t) giving the rates
at which transitions of size two occur:
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Fig. 5 Example 5. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j
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Fig. 6 Example 6. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(
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λ̄

) j
which does not depend on j

ṗi,0(t) = −(λ(t) + β(t))pi,0(t) + μ(t)pi,1(t) + γ (t)pi,2(t)

ṗi,1(t) = λ(t)pi,0(t) − (λ(t) + β(t) + μ(t))pi,1(t) + μ(t)pi,2(t) + γ (t)pi,3(t)

ṗi,n(t) = β(t)pi,n−2(t) + λ(t)pi,n−1(t)

−(λ(t) + β(t) + μ(t) + γ (t))pi,n(t) + μ(t)pi,n+1(t) + γ (t)pi,n+2(t).

We define the generating function P(z, t) = ∑∞
n=0 z

n pi,n(t). Then we have

Ṗ(z, t) =(z2β(t) + zλ(t) − (λ(t) + β(t) + μ(t) + γ (t)) + z−1μ(t) + z−2γ (t))P(z, t)

+ γ (t)(z − z−1)pi,1(t) + (γ (t) + μ(t) − z−1μ(t) − γ (t)z−2)pi,0(t).
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This has solution

P(z, s, t) =
∫ t

0

(
γ (t)(z − z−1)pi,1(u) + (γ (t)(1 − z−2) + μ(t)(1 − z−1))pi,0(u)

)

× Φ(z, u, t)du + P(z, s, s)Φ(z, s, t),
(14.8)

where

Φ(z, s, t) = exp

{∫ t

s
(z2β(u) + zλ(u)

−(λ(u) + β(u) + μ(u) + γ (u)) + z−1μ(u) + z−2γ (u))du
}

= exp

{∫ t

s
(zλ(u) − (λ(u) + μ(u)) + z−1μ(u))du

}

× exp

{∫ t

s
(z2β(u) − (β(u) + γ (u)) + z−2γ (u))du

}

= ΦY (z, s, t)ΦX (z2, s, t),

and Xt and Yt are the randomized random walks. For the walk Xt steps to the right
occur at rate β(t) and to the left at rate γ (t). For the walk Yt steps to the right occur
at rate λ(t) and to the left at rate μ(t). ΦX (z, s, t) and ΦY (z, s, t) are the generating
functions for the randomized random walks Xt and Yt , respectively. Expanding the
generating function in terms of coefficients on zn , we have

Φ(z, s, t) =
∞∑

n=−∞
znφn(s, t)

=
∞∑

n=−∞
zn

∞∑
j=−∞

P{Xt = j |Xs = 0}P{Yt = n − 2 j |Ys = 0}.

Assume that pi, j (s) = δ j=i . Matching coefficients on zn , we see that

pi,0(t) =
∫ t

s

(
pi,1(u)γ (u) (φ−1(u, t) − φ1(u, t))

+pi,0(u) ((γ (u) + μ(u))φ0(u, t) − μ(u)φ1(u, t) − γ (u)φ2(u, t))
)
du

+ φ−i (s, t)

pi,1(t) =
∫ t

s

(
pi,1(u)γ (u) (φ0(u, t) − φ2(u, t))

+pi,0(u) ((γ (u) + μ(u))φ1(u, t) − μ(u)φ2(u, t) − γ (u)φ3(u, t))
)
du

+ φ−i+1(s, t),

and more generally
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pi,n(t) =
∫ t

s

[
pi,1(u)γ (u)

(
φi,n−1(u, t) − φi,n+1(u, t)

)

+pi,0(u)
(
(γ (u) + μ(u))φn(u, t) − φn+1(u, t)μ − γφn+2(u, t)

)]
du

+ φ−i+n(s, t).

Now suppose that transition rates are time-varying and periodic. Further suppose that
our generating function is for the asymptotic periodic distribution of the number in
the system. Then we have the generating function

P(z, t − 1, t) =
∫ t

t−1

(
π1(u)γ (u)(z − z−1)

+π0(u)(γ (u)(1 − z−2) + μ(u)(1 − z−1))
)
Φ(z, u, t)du

× (1 − Φ(z, t − 1, t))−1 (14.9)

and

π0(t) =
∫ t

0

⎡
⎣π1(u)γ (u)

∞∑
k=0

(
φ−1(u, t + k) − φ1(u, t + k)

)

+ π0(u)

⎛
⎝(γ (u) + μ(u))

∞∑
k=0

φ0(u, t + k)

−
∞∑
k=0

φ1(u, t + k)μ(u) − γ (u)

∞∑
k=0

φ2(u, t + k)

⎞
⎠

⎤
⎦ du,

π1(t) =
∫ t

0

⎡
⎣π1(u)γ (u)

∞∑
k=0

(φ0(u, t + k) − φ2(u, t + k))

+ π0(u)

⎛
⎝(γ (u) + μ(u))

∞∑
k=0

φ1(u, t + k)

−μ(u)

∞∑
k=0

φ2(u, t + k) − γ (u)

∞∑
k=0

φ3(u, t + k)

⎞
⎠

⎤
⎦ du,

and more generally

πn(t) =
∫ t

0

[
π1(u)γ (u)

∞∑
k=0

(
φn−1(u, t + k) −

∞∑
k=0

φn+1(u, t + k)

)

+ π0(u)

(
(γ (u) + μ(u))

∞∑
k=0

φn(u, t + k)
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−
∞∑
k=0

φn+1(u, t + k)μ(u) − γ (u)

∞∑
k=0

φn+2(u, t + k)

)]
du.

These expressions are difficult to evaluate numerically. So as in the Mt/Mt/1 exam-
ple, we apply an asymptotic estimate of the transition probabilities.

The first step is to factor out z − 1 since one is a root of both the numerator
and the denominator. Second, we follow Krinik and Shun and find the roots of the
denominator. Then following the approach outlined by Sedgewick and Flajolet [1],
we approximate the integrand as a sum of geometric series. We will need to do a
partial fractions decomposition.

Factorization of the numerator of Eq. (14.9) by z − 1 yields

∫ t

t−1

[
γ (u)(1 + z−1)p1(u) + (γ (u)(z−1 + z−2) + μ(u)z−1)p0(u)

]
Φ(z, u, t)du.

The denominator is zero when Φ(z, t − 1, t) = 1, that is, when

(
β̄z2 + λ̄z − (β̄ + λ̄ + μ̄ + γ̄ ) + μ̄z−1 + γ̄ z−2

) = 0.

One root occurs at z = 1:

(
β̄z2 + λ̄z − (β̄ + λ̄ + μ̄ + γ̄ ) + μ̄z−1 + γ̄ z−2

)

= (z − 1)(β̄z + λ̄ + β̄ − (μ̄ + γ̄ )z−1 − γ̄ z−2).

Factorization of the denominator of equation (14.9) by z − 1 yields

(β̄z + λ̄ + β̄ − (μ̄ + γ̄ )z−1 − γ̄ z−2)

×
∞∑
k=1

(
β̄z2 + λ̄z − (β̄ + λ̄ + μ̄ + γ̄ ) + μ̄z−1 + γ̄ z−2

)k−1

k! .

There are three other real roots of the denominator. These were computed by
Krinik and Shun [2, Lemma 1.1]. Their reciprocals are given by

1

r1
= −a

3
−2

√
U cos

(
θ

3

)
,

1

r2
= −a

3
− 2

√
U cos

(
θ

3
+ 4π

3

)
,

1

r3
= −a

3
− 2

√
U cos

(
θ

3
+ 2π

3

)
,

where U = a2−3b
9 , V = 2a3−9ab+27c

54 , θ = cos−1
(

V√
U 3

)
, a = μ̄+γ̄

γ̄
, b = − β̄+γ̄

γ̄
, c =

− β̄

γ̄
and 1

r1
< −1 < 1

r2
< 0 < 1

r3
.
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We are considering stable queues, so r1 is also a root of the numerator. We apply
a partial fractions decomposition to

1(
1 − z

r2

) (
1 − z

r3

) = −r3

(r2 − r3)
(
1 − z

r2

) + r2

(r2 − r3)
(
1 − z

r3

) .

Define

H(z, t) = −z2
∫ t

t−1

[
γ (u)(1 + z−1)p1(u) + (γ (u)(z−1 + z−2)

+μ(u)z−1)p0(u)
]
Φ(z, u, t)du

(
γ̄

(
1 − z

r1

)
(r2 − r3)

)−1

.

So we may write our asymptotic estimate as

πn(t) ≈ −r3H(r2, t)

rn2
+ r2H(r3, t)

rn3
.

This solution is analogous to that obtained by Krinik and Shun for the steady-state
distribution. They had

πn = c2
rn2

+ c3
rn3

for constants c2 and c3 which they give explicitly in their paper [2].

5 Asymptotic Estimates for Level Independent
Quasi-Birth-Death Processes

The same method can be used to obtain estimates for the level distribution for QBDs
with level independent transitions. Such QBDswill have infinitesimal generator with
block tri-diagonal structure:

Q(t) =

⎡
⎢⎢⎢⎢⎢⎣

B(t) A1(t) 0 0 · · ·
A−1(t) A0(t) A1(t) 0 · · ·

0 A−1(t) A0(t) A1(t) · · ·
0 0 A−1(t) A0(t) · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

, (14.10)

whereA−1(t),A0(t),A1(t) andB(t) are squarematrices of orderm, andm represents
the number of phases.
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We partition π(t) by levels into subvectors πn(t), n ≥ 0, where πn(t) hasm com-
ponents. The QBD system satisfies the Chapman–Kolmogorov forward equations

π̇0(t) = π0(t)B(t) + π1(t)A−1(t)

π̇n(t) = πn−1(t)A1(t) + πn(t)A0(t) + πn+1(t)A−1(t),

with the additional requirement that

∞∑
n=0

πn(t)1 = 1.

For periodic rates with period of length one, if stability conditions are met, there
will be a solution of the Chapman–Kolmogorov equations such that

πn(t) = πn(t + k),

k ∈ Z.
The generating function for the random walk corresponding to this QBD satisfies

Φ(z, s, t) =
∞∑

n=−∞
φn(s, t)z

n,

∂

∂t
Φ(z, u, t) = Φ(z, u, t)

(
z−1A−1(t) + A0(t) + zA1(t)

)
,

where φn(s, t) is an m × m matrix of transition probabilities. The (i, j) component
represents the probability of traveling to phase j by time t and remaining there until
at least time t and traveling to a level n units to the right of the level occupied at time
s given that the random walk process was in phase i at time s. For more details on
the set up and analysis of such systems with time-varying periodic transitions, see
[4] or [5]. For more background on quasi-birth-death processes in general see [3].

The generating function for the levels of the QBD solves the differential equation

∂

∂t
P(z, s, t) = P(z, s, t)

(
z−1A−1(t) + A0(t) + zA1(t)

)

+ π0(t)
(
B(t) − z−1A−1(t) − A0(t)

)
,

so

P(z, s, t) =
∫ t

s
π0(u)

(
B(u) − z−1A−1(u) − A0(u)

)
Φ(z, u, t)du

+P(z, s, s)Φ(z, s, t),

and for the periodic case with period 1,
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P(z, t − 1, t) =∫ t

t−1
π0(u)

(
B(u) − z−1A−1(u) − A0(u)

)
Φ(z, u, t)du×

(I − Φ(z, t − 1, t))−1 .

There will be poles in the determinant of the matrix (I − Φ(z, t − 1, t)). These poles
will reveal the geometric behavior of the level distribution.

6 Conclusion

This approach to the analysis of time-varying queues with periodic transition rates
offers considerable promise for improving the understanding of the behavior of such
systems. In particular, it shows that such queues are asymptotically geometric in the
queue length distribution. Futureworkwill involve extending these results and further
analyzing quasi-birth-and-death problems that fit this framework. For scalar queue-
ing models, computation of the roots is straightforward. For quasi-birth-and-death
processes, computation of the roots is feasible in special cases, but is challenging for
general QBDs.
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