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Foreword

Lattice Path Conference: A Journey1

Everything should be made as simple as possible but not
simpler.

Albert Einstein

Out of curiosity, someone may ask: How did the words “Lattice Path” become
associated with a series of conferences that encompass a broad range of intellectual
activities involving mathematics and applications? Representation of quite a few
combinatorial objects by lattice paths, conceptually and visually simple enough
without much mathematical training, drew the attention of T. V. Narayana, my
supervisor, and me. We started using this name as frequently as possible. It
eventually has become part of vocabulary in combinatorics. Here, we may note that
H. D. Grossman published a series of papers with the title Fun with lattice Points in
Scripta Mathematica during the late forties of the last millennium. As time pro-
gressed, we often have witnessed that “bijectivity” mapping, a simple idea but
sometimes demanding ingenious talent without much mathematical preparation,
does the trick in solving challenging problems. Our stories are to be told in a simple
manner as far as possible.

Just after almost simultaneous publications in 1979 of two books, Lattice Path
Combinatorics with Statistical Applications by T. V. Narayana and Lattice Path
Counting and Applications by me, I realized that there was a substantial growing
interest in lattice path combinatorics and applications in the fields of applied
probability, statistics, and computer science. I also realized that the distribution of
researchers was worldwide. In order to increase the awareness of the subject, my
intention to organize a conference to bring eminent and young researchers together
and to promote interaction between the theory group and those involved in appli-
cations resulted in the first Conference on Lattice Path Combinatorics and

1This is a revised and updated form of the article Reminiscing Over that appeared in Fundamenta
Informaticae, vol. 117, 2012.
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Applications (in short, LP Conference) that was held at McMaster University,
Canada, in 1984. Incidentally, I have been at McMaster University since 1964 and
the University was highly supportive of my initiative to organize the conference. Its
success prompted quite a few to voice an encore for it. In the meantime, the
publication of two books, Combinatorial Enumeration by I. P. Goulden and
D. Jackson in 1983, and Enumerative Combinatorics, vol. 1 by R. P. Stanley in
1986 encouraged me to move ahead in organizing another conference.

The second conference was held again at McMaster University in 1990,
although some of the enthusiasts wished it to be held earlier. Due to the popularity
of the first conference, it attracted more to participate. Also for the first time, an
organizing committee of which I was a member was formed to look after the
arrangements. A special feature of the second conference was a session dedicated to
the memory of T. V. Narayana who passed away in 1987.

Both conferences had international participation and triggered so much interest
that participants showed their willingness to organize LP Conferences elsewhere.
Thus, subsequent conferences were called “International” and were held at the
University of Delhi, India, in 1994; University of Vienna, Austria, in 1998;
University of Athens, Greece, in 2002; East Tennessee State University, Johnson
City, USA, in 2007. The Seventh International LP Conference at Siena, Italy, in
2010 was a continuation of the same trend. The main persons at local level were
Kanwar Sen in India, Walter Böhm and Christian Krattenthaler in Austria,
Ch. A. Charalambides in Greece, Anant Godbole in USA, and Renzo Pinzani and
Simone Rinaldi in Italy. The true international nature is also reflected by past
participation from Australia, Austria, Bangladesh, Canada, China, France,
Germany, Greece, India, Italy, Japan, Kazakhstan, Scotland, South Korea, South
Africa, Sweden, Taiwan, UK, and USA.

Throughout the years, the topics covered range over wide but related varieties
like lattice path and other combinatorial problems, q-calculus, orthogonal polyno-
mials, plane partitions, Stirling numbers, hypergeometric functions, partial orders,
spanning surfaces, generating functions, recurrence relations, bijectivity, algebraic
geometry, asymptotics, random walks, nonparametric inference, discrete distribu-
tions, urn models, queueing theory, quality control, and other fields of applications
such as probability, statistics, physics, psychology, management science, and
computer science. During the Greece Conference, the title changed to Lattice Path
Combinatorics and Discrete Distributions in order to emphasize the “Discrete
Distributions” content. Because of the diverse nature of topics, an international
scientific committee was formed for guidance and reviewing process for the third
conference, and since then, the practice has been continuing.

A new initiative started by dedicating the fourth conference to the memory of
Germain Kreweras (1918–1998) and T. V. Narayana (1930–1987), both of whom
made a significant contribution to the field. In the same spirit, the fifth conference
was organized in the memory of István Vincze (1912–1999) and a special paper on
his life and contribution was presented.

The number of participants is small and is remarkably steady to be 60–70. For
that reason or otherwise, the format of the conference has been to allot the same
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duration, usually being 20–25 min, to each paper without discrimination and
without any specially invited speakers. However, on occasions, instructional
lectures of longer duration, reviewing topics of current interest have been
programmed. In the Delhi Conference, the speakers were X. G. Viennot and
E. Csáki, with the titles of their presentation being Gessel–Viennot Methodology
and Some Aspects of Random Walk, respectively. In the sixth conference at Johnson
City, USA, there were four such lectures given by George E. Andrews on
Partitions, Ferrers Graphs and q-Hypergeometric Functions, Ira Gessel on An
Introduction to Lattice Path Enumeration, Adrienne W. Kemp on Discrete
Distributions, and Walter Böhm on Lattice Path Counting and the Theory of
Queues.

The conferences are of two and a half day duration, and the organizers have so
far been able to arrange some entertainment programs and sometimes after-dinner
speakers.

The refereed papers among those presented at each conference have often been
published as special issues of the Journal of Statistical Planning and Inference. The
past issues are: vol. 14, no. 1 (1986), vol. 34, nos. 1–2 (1993), vol. 54, no. 1 (1996),
vol. 101, nos. 1–2 (2002), vol. 135. no. 1 (2005), vol. 140, no. 8 (2010). The
refereed papers of the seventh conference appeared in Fundamenta Informaticae,
vol. 117 (2012). While I have been the guest editor, I acknowledge, with my sincere
appreciation, the joint editorship of W. Böhm and C. Krattenthaler for 2002,
Ch. A. Charalambides for 2005 and A. Godbole for 2010. J. N. Srivastava,
Editor-in-Chief of special issues deserves my gratitude for being a source of
encouragement right from the beginning of the publication of the first issue.

The eighth conference was held in 2015 at California State Polytechnic
University, Pomona, California, USA, for four days instead of the usual two and a
half days. In addition to all earlier features including social events, it had a special
feature of having a 10-min gap between talks to allow a good discussion on the
paper. This conference was dedicated to Shreeram Shankar Abhyankar (1930–
2013) and Philippe Flajolet (1948–2011) and paid tribute to them in special ses-
sions. In addition, the eighth conference had special sessions recognizing the
contributions of George E. Andrews and Lajos Takács. Unfortunately, Lajos Takács
was unable to attend this conference and later passed away in December of 2015.
We grieve his passing with deep sadness. Two more colleagues, J. N. Srivastava
and J. L. Jain, were also memorialized at the eighth conference; both were closely
associated and very helpful with previous lattice path conferences.

The non-threatening title “Lattice Path” instead of one with specialized mathe-
matical jargon had its well-expected impact when two bright high school students
came forward to present papers. Another encouraging sign was the significant
participation from younger people.

We thank Alan Krinik and the organizing committee who worked hard for this
successful conference.

Remarkably, the egalitarian structure of the conference has proved to be suc-
cessful without sacrificing the quality and has been approved by its participants.
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This new enthusiasm gives hope on its continuity and possibly might take us to
France or India in the near future.

In the journey over so many years, quite a few colleagues such as G. E. Andrews,
N. Balakrishnan, W. Böhm, Ch. A. Charalambides, E. Csáki, I. M. Gessel,
A. Godbole, A. W. Kemp, C. D. Kemp, C. Krattenthaler, A. Krinik,
H. Niederhausen, and Kanwar Sen have decided to walk with me all along by my
side. Some joined and left, and some others are still joining as time flows on. They
have provided the strength for me to move on. They are more than professional
colleagues; they are indeed true friends. I owe my deep gratitude to them, and
without them, the story will remain incomplete. I also thank others who have decided
to join with us supplying food and water to the walkers through their participation
and professional and organizational help. The humble beginning, smallness of LP
Conferences, and their structure have provided a close affinity among those who
have been participating. Essentially, they have become members of what I call
“Lattice Path” family. I wish a successful future journey and the well-being of the
family.

Hamilton, ON, Canada
March 2018

Sri Gopal Mohanty
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Preface

The 8th International Conference on Lattice Path Combinatorics and Applications
took place from Monday, August 17, 2015, to Thursday, August 20, 2015, on the
scenic and historic 1,400-acre campus of California State Polytechnic University,
Pomona (Cal Poly Pomona), once the winter ranch of cereal magnate
W. K. Kellogg, located about 30 miles east of downtown Los Angeles. During this
four-day period, 42 talks were presented; see our schedule of speakers given below.
Following the traditional organization of the seven previous lattice path combina-
torics conferences (see Lattice Path Conference: A Journey by SRI GOPAL MOHANTY

in our Foreword), these presentations were given sequentially. Most of our talks
were 20 min in duration and took place on the first floor of the Cal Poly Pomona
Library in room 1807 (see the pictures on the next page). Presentations were
separated by 10 min to encourage questions and brief discussions, to facilitate the
transition between speakers, and to provide participants short breaks.

The 8th International Conference on Lattice Path Combinatorics and
Applications was dedicated to SHREERAM SHANKAR ABHYANKAR (1930–2013) and
PHILIPPE FLAJOLET (1948–2011). Both of these outstanding mathematicians had a
strong influence on the subject of lattice path combinatorics, and each had unfor-
tunately passed away during the intervening years between the 7th and 8th lattice
path combinatorics conferences, so our 8th International Conference on Lattice Path
Combinatorics and Applications was a natural time to acknowledge their seminal
contributions and honor their memory. We also took the opportunity during our
conference to recognize and pay tribute to the many significant contributions of
GEORGE ANDREWS and LAJOS TAKÁCS to lattice path combinatorics and its applica-
tions. We were pleased to be able to schedule several prominent researchers who
had firsthand information or personal knowledge of the preceding mathematician’s
work and biographical details of their life. These speakers were well-positioned,
skillful, and enthusiastic in presenting tributes and describing many of the major
mathematical achievements of ABHYANKAR, FLAJOLET, ANDREWS, and TAKÁCS as well
as providing biographical glimpses of the personal lives and personalities of these
mathematicians.
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Conference photograph, taken in Room 1807
Row 1: Anant Godbole, Tri Lai, Yan Zhuang, Ranjan Rohatgi, Larry Ericksen, Devadatta
Kulkarni, Juan D. Gil, Malvina Vamvakari, Juan B. Gil, Samuel Houk, Benson Chen; row 2:
Michael Wallner, Cyril Banderier, Krishnaswami Alladi, Ryan Kmet, Daniel Birmajer, M. I. A.
Ageel, Gopalan Nair, Sudhir Ghorpade, Alan Krinik, Meesue Yoo; row 3: Rika Yatchak, Michael
Weiner, David Nguyen, Erik Slivken, Jordan Tirrell, Christian Krattenthaler, Heinrich
Niederhausen, Barbara Margolius, Dennis Eichhorn, Gregory Morrow

Room 1807, with scattered participants of the conference
Row 1: Alan Krinik, Christian Krattenthaler, Larry Ericksen, David Nguyen; row 2: Malvina
Vamvakari, Sudhir Ghorpade, Devadatta Kulkarni, M. I. A. Ageel, N. N., N. N.; row 3: Ranjan
Rohatgi, Tri Lai, Heinrich Niederhausen, Erik Slivken; row 4: Dennis Eichhorn, Rika Yatchak,
Meesue Yoo, Krishnaswami Alladi, Daniel Birmajer, Michael Weiner; row 5: Gregory Morrow,
Barbara Margolius, Cyril Banderier, Michael Wallner, Ryan Kmet, Gopalan Nair; row 6: Jordan
Tirrell, Yan Zhuang; standing: Anant Godbole
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This edited volume of 17 refereed articles accurately captures the commemo-
rative and creative spirit of the 8th International Conference on Lattice Path
Combinatorics and Applications. In their compelling article, Professor Lajos
Takács: A Tribute, SRI GOPAL MOHANTY and ALIAKBAR MONTAZER HAGHIGHI share
their personal interactions, memories, and pictures of the Hungarian mathematician
LAJOS TAKÁCS as they describe TAKÁCS’ many impressive contributions in proba-
bility theory, queueing theory, and combinatorics. LAJOS TAKÁCS was invited to
attend the 8th International Conference on Lattice Path Combinatorics and
Applications, but he declined due to failing health. He passed away three and a half
months later on December 4, 2015, at the age of 91 years. SRI GOPAL MOHANTY was
able to obtain from LAJOS TAKÁCS’ wife, DALMA (who has since passed away on
June 24, 2016), a previously unpublished research article by LAJOS TAKÁCS entitled
The Distribution of the Local Time of Brownian Motion with Drift. Professor
MOHANTY also obtained DALMA’s permission to consider this article for publication.
We are delighted to honor LAJOS TAKÁCS by including this interesting article in our
edited volume.

The next two articles are eloquent historical tributes by KRISHNASWAMI ALLADI

entitled: Reflections on Shreeram Abhyankar and My Association and
Collaboration with George E. Andrews, Torchbearer of Ramanujan and Partitions.
ALLADI’s insider perspective should intrigue readers to understand the personal
circumstance and mathematical accomplishments of these two giants in mathe-
matics. Here is an excerpt from each article:

Sri Gopal Mohanty, Montazer Haghighi, and Alan Krinik during the conference
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Shreeram Abhyankar (22 July, 1930 – 2 Nov., 2012) was one of world’s most eminent
algebraic geometers. He ranked among the ten greatest mathematicians of India in the
twentieth century. He belonged to the Chitpavan Brahmin community of Maharashtra and
was proud of its illustrious lineage. Abhyankar’s PhD thesis on the resolution of sin-
gularities problem is a classic and is among his most important contributions. I was
fortunate to get to know him from my boyhood because he was a close friend of my
father. Abhyankar and his wife Yvonne were our house guests in India in the sixties.
Abhyankar was a fascinating, colorful, and engaging personality. He would grab your
attention with his warmth, his open frankness, and his firm opinions on various matters—
mathematical and non-mathematical.

I could say so much more about ANDREWS’ work on partitions, q-series, and Ramanujan,
but here I chose to focus on an aspect of our joint work that shows that in manipulating
q-hypergeometric series, he has no match in our generation. Even though he towers head
and shoulders above the rest in the world of partitions, q-series, and Ramanujan, he is a
perfect gentleman always willing to help. It is a pleasure and a privilege for me to be his
friend and collaborator.

GEORGE ANDREWS was the only one of our honorees who physically attended our 8th
International Conference on Lattice Path Combinatorics and Applications. It is hard
to overstate the importance of his presence to the success of our conference and
how much we all appreciated having George take part. It gave his close friend and
collaborator KRISHNASWAMI ALLADI (University of Florida) the opportunity to enu-
merate, to explain, and to acknowledge George’s many lifetime accomplishments
during a Wednesday, August 19, 2015, evening dinner talk from 7–10 PM on the
large outdoor patio beside Cal Poly Pomona Kellogg ranch house. KRISHNASWAMI

ALLADI’s talk that evening was inspiring and included a fascinating collection of
personal photographs and anecdotes of George and other mathematical luminaries
dating back several decades. Dr. ALLADI summarized his dinner talk that evening as
follows:

George E. Andrews is the unquestioned leader in the theory of partitions and on the work
of the Indian mathematical genius Srinivasa Ramanujan. My first contact with him was in
1981 in connection with his first visit to India when I put him in touch with my father who
hosted him there. From then on, our friendship grew and was strengthened by his visits to
India and Florida as our guest, and my frequent visits to Penn State. We collaborated on
some of the most appealing problems in the theory of partitions, and I had the opportunity
to observe this genius at work. I will also recall some wonderful incidents ranging from
Andrews’ visit to the Ramanujan Centennial in India in 1987, to his getting honorary
doctorates at the University of Florida in 2002 and at SASTRA University in India in 2012
for Ramanujan’s 125th Birth Anniversary.

Earlier that Wednesday afternoon GEORGE ANDREWS presented a warmly received
talk entitled Congruences for the Fishburn Numbers (with colleague James Sellers
listed as his co-author). However, for our edited volume, GEORGE submitted the
paper A Refinement of the Alladi–Schur Theorem. GEORGE’s conclusion from this
article states:
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First, Alladi’s addition to Schur’s Theorem [1] given in Theorem 5.1 merits much closer
study than it has received to date. Second, the conjectures of Kanade and Russell [6]
suggest that the q-difference equation techniques, as initiated in [2], [3], need to be
extended beyond partitions in which all parts are distinct. Part of the motivation for this
paper was to show that such an extension is feasible.

Finally as a member of the Lattice Path Combinatorics and Applications
Conference scientific committee, GEORGE ANDREWS suggested publishing articles
from our 8th International Conference on Lattice Path Combinatorics and
Applications with Springer-Verlag and through KRISHNASWAMI ALLADI. This edited
volume owes a lot to the close Andrews–Alladi relationship. And GEORGE ANDREWS,
once again, stepped up again by agreeing to become (along with CHRISTIAN

KRATTENTHALER and ALAN KRINIK) co-editor of this edited volume.
The next paper in our edited volume is entitled Explicit Formulas for

Enumeration of Lattice Paths: Basketball and the Kernel Method and is unusual in
having seven co-authors: CYRIL BANDERIER, CHRISTIAN KRATTENTHALER, ALAN

KRINIK, DMITRY KRUCHININ, VLADIMIR KRUCHININ, DAVID NGUYEN, and MICHAEL

WALLNER. This article grew through an exciting collaborative effort of those in
attendance at our conference. The story begins with a presentation of a work in
progress entitled Counting Lattice Paths having Step Sizes of f�2;�1; 1; 2g from
j to k, where j, k are Natural Numbers and the Path Never Touches nor Goes Below
the x-Axis presented by Alan Krinik and David Nguyen (having co-authors Dmitry
Kruchinin and Vladimir Kruchinin) at the 8th International Conference on Lattice
Path Combinatorics and Applications. Some results were stated and explained but
were not proved. By the end of the presentation, there was a lot of interest and
discussion on how to complete this work. The presenters encouraged collaborative
discussions. In the end, the conference participants CYRIL BANDERIER, CHRISTIAN

KRATTENTHALER, and MICHAEL WALLNER were added to the original collection of four
co-authors. After months of revisions, the original ideas evolved into a much
improved article that was more general and employed the kernel method to supply
the previously missing proofs.

The next article is The Kernel Method for Lattice Paths below a Line of Rational
Slope by CYRIL BANDERIER and MICHAEL WALLNER. Starting point for this work was
a curious problem posed by DONALD KNUTH at the conference AofA’2014 in Paris.
As with the previous paper, the kernel method is the approach that allows the
authors to solve the problem, by analyzing enumerative and asymptotic properties
of lattice paths below a boundary line of rational slope. We mention that CYRIL

BANDERIER, in addition to being a significant co-author on the last two long research
articles, also gave an engrossing dinner presentation on Monday, August 17, 2018
7:00 pm–9:30 pm in the Kellogg West dining area, on his beloved doctoral advisor,
PHILIPPE FLAJOLET, entitled The Analytic Combinatorics Point of View of Philippe
Flajolet on Lattice Paths.

The next research article in our edited volume is titled Enumeration of Colored
Dyck Paths Via Partial Bell Polynomials by DANIEL BIRMAJER, JUAN B. GIL, PETER
R. W. McNAMARA, and MICHAEL D. WEINER. The authors consider a class of lattice

Preface xiii



paths with certain restrictions on their ascents and down steps and use them as
building blocks to construct various families of Dyck paths. They let every building
block Pj take on cj colors and count all of the resulting colored Dyck paths of a
given semilength. Their approach is to prove a recurrence relation of the convo-
lution type, which yields a representation in terms of partial Bell polynomials that
simplifies the handling of different colorings. This allows them to recover multiple
known formulas for Dyck paths and related lattice paths in a unified manner. It is
interesting to note that during our 8th International Conference on Lattice Path
Combinatorics and Applications, we had two polished talks presented by two
exceptional high school students, Samuel Houk and Juan D. Gil; see the program
schedule below. Juan D. Gil talked on Dyck paths colored by Catalan numbers.
Juan D. Gil is the son of Juan B. Gil who also delivered his own separate talk, A
Family of Bell Transformations, during our conference. So we had a father and son
each give excellent separate presentations during our 8th International Conference
on Lattice Path Combinatorics and Applications. This may be a first time event in
the history of lattice path combinatorics conferences.

Discrete distributions have always been a prominent topic discussed at lattice
path conferences. The background is random walks and statistics on random walks,
which give rise to discrete distributions. A more recent development is the study of
q-analogues of discrete distributions, somewhat analogous to generalizing, say,
binomial coefficients to q-binomial coefficients. This leads us to the so-called dis-
crete q-distributions, which enjoyed many presentations during the past lattice path
conferences. We are very pleased that, for the present volume, CHARALAMBOS

CHARALAMBIDES has written an extremely informative survey on discrete q-dis-
tributions: A Review of the Basic Discrete q-Distributions. Not immediately fol-
lowing it, the reader finds a research article on this topic: Asymptotic Behaviour of
Certain q-Poisson, q-Binomial and Negative q-Binomial Distributions by ANDREAS

KYRIAKOUSSIS and MALVINA VAMVAKARI. In this article, the authors present an
asymptotic analysis of some “classical” discrete q-distributions, in particular the
Heine distribution and the Euler distribution, which are themselves limits of certain
q-Binomial distributions.

Back to the order of articles as they appear in this volume, then next is Families
of Parking Functions Counted by the Schröder and Baxter Numbers by ROBERT

CORI, ENRICA DUCHI, SIMONE RINALDI and VERONICA GUERRINI. Here, two new
families of parking functions are introduced, one enumerated by the Schröder
numbers, the other enumerated by the Baxter numbers. The link to lattice path
combinatorics comes from the fact that both contain non-decreasing parking
functions as special cases, which via a straightforward map are in bijection with the
classical Dyck paths. Combinatorial properties of these parking functions are
investigated, and bijections between these two families and classes of lattice paths
are constructed. All this is as well linked to pattern-avoiding permutations, pro-
ducing a rich panorama of various combinatorial objects.

Not very long ago, the so-called Stern sequence—a sequence ðanÞ satisfying a
system of linear recurrences implying that the value an will strongly depend on the
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binary expansion of n—was generalized to polynomial sequences in two different
ways. The purpose of Some Tilings, Colorings and Lattice Paths via Stern
Polynomials by KARL DILCHER and LARRY ERICKSEN is to tie these new polynomial
sequences with lattice path enumeration. This is done via tilings of a strip of finite
length.

From the outset, rook theory—going back to IRVING KAPLANSKY and JOHN
RIORDAN in the 1940s—has no direct link to lattice paths. Yet, paths play an
important role in p-Rook Numbers and Cycle Counting in Cp≀Sn by JIM HAGLUND,
JEFF REMMEL (who attended our conference and who has unfortunately passed away
far too soon on September 29, 2017, at the age of 68 years) and MEESUE YOO,
though these are paths in certain graphs and not lattice paths. In the article, the
“ordinary” rook configuration counting is refined to cycle and q-counting—which
had been done earlier in unpublished work of RICKARD EHRENBORG, JIM HAGLUND,
and MARGARET READDY—and then to the context of wreath products Cp≀Sn (instead
of just Sn).

With BARBARA MARGOLIUS’ article Asymptotic Estimates for Queueing Systems
with Time-Varying Periodic Transition Rates, we move to queuing theory.
Obviously, there is a close connection to lattice paths since the evolution of a queue
can be conveniently encoded in terms of a lattice path. The Mt=Mt=1-queue, the
multi-server queue (Mt=Mt=ct), and queues with jumps of size one and two are
considered in the above article. Estimates are derived which are asymptotic in the
length of the queue. The results highlight the connections between the asymptotic
periodic distribution of a stable queue with time-varying rates and the same type of
queue with constant rates. The subsequent article within our edited volume is A
Combinatorial Analysis of the M/M ½m�/1 Queue, written by GUVEN MERCANKOSK

and GOPALAN NAIR. It is Markov chain techniques which play an important role
here. They lead to a reformulation that allows for the application of combinatorial
tools. In the case of the M=M½m�=1 queue, an explicit expression in terms of
hypergeometric series is derived.

A different kind of Markov process is in the focus of Laws Relating Runs, Long
Runs, and Steps in Gambler’s Ruin, with Persistence in Two Strata by GREGORY

MORROW: the gambler’s ruin process. A weighted average of runs, long runs, and
steps in the path representation of the process is considered, and the limiting dis-
tribution as the amount in the “base capital” tends to infinity is computed.

The last (but certainly not least) article in the present volume is Paired Patterns
in Lattice Paths by Ran Pan and—again—JEFF REMMEL. Paired patterns define a
certain kind of “pattern containment” in lattice paths consisting of north and east
steps. In the above article, paired patterns of length 4 are considered, and sets
of these. The number of pattern matches is given natural combinatorial interpre-
tations, which one finds intrinsically in the path structure. Furthermore, the corre-
sponding generating functions are explicitly given.

Not surprisingly, this edited volume came together with some significant help
and work from many people. Our appreciation begins with the fact that 33 authors
associated with the 8th International Conference on Lattice Path Combinatorics and
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Applications took the time and made the effort to compose and contribute the
seventeen articles that comprise this edited volume. We gratefully acknowledge the
important contributions of our referees for improving our articles. We thank our
Springer Series Editor, KRISHNASWAMI ALLADI, for his vision and constant encour-
agement and our Executive Editor, ELIZABETH LOEW (Mathematics, Springer), for
her reliable assistance, persistence, and patience and the Springer staff for their
professional editing. Finally, it is a great pleasure to recognize and honor Professor
Emeritus SRI GOPAL MOHANTY for being the founder and leader of the Lattice Path
Combinatorics International Conferences and for his lifetime effort to organize,
foster, and promote research in lattice path combinatorics.

University Park, USA George E. Andrews
Vienna, Austria Christian Krattenthaler
Pomona, USA Alan Krinik
March 2018
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Program Schedule

8th International Conference on Lattice Path
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Professor Lajos Takács: A Tribute
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2 A. M. Haghighi and S. G. Mohanty

Lajos Takács: Born in Maglód, Hungary, August 21, 1924
Died in Cleveland, Ohio, USA, December 4, 2015
Professor Emeritus of Mathematics & Statistics

Case Western Reserve University, Cleveland, Ohio, at the time of his death

1 In Memory of Lajos Takács

1.1 How Did I Come to Know Takács?

At San Francisco State University in northern California, where I was doing my
graduate work during 1966–1968, I heard Lajos Takács’ name in the class with Dr.
Siegfried F. Neustadter (1924–2012), known as Fred. Professor Neustadter received
his Ph.D. fromBerkeley and spent several years atHarvard andMITbefore joiningSF
State in 1958.Hewas aMathematician consultant at SylvaniaElectronics inWaltham,
Massachusetts during which period Takács was working at Bell Lab. Neustadter
knowing Takács, brought his 1962 celebrated book, Introduction to the Theory of
Queues, to the attention of the class and taught the single-server queue, M/M/1,
from that book.
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1.2 Left the USA, Back to Iran

I left the USA in 1968 before completing my master’s degree due to my mother’s
health problem. However, because of my political activities against the regime of late
Shah of Iran while I was a student at SF State, Shah’s Secret Service called “Savak”
put three sanctions against me, one being that I could not leave the country for 5
years.

After some communication with the Department of Mathematics at SF State, I
completed my master’s degree by taking a written comprehensive exam at the US
Embassy in Tehran under the supervision of late Dr. Mohsen Hashtroodi, a professor
at University of Tehran.

During that 5-year period, besides writing and translating books, I guided one of
my students to translate a part of Takács’ book as part of her master thesis.

1.3 At Case Western Reserve University

As the duration for the sanction was coming to the end, I thought seriously of work-
ing with Takács. Finding out that Takács was at Case Western Reserve University
(CWRU) in Cleveland, USA, I applied for Ph.D. program there in the Department of
Operations Research (OR) and got accepted. Since there was no diplomatic relation
between Iran and USA, I had to go to the Netherlands to get US visa. I along with
my family came to USA in 1973 for my study at CWRU.

While I was registered in OR Department, I realized soon that Takács was in
the Department of Mathematics and Statistics. (Of course, those days there was
no Google to search for the location of Takács’ Department.) However, after one
semester in the OR Department, Professor Shelemyahu Zacks, the then Chair of
the Department of Mathematics and Statistics (now Professor Emiratous at SUNY-
Binghamton University), accepted me to transfer my study to his department. There,
I enrolled in stochastic processes course, which was given by Takács.

Before taking my Graduate Record Exam (GRE), Professor Takács gave me the
privilege of starting to work on my dissertation under his guidance. It seemed he
trusted that I would pass GRE. And I did. I continued my dissertation and finished
my work for Ph.D. degree by January 1976, which I received in June of that year.

1.4 Left the USA, Back to Iran Again!

Only a few days after my passing the dissertation’s defense, I and my family returned
home. Just after two years, in 1978 Iran’s revolution occurred. During the first few
years of revolution, I continued teaching and even held some highest ranks in univer-
sity administration. In the meantime, the war between Iran and Iraq was becoming
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ugly and many unpleasant things were happening in universities. In the war, boys
of fourteen and above were mandatory to join and my son was soon to become
fourteen. Such circumstances made me to think of leaving the country again for a
peaceful atmosphere to raise my family. So I decided to contact Takács for help and
for financial support.

1.5 Meeting Professor Mohanty in Canada

Takács was not a fan of obtaining research financial support and grant funds, as
he believed that the work completed should be awarded rather than a work being
promised for future completion. So, he referred me to Professor Sri Gopal Mohanty
at McMaster University and asked me to contact him. To him, I guess Mohanty was
a “bank” with much grant funds.

After contacting Professor Mohanty,
I was graciously offered three months
teaching and research during summer
1984 at McMaster University.
At that time, two other professors,

Professor J. P. Medhi from India and
Dr. E. Csáki from Hungary were associ-
atedwithProfessorMohanty.As a result of
this acquaintance and friendship, research
collaboration among us started. (From left: Mohanty, Haghighi, Csáki,

Medhi)

(From left: Shanti, Shahin, Ali, Mahyar
and Mahroo in front)

We also established family friendship
with Mohanty’s family which is continu-
ing till now. His wife, Shanti, is a kind
and hospitable host. She makes good food
and excellent chai (tea)! My entire family
(wife – Shahin,myself –Ali Haghighi, son
– Mahyar and daughter – Mahroo) have
enjoyed the relationship.
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1.6 Back to the USA and Started a Lifelong Living!

Visiting Mohanty was the first step for me and my family in preparation to leave
Iran. We left the country and arrived at Los Angeles in February of 1985 to spend my
sabbatical leave at California State University Fullerton. After 6 months, we moved
to Columbia, South Carolina, stayed there until our both children received their first
university degrees and left us. After 17 years in Columbia, my wife and I moved
to Houston, Texas, where we currently live. After his education, our son, Micheal
Haghighi, practices medicine and lives with his wife (Roshni Patel, also a physician)
and two children (Maya and Kayvan) in Jacksonville, Florida. Our daughter received
her MBA and is working and living with her daughter (Leila) in Charlotte, North
Carolina.

1.7 Remembrances

Now, I will give you some particular remembrances from the time I was a student of
Takács:

• Television weather forecasters (Meteorologists) in Cleveland were using the word
“chance” in describing the weather, say the “chance” of rain or snow, as it was
commonly used terminology for the purpose.However, duringmy stay, June 1973–
January 1976, the use of “chance” changed to the word “probability.” This change
of word made Professor Takács very excited that the word “probability” finally
found it place inmedia’s vocabulary, at least among Television weather forecasters
(meteorologists) in Cleveland.

• Takács was often criticized because he did not present real-life examples for his
deep theoretical work to make the theory easier to understand. His response, as he
used to tell me, was an analogy that his work was like new medicines available for
doctors to recognize their appropriate use for patients. When I told this response
to Professors Joe Gani and the late Marcel Neuts at a conference in Honor of Joe
Gani in Athens, Greece, 1995, they simply laughed and enjoyed Takács’ response.

• As Takács entered our classroom at Case, he would go to the blackboard (there
was no whiteboard those days) and start writing from left to write and from top to
bottom of the board, erase and continue writing all over the board, without looking
at any note or at us, the students. It was up to us, the students, to figure out later
what he was teaching. I later discovered that his lectures were based on published
research papers and he usually offered no detail and explanation to us. Once in
one of my queueing theory classes, Professor Otomar Hájek from Department
of Mathematics and Statistics was sitting to audit the course. (Emeritus Professor
OtomarHájekwas originally fromCzech. He is a recipient of vonHumboldt award
at the TH Darmstadt, Fachbereich Mathematik and is known for his contributions
to dynamical systems, game theory, and control theory.) As Takács was writing
and writing and writing, suddenly he stopped. Professor Hájek asked Takács what
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was it that he forgot. Takács turned his face to him, just looked at him for a few
seconds, went back to the board and continued writing. Suddenly, he remembered
what he had forgotten. That was the only time I noticed him forgetting something
during teaching without note.

• Asmentioned, I attended CWRU in June 1973. I was withmy, then, 2-year old son,
Mahyar (now calledMicheal), andmywife, Shahin.Wewere staying in a graduate
residence hall, right in the heart of the downtown where crimes and particularly
gun shooting were high.
After two years of frustration, my wife decided to return home, Tehran, with my
son, after his 4th birthday, so that I could rush to finish and they could feel safe.
After they left, I practically lived in my office, mostly with very brief naps at my
desk and trying to finish my dissertation.
During the Christmas Holidays of 1975, when I was preparing defense of my
dissertation, I needed help. I called Professor Takács and ask him for help. He
responded without hesitation, went to his office, and helped me out. This was one
of many caring experiences I remember from this great teacher of mine at CWRU.
As a graduate student of Lajos Takács at CWRU, who did his dissertation under
his guidance and graduated in 1976, I am extremely thankful to him, among other
things, for being a caring professor. With all his academic brilliance that could
have made him arrogant (as some of us professors are!) he was humble, caring,
and a down-to-earth person. His loss on December 4, 2015, is a loss of a great
human being, a teacher, a scholar, and a world-leading scientist.

2 The Life of Lajos Takács

2.1 A Biographical Sketch of Lajos Takács

2.1.1 Takács’ Childhood

Lajoswas born onAugust 21, 1924, inMaglód (a little town 16miles fromBudapest),
Hungary. His father had a general store with his mother helping him. Once in store, at
age 4, with his mother, a neighbor walked in and told her mother that she sold her pig
for 40 pengös (Hungarian currency during 1927–1946). Lajos, who could multiply
at that age, asked her mother how many fillérs was in a pengö? After her mother
responded 100, he thought a moment and told her that the neighbor has 4000 fillérs!
So, he became well-known mathematician at age 4 in his small town, Maglód!

2.1.2 Takács in Elementary School

While in elementary school, Lajos took note of all of his learning and carried the
notebook with him. He was interested in technology, arithmetic, electronic, and
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radio. A mathematical problem Lajos solved while in elementary school was the
magic property of π in calculating the area of a circle and consequently the exact
volume of a cylindrical barrel in his yard.

Takács calculated the chess game’s grain sum reward while he was in elementary
school as one of his mathematical problems at the young age. The problem posed is
the following:

Suppose the chess game inventor asked that as a reward he be given one grain
of wheat for the first square of the chessboard, two for the second, and double
the previous one for the subsequent square. At that age he was not aware of how
to calculate sum of geometric series, to find out the total number of grains to be
awarded. So, he just added the numbers for all 64 squares and found the exact sum
in kilograms and sacks. The question is how Takács calculated the number of sacks
needs? So, I asked Takács the following question in an e-mail:

In elementary school, how did you know the weight of a wheat grain and a sack weight
capacity to figure out how many sacks of grain the reward would be?

Here is Takács’ response and his wish for this conference in his e-mail [9] on July
23, 2015:

To answer your question, I had no way to measure the weight of one grain. My mother had
a general store, not a pharmacy! But she did have an old-fashioned scale with a collection
of weights of various sizes. I put the 100 gram weight in one tray of the scale, and enough
wheat grains in the other to tip the scale. Then I counted the number of grains in 100 grams,
and divided 100 by the number of grains to find the weight of one grain of wheat. I already
knew that the standard weight capacity of a sack of grain was 80 kilograms.

I checked the accuracy of my calculations by taking into consideration that 210 = 1024.

2.1.3 Takács in Secondary School

By the time Takács attended the secondary school, his mentioned notebook was full
of everything he had learned about technology and arithmetic.

To attend his secondary school, Takács had to commute with train to Budapest.
Riding train was an opportunity for him to borrow books from older students and
study them.He studiesmany books on his own, including theDifferential and Integral
Calculus by Manó (Emanuel) Beke that he bought.

At the age of 14, Takács lost his father and had to help his mother at the store.
Hence, he had to take care of errands of the business in Budapest. Thus, during the
high school period, he was the manager and buyer for his mother’s business.

At age 15, Takács approached his mathematics teacher, Dezső Vörös, asking a
mathematics book to read and the teacher suggested Euler’s Algebra. Euler’s Algebra
[11] is an extremely complicated and difficult German language book with old-
fashion Gothic letters (relating to the Goths or their extinct East Germanic language).
Nonetheless, under insistence of the teacher, Takács purchased the book and spent
Christmas vacation of 1939 to study this book. As soon as he mastered the Euler’s
syntax, he was amazed by the contents of the book of this Swiss Mathematician such
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as solution of cubic and quadratic equations, Diophantine equation, and solution of
Fermat’s problem for n = 3 and n = 4.

Throughout high school, Takács spent his free times and vacations reading and
studying many books with different topics, including Diophantine equations in Euler
and notes of Vörös on Gusztáv Rados’ lectures on number theory and some other
books on number theory, including [6, 7]. He became, particularly, interested in
Number Theory and out of his readings; he made some discoveries at the time. For
instance, in a book Takács read that the number of branches on a tree increases
annually according to the sequence 1, 2, 3, 5, 8, 13, …. Assuming this statement is
true, while he had no knowledge of “Calculus of Finite Differences”, he wanted to
find a general formula for the number of branches of a tree in the nth year.

Takács solved the problem posed in a roundabout way by observing that the
numbers in the sequence 1, 2, 3, 5, 8, …are positive integers in y of the Diophantine
equation x2 − 5y2 = ±4 that he could solve.However, hewas not aware that solution
of the problem already existed in the literature of Fibonacci numbers.

During high school years, Takács was familiar with combinatorics and solved
many probability problems. However, he considered probability as a branch of com-
binatorics. Much later, he realized the importance of the probability theory and its
role in describing the physical world. He had particular interest in radio technology.
Hence, he bought themonthly journalRádió Tecknika and constructed different kinds
of electronic equipment. He learned logarithm, trigonometry, and complex numbers
from a mathematical column of this journal.

Although during high school years, Takács was spending most of his times study-
ing mathematics books, he also studied classical and modern physics. However, he
did not ignore physical activities. He was proud of his accomplishment in high jump,
long jump, running, swimming, and skating. He alsowas an entertainer for his friends
by mathematical puzzles and tricks.

In 1943, when graduated from high school,
Takács won the second prize in the 47-th Loránd
Eötvös mathematical and physical society compe-
tition for high school graduates in Hungary. The
award was established in 1894, given to two high
school students annually. Including in the list of
winners are great mathematicians such as the fol-
lowing: Loránd Eötvös
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First Name Last Name Year Won Year Born Year Died
Lipót Fejér 1897 1880 1959
Theodor Kármán 1898 1881 1963
Dénes König 1902 1884 1944
Alfréd Haar 1903 1885 1933
Marcel Riesz 1904 1886 1969
Gábor Szegő 1912 1895 1985
Tibor Radó 1913 1895 1965
László Rédei 1918 1900 1967
László Kalmár 1922 1905 1976
Edward Teller 1925 1908 2003
Lajos Takács 1943 1924 2015

Problems and their solutions for the 47th competition may be found online at http://
www.math-olympiad.com/47th-eotvos-competition-1943-problems-solutions.htm.

2.1.4 Takács in University

Takács studied at the Technical University of Budapest from 1943 to 1948. While
studying at the Technical University of Budapest, he was also attending classes at the
Pázmány University. At the end of 1943 school year, the Second World War reached
the door step of the university, and as a result, academic activities were interrupted
until the fall of 1945. Thus, Takács was spending his time on studying by himself.

Back to the university that resumed in 1945, Takács took
courses in probability theory and mathematical statistics
with Charles (Károly) Jordán (1871–1959); courses that
made Takács’ mind to take the area as his career. Jordán
became Takács’ mentor during the years he was a student.
Takács not only learned from Jordán, but contributed to his
class too.

Charles Jordán
An example of his contribution is when Jordán was discussing “matching.” A

match occurs when n cards marked individually with one of
1, 2, . . . , n are drawn at random without replacement and at the i th draw the card

marked with i appears, i = 1, 2, . . . , n. In his class, Jordán presented the problem
of finding the probability of at least one match to occur from Montmort’s book [23]
and stated its solution by Montmort who did not provide any proof for his result
(see [23, pp. 54–64] and [24, pp. 130–143]). In 1946, Takács found the solution by
considering the number of permutations in which no matches occur and expressing
it in terms of permanent of a specific type of matrix. Jordán added this as a short note
in already finished manuscript of his book on probability theory.

http://www.math-olympiad.com/47th-eotvos-competition-1943-problems-solutions.htm
http://www.math-olympiad.com/47th-eotvos-competition-1943-problems-solutions.htm
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Incidentally, Takács presented the origin, history, and various versions of the
problem of coincidences (matches, rencontres) in the theory of probability (see [33])
which was communicated by B.L. Van Der Waerden, Department of Mathematics
& Statistics, Case Western Reserve University, Cleveland, Ohio, on September 14,
1979.

Later, Takács [30] wrote an article in Charles Jordán’s memory, while he was at
Columbia University in New York.

At the age of 21, Takács accepted an offer by Professor Zoltán Bay, a professor of
atomic physics, as a student assistant to him. During the years 1945 to 1948, Takács
participated in Bay’s famous experiment of receiving microwave echoes from the
moon.
Zoltán Lajos Bay (1900–1992) was a Hungarian physi-

cist, and engineer who developed microwave technology,
including tungsten lamps. Bay was the second person to
observe radar echoes from the Moon.
As a student assistant, Lajos was appointed as the con-

sultant to Bay’s research laboratory, the lab that consisted
of mostly university researchers. Takács’ job at the lab was
to calculate the position of the moon at 15-minutes inter-
val and participate in the nightly experiment. The success
arrived in the evening of February 6, 1946, also a triumph
of probability theory, Takács calls it in his Chance or Deter-
minism, see [34]. The experiment showed that the reflection
of radar beams aimed at the moon, which was considered
revolutionary in space research at that time.

Zoltán Lajos Bay

Takács received a doctorate degree (Ph.D.) in 1948 with his thesis title as “Prob-
ability Theoretical Investigation of Brownian Motion”, that was refereed by Charles
Jordan. However, he continued his registration at the university to become a teacher.

Takács won the first prize in the Miklós Schweitzer Prize mathematical competi-
tion for university graduates inHungary in 1949. TheMiklós SchweitzerCompetition
(Schweitzer Miklós Matematikai Emlékverseny) is an annual Hungarian mathemat-
ics competition for university recent graduates, established in 1949. The Schweitzer
Competition is uniquely high level among mathematics competitions. The problems
on the competition can be classified roughly in the following categories: algebra,
combinatorics, theory of functions, geometry, measure theory, number theory, oper-
ators, probability theory, sequences and series, topology, and set hteory. For sample
questions, see:
http://www.artofproblemsolving.com/community/c3253_mikls_schweitzer.

http://www.artofproblemsolving.com/community/c3253_mikls_schweitzer
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Takács won the second Géza Grünwald Prize awarded
by the János Bolyai Mathematical Society in 1952 for
his paper “Investigation of waiting time problems by
reduction to Markov processes”. See [28]. The János
Bolyai Mathematical Society (Bolyai János Matematikai
Társulat, BJMT), founded in 1947, is the Hungarian math-
ematical society, named after János Bolyai (1802–1860),
a 19th-century Hungarian mathematician, a co-discoverer
of non-Euclidean geometry. (Portrait by Ferenc Márkos
-2012). The paper was presented by Alfréd Rényi in
Budapest, who is a Hungarian mathematician who made
contributions in combinatorics, graph theory, number the-
ory and in probability theory. With the win of this paper,
Takács posed himself to be considered among the frontiers
in queueing theory.

János Bolyai

In 1957, Takács received the academic doctor’s degree (D. Sc.) in Mathematics
with his dissertation entitled “Stochastic processes arising in the theory of particle
counters”, at the Department of Mathematics of the L. Eötvös University.

2.2 Takács’ Employments and Further Achievements

Takács, who was one of the first to introduce semi-Markov processes in queueing
theory in 1952, worked as a mathematician at the Tungsram Research Laboratory
(1948–1955). While at the Tungsram Research Laboratory, Takács also accepted a
staff position at the newly created Research Institute for Mathematics of the Hungar-
ian Academy of Sciences (1950–1958), during which he published several papers on
queueing theory, involving applications to telephone traffic, inventories, dams, and
insurance risk. During this period, Takács developed the theory of point processes
and introduced the process, which later introduced as semi-Markov processes by Paul
Lévy. Takács also gave the generalization of Agner Krarup Erlang’s telephone traffic
congestion formula that later was discussed in his celebrated book [31], Introduction
to the Theory of Queues.

Takács was an associate professor in the Department of Mathematics of the L.
Eötvös University (1953–1958), formerly called Pázmány University. He took a lec-
turer appointment at Imperial College in London and London School of Economics
(1958), where he lectured on the theory of stochastic processes and queueing theory

Between1954 and1958, ProfessorTakács published 55 research papers on various
topics in stochastic processes and the foundations of modern queueing theory. His
early research in queueing theory was summarized in one of his finest works, “Some
Probability Questions in the Theory of Telephone Traffic,” [29]. This paper just
recently has been cited by [17]. Interestingly, Kim’s paper is focused on available
server management in the Internet-connected network environments, in which local
backup servers are hookedupby local area network (LAN) and remote backup servers
are hooked up by virtual private network (VPN) with high-speed optical network.
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The year 1958, while at the Imperial College of London, was a turning point in
Takács’ life. He decided to leave Hungary forever and move to the USA. As his
first job in the USA, in 1959, Takács received an offer from Columbia University in
New York as assistant professor that he accepted and after a year, in 1960, he was
promoted to the rank of associate professor. Takács stayed at Columbia University
for the next 7 years teaching probability theory and stochastic processes. While at
Columbia University, Takács had a consulting job at Bell Laboratories and at IBM.

In the early 1960s, Takács developed the time-dependent behavior of various
queuing processes, specifically, the virtual waiting-time process, that now is referred
to as the Takács Process. In summer of 1961, he had a visiting position at Boeing
Research Laboratories in Seattle, Washington.

Initially, Takács’ publications were in Hungarian, and later, they were translated
into various languages by different authors.

Takács developed a large variety of multichannel queueing systems, applying
his extraordinary fluency in combinatorial and continuous mathematics, including
primarily results for embedded queueing processes. Their extensions to continuous-
time-parameter queueing processes were later included in his celebrated monograph
[31], Introduction to the Theory of Queues that appeared in 1962.

While at Columbia University, attending many conferences focusing on variety
of topics in queueing theory, Takács found a generalization of the classical ballot
theorem of Bertrand, which made it possible to solve many problems in queueing
theory, in the theory of dams, and in order statistics. More on this topic will be dis-
cussed later in this paper. He also developed queues with feedback, balking, various
orders of service, and priority queues. Multi-server with Feedback was, indeed, the
title of my dissertation. Finally, while at Columbia University, Takács advised nine
Ph.D. students with their dissertations, as follows:

1. Paul J. Burke 6. Lloyd Rosenberg
2. Ora Engelberg 7. Saul Shapiro
3. Joseph Gastwirth 8. Lakshmi Venkataraman
4. Peter Linhart 9. Peter Welch
5. Clifford Marshall

Takács spent part of his sabbatical, in 1966, at Stanford University working on
his second bestseller book [32], Combinatorial Methods in Theory of Stochastic
Processes. In that year, he accepted the appointment as Professor of Mathematics
at Case Western Reserve University in Cleveland, Ohio, where he held this position
until 1987, when he retired as a Professor Emeritus.

During his tenure at Case Western Reserve University, Takács wrote over 100
monographs and research papers. By this time, Takács’ major research areas became
sojourn time, fluctuation theory, and random trees. Though he was not in favor of
writing grant proposal for research funding as he believed awards should be given
after a valuable achievement has occurred rather than pay in advance for something
that its result is not guaranteed, as a result of a research grant from the National
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Science Foundation, he published a paper on random tree. In it, he proved several
theorems on random tree including the height of a tree.

At Case, Takács guided additional 14 Ph.D. students, as follows:

1. Roberto Altschul, 1973 8. Andreas Papanicolau
2. John Bushnell 9. Pauline Ramig
3. Daniel Michael Cap, 1985 10. Josefina De Los Reyes
4. Jin Yuh Chang, 1976 11. Douglas Rowland
5. Sara Debanne, 1977 12. Elizabeth Van Vought
6. Nancy (Mailyn) Geller 13. Enio E. Velazco
7. Aliakhbar Montazer-Haghighi, 1976 14. Fabio Vincentini

2.3 Takács’ Publications

2.3.1 Papers

In summary, with his own count, as of May 23, 2015, Takács has published 225
papers,1 the last of which appeared in 1999, and many of which have had a huge
impact on the contemporary theory of probability and stochastic processes. Topics
he worked on may be summarized as:

1. Combinatorial Problems 7. Binomial Moments
2. Ballot Theorems 8. Sojourn Time Problems
3. Random Walks 9. Branching Processes
4. Random Graphs 10. Fluctuation Theory
5. Point Processes 11. Order Statistics
6. Queueing Processes

The list of Takács’ papers up to 1994 has appeared in the Journal of Applied
Mathematics and Stochastic Analysis, volume 7, a small sample of which is listed
below. The list of all 226 follows this sample. The numbers are indicated in the
brackets. For instance, the first 211 papers are the ones listed in the Journal of Applied
Mathematics and Stochastic Analysis, and the rest are published as indicated across
their corresponding numbers.

Sample from the First 211 Papers:

1954. Some investigations concerning recurrent stochastic processes of a certain
kind, Magyar Tud. Akad. Alk. Mat.Int. Kozl. 3, 115–128.
1955. Investigations of waiting time problems by reduction to Markov processes,
Acta Math. Acad. Sci. Hung. 6, 101–129.

1An impressive number, which becomes 226 with the posthumously published paper in this volume
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1970. On the distribution of the supremum for stochastic processes, Annales de
l’Institut Henri Poincaré (B) Probabilités et Statistiques 6, 237–247.
1977. An identity for ordered partial sums, J. Combin. Theory Ser. A 23, 364–365.
1981. On the “problème des ménages”, Discrete Mathematics 36, 289–297.
1981. On a combinatorial theorem related to a theorem of G. Szegő, J. Combin.
Theory Ser. A 30, 345–348.
1988. Queues, random graphs and branching processes, J. Appl. Math. Stochast.
Anal. 1, 223–243.
1990. Counting forests, Discrete Mathematics 84(3): 323-326. 1990. On Cayley’s
formula for counting forests, J. Combin. Theory Ser. A 53, 321–323.
1990. A generalization of an inequality of Stepanov, J. Combin. Theory Ser. B 48,
289–293.
1990. On the number of distinct forests, SIAM J. Discrete Math. 3, 574–581.
1991. On a probability problem connected with railway traffic, J. Appl. Math.
Stochast. Anal. 4, 1–27.
1991. Conditional limit theorems for branching processes, J. Appl. Math. Stochast.
Anal. 4, 263–292.
1991. On the distribution of the number of vertices in layers of random trees, J. Appl.
Math. Stochast. Anal. 4, 175–186.
1993. Limit distributions for queues and random rooted trees, J.Appl.Math. Stochast.
Anal. 6, 189–216.
1994. On the total heights of random rooted binary trees, J. Combin. Theory Ser. B
61, 155–166.

The Entire List of Papers Thereafter

[1]–[211] (1994). J. Appl. Math. Stochast. Anal. 7, 229–237.
[212] (1995). On the local time of the Brownian motion. Ann. Appl. Probability 5,
741–756.
[213] (1995). Brownian local times. J. Appl. Math. Stochast. Anal. 8, 209–232.
[214] (1996). On a test for uniformity of a circular distribution. Math. Meth. Statist.
5, 77–78.
[215] (1996). On a three-sample test. In: Heyde, C.C., Prohorov, Y.V., Pyke, R.,
Rachev, S.T. (eds.) Athens Conference on Applied Probability and Time Series,
vol. 1: Applied Probability; in honor of J.M. Gani, pp. 433–448. Springer–Verlag,
New York.
[216] (1996). On a generalization of the arc-sine law. Ann. Appl. Probab. 6, 1035–
1040.
[217] (1996). Sojourn times. J. Appl. Math. Stochast. Anal. 9, 415–426.
[218] (1996). In memoriam. Pál Erdős (March 26, 1913 – September 20, 1996). J.
Appl. Math. Stochast. Anal. 9, 563–564.
[219] (1997). On the ballot problems. In: Balakrishnan, N. (ed.) Advances in
Combinatorial Methods and Applications in Probability and Statistics, pp. 97–114.
Birkhäuser, Boston
[220] (1997). Holdvisszhang 1946 február 6-án. Fizikai Szemle 47:1, 20–21.
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[221] (1998). On the comparison of theoretical and empirical distribution functions.
In: Barbara Szyszkowicz (ed.) Asymptotic Methods in Probability and Statistics; a
volume in honor of Miklós Csörgö, pp. 213–231. Elsevier Science B.V., Amsterdam.
[222] (1998). Sojourn times for the Brownian motion. J. Appl. Math. Stochast. Anal.
11, 231–246.
[223] (1998). On cyclic permutations. Math. Sci. 23, 91–94.
[224] (1999). On the local time of the Brownian bridge. In: Shanthikumar, J.G.,
Sumita, U. (eds.) Applied Probability and Stochastic Processes,
pp. 45–62. Kluwer Academic Publishers, Boston, M.A.
[225] (1999). The distribution of the sojourn time of the Brownian excursion. Meth.
Comput. Appl. Probab. 1, 7–28.
[226] (2019). The distribution of the local time of Brownian motion with drift. This
volume.

Takács has also published six books, three in Hungarian and three in English
language. They are the following:

(1) Az Elektroncsö (The Vacuum Tube) with A. Dallos, Tankönyv Kiadó, Budapest,
1950.

(2) Valószinüségszámitás (Theory of Probability), With M. Ziermann, Tankönyv
Kiadó, Budapest, 1955 (original publishing), 1967, 1972.

(3) Valószinüségszámitás (Theory of Probability), with P.Medgyessy (Part A: Prob-
ability Theory) and L. Takács (Part B: Stochastic Processes), Tankönyvkiadó,
Budapest 1957 (original publishing), 1966, 1973.

(4) Stochastic Processes, Problems andSolutions,Methuen&COLTD,1960,Trans-
lated by P. Zádor (1962).

(5) Introduction to the Theory of Queues, Oxford University Press, 1962.
(6) CombinatorialMethods in the Theory of Stochastic Processes, JohnWiley, 1967.

2.4 Awards

• 1993, Foreign Membership Magyar Tudomanyos Akademia, Matematikai es
Fizikai Tudomanyok Osztalyanak Közlemenyei, Hungarian

• 1994, John von Neumann Theory Prize

A Hungarian mathematician who made major contribu-
tions to a number of fields, including mathematics (foun-
dations of mathematics, functional analysis, ergodic the-
ory, geometry, topology, and numerical analysis), physics
(quantum mechanics, hydrodynamics, and fluid dynam-
ics), economics (game theory), computing [Von Neumann
(1903–1957) architecture, linear programming, self-
replicating machines, stochastic computing], and statistics. John von

Neumann



16 A. M. Haghighi and S. G. Mohanty

• 2002, Fellows Award. Institute for Operations Research and Management Sci-
ences.

2.5 Honors and Recognitions

2.5.1 Hungary

Professor Lajos Takács is noted as “the most well-known, reputed and celebrated
Hungarian” in the field of probability and stochastic processes.

2.5.2 Pioneer in the Field of Queueing Theory

Celebrating Takács’ 70th birthday, as a Pioneer in the field of Queueing Theory and
the author of Combinatorial Methods in the Theory of Stochastic Processes, many
scientific institutions honored him in mid-1994, see [8]. They include the following:

• The Institute of Mathematical Statistics
• Operations Research Society of America
• The Institute of Management Sciences
• Hungarian Academy of Sciences
• A special volume [14], Studies in Applied Probability, 31A, edited by J. Galambos
and J. Gani.

Additionally, some well-known authors in probability, statistics, and stochastic pro-
cesses wrote about him to honor him and his work. These authors include Dshalalow,
Syski, J. Galambos, and Joe Gani.

2.5.3 Takács’ Contribution to Combinatorics

In Honor of Lajos Takács, a paper entitled “Professor Lajos Takács: Life and Con-
tribution to Combinatorics” was presented by Aliakbar Montazer Haghighi and Sri
Gopal Mohanty, at the 8th International Conference on Lattice Path Combinatorics
and Applications, August 17–20, (2015), California Polytechnic State University,
Pomona, CA.

2.6 From Among Takács’ Latest Correspondences

2.6.1 Not Able to Travel

During the last months of his life, Takács carried his title as Professor Emeritus
at Case Western Reserve University. At age 91, he was “confined at home,” as he
stated, with his wife Dalma. In an e-mail [9] to me just a fewmonths before his death,
5/23/2015, Professor Lajos Takács wrote:
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“As for me, I am doing reasonably well, but I am more or less confined to my home.
Since travel is a serious problem for me, I am unfortunately unable to participate in
meetings.”

2.6.2 Waiting for a Right Publisher

A great part of his work was yet waiting for a right publisher who would have agreed
to his terms and conditions. Here is what he described his unpublished work to me
in his e-mail [9] dated May 2015 (original in the standard e-mail text format):

“An additional note: In July 1973 I completed my book Theory of Random Fluctu-
ations, which unfortunately is still in manuscript form. While I was working on the
book, John Wiley was so interested that they offered me a contract before the book
was finished. I did not like to sign a contract until my work was ready for the press.
The finished manuscript turned out to be 1600 pages which Wiley considered too big
for a book. They offered to publish it in lecture note form, which was unacceptable
to me. I was also unwilling to shorten the MS, so it is still unpublished.”

2.7 Takács’ Family

Takács’ greatest achievement was on April 9, 1959, when he married Dalma Horváth
in London with Ityszard Syski (1924–2007) as Takács’ best man at his wedding.
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Dalma is now 82. From their marriage, they have two daughters, Judith, an artist,
and Susan, a legal assistant

Lajos, Dalma and their three grandsons: Eric, David and Mark

Dalma was a Professor of English
Literature and chair of the English
Department at Notre Dame Col-
lege of Ohio and an author of his-
torical family memoirs, plays and
several fiction books as well.

Dalma, painting by Judy on
Mother’s day of 2013, Mother
having a ball, while diagnosed
with cancer!

Judy is a commer-
cial artist and illus-
trator. She is a seven
time Best of Show
winner, her work
has been exhibited
in many places. She
does Pastel Portrai-
ture, Paintings and
Drawings.

Judy Takács,
Self-Portrait
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And, finally, below are two photos of Professor Takács’ 90th birthday.

3 Lajos Takács: As I Remember Him

Professor Lajos Takács was Professor A.M. Haghighi’s supervisor and mentor too. I
did not study under his guidance nor have the privilege to be a coworker.Nevertheless,
he was my mentor from a distance.

After finishing the training in Statistics at Statistical Wing of Indian Council of
Agricultural Research, Government of India in New Delhi, I was looking for a job
for which I approached the Head of the Statistical Wing for his advice. He was
very encouraging but asked me to wait for the right opportunity and to start, in the
meantime, some research work with T.V. Narayana, a fresh Ph.D. from University
of North Carolina, Chapel Hill, USA, who joined the Wing during that period. I was
disappointed because I was only looking for a job. I was flabbergasted since to my
embarrassment I did not know exactly how “research” was done.

Narayana gave me his thesis to read and asked me to create artificial samples by
using random numbers fromFisher&Yates Tables. Theworkwas nothing but to sim-
ulate samples. While preparing these samples, I observed patterns and became curi-
ous counting structures with certain patterns. Incidentally, unlike me a real research
scholar pointed out Feller’s Vol. 1 Probability Theory book [12] to me. The book
was very fascinating, specially its Chap.3 dealing with fluctuations in coin toss-
ing and random walk. Subsequently my quest for learning more about counting led
me to Riordan’s book [27] on combinatorial analysis, which became an invaluable
reference for me. I was delighted to learn about it since my previous exposure to
combinatorics was limited to only solving discrete problems in probability theory.

TV as Narayana was called by his friends, left India soon but started what he
termed as coin-tossing problems somewhat related to patterns that I was pointing
out to him during our interaction in New Delhi. I became matured enough in under-
standing “research” so as to publish my first paper in 1955 with Narayana as the
senior author (see [25]). In my belief, soon he developed a passion for combinatorics

http://dx.doi.org/10.1007/978-3-030-11102-1_3
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moving away from his earlier statistical work. This was evident from the fact that he
guided me as his first Ph.D. student and my thesis title was “On some properties of
compositions of an integer and their application to probability theory and statistics”
in which I discussed the so-called ballot problem in [12] and used “lattice path”
representation.

This was the beginning of the sixties when I coincidentally found a series of
papers by Takács on the “urn problem” as a generalization of the ballot problem and
its extensions and applications especially to queues. I made a humble contribution
by providing a lattice path-based combinatorial proof for his urn problem (see [19]).
Since then I have tried to follow his work in this particular direction. His application
to queues drew my attention to learn about queues. It happened that I was a faculty
member at University of Buffalo and that my friend and colleague Norm Severo was
giving a seminar course on queues using Takács’ book [31]. I joined this course for
some time and started corresponding with Takács.

It was serendipity that brought me to Takács closer but always from a distance.
During my stay at Indian Institute of Technology (1966–1968), Professor J. L. Jain
whowas then a research scholar at University of Delhi andwas working onQueueing
Theory contacted me to study Takács’ work more particularly his use of combina-
torics. This gave me another opportunity to go over his contribution while learning
the subject of Theory of Queues. Eventually, our efforts paid. Takács’ generalization
of the ballot problem was applied to queues involving batches (for instance, see [15,
20, 21]) about which not much were known in those days.

In the meantime, Takács’ celebrated book, Combinatorial Methods in the Theory
of Stochastic Processes appeared in 1967. The book became a treasure and inspiration
for me.

Takács indirectly created curiosity within me to learn more about Hungarian
researchers in the field and in general the country itself. In the process, I found out
the work of I. Vincze and E. Csáki directly befitting my interest and was able to apply
lattice path combinatorics to nonparametric methods in Statistics. At some point
starting from the seventies, I went on visiting Budapest several times either directly
to the Mathematical Institute of Hungarian Academy of Sciences or otherwise, most
often being a guest of I. Vincze. During my visits, I also came to know P. Revesz
and G. Katona very well. Takács along with Csáki and Vincze have been amply cited
in my book on lattice path counting (see [22]). Incidentally, I. Vince passed away
in 1999, and the Fifth Conference on Lattice Path Combinatorics and Applications
and the Special Issue coming out of the Conference were dedicated in his memory.
The issue contains the article [5] “István Vincze (1912–1999) and his contribution
to lattice path combinatorics and statistics” by E. Csáki.

Soon I realized that Hungary has been the land of combinatorics often through
number theory where the exposure to the subject starts at a very early stage of edu-
cation and excellence in it is highly recognized. At the same time, the study of
probability theory is very much emphasized. In my assessment, almost all proba-
bilists in Hungary have a tilt toward combinatorics by training which is reflected in
their work. For instance, Alfréd Rényi, who happened to be an eminent Hungarian
probabilist, decided to give a talk not on probability but on “Enumeration of search
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codes” while visiting McMaster University sometime at the beginning of seventies.
This prompted me and Professor Chorneyko to write a paper on the subject (see [4]).
Having been nurtured in that unique environment in Mathematics, Takács with his
own brilliance could excel and became a famous mathematician.

In Takács’ words, his book on combinatorial methods in stochastic processes con-
sists of results as applications of a generalization of the classical ballot problem to a
variety of situations arising in queues, dams, storage, insurance risk, order statistic,
and others. The treatment in the book is essentially probabilistic rather than combi-
natorial and yet it uses the word “combinatorial” because of the nature of the ballot
problem which can be solved by combinatorics, strictly speaking, by enumerative
combinatorics. Enumerative combinatorics often use constructive methods to count
structures that arise in the problem. It seems there is a tradition in Hungary to treat
probability theory in the classical sense so as to crisscross over to combinatorics.
(Note: There exists a school of combinatorics which solves problems in combina-
torics by using the probabilistic method. It is a non-constructive method, primarily
used in combinatorics and pioneered by Paul Erdős — most well-known Hungar-
ian mathematician of recent time for proving the existence of a prescribed kind of
mathematical object. See [10].

Whereas Takács’ main focus was probability theory and he dealt with combi-
natorics whenever the situation arose but most comfortably by using probabilistic
argument, my interest on the other hand has been primarily on enumeration and
properties of certain combinatorial structures like lattice paths that have appeared
in different branches including random walk, queues (such as discrete time queues
and their transient behavior), and non-parametric methods in statistics. Nevertheless,
there is an overlap in the application to queues by both of us.

However, Takács’ contribution gave the incentive to include combinatorial meth-
ods applied to queues in Chapters 3, 6, and 9 of the book [16], which is unlike
any other text book in the field. At the same time, the book has two chapters on
computational methods suitable for applications.

Having been influenced by Takács’ work, I wanted to meet him personally even
though I might have talked to him on phone besides our exchange of correspondence.
The opportunity came at the Conference on Mathematical Methods in Queueing
Theory held at Western Michigan University in 1973, which we both attended. I was
overly impressed by his simplicity, soft spoken, affectionate, and gentle manner. It
became a strange coincidence that later when I met I. Vincze and E. Csáki and others
in Budapest I had the same appreciation of the people that they were all soft spoken,
kind, and caring.

Later I met Takács and his wife Dalma in a conference held in Toronto. Once
I drove down to his place in Cleveland along with J.L. Jain. He participated in
the First International Conference on Lattice Path Combinatorics held at McMaster
University in 1984. Our final meeting was when he graciously participated in the
Conference kindly organized by Professor N. Balakrishnan, my colleague and friend,
at McMaster University in 1997, in connection with my retirement.
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(From right: Galambos, Takács. Dalma Takács, Mohanty, Shanti Mohanty and their
children at the Conference banquet)

I also felt privileged and honored when J. Galambos invited me to contribute to a
special volume honoring Professor Takács and I did (see [2]).

I askmyself:What am I, a statistician or a combinatorialist?My basic trainingwas
in statistics. But by accident throughT.V.Narayana, I started getting into enumerative
combinatorics, but not quite. Again accidentally through L. Takács, I stumbled on
Theory of Queues, but perhaps only on a segment of it. Were there doubts in my
mind?

Yet Takács had a similar fate when he was asked by J. Gani and M. Neuts about
the applications of his theories. (See Part 1, Sect. 1.7.)

I followed Takács’ footsteps, but he was far ahead waiving his hand.
Oh, the distant mentor — did you say: Never mind, stay on course!

4 Contribution to Combinatorics

The combinatorial approach of Takács is based on a generalization of the classical
ballot theorem which is stated as follows:

Theorem 1.1 (The Classical Ballot Theorem [35, Theorem 7.2.1]) If in a ballot,
candidate A scores a votes and candidate B scores b votes, with a > bμ, where μ is
a positive integer, then, the probability that throughout the number of votes registered
for A is always greater than times the number of votes registered for B is given by

P(a, b, μ) = a − bμ

a + b
, (1.1)

provided that all the possible voting records are equally probable.
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Theorem 1.2 (Takács’ generalization [35, Theorem 7.5.1]) Let us suppose that a
box contains n cards marked with nonnegative integers k1, k2, . . . , kn such that k1 +
k2 + · · · + kn = k < n. All the n cards are drawn without replacement from the box.
Denote by νr the number obtained at the rth drawing, r = 1, 2, . . . , n. Then,

P{ν1 + ν2 + · · · + νr < r, r = 1, 2, . . . , n} = n − k

n
, (1.2)

provided that all the possible results are equally probable.

Let there be a cards marked 0 and b cards marked ν + 1. Suppose a card marked
with 0 corresponds to a vote for A and a card marked with ν + 1 corresponds to a
vote for B. Then, it can be shown that the classical ballot theorem follows as a special
case.

Note that letting x and y be the number of votes for A and B, respectively, at the
r th count, then,

x + y = r, a + b = n, b(ν + 1) = k. (1.3)

Hence, the event in the theorem becomes

x(0) + y(ν + 1) < x + y if and only if yν < x, (1.4)

and the probability becomes (n − k)/n = (a − νb)/(a + b) that checks the Classi-
cal Ballot Theorem in Theorem 1.1.

Drawing cards without replacement implies consideration of n! permutations of
n cards. The theorem is true if permutations are replaced by cyclic permutations and
is stated as follows as a counting result.

Theorem 1.3 ([35, Theorem 7.5.3]) Let us suppose that n cards are marked with
non-negative integers k1, k2, . . . , kn such that k1 + k2 + · · · + kn = k < n. Among
the n cyclic permutations of the n cards, there are exactly n − k in which the sum of
the numbers on the first r cards is less than r for every r = 1, 2, . . . , n.

Its Continuous Version

Theorem 1.4 ([32, p. 1, Theorem 1]) Let φ(u), 0 ≤ u ≤ t , be a non-decreasing
function for which φ′(u) = 0 almost everywhere and φ(0) = 0. Let φ(t + u) =
φ(t) + φ(u) for 0 ≤ u ≤ t . For 0 ≤ u ≤ t define

δ(u) =
{
1, if φ(v) − φ(u) ≤ v − u, u ≤ v ≤ u + 1,

0, otherwise.
(1.5)

Then, ∫ t

0
φ(u) du = t − φ(t), for φ(t) ≤ t. (1.6)
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Theorem 1.3 can be formulated in the following more general way.

Theorem 1.5 ([35, Theorem 7.5.4]) Let ν1, ν2, . . . , νn be interchangeable or cycli-
cally interchangeable discrete random variables which take on non-negative integers
only. Write

Nr = ν1 + ν2 + · · · + νr , r = 1, 2, . . . , n, N0 = 0. (1.7)

Then, we have

P{Nr < r, 1 ≤ r ≤ n, and Nn = n − i} = i

n
P{Nn = n − i},

0 ≤ i ≤ n, n = 1, 2, . . . .
(1.8)

Theorem 1.6 ([35, Theorem 7.5.5]) Let ν1, ν2, . . . , νn be interchangeable or cycli-
cally interchangeable discrete random variables which take on non-negative integers
only. Write

Nr = ν1 + ν2 + · · · + νr , r = 1, 2, . . . , n, N0 = 0. (1.9)

We have

P{Nr < r for at least one r = 1, 2, . . . , n} =
n∑

i=1

1

i
P{Ni = i − 1},

n = 1, 2, . . . .
(1.10)

Another Extension of the Ballot Theorem

While in the ballot problem we consider the number of votes for A is always greater
than ν times the number of votes for B, we consider now the number to be greater
exactly in j cases, j = 1, 2, . . . , a + b, not always. This has been studied by Chao
and Severo [3]. Denote by αr and βr the number of votes registered for A and B,
respectively, among the first r votes counted. Let μ be a positive real number and
define

Pj (a, b, μ) = P{αr > βrμ, for j subscripts r = 1, 2, . . . , a + b}, (1.11)

for j = 0, 1, . . . , a + b. We can write this in the form

Pj (a, b, μ) =
∑

0<s< j

P{β j = s} Pj ( j − s, s, μ)P0(a + s − j, b − s, μ), (1.12)

where
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P(β j = s) =

(
j

s

)(
a + b − j

b − s

)
(
a + b

b

) =

(
a

j − s

)(
b

s

)
(
a + b

j

) , (1.13)

whenever 0 ≤ s ≤ j and j − a ≤ s ≤ b (see [35, Section 7.7]). This follows from
the following auxiliary theorem.

Auxiliary Theorem ([35, Theorem 7.7.1]) Let ξ1, ξ2, . . . , ξn be interchangeable
real random variables. Define ζr = ξ1 + ξ2 + · · · + ξr for r = 1, 2, . . . , n and ζ0 =
0. Denote by 
n the number of subscripts r = 1, 2, . . . , n for which ζr > 0. Then,

P{
n = j} = P{ζr < ζ j , 0 ≤ r < j, and ζr ≤ ζ j , j ≤ r ≤ n}. (1.14)

See [1, 13].
A recent generalization of Theorem 1.3 is due toMercankosk, Nair and Soet [18],

which the authors call Batch Ballot Theorem.

Theorem 1.7 (Batch Ballot Theorem [18, Theorem 2]) Let n1, n2, . . . , nk be non-
negative integers such that n1 + n2 + · · · + nk = n < km. For 0 ≤ d ≤ m − 1, let
Cd denote the number of cyclic permutations of (n1, n2, . . . , nk) for which the sum
of the first s elements is less than sm − d for 1 ≤ s ≤ k. Then,

C0 + C1 + · · · + Cm−1 = km − n. (1.15)

Theorem 1.8 ([18, Theorem 3]) Let ν1, ν2, . . . , νk be cyclically interchangeable
random variables taking on nonnegative integral values. Set Ns = ν1 + ν2 + · · · +
νs , for 1 ≤ s ≤ k, N0 = 0. Then, we have

m−1∑
d=0

P{Ns < sm − d, for 1 ≤ s ≤ k | Nk = n} =
{

km−n
k , if 0 ≤ n ≤ km,

0, otherwise.
(1.16)

These results are useful in handling M/G/1-type queues as proposed by Neuts
[26]:

P{ζ = 0 | ζn = i} =
n−i∑
j=0

(
1 − j

n

)
P{Nn = j}, i ≥ 0. (1.17)

Interesting Corollaries

As a corollary of Theorem 1.3, we obtain that the number of paths from the origin
to (n0, n1, . . . , nr ) that do not touch the hyperplane

x0 =
r∑

i=1

μi xi (1.18)
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is given by
α

α + ∑r
i=1(μi + 1)ni

(
α + ∑r

i=1(μi + 1)ni
n1, . . . , nr

)
, (1.19)

where

α = n0 −
r∑

i=1

μi ni (1.20)

and the μi ’s (≥ 0) are all different.
Another simple corollary of Theorem 1.5, which finds applications in batch

queues, is the following:

P

( r∑
i=1

Xi <

⌊
r − 1

m

⌋
+ 1, r = 1, 2, . . . , n

∣∣∣∣ Xr = k

)
=

{
1 − mk

n , if 0 ≤ mk ≤ n,

0, otherwise.

(1.21)
See [22].

Applications

In his celebrated 1967 book [32], Takács has discussed applications of these ballot
related combinatorial results to processes arising in queues, dams, storage, and risk
and to order statistics.

We give an example from a queueing process (see [32, p. 94/95]).
Denote by ν1, ν2, . . . , νr the number of customers joining the queue during the

1-st, 2-nd, …, r th, …services, respectively, and write

Nr = ν1 + ν2 + · · · + νr , r = 1, 2, . . . , N0 = 0, (1.22)

and ζn , n = 1, 2, . . . , the queue size immediately after the nth departure; and ζ0 is
the initial queue size. In this case, we speak about a queueing process of type

Q = {ζ0; Nr , r = 0, 1, 2, . . . }. (1.23)

Theorem 1.9 ([32, p. 99, Theorem 1]) If ν1, ν2, . . . , νn are interchangeable random
variables, then

P{ζn ≤ k | ζ0 = i} = P{Nn ≤ n + k − i}

−
n−i∑
j=1

n−i− j∑
l=0

(
1 − 1

n − j

)
P{N j = j + k, Nn = j + k + l}, i ≥ 1,

(1.24)

P{ζn ≤ k | ζ0 = 0} = P{ζn ≤ k | ζ0 = 1}, (1.25)

and, in particular,
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P{ζn = 0 | ζ0 = i} =
n−i∑
j=0

(
1 − 1

n − j

)
P{Nn = j}. (1.26)
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The Distribution of the Local Time
of Brownian Motion with Drift

Lajos Takács

Abstract In this paper Brownian motion with drift is considered, and explicit for-
mulas are given for the distribution function, the density function, and the moments
of the local time of the process and of the local time of the absolute value of the
process.

Keywords Random walks · Brownian motion · Local time · Moments
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1 Introduction

Let {ξ(u), u ≥ 0} be a standard Brownian motion process. We have P{ξ(u) ≤ x} =
Φ(x/

√
u) for u > 0, where

Φ(x) = 1√
2π

∫ x

−∞
e−u2/2 du (2.1)

is the normal distribution function. We shall consider the process {ξ(u) + mu, u ≥
0}, where m is a real number. Let us define

τ(α,m) = lim
ε→0

1

ε
measure{u : α ≤ ξ(u) + mu < α + ε, 0 ≤ u ≤ 1} (2.2)

for any real α and m. The limit (2.2) exists with probability one, and τ(α,m) is a
nonnegative random variable which is called the local time at level α. The concept
of local time was introduced by Lévy [4, 5]. See also [2, 10].
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In this paper we determine the distribution of τ(α,m), the local time of {ξ(u) +
mu, 0 ≤ u ≤ 1} at levelα, and the distribution of τ(α,m) + τ(−α,m), the local time
of {|ξ(u) + mu|, 0 ≤ u ≤ 1} at level |α| > 0. Our approach is based on a random
walk {ζr , r ≥ 0}, where ζr = ξ1 + ξ2 + · · · + ξr for r ≥ 1, ζ0 = 0, and {ξr , r ≥ 1}
is a sequence of independent and identically distributed random variables for which

P{ξr = 1} = p and P{ξr = −1} = q, (2.3)

where p > 0, q > 0, and p + q = 1.
We define

τn(a) = #{r = 1, 2, . . . , n for which ζr−1 = a − 1 and ζr = a} (2.4)

for a = 1, 2, . . . , and

τn(−a) = #{r = 1, 2, . . . , n for which ζr−1 = −a + 1 and ζr = −a} (2.5)

for a = 1, 2, . . . .
If we assume that in the random walk

p = pn = 1

2
+ m

2
√
n

and q = qn = 1

2
− m

2
√
n

(2.6)

for n > m2, then the process {ζ[nu]/
√
n, 0 ≤ u ≤ 1} converges weakly to the process

{ξ(u) + mu, 0 ≤ u ≤ 1} as n → ∞. By using the same argument as Knight [3] used
for the Brownian motion process, we can conclude that

lim
n→∞P

{
2τn([α√

n])√
n

≤ x

}
= P{τ(α,m) ≤ x} (2.7)

for any α and x > 0, and also

lim
n→∞P

{
2τn([α√

n]) + 2τn(−[α√
n])√

n
≤ x

}
= P{τ(α,m) + τ(−α,m) ≤ x}

(2.8)
for α > 0 and x > 0.

We shall determine the distributions and the moments of τn(a) and τn(a) +
τn(−a), and by a suitable limiting process we shall find the distributions and the
moments of τ(α,m) and τ(α,m) + τ(−α,m). In the particular case where m = 0,
the distributions and the moments of τ(α,m) and τ(α,m) + τ(−α,m) have already
been determined. See [8, 9]. However, the asymmetric case, m �= 0, is much more
complicated than the symmetric case, m = 0, and indeed it is surprising that we can
obtain explicit formulas for the distributions and moments of the local time.



The Distribution of the Local Time of Brownian Motion with Drift 31

2 A Random Walk

Let us recall some results for the random walk {ζr , r ≥ 0} which we need in this
paper. See [7]. We have

P{ζr = 2 j − r} =
(
r

j

)
p jqr− j (2.9)

for j = 0, 1, . . . , r . Let us define ρ(k) as the first passage time through k, that is,

ρ(k) = inf{r : ζr = k and r ≥ 0} (2.10)

for k = 0,±1,±2, . . . . Clearly, ρ(0) = 0.
If 1 ≤ k ≤ n, then

P{ρ(k) ≤ n} = P{ζn ≥ k} +
(
p

q

)k

P{ζn < −k}. (2.11)

This can be proved simply by applying the reflection principle to the random walk
{ζr , r ≥ 0}. It follows by symmetry that

P{ρ(−k) = j} =
(
q

p

)k

P{ρ(k) = j} (2.12)

for j ≥ 0. By (2.11), we have

P{ρ(k) = k + 2 j} = k

k + 2 j

(
k + 2 j

j

)
pk+ j q j (2.13)

for k ≥ 1 and j ≥ 0. Furthermore, the identity

n∑
j=0

P{ρ(k) = j}P{ρ(
) = n − j} = P{ρ(k + 
) = n} (2.14)

is valid for any k ≥ 1, 
 ≥ 1 and n ≥ 1. By (2.13), we have

∞∑
j=0

P{ρ(k) = k + 2 j}w j = [G(w)]k (2.15)

for k ≥ 1 and |4pqw| ≤ 1, where G(0) = p and

G(w) = 1 − √
1 − 4pqw

2qw
(2.16)
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for 0 < |4pqw| ≤ 1. We note also that

∞∑
j=0

(
2 j

j

)
p jq jw j = R(w) (2.17)

for |4pqw| < 1, where
R(w) = (1 − 4pqw)−1/2. (2.18)

Finally, we note that, if p = pn and q = qn are defined by (2.6), then, by the central
limit theorem,

lim
n→∞P

{
ζn√
n

≤ x

}
= Φ(x − m) (2.19)

for any x , where Φ(x) is defined by (2.1).

3 The Distribution of τn(a)

If we know the distribution of τn(a), where a = 1, 2, . . . , then the distribution of
τn(−a) can be obtained by interchanging the roles of p and q. Thus it is sufficient
to consider the case where a = 1, 2, . . . and n = 1, 2, . . . .

Theorem 2.1 If a = 1, 2, . . . and k = 1, 2, . . . , then

P{τn(a) ≥ k} =
(
q

p

)k−1

P{ρ(a + 2k − 2) ≤ n}, (2.20)

where the right-hand side is determined by (2.11).

Proof Let a ≥ 1 and denote by θ1, θ1 + θ2, . . . , θ1 + θ2 + · · · + θr , . . . the
successive subscripts r = 1, 2, . . . for which ζr−1 = a − 1 and ζr = a. Then
θ1, θ2, . . . , θr , . . . are independent random variables. We have P{θ1 = j} = P{ρ(a)

= j} for j ≥ a and

P{θk = j} = q

p
P{ρ(2) = j} (2.21)

for j = 2, 3, . . . and k ≥ 2.Obviously, θk (k ≥ 2)has the samedistribution asρ(1) +
ρ(−1), whereρ(1) andρ(−1) are independent, and the distribution ofρ(−1) is given
by (2.12). Now, by (2.14),

P{τn(a) ≥ k} = P{θ1 + · · · + θk ≤ n} =
(
q

p

)k−1

P{ρ(a + 2k − 2) ≤ n} (2.22)

for k = 1, 2, . . . .
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By (2.20), we can calculate the r th binomial moment of τn(a) for r = 1, 2, . . . , n.
We have

E

{(
τn(a)

r

)}
=

n∑
k=r

(
k

r

)
P{τn(a) = k} =

n∑
k=r

(
k − 1

r − 1

)
P{τn(a) ≥ k}

=
n∑

k=r

(
k − 1

r − 1

)(
q

p

)k−1

P{ρ(a + 2k − 2) ≤ n}

=
n∑

k=r

(
k − 1

r − 1

)(
q

p

)k−1 (
P{ζn ≥ a + 2k − 2}

+
(
p

q

)a+2k−2

P{ζn < −a − 2k + 2}
)

(2.23)

for a ≥ 1. The last equality follows from (2.11).

We can also express (2.23) in the following way.

Theorem 2.2 We have

E

{(
τn(a)

r

)}
= pqr−1

∑
0≤i≤(n−a−2r+2)/2

(−1)i
(−r/2

i

)
(4pq)i

·P{ρ(a + r − 2) ≤n − r − 2i} (2.24)

for a = 1, 2, . . . , n and r = 1, 2, . . . , n, where P{ρ(a + r − 2) ≤ n − r − 2i} is
determined by (2.11).

Proof Denote by Ai , i = 1, 2, . . . , n, the event that ζi−1 = a − 1 and ζi = a, where
a = 1, 2, . . . . Then the r -th binomial moment of τn(a) can be expressed in the form

E

{(
τn(a)

r

)}
=

∑
0≤ j1< j2<···< jr≤(n−a)/2

P{Aa+2 j1 Aa+2 j2 . . . Aa+2 jr }. (2.25)

It is easy to see that

P{Aa+2 j } = p
∑
0≤i≤ j

P{ρ(a − 1) = a − 1 + 2 j}
(
2 j − 2i

j − i

)
(pq) j−i (2.26)

for j ≥ 0. Thus, by (2.15) and (2.17), we have

∞∑
j=0

P{Aa+2 j }w j = p[G(w)]a−1R(w) (2.27)
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for |4pqw| < 1, whereG(w) is given by (2.16) and R(w) by (2.18). In a similar way,
we obtain that

P{Aa+2i+2 j |Aa+2i } = p
∑

0≤s≤ j−1

P{ρ(−1) = 1 + 2s}
(
2 j − 2s − 2

j − s − 1

)
(pq) j−s−1

(2.28)
for j ≥ 1. Hence

∞∑
j=1

P{Aa+2i+2 j |Aa+2i }w j−1 = qG(w)R(w) (2.29)

for |4pqw| < 1.
Since the random walk {ζr , r ≥ 0} possesses the Markov property, we can deter-

mine (2.25) by (2.27) and (2.29). If, in the generating function

pqr−1[G(w)]a+r−2[R(w)]r (2.30)

we extract the coefficient of wi and sum these coefficients over all i with 0 ≤ i ≤
(n − a − 2r + 2)/2, then we obtain (2.24).

4 The Distribution of τn(a) + τn(−a)

The distribution τn(a) + τn(−a) is determined by its binomial moments. We have

P{τn(a) + τn(−a) = k} =
n∑

r=k

(−1)r−k

(
r

k

)
E

{(
τn(a) + τn(−a)

r

)}
(2.31)

for k = 0, 1, 2, . . . .

Theorem 2.3 If r = 1, 2, . . . , n and a = 1, 2, . . . , n, we have

E

{(
τn(a) + τn(−a)

r

)}
=

(
1 +

(
q

p

)a) r∑

=1

(
r − 1


 − 1

) (
q

p

)(a−1)(
−1)

·E
{(

τn(2(a − 1)(
 − 1) + a)

r

)}
, (2.32)

where the right-hand side is determined by (2.24).

Proof For a = 1, 2 . . . we define Ai , i = 1, 2, . . . , n, in the same way as in the
proof of Theorem 2.2. In addition, we define Bi , i = 1, 2, . . . , n, as the event that
ζi−1 = −a + 1 and ζi = −a. Let Ci = Ai ∪ Bi for i = 1, 2, . . . , n. Then
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E

{(
τn(a) + τn(−a)

r

)}
=

∑
0≤i1<i2<···<ir≤(n−a)/2

P{Ca+2i1Ca+2i2 . . .Ca+2ir }. (2.33)

Similarly to (2.26), we have

P{Ba+2 j } = q
∑
0≤i≤ j

P{ρ(−a + 1) = a − 1 + 2i}
(
2 j − 2i

j − i

)
(pq) j−i (2.34)

for j ≥ 0. Hence

∞∑
j=0

P{Ba+2 j }w j = p

(
q

p

)a

[G(w)]a−1R(w) (2.35)

for |4pqw| < 1, where G(w) is given by (2.16) and R(w) by (2.18). Obviously,

P{Ba+2i+2 j |Ba+2i } = P{Aa+2i+2 j |Aa+2i } (2.36)

for j ≥ 1 and

P{B3a+2i+2 j |Aa+2i } = q
∑
0≤s≤ j

P{ρ(−2a + 1) = 2a − 1 + 2s}
(
2 j − 2s

j − s

)
(pq) j−s

(2.37)
for j ≥ 0. By (2.15) and (2.17), we have

∞∑
j=0

P{B3a+2i+2 j |Aa+2i }w j = p

(
q

p

)2a

[G(w)]2a−1R(w) (2.38)

for |4pqw| < 1. In the same way, we obtain that

P{A3a+2i+2 j |Ba+2i } = p
∑
0≤s≤ j

P{ρ(2a − 1) = 2a − 1 + 2s}
(
2 j − 2s

j − s

)
(pq) j−s

(2.39)
for j ≥ 0 and

∞∑
j=0

P{A3a+2i+2 j |Ba+2i }w j = p[G(w)]2a−1R(w) (2.40)

for |4pqw| < 1.
The probabilities (2.26), (2.28), (2.34), (2.36), (2.37), and (2.39) completely deter-

mine
P{Ca+2i1Ca+2i2 . . .Ca+2ir } (2.41)
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in (2.33). In (2.41) let us replace each Ci by Ai ∪ Bi . If we perform the operations
indicated, the event Ca+2i1Ca+2i2 . . .Ca+2ir becomes the union of 2r mutually exclu-
sive events, and consequently (2.41) can be expressed as the sum of 2r probabilities,
each probability having the form

P{Da+2i1Da+2i2 . . . Da+2ir }, (2.42)

where Da+2is is either Aa+2is or Ba+2is . To find

∑
0≤i1<i2<···<ir≤(n−a)/2

P{Da+2i1Da+2i2 . . . Da+2ir }, (2.43)

we count the number of alternations in the sequence of r events in (2.42).We speak of
an alternation if an event Ai is followed by an event Bj or an event Bi is followed by
an event A j . There are

(r−1

−1

)
possible sequences in which the number of alternations

is 
 − 1 and the first event is of the type Ai , and there are also
(r−1

−1

)
possible sequences

in which the number of alternations is 
 − 1 and the first event is of type Bj . The
total number of possible sequences is

2
r∑


=1

(
r − 1


 − 1

)
= 2r , (2.44)

as it should be.
Now we shall prove that, if in (2.42) the number of alternations in the sequence

of events is 
 − 1, an even number, and if the first event in the sequence is of type
Ai , then (2.43) is equal to

(
q

p

)(a−1)(
−1)

E

{(
τn(2(a − 1)(
 − 1) + a)

r

)}
, (2.45)

where the right-hand side is determined by (2.24). If in (2.42) the number of alter-
nations in the sequence of events is 
 − 1, an odd number, and if the first event in
the sequence is of type Bi , then (2.43) is again equal to (2.45).

If in (2.42) the number of alternations in the sequence of events is 
 − 1, an even
number, and if the first event in the sequence is of type Bj , then (2.43) is equal to

(
q

p

)(a−1)(
−1)+a

E

{(
τn(2(a − 1)(
 − 1) + a)

r

)}
, (2.46)

where the right-hand side is determined by (2.24). If in (2.42) the number of alterna-
tions in the sequence is 
 − 1, an odd number, and if the first event in the sequence
is of type Ai , then (2.43) is again equal to (2.46).

If we multiply both (2.45) and (2.46) by
(r−1

−1

)
, and if we form the sum of the

products for all 
 = 1, 2, . . . , r , then we obtain (2.32). It remains to prove (2.45), and
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Table 1 Various sequences of events

Case 
 (A) (B) (AB) (BA) (AA) and
(BB)

(i) Odd 1 0 (
 − 1)/2 (
 − 1)/2 r − l

(ii) Odd 0 1 (
 − 1)/2 (
 − 1)/2 r − l

(iii) Even 1 0 
/2 (
 − 1)/2 r − l

(iv) Even 0 1 (
 − 2)/2 
/2 r − 


G.F. (2.27) (2.35) (2.38) (2.40) (2.29)

(2.46). It is convenient to use the generating functions (2.27), (2.29), (2.35), (2.38),
and (2.40). In the sequence of events in (2.42), denote the numbers of occurrences of
the pairs of type AB, BA, AA, BB by (A, B), (B, A), (A, A), (B, B), respectively.
Let (A) = 1 if the first event is of type A, and (A) = 0 if it is of type B. Also
let (B) = 1 if the first event is of type B, and (B) = 0 if it is of type A. For any

 = 1, 2, . . . , r , Table 1 contains all the possible cases.

First let us consider the case (i) when 
 = odd and the first event in the sequence
is of type Ai . To obtain (2.43), we form the product of r generating functions.
In Table 1, the last line indicates the corresponding formulas for the appropriate
generating functions, and the entries in line (i) indicate how many times we should
take each generating function. If we perform all the r multiplications, the result is
the generating function

(q/p)(a−1)(
−1) pqr−1[G(w)]2a
−2
−a+r [R(w)]r , (2.47)

where G(w) is given by (2.16) and R(w) by (2.18). If we extract the coefficient of ws

in (2.47) and sum these coefficients for 0 ≤ s ≤ [n − 2
(a − 1) + a − 2r ]/2, then
by (2.24) and (2.30) we obtain (2.45). If instead of (i), we consider (iv), we obtain
again (2.47) and this yields (2.45). If we consider line (ii), then following the same
procedure as before, we obtain the following generating function

(q/p)(a−1)(
−1)+a pqr−1[G(w)]2a
−2
−a+r [R(w)]r . (2.48)

If we extract the coefficient of ws in (2.48) and sum these coefficients for 0 ≤ s ≤
[n − 2
(a − 1) + a − 2r ]/2, then we obtain (2.46). If, instead of (ii), we consider
(iii), we obtain again (2.48), and this yields (2.46). Formulas (2.45) and (2.46) imply
(2.32). This completes the proof of Theorem 2.3.
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5 The Distribution of τ(α,m)

Since τ(−α,m) has the same distribution as 1 − τ(α,−m), it is sufficient to deter-
mine the distribution of τ(α,m) for α > 0 and m ∈ (−∞,∞). Let us assume now
that p = pn and q = qn are given by (2.6) for n > m2. Then we have the following
limit theorem.

Theorem 2.4 If α > 0 and x > 0, then

lim
n→∞P

{
2τn([α√

n])√
n

> x

}
= 1 − F(x, α,m), (2.49)

where

F(x, α,m) = 1 − e−mx [1 − Φ(x + α − m)] − em(x+2α)[1 − Φ(x + α + m)],
(2.50)

and Φ(x) is given by (2.1).

Proof Now

lim
n→∞

(
qn
pn

)√
n

= e−2m . (2.51)

If, in (2.20), we put a = [α√
n], where α > 0 and k = [x√n/2] with x > 0 and let

n → ∞, then by (2.11) and (2.19) we obtain (2.49).
By (2.7), this proves that

P{τ(α,m) ≤ x} = F(x, α,m) (2.52)

for x ≥ 0. Clearly, we have P{τ(α,m) ≤ x} = 0 if x < 0.
The moments

E{[τ(α,m)]r } = μr (α,m) (2.53)

exist for r ≥ 0. We have μ0(α,m) = 1 and

μr (α,m) = r
∫ ∞

0
[1 − F(x, α,m)]xr−1dx (2.54)

for r ≥ 1.

Theorem 2.5 If α > 0, then

lim
n→∞E

{[
2τn([α√

n])√
n

]r}
= μr (α,m) (2.55)

for r ≥ 0, where μr (α,m) is given by (2.54).
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Proof If we assume that p = pn and q = qn are given by (2.6) for n > m2, and if in
(2.23) we put a = [α√

n], where α > 0, then, by letting n → ∞, we obtain (2.55)
by (2.19).

6 The Distribution of τ(α,m) + τ(−α,m)

Let us assume that p = pn and q = qn are given by (2.6) for n > m2. Then we have
the following limit theorem.

Theorem 2.6 If α > 0 and r ≥ 1, then the limit

lim
n→∞E

{[
2τn([α√

n]) + 2τn(−[α√
n])√

n

]r}
= Mr (α,m) (2.56)

exists, and

Mr (α,m) = (1 + e−2mα)

r∑

=1

(
r − 1


 − 1

)
e−2mα(
−1)μr ((2
 − 1)α,m), (2.57)

where μr (α,m) is given by (2.54).

Proof If in (2.32) we put a = [α√
n], where α > 0, and if we let n → ∞ by (2.55)

we obtain (2.57).

Theorem 2.7 If α > 0, then there exists a distribution function Lα(x,m) of a non-
negative random variable such that

lim
n→∞P

{
2τn([α√

n]) + 2τn(−[α√
n])√

n
≤ x

}
= Lα(x,m) (2.58)

in every continuity point of Lα(x,m). The distribution function Lα(x,m) is uniquely
determined by its moments

∫ ∞

−∞
xr Lα(x,m)dx = Mr (α,m) (2.59)

for r ≥ 0, where M0(α,m) = 1 and Mr (α,m) for r ≥ 1 is given by (2.57).

Proof Since μr (α,m) is a decreasing function of α if α > 0, we have

Mr (α,m) ≤ (1 + e−2mα)rμr (α,m) (2.60)

for r ≥ 1. Consequently, the sequence of moments {Mr (α,m)} uniquely determines
Lα(x,m), and Lα(x,m) = 0 for x < 0. By the moment convergence theorem of
Fréchet and Shohat [1], we can conclude that (2.59) implies (2.58).
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By (2.8) and (2.58), we have

P{τ(α,m) + τ(−α,m) ≤ x} = Lα(x,m), (2.61)

and, by (2.59),
E{[τ(α,m) + τ(−α,m)]r } = Mr (α,m) (2.62)

for α > 0 and r ≥ 0. Formula (2.57) is a surprisingly simple expression for the
r -th moment of τ(α,m) + τ(−α,m). If we know the r -th moment of τ(α,m) for
α > 0, then by (2.57) the r -th moment of τ(α,m) + τ(−α,m) can immediately
be determined for α > 0. Moreover, formula (2.57) makes it possible to determine
Lα(x,m) explicitly.

Theorem 2.8 If x ≥ 0, α > 0, and m ∈ (−∞,∞), then we have

Lα(x,m) = 1 + (1 + e2mα)

∞∑

=1

(−1)
e−2
mα

(
 − 1)!

(
d
−1x
−1[1 − F(x, (2
 − 1)α,m)]

d x
−1

)
,

(2.63)
and, if x > 0, α > 0, and m ∈ (−∞,∞), then we have

dLα(x,m)

dx
= (1 + e2mα)

∞∑

=1

(−1)
e−2
mα

(
 − 1)!
(
d
x
−1[1 − F(x, (2
 − 1)α,m)]

d x


)
,

(2.64)
where F(x, α,m) is given by (2.50).

Proof For α > 0 the Laplace–Stieltjes transform

Ψα(s) =
∫ ∞

−∞
e−sx Lα(x,m)dx (2.65)

can be expressed as

Ψα(s) =
∞∑
r=0

(−1)r Mr (α,m)sr/r !, (2.66)

and the series is convergent on the whole complex plane. Here, Mr (α,m) is given by
(2.57). Ifwe substitute (2.57) into (2.66), expressμr (α,m) by (2.54), and interchange
summations with respect to r and 
, we obtain that

Ψα(s) = 1 + (1 + e2mα)

∞∑

=1

e−2
mα

(
 − 1)!
∫ ∞
0

(
d
e−sx

dx


)
[1 − F(x, (2
 − 1)α,m)]x
−1dx .

(2.67)
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By integrating by parts, we get

Ψα(s) = 1 + (1 + e2mα)

∞∑

=1

(−1)
e−2
mα[1 − F(0, (2
 − 1)α,m)]

+ (1 + e2mα)

∞∑

=1

(−1)
e−2
mα

(
 − 1)!
∫ ∞

0
e−sx

(
d
[1 − F(x, (2
 − 1)α,m)]x
−1

dx


)
dx .

(2.68)

Hence we can conclude that (2.63) and (2.64) hold. By (2.68), we have

Lα(0,m) = 1 + (1 + e2mα)

∞∑

=1

(−1)
e−2
mα[1 − F(0, (2
 − 1)α,m)]. (2.69)

Obviously,
Lα(0,m) = P{ sup

0≤u≤1
|ξ(u) + mu| < α} (2.70)

for α > 0. We have

P{ sup
0≤u≤1

|ξ(u) + mu| < α} =
∑
j

e−4 jαm [Φ((4 j + 1)α − m) − Φ((4 j − 1)α − m)]

−
∑
j

e(4 j+2)αm [Φ((4 j + 3)α + m)] − Φ((4 j + 1)α + m), (2.71)

where Φ(x) is defined by (2.1). See [6, p. 226]. Formulas (2.69) and (2.71) are in
agreement.

In (2.63) and (2.64), the derivatives can be expressed explicitly by Hermite poly-
nomials. If we write

ϕ(x) = 1√
2π

e−x2/2 (2.72)

for the density function of the normal distribution, then

dnϕ(x)

dxn
= (−1)nϕ(x)Hn(x) (2.73)

for n = 0, 1, 2, . . . , where

Hn(x) = n!
[n/2]∑
j=0

(−1) j xn−2 j

2 j j !(n − 2 j)! (2.74)
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is the n-th Hermite polynomial. We have

Hn(x) = xHn−1(x) − (n − 1)Hn−2(x) (2.75)

for n ≥ 2, where H0(x) = 1 and H1(x) = x .
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Reflections on Shreeram Abhyankar
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Abstract These are some reflections on the great algebraic geometer Shreeram
Abhyankar given at the Banquet at the International Conference on Lattice Path
Combinatorics and Applications, California Polytechnic University, Pomona, on
Thursday, August 20, 2015.
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Shreeram Abhyankar (22 July, 1930–2 Nov., 2012) was one of the world’s most
eminent algebraic geometers. He ranked among the ten greatest mathematicians of
India in the twentieth century. He belonged to the Chitpavan Brahmin community
of Maharashtra and was proud of its illustrious lineage. After completing his under-
graduate studies in India, he went to Harvard University and did his doctoral work
there under the direction of Oscar Zariski, one of the most influential figures in alge-
braic geometry. Abhyankar’s Ph.D. thesis on the resolution of singularities problem
is a classic and is among his most important contributions. I was fortunate to get to
know him from my boyhood because he was a close friend of my father. Abhyankar
and his wife Yvonne were our house guests in India in the sixties. Over the years,
we have had several meetings, first in Madras, India, where we hosted him, then in
Purdue when my parents and I were his house guests, and finally at the University of
Florida where I had the opportunity to host him during my term as Chair. Abhyankar
was a fascinating, colorful, and engaging personality. He would grab your attention
with his warmth, his open frankness, and his firm opinions on various matters—
mathematical and non-mathematical. I have observed him in close quarters, and
I will now share a few anecdotes to convey his unusual and engaging personality.
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Shreeram Abhyankar, Alladi Ramakrishnan, Krishnaswami Alladi, at the Alladis’ home in January

2001

My late father Professor Alladi Ramakrishnan had founded MATSCIENCE, The
Institute of Mathematical Sciences, Madras, India, in 1962, and was its Director
until his retirement in 1983 at the age of sixty. The Institute was a realization of
a dream of my father and a direct consequence of a Theoretical Physics Seminar
that he conducted at our family home in Madras. Abhyankar had a strong attach-
ment to India and a great regard for Indian culture and scientific heritage. Thus, he
admired my father’s efforts in creating such an institute for higher learning and so
he visited MATSCIENCE several times in the sixties, his first visit being in August
1963 when he was at Johns Hopkins University, before moving to Purdue. His wife
Yvonne always accompanied him, and we admired the way she wore the sari—so
naturally and elegantly like an Indian lady. During one such visit in January 1968,
my father requestedAbhyankar to give a public lecture on Ramanujan—undoubtedly
the greatest mathematician India has ever produced. Out of his profound regard for
Ramanujan, Abhyankar readily agreed, even though he was not an expert on the
mathematics of Ramanujan. The venue for the lecture was the C.P. Ramaswami Iyer
Foundation, close to our house.

Sir C.P. Ramaswami Iyer was a very eminent lawyer, an illustrious statesman, and
an orator par excellence. He was a contemporary and close friend of my grandfather
Sir Alladi Krishnaswami Iyer, who was one of the greatest lawyers of India. After
Sir C. P. died in 1966, a foundation was created in his name as he desired, and
this foundation held public lectures on the spacious lawns of Sir C.P.’s mansion
called “The Grove”. As a 12-year-old boy, I attended Abhyankar’s brilliant lecture
on Ramanujan at the CP Foundation. He held the audience of more than two hundred
citizens of Madras in various walks of life in rapt attention as he described some
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of Ramanujan’s most important contributions in his unique and powerful lecturing
style. The text of Abhyankar’s lecture on Ramanujan appeared in a volume published
by the Plenum Press and edited by my father [1].

Abhyankar was proud of his Indian roots and legacy. He valued and empha-
sized the classical approach to mathematics and did not care for abstraction. He
therefore did not agree with the views of the mathematicians of the Tata Institute of
Fundamental Research (TIFR), especially with their adoption of the Grothendieck
program in algebraic geometry.He started an institute in 1976 calledBhaskaracharya
Prathishthana in his native townof Poona (nowPune) in the state ofMaharashtra—an
institute inspired by the legacy of the great mathematical Guru Bhaskara.

Abhyankar visited the University of Florida regularly from the 1990s to inter-
act with the famous group theorist John Thompson who was Graduate Research
Professor in our department. During one such visit, I invited him to address our
undergraduate mathematics club πμε. He readily agreed and gave a lovely lecture
entitled “An introduction to algebraic geometry”. In his talk, he stressed that the
foundations of algebraic geometry are in classical Cartesian analytic geometry. He
lamented that not enough time is spent nowadays in high schools or undergraduate
classes to discuss analytic geometry in detail with proofs. He said that his father
(also a mathematician) had three years of analytic geometry, but he had only two,
and that the younger generation has one year or less on analytic geometry. This
decrease in the amount of time spent on analytic geometry worried him. His article
“Historical ramblings in algebraic geometry” that appeared in the American
Mathematical Monthly in 1976 [2] stresses elementary reasoning in algebraic geom-
etry. His fundamental thesis in this paper is: “The method of high school algebra is
powerful. So let us not be overwhelmed by groups-rings-fields or functorial arrows
of the other two algebras1 and thereby lose sight of the power of the explicit algo-
rithmic process given to us by Newton, Tschirnhausen, Kronecker, and Sylvester.”
He received the Chauvenet Prize of the MAA in 1978 for this paper.

After his talk toπμε, there was a dinner in his honor at my house and there we had
a discussion on elementary approaches to deep mathematical problems. I mentioned
that in number theory, Paul Erdős was the ultimate champion of the elementary
method. To my surprise—or should I say to my shock!—he immediately shot back
and said that he did not consider Erdős to be a great mathematician. I asked him why,
and he responded saying that Erdős had written some very simple papers. I then said
that a mathematician should be judged by his very best work and total contributions
and not by his least significant paper. We argued. I gave examples of some ingenious
elementary proofs of Erdős following which he asked me how I knew so much about
Erdős and his mathematics. I said that Erdős was like a mentor to me and that I

1Abhyankar classified algebra into three types: (i) high school algebra (polynomials, power series):
Bhaskara (1114), Cardano (1530), Ferrari (1540), Newton (1680), Tschirnhausen (1683), Euler
(1748), Sylvester (1840), Cayley (1870), Kronecker (1882), Mertens (1886), König (1903), Perron
(1905), Hurwitz (1913), Macaulay (1916), Zariski (1941), Hironaka (1964); (ii) college algebra
(rings, fields, and ideals): Dedekind (1882), Noether (1925), Krull (1930), Zariski (1941), Chevalley
(1943), Cohen (1946), Nagata (1960); and (iii) university algebra (functors): Serre (1955), Cartan
(1956), Eilenberg (1956), Grothendieck (1960), Mumford (1965).
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had collaborated with him. He immediately exclaimed: “Oh! He is your Guru. Thus
I apologize and completely withdraw everything I said because you have every right
to defend your Guru, and I should not criticize your Guru in your presence. For
example, I would defend my Guru Oscar Zariski against anyone.”

I mentioned earlier that Abhyankar had a great regard for Indian culture. In the
Hindu tradition, your Guru is like a God and so should be worshipped. Thus, he
had unbounded love and respect for Oscar Zariski, his Ph.D. advisor at Harvard.
Abhyankar withdrew his arguments not because I was correct about Erdős, but
because of his deep respect for the Guru.

Even after my father’s retirement as Director ofMATSCIENCE,Abhyankarmade
it a point to visit our home every time he was in Madras, and call on my parents.
After my father died, when I edited a volume in his memory, Abhyankar contributed
a massive paper [3] to that volume dedicated both to his father and my father. This
paper was originally intended for the Journal of Algebra, but he decided to submit
to the volume in memory of my father, and for this I am most grateful.

Even though he was blunt and brutally frank, he was a man of deep feelings and
great kindness. He was an eminent mathematician and a fine person.
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1 Introduction

George Andrews is the undisputed leader on partitions and the work of Ramanujan
combined. After Hardy and Ramanujan, he, more than anyone else in the modern
era, is responsible for making the theory of partitions a central area of research. His
book on partitions [14] published first in 1976 as Volume 2 of the Encyclopedia of
Mathematics (JohnWiley), is a bible in the field, and hisNSF-CBMSLectures [15] of
1984–85 highlight the fundamental connections between partitions and Ramanujan’s
work with many allied fields. We definitely owe to him our present understanding of
many of the deep identities in Ramanujan’s Lost Notebook. I had the good fortune
to collaborate with him and also interact with him very closely both at Penn State
University (his home turf) where I visited often, and at the University of Florida,
where he has spent the Spring term every year since 2005. I also have had the
pleasure of hosting him in India several times. Thus I have come to know him really
well as a mathematician, colleague, and friend. Here I will first share with you (in

Section 2 on personal recollections is based on the speech given at the banquet, while Sect. 3 on
collaboration is based on a talk in one of the technical sessions of the conference.
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Sect. 2) my observations of him as a man and mathematician. I will then describe (in
Sect. 3) some aspects of our joint work that will highlight his vast knowledge and
brilliance. In Sect. 2, I will describe events chronologically rather than thematically.
In Sect. 3, I will discuss my joint work with him on the Capparelli and the Göllnitz
theorems.

George Andrews delivering a lecture on the story of Ramanujan’s Lost Notebook
at the Alladi residence in Madras, India, during the Ramanujan Centennial in
December 1987.

2 Personal Recollections

First Visit to India: Even though Andrews has been studying Ramanujan’s work
since the sixties and had been “introduced to India” through the writings of, and on,
Ramanujan, his first visit to India was only in Fall 1981. That academic year, I was
visiting the Institute for Advanced Study in Princeton, and he contacted me saying
that hewas planning a visit to India, and toMadras in particular, andwould appreciate
any suggestions I would have. My father, the late Professor Alladi Ramakrishnan,
was Director of MATSCIENCE, the Institute of Mathematical Sciences that he had
founded in 1962, and so I put him in touch with my father who hosted him inMadras,
and helped arrange a meeting for Andrews with Mrs. Janaki Ammal Ramanujan.
Upon return from India, Andrews called me from Penn State, told me that it was an
immensely enjoyable and fruitful visit, and that he appreciated my father’s help and
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hospitality. To reciprocate, Andrews invited me to a Colloquium at Penn State where
he was Department Chair at that time. Andrews is always a gracious host, but in his
capacity as Chair, he rolled out the red carpet for me! He hosted a party for me at his
house during that visit and that is how our close friendship began.

Andrews signing the Visitors Book in the office of Alladi Ramakrishnan after his
lecture at the Alladi residence in December 1987

Iwasworking at that time in analytic number theory but Iwanted to learn partitions
and q-series, and that aspect of the work of Ramanujan. So after I returned to India
fromPrinceton, I wrote toAndrews and asked him for his papers. Promptly, I received
two large packages containing more than 100 of his reprints. So I started studying
them along with his Encyclopedia and gave a series of lectures at MATSCIENCE in
Madras, the notes of which I still use today. Even after this course of lectures, I was
unsure whether to venture into partitions and q-series. The infinite series formulae
were beautiful, but daunting. The decision to change my field of research to the
theory of partitions and q-series came during the Ramanujan Centennial in Madras
in December 1987.

The Ramanujan Centennial: The Ramanujan Centennial was an occasion when
mathematicians from around the world gathered in India to pay homage to the Indian
genius. Among the mathematical luminaries at the conference, there was a lot of
attention on Andrews, Richard Askey, and Bruce Berndt — jokingly referred to in
theUSAas the “Gang of Three” in theworld ofRamanujan. I prefer to refer to themas
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the “Great Trinity” of theRamanujanworld, likeBrahma,Vishnu, andShiva, the three
premier Hindu gods! The Great Trinity along with Nobel Laureate Astrophysicist
Subrahmanyam Chandrasekhar and Fields Medalist Atle Selberg, were the stars of
the Ramanujan Centennial. But Andrews occupied a special place in this elite group,
because the Lost Notebook that he unearthed at the Wren Library in Cambridge
University, was released in published form [21] at a grand public function in Madras
on December 22, 1987, Ramanujan’s 100-th birthday, by India’s Prime Minister
Rajiv Gandhi, who handed one copy to Janaki Ammal and another to Andrews. That
definitely was a high point in the academic life of Andrews. Andrews has written a
marvelous Preface to that book published by Narosa, which at that time was part of
Springer, India.

December 1987 was a politically tense time inMadras because the Chief Minister
ofMadras,M.G.Ramachandran—MGRas hewas affectionately known—a former
cine hero to the millions, was terminally ill. There were several conferences in India
around Ramanujan’s 100-th birthday, and Andrews was a speaker in every one of
them. He therefore arrived in Madras about a week before the 100-th birthday of
Ramanujan and spent the first night at my house before traveling by road to other
conferences. I told him that he should be very careful traveling by road in such a tense
time, but he heldmy hand and said: “Krishna, do not worry. I am on a pilgrimage here
to pay homage to Ramanujan. I will not let anything perturb me.” As it turned out,
one day as he, Askey, and Berndt were traveling by car a couple of hundred miles
south of Madras, the car was suddenly encircled by a crowd of excited political
activists. The car was stopped. Askey and Berndt were very nervous. But Andrews,
cool as a cucumber, rolled down the window, and threw a load of cash into the air!
The crowd cheered and let the car through because the foreigners had supported their
cause. Andrews acted like James Bond, with tremendous presence of mind! Anyway,
everyone made it safely to Madras for the December 22 function presided by Prime
Minister Rajiv Gandhi.

The talks that Andrews gave at various conferences, including the one that I
organized at Anna University on December 21, one day before the 100-th birthday
of Ramanujan, were all for expert audiences. Since Andrews is a charismatic speaker,
I wanted him to give a lecture to a general audience. So my father and I arranged a
talk by him at our home onDecember 23, under the auspices of the Alladi Foundation
that my father started in 1983 in memory of my grandfather Sir Alladi Krishnaswami
Iyer, one of the most eminent lawyers of India. We invited the Consul General of
the USA to preside over the lecture which was attended by prominent citizens of
Madras in various walks of life — lawyers, judges, aristocrats, businessmen, college
teachers and students. Andrews charmed them all with his inimitable description of
the story of the discovery of Ramanujan’s Lost Notebook. But something sensational
happened that night after Andrews’ lecture: Following the talk, many of us assembled
at the Taj Coromandel Hotel for a dinner in honor of the conference delegates hosted
by Mr. N. Ram, Editor of The Hindu, India’s National Newspaper, based in Madras.
(Ram’s connection with Andrews was that in 1976, shortly after the Lost Notebook
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was discovered, he published a full page interviewwithAndrews inTheHindu.)After
dinner, while we chatting over cocktails and dessert, the news came in whispers that
MGR had passed away, and so the city would come to a standstill by daybreak once
the general public would hear this news. So under the cover of darkness, we were
asked to quietly make our way back to our hotels. And yes, as predicted, there was
a complete shutdown and the Ramanujan Centenary Conference did not take place
on December 24; instead all talks were squeezed into the next two days. Fortunately,
Andrews had spoken at the conference on December 23. The Goddess of Namakkal
had made sure that the Ramanujan Centenary celebration on December 22, and the
talks the next day by the Great Trinity, would not be affected by such a tragedy!

The Frontiers of Science Lecture in Florida: At the University of Florida in
Gainesville, there was a public lecture series called Frontiers of Science. This was
organized by the physics department, and students received 1 (hour) course credit for
attending these lectures. Many world famous scientists spoke in this lecture series
such as group theorist John Conway, and Johansson, the discoverer of the “Lucy”
skeleton. So after my return from the Ramanujan Centennial, I suggested to the
organizers to invite George Andrews. I never heard back from them and so I felt they
were not interested. Quite surprisingly, three years later, in Fall 1990, they contacted
me and expressed interest in Andrews delivering a Frontiers of Science Lecture. So
Andrews gave such a talk in November 1990, and held the 1000 or more members of
the audience in the University Auditorium in rapt attention as he described the story
of the discovery of the Lost Notebook. That was his first visit to Florida, but in that
visit, our collaboration began in a remarkable way. I will now relate this fascinating
story that will reveal the genius of this man.

In early 1989, I got a phone call from Basil Gordon, one of my former teachers
at UCLA where I did my Ph.D. work. Gordon said that he would be on a fully
paid sabbatical in 1989–90, and that he would like to spend the Fall of 1989 in
Florida. After the Ramanujan Centennial, I attempted some research on partitions
and q-series, but the visit of Gordon provided me a real opportunity because Gordon
was a dominant force in this domain; in the 1960s he had obtained a far-reaching
generalization of the Rogers–Ramanujan identities to odd moduli. Gordon and I first
obtained a significant generalization of Schur’s famous 1926 partition theorem by a
new technique which we called the method of weighted words. We then extended this
method to obtain a generalization and refinement of a deep 1967 partition theorem of
Göllnitz. We cast this generalization in the form of a remarkable three parameter q-
hypergeometric key identity which we were unable to prove. When Andrews arrived
in Florida for the Frontiers of Science Lecture, I went to the airport to receive him.
I did not waste any time and showed him the identity right there. He said it was
fascinating. During his three-day stay in Gainesville, he thought of nothing else. He
focused solely on the identity. In the visitors office that he occupied in our department,
I saw him working on the identity, every day, and every hour. On the last day, on
the way to the airport, he handed me an eight-page proof of this key identity by
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q-hypergeometric techniques that only he could wield with such power. That is how
my first paper with him (jointly also with Gordon) came about.

Sabbatical at Penn State, 1992–93: I was having my first sabbatical in 1992–93
and Andrews invited me to Penn State for that entire year. So I went to State College,
Pennsylvania with my family. It was the most productive year of my academic life—
I completed work on five papers of which two were in collaboration with Andrews.
He and his wife Joy were gracious hosts. They showed us around State College
and we got together as families for picnics. Most importantly, Andrews gave a year
long graduate course on the theory of partitions that I attended. Although I was
doing research in the theory of partitions, I never had a course on partitions and
q-hypergeometric series as a student and so it was a treat for me to learn from the
master. Dennis Eichhorn and Andrew Sills were also taking this course as graduate
students.

The sabbatical year at Penn State gave me time to also write up work I had done
previously. It was there that I finished writing my first joint paper with Andrews on
the Göllnitz theorem. The story of my second joint paper with Andrews written at
Penn State on the Capparelli conjecture is also equally remarkable and demonstrates
once again Andrews’ power in the area of partitions and q-hypergeometric series,
and so I will relate this now.

In the summer of 1992, the Rademacher Centenary Conference was held at Penn
State. Andrewswas a former student of Rademacher, and so hewas the lead organizer
of this conference. On the opening day of the conference, Jim Lepowsky gave a talk
on how Lie algebras could be used to discover, and in some instances, prove, various
Rogers–Ramanujan type partition identities. During the talk, he mentioned a pair of
partition identities that his student Stefano Capparelli had discovered in the study of
vertex operators of Lie algebras but was unable to prove. Even though Andrews was
the main conference organizer, he went into hiding during the breaks to work on the
Capparelli Conjecture. By the end of the conference, he had proved the conjecture;
so on the last day, he changed the title of his talk and spoke about a proof of the
Capparelli conjecture. This story bears similarity to the way in which he proved the
three parameter identity for the Göllnitz theorem that Gordon and I had found but
could not prove.

I was not present at the Rademacher Centenary Conference since I was in India
at that time, just two months before reaching Penn State for my sabbatical. But Basil
Gordonwas at that conference and he toldme this story. Actually, during Lepowsky’s
lecture, Gordon realized that our method of weighted words would apply to the
Capparelli partition theorems and he expressed this view to me in a telephone call
soon after I arrived at Penn State. So during my sabbatical, I worked out the details
of this approach to obtain a two parameter refinement of the Capparelli theorems,
and in that process got a combinatorial proof as well. This led to my second joint
paper with Andrews, with Gordon also as a co-author.
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The mathematicians associated with the Capparelli partition conjecture and its res-
olution: Seated — Jim Lepowsky (left) and Basil Gordon. Standing — Stefano Cap-
parelli (left), George Andrews (middle), and Krishnaswami Alladi (right) — at the
Alladi House in Gainesville, Florida, in fall 1994

Honorary Doctorate at UF in 2002: In view of his fundamental research and
his contributions to the profession, Andrews is the recipient of numerous honors. He
has received honorary doctorates from the University of Illinois and the University
of Parma. In 2002, he was awarded an Honorary Doctorate by the University of
Florida. I was Department Chair at that time, and it was then that we formalized
the arrangement to have him as a Distinguished Visiting Professor, so that he would
spend the entire Spring Term each year at the University of Florida.

Visit to SASTRA University, 2003: In 2003, the recently formed SASTRA Uni-
versity, purchased Ramanujan’s home in Kumbakonam, renovated it, and decided to
maintain it as a museum. This was a major event in the preservation of Ramanujan’s
legacy for posterity. Tomark the occasion, SASTRA decided to have an International
Conference at their newly constructed Srinivasa Ramanujan Centre in Kumbakonam
to coincide with Ramanujan’s birthday, December 22. I was invited to organize the
technical session and given funds to bring a teamofmathematicians toKumbakonam.
SASTRAwas a new entry in the Ramanujan world, but this conference seemed tome
interesting and promising. But how to make a success of this? So I called Andrews
and told him that something exciting is happening in Ramanujan’s hometown, and
I would like him to give the opening lecture at this conference. He readily agreed.
Once he accepted, I called other mathematicians and told them that Andrews will
be there. So they too accepted the invitation to the First SASTRA Conference. That
shows Andrews’ drawing power! That conference was inaugurated by India’s Pres-
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ident Abdul Kalam who also declared open Ramanujan’s home as a museum and
national treasure.

Krishnaswami Alladi and Joy Andrews with George Andrews after he received an
honorary doctorate from the University of Florida, in 2002

Ramanujan 125, Honorary Doctorate at SASTRA: Many things developed
after that 2003 SASTRA conference — the conferences at SASTRA became an
annual event that I help organize, and in 2005 the SASTRA Ramanujan Prize
was launched. SASTRA invited me to be Chair of the Prize Committee. I felt that
Andrews’ input would be crucial for the success of the prize. So I invited him to be
on the Prize Committee during the first year, and he readily agreed. I then informed
others about the prize and that Andrews was on the Prize Committee, and they too
agreed enthusiastically. The prize as you know has become one of the most presti-
gious in the world, and I am grateful to Andrews for agreeing to serve on the Prize
Committee during the first year.

In view of the annual conferences and the prize, SASTRA had become a major
force in the world of Ramanujan by the time Ramanujan’s 125-th Anniversary was
celebrated inDecember 2012. So I suggested to theVice-Chancellor of SASTRA, that
the three greatest figures in the world of Ramanujan— namely the Trinity— should
be recognized by SASTRA with honorary doctorates in Ramanujan’s hometown,
Kumbakonam. The Vice-Chancellor liked this suggestion, and so Andrews, Askey
andBerndt were awarded honorary doctorates in a colorful ceremonywith traditional
Indian music being played as the recipients walked in.

Birthday Conferences Every Five Years: Andrews has remained productive
defying the passage of time. In view of his enormous influence, and his charm,
conferences in his honor have been organized every five years starting from his 60-th
birthday, and I have had the privilege of participating in every one of them — in
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Maratea, Italy in 1998 for his 60-th, in Penn State in 2003 and 2008 for his 65-th and
70-th, and in Tianjin, China in 2013 for his 75-th. Even though this is not a milestone
birthday, I am happy to have taken part in this conference on Lattice Paths where he
was honored along with three other eminent mathematicians.

G.H. Hardy once said that he had the unique privilege of collaborating with
Ramanujan and Littlewood in something like equal terms. Although I am no Hardy,
I can say proudly that I am unique in having had a close collaboration with Paul
Erdős and George Andrews, two of the most influential mathematicians of our time!
I next describe my joint work with Andrews on the Göllnitz and Capparelli theorems.

3 Collaboration with Andrews

Before describing my joint work with Andrews, I need to briefly provide as back-
ground, my joint work with Gordon on Schur’s theorem.

One of the first results in the theory of partitions that one encounters, is a lovely
theorem of Euler, namely:

Theorem E The number of partitions pd(n) of n into distinct parts, equals the
number of partitions po(n) of n into odd parts.

Euler’s proof of this was to consider the product generating functions of these two
partition functions and show they are equal by using the trick

1 + x = 1 − x2

1 − x
.

More precisely,

∞∑

n=0

pd(n)qn =
∞∏

m=1

(1 + qm) =
∞∏

m=1

1 − q2m

1 − qm
=

∞∏

m=1

1

1 − q2m−1
=

∞∑

n=0

po(n)qn.

(4.1)
Let us think of partitions into distinct parts as those for which the gap between

the parts is≥ 1, and partitions into odd parts as those whose parts are≡ ±1 (mod 4).
If Euler’s theorem is viewed in this fashion, then the celebrated Rogers–Ramanujan
partition theorem is the “next level” result with gap≥ 1 replaced by gap≥ 2 between
parts, and the congruence mod 4 replaced by modulus 5. More precisely, the first
Rogers–Ramanujan partition theorem is:

Theorem R1 The number of partitions of an integer n into parts that differ by ≥ 2,
equals the number of partitions of n into parts ≡ ±1 (mod 5).

In the second Rogers–Ramanujan partition theorem (R2) we consider partitions
whose parts differ by≥ 2 but do not have 1 as a part, and equate these with partitions
into parts≡ ±2 (mod 5). The two Rogers–Ramanujan partition identities can be cast
in an analytic form, namely
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∞∑

n=0

qn2

(q)n
= 1

(q; q5)∞(q4; q5)∞
, (4.2)

and ∞∑

n=0

qn2+n

(q)n
= 1

(q2; q5)∞(q3; q5)∞
. (4.3)

In (4.2) and (4.3) and in what follows, we have used the standard notation

(a; q)n = (a)n =
n∏

j=1

(1 − aq j−1),

and
(a)∞ = lim

n→∞(a)n, for |q| < 1.

When the base is q, then as on the left in (4.2) and (4.3), we do not mention it, but
when the base is other than q, then we always mention it, as on the right in (4.2) and
(4.3).

Although the Rogers–Ramanujan identities are the next level identities beyond
Euler’s theorem, they are much deeper. They also have a rich history that we will
not get into here. We just mention that the analytic forms of the identities (4.2)
and (4.3) were first discovered by Rogers and Ramanujan independently, and it was
only later that MacMahon and Schur independently provided the partition version,
namely TheoremsR1 andR2.Neither Rogers nor Ramanujanmentioned the partition
versions of (4.2) and (4.3). So in fairness, Theorems R1 and R2 should be called the
MacMahon–Schur theorems.

In the theoryof partitions andq-series, aRogers–Ramanujan (R–R) type identity is
a q-hypergeometric identity in the formof an infinite (possiblymultiple) series equals
an infinite product. The series is the generating function of partitions whose parts
satisfy certain difference conditions,whereas the product is the generating function of
partitionswhose parts usually satisfy certain congruence conditions. Since the 1960s,
Andrews has spearheaded the study of R–R type identities (see [14], for instance). R–
R type identities arise as solutions of models in statistical mechanics as first observed
by Rodney Baxter in his fundamental work. After noticing the role of R–R type
identities in certain physical problems, Baxter and his group approached Andrews to
provide insight into the structure of such identities. Andrews then collaborated with
Baxter and Peter Forrester to determine all R–R type identities that arise as solutions
of the Hard-Hexagon Model in statistical mechanics. For a discussion of a theory of
R–R type identities, see Andrews [14, Chap.9]. For a discussion of connections with
problems in physics, see Andrews’ CBMS Lectures [15].

The partition theorem which is the combinatorial interpretation of an R–R type
identity, is called a Rogers–Ramanujan type partition identity. A q-hypergeometric
R–R type identity is usually discovered first and then its combinatorial interpretation
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as a partition theorem is given. There are important instances of Rogers–Ramanujan
type partition identities being discovered first and their q-hypergeometric versions
given later. Perhaps the first such significant example is the 1926 partition theorem
of Schur [22].

In emphasizing the partition version of (4.2) and (4.3), Schur discovered the “next
level” partition theorem, namely:

Theorem S (Schur, 1926) Let T (n) denote the number of partitions of an integer n
into parts ≡ ±1 (mod 6).

Let S(n) denote the number of partitions of n into distinct parts ≡ ±1 (mod 3).
Let S1(n) denote the number of partitions of n into parts that differ by ≥ 3, where

the inequality is strict if a part is a multiple of 3. Then

T (n) = S(n) = S1(n).

The equality T (n) = S(n) is simple and follows easily by using Euler’s trick on
their product generating functions, namely

∞∑

n=0

T (n)qn = 1

(q; q6)∞(q5; q6)∞
= (−q; q3)∞(−q2; q3)∞ =

∞∑

n=0

S(n)qn .

(4.4)
Thus it is the equality S(n) = S1(n) which is the real challenge. In 1966, Andrews
[10] gave a a new q-theoretic proof of S(n) = S1(n). This enabled him to discover
two infinite families of identities [11, 12] modulo 2k − 1 emanating from Schur’s
theorem.

In 1989, in collaboration with Gordon, I obtained a generalization and two param-
eter refinement of the equality S(n) = S1(n) (see [6]). The main idea in [6] was to
establish the key identity

∑

i, j

ai b j
∑

m

qTi+ j−m+Tm

(q)i−m(q) j−m(q)m
= (−aq)∞(−bq)∞, (4.5)

and to view a two parameter refinement of the equality S(n) = S1(n) as emerging
from (4.5) under the transformations

(dilation) q �→ q3, and (translations) a �→ aq−2, b �→ bq−1. (4.6)

In (4.5) and below, Tm = m(m + 1)/2 is the m-th triangular number.
The interpretation of the product in (4.5) as the generating function of bi-partitions

into distinct parts in two colors is clear. In [6] it was shown that the series in (4.5) is
the generating function of partitions (= words with weights attached) into distinct
parts occurring in three colors - two primary colors a and b, and one secondary color
ab, and satisfying certain gap conditions. We describe this now.
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We assume that the integer 1 occurs in two primary colors a and b, and that each
integer n ≥ 2 occurs in the two primary colors as well as in the secondary color ab.
By an , bn , and abn , we denote the integer n in colors a, b, and ab respectively. In
order to discuss partitions, we need to impose an order on the colors, and the order
that Gordon and I chose is

a1 < b1 < ab2 < a2 < b2 < ab3 < a3 < b3 < · · · . (4.7)

Thus for a given integer n, the order of the colors is

ab < a < b. (4.8)

The transformations in (4.6) correspond to the replacements

an �→ 3n − 2, bn �→ 3n − 1, and abn �→ 3n − 3, (4.9)

Under (4.9), the ordering of the colored integers in (4.7) becomes

1 < 2 < 3 < 4 · · · ,

the standard ordering among the positive integers. This is one of the reasons Gordon
and I chose the ordering in (4.7).

Using the colored integers, Gordon and I gave the following partition interpre-
tation for the series in (4.5). We defined Type 1 partitions as those of the form
x1 + x2 + · · · , where the xi are symbols from the sequence in (4.7) with the condi-
tion that the gap between xi and xi+1, namely the difference between the subscripts
of the colored integers they represent, is ≥ 1, with strict inequality if

xi has a lower order color compared to xi+1, (4.10a)

or
xi , xi+1 are both of secondary color. (4.10b)

In (4.10a), the order of the colors is as in (4.8).
Using (4.9) it can be shown that that the gap conditions of Type 1 partitions in

(4.10a) and (4.10b) translate to the difference conditions of S1(n) in Schur’s theorem.
Two proofs of (4.5) were given in [6] — one combinatorial, and another using the
q-Chu–Vandermonde Summation. Thus the R–R type identity for Schur’s theorem
came half a century later.

Gordon then suggested that we should apply the method of weighted words to
generalize and refine the deep 1967 theorem of Göllnitz [18] which is:

Theorem G Let B(n) denote the number of partitions of n into parts ≡ 2, 5, or
11 (mod 12).
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Let C(n) denote the number of partitions of n into distinct parts ≡ 2, 4, or
5 (mod 6).

Let D(n) denote the number of partitions of n into parts that differ by ≥ 6, where
the inequality is strict if a part is ≡ 0, 1, or 3 (mod 6), and with 1 and 3 not occurring
as parts. Then

B(n) = C(n) = D(n).

The equality B(n) = C(n) is easy because

∞∑

n=0

B(n)qn =
∞∏

m=1

1

(1 − q12m−10)(1 − q12m−7)(1 − q12m−1)

=
∞∏

m=1

(1 + q6m−4)(1 + q6m−2)(1 + q6m−1) =
∞∑

n=0

C(n)qn . (4.11)

This is one reason that we focus on the deeper equality C(n) = D(n), the second
reason being that it is this equality which can be refined.

Göllnitz’ proof of TheoremG is very intricate and difficult but he succeeded in
proving TheoremG in the refined form

C(n; k) = D(n; k), (4.12)

where C(n; k) and D(n; k) denote the number of partitions of the type counted by
C(n) and D(n) respectively, with the extra condition that the number of parts is k,
and with the convention that parts ≡ 0, 1, or 3 (mod 6) are counted twice. Andrews
[13] subsequently provided a simpler proof. I think besides Göllnitz, Andrews is
the only other person to have gone through the difficult details of Göllnitz’ proof
of TheoremG. In Chap.10 of his famous CBMS Lectures [15], Andrews asks for a
proof that will provide insights into the structure of the Göllnitz theorem.

In view of (4.12) and our work on Schur’s theorem, Gordon suggested that we
should look at Göllnitz’ theorem in the context of the method of weighted words. To
this end, Gordon and I first considered the product

(−aq)∞(−bq)∞(−cq)∞ (4.13)

and viewed the generating function of C(n) as emerging out of (4.13) under the
substitutions

(dilation) q �→ q6, and (translations) a �→ aq−4, b �→ bq−2, c �→ cq−1.

(4.14)
The problem then was to find a series that would sum to this product, with the
series representing the generating function of partitions into colored integers with
gap conditions that would correspond to those governing D(n). What Gordon and
I did was to consider the integer 1 to occur in three primary colors a, b, and c, and
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integers n ≥ 2 to occur in these three primary colors as well as in three secondary
colors ab, ac, and bc. As before, the symbols an, bn, · · · , bcn represent n in colors
a, b, · · · , bc respectively. Here too we need an ordering on the colored integers, and
the one we chose is

a1 < b1 < c1 < ab2 < ac2 < a2 < bc2 < b2 < c2 < ab3 < . . . . (4.15)

The effect of the substitutions (4.14) is to convert the symbols to

{
am �→ 6m − 4, bm �→ 6m − 2, cn �→ 6m − 1, form ≥ 1,

abm �→ 6m − 6, acm �→ 6m − 5, bcn �→ 6m − 3, form ≥ 2.
(4.16)

so that the ordering (4.15) becomes

2 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11 < 12 < · · · , (4.17)

This is one reason for the choice of the ordering of symbols in (4.15), because they
convert to the natural ordering of the integers in (4.17) under the transformations
(4.16). Notice that 1, and 3 are missing in (4.17), and this explains the condition that
1 and 3 do not occur as parts in the partitions enumerated by D(n) in TheoremG.

To view TheoremG in this context, we think of the primary colors a, b, c as
corresponding to the residue classes 2, 4 and 5 (mod 6) and so the secondary col-
ors ab, ac, bc correspond to the residue classes 2 + 4 ≡ 6, 2 + 5 ≡ 7 and 4 + 5 ≡
9 (mod 6). Note that integers of secondary color occur only when n ≥ 2 and so ab1,
ac1 and bc1 are missing in (4.15). This is why integers ac1 = 1 and bc1 = 3 do not
appear in (4.17). This explains the absence of 1 and 3 among the parts enumerated by
D(n) in TheoremG. Note that ab1 corresponds to the integer 0, which is not counted
as a part in ordinary partitions anyway.

In (4.15) for a given subscript, the ordering of the colors is

ab < ac < a < bc < b < c. (4.18)

We use (4.18) to say for instance that ab is of lower order compared to a, or equiv-
alently that a is of higher order than ab. With this concept of the order of colors,
we can define Type 1 partitions to be of the form x1 + x2 + . . . , where the xi are
symbols from (4.15) with the condition that the gap between xi and xi+1 is ≥ 1 with
strict inequality if

xi is of lower order (color) compared to xi+1, (4.19a)

or
if xi and xi+1 are of the same secondary color. (4.19b)
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Under the transformations given by (4.16), the gap conditions of Type 1 partitions
become the difference conditions governing D(n). Gordon and I then showed that
the generating function of Type 1 partitions is

∑

i, j,k

ai b j ck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ+Tε+Tφ−1(1 − qα(1 − qφ))

(q)α(q)β(q)γ (q)δ(q)ε(q)φ
(4.20)

Thus our three three parameter key identity for the generalization and refinement of
Göllnitz’ theorem is

∑

i, j,k

ai b j ck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ+Tε+Tφ−1(1 − qα(1 − qφ))

(q)α(q)β(q)γ (q)δ(q)ε(q)φ

=
∑

i, j,k

ai b j ckqTi +Tj +Tk

(q)i (q) j (q)k
= (−aq)∞(−bq)∞(−cq)∞ , (4.21)

The partition interpretation of (4.21) that Gordon and I had was:

Theorem 1 Let C(n; i, j, k) denote the number of vector partitions (π1;π2;π3) of
n such that π1 has i distinct parts all in color a, π2 has j distinct parts all in color
b, and π3 has k distinct parts all in color c.

Let D(n;α, β, γ, δ, ε, φ) denote the number of Type 1 partitions of n having α

a-parts, β b-parts, . . . , and φ bc-parts.
Then

C(n; i, j, k) =
∑

i=α+δ+ε

j=β+δ+φ

k=γ+ε+φ

D(n;α, β, γ, δ, ε, φ).

It is to be noted that in Theorem1,

i + j + k = α + β + γ + 2(δ + ε + φ)

and so the parts in secondary color are counted twice. This corresponds to the con-
dition that parts ≡ 0, 1, 3 (mod 6) are counted twice in (4.12).

The proof in [8] that the expression in (4.20) is the generating function of minimal
partitions is quite involved and goes by induction on s = α + β + γ + δ + ε + φ,
the number of parts of the Type-1 partitions, and also appeals to minimal partitions
whose generating functions are given bymultinomial coefficients (see [8] for details).
Thus everything fitted perfectly, but Gordon and I had a problem: we could not prove
the key identity (4.21). This is where Andrews entered into the picture. The story of
how he proved (4.21) is described in Part 1. His ingenious proof of the remarkable
key identity (4.21) relied on the Watson’s q-analogue of Whipple’s transformation
and the 6ψ6 summation of Bailey. For the proof of (4.21), we refer the reader to [8].



62 K. Alladi

Let me just say, that there is no one in the world who can match Andrews’ power in
proving multi-variable q-hypergeometric identities!

One of the great advantages of the method of weighted words is that it provides
a key identity for a partition theorem at the base level, and from this one can extract
several partition theorems by suitable dilations and translations. I investigated in
detail a variety of partition theorems that emerge from (4.21) (see [1, 2]), but will
report here only two major developments that involved Andrews.

As noted earlier, Göllnitz’ theorem pertains to the dilation q �→ q6 in (4.21), and
so I wanted to investigate the effect under the transformations

(dilation) q �→ q3, (4.22a)

and
(translations) a �→ aq−2, b �→ bq−1, c �→ c. (4.22b)

In this case the product in (4.21) becomes

∞∏

m=1

(1 + aq3m−2)(1 + bq3m−1)(1 + q3m),

which is the three parameter generating function of partitions into distinct parts, and
therefore is very interesting. The dilation q �→ q6 converts the six colors a, b, · · · , bc
into the six different residue classes mod 6, and under the dilation in (4.22a), one gets
partitions into parts that differ by ≥ 3 but these partitions have to be counted with a
weight because each positive integer ≥ 3 occurs in two colors - one primary and one
secondary. Twomajor consequences of this weighted partition identity were (i) a new
proof of Jacobi’s triple product identity for theta functions, and (ii) a combinatorial
proof of a variant of Göllnitz’ theorem which is equivalent to it. In the course of
identifying this variant, I found a new cubic key identity that represents it, namely

∑

i, j,k

ai b j ck(−c)i (−c) j (− ab
c q)k(−cq)i+ j qTi+ j+k

(q)i (q) j (q)k(−c)i+ j
= (−aq)∞(−bq)∞(−cq)∞.

(4.23)
As in the case of (4.21), I approached Andrews for a proof of (4.23), and he supplied
it in a matter of a few days utilizing Jackson’s q-analogue of Dougall’s summation.
This led to our second joint paper [3]. While (4.23) is quite deep, it is simpler in
structure compared to (4.21).

Next I investigated the combinatorial consequences of (4.21) under the

(dilation) q �→ q4, (4.24a)

but here there are four possible translations depending on which residue class mod-
ulo 4 one chooses to omit for the primary color. For example, the translations



My Association and Collaboration with George Andrews 63

a �→ aq−3, b �→ bq−1, c �→ cq−3, (4.24b)

omits the residue class 0 (mod 4) for the primary colors, and there are three other
important dilations. Some very interesting weighted partition identities emerge (see
[2]), but I focused on the translations in (4.24b) owing to the symmetry. This led me
to the following quartic key identity:

∑

i, j,k,


ai+
b j ck+
qTi+ j+k+
+T

(− bc

a

)
i

(
− abq

c

)

k

(q)i (q) j (q)k(q)


(1 + bc
a q2i−1)

(1 + bc
a qi−1)

= (−aq)∞(−bq)∞(−cq)∞,

(4.25)

Once again, I approachedAndrews for a proof of (4.25), and he supplied it using Jack-
son’s q-analogue of Dougall’s summation. This led to my third paper with Andrews
[4].

When Göllnitz proved his theorem in 1967, it was viewed as a next level result
beyond Schur’s theorem because the two residue classes 1, 2 (mod 3) for S(n) in
Schur’s Theorem are replaced by three residue classes 2, 4, 5 (mod 6) for C(n) in
Göllnitz’ theorem. Apart from this, it is not clear why Göllnitz’ theorem can be
considered as an extension of Schur’s. But then, by our method of weighted words,
one sees exactly how our generalized Göllnitz Theorem1 is an extension of Schur’s
to the next level, because the key identity (4.5) for Schur’s theorem is simply the
special case c = 0 in the key identity (4.21) for Göllnitz’ theorem.

So if Göllnitz’ theorem is the “next level” result beyond Schur’s theorem, why is it
so much more difficult to prove? One reason for this is because in Göllnitz’ theorem,
when expanding the product in (4.21), we consider only the primary and secondary
colors in the series and omit the ternary color abc. Actually, as early as 1968 and
69, Andrews [11, 12], had obtained two infinite hierarchies of partition theorems
to moduli 2k − 1 when k ≥ 2, where he starts with k residue classes (mod 2k − 1)
and considers the complete set of residue classes (mod 2k − 1) for the difference
conditions. We now describe his results.

For a given integer r ≥ 2, let a1, a2, . . . , ar be r distinct positive integers such
that

k−1∑

i=1

ai < ak, 1 ≤ k ≤ r. (4.26)

Condition (4.26) ensures that the 2r − 1 sums
∑

εi ai , where εi = 0 or 1, not all εi =
0, are all distinct. Let these sums in increasing order be denoted by α1, α2, . . . , α2r −1.

Next let N ≥ ∑r
i=1 ai ≥ 2r − 1 be amodulus, and AN denote the set of all positive

integers congruent to some ai (mod N ). Similarly, let A′
N denote the set of all positive

integers congruent to some αi (mod N ) Also let βN (m) denote the least positive
residue of m (mod N ). Finally, if m = α j for some j , let φ(m) denote the number
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of terms appearing in the defining sum of m and ψ(m) the smallest ai appearing in
this sum. Then the first general theorem of Andrews [11] is:

Theorem A1 Let C∗(AN ; n) denote the number of partitions of n into distinct parts
taken from AN .

Let D∗(A′
N ; n) denote the number of partitions of n into parts b1, b2, . . . , bν from

A′
N such that

bi − bi+1 ≥ Nφ(βN (bi+1)) + ψ(βN (bi+1)) − βN (bi+1). (4.27)

Then
C∗(AN ; n) = D∗(A′

N ; n).

To describe the second general theorem of Andrews (1969), let ai , αi and N
be as above. Now let −AN denote the set of all positive integers congruent to
some −ai (mod N ), and −A′

N the set of all positive integers congruent to some
−αi (mod N ). The quantities βN (m), φ(m), ψ(m) are also as above. We then have
(Andrews [12]):

Theorem A2 Let C(−AN ; n) denote the number of partitions of n into distinct parts
taken from −AN .

Let D(−A′
N ; n) denote the number of partitions of n into parts b1, b2, . . . , bν ,

taken from −A′
N such that

bi − bi+1 ≥ Nφ(βN (−bi )) + ψ(βN (−bi )) − βN (−bi ) (4.28)

and also
bν ≥ N (φ(βN (−bs) − 1)).

Then
C(−AN ; n) = D(−A′

N ; n).

When r = 2, a1 = 1, a2 = 2, N = 3 = 2r − 1, TheoremsA1 andA2both become
TheoremS. Thus the two hierarchies emanate from TheoremS, and it is only when
r = 2 that the hierarchies coincide. ThusTheoremS is its owndual. Conditions (4.27)
and (4.28) can be understood better by classifying bi+1 (in TheoremA1) and bi (in
TheoremA2) in terms of their residue classes (mod N ). In particular, with r = 3,
a1 = 1, a2, a3 = 4 and N = 7 = 23 − 1, TheoremsA1 and A2 yield the following
corollaries.

Corollary 1 Let C∗(n) denote the number of partitions of n into distinct parts ≡ 1,
2 or 4 (mod 7).

Let D∗(n) denote the number of partitions of n in the form b1 + b2 + · · ·ν such
that bi − bi+1 ≥ 7, 7, 12, 7, 10, 10 or 15 if bi+1 ≡ 1, 2, 3, 4, 5, 6 or 7 (mod 7). Then

C∗(n) = D∗(n).
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Corollary 2 Let C(n) denote the number of partitions of n into distinct parts ≡ 3,
5 or 6 (mod 7).

Let D(n) denote the number of partitions of n in the form b1 + b2 + · · · + bν such
that bi − bi+1 ≥ 10, 10, 7, 12, 7, 7 or 15 if bi ≡ 8, 9, 3, 11, 5, 6 or 14 (mod 7) and
bν 
= 1, 2, 4 or 7. Then

C(n) = D(n).

Andrews’ proofs of TheoremsA1 and A2 are extensions of his proof [11] of
TheoremS and not as difficult as the proof of Göllnitz’ theorem. During the 1998
conference in Maratea, Italy, for Andrews’ 60-th birthday organized by Dominique
Foata, I gave a talk outlining a method of weighted words approach generalization
of TheoremsA1 and A2. Dominique Foata then asked whether there is a hypergeo-
metric key identity that corresponds to this generalization. Even though the proofs
of TheoremsA1 and A2 are simpler compared to the the proof of TheoremG, no
hypergeometric key identity has yet been found to represent the Andrews hierarchies
when k ≥ 3.

In view of the fact that with a complete set of alphabets one gets an infinite
hierarchy of theorems, Andrews raised as a problem in his CBMS Lectures, whether
there exists a partition theorem beyond Göllnitz’ theorem in the same manner as
Göllnitz’ theorem goes beyond Schur. In the language of the method of weighted
words, this is the same as askingwhether there exists a partition theorem startingwith
four primary colors a, b, c, d and using only a proper subset of the complete alphabet
of 15 colors, that will yield Göllnitz’ theorem when we set the parameter d = 0. The
answer to this difficult problem was found by Alladi–Andrews–Berkovich in 2000,
by noticing that ALL ternary colors have to be dropped but the quaternary color abcd
needs to be retained. This led to a remarkable identity in four parameters a, b, c, d
that went beyond (4.21). Our paper [7] describes the ideas behind the construction
of this four parameter identity and provides the proof as well. I just mention here a
striking (mod 15) identity that emerges from this four parameter q-hypergeometric
identity:

Theorem 1* Let P(n) denote the number of partitions of n into distinct parts ≡
−23,−22,−21,−20 (mod 15).

Let G(n) denote the number of partitions of n into parts 
≡ 20, 21, 22, 23 (mod 15),
such that the difference between the parts is ≥ 15, with equality only if a part is
≡ −23,−22,−21,−20 (mod 15), parts which are ≡ ±20,±21,±22,±23 (mod 15)
are > 15, the difference between the multiples of 15 is ≥ 60, and the smallest multiple
of 15 is {

≥ 30 + 30τ, if 7 is a part, and

≥ 45 + 30τ, otherwise,

where τ is number of non–multiples of 15 in the partition. Then

G(n) = P(n).
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One aspect of Göllnitz’ TheoremG that escaped attention was whether it had
a dual in the sense that TheoremsA1 and A2 can be considered as duals. More
precisely, the residue classes of Corollary1 that constitute the primary colors are
1, 2, 4 (mod 7), whereas the residue classes that constitute the primary colors
in Corollary2 are −1,−2,−4 (mod 7). Now one can view 2, 4, 5 (mod 6) as
−1,−2,−4 (mod 6). So the question is whether there is a dual result to TheoremG
starting with 1, 2, 4 (mod 6). Andrews found such a theorem, namely:

Theorem A Let B∗(n) denote the number of partitions of n into parts ≡ 1, 7, or
10 (mod 12).

Let C∗(n) denote the number of partitions of n into distinct parts ≡ 1, 2, or
4 (mod 6).

Let D∗(n) denote the number of partitions of n into parts that differ by at least 6,
where the inequality is strict if the larger part is ≡ 0, 3, or 5 (mod 6), with the
exception that 6 + 1 may appear in the partition. Then

B∗(n) = C∗(n) = D∗(n).

Andrews provided a proof of TheoremA very similar to his proof of TheoremG
in [13]. My role then was to construct a key identity that represented this dual, which
I did. This key identity for the dual, although different from (4.21), is equivalent to
it. This led to our most recent joint paper [5].

I conclude by describing my joint paper with Andrews on the Capparelli partition
theorems.

In fundamental work [19, 20], Lepowsky andWilson gave a Lie theoretic proof of
the Rogers–Ramanujan identities and in that process showed howR–R type identities
arise in the study of vertex operators in Lie algebras. Using vertex operator theory,
Stefano Capparelli, a Ph.D. student of Lepowsky in 1992, “discovered” two new
partition results which he could not prove and so he stated them as conjectures:

Conjecture C1 Let C∗(n) denote the number of partitions of n into parts ≡ ±2,
±3 (mod 12).

Let D(n) denote the number of partitions of n into parts > 1 with minimal dif-
ference 2, where the difference is ≥ 4 unless consecutive parts are both multiples of
3 or add up to a multiple of 6. Then

C∗(n) = D(n).

He had a second partition result, ConjectureC2, which we do not state here
because the conditions are more complicated; also that is not essential to what we
will describe here.

As mentioned in Part I, Lepowsky stated ConjectureC1 on the opening day of the
Rademacher Centenary Conference at Penn State, and by the time that conference
ended, Andrews had a proof using q-recurrences (see [16]).

The first thing I did on seeing ConjectureC1 was to replace C∗(n) by C(n), the
number of partitions of n into distinct parts ≡ 2, 3, 4 or 6 (mod 6), and to note that
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C(n) = C∗(n) (4.29)

This is because by Euler’s trick

∞∑

n=0

C∗(n)qn = 1

(q2; q12)∞(q3; q12)∞(q9; q12)∞(q10; q12)∞

= (−q2; q6)∞(−q4; q6)∞(−q3; q3)∞ =
∞∑

n=0

C(n)qn .

(4.30)

One reason for replacingC∗(n) byC(n) is that the equality in (4.29) can be refined.
Another reason is that ConjectureC2 can be more elegantly stated by replacing C(n)

by the function C ′(n) which enumerates the number of partitions into distinct parts
≡ 1, 3, 5, or 6 (mod 6).

The refinement of the Capparelli ConjectureC1 that Andrews, Gordon and I [9]
proved was:

Theorem 2 Let C(n; i, j, k) denote the number of partitions counted by C(n) with
the additional restriction that there are precisely i parts ≡ 4 (mod 6), j parts ≡
2 (mod 6), and of those ≡ 0 (mod 3), exactly k are > 3(i + j).

Let D(n; i, j, k) denote the number of partitions counted by D(n) with the addi-
tional restriction that there are precisely i parts ≡ 1 (mod 3), j parts ≡ 2 (mod 3),
and k parts ≡ 0 (mod 3). Then

C(n; i, j, k) = D(n; i, j, k).

To establish Theorem2, we put it in the context of the method of weighted words.
More precisely, let the integer 1 occur in two colors a and c and let integers ≥ 2
occur in three colors a, b and c. As before, the symbols a j , b j and c j represent the
integer j in colors a, b and c respectively. To discuss partitions the ordering of the
symbols we used is

a1 < b2 < c1 < a2 < b3 < c2 < a3 < b4 < c3 < · · · . (4.31)

The Capparelli problem corresponds to the transformations

a j �→ 3 j − 2, b j �→ 3 j − 4, c j �→ 3 j, (4.32)

in which case the inequalities in (4.31) become

1 < 2 < 3 < 4 < 5 < · · · ,

the natural ordering among the positive integers.With this wewere able to generalize
and refine Theorem2 as follows:
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Theorem 3 Let K (n; i, j, k) denote the number of vector partitions of n in the form
(π1, π2, π3) such that π1 has distinct even a-parts, π2 has distinct even b-parts, and
π3 has distinct c-parts such that ν(π1) = i , ν(π2) = j , and the number of parts of
π3 which are > i + j is k.

Let G(n; i, j, k) denote the number of partitions (words) of n into symbols a j , b j ,
c j each > a1, such that the gap between consecutive symbols is given by the matrix
below:

a b c
a 2 2 1
b 0 2 0
c 2 3 1

Then
K (n; i, j, k) = G(n; i, j, k).

Note. The matrix above is to read row-wise. Thus if a j is a part of the partition, and
the next larger part has color b, then its weight (= subscript) must be > j + 2.

In [9] we gave a combinatorial proof of Theorem2 by using some ideas of Bres-
soud, and another proof by first showing that it is equivalent to the following key
identity

∑

i, j,k,n

K (n; i, j, k)ai b j ckqn =
∑

i, j

ai b j q2Ti +2Tj (−q)i+ j (−cqi+ j+1)∞
(q2; q2)i (q2; q2) j

=
∑

i, j,k,n

G(n; i, j, k)ai b j ckqn

=
∑

i, j,k

ai b j ckq2Ti +2Tj +Tk+(i+ j)k

(q)i+ j+k

[
i + j + k
i + j, k

]

q

[
i + j
i, j

]

q2

,

(4.33)

and then proving this identity.
The main difficulty in (4.33) was to show that the series on the right is the gen-

erating function of partitions with gap conditions given by the entries in the above
table. This required the study of minimal partitions having a part in a specified color
as the smallest part. Once the generating function of the G(n; i, j, k) was shown to
be the series on the right in (4.29), it was not difficult to establish the equality of this
with the series on the left. If we take c = 1, then the generating function on the left
in (4.33) becomes a product, because

(−q)∞
∑

i, j,k

ai b j q2Ti +2Tj

(q2; q2)i (q2; q2) j
= (−q)∞(−aq2; q2)∞(−bq2; q2)∞. (4.34)

In (4.30) if we replace q �→ q3, a �→ q−2, b �→ q−4, we get
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∞∏

j=0

(1 + q6 j−2)(1 + q6 j−4)(1 + q3 j ) =
∞∑

n=0

C(n)qn,

and so Capparelli’s conjecture follows.
I could say so much more about Andrews’ work on partitions, q-series and

Ramanujan, but here I chose to focus on an aspect of our joint work that shows
that in manipulating q-hypergeometric series, he has no match in our generation.
Even though he towers head and shoulders above the rest in the world of partitions,
q-series and Ramanujan, he is a perfect gentleman always willing to help. It is a
pleasure and a privilege for me to be his friend and collaborator.

Acknowledgements I thank the organizers of the Conference on Lattice Paths Combinatorics,
especially Alan Krinik, not only to have invited me to speak in a technical session, but also to have
given me the role as Banquet Speaker. I am also grateful to Christian Krattenthaler for a very careful
reading of the manuscript and for help with the Latex file of this paper.
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A Refinement of the Alladi–Schur
Theorem

George E. Andrews

Abstract K. Alladi first observed a variant of I. Schur’s 1926 partition theorem.
Namely, the number of partitions of n in which all parts are odd and none appears
more than twice equals the number of partitions of n in which all parts differ by at
least 3 and more than 3 if one of the parts is a multiple of 3. In this paper, we refine
this result to one that counts the number of parts in the relevant partitions.

Keywords Partition identities · Schur’s theorem
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1 Introduction

In 1926, I. Schur [7] proved the following result:

Theorem 5.1 Let A(n) denote the number of partitions of n into parts congruent to
±1 (mod 6). Let B(n) denote the number of partitions of n into distinct nonmultiples
of 3. Let D(n) denote the number of partitions of n of the form b1 + b2 + · · · + bs
where bi − bi+1 ≥ 3 with strict inequality if 3|bi . Then

A(n) = B(n) = D(n).

K. Alladi [1] has pointed out (cf. [4, p. 46, Eq. (1.3)]) that if we define C(n) to
be the number of partitions of n into odd parts with none appearing more than twice,
then also

C(n) = D(n).
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This follows immediately from the fact that

∞∑

n=0

C(n)qn =
∞∏

n=1

(
1 + q2n−1 + q4n−2

)

=
∞∏

n=1

(1 − q6n−3)

(1 − q2n−1)

=
∞∏

n=1

(1 − q6n−3)

(1 − q6n−5)(1 − q6n−3)(1 − q6n−1)

=
∞∏

n=1

1

(1 − q6n−5)(1 − q6n−1)

=
∞∑

n=0

A(n)qn =
∞∑

n=0

D(n)qn.

Rather surprisingly the following refinement has been overlooked:

Theorem 5.2 Let C(m, n) denote the number of partitions of n into m parts, all odd
and none appearing more than twice. Let D(m, n) denote the number of partitions
of n into parts of the type enumerated by D(n)with the added condition that the total
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number of parts plus the number of even parts is m (i.e., m is the weighted count of
parts where each even part is counted twice). Then C(m, n) = D(m, n).

For example C(4, 16) = 6 with the relevant partitions being 11 + 3 + 1 + 1,
9 + 5 + 1 + 1, 9 + 3 + 3 + 1, 7 + 7 + 1 + 1, 7 + 5 + 3 + 1, 5 + 5 + 3 + 3 while
D(4, 16) = 6 with the relevant partitions being 14 + 2, 12 + 4, 11 + 4 + 1, 10 + 6,
10 + 5 + 1, 9 + 5 + 2.

The above theorem is analogous to W. Gleissberg’s comparable refinement of the
assertion that B(n) = D(n) [5], and the proof is analogous to the proof ofGleissberg’s
theorem given in [2].

2 Proof of Theorem 5.2

We define dN (x, q) = dN (x) to be the generating function for partitions of the type
enumerated by D(m, n) with the added condition that all parts be ≤ N .

We also define

ε(n) =
{
1, if n is odd,

2, if n is even.

Then for n ≥ 0

d3n(x) = d3n−1(x) + xε(3n)q3nd3n−4(x), (5.1)

d3n+1(x) = d3n(x) + xε(3n+1)q3n+1d3n−2(x), (5.2)

d3n+2(x) = d3n+1(x) + xε(3n+2)q3n+2d3n−1(x), (5.3)

with the initial condition d−1(x) = d−2(x) = 1, d−4(x) = 0.
In preparation for the essential functional equations needed to prove Theorem 5.2,

we note that by (5.3)

d3n+1(x) = d3n+2(x) − xε(3n+2)q3n+2d3n−1(x). (5.4)

Thus substituting (5.1) and (5.4) (as well as (5.4) with n replaced by n − 1) into
(5.2), we find

d3n+2(x) = (
1 + xε(3n+1)q3n+1 + xε(3n+2)q3n+2

)
d3n−1(x)

+ (
xε(3n)q3n − xε(3n+1)+ε(3n−1)q6n

)
d3n−4(x). (5.5)

Consequently

d6n+2(x) = (
1 + xq6n+1 + x2q6n+2) d6n−1(x) + (

x2q6n − x2q12n) d6n−4(x),
(5.6)
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and

d6n−1(x) = (
1 + x2q6n−2 + xq6n−1

)
d6n−4(x) + (

xq6n−3 − x4q12n−6
)
d6n−7(x).

(5.7)

Lemma 5.1 For n ≥ 1,

d6n+2(x) = (
1 + xq + x2q2) d6n−1(xq

2), (5.8)

d6n−1(x) = (
1 + xq + x2q2

) {
d6n−4(xq

2) + xq6n−1(1 − qx)d6n−7(xq
2)

}
, (5.9)

where d−1(x) is defined to be 1.

proof We define

F(n) = d6n+2(x) −
(
1 + xq + x2q2

)
d6n−1(xq

2), (5.10)

G(n) = d6n−1(x) −
(
1 + xq + x2q2

) {
d6n−4(xq

2) + xq6n−1(1 − qx)d6n−7(xq
2)

}
. (5.11)

To prove (5.8) and (5.9) we need only show that F(n) = G(n) = 0 for each n ≥ 1.
In light of the fact that

d2(x) = 1 + xq + x2q2,

d5(x) = 1 + xq + x2q2 + xq3 + x2q4 + xq5 + x3q5 + x2q6 + x3q7

= (1 + xq + x2q2){d2(xq2) + xq5(1 − xq)},

d8(x) = (1 + xq + x2q2)
(
1 + xq3 + xq5 + x2q6 + xq7

+ x2q8 + x2q10 + x3q11 + x3q13)

= (
1 + xq + x2q2

)
d5(xq

2),

we see that
F(1) = G(1) = 0.

For simplicity in the remainder of the proof, we define

λ(x) = 1 + xq + x2q2.

We now replace x by xq2 in (5.7) then multiply both sides of the resulting identity
by λ(x) and subtract from (5.6). The resulting identity simplifies to the following:

F(n) = (
1 + xq6n+1 + x2q6n+2

)
G(n) + x2q6n

(
1 − q6n

)
F(n − 1). (5.12)
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We also require a second recurrence now for G(n). We begin with (5.11):

G(n) = d6n−1(x) − λ(x)d6n−4(xq
2) − λ(x)q6n−1x (1 − xq) d6n−7(xq

2)

=
(
1 + x2q6n−2 + xq6n−1

)
d6n−4(x) +

(
xq6n−3 − x4q12n−6

)
d6n−7(x)

−
(
1 + xq6n−3 + xq6n−1

)
λ(x)d6n−7(xq

2)

−
(
x2q6n−2 − x2q12n−8

)
λ(x)d6n−10(xq

2)

=
(
1 + xq6n−1 + x2q6n−2

)
F(n − 1) +

(
−xq6n−3 + x2q6n−2

)
λ(x)d6n−7(xq

2)

+
(
xq6n−3 − x4q12n−6

)
d6n−7(x) −

(
x2q6n−2 − x2q12n−8

)
λ(x)d6n−10(xq

2)

=
(
1 + xq6n−1 + x2q6n−2

)
F(n − 1)

+
(
−xq6n−3 + x2q6n−2

)
λ(x){

(
1 + x2q6n−4 + xq6n−5

)
d6n−10(xq

2)

+
(
xq6n−7 − x4q12n−10

)
d6n−13(xq

2)}
+

(
xq6n−3 − x4q12n−6

)
d6n−7(x) −

(
x2q6n−2 − x2q12n−8

)
λ(x)d6n−10(xq

2)

(by (5.7))

=
(
1 + xq6n−1 + x2q6n−2

)
F(n − 1)

+ λ(x)d6n−10(xq
2)

(
−xq6n−3 + x4q12n−6

)
+

(
xq6n−3 − x4q12n−6

)
d6n−7(x)

+
(
−xq6n−3 + x2q6n−2

) (
xq6n−7 + x4q12n−10

)
λ(x)d6n−13(xq

2)

=
(
1 + xq6n−1 + x2q6n−2

)
F(n − 1)

+
(
xq6n−3 − x4q12n−6

) (
d6n−7(x) − λ(x)d6n−10(xq

2)
)

+ q−4λ(x)
(
xq6n−3 − x4q12n−6

) (
−xq6n−3(1 − xq)d6n−13(xq

2)
)

=
(
1 + xq6n−1 + x2q6n−2

)
F(n − 1)

+
(
xq6n−3 − x4q12n−6

)
{d6n−7(x) − λ(x)d6n−10(xq

2)

− xq6n−7λ(x)(1 − xq)d6n−13(xq
2)}.

Finally we see that the expression inside curly brackets is actually G(n − 1). Con-
sequently,

G(n) = (
1 + xq6n−1 + x2q6n−2) F(n − 1) + (

xq6n−3 − x4q12n−6)G(n − 1).
(5.13)

Finally the initial conditions F(1) = G(1) = 0 together with the recurrences
(5.12) and (5.13) imply by mathematical induction that F(n) = G(n) = 0 for all
n ≥ 1, and this fact, as observed earlier, proves the lemma.
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Lemma 5.2 We have

lim
n→∞ dn(x) =

∞∏

n=1

(
1 + xq2n−1 + x2q4n−2

)
. (5.14)

proof We note that limn→∞ dn(x) is the generating function for all the partitions
defined in the first paragraph of Sect. 2. Consequently it is dominated by the gener-
ating function

∞∏

n=1

1

(1 − xq2n−1)(1 − x2q2n)
,

which is convergent for |q| < 1, |x | < 1
|q| .

Hence, defining
An(x, q) = lim

n→∞ dn(x),

then A(x, q) is absolutely convergent provided |q| < 1 and |x | < 1
|q| .

Consequently, we have

A(x, q) = lim
n→∞ dn(x)

= lim
n→∞ d6n+2(x)

= lim
n→∞

(
1 + xq + x2q2) d6n−1(xq

2) (by Lemma 5.1)

= (
1 + xq + x2q2

)
A(xq2, q). (5.15)

Iterating (5.15) we see that

A(x, q) = A(0, q)

∞∏

n=1

(
1 + xq2n−1 + x2q4n−2

)

=
∞∏

n=1

(
1 + xq2n−1 + x2q4n−2

)
,

which is the desired result.

It is now an easy matter to deduce Theorem 5.2 from Lemma 5.1:

∑

n,m≥0

C(m, n)xmqn =
∞∏

n=1

(
1 + xq2n−1 + x2q4n−2)

= A(x, q)

= lim
n→∞ dn(x)

=
∑

n,m≥0

D(m, n)xmqn,

(5.16)
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and comparing coefficients in the extremes of (5.16) we establish the assertion in
Theorem 5.2.

3 Conclusion

There are a couple of relevant observations. First, Alladi’s addition to Schur’s Theo-
rem [1] given in Theorem 5.1 merits much closer study than it has received to date.
Indeed, it would appear that it has been referred to in print subsequently only in [4].

Second, the conjectures of Kanade and Russell [6] suggest that the q-difference
equation techniques, as initiated in [2, 3] need to be extended beyond partitions in
which all parts are distinct. Part of the motivation for this paper was to show that
such an extension is feasible.
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Explicit Formulas for Enumeration
of Lattice Paths: Basketball and the
Kernel Method

Cyril Banderier, Christian Krattenthaler, Alan Krinik, Dmitry Kruchinin,
Vladimir Kruchinin, David Nguyen and Michael Wallner

Abstract This article deals with the enumeration of directed lattice walks on the
integers with any finite set of steps, starting at a given altitude j and ending at
a given altitude k, with additional constraints, for example, to never attain alti-
tude 0 in-between. We first discuss the case of walks on the integers with steps
−h, . . . ,−1,+1, . . . ,+h. The case h = 1 is equivalent to the classical Dyck paths,
for which many ways of getting explicit formulas involving Catalan-like numbers
are known. The case h = 2 corresponds to “basketball” walks, which we treat in full
detail. Then, we move on to the more general case of walks with any finite set of
steps, also allowing some weights/probabilities associated with each step. We show
how a method of wide applicability, the so-called kernel method, leads to explicit
formulas for the number of walks of length n, for any h, in terms of nested sums of
binomials. We finally relate some special cases to other combinatorial problems, or
to problems arising in queuing theory.
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Dedicated to Sri Gopal Mohanty,
a pioneer in the field of lattice paths combinatorics,
on the occasion of his 84th birthday.

1 Introduction

While analyzing permutations sortable by a stack, Knuth [34, Ex. 1–4 in Sect. 2.2.1]
showed they were counted by Catalan numbers and were therefore in bijection with
Dyck paths (lattice paths with steps (1, 1) and (1,−1) in the plane integer lattice,
from the origin to some point on the x-axis, and never running below the x-axis
in-between). He used a method to derive the corresponding generating function (see
[34, p. 536ff]) which Flajolet coined “kernel method.” That name stuck among com-
binatorialists, although the method already existed in the folklore of statistics and
statistical physics — without a name. The method was later generalized to enumer-
ation and asymptotic analysis of directed lattice paths with any set of steps, and
many other combinatorial structures enumerated by bivariate or trivariate functional
equations (see, e.g., [6, 8, 19, 20, 26, 27]). We refer to the introduction of [11] for
a more detailed history of the kernel method.

The emphasis in [8] is on asymptotic analysis, for which the derived (exact)
enumeration results serve as a starting point. The latter are in a sense implicit, since
they involve solutions to certain algebraic equations. They are nevertheless perfect
for carrying out singularity analysis, which in the end leads to very precise asymptotic
results.

In general, it is not possible to simplify the exact enumeration results from [8].
However, for models involving special choices of step sets, this is possible. These
potential simplifications are the main focus of our paper.

Such models appear frequently in queuing theory. Indeed, birth and death pro-
cesses and queues, like the one shown in Fig. 1, are naturally encoded by lattice

Fig. 1 A queue corresponding to the basketball walk model
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paths (see [16, 29, 30, 35, 36, 41]). In this article, we solve a problem raised during
the 2015 International Conference on “Lattice Path Combinatorics and Its Applica-
tions”: to find closed-form formulas for the number of walks of length n from 0 to
k for a full family of models similar to Fig. 1. As it turns out, the essential tool to
achieve this goal is indeed the kernel method.

Our paper is organized as follows. We begin with some preliminaries in Sect. 2.
In particular, we introduce the directed lattice paths that we are going to dis-
cuss here, we provide a first glimpse of the kernel method, and we briefly review
the Lagrange–Bürmann inversion formula for the computation of the coefficients
of implicitly defined power series. Section 3 is devoted to (old-time) “basketball
walks,” which, by definition, are directed lattice walks with steps from the set
{(1,−2), (1,−1), (1, 1), (1, 2)} which always stay above the x-axis. (They may be
seen as the evolution of — pre-1984 — basketball games; see the beginning of that
section for a more detailed explanation of the terminology.) We provide exact for-
mulas (often several, not obviously equivalent ones) for generating functions and for
the numbers of walks under various constraints. At the end of Sect. 3, we also briefly
address the asymptotic analysis of the number of these walks. Section 4 then consid-
ers the more general problem of enumerating directed walks where the allowed steps
are of the form (1, i) with −h ≤ i ≤ h (including i = 0 or not). Again, we provide
exact formulas for generating functions — in terms of roots of the so-called kernel
equation — and for numbers of walks — in terms of nested sums of binomials. All
these results are obtained by appropriate combinations of the kernel method with
variants of the Lagrange–Bürmann inversion formula. In the concluding Sect. 5, we
relate basketball walks with other combinatorial objects, namely

• with certain trees coming from option pricing,
• with increasing unary-binary trees which avoid a certain pattern which arose in

work of Riehl [39],
• and with certain Boolean bracketings which appeared in work of Bender and

Williamson [13].

2 The General Setup and Some Preliminaries

In this section, we describe the general setup that we consider in this article. We
use (subclasses of) so-called Łukasiewicz paths as main example(s) which serve to
illustrate this setup. We recall here as well the main tools that we shall use in this
article: the kernel method and the Lagrange–Bürmann inversion formula.

We start with the definition of the lattice paths under consideration.

Definition 6.1 A step set S ⊂ Z
2 is a finite set of vectors

{(x1, y1), (x2, y2), . . . , (xm, ym)}.
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An n-step lattice path or walk is a sequence of vectors v = (v1, v2, . . . , vn), such
that v j is in S . Geometrically, it may be interpreted as a sequence of points ω =
(ω0, ω1, . . . , ωn), where ωi ∈ Z

2, ω0 = (0, 0) (or another starting point), and ωi −
ωi−1 = vi for i = 1, 2, . . . , n. The elements of S are called steps. The length |ω| of
a lattice path is its number n of steps.

The lattice paths can have different additional constraints shown in Table 1.
We restrict our attention to directed paths, which are defined by the fact that, for

each step (x, y) ∈ S , one has x ≥ 0. Moreover, we will focus only on the subclass
of simple paths, where every element in the step set S is of the form (1, b). In other
words, these paths constantly move one step to the right. Thus, they are essentially
one-dimensional objects and can be seen as walks on the integers. We introduce the
abbreviation S = {b1, b2, . . . , bn} in this case. A Łukasiewicz path is a simple path
where its associated step set S is a subset of {−1, 0, 1, . . .} and −1 ∈ S .

Example 6.1 (Dyck paths) A Dyck path is a path constructed from the step set
S = {−1,+1}, which starts at the origin, never passes below the x-axis, and ends
on the x-axis. In other words, Dyck paths are excursions with step setS = {−1,+1}.

The next definition allows to merge the probabilistic point of view (random walks)
and the combinatorial point of view (lattice paths).

Table 1 The four types of walks: unconstrained walks, bridges, meanders, and excursions
ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W ) bridge (B)

constrained
(on N)

meander (M ) excursion (E )
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Definition 6.2 For a given step set S = {s1, s2, . . . , sm}, we define the correspond-
ing system of weights as {p1, p2, . . . , pm}, where p j > 0 is the weight associated
with step s j for j = 1, 2, . . . , m. The weight of a path is defined as the product of
the weights of its individual steps.

Next, we introduce the algebraic structures associated with the previous defini-
tions. The step polynomial of a given step setS is defined as the Laurent polynomial1

P(u) :=
m∑

j=1

p j u
s j .

Let
c = − min

j
s j and d = max

j
s j (6.1)

be the two extreme step sizes and assume throughout that c, d > 0. Note that for
Łukasiewicz paths we have c = 1.

We start with the easy case of unconstrained paths. We define their bivariate
generating function as

W (z, u) =
∞∑

n=0

∞∑

k=−∞
Wn,k znuk,

where Wn,k is the number of unconstrained paths ending after n steps at altitude k.
It is well known and straightforward to derive that

W (z, u) = 1

1 − z P(u)
. (6.2)

We continue with the generating function of meanders:

F(z, u) :=
∞∑

n=0

∞∑

k=0

Fn,k znuk,

where Fn,k is the number of paths ending after n steps at altitude k, and constrained
to be always at altitude ≥ 0 in-between. Note that we are mainly interested in solving
the counting problem, i.e., determining the numbers Fn,k for specific families of paths
(see Table 1). The generating function encodes all information we are interested in.

1By a Laurent polynomial in u we mean a polynomial in u and u−1.
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We decompose F(z, u) in two ways, namely

F(z, u) =
∑

k≥0

Fk(z)u
k =

∑

n≥0

fn(u)zn.

Here, the generating functions Fk(z) enumerate paths ending at altitude k, i.e.,
Fk(z) = ∑

n≥0 Fn,k zn . In particular, the generating function for excursions is equal
to F0(z). On the other hand, the polynomials fn(u) enumerate paths of length n.
The power of u encodes their final altitude. We will use this decomposition for a
step-by-step approach, similar to the one in the case of unconstrained paths.

For the sake of illustration, we show below how the kernel method can be used to
find a closed form for the generating function of a given class of Łukasiewicz paths.

Theorem 6.1 Let S be the step set of a class of Łukasiewicz paths, and let P(u) be
the associated step polynomial. Then, the bivariate generating function of meanders
(where z marks length, and u marks final altitude) and excursions are

F(z, u) = 1 − zF0(z)/u

1 − z P(u)
and F0(z) = u1(z)

z
, (6.3)

respectively, where u1(z) is the unique small solution of the implicit equation

1 − z P(u) = 0,

that is, the unique solution satisfying limz→0 u1(z) = 0.

Proof A meander of length n is either empty, or it is constructed from a meander
of length n − 1 by appending a possible step from S . However, a meander is not
allowed to pass below the x-axis; thus, at altitude 0 it is not allowed to use the step
−1. This translates into the relations

f0(u) = 1, fn+1(u) = {u≥0} (P(u) fn(u)) ,

where {u≥0} is the linear operator extracting all terms in the power series repre-
sentation containing non-negative powers of u. Multiplying both sides of the above
equation by zn+1 and subsequently summing over all n ≥ 0, we obtain the functional
equation

F(z, u) = 1 + z P(u)F(z, u) − z

u
F0(z).

Equivalently,

(1 − z P(u))F(z, u) = 1 − z

u
F0(z) . (6.4)
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We write K (z, u) := 1 − z P(u) and call this factor K (z, u) the kernel. The above
functional equation looks like an underdetermined equation as there are two unknown
functions, namely F(z, u) and F0(z). However, the special structure on the left-hand
side will resolve this problem and leads us to the kernel method.

Using the theory of Newton polygons and Puiseux expansions (cf. [24, Appendix
of Sect. 3]), we know that the kernel equation

1 − z P(u) = 0,

has d + 1 distinct solutions in u (recall that c = 1, see Eq. (6.1)). One of them, say
u1(z), maps 0 to 0. We call this solution the “small branch” of the kernel equation.
It is in modulus smaller than the other d branches. These in turn grow to infinity in
modulus while z approaches 0. Consequently, we call the latter the “large branches”
and denote them by v1(z), v2(z), . . . , vd(z). Inserting the small branch into (6.4) (this
is legitimate as we stay in the integral domain of Puiseux power series: substitution
of the small branch always leads to series having a finite number of terms with
negative exponents, even for intermediate computations), we get F0(z) = u1(z)/z.
This proves our second claim. Using this result, we can solve (6.4) for F(z, u) to get
the first claim.

The formula (6.3) in the previous theorem implies that the number mn of meanders
of length n is directly related to the number en of excursions of length n via

mn = P(1)n −
n−1∑

k=0

P(1)ken−k−1.

In the sequel, we therefore focus on giving explicit expressions for en .

A key tool for finding a formula for the coefficients of power series satisfying
implicit equations is the Lagrange inversion formula [37], independently discovered
in a slightly extended form by Bürmann [22] (see also [38]). In the statement of the
theorem and also later, we use the coefficient extractor [zn]F(z) := fn for a power
series F(z) = ∑

fnzn .

Theorem 6.2 (Lagrange–Bürmann inversion formula) Let F(z) be a formal power
series which satisfies F(z) = zφ(F(z)), where φ(z) is a power series with φ(0) �= 0.
Then, for any Laurent2 series H(z) and for all non-zero integers n, we have

[zn]H(F(z)) = 1

n
[zn−1]H ′(z)φn(z) .

Proof See [28, Chap. A.6] or [49, Theorem 5.4.2].

2Here, by Laurent series we mean a series of the form H(z) = ∑
n≥a Hn zn for some (possibly

negative) integer a.
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Table 2 Closed-form formulas for some famous families of lattice paths

Name and the associated step
polynomial P(u)

Number en of excursions of length n

Dyck paths P(u) = 1
u + u e2n = 1

n + 1

(
2n

n

)

Motzkin paths
P(u) = 1

u + 1 + u en = 1

n + 1


 n+1
2 �∑

k=0

(
n + 1

k

)(
n + 1 − k

k − 1

)

Weighted Motzkin paths
P(u) = p−1

u + p0 + p1u en = 1

n + 1


 n+1
2 �∑

k=0

(
n + 1

k

)(
n + 1 − k

k − 1

)
(p1 p−1)

k−1 pn+2−2k
0

Bicolored Motzkin paths
P(u) = 1

u + 2 + u
en+1 = 1

n + 1

(
2n

n

)

Łukasiewicz paths
P(u) = 1

u + 1 + u + u2 + · · · en = 1

n + 1

(
2n

n

)

d-ary trees P(u) = 1
u + ud−1

edn+1 = 1

(d − 1)n + 1

(
dn

n

)

{1, 2, . . . , d}-ary trees
P(u) = 1

u + 1 + · · · + ud−1 en = 1

n

� n−1
d+1 
∑

j=0

(−1) j
(

n

j

)(
2n − 2 − j (d + 1)

n − 1

)

{d, d + 1}-ary trees
P(u) = 1

u + ud−1 + ud en = 1

n

� n−1
d 
∑

k=0

(
n

k

)(
k

n − 1 − dk

)

Table 2 presents several applications of this Lagrange inversion formula to
lattice path enumeration. It leads to the Catalan numbers for Dyck paths, and to
the Motzkin numbers for the Motzkin paths, i.e., excursions associated with the step
set S = {−1, 0,+1}. They are two of the most ubiquitous number sequences in
combinatorics, see [49, Ex. 6.19, 6.25, and 6.38] for more information. Table 2 also
contains an example of weighted paths (namely weighted Motzkin paths and the
special case of bicolored Motzkin paths), as well as an example with an infinite set
of steps (namely the Łukasiewicz paths with all possible steps allowed).

All of the examples in Table 2 are intimately related to families of trees (as
suggested by some of the namings in the table). In order to explain this, we recall
that an ordered tree is a rooted tree for which an ordering of the children is specified
for each vertex, and for which its arity (i.e., the outdegree, the number of children
of each node) is restricted to be in a subset A of N.3 If A = {0, 2}, this leads to
the classical binary trees counted by the Catalan numbers; if A = {0, 1, 2}, this
leads to the unary-binary trees counted by Motzkin numbers, and if A = N, this
gives the ordered trees (also called planted plane trees), which are also counted by
Catalan numbers. Any ordered tree can be traversed starting from the root in prefix
order: One starts from the root and proceeds depth-first and left-to-right. The listing
of the outdegrees of nodes in prefix order is called the preorder degree sequence.

3In this article, by convention 0 ∈ N.
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Fig. 2 The bijection between trees and Łukasiewicz paths. The preorder degree sequence
(3, 1, 0, 3, 0, 0, 1, 0, 1, 2, 0, 0) uniquely characterizes the tree and gives the corresponding
Łukasiewicz path with step sequence (2, 0,−1, 2,−1,−1,−1, 0,−1, 0, 1,−1,−1). Dropping the
last −1 step yields an excursion

This characterizes a tree unambiguously, see Fig. 2, and it is best summarized by the
following folklore proposition.

Proposition 6.1 (Łukasiewicz correspondence) Ordered trees are in bijection with
Łukasiewicz excursions.

Proof Given an ordered tree with n nodes, the preorder sequence can be interpreted
as a lattice path. Let (σ j )

n
j=1 be a preorder degree sequence. With each σ j we associate

a step (1, σ j − 1) ∈ N × Z. Note that, as the minimal degree is 0, our smallest step
is −1. Starting at the origin, we concatenate these steps for j = 1, 2, . . . , n − 1,
ignoring the last step. In this way, we obtain a Łukasiewicz excursion of length
n − 1.

As one can see, the combinatorics of the Łukasiewicz paths is well understood (see
e.g. [28, 48]), and the true challenge is to analyze lattice paths with other negative
steps than just −1. The smallest non-Łukasiewicz cases are the Duchon lattice paths
(steps S = {−2,+3}), and the Knuth lattice paths (steps S = {−2,+5}). Their
enumerative and asymptotic properties are the subject of another article in this vol-
ume [11]. For these two families of lattice paths, the asymptotics are tricky, because
the generating functions involve several dominant singularities. In the next sections,
we concentrate on closed formulas which appear for many other non-Łukasiewicz
cases.

3 (Old-time) Basketball Walks: Steps
S = {−2,−1,+1,+2}

We now turn our attention to a class of lattice paths (lattice walks) with rich com-
binatorial properties: the basketball walks. They are constructed from the step
set S = {−2,−1,+1,+2}. This terminology was introduced by Arvind Ayyer
and Doron Zeilberger [5], and these walks were later also considered by Mireille
Bousquet-Mélou [18]. They can be seen as the evolution of the score during a(n
old-time) basketball game (see Fig. 3).
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Fig. 3 Since its creation in 1892 by James Naismith (November 6, 1861–November 28, 1939), the
rules of basketball evolved. For example, since 1896, field goals and free throws were counted as
two and one points, respectively. The international rules were changed in 1984 so that a “far” field
goal was now rewarded by 3 points, while “ordinary” field goals remained at 2 points, a free throw
still being worth one point

Ayyer, Zeilberger, and Bousquet-Mélou found interesting results on the shape of
the algebraic equations satisfied by the excursion generating function, and similar
properties when the height of the excursion is bounded. In this article, we analyze
a generalization in which the starting point and the end point of the walks do not
necessarily have altitude 0. Since, in that case, we lose a natural factorization hap-
pening for excursions, we are led to variations of certain parts in the kernel method.
In addition, we are interested in closed-form expressions for the number of walks of
length n. This is complementary to the results in [8] and in [11]. Moreover, contrary
to the previous section, these walks are not Łukasiewicz paths any more. This makes
them harder to analyze (the easy bijection with trees is lost, for example). Despite
all that, the kernel method will strike again, thus illustrating our main motto:

“The kernel method is the method of choice for problems on directed lattice paths!”

3.1 Generating Functions for Positive (Old-time) Basketball
Walks: The Kernel Method

We define positive walks as walks staying strictly above the x-axis, possibly touching
it at the first or last step. Returning to the basketball interpretation, these correspond
to the evolution of basketball scores where one team (the stronger team, the richer
team?) is always ahead of the other team.

Let G j,n,k be the number of such walks running from (0, j) to (n, k), and define
by G j (z, u) the generating function of positive walks starting at (0, j). We write

G j (z, u) :=
∑

n,k≥0

G j,n,k znuk =
∞∑

n=0

g j,n(u)zn =
∞∑

k=0

G j,k(z)u
k .

Similar to Sect. 2, we shall need the polynomial g j,n(u), the generating function
for all walks with n steps, and the series G j,k(z), the generating function for all
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walks ending at altitude k. The bivariate generating function G j (z, u) is analytic for
|z| < 1/P(1) and |u| ≤ 1.

A walk is either the single initial point at altitude j , or a walk followed by a step
not reaching altitude 0 or below. This leads to the functional equation

(1 − z P(u))G j (z, u) = u j − z
(
G j,1(z) + G j,2(z) + G j,1(z)/u

)
, j > 0,

(6.5)
where the step polynomial P(u) is given by

P(u) := u−2 + u−1 + u + u2.

Again, we call the factor 1 − z P(u) on the left-hand side of (6.5) the kernel of the
equation and denote it by K (z, u).

We refer to (6.5) as the fundamental functional equation for G j (z, u). The equation
has a small problem though: This is one equation with three unknowns, namely
G j (z, u), G j,1(z), and G j,2(z)! The idea of the so-called kernel method is to equate
the kernel K (z, u) to 0, thus binding u and z in such a way that the left-hand side
of (6.5) vanishes. This produces two extra equations.

To equate K (z, u) to zero means to put

1 − z P(u) = 0 or equivalently u2 − zu2 P(u) = 0. (6.6)

We call this equation the kernel equation. As an equation of degree 4 in u, it has four
roots. We call the two small roots (i.e., the roots which tend to 0 when z approaches 0)
u1(z) and u2(z).

Then, on the complex plane slit along the negative real axis, we can identify the
small roots u1(z) and u2(z) as

u1(z) = −1

4

⎛

⎝ z − √
4z + 9z2

z
+

√
4 − 6z − 2

√
4z + 9z2

z

⎞

⎠

= √
z + 1

2
z + 1

8
z3/2 + 1

2
z2 + 159

128
z5/2 + O(z3),

u2(z) = −1

4

⎛

⎝ z + √
4z + 9z2

z
−

√
4 − 6z + 2

√
4z + 9z2

z

⎞

⎠

= −√
z + 1

2
z − 1

8
z3/2 + 1

2
z2 − 159

128
z5/2 + O(z3).

Moreover, their Puiseux expansions are related via the following proposition.

Proposition 6.2 (Conjugation principle for two small roots) The small roots u1(z)
and u2(z) of 1 − z P(u) = 0 satisfy

u1(z) =
∑

n≥1

anzn/2 and u2(z) =
∑

n≥1

(−1)nanzn/2 .
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Proof The kernel equation yields

u = X (1 + u + u3 + u4)1/2,

with X = z1/2 or X = −z1/2. Since the above equation possesses a unique formal
power series solution u(X), the claim follows.

By substituting the small roots u1(z) and u2(z) of the kernel equation (6.6) into
the fundamental functional equation (6.5), we see that the left-hand side vanishes.
Subsequently, we solve for G j,1(z) and G j,2(z) and get4

G j,1(z) = −u1u2(u
j
1 − u j

2)

z(u1 − u2)
, j > 0, (6.7)

G j,2(z) = u1u2(u
j
1 − u j

2) + u j+1
1 − u j+1

2

z(u1 − u2)
, j > 0. (6.8)

Substitution in the fundamental functional equation (6.5) then yields

G j (z, u) = u j − z(G j,1(z) + G j,2(z) + G j,1(z)/u)

1 − z P(u)
, j > 0. (6.9)

By means of the kernel method, we have thus derived an explicit expression for
the bivariate generating function G j (z, u) for walks starting at altitude j > 0.

In the following proposition, we summarize our findings so far. In addition, we
express the generating function for walks from altitude j to altitude k (with j, k > 0)
explicitly in terms of the small roots u1(z) and u2(z), and we also cover the special
case j = 0, which offers some nice simplifications.

Proposition 6.3 As before, let G j,k(z) be the generating function for positive bas-
ketball walks with steps −2,−1,+1,+2 starting at altitude j and ending at alti-
tude k. Furthermore, let u1(z) and u2(z) be the small roots of the kernel equation
1 − z P(u) = 0, with P(u) = u−2 + u−1 + u + u2. Then, for j, k > 0, we have

G0,k(z) = uk+1
1 (z) − uk+1

2 (z)

u1(z) − u2(z)
, (6.10)

G j,k(z) = −u1(z)u2(z)

z

j∑

i=0

u j−i+1
1 (z) − u j−i+1

2 (z)

u1(z) − u2(z)

uk−i+1
1 (z) − uk−i+1

2 (z)

u1(z) − u2(z)
, (6.11)

Proof We start with the proof of (6.10). The first step of a walk can only be a step
of size +1 or +2. Thus, removing this first step and shifting the origin, we have

G0,k(z) = z
(
G1,k(z) + G2,k(z)

)
,

4In this article, whenever we thought it could ease the reading, without harming the understanding,
we write u1 for u1(z), or F for F(z), etc.
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where G1,k(z) and G2,k(z) are the generating functions for positive walks running
from altitude 1 to altitude k, respectively, from altitude 2 to altitude k. This decom-
position is illustrated in Fig. 4.

By “time reversal” (due to the symmetry of our step set, i.e., P(u) = P(u−1)),
we also have

G1,k(z) = Gk,1(z), and G2,k(z) = Gk,2(z),

where Gk,1(z) and Gk,2(z) are known from Eqs. (6.7) and (6.8). Now notice that

Gk,2(z) = u1u2(uk
1 − uk

2) + uk+1
1 − uk+1

2

z(u1 − u2)
= u1u2(uk

1 − uk
2)

z(u1 − u2)
+ uk+1

1 − uk+1
2

z(u1 − u2)

= uk+1
1 − uk+1

2

z(u1 − u2)
− Gk,1(z).

This leads directly to (6.10).

For computing G j,k(z) with j, k > 0, we use a first passage decomposition with
respect to minimal altitude of the walk. Combining (6.10) with time reversal, we see

that hm(z) := um+1
1 −um+1

2
u1−u2

is the generating function for basketball walks starting at
altitude m, staying always above the x-axis, but ending on the x-axis. Furthermore,
by (6.7) with j = 1, the series E(z) = − u1u2

z is the generating function for excursions
(allowed to touch the x-axis). Then, the walks from altitude j to altitude k can be
decomposed into three sets, as illustrated by Fig. 5:

1. The walk starts at altitude j and continues until it hits for the first time altitude i
(the lowest altitude of the walk, so 1 ≤ i ≤ j). This part is counted by h j−i (z).

2. The second part is the one from that point to the last time reaching altitude i . In
other words, this part is an excursion on level i counted by E(z).

3. The last part runs from altitude i to altitude j without ever returning to altitude i .
By time reversal, one sees that this is counted by hk−i (z).

Summing over all possible i’s, we get (6.11).

There is an alternative expression for the generating function G j,k(z), which we
present in the next proposition.

Fig. 4 Two different instances of walks counted by G0,1(z) showing the two possible first steps
+1 and +2
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hj−i E hk−i

Fig. 5 The decomposition for G j,k

Proposition 6.4 (Formula for walks from altitude j to altitude k) Let u1(z) and
u2(z) be the small roots of the kernel equation 1 − z P(u) = 0, with P(u) = u−2 +
u−1 + u + u2, and let G j,k(z) be the generating function for positive basketball walks
starting at altitude j and ending at altitude k. Then

G j,k(z) = W j−k + h j (u1, u2)W−k + u1u2h j−1(u1, u2)W−k+1, (6.12)

where

Wi (z) = z

(
u′

1

ui+1
1

+ u′
2

ui+1
2

)

is the generating function of unconstrained walks starting at the origin and ending
at altitude i , and

hi (x1, x2) = xi+1
1 − xi+1

2

x1 − x2

is the complete homogeneous symmetric polynomial of degree i in x1 and x2.

Proof Since G j,k(z) = Gk, j (z), without loss of generality we may assume that j ≤
k. We start with (6.9). Extraction of the coefficient of uk on the left-hand side gives
G j,k(z). As coefficient extraction is linear, we need to find expressions for

[ui ] 1

1 − z P(u)
.

By (6.2), these are the generating functions Wi (z) for unconstrained walks starting
at the origin and ending at altitude i . For basketball walks, we have P(u) = P(u−1),
hence Wi (z) = W−i (z). Using a straightforward contour integral argument, using
Cauchy’s integral formula and the residue theorem, we have

Wi (z) = [ui ] 1

1 − z P(u)
= 1

2π
√−1

∫

C

du

ui+1(1 − z P(u))
= z

(
u′

1(z)

ui+1
1 (z)

+ u′
2(z)

ui+1
2 (z)

)
.
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Thus, we obtain the claimed expression for Wi (z) in terms of the small branches.
Finally, the remaining factors in (6.12) are obtained by simplifications in (6.9).

Thus, by (6.10), walks starting at the origin are given by complete homogeneous
symmetric polynomials in the small branches. In particular, we have

G0,1(z) = u1(z) + u2(z),

G0,2(z) = u2
1(z) + u1(z)u2(z) + u2

2(z). (6.13)

We now derive an explicit expression for G0,1(z) and G0,2(z). Note that, as (6.13)
is not defined on the negative real axis, we apply analytic continuation in order
to derive an expression which is defined for every |z| < 1

4 , which is the radius of
convergence of G0,1(z). The function G0,1(z) is an algebraic function since it is the
sum of two algebraic functions (namely, u1(z) and u2(z)). Using a computer algebra
package, it is easy to derive an algebraic equation for G0,1(z). For example, the
following Maple commands (see [46] for more on these aspects) give the desired
equation:

> AllRoots:=allvalues(solve(1-z*P(u),u)):
> u1:=AllRoots[2]: u2:=AllRoots[3]:
> algeq:=algfuntoalgeq(u1+u2,u(z));

zu4 + 2zu3 + (3z − 1)u2 + (2z − 1)u + z. (6.14)

In particular, G0,1(z) is uniquely determined by the previous equation and the fact
that its expansion at z = 0 is a power series with non-negative coefficients. Solving
this equation, we arrive at an analytic expression for G0,1(z) for |z| < 1/4:

G0,1(z) = −1

2
+ 1

2

√
2 − 3z − 2

√
1 − 4z

z

= z + z2 + 3z3 + 7z4 + 22z5 + 65z6 + 213z7 + · · · . (6.15)

Using a computer algebra package again, we find that G0,2(z) satisfies

z3u4 − 3z2u3 − (z2 − 3z)u2 + (z − 1)u + z = 0. (6.16)

Among its four branches, only one is a power series at z = 0 with non-negative
coefficients, namely

G0,2(z) = 3 − √
1 − 4z −

√
2 + 12z + 2

√
1 − 4z

4z
= z + z2 + 4z3 + 9z4 + 31z5 + 91z6 + 309z7 + · · · . (6.17)
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In order to undertake a small digression on complexity of computation, these
explicit forms are not the fastest way to access the coefficients. A better way is to
take advantage of the theory of holonomic functions (as, e.g., implemented in the
gfun Maple package, see [46]). To begin with, the kernel method gave us an algebraic
equation. Applying the derivative to both sides of this equation and using the obtained
new relations, we are led to a linear differential equation satisfied by the function
G(z) (where we write G(z) instead of G0,1(z) for short):

> diffeq:=algeqtodiffeq(subs(u=G,algeq),
> G(z),G(0)=0):

⎧
⎪⎨

⎪⎩

G(0) = 0,

6 z + 6 + 12 (z + 1) G (z) + 2
(
162 z3 + 66 z2 + z − 3

)
d
dz G (z)

+z (9 z + 4) (4 z − 1) (6 z + 1) d2

dz2 G (z) = 0

Then, extraction of [zn] on both sides of the differential equation yields a linear
recurrence satisfied by the coefficients g(n) of G, namely

> rec:=diffeqtorec(diffeq,G(z),g(n)):

⎧
⎪⎨

⎪⎩

g(0) = 0, g(1) = 1, g(2) = 1 ,

0 = 108 n (2 n + 1) g (n) + 6
(
13 n2 + 35 n + 24

)
g (n + 1)

− (
17 n2 + 49 n + 18

)
g (n + 2) − 2 (2 n + 7) (n + 3) g (n + 3) .

From this recurrence, a binary splitting approach introduced by the Chudnovskys
gives a procedure which surprisingly computes g(n) in only O(

√
n) operations (and

O(n ln n ln(ln n)) bit complexity):

> g:=rectoproc(rec,g(n)):
> g(10ˆ5): #a 6014-digits number computed
> # in only 2 seconds!

The same approach applies to all our directed lattice path models. This approach
is much faster than the naive approach by means of dynamic programming (which
would compute the bivariate generating function and would then extract the desired
G(z) from it: This would cost O(n2) in time and O(n3) in memory).

We just saw how to efficiently compute g(n), for any given value of n, but is
there a closed-form formula holding for all n at once? We now further investigate
this question.
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3.2 How to Get a Closed Form for Coefficients:
Lagrange–Bürmann Inversion

In Sect. 4, we present a closed form for the numbers of lattice walks with step poly-
nomial P(u) = u−h + u−h+1 + · · · + uh−1 + uh , for any h. In the case h = 2 that
we are dealing with in the current section, a nice miracle occurs: A more ad hoc
approach allows one to derive simpler expressions.

3.2.1 Closed Form for Coefficients of G0,1(z)

The generating function G0,1(z) of walks starting at the origin, ending at altitude 1,
and never touching the x-axis, satisfies the algebraic equation (6.14). We rewrite it
in the form

G0,1(z) + G2
0,1(z) = z(1 + G0,1(z) + G2

0,1(z))
2.

Here, substitution of G0,1(z) + G2
0,1(z) by C(z) − 1 gives the striking equation

1 + G0,1(z) + G2
0,1(z) = C(z), (6.18)

where C(z) = 1 + zC(z)2 is the generating function for Catalan numbers. A recur-
sive bijection for this identity was found by Axel Bacher and (independently) by
Jérémie Bettinelli and Éric Fusy (personal communication, see also [14]). It remains
a challenge to find a more direct simple bijection. This identity is the key to get nice
closed-form expressions for the coefficients, via the following variant of Lagrange
inversion.

Lemma 6.1 (Lagrange–Bürmann inversion variant) Let F(z) and H(z) be two
formal power series satisfying the equations

F(z) = zφ(F(z)), H(z) = zψ(H(z)),

where φ(z) and ψ(z) are formal power series such that φ(0) �= 0 and ψ(0) �= 0.
Then,

[zn]H(F(z)) = 1

n

n∑

k=1

([zk−1]ψk(z)
) ([zn−k]φn(z)

)
. (6.19)

Proof By the Lagrange–Bürmann inversion (Theorem 6.2), we have

[zn]H(F(z)) = 1

n
[zn−1]H ′(z)φn(z).
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Now we apply the Cauchy product formula [zm]A(z)B(z) = ∑m
k=0 akbm−k with m =

n − 1, A(z) = H ′(z), and B(z) = φn(z). This leads to

[zn]H(F(z)) = 1

n

n−1∑

k=0

([zk]H ′(z)
) ([zn−1−k]φn(z)

)

= 1

n

n∑

k=1

([zk−1]H ′(z)
) ([zn−k]φn(z)

)
.

This gives Formula (6.19), after observing [zk−1]H ′(z) = k[zk]H(z) = [zk−1]ψk(z) ,

where we used Lagrange–Bürmann inversion again.

Proposition 6.5 The number of basketball walks of length n from the origin to
altitude 1 with steps in S = {−2,−1,+1,+2} and never returning to the x-axis
equals

1

n

n∑

k=1

(−1)k+1

(
2k − 2

k − 1

)(
2n

n − k

)
= 1

n

n∑

i=0

(
n

i

)(
n

2n + 1 − 3i

)
.

Proof Equation (6.18) implies that G0,1(z) = H(C(z) − 1), where H(z) is the func-
tional inverse of the polynomial x2 + x . Thus H(z) = zψ(H(z)), with ψ(z) = 1

1+z .
Furthermore, it is well known that C0(z) := C(z) − 1 satisfies C0(z) = zφ(C0(z))
with φ(z) = (1 + z)2. Hence, Eq. (6.19) yields

[zn]G0,1(z) = 1

n

n∑

k=1

(
[zk−1] 1

(1 + z)k

) ([zn−k](1 + z)2n
)

= 1

n

n∑

k=1

(−1)k+1

(
2k − 2

k − 1

)(
2n

n − k

)
.

The alternative expression without the (−1)k+1 factors comes from Formula (6.13),
to which we apply the Lagrange–Bürmann inversion formula for u1, remembering
that u1 satisfies u2 = zu2 P(u), and that the conjugation property of the small roots
from Proposition 6.2 holds:

[zn]G0,1(z) = [zn](u1(z) + u2(z)) = 2[zn]u1(z) = 1

n

n∑

k=0

(
n

k

)(
n

2n + 1 − 3k

)
.

The last closed-form expression can also be explained via the so-called cycle
lemma (cf. [49, Ex. 5.3.8]). Namely, by (6.2) combined with the factorization u−2 +
u−1 + u + u2 = u−2(1 + u3)(1 + u), the number of unrestricted walks from 0 to 1
in n steps is given by
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Fig. 6 Transforming a walk counted by G0,1(z) into a walk counted by W0,1(z)

[u1zn]W (z, u) = [u1]P(u)n = [u1]
(

(1 + u3)(1 + u)

u2

)n

=
n∑

i=0

(
n

i

)(
n

2n + 1 − 3i

)
.

From the formulas, we see that [zn]G0,1(z) = 1
n [zn]W0,1(z). There exists indeed

a 1-to-n correspondence between walks counted by G0,1(z) and those counted by
W0,1(z). For each walk ω counted by G0,1(z), decompose ω into ω = ω� Bωr where
B is any point in the walk. A new walk ω′ counted by W0,1(z) is constructed by
putting B at the origin and adjoining ω� at the end of ωr , i.e., ω′ = Bωrω�, see
Fig. 6. If ω is of length n, then there are n choices for B. All these walks are different
because there are no walks from altitude 0 to altitude 1 which are the concatenation
of several copies of one and the same walk. (This is not true for walks from altitude 0
to altitude 2. For example, the walk (0, 2, 1, 3, 2) is the concatenation of two copies
of the walk (0, 2, 1).)

Conversely, given a walk τ of length n counted by W0,1(z), we decompose τ into
τ = τ� Bτr , where B is the right-most minimum of τ . Then, τ ′ = Bτrτ� is a walk of
length n counted by G0,1(z).

3.2.2 Closed Form for the Coefficients of G0,2(z)

Recall that, by means of the kernel method, we derived a closed-form expression for
the generating function G0,2(z) in (6.17).

Proposition 6.6 The number of basketball walks of length n from the origin to
altitude 2 with steps in S = {−2,−1,+1,+2} and never returning to the x-axis
equals

1

2n + 1

n+1∑

k=0

(−1)n+k+1

(
2n + 1

n + k

)(
n + 2k − 1

k

)
.

Proof We define the series F(z) by

− 1

F(z)
= G0,2(z) − 1

z
. (6.20)

It is straightforward to see from this equation that F(z) = z + z3 + · · · . The equa-
tion (6.16) translates into the equation
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(F3(z) − zF(z))(1 + F(z)) + z2 = 0

for F(z). We may rewrite this equation in the form

(
F2 − z

2

)2 = z2

4
· 1 − 3F(z)

1 + F(z)
.

Next, we take the square root on both sides. In order to decide the sign, we have to
observe that F2(z) = z2 + · · · , hence

F2(z) − z

2
= − z

2

√
1 − 3F(z)

1 + F(z)
,

or, equivalently, F(z) satisfies F2(z) = zB(F(z)), where

B(z) = 1

2

(
1 −

√
1 − 3z

1 + z

)
.

It is straightforward to verify that B(z) satisfies the equation B(z) = z A(B(z)) with
A(z) = 1

1−z − z, and it is the only power series solution of this equation. Hence, for
n ≥ 1, by (6.20), Lagrange–Bürmann inversion (Theorem 6.2) with H(z) = z−1, we
have

[zn]G0,2(z) = −[zn] 1

F(z)
= 1

n
[zn−1]z−2

(
B(z)

z

)n

= 1

n
[z2n+1]Bn(z).

Now, we apply Lagrange–Bürmann inversion again, this time with F(z) replaced by
B(z), n replaced by 2n + 1, and H(z) = zn . This yields

[zn]G0,2(z) = 1

n(2n + 1)
[z2n]nzn−1 A2n+1(z)

= 1

2n + 1
[zn+1]

(
1

1 − z
− z

)2n+1

.

By applying the binomial theorem, we then obtain

[zn]G0,2(z) = 1

2n + 1
[zn+1]

2n+1∑

k=0

(−1)k+1

(
2n + 1

k

)
z2n+1−k

(
1

1 − z

)k

.



98 C. Banderier et al.

Since (
1

1 − z

)k

=
∑

�≥0

(
k + � − 1

�

)
z� ,

we get

[zn]G0,2(z) = 1

2n + 1
[zn+1]

∑

�≥0

2n+1∑

k=0

(−1)k+1

(
2n + 1

k

)(
k + � − 1

�

)
z2n+1−k+�

= 1

2n + 1

2n+1∑

k=n

(−1)k+1

(
2n + 1

k

)(
2k − n − 1

k − n

)

= 1

2n + 1

n+1∑

k=0

(−1)n+k+1

(
2n + 1

n + k

)(
n + 2k − 1

k

)
,

as desired.

The idea of the above proof was to “build up” a chain of dependencies between
the actual series of interest, G0,2(z), and several auxiliary series, namely the series
F(z), B(z), and A(z), so that repeated application of Lagrange–Bürmann inversion
could be applied to provide an explicit expression for the coefficients of the series
of interest. This raises the question whether this example is just a coincidence, or
whether there exists a general method to transform a power series into a Laurent series
with the same positive part, and a “nice” algebraic expression, allowing multiple
Lagrange–Bürmann inversions to get “nice” closed forms for the coefficients. We
have no answer to this question and therefore leave this to future research.

3.2.3 Closed Form for the Coefficients of Basketball Excursions

Here, we enumerate basketball excursions, that is, basketball walks which start
at the origin, return to altitude 0, and in-between do not pass below the x-axis.
A main difference to the previously considered positive basketball walks is that the
excursions are allowed to touch the x-axis anywhere.

Proposition 6.7 (Enumeration of basketball excursions) The number of basketball
walks with steps in S = {−2,−1,+1,+2} of length n from the origin to altitude 0
never passing below the x-axis is

en := 1

n + 1

n∑

k=0

(−1)n+k
(

2n + 2

n − k

)(
n + 2k + 1

k

)
= 1

n + 1

�n/2
∑

i=0

(
2n + 2

i

)(
n − i − 1

n − 2i

)
.

(6.21)

Remark 6.1 The first few values of the sequence defined by (6.21) are

1, 0, 2, 2, 11, 24, 93, 272, 971, 3194, 11293, 39148, 139687, 497756, . . .
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Proof (of Proposition 6.7) By the kernel method, we know that the generating func-
tion for excursions, E(z) say, is given by E(z) = − u1u2

z , and that it satisfies the
algebraic equation

z4 E4 − (2z3 + z2)E3 + (3z2 + 2z)E2 − (2z + 1)E + 1 = 0 .

Among the branches of this algebraic equation, only one has a power series expansion.
The equation may be rewritten in the form

zE(z) = z

(
1

(1 − zE(z))2 − 2zE(z)

1 − zE(z)
+ z2 E2(z)

)
= z

(
1

1 − zE(z)
− zE(z)

)2
.

This shows that we may apply Lagrange–Bürmann inversion (Theorem 6.2) with
φ(z) = ( 1

1−z − z)2. So we have

[zn]E(z) = 1

n + 1
[zn]φn+1(z) = 1

n + 1
[zn]

(
1

1 − z
− z

)2n+2

= 1

n + 1

n∑

k=0

(−1)n+k

(
2n + 2

n − k

)(
n + 2k + 1

k

)
.

It is possible to get an expression involving only positive summands by making use
of the rewriting φ(z) = (1 + z2

1−z )
2. This leads to (6.21).

The trick used in this proof can in fact be translated into an algorithm of wider
use:

The “Lagrangean scheme” algorithm

input: an algebraic power series (given in terms of its algebraic equation
P(z, F) = 0, plus the first terms of the expansion of F , so that we can
uniquely identify the correct branch of the equation)

output: a “Lagrangean equation” satisfied by F
(i.e., H(za F) = zφ(za F), where za F has valuationa 1.)

way to process: if we assume that H = H1/H2 and φ = φ1/φ2 are
rational functions, then we identify them via an indeterminate coefficient
approach, by substituting the polynomials H1, H2, φ1, φ2 in the equation
P(z, F) = 0.

aThe valuation of a power series
∑

n≥0 fn zn is the least n such that fn �= 0.

This algorithm therefore provides a way to get multiple-binomial-sum represen-
tations. See [17, 25, 50] for other approaches not relying on the algebraic nature
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of F , but designed for the class of functions which can be written as diagonals of
rational functions (these two classes coincide in the bivariate case). For example,
Formula (6.21) for en has the following alternative representation:

(n + 1)en = [tn] diagonal

(
(1 + u)6ut2

1 − (u(u + 1)2t + u(1 + u)4t2)
+ (u + 1)2

)
.

The rational function on the right-hand side has the striking feature that its bivariate
series expansion has only non-negative coefficients. In fact, it is even a bivariate
N-rational function (i.e., a function obtained as iteration of addition, multiplication,
and quasi-inverse,5 starting from polynomials in u and t with positive integer coef-
ficients). Given a multivariate rational function, it is a hard task to write it as an
N-rational expression (an algorithm is known in the univariate case), so some human
computations were needed here to get the above expression.

In fact (and we believe that it was not observed before), these multivariate ratio-
nal functions appearing in the computation of diagonals related to nested sums
of binomials are always N-rational: This follows from the closure properties of
N-rational functions. It is an open question to give a combinatorial interpretation
(in terms of the initial structure counted by the diagonal) of the other diagonals of
this rational function. It is also not easy to extrapolate from this rational function a
general pattern which could appear for more general sets of steps: We shall see in
Sect. 4 which type of formulas generalizes the rich combinatorics that we had for
P(u) = u−2 + u−1 + u + u2.

3.3 How to Derive the Corresponding Asymptotics:
Singularity Analysis

We close this section by briefly addressing how to find the asymptotics of numbers
of basketball walks. Indeed, standard techniques from singularity analysis suffice to
get the asymptotic growth of the coefficients of zn in the generating functions that we
consider here for n → ∞. The interested reader is referred to [28] for more details
on this subject (see Fig. VI.7 therein for an illustration of singularity analysis).

Theorem 6.3 Let G0,1(z) and G0,2(z) be the generating functions for positive bas-
ketball walks with steps −2,−1,+1,+2 starting at the origin and ending at altitude
1, respectively, at 2. Then, as n → ∞, the coefficients are asymptotically equal to

5The quasi-inverse of a power series f (z) of positive valuation is 1/(1 − f (z)).
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[zn]G0,1(z) = 1√
5π

4n

n3/2

(
1 − 81

200

1

n
+ O

(
1

n2

))
,

[zn]G0,2(z) = 5 + √
5

10
√

π

4n

n3/2

(
1 − 201 + 24

√
5

200

1

n
+ O

(
1

n2

))
.

Proof The asymptotic growth of the coefficients is governed by the location of the
dominant singularity (the singularity closest to the origin). The dominant singularity
of (6.15) and (6.17) is given by 1/4, since the square root becomes singular at this
point.

Next, we compute the singular expansion for z → 1/4, which is a Puiseux series:

G0,1(z) = −1 − √
5

2
− 2√

5

√
1 − 4z + O (1 − 4z) ,

G0,2(z) =
(

3 − √
5
)

− 5 + √
5

5

√
1 − 4z + O (1 − 4z) .

Finally, we apply the standard function scale from [28, Theorem VI.1] and the transfer
for the error term [28, Theorem VI.3] to get the asymptotics.

More generally, asymptotics for the number of walks from altitude i to altitude
j in n steps can be obtained via singularity analysis of the small roots, similar to
what was done in [8]. Note that it is easy to derive as many terms as needed in
the asymptotic expansion of the coefficients by including more terms in the Puiseux
expansion. We also want to point out that this process was implemented in SageMath
(see [31]) or in Maple by Bruno Salvy (as a part of the algolib package). There,
the equivalent command directly gives the above result:

> equivalent(G01,z,n,3);

1

5

√
5 4n

√
π n3/2

− 81

1000

√
5 4n

√
π n5/2

+ O

(
4n

n7/2

)
.

4 General Case: Lattice Walks with Arbitrary Steps

We first prove a theorem which holds for any symmetric set of steps, i.e., when the
step polynomial satisfies P(u) = P(1/u).

Theorem 6.4 (Positive walk enumeration) Consider walks with a symmetric step
polynomial P(u). Let G0,k(z) be the generating function for positive walks, i.e.,
walks starting at the origin, ending at altitude k, and always staying strictly above the
x-axis in-between, and let M>0(z) be the generating function of positive meanders,
i.e., positive walks ending at any altitude > 0. Then
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M>0(z) =
∑

k>0

G0,k(z) =
h∏

i=1

1

1 − ui (z)
,

G0,k(z) = hk (u1(z), u2(z), . . . , uh(z)) ,

where u1(z), u2(z), . . . , uh(z) are the small roots of the kernel equation 1 − z P(u) =
0, and

hk(x1, x2, . . . , xh) =
∑

i1,...,ih≥0
i1+···+ih=k

xi1
1 xi2

2 · · · xih
h

is the complete homogeneous symmetric polynomial of degree k in the variables
x1, x2, . . . , xh.

Proof The formula for positive meanders follows from the expression for meanders
(which are allowed to touch the x-axis!) in [8, Corollary 1],

M≥0(z) = −1

z

h∏

i=1

1

1 − vi (z)
,

where v1(z), v2(z), . . . , vh(z) are the large roots of 1 − z P(u) = 0, i.e., those roots
v(z) for which limz→0 |v(z)| = ∞. Every meander starts with an initial excursion,
and later never returns to the x-axis any more. This simple fact implies the gen-
erating function equation M≥0(z) = E(z)M>0(z). Hence, we need to divide the
above expression for M≥0(z) by the generating function for excursions — which, by
[8, Theorem 2], is given by

E(z) = (−1)h−1

z

h∏

i=1

ui (z).

Finally, due to P(u) = P(u−1), we have ui (z) = 1/vi (z), which gives the final
expression for M>0, while the formula for G0,k(z) is proven in [10].

This proof shows, in particular, that generating functions for strictly positive
walks, respectively, for weakly positive walks, are intimately related and are therefore
given by similar expressions. (The price of positivity is a division by E(z), which
encodes the excursion prefactor.) The proof also extends to non-symmetric steps, but
then the formulas involve one more factor. It is possible to deal with them exactly in
the way we proceed for symmetric steps, but this leads to slightly less nice formulas.

In the sequel, we focus on positive walks with symmetric steps. We show in which
way we can use the obtained expressions for the generating functions in order to get
nice closed-form expressions for their coefficients.
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4.1 Counting Walks with Steps inS = {0,±1, . . . ,±h}

In Sect. 3 on basketball walks, we had a taste of what the kernel method could
do for us when combined with Lagrange–Bürmann inversion. This was, however,
only for the case S = {±1,±2}. In this section, we illustrate again the power of
the kernel method, when applied to more general step sets S . We first start with
a generalization of Sect. 2 to S = {0,±1, . . . ,±h}. In order to have a convenient
notation, we introduce m-nomial coefficients by defining

(
n

k

)

m

:= [uk](1 + u + · · · + um−1)n ,

where k is between 0 and (m − 1)n.

Proposition 6.8 The m-nomial coefficient equals

(
n

k

)

m

=
n∑

i=1

(−1)i

(
n

i

)(
n + k − mi − 1

n − 1

)
. (6.22)

Proof Coefficient extraction in the defining expression for
(n

k

)
m

yields

(
n

k

)

m

= [uk](1 + u + · · · + um−1)n = [uk](1 − um)n 1

(1 − u)n

= [uk]
(

n∑

i=0

(
n

i

)
(−1)i umi

)⎛

⎝
∑

j≥0

(
n + j − 1

n − 1

)
u j

⎞

⎠

=
�(n+k−1)/m
∑

i=0

(−1)i

(
n

i

)(
n + k − mi − 1

n − 1

)
.

The upper bound in the sum can be taken more naturally to be i = n, using the
convention that binomials

(n
k

)
are 0 for n < 0 or k > n (the reader should be warned

that this is not the convention of Maple or Mathematica). This gives Formula (6.22).

Historical remark. These m-nomial coefficients appear in more than fifty articles
(many of them focusing on trinomial coefficients) dealing with their rich combi-
natorial aspects (see, e.g., [2, 4, 12, 15]). We use the notation

(n
k

)
m

promoted by
George Andrews [3]. It should be noted that they were previously called polynomial
coefficients by Louis Comtet [23, p. 78], who is mentioning early work of Désiré
André (with a typo in the date) and Paul Montel [1, 43], and who was himself using
another notation for these numbers, namely

(n,m
k

)
.

These coefficients have a direct combinatorial interpretation in terms of lattice
walk enumeration.
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Theorem 6.5 (Unconstrained walk enumeration) The number of unconstrained6

walks running from the origin to altitude k in n steps taken from {0,±1,

±2, . . . ,±h} equals
( n

k+hn

)
2h+1

.

Proof By (6.2), the generating function for unconstrained walks is

W (z, u) = 1

1 − z P(u)
=

∞∑

n=0

Pn(u)zn .

Then, a simple factorization shows that

[uk]Pn(u) = [uk]
(

h∑

i=−h

ui

)n

= [uk]u−hn

(
2h∑

i=0

ui

)n

=
(

n

k + hn

)

2h+1

.

Now, we will see how to link these coefficients with constrained lattice walks.
To this end, we first state the general version of the conjugation principle that we
encountered in Proposition 6.2.

Proposition 6.9 (Conjugation principle for small roots) Let

P(u) =
d∑

i=−c

pi u
i

be the step polynomial, and let ω = e2π i/c be a cth root of unity. The small roots
ui (z), i = 1, 2, . . . , c, of 1 − z P(u) = 0 satisfy

ui (z) =
∑

n≥1

ωn(i−1)anzn/c

for certain “universal” coefficients an, n = 1, 2, . . . .

Proof The kernel equation yields

u = X
(

p−c + p−c+1u + p−c+2u2 + · · · + pd−1uc+d−1 + pduc+d
)1/c

,

with X = ω j z1/c for j = 0, 1, . . . , c − 1. Since the above equation possesses a
unique formal power series solution u(X), the claim follows.

Next, we apply Lagrange–Bürmann inversion to the small roots given by the
kernel method and combine it with the conjugation principle.

6Unconstrained means that the walks are allowed to have both positive and negative altitudes.
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Proposition 6.10 (Explicit expansion of the roots ui ) For lattice walks with step
polynomial given by P(u) = u−h + u−h+1 + · · · + uh−1 + uh, let U (z) be the root
of 1 − zh P(U ) = 0 whose Taylor expansion at 0 starts U (z) = z + · · · . The series
U (z) is a power series, not a genuine Puiseux series. Then all small and large roots
can be expressed in terms of U (z), namely we have

ui (z) = U (ωi−1z1/h) and vi (z) = 1/U (ωi−1z1/h), i = 1, 2, . . . , h,

where ω = e2π i/h is a primitive hth root of unity. The expansion of a power of the
series U (z) is explicitly given by

U m(z) =
∞∑

n=m

m

n

(
n/h

n − m

)

2h+1

zn.

Proof We want to solve 1 − z P(u) = 0 for u. We may rewrite this equation as

z = uh

1 + u + · · · + u2h
.

Taking the hth root, we get

ωi−1z1/h = u

(1 + u + · · · + u2h)1/h
,

for some i with 1 ≤ i ≤ h.
Since an equation of the form Z = uφ(u), where φ(u) is a power series in u, has

a unique power series solution u(Z), the above equation has a unique solution ui (z),
which turns out to have exactly the form described in the proposition. The equation
for vi follows from ui = 1/vi as we have P(u) = P(1/u).

The equation for U m comes from Lagrange–Bürmann inversion:

[zn]U m(z) = 1

n
[z−1](zm)′ Pn/h(z)

= m

n
[z−m]

∑

k

zk

(
n/h

k + n

)

2h+1

= m

n

(
n/h

n − m

)

2h+1

.

Theorem 6.6 (Closed-form expression for walks with S = {0,±1, . . . ,

±h}) The numbers of positive walks and meanders from the origin to altitude k
in n steps from S ={0,±1, . . . ,±h} admit the closed-form expressions
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[zn]G0,k(z) =
∑

n1+···+nh=nh

∑

i1+···+ih=k

i1

n1

(
n1/h

n1 − i1

)

2h+1

· · · ih

nh

(
nh/h

nh − ih

)

2h+1

ω
∑h

j=1( j−1)n j ,

[zn]M>0(z) =
∑

n1+···+nh=nh

∑

i1,...,ih≥0

i1

n1

(
n1/h

n1 − i1

)

2h+1

· · · ih

nh

(
nh/h

nh − ih

)

2h+1

ω
∑h

j=1( j−1)n j .

Proof We use the expansions from Proposition 6.10 in the generating function for-
mulas from Theorem 6.4.

Here are some sequences of numbers of positive walks with steps S = {0,±1,

. . . ,±h}, starting at the origin, and ending at altitude 1, for different values of h:

h = 1 (A168049) : 0, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, . . .

h = 2 (A104632) : 0, 1, 2, 6, 20, 73, 281, 1125, 4635, 19525, 83710, . . .

h = 3 (A276902) : 0, 1, 3, 12, 56, 284, 1526, 8530, 49106, 289149, 1733347, . . .

h = 4 (A277920) : 0, 1, 4, 20, 120, 780, 5382, 38638, 285762, 2162033, . . .

Furthermore, here7 are some sequences of numbers of positive walks with steps
S = {0,±1, . . . ,±h}, starting at the origin, and ending at altitude 2, for small values
of h:

h = 1 (A105695) : 0, 0, 1, 2, 5, 12, 30, 76, 196, 512, 1353, . . .

h = 2 (A276903) : 0, 1, 2, 7, 25, 96, 382, 1567, 6575, 28096, 121847, 534953, . . .

h = 3 (A276904) : 0, 1, 3, 14, 68, 358, 1966, 11172, 65104, 387029, 2337919, . . .

h = 4 (A277921) : 0, 1, 4, 23, 142, 950, 6662, 48420, 361378, 2753687, . . .

Here are the corresponding sequences for positive meanders:

h = 1 (A005773) : 1, 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, . . .

h = 2 (A278391) : 1, 2, 7, 29, 126, 565, 2583, 11971, 56038, 264345, . . .

h = 3 (A278392) : 1, 3, 15, 87, 530, 3329, 21316, 138345, 906853, . . .

h = 4 (A278393) : 1, 4, 26, 194, 1521, 12289, 101205, 844711, 7120398, . . .

Here are the corresponding sequences for meanders (allowed to touch 0):

h = 1 (A005773) : 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, 49721, . . .

h = 2 (A180898) : 1, 3, 12, 51, 226, 1025, 4724, 22022, 103550, 490191, . . .

h = 3 (A180899) : 1, 4, 22, 130, 803, 5085, 32747, 213419, 1403399, . . .

h = 4 (A180900) : 1, 5, 35, 265, 2100, 17075, 141246, 1182719, 9994086, . . .

7Axxxxxx refers to the corresponding sequence in the On-Line Encyclopedia of Integer Sequences,
available electronically at https://oeis.org.

https://oeis.org
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Here are the corresponding sequences for excursions:

h = 1 (A001006) : 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, . . .

h = 2 (A104184) : 1, 1, 3, 9, 32, 120, 473, 1925, 8034, 34188, 147787, . . .

h = 3 (A204208) : 1, 1, 4, 16, 78, 404, 2208, 12492, 72589, 430569, 2596471, . . .

h = 4 (A204209) : 1, 1, 5, 25, 155, 1025, 7167, 51945, 387000, 2944860, . . .

Remark 6.2 Most of the above sequences for h ≥ 3 were not contained in the On-Line Ency-
clopedia of Integer Sequences (OEIS) before we added them. In Sect. 5, we discuss the com-
binatorial structures related to the sequences which were already in the OEIS.

4.2 Counting Walks with Steps inS = {±1, . . . ,±h}
Here, we consider the same steps as in the previous one, except that we drop the 0-step.

Certainly, for any type of walks consisting of k steps with 0-step included, enumerated by fk
say, the number of walks of the same type consisting of n steps, all of which different from the 0-
step, can be obtained by the inclusion–exclusion principle. The result is

∑n
k=0(−1)n−k(n

k
)

fk .
Here, our way to derive the corresponding formulas is more ad hoc and relies on the shape

of the considered steps in S . This offers the advantage of leading to positive sum formulas,
as opposed to the alternating sums produced by inclusion–exclusion. For convenience, we
introduce the mock-m-nomial coefficients by

(
n

k

)∗

2m
:= [uk ](1 + · · · + um−1 + um+1 + · · · + u2m)n .

Proposition 6.11 The mock-m-nomial coefficients can be expressed in terms of the (ordinary)
m-nomial coefficients in the form8

(
n

k

)∗

2m
=

n∑

i=0

(
n

i

)(
n

k − (m + 1)i

)

m
.

Proof Factoring the expression and extracting coefficients, we obtain

(
n

k

)∗

2m
= [uk ](1 + · · · + um−1 + um+1 + · · · + u2m)n

= [uk ](1 + um+1)n(1 + u + · · · + um−1)n

= [uk ]
⎛

⎝
∑

i≥0

(
n

i

)
u(m+1)i

⎞

⎠

⎛

⎝
∑

j≥0

(
n

j

)

m
u j

⎞

⎠

=
n∑

i=0

(
n

i

)(
n

k − (m + 1)i

)

m
.

8Here, the ∗ is a mnemonic to remind us that we do not have the 0-step.
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These mock-m-nomial coefficients have also a direct combinatorial interpretation in terms
of lattice walk enumeration.

Theorem 6.7 (Unconstrained walk enumeration) The mock-m-nomial coefficient
( n
k+hn

)∗
2h

is
the number of unconstrained walks running from 0 to k in n steps taken from {±1,±2, . . . ,±h}.

Proof We have

[uk ]Pn(u) = [uk ]
⎛

⎝
−1∑

i=−h

ui +
h∑

i=1

ui

⎞

⎠
n

= [uk ]u−hn

⎛

⎝
h−1∑

i=0

ui +
2h∑

i=h+1

ui

⎞

⎠
n

=
(

n

k + hn

)∗

2h
.

Proposition 6.12 (Explicit expansion of the roots ui ) For lattice walks with step polynomial
given by P(u) = u−h + · · · + u−1 + u1 + · · · + uh, let U (z) be the root of 1 − zh P(U ) = 0
whose Taylor expansion at 0 starts U (z) = z + · · · . Again, U (z) is a power series, not a
genuine Puiseux series. Then U (z) satisfies

Um(z) =
∞∑

n=1

m

n

(
n/h

n − m

)∗

2h
zn,

and all small and large roots are expressed in terms of U (z) as

ui (z) = U (ωi−1z1/h) and vi (z) = 1/U (ωi−1z1/h), fori = 1, 2, . . . , h,

where ω = e2π i/h is a primitive hth root of unity.

Proof We apply Lagrange–Bürmann inversion to get

[zn]Um(z) = 1

n
[z−1](zm)′ Pn/h(z) = m

n
[z−m ]

∑

k

uk
(

n/h

k + n

)∗

2h
= m

n

(
n/h

n − m

)∗

2h
.

Theorem 6.8 (Closed-form expression for walks with S ={±1, . . . ,
±h}) The numbers of positive walks and meanders from the origin to altitude k in n steps
from S = {±1, . . . , ±h} admit the closed-form expressions

[zn]G0,k(z) =
∑

n1+···+nh=nh

∑

i1+···+ih=k

i1

n1

(
n1/h

n1 − i1

)∗

2h
· · · ih

nh

(
nh/h

nh − ih

)∗

2h
ω

∑h
j=1( j−1)n j ,

[zn]M>0(z) =
∑

n1+···+nh=nh

∑

i1,...,ih≥0

i1

n1

(
n1/h

n1 − i1

)∗

2h
· · · ih

nh

(
nh/h

nh − ih

)∗

2h
ω

∑h
j=1( j−1)n j .

Proof We use the expansions from Proposition 6.12 in the generating function formulas from
Theorem 6.4.
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Here are some sequences of numbers of walks with steps in S = {±1,±2, . . . ,

±h}, starting at the origin, and ending at altitude 1, for different values of h:

h = 1 (A000108) : 0, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . .

h = 2 (A166135) : 0, 1, 1, 3, 7, 22, 65, 213, 693, 2352, 8034, . . .

h = 3 (A276852) : 0, 1, 2, 7, 28, 121, 560, 2677, 13230, 66742, 343092, . . .

h = 4 (A277922) : 0, 1, 3, 13, 71, 405, 2501, 15923, 104825, 704818, . . .

Furthermore, here are some sequences of numbers of walks with steps in
S = {±1, ±2, . . . ,±h}, starting at the origin, and ending at altitude 2, for different values
of h:

h = 1 (A000108) : 0, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .

h = 2 (A111160) : 0, 1, 1, 4, 9, 31, 91, 309, 1009, 3481, 11956, . . .

h = 3 (A276901) : 0, 1, 2, 9, 34, 159, 730, 3579, 17762, 90538, 467796, . . .

h = 4 (A277923) : 0, 1, 3, 16, 84, 505, 3121, 20180, 133604, 904512, . . .

Here are the corresponding sequences for positive meanders:

h = 1 (A001405) : 1, 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, . . .

h = 2 (A278394) : 1, 2, 5, 17, 58, 209, 761, 2823, 10557, 39833, 151147 . . .

h = 3 (A278395) : 1, 3, 12, 60, 311, 1674, 9173, 51002, 286384, 1620776, . . .

h = 4 (A278396) : 1, 4, 22, 146, 1013, 7269, 53156, 394154, 2951950, . . .

Here are the corresponding sequences for meanders (allowed to touch 0):

h = 1 (A001405) : 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, . . .

h = 2 (A047002) : 1, 2, 7, 23, 83, 299, 1107, 4122, 15523, 58769, 223848, . . .

h = 3 (A278398) : 1, 3, 15, 75, 400, 2169, 11989, 66985, 377718, 2144290, . . .

h = 4 (A278416) : 1, 4, 26, 174, 1231, 8899, 65492, 487646, 3664123, . . .

Here are the corresponding sequences for excursions:

h = 1 (A126120) : 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0 . . .

h = 2 (A187430) : 1, 0, 2, 2, 11, 24, 93, 272, 971, 3194, 11293, 39148, 139687 . . .

h = 3 (A205336) : 1, 0, 3, 6, 35, 138, 689, 3272, 16522, 83792, 434749, . . .

h = 4 (A205337) : 1, 0, 4, 12, 82, 454, 2912, 18652, 124299, 841400, . . .

Remark 6.3 The cases with h = 1 lead to famous sequences, having many links with the
combinatorics of trees, via the Łukasiewicz correspondence (see Sect. 2). It is surprising that
the cases with h = 2 also offer many links with trees, as we show in the next section.



110 C. Banderier et al.

Fig. 7 Cutting a 4-nomial
tree at one unit from its root
gives the above picture,
which thus naturally
corresponds to the lattice
supporting our lattice
basketball walks. The
numbers near each node
indicate the number of walks
from the root to this node

5 Some Links with Other Combinatorial Problems

In this section, we establish some links between our lattice walks and other combinatorial
problems. Thereby, we prove several conjectures issued in the On-Line Encyclopedia of Integer
Sequences.

5.1 Trees and Basketball Walks from 0 to 1

First, we prove that the sequence A166135 from the On-Line Encyclopedia of Integer
Sequences, coming from the enumeration of certain tree structures used in financial mathe-
matics, is in fact related to basketball walks and corresponds more precisely to the coefficients
of G0,1(z).

The m-nomial tree is a lattice-based computational model used in financial mathematics
to price options. It was developed by Phelim Boyle [21] in 1986. For example, for m = 3, the
underlying stock price is modeled as a recombining tree, where, at each node, the price has three
possible paths: an up, down, or stable path. The case m = 2 has a long history going back to one
of the founding problems of financial mathematics and probability theory, the “ruin problem,”
analyzed in the eighteenth and nineteenth centuries by de Moivre, Laplace, Huygens, Ampère,
Rouché, before to be revisited by combinatorialists like Catalan, Whitworth, Bertrand, André,
Delannoy (see [9] for more on these aspects). Figure 7 illustrates a 4-nomial tree.

The following proposition gives the exact link between these trees and a generalization of
basketball walks.

Proposition 6.13 (Link between lattice walks and m-nomial trees) Consider the step sets

S2n = {−n, . . . , −1, 1, . . . , n} and S2n+1 = S2n ∪ {0}.

For each step set Sm, define Tm(z) to be the generating function for walks using steps from
Sm, starting at the origin and getting absorbed at −1. (By this, we mean that the walks may
never touch y = −1 except, possibly, at the very last step.) Then, the coefficients of T2(z) are
the Catalan numbers, the coefficients of T3(z) are the Motzkin numbers, while the coefficients
of T4(z) count our basketball walks from 0 to 1 (walks with steps ±2, ±1, starting at the origin
and ending at altitude 1, and never touching 0 in-between).
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Table 3 By time reversal, T4(z) = G0,1(z)
T4 G0,1

last step is a 1-step down first step is a 1-step up

last step is a 2-step down first step is a 2-step up

Proof While the correspondence is direct for m ≤ 3, it follows for m = 4 from a time rever-
sion, as each walk from T4 can then be obtained from G0,1 and vice versa (see Table 3). Thus,
T4(z) = G0,1(z).

5.2 Increasing Trees and Basketball Walks

A unary-binary tree is an ordered tree such that each node has 0, 1, or 2 children. An increasing
unary-binary tree on n vertices is a unary-binary tree with n vertices labeled 1, 2, . . . , n such
that the labels along each walk from the root are increasing (cf. [48, p. 51]). Given an increasing
unary-binary tree T , we associate with T the permutation σT constructed by reading the tree
left to right, level by level, starting at the root. A permutation σ is said to contain the pattern
π if there exists a subsequence of σ that has the same relative order as π . Otherwise, σ is
said to avoid the pattern π . For example, the permutation σ = 14235 contains the pattern 213
because σ contains the subsequence 425, in which the numbers have the same relative order
as in 213, while the permutation 12453 avoids 213.

Manda Riehl initiated studies of increasing trees for which the associated permutation
avoids a given pattern (see also [39]). By a computer program, she obtained the first terms
of the corresponding sequences for patterns of length 3. She observed that “the number of
increasing unary-binary trees with associated permutation avoiding 213” seems to coincide
with sequence A166135, which we proved to count basketballs walks from altitude 0 to
altitude 1. Figure 8 shows a verification of this claim for n = 5: There are 39 increasing
unary-binary trees on 5 vertices, and among them, 22 correspond to permutations avoiding
the pattern 213. (The forbidden subsequences are highlighted in red. The trees in black all
avoid 213. The trees are grouped according to their associated permutations. Tree labels are
read left to right.)
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Fig. 8 All increasing unary-binary trees with 5 nodes, where patterns 213 are marked in red. There
are 22 trees (drawn in black) for which the associated permutation avoids this pattern

Here is the reformulation of Riehl’s conjecture which takes into account our findings.

Conjecture 6.1 The number of basketball walks of length n starting at the origin and ending
at altitude 1 that never touch or pass below the x-axis equals the number of increasing unary-
binary trees on n vertices with associated permutation avoiding 213.

After the first version of this article was circulated via the arXiv, Bettinelli, Fusy, Mailler,
and Randazzo [14] found a nice bijective proof of this conjecture.
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How strong is the constraint of avoiding the pattern 213? For this, we need to compute the
probability that an increasing unary-binary tree avoids the pattern 213. Due to Conjecture 6.1,
proved in [14], we know the number of increasing unary-binary trees which avoid 213. Hence,
the question is to compute the total number tn of increasing unary-binary trees, which can be
done via the so-called boxed product.

The boxed product (written �×) is the combinatorial construction corresponding to a
labeled product, in which the minimal label is forced to be in the first component of this product
(see [28]). This leads the following recursive decomposition for binary-ternary increasing trees
T :

T = lea f + root �× T + root �× T × T ,

which translates into the following functional equation for the corresponding exponential
generating function:

T (z) = z +
∫ z

0
T (t)dt +

∫ z

0
T 2(t)dt .

By solving the associated differential equation T ′(z) = 1 + T (z) + T 2(z), we obtain

T (z) =
√

3

2
tan

(
π

6
+

√
3

2
z

)
− 1

2
.

The corresponding Taylor expansion is

T (z) =
∑

n≥1

tn
zn

n! = z + z2

2! + 3
z3

3! + 9
z4

4! + 39
z5

5! + 189
z6

6! + 1107
z7

7! + O(z8) .

Singularity analysis on the dominant poles of the tan function implies that

tn ∼ 3

√
3

2π

(
33/2

2eπ

)n √
n nn .

In conclusion, increasing unary-binary trees grow like n1/2 Annn , while the same trees
avoiding the pattern 213 grow like n−3/24n . This observation suggests the following natural
conjecture.

Conjecture 6.2 (A Stanley–Wilf-like conjecture for pattern avoid- ance in increasing trees)
Let T be a class of increasing trees of prescribed arity encoded by a power series φ, i.e.,
one has T ′ = zφ(T ). Then, the number an of such trees avoiding a given pattern satisfies
an = O(Cn), for some C depending on the pattern and on φ.

This conjecture shares the spirit of the Stanley–Wilf conjecture (proven by a combination
of [33, 40]), which asserted that any class of pattern-avoiding permutations has an exponential
growth rate.
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Fig. 9 Boolean trees (i.e., binary trees where each node is labeled either “false” or “true”) such
that a node having children with Boolean value A and B will have the Boolean value “B ⇒ A”

5.3 Boolean Trees and Basketball Walks from 0 to 2

In [13], Bender and Williamson considered the problem of bracketing some binary operations
(objects that are in bijection with the Boolean trees that we present in Fig. 9). It turns out
that this problem is doubly related to our basketball walks (walks with steps ±1, ±2, always
positive). This is what we address in the next two propositions.

Proposition 6.14 Under the conventions 11 = 10 = 00 = 1 and 01 = 0, the number of
bracketings of n + 1 zeroes 0ˆ· · ·ˆ0 giving result 1 is equal to the number of basketball walks
from altitude 0 to altitude 2 of length n.

Proof Let W (z) (respectively Z(z)) be the generating function for the number of bracketings
of n zeroes 0ˆ0ˆ· · ·ˆ0 producing result 1 (respectively 0). The objects that are counted by
W (z) are of the form (“1”)ˆ(“1”), (“1”)ˆ(“0”), or (“0”)ˆ(“0”), where “1” stands for a bracketing
producing the result 1, and “0” stands for a bracketing producing the result 0. This observation
translates into the generating function equation

W (z) = W 2(z) + Z(z)W (z) + Z2(z). (6.23)
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Similarly, a bracketing producing 0 may either be a single 0 or a bracketing of the form
(“0”)ˆ(“1”). This yields the equation

Z(z) = z + Z(z)W (z). (6.24)

Let C(z) := Z(z) + W (z). Equations (6.23) and (6.24) imply C(z) = 1 + zC2(z), i.e., C(z) =
1
2z − 1

2z

√
1 − 4z. This is not a surprise because W + Z corresponds to well-parenthesized

words, known to be counted by Catalan numbers.
We may “replace” W (z) by C(z) in Equation (6.24). This leads to

Z(z) = z + Z(z)(C(z) − Z(z)).

Solving for Z(z), we obtain

Z(z) = C(z) − 1 +
√

(C(z) − 1)2 + 4z

2

= −1

4
− 1

4

√
1 − 4z + 1

4

√
2 + 12z + 2

√
1 − 4z.

(6.25)

Therefore, we get

W (z) = C(z) − Z(z) = 3

4
− 1

4

√
1 − 4z − 1

4

√
2 + 12z + 2

√
1 − 4z.

Comparison of this expression with Expression (6.17) for G0,2(z) shows that W (z) =
zG0,2(z).

We leave it to the reader to find a bijective proof between bracketings of 0ˆ . . . ˆ0 having value 1
and basketball walks from altitude 0 to altitude 2.

Proposition 6.15 The number of basketball walks of length n starting at the origin, ending at
altitude 1, never running below the x-axis in-between, is equal to the number of bracketings
of n + 2 zeroes 0ˆ0ˆ· · ·ˆ0 producing result 0.

Proof The generating function F1(z) for walks ending at 1 is given by (6.8) in the form

F1(z) = G1,2(z) = u1(z)u2(z) + u1(z) + u2(z)

z
.

The generating function Z(z) for the number of bracketings of n zeroes 0ˆ· · ·ˆ0 having value
0 is given by (6.25). Substitution of the closed-form expressions for the small roots into F1(z)
yields z2 F1(z) = Z(z). This establishes the claim.

6 Conclusion

In this article, we show how to derive closed-form expressions for the enumeration of lattice
walks satisfying various constraints (starting point, ending point, positivity, allowed steps,
…). The key is a proper use of the Lagrange–Bürmann inversion in combination with the
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expressions given by the kernel method. This technique admits many extensions, which will
work in a similar way: It is possible to extend it to walks in which we want to keep track
of some parameters (marking a specific step, pattern, altitude, …), allowing an infinite set of
steps, or unbounded steps (this would encode what is called catastrophes in queuing theory
language). It is also possible to consider other constraints, such as to force the walk to live in
some cone or to have some forbidden patterns. In all these cases, the kernel method will give
a closed-form expression for the generating function, in terms of the roots of the kernel, and
thus, our mix of kernel method and Lagrange–Bürmann inversion will lead in these situations
also to some closed-form expression for the coefficients of the generating function (in terms
of nested sums of binomials).

In several cases, these nested sums of binomials provide the nice challenge of finding
bijective proofs. It is satisfying to find some formula for the enumeration of certain lattice
paths which is efficient (in terms of algorithmic complexity), but the fact that many of these
sums involve only positive terms is an indication that combinatorics has still its word to say
on these formulas.

The holonomic approach, as well illustrated by the book of Petkovšek, Wilf, and Zeil-
berger [45], or Kauers and Paule [32], is a way to prove that different binomial expressions
correspond in fact to the same sequence. It remains an open question to know which meth-
ods can lead to the most concise formula: The platypus algorithms and the Flajolet–Soria
formula [7, 8], or the cycle lemma, and extraction of diagonals of rational functions seem to
indicate that we could in fact need an arbitrarily large amount of nested sums. In some cases,
one can reduce the number of nested sums with techniques from symbolic summation the-
ory (e.g., by ΣΠ extension theory [47], or geometric simplifications in diagonal extractions
of rational functions [17]), but it is still unknown if, for the directed lattice path models we
considered, there is a miraculous simple formula (with just one or two nested sums).

Acknowledgements We thank the organizers of the 8th International Conference on Lattice Path
Combinatorics & Applications, which provided the opportunity for this collaboration. Sri Gopal
Mohanty played an important role in the birth of this sequence of conferences, and his book [42]
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Abstract We analyze some enumerative and asymptotic properties of lattice paths
below a line of rational slope. We illustrate our approach with Dyck paths under a
line of slope 2/5. This answers Knuth’s problem #4 from his “Flajolet lecture” during
the conference “Analysis of Algorithms” (AofA’2014) in Paris in June 2014. Our ap-
proach extends the work of Banderier and Flajolet for asymptotics and enumeration
of directed lattice paths to the case of generating functions involving several dom-
inant singularities and has applications to a full class of problems involving some
“periodicities.” A key ingredient in the proof is the generalization of an old trick by
Knuth himself (for enumerating permutations sortable by a stack), promoted by Fla-
jolet and others as the “kernel method.” All the corresponding generating functions
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tackled in the A = B spirit of Wilf–Zeilberger–Petkovšek. We show how to obtain
similar results for any rational slope. An interesting case is, e.g., Dyck paths below
the slope 2/3 (this corresponds to the so-called Duchon’s club model), for which we
solve a conjecture related to the asymptotics of the area below such lattice paths. Our
work also gives access to lattice paths below an irrational slope (e.g., Dyck paths
below y = x/

√
2), a problem that we study in a companion article.

Keywords Lattice paths · Generating function · Analytic combinatorics ·
Singularity analysis · Kernel method · Generalized Dyck paths · Algebraic
function · Rational Catalan combinatorics · Periodic support · Bizley formula ·
Grossman formula

2010 Mathematics Subject Classification Primary 05A15 · Secondary 05A16
68W40

1 Introduction

For the enumeration of simple lattice paths (allowing just the jumps −1, 0, and +1),
many methods are often used, like the Lagrange inversion, determinant techniques,
continued fractions, orthogonal polynomials, bijective proofs, and a lot is known in
such cases [32, 45, 52, 54]. These nice methods do not apply to more complex cases
ofmore generic jumps (or, if one adds a spacial boundary, like a line of rational slope).
It is then possible to use some ad hoc factorization due to Gessel [35] or context-free
grammars to enumerate such lattice paths [28, 47, 50]. One drawback of the grammar
approach is that it leads to heavy case-by-case computations (resultants of equations
of huge degree). In this article, we show how to proceed for the enumeration and
the asymptotics in these harder cases: our techniques are relying on the “kernel
method” which (contrary to the context-free grammar approach) offers access to the
true simple generic structure of the final generating functions and the universality of
their asymptotics via singularity analysis.

Let us start with the history of what Philippe Flajolet named the “kernel method”:
It has been part of the folklore of combinatorialists for some time and its simplest
application deals with functional equations (with apparently more unknowns than
equations!) of the form

K (z, u)F(z, u) = p(z, u) + q(z, u)G(z),

where the functions p, q, and K are given and F,G are the unknown generating
functions we want to determine. K (z, u) is a polynomial in u which we call the “ker-
nel” as we “test” this functional equation on functions u(z) cancelling this kernel.1

1The “kernel method” that we mention here for functional equations in combinatorics has nothing
to do with what is known as the “kernel method” or “kernel trick” in statistics or machine learning.
Also, there is no integral directly related to our kernel. For sure, in our case the word kernel was
chosen as its zeros will play a key role, and also, in one sense, as this kernel has in its core the full
description of the problem and its resolution.
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The simplest case is when there is only one branch, u1(z), such that K (z, u1(z)) = 0
and u1(0) = 0; in that case, a single substitution gives a closed-form solution for G:
namely G(z) = −p(z, u1(z))/q(z, u1(z)).

Such an approach was introduced in 1969 by Knuth to enumerate permutations
sortable by a stack, see the detailed solution to Exercise 2.2.1–4 in The Art of Com-
puter Programming ([43, pp. 536–537] and also Ex. 2.2.1.11 therein), which presents
a “new method for solving the ballot problem,” for which the kernel K is a quadratic
polynomial (this specific case involves just one branch u1(z)).

In combinatorics exist many applications of this method for solving variants of the
above functional equation: one is known as the “quadratic method” in map enumera-
tion, as initially developed in 1965 by Brown during his collaboration with Tutte (see
Sect. 2.9.1 from [9, 24] for the analysis of about a dozen families of maps). During
nearly 30 years, the kernel method was dealing only with “quadratic cases” like the
ones of Brown for maps or of Knuth for a vast amount of examples involving trees,
polyominoes, walks [57], or more exotic applications like the one mentioned by
Odlyzko in his wonderful survey on asymptotic methods in enumeration [25]. Then,
in 1998, the initial approach by Knuth was generalized by a group of four people,
all of them being in contact and benefiting from mutual insights: Banderier in his
memoir [5] solved some problems related to generating trees and walks, and this
later led to the article with Flajolet [8] and to the solution of some conjectures due
to Pinzani in the article with Bousquet-Mélou et al. [6]. At the same time, Petkovšek
analyzed linear multivariate recurrences in [55], a work later extended in [23]. All
these articles contributed to turn the original approach by Knuth into a method work-
ing when the equation has more unknowns (and the kernel has more roots). This
solves equations of the type

K (z, u)F(z, u) =
m∑

i=1

pi (z, u)Gi (z),

where K and the pi ’s are known polynomials, and F and the Gi ’s are unknown
functions.

A few years later, Bousquet-Mélou and Jehanne [21] solved the case of algebraic
equations in F of arbitrary degree:

P(z, u, F(z, u),G1(z), . . . ,Gm(z)) = 0.

The kernel method thus plays a key role in many combinatorial problems. A few
examples are directed lattice paths and their asymptotics [8, 19], additive param-
eters like area [10, 61], generating trees [6], pattern avoiding permutations [49],
prudent walks [4, 27], urn models [60], statistics in posets [20] and many other nice
combinatorial structures…

Independently, in probability theory, in the 1970s,Malyshev invented an approach
now sometimes called the “iterated kernel method.” It can be used to analyze nearest
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neighbor randomwalks in queuing theory. In this context, these lead to the following
type of equations:

K (t, x, y)F(t, x, y) = p0(t, x, y) + p1(t, x, y)F(x, 0) + p2(t, x, y)F(0, y),

where K and the pi ’s are known polynomials, while F is the unknown function we
are looking for. This approach culminated in the book [31], which was later revisited
in the 2000s (e.g., in [46]), also with a more combinatorial point of view in [22]. It is
still the subject of vivid activities, including the extension to higher dimensions [18].
Moreover, the kernel method also gives the transient solution of some birth–death
queuing processes [37].

Also independently, in statistical mechanics, several authors developed other in-
carnations of the kernel method. For example, the WKB limit of the Bethe ansatz
(also called thermodynamical Bethe ansatz) often leads to algebraic equations and to
what is called the algebraic Bethe ansatz [34]. The kernel method is also used in the
study of the Ising model of bicolored maps (see Theorem 8.4.5 in [30], and pushing
further this method led Eynard to his “topological recurrence”), and in many articles
on enumeration related to directed animals, polymers, walks [38–40].

After this short history of the kernel method, we want to show how to use it to
derive explicit counting formulae and asymptotics for directed lattice paths below a
line of rational slope. In the article by Banderier and Flajolet [8], the class of directed
lattice paths in Z

2 was investigated thoroughly by means of analytic combinatorics
(see [33]). Our work is an extension of this article in mainly five ways:

1. Our work involves lattice paths having a “periodic support,” and the comment
in [8, Sect. 3.3] was incomplete for this more cumbersome case; indeed, there
are then several dominant singularities, and we had to revisit in more detail the
structural properties of the roots associated with the kernel method in order to
understand the contribution of each of these singularities. It is pleasant that this
new understanding gives a tool to deal with the asymptotics of many other lattice
path enumeration problems.

2. We get new explicit formulae for the generating functions of walks with starting
and ending at altitude other than 0, and links with complete symmetric homoge-
neous polynomials.

3. We give new closed forms for the coefficients of these generating functions.
4. We have an application to some harder parameters (like the area below a lattice

path).
5. We extend the results to walks below a line of arbitrary rational slope, paving

the way for our forthcoming article on walks below a line of arbitrary irrational
slope [15].

Let us give a definition of the lattice paths we consider:

Definition 7.1 (Jumps and lattice paths) A step set S ⊂ Z
2 is a finite set of vectors

{(x1, y1), . . . , (xm, ym)}. An n-step lattice path or walk is a sequence of vectors
(v1, . . . , vn), such that v j is inS . Geometrically, it may be interpreted as a sequence
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Table 1 The four types of paths: walks, bridges, meanders, and excursions. We refer to these
walks as the Banderier–Flajolet model, in contrast to the model in which we will consider lattice
paths below a rational slope boundary

of points ω = (ω0, ω1, . . . , ωn) where ωi ∈ Z
2, ω0 = (0, 0) (or another starting

point) and ωi − ωi−1 = vi for i = 1, . . . , n. The elements of S are called steps or
jumps. The length |ω| of a lattice path is its number n of jumps.

The lattice paths can have different additional constraints as shown in Table 1.
We restrict our attention to directed paths which are defined by the fact that, for

each jump (x, y) ∈ S , one must have x ≥ 0. The next definition allows to merge
the probabilistic point of view (random walks) and the combinatorial point of view
(lattice paths):

Definition 7.2 (Weighted lattice paths) For a given step set S = {s1, . . . , sm}, we
define the respective system of weights as {w1, . . . ,wm} where w j > 0 is the weight
associated with step s j for j = 1, . . . ,m. The weight of a path is defined as the
product of the weights of its individual steps.

Plan of This Article

• First, in Sect. 2, we recall the fundamental results for lattice paths below a line of
slope α (where α is an integer or the inverse of an integer) and the links with trees.

• Then, in Sect. 3, we give Knuth’s open problem on lattice paths below a line of
slope 2/5.

• In Sect. 4, we give a bijection between lattice paths below any line of rational slope
and lattice paths from the Banderier–Flajolet model.

• In Sect. 5, the needed bivariate generating function is defined and the governing
functional equation is derived and solved: here the “kernel method” plays the most
significant role in order to obtain the generating function (as typical for many
combinatorial objects which are recursively defined with a “catalytic parameter”).

• In Sect. 6, we tackle some questions on asymptotics, thus answering the question
of Knuth.
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• In Sect. 7, we comment on links with previous results of Nakamigawa and
Tokushige, which motivated Knuth’s problem, and we explain why some cases
lead to particularly striking new closed-form formulae.

• In Sect. 8, we analyze what happens for the Duchon’s club model (lattice paths
below a line of slope 2/3), and we extend our formulae to general rational slopes.

2 Trees, Fractional Trees, Imaginary Trees

Due to their fundamental role in computer science trees were the subject of many
investigations, and there exist many alternative representations of this key data struc-
ture. One of the most useful ones is an encoding by “traversing” the tree via a
depth-first traversal (or via a breadth-first traversal). This directly gives a lattice path
associated with the original tree. In fact, what are called “simple families of ordered
trees” (rooted ordered trees in which each node has a degree prescribed to be in a
given set) are in bijection with lattice paths. The reason is the famous Łukasiewicz
correspondence between trees and lattice paths, see Fig. 1.

Basic manipulations on lattice paths also show thatDyck paths (paths with jumps
North and East, see Fig. 2) below the line y = αx (α being here a positive integer),
or below the line y = x/α, are in bijection with trees (of arity α, i.e., every node has
exactly 0 or α children).

The generating function F(z) = ∑
fnzn , where fn counts the number of trees

with n nodes (internal and external ones), satisfies the functional equation F(z) =
zφ(F(z)) , where φ encodes the allowed arities. Thus, we get binary trees: φ(F) =
1 + F2, unary-binary trees: φ(F) = 1 + F + F2, t-ary trees: φ(F) = 1 + Ft , gen-
eral trees: φ(F) = 1/(1 − F). See [33] for more on this approach, also extendible
to unordered trees (i.e., the order of the children is not taken into account).

Because of the bijection with lattice paths, the enumeration of ordered trees solves
the question of lattice paths below a line of integer slope. In the simplest case of
classical Dyck paths, many tools were developed. In 1886, Delannoy was the first to

Fig. 1 The Łukasiewicz bijection between trees and lattice paths: A little fly is travelling along
the full contour of the tree starting from the root. Whenever it meets a new node, one draws a new
jump of size “arity of the node −1” in the lattice path. Without loss of generality, one can always
remove the very last jump (as it will always be a “−1”) and thus we get an excursion which is in
bijection with the initial tree. It is straightforward to reverse this bijection. Additionally, note that
any deterministic traversal of the tree offers such a bijection, so it could be a depth-first traversal,
but also, e.g., a breadth-first traversal
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Fig. 2 Examples of combinatorial structures which are in bijection: ternary trees, excursions of
directed lattice paths with jumps+2 and−1, Dyck paths of North-East steps below the line y = 2x ,
Dyck paths above the line y = 1

2 x , and Dyck paths below the line y = 1
2 x

promote a systematic way to enumerate lattice paths, using recurrences and an array
representation (see [13] for more on this). Then, the Bertrand ballot problem [16]
(already previously considered byWhitworth) and the ruin problem (as studied along
centuries by Fermat, Pascal, the Bernoullis, Huygens, deMoivre, Lagrange, Laplace,
Ampère and Rouché) were a strong motor for the birth of the combinatorics of lattice
paths, one famous solution being the one by André [2] via a bijective proof involving
“good minus bad” paths. Aebly [1] and Mirimanoff [51] gave a geometric variant of
this bijective proof, which corresponds to what is nowadays known as the reflection
principle. Later, the cycle lemma by Dvoretsky and Motzkin [29] proved useful for
many similar problems. During the last century, all these tools were extended and
applied to other cases than the classical Dyck paths, and we will use some of them
in this article.

With respect to the closed form for the enumeration, another powerful tool is
the Lagrange–Bürmann inversion formula (see, e.g., [33]). Applied on T (z) = 1 +
zT (z)t (the equation for the generating function of t-ary trees where z marks internal
nodes), it gives

T (z)r =
∑

k≥0

(
tk + r

k

)
r

tk + r
zk =

∑

k≥0

(
tk + (r − 1)

k

)
r

(t − 1)k + r
zk . (7.1)

Plugging rational values is not directly leading to a power series with integer coef-
ficients, but it “miraculously” becomes the case after basic transformations (Fig. 3).
For example, as observed by Knuth [44], for t = 3/2, one has the following neat
non-trivial identity:

T (z)T (−z) =
(

∑

k≥0

(3k/2
k

)

k/2 + 1
zk

) (
∑

k≥0

(3k/2
k

)

k/2 + 1
(−z)k

)
=

∑

n≥0

(3n+1
n

)

n + 1
z2n . (7.2)
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Fig. 3 It is possible to plug any value for t in T (z), which is known to count trees and lattice paths
when t is an integer. What happens when we consider generalized binomial series of order 3/2 or
of other fractional values? To recycle a nice pun by Don Knuth [44]: Nature is offering nice binary
trees; will imaginary trees one day play a role in computer science?

What could be themeaning of such identities involving “half-trees”? The explana-
tion behind this formula is better seen in terms of lattice paths, and we will shed light
on it in the next sections via the kernel method. Another set of mysterious identities
is, e.g., incarnated by:

ln T (z) = ln
∑

n≥0

(tn
n

)

(t − 1)n + 1
zn =

∑

n≥1

(tn
n

)

tn
zn . (7.3)

In fact, this one is just another avatar of the cycle lemma, which is also the reason
for the link between the generating function of bridges and the generating function
of excursions (a fact also appearing in various disguises, e.g., in the Spitzer formula,
in the Sparre Andersen formula), see [8] for explanations and proofs.

As we have seen, Dyck paths below an integer slope (or structures in bijection
with them) were subject to many approaches, now considered as “folklore.” The first
result for lattice paths below a rational slope camemuch later and is best summarized
by the following theorem:

Theorem 7.1 (Bizley’s formula, Grossman’s formula) The number f (an, bn) of
Dyck paths from (0, 0) to (an, bn) staying weakly above y = a

b x is given by the

following expressions, where c j := 1
a j+bj

(a j+bj
a j

)
:

f (an, bn) = [tn] exp
n∑

j≥0

1

(a + b)

(
(a + b) j

a

)
t j , (7.4)

f (an, bn) =
∑

{
integer partitions of n:∑k

j=1 j e j=n

}

k∏

j=1

(c j )e j

e j ! . (7.5)
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Formula (7.5) was first stated without proof by Grossman in 1950. A proof was
then given by Bizley [17] in 1954. It starts with Formula (7.4), which is an avatar
of the cycle lemma [29] expressed in terms of a generating function. Then, routine
power series manipulation gives Formula (7.5). These formulae (or special cases of
them) have since been rediscovered (and published…)many times. One nicemodern
formulation of the method behind is found in the article by Gessel [35]. There exist
alternative generic formulae as given by Banderier and Flajolet [8], Sato [59], which
simplify for ad hoc cases [11, 28].

This formula admitsmany extensions as one could, for example, add parameters or
take into account certain patterns. This would lead to “rational” Narayana numbers,
“rational” q-analogues, “rational” Mahonian statistics (on lattice paths!), etc.

For each n, Grossman’s formula (7.5) for f (an, bn) involves p(n) summands,
where p(n) is the integer partition sequence of Hardy–Ramanujan fame:

p(n) = [tn]
∏

n≥1

1

1 − tn
∼ 1

4n
√
3
exp

(
π

√
2n

3

)
.

Therefore, this nice closed-form formula of Grossman has many summands if n
is large (computing it will have an exponential cost); it is thus useful to have an
algorithmic alternative to it. Bizley’s formula (7.4) allows to compute f (an, bn) in
quasi-linear time by a power series manipulation. This is also the advantage of other
expressions like the ones given by [8] using the kernel method, on which we will
come back in the next sections.

Formula (7.4) for n = 1 gives f (a, b) = 1
a+b

(a+b
a

)
, also known as the rational

Catalan numbers Cat(a, b). In the last years, many properties of the Dyck paths and
their “Catalan combinatorics” (i.e., the enumeration of the numerous combinatorial
and algebraic structures related to them) were extended to Dyck paths below a line
of rational slope. This new area of research is sometimes called “rational Catalan
combinatorics” [3]. We expect that the recent developments of “rational Catalan
combinatorics” have a generalization to n > 1, but with less simple formulae, as
suggested by Table 2.

3 Knuth’s AofA Problem #4

During the conference “Analysis of Algorithms” (AofA’2014) in Paris in June 2014,
Knuth gave the first invited talk, dedicated to the memory of Philippe Flajolet (1948–
2011). The title of his lecture was “Problems that Philippe would have loved” and he
was pinpointing/developing five nice open problems with a good flavor of “analytic
combinatorics” (his slides are available online.2) The fourth problemwas on “Lattice

2http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf.

http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf
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Table 2 The number f (an, bn) of Dyck walks from (0, 0) to (an, bn) staying weakly below
y = a

b x . To shorten our expressions, we use the shorthand c j := 1
a j+bj

(a j+bj
a j

)
In the rest of the

article, we will see further nice formulae for Dyck paths below a rational slope

paths of slope 2/5,” in which Knuth investigated Dyck paths under a line of slope 2/5,
following the work of [53]. This is best summarized by the two following original
slides of Knuth:

1

1
0

0
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 have:

Thus A[x,y] enumerates lattice paths from (0,  ) that stay in
the region
stay in the region

A[5t–1, 2t–1]+B[5t–1, 2t–1] 

Theorem (Nakamigawa, Tokushige, 2012):

where a  1.63026 and b  0.159 (I think).

Empirical observation:

while enumerates the paths thatB2
5xy 2

5< + , [x,  
y< +2

5x
1
5.

2
for all t 1.( )2t

,
7t–1

7t–1

A[5t – 1, 2t – 1]
B[5t – 1, 2t – 1] = (t  ),a

b

t
– +O

≥

=

{

{
0

y]

=

  2

In the next sections, we prove that Knuth was indeed right! In order not to conflict
with our notation, let us rename Knuth’s constants a and b into κ1 and κ2.

4 A Bijection for Lattice Paths Below a Rational Slope

Consider paths in the N2 lattice,3 starting in the origin, and whose allowed steps are
of the type either East or North (i.e., steps (1, 0) and (0, 1), respectively). Let α, β

3We live in a world where 0 ∈ N.



The Kernel Method for Lattice Paths Below a Line of Rational Slope 129

be positive rational numbers. We restrict the walks to stay strictly below the barrier
L : y = αx + β. Hence, the allowed domain of our walks forms an obtuse cone with
the x-axis, the y-axis and the barrier L as boundaries. The problem of counting walks
in such a domain is equivalent to counting directed walks in the Banderier–Flajolet
model [8], as seen via the following bijection:

Proposition 7.1 (Bijection: Lattice paths below a rational slope are directed lattice
paths) LetD : y < αx + β be the domain strictly below the barrier L. From now on,
we assume without loss of generality that α = a/c and β = b/c where a, b, c are
positive integers such that gcd(a, b, c) = 1 (thus, it may be the case that a/c or b/c
are reducible fractions). There exists a bijection between “walks starting from the
origin with North and East steps” and “directed walks starting from (0, b) with the
step set {(1, a), (1,−c)}.” What is more, the restriction of staying below the barrier
L is mapped to the restriction of staying above the x-axis.

Proof The following affine transformation gives the bijection (see Fig. 4):

(
x
y

)
�→

(
x + y

ax − cy + b

)
.

Indeed, the determinant of the involved linear mapping is −(c + a) 	= 0. What is
more, the constraint of being below the barrier (i.e., one has y < αx + β) is thus
forcing the new abscissa to be positive: ax − cy + b > 0. The gcd conditions ensure
an optimal choice (i.e., the thinnest lattice) for the lattice on which walks will live.
Note that this affine transformation gives a bijection not only in the case of an initial
step set North and East, but for any set of jumps.

The purpose of this bijection is to map walks of length n to meanders (i.e., walks
that stay above the x-axis) which are constructed by n unit steps into the positive x
direction.

Note that if one does not want the walk to touch the line y = (a/c)x + b/c, it
corresponds to a model in which one allows to touch, but with a border at y =
(a/c)x + (b − 1)/c. Time reversal is also giving a bijection between

• walks starting at altitude b with jumps +a,−c and ending at 0,
• and walks starting at 0 and ending at altitude b with jumps −a,+c.

5 Functional Equation and Closed-Form Expressions for
Lattice Paths of Slope 2/5

In this section, we show how to derive closed forms (i.e., explicit expressions) for the
generating functions of lattice paths of slope 2/5 (and their coefficients). First, define
the jump polynomial P(u) := u−2 + u5. Note that the bijection in Proposition 7.1
gives jump sizes +2 and −5. However, a time reversal gives this equivalent model
(jumps −2 and +5), which has the advantage of leading to more compact formulae
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(a) Rational slope model (b) Banderier–Flajolet model

Fig. 4 Example showing the bijection from Proposition 7.1: Dyck paths below the line y =
(2/5)x + 2/5 (or touching it) are in bijection with walks allowing jumps +2 and −5, starting
at altitude 2, and staying above the line y = 0 (or touching it)

(see below). Let fn,k be the number of walks of length n which end at altitude k. The
corresponding bivariate generating function is given by

F(z, u) =
∑

n,k≥0

fn,k z
nuk =

∑

n≥0

fn(u)zn =
∑

k≥0

Fk(z)u
k,

where the fn(u) encode all walks of length n, and the Fk(z) are the generating
functions of walks ending at altitude k. A step-by-step approach yields the following
linear recurrence

fn+1(u) = {u≥0} [P(u) fn(u)] for n ≥ 0,

with initial value f0(u) (i.e., the polynomial representing the walks of length 0), and
where {u≥0} is a linear operator extracting all monomials in u with non-negative
exponents. Summing the terms zn+1 fn+1(u) leads to the functional equation

(1 − zP(u))F(z, u) = f0(u) − zu−2F0(z) − zu−1F1(z). (7.6)

We apply the kernelmethod in order to transform this equation into a system of linear
equations for F0 and F1. The factor K (z, u) := 1 − zP(u) is called the kernel and
the kernel equation is given by K (z, u) = 0. Solving this equation for u, we obtain
7 distinct solutions. These split into two groups, namely we get 2 small roots u1(z)
and u2(z) (the ones going to 0 for z ∼ 0) and 5 large roots which we call vi (z) for
i = 1, . . . , 5 (the ones going to infinity for z ∼ 0). It is legitimate to insert the 2 small
branches into (7.6) to obtain4

4In this article, whenever we thought it could ease the reading, without harming the understanding,
we write u1 for u1(z), or F for F(z), etc.
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zF0 + zu1F1 = u21 f0(u1),

zF0 + zu2F1 = u22 f0(u2).

This linear system is easily solved by Kramer’s formula, which yields

F0(z) = −u1u2 (u1 f0(u1) − u2 f0(u2))

z(u1 − u2)
,

F1(z) = u21 f0(u1) − u22 f0(u2)

z(u1 − u2)
.

Now, let the functions F(z, u) and Fk(z) denote functions associatedwith f0(u) = u3

(i.e., there is onewalk of length 0 at altitude 3) and let the functionsG(z, u) andGk(z)
denote functions associated with f0(u) = u4. One thus gets the following theorem:

Theorem 7.2 (Closed forms for the generating functions) Let us consider walks in
N

2 with jumps −2 and +5. The number of such walks starting at altitude 3 and
ending at altitude 0 is given by F0(z), the number of such walks starting at altitude 4
and ending at altitude 1 is given by G1(z), and we have the following closed forms in
terms of the small roots u1(z) and u2(z) of 1 − zP(u) = 0 with P(u) = u−2 + u5:

F0(z) = −u1u2
(
u41 − u42

)

z(u1 − u2)
, (7.7)

G1(z) = u61 − u62
z(u1 − u2)

. (7.8)

Thanks to the bijection given in Sect. 4 between walks in the rational slope model
and directed lattice paths in the Banderier–Flajolet model (and by additionally re-
versing the time5), it is now possible to relate the quantities A and B of Knuth with
F0 and G1:

An := A[5n − 1, 2n − 1] = [z7n−2]G1(z), (7.9)

Bn := B[5n − 1, 2n − 1] = [z7n−2]F0(z). (7.10)

Indeed, from the bijection of Proposition 7.1, the walks strictly below y = a
c x + b

c
(with a = 2, c = 5) and ending at (x, y) = (5n − 1, 2n − 1) are mapped (in the
Banderier–Flajolet model, not allowing to touch y = 0) towalks starting at (0, b) and
ending at (x + y, ax − cy + b) = (7n − 2, 3 + b). Reversing the time and allowing
to touch y = 0 (thus b becomes b − 1), we see that An counts walks starting at 4,
ending at 1 (the generating function of this sequence is given by G1!) and that Bn

counts walks starting at 3, ending at 0 (the generating function of this sequence is

5Reversing the time allows us to express all generating functions in terms of just 2 roots. If one
does not reverse time, everything works well but the expressions contain the 5 large roots, yielding
more complicated closed forms.
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given by F0!). While there is no nice formula for An or Bn (see, however, [7] and
page 136 for a formula involving nested sums of binomials), it is striking that there
is a simple and nice formula for An + Bn:

Theorem 7.3 (Closed form for the sum of coefficients) The sum of the number of
Dyck paths (in our rational slope model) touching or staying below y = (2/5)x +
1/5 and y = (2/5)x simplifies to the following expression:

An + Bn = 2

7n − 1

(
7n − 1

2n

)
. (7.11)

Proof A first proof of this was given by [53] using a variant of the cycle lemma.
(We comment more on this in Sect. 7.) We give here another proof; indeed, our
Theorem 7.2 (Closed form for the generating functions) implies that

An + Bn = [z7n−1] (
u51 + u52

)
. (7.12)

This suggests to use holonomy theory to prove the theorem. First, a resultant equation
gives the algebraic equation for U := u51 (namely, z7 + (U − 1)5U 2 = 0) and then,
the Abel–Tannery–Cockle–Harley–Comtet theorem (see the comment after Propo-
sition 4 in [7]) transforms it into a differential equation for the series u51(z

2). It is also
the differential equation (up to distinct initial conditions) for u52(z

2) (as u2 is defined
by the same equation as u1) and thus of u51(z

2) + u52(z
2). Therefore, it directly gives

the differential equation for the series C(z) = ∑
n(An + Bn)zn , and it corresponds

to the following recurrence for its coefficients:

Cn+1 = 7

10

(7n + 5)(7n + 4)(7n + 3)(7n + 2)(7n + 1)(7n − 1)

(5n + 4)(5n + 3)(5n + 2)(5n + 1)(2n + 1)(n + 1)
Cn ,

which is exactly the hypergeometric recurrence for 2
7n−1

(7n−1
2n

)
(with the same initial

condition). This computation takes 1 second on an average computer, while, if not
done in this way (e.g., if instead of the resultant shortcut above, one uses several
gfun[diffeq*diffeq] or variants of it in Maple, see [58] for a presentation of
the corresponding package), the computations for such a simple binomial formula
surprisingly take hours.

Some additional investigations conducted by Manuel Kauers (private communi-
cation) show that this is the only linear combination of An and Bn which leads to a
hypergeometric solution (to prove this, you can compute a recurrence for a formal
linear combination r An + sBn , and then check which conditions it implies on r and
s if one wishes the associated recurrence to be of order 1, i.e., hypergeometric). It
thus appears that r An + sBn is generically of order 5, with the exception of a spo-
radic 4An − Bn which is of order 4, and the miraculous An + Bn which is of order
1 (hypergeometric).

However, there are many other hypergeometric expressions floating around: ex-
pressions of the type of the right-hand side of (7.12) have nice hypergeometric closed
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forms. This can also be explained in a combinatorial way; indeed, we observe that set-
ting k = −5 in Formula (10) from [8] leads to 5W−5(z) = Θ(A(z) + B(z)) (where
Θ is the pointing operator). The “Knuth pointed walks” are thus in 1-to-5 corre-
spondence with unconstrained walks (see our Table 1, top left) ending at altitude
−5.

We want to end this section with exemplifying the miracles involved in the sim-
plifications of (7.11). Using the Flajolet–Soria formula [7] for the coefficients of
an algebraic function, we can extract the coefficient of z7n−2 of G1(z) and F0(z) in
terms of nested sums. According to (7.9), this corresponds to An and Bn , which are
thus given by formulae involving respectively 45 and 34 nested sums6 (see Fig. 5).

Then, in the next section, we perform some analytic investigations in order to
prove what Knuth conjectured:

An

Bn
= κ1 − κ2

n
+ O(n−2),

with κ1 ≈ 1.63026 and κ2 ≈ 0.159.

6 Asymptotics

As usual, we need to locate the dominant singularities and to understand the local
behavior there. The fact that there are several dominant singularities makes the game
harder here, and this case was only sketched in [8]. Similarly to what happens in
the rational world (Perron–Frobenius theory), or in the algebraic world (see [7]), a
periodic behavior of the generating function leads to some more complicated proofs,
because additional details have to be taken into account. With respect to walks, it is,
e.g., crucial to understand how singularities spread among the roots of the kernel. To
this aim, some quantities will play a key role: The structural constant τ is defined as
the unique positive root of P ′(τ ), where

P(u) = u−2 + u5

is encoding the jumps, and the structural radius ρ is given as ρ = 1/P(τ ). For our
problem, one thus has the explicit values (Fig. 6):

τ = 7

√
2

5
, P(τ ) = 7

10
7
√
2552, ρ =

7
√
2255

7
.

From [8], we know that the small branches u1(z) and u2(z) are possibly singular
only at the roots of P ′(u). Note that the jump polynomial has periodic support with

6Via the kernel method, as explained in [11], it is possible to express An and Bn with less nested
sums than in Fig. 5 but the corresponding formulae are, however, still of the “ugly” type!
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Fig. 5 The “ugly + ugly = nice” formula. An is counting Dyck paths touching or staying below
the line y = (2/5)x + 1/5, and Bn is counting Dyck paths touching or staying below the line
y = (2/5)x . They are given by complicated “ugly” nested sums, so the miracle is that the sum
An + Bn is nice. We give several explanations of this fact in this article

period p = 7 as P(u) = u−2H(u7) with H(u) = 1 + u. Due to that, there are 7
possible singularities of the small branches

ζk = ρωk, with ω = e2π i/7.

Definition 7.3 We call a function F(z) p-periodic if there exists a function H(z)
such that F(z) = H(z p).

Additionally, we have the following local behaviors:



The Kernel Method for Lattice Paths Below a Line of Rational Slope 135

Fig. 6 P(u) is the polynomial encoding the jumps, and its saddle point τ gives the singularity
ρ = 1/P(τ ) where the small root u1 (in green) meets the large root v1 (in red), with a square
root behavior. (In black, we also plotted |u2|, |v2| = |v3|, and |v4| = |v5|.) This is the key for all
asymptotics of such lattice paths

Lemma 7.1 (Local behavior due to rotation law) The limits of the small
branches when z → ζk exist and are equal to

u1(z) =
z ∼ ζk

{
τω−3k + Ck

√
1 − z/ζk + O((1 − z/ζk)3/2), for k = 2, 5, 7,

τ2ω
−3k + Dk(1 − z/ζk) + O((1 − z/ζk)2), for k = 1, 3, 4, 6,

u2(z) =
z ∼ ζk

{
τ2ω

−3k + Dk(1 − z/ζk) + O((1 − z/ζk)2), for k = 2, 5, 7,

τω−3k + Ck
√
1 − z/ζk + O((1 − z/ζk)3/2), for k = 1, 3, 4, 6,

where τ2 = u2(ρ) ≈ −.707723271 is the unique real root of 500t35 + 3900t28 +
13540t21 + 27708t14 + 37500t7 + 3125, Ck = − τ√

5
ω−3k , and Dk = τ2

τ 7
2 +1

5τ 7
2 −2

ω−3k .

Proof Wewill show the following rotation law for the small branches (for all z ∈ C,
with |z| ≤ ρ and 0 < arg(z) < π − 2π/7):

u1(ωz) = ω−3u2(z),

u2(ωz) = ω−3u1(z).

Let us consider the function U (z) := ω3ui (wz) (with i = 1 or i = 2, as you pre-
fer!) and the quantity X , defined by X (z) := U 2 − zφ(U ) (where φ(u) := u2P(u)).
So we have X (z) = (ω3ui (ωz))2 − zφ(ω3ui (ωz)) = ω6ui (ωz)2 − zφ(ui (ωz)) (be-
causeφ is 7-periodic) and thusωX (z/ω) = ω(ω6ui (z)2 − z/ωφ(ui (z))) = ui (z)2 −
zφ(ui (z)), which is 0 because we recognize here the kernel equation. This implies
that X = U 2 − zφ(U ) = 0 and thusU is a root of the kernel. Which one? It is one of
the small roots, because it is converging to 0 at 0. What is more, this rootU is not ui ,
because it has a different Puiseux expansion (and Puiseux expansions are unique).
So, by the analytic continuation principle (therefore, here, as far as we avoid the cut
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Fig. 7 The locations of the 7 possible singularities of the small branches (left); the small branch
which is singular at that location (right)

line arg(z) = −π ), we just proved that ω3u1(ωz) = u2(z) and ω3u2(ωz) = u1(z)
(and this also proves a similar rotation law for large branches, but we do not need it).

Accordingly, at every ζk , among the two small branches, only one branch becomes
singular: This isu1 for k = 2, 5, 7 andu2 for k = 1, 3, 4, 6.This is illustrated inFig. 7.

Hence, we directly see how the asymptotic expansion at the dominant singularities
is correlatedwith the one ofu1 at z = ρ = ζ7,whichwederive following the approach
of [8]; this gives for z ∼ ρ:

u1(z) = τ + C7

√
1 − z/ρ + C ′

7(1 − z/ρ)3/2 + . . . ,

where C7 = −
√
2 P(τ )

P ′′(τ )
. Note that in our case P (3)(τ ) = 0 (this funny cancellation

holds for any P(u) = p5u5 + p0 + p−2u−2 ), so even the formula for C ′
7 is quite

simple: C ′
7 = − 1

2C7.
In the lemma, the formula for τ2 = u2(ρ) is obtained by a resultant computation.

For the local analysis of Knuth’s generating functions F0(z) and G1(z) with pe-
riodic support, we introduce a shorthand notation.

Definition 7.4 (Localasymptotics extractor [zn]ζk )Let F(z)be an algebraic function
with p dominant singularities ζk (for k = 1, . . . , p). Accordingly, for each ζk , F(z)
can be expressed as a Puiseux series; that is, there exist r ∈ Q and coefficients cn
(both depending on k) such that

F(z) =
∑

j≥0

c j (1 − z/ζk)
r j , for z ∼ ζk .

Then, we define the local asymptotic extractor [zn]ζk as

[zn]ζk F(z) :=
∑

j≥0

c j [zn](1 − z/ζk)
r j .



The Kernel Method for Lattice Paths Below a Line of Rational Slope 137

This notation can be considered as “extracting the zn-coefficient in the Puiseux
expansion7 of F(z) at z = ζk ,” and singularity analysis allows to write [zn]F(z) =∑

k[zn]ζk F(z) + o(C−n), for some constant C > |ζk |.
Example 7.1 A sloppy but easy to remember formulation would be to say

[zn]ζk F(z) := [zn](singular expansion of F(z) at z = ζk).

This is well illustrated by the generating function D(z) of Dyck paths defined by
the functional equation D(z) = 1 + z2D(z)2. In this case, we have D(z) = 1−√

1−4z2
2z2

with p = 2 and ζ1 = 1/2 and ζ2 = −1/2. Therefore, we get for any ε > 0

[zn]D(z) = [zn]1/2 D(z) + [zn]−1/2 D(z) + o
(
(2 − ε)n

)

= [zn](−2
√
2)

√
1 − 2z + [zn](−2

√
2)

√
1 + 2z + O

(
2n

n5/2

)
+ o

(
(2 − ε)n

)
.

Proposition 7.2 (Periodic rule of thumb) Let ρ be the positive real dominant singu-
larity in the previous definition. If additionally the generating function F(z) satisfies
a rotation law F(ωz) = ωmF(z) (whereω = exp(2iπ/p), p maximal), then one has
a neat simplification:

[zn]F(z) = p[zn]ρF(z) + o(ρn),

if n − m is a multiple of p. (The other coefficients are equal to 0.)

Proof As F(z) is a generating function, it has real positive coefficients, and therefore,
by Pringsheim’s theorem [33, Theorem IV.6], one of the ζk’s has to be real positive,
called ρ. We relabel the ζk’s such that ζk := ωkρ. Then

[zn]F(z) − o(ρn) =
p∑

k=1

[zn]ζk F(z) =
p∑

k=1

[zn]ζk (ωm)k F(ω−k z)

=
p∑

k=1

(ωm)k(ω−k)n[zn]ρF(z)

=
(

p∑

k=1

(ωk)m−n

)
[zn]ρF(z) = p[zn]ρF(z),

if n − m is a multiple of p, and 0 elsewhere.

We can apply this proposition to F0(z) and G1(z), because the rotation law for
the ui ’s implies: F0(ωz) = ω−2F0(z) and G1(ωz) = w−2G1(z). Thus, we just have
to compute the asymptotics coming from the Puiseux expansion of F0(z) and G1(z)

7In fact, this notation holds for singular expansions of alg-log functions [33], exp-log functions and
more generally for expansions in Hardy fields [36] which are amenable to singularity analysis or
saddle point methods.
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at z = ρ, and multiply it by 7 (recall that it is classical to infer the asymptotics of the
coefficients from the Puiseux expansion of the functions via the so-called transfer
Theorem VI.3 from [33]); this gives:

Theorem 7.4 (Asymptotics of coefficients, answer to Knuth’s problem) The asymp-
totics for the number of excursions below y = (2/5)x + 2/5 and y = (2/5)x + 1/5
are given by:

An = [z7n−2]G1(z) = α1
ρ−7n

√
π(7n − 2)3

+ 3α2

2

ρ−7n

√
π(7n − 2)5

+ O(ρ−7nn−7/2),

Bn = [z7n−2]F0(z) = β1
ρ−7n

√
π(7n − 2)3

+ 3β2

2

ρ−7n

√
π(7n − 2)5

+ O(ρ−7nn−7/2),

with the following constants, where we use the shorthand μ for τ2/τ :

α1 = μ4 + 2μ3 + 3μ2 + 4μ + 5√
5

, β1 = √
5 − α1, β2 = − 9

10

√
5 − α2,

α2 = −1

2

τ 7
2 (13μ4 + 22μ3 + 29μ2 + 36μ + 45)√

5(5τ 7
2 − 2)

− 1

5

15μ4 + 20μ3 + 13μ2 − 8μ − 45√
5(5τ 7

2 − 2)
.

This theorem leads to the following asymptotics for An + Bn (and this is for sure
a good sanity test, coherent with a direct application of Stirling’s formula to the
closed-form formula (7.11) for An + Bn):

An + Bn =
√

5

73π

ρ−7n

√
n3

+ O(n−5/2).

Finally, we directly get

An

Bn
= α1 + 3α2

2(7n−2)

β1 + 3β2

2(7n−2)

+ O(n−2) = α1

β1
+ 3

14

(
α2β1 − α1β2

β2
1

)
1

n
+ O(n−2),

which implies that Knuth’s constants are

κ1 = α1

β1
= − 5

μ4 + 2μ3 + 3μ2 + 4μ
− 1

≈ 1.6302576629903501404248,

κ2 = − 3

14

(
α2β1 − α1β2

β2
1

)
= 3

9800
(13 − 236κ1 − 194κ2

1 − 388κ3
1 + 437κ4

1 )

≈ 0.1586682269720227755147.
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Now a few resultant computations give the algebraic equations satisfied by τ2, κ1
and κ2.Wewill illustrate their derivationwith the requiredMaple commands. In what
follows, these are always set in a typewriter font. First, we compute an annihilating
polynomial for ρ:

> R1:=resultant(numer(1-z*P),numer(diff(P,u)),u);

R1 := 823543 z7 − 12500
Then, we construct from it an annihilating polynomial for ui (ρ).
> R2:=factor(resultant(numer(1-z*P),R1,z));

(
500 u35 + 3900 u28 + 13540 u21 + 27708 u14 + 37500 u7 + 3125

) (−2 + 5 u7
)2

This polynomial contains u1(ρ) = τ and u2(ρ) = τ2 as roots. It factorizes into
smaller polynomials, and these two roots are in separate factors. Thus, we can go on
with the right factorwhichwe save inRtau2. Then,we continuewith the annihilating
polynomial for μ.

> resultant(x*t-t2,subs(u=t,diff(P,u)),t);
> factor(resultant(%,subs(u=t2,Rtau2),t2));
We identify the algebraic relation for μ and save it in Rmu. Finally, we compute

the minimal polynomial for κ1:
> Rmu:=2*uˆ5+4*uˆ4+6*uˆ3+8*uˆ2+10*u+5;
> Rk1:=resultant((x+1)*(uˆ4+2*uˆ3
> +3*uˆ2+4*u)+5,Rmu,u):
> factor(Rk1/igcd(coeffs(Rk1)));

−23 x5 + 41 x4 − 10 x3 + 6 x2 + x + 1
In conclusion, κ1 is the unique real root of the polynomial 23x5 − 41x4 + 10x3 −

6x2 − x − 1, and similar computations show that (7/3)κ2 is the unique real root
of 11571875x5 − 5363750x4 + 628250x3 − 97580x2 + 5180x − 142. The Galois
group of each of these polynomials is S5. This implies that there is no closed-form
formula for the Knuth constants κ1 and κ2 in terms of basic operations on integers
and roots of any degree.

In the next section, we want to establish a link with the results from Nakamigawa
and Tokushige. We will show how Knuth derived his problem and how to establish
more such nice identities.

7 Links with the Work of Nakamigawa and Tokushige

In this section, we show the connection between a result of Nakamigawa and
Tokushige [53] and Knuth’s statement. Furthermore, we derive extensions of this
result.

Let α, β be positive rational numbers. The Nakamigawa–Tokushige model con-
sists of a single boundary L : y = αx + β and a lattice point8 Q = (q1, q2) ∈ Z

2

8In the article [53], Q = (m, n); we changed these coordinates in order to avoid a conflict with our
other notations.
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Fig. 8 The 3 walks of length 6 in the (2/5)x + 2/5 model with δ(w) > 0. The vertical bars mark
the minimal y-distance δ(w). The first walk has δ(w) = 1/5, whereas the last two have δ(w) = 2/5.
All of them are members of W1/5, but only the two last ones belong to W2/5

on L , i.e., q2 = αq1 + β. Furthermore, the walks go in the opposite direction; that
is, they start in Q, use unit steps South and West (i.e., (0,−1) and (−1, 0), respec-
tively) and end in the origin. Let V be the “vast” set of such walks without any
restriction. The enumeration of V is a folklore result: |V | = (q1+q2

q1

)
. Let W ⊂ V be

the set of walks which do not cross the line L and touch it only at Q.

Definition 7.5 (Nearest distance to the boundary) Letw ∈ V be a walk from a point
Q to the point (0, 0). We define theminimum y-distance δ(w) as follows: If the walk
w touches or crosses the boundary y = αx + β after the first step, then let δ(w) = 0,
otherwise let δ(w) be the minimum of αp1 + β − p2, where (p1, p2) runs over all
lattice points on w except Q, see Fig. 8.

Hence, we see that δ(w) = 0 if and only if w ∈ V \ W , and so
∑

w∈V δ(w) =∑
w∈W δ(w). Note, if α and β are positive integers, then

∑
w∈V δ(w) = |W |, because

δ(w) = 1 for all w ∈ W . This gives rise to the interpretation as a weighted sum
corresponding to the number of walks.

For a real t ≥ 0, letWt := {w ∈ W | δ(w) ≥ t}; that is, the walks staying at least a
y-distance of t away from the boundary.Due to the definition, |Wt | is a left-continuous
step function of t , and we get the representation

∫ 1

0
|Wt | dt =

∑

w∈V
δ(w).

It is quite nice that this sum can be further simplified; this is what the next theorem
states:

Theorem 7.5 (Nakamigawa–Tokushige lattice path integral) Let q1, q2 be positive
integers, and let α, β be positive reals with q2 = αq1 + β. Let V be the set of walks
from the origin to the point9 (q1, q2). Then, we have

∫ 1

0
|Wt | dt =

∑

w∈V
δ(w) = β

q1 + q2

(
q1 + q2

q1

)
. (7.13)

9Nota bene: As proven in Lemma 7.2 (Possible starting points on the boundary), if α and β are
irrational, then there is at most one such point. While if α and β are rational (with the right gcd
condition), then there are infinitely many such points.
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Proof This corresponds to [53, Theorem 1 and Corollary 1], where it is proven using
a cycle lemma approach.We give a generalization of this formula in Sect. 8 hereafter,
based on our kernel method approach and Lagrange inversion.

A geometric bijection. If α is a rational slope, i.e., α = a/c for some a, c ∈
N \ {0}, then ∫ 1

0
|Wt | dt = 1

c

∑

t∈T
|Wt |, (7.14)

where T = {δ(w) |w ∈ W } = {1/c, 2/c, . . . , (c − 1)/c}.
This gives rise to the following interpretation10: If w ∈ W , then the first step is a

South step. Then, let w̃ be the walk obtained from w by omitting this step. Therefore,
w̃ is a walk with q1 + q2 − 1 steps, starting from Q − (0, 1) = (q1, q2 − 1) and
ending in the origin. We see that all these walks which never cross or touch L are in
bijection with all walks in W . Now, take a walk w ∈ Wt and its corresponding walk
w̃. As δ(w) ≥ t , we can translate the barrier L by t − 1/c down and the walk w̃ still
does not touch or cross this new barrier L̃ . Hence, all walks in Wt are in bijection
with walks from (q1, q2 − 1) to the origin which stay strictly below the barrier L̃ .

Example 7.2 This is the bijection that Knuth used in order to state his conjecture. In
his case, we have α = β = 2/5 and q1 = 5n − 1, q2 = 2n for n ∈ N \ {0}. We see
thatq2 = αq1 + β. Hence,a = 2 and c = 5which implies T = {1/5, 2/5, 3/5, 4/5}.
In this case, the values 3/5 and 4/5 are playing no role, as |W3/5| = |W4/5| = 0
because β = 2/5 is the maximal value for δ(w) for all walks to the origin. Therefore,∫ 1
0 |Wt | dt can be represented by two summands involving W1/5 and W2/5. They
correspond to the two models A and B with the barriers L1 : y < (2/5)x + 2/5 and
L2 : y < (2/5)x + 1/5, respectively, where the paths start at (5n − 1, 2n − 1) and
move by South andWest steps to the origin. Compare also Fig. 8. Note that in Knuth’s
case the walks move in the opposite direction, which is obviously equivalent.

In general, the number of summands |Wt |, which corresponds to the number of
models in the equivalent formulation, is determined by the size of T minus the
maximal y-distance at (0, 0). Hence, we need to consider T̃ = {t ∈ T | t < β} =
{1/c, . . . , k/c}. This gives k models with walks from (q0, q1 − 1) to the origin which
stay strictly below the boundaries Li : y < αx + (β − (i − 1)/c) for i = 1, . . . , k.
Then, the above reasoning implies that the walks with boundary Li correspond to the
set Wi/c. Thus, counting the walks in these k models and summing them up give the
binomial closed form appearing in the lattice path integral theorem (7.13) divided
by c, compared with (7.14).

Up to now in this section, we explained which different counting models are
connected with the Nakamigawa–Tokushige lattice path integral formula. Now, we
discuss the possible starting points on the boundary and their interplay with the
(ir)rationality of the slope.

10In the original work, a slightly different interpretation is given.
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Lemma 7.2 (Possible starting points on the boundary) Let α, β be positive reals.
Then the equation y = αx + β possesses in the positive integers

1. infinitely many solutions (x, y), if α = a/c, β = b/c with a, b, c ∈ N, and
gcd(a, c)|b;

x = cs − ra, y = as + rc,

with s ≥ S0 := max (
ra/c�, 
−rc/a�), and ra and rc are integers such that raa +
rcc = b;

2. exactly one solution (x, y) = (q1, q2), if α /∈ Q and β = q2 − αq1 > 0;
3. no solution, otherwise.

Proof Let us start with rational slope α = a/c, with a, c ∈ N. In order to get integer
solutions we need a rational β = b/c, with b ∈ N. Then we need to find the solutions
of the following linear Diophantine equation:

cy − ax = b. (7.15)

These solutions exist if and only if gcd(a, c)|b. By the extended Euclidean algorithm
we get integers ra, rc ∈ Z such that

raa + rcc = b.

This is done by first computing numbers r ′
a, r

′
c such that

r ′
aa/ gcd(a, c) + r ′

c/ gcd(a, c) = 1

and multiplying by b. All solutions are then given by the linear combination stated in
the lemma. Due to the special form of (7.15) with a positive and a negative coefficient
in front of the unknowns, it follows that for all s ≥ S0 the solutions are positive.

Finally, let α be irrational. Assume there exist two points Q = (q1, q2) and
P = (p1, p2) fulfilling the assumptions. By taking the difference, we get q2 − p2 =
α(q1 − p1) which implies that for q1 	= q2 we get the contradiction α ∈ Q. But for
q1 = q2 it also holds that p1 = p2 and therefore Q = P .

It is easy to see that this solution exists if and only if β = q2 − αq1 for arbitrary
q1, q2 ∈ N as long as β > 0.

The previous lemma also appeared in [42]; there, Kempner (of Kempner’s series
fame) also mentions that a similar claim holds for the number of algebraic rational
(respectively algebraic) points on y = αx + β when α is algebraic (respectively
transcendental) slope.The lemmagives us all possible integer solutions on aboundary
with rational slope. With this knowledge, we can reformulate the lattice path integral
from Theorem 7.5 in order to give a more explicit result for all possible starting
points and for any slope.
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Theorem 7.6 (Lattice path integral and explicit binomial expression) Let a, b, c
be positive integers such that gcd(a, c)|b. Let ra, rc be integers such that raa +
rcc = b. Then, q1(s) := cs − ra and q2(s) := as + rc define all pairs (q1(s), q2(s))
of integers on the barrier L : y = a

c x + b
c . Furthermore, let V be the set of walks

from (q1(s), q2(s)) to the origin strictly below the barrier L. Then, we have

∫ 1

0
|Wt | dt = b/c

(a + c)s + (rc − ra)

(
(a + c)s + (rc − ra)

as + rc

)
, (7.16)

for s ≥ S0 := max (
ra/c�, 
−rc/a�).
For fixed s, thewalks are ending after q1(s) + q2(s) = (a + c)s + (rc − ra) steps,

start at (q1(s), q2(s)) and go to the origin. In the equivalent formulation, the walks
start at (q1(s), q2(s) − 1) and go to the origin, but we consider k = cβ = b different
boundaries, given by

L1 : y <
a

c
x + b

c
, L2 : y <

a

c
x + b − 1

c
, . . . , Lb : y <

a

c
x + 1

c
.

Example 7.3 Returning to Knuth’s model, we have y < 2
5 x + 2

5 . Thus, the explicit
values are a = b = 2 and c = 5 and the assumptions of Theorem 7.6 (Lattice path in-
tegral and explicit binomial expression) are satisfied, as gcd(a, c) = 1. TheEuclidean
algorithm gives ra = −4 and rc = 2. From Lemma 7.2 on the possible starting point
on the boundary, we deduce the possible integer coordinates on the barrier L:

q1(s) = 5s + 4, q2(s) = 2s + 2,

for s ≥ 0 which represent the starting points of the walks. Finally, Theorem 7.6
directly gives the solution

∫ 1

0
|Wt | dt = 2/5

7s + 6

(
7s + 6

2s + 2

)
.

This value can be equivalently interpreted as the number of walks in k = 2 models
starting from (5s + 4, 2s + 1) and moving to the origin below the barriers

L1 : y <
2

5
x + 2

5
, L2 : y <

2

5
x + 1

5
.

This is exactly Knuth’s problem, where his index t = s + 1.

Formula (7.16) directly yields nice lattice path identities in the manner of Knuth’s
problem. Yet, there are even more formulae of this type that we will reveal in the
next section. But let us start with an interesting (everyday) problem first.
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8 Duchon’s Club and Other Slopes

8.1 Duchon’s Club: Slope 2/3 and Slope 3/2

A Duchon walk is a Dyck path starting from (0, 0), with East and North steps, and
ending on the line y = 2

3 x (see Fig. 9). This model was analyzed by Duchon [28]
and further investigated by Banderier and Flajolet [8], who called it the “Duchon’s
club” model, as it can be seen as the number of possible “histories” of couples
entering a club in the evening,11 and exiting in groups of 3. What is the num-
ber of possible histories (knowing the club is closing empty)? Well, this is ex-
actly the number En of excursions with n steps +2,−3, or (by reversal of the
time) the number of excursions with n steps −2,+3. This gives the sequence
(E5n)n∈N = (1, 2, 23, 377, 7229, 151491, 3361598, . . . ) (OEIS A060941). In fact,
these numbers En appeared already in the article by Bizley [17] (who gave some
binomial formulae, as we explained in Sect. 2). Duchon’s club model should then be
the Bizley–Duchon’s club model; Stigler’s law of eponymy strikes again.

One open problem in the article [28] was the following one: “The mean area is
asymptotic to Kn3/2, but the constant K can only be approximated to 3.43.” Our
method allows to identify this mysterious constant:

Theorem 7.7 (Area below Duchon lattice paths) The average area below Duchon
excursions of length n (lattice paths from 0 to 0, which jumps −2 and +3) is

An ∼ Kn3/2 where K = √
15π/2 ≈ 3.432342124 .

Proof The approach of [10] gives an expression for A(z) = ∑
Anzn in terms of the

two small roots u1(z) and u2(z) of 1 − z(1/u2 + u3) = 0. Then, using the rotation
law gives the singular behavior of A(z) and therefore the asymptotics of An with the
explicit constant K (Fig. 11).

8.2 Arbitrary Rational Slope

The closed form for the coefficient (Theorem 7.3) generalizes to arbitrary rational
slope:

Theorem 7.8 (General closed forms for any rational slope) Let a, b, c be integers
such that gcd(a, c)|b. Let As(k) be the number of Dyck walks below the line of slope
y = a

c x + k
c , ending at (xs, ys) given by

xs = cs − ra, ys = as + rc − 1,

11Caveat: There are no real life facts/anecdotes hidden behind this pun!
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(a) North-East model: Dyck paths be-
low the line of slope 2/3

(b) Banderier–Flajolet model: excursions with+2
and −3 jumps

Fig. 9 Dyck paths below the line of slope 2/3 and Duchon’s club histories (i.e., excursions with
jumps +2,−3) are in bijection. Duchon conjectured that the average area (in gray) after n jumps is
asymptotically equal to Kn3/2; our approach shows that K = √

15π/2

where ra andrc are integers such that raa + rcc = b. Thesenumbers arenon-negative
for s ≥ S0 := max (
ra/c�, 
−rc/a�). Then, we have

b∑

k=1

As(k) = b

(a + c)s + (rc − ra)

(
(a + c)s + (rc − ra)

as + rc

)
.

Proof This result is a direct consequence of Theorem 7.6 (lattice path integral and
explicit binomial expression) and the geometric bijection (7.14).

The enumeration of lattice paths below the line y = a
c x + b

c simplifies even more
in the case a = b. Additionally, we are able to extend the nice counting formula
in terms of binomial coefficients. In order to get these nice formulae, let us first
state what becomes the equivalent of Theorem 7.2 (Closed form for the generating
function) in the case of any rational slope.

Lemma 7.3 (Schur polynomial closed form for meanders ending at a given altitude)
Let us consider walks in N

2 with jumps −a and +c starting at altitude h ≥ a.
Let u1(z), . . . , ua(z) be the small roots of the kernel equation 1 − zP(u) = 0, with
P(u) = u−a + uc. Let F0(z), . . . , Fa−1(z) be the generating functions of meanders
ending at altitude 0, . . . , a − 1, respectively. They are given by

Fi (z) = (−1)a−i−1

z
s(h+1,1a−i−1,0i ) (u1(z), . . . , ua(z)) , (7.17)

where sλ(x1, . . . , xa) is a Schur polynomial in a variables, andλ = (λ1, . . . , λa) is an
integer partition, i.e., λ1 ≥ λ2 ≥ · · · ≥ λa ≥ 0. The notation 1s denotes s repetitions
of 1.

Proof Similar to (7.6) for the given step set, the functional equation is given by

(1 − zP(u))F(z, u) = f0(u) − zu−aF0(z) − zu−a+1F1(z) − . . . − zu−1Fa−1(z).



146 C. Banderier and M. Wallner

Applying the kernel method, one may insert the a small branches into this equation.
Then, onegetsa independent linear equations for thea unknowns F0(z), . . . , Fa−1(z).
Expressing the solutions by Cramer’s rule and rearranging the determinants, one un-
covers the defining expressions for the claimed Schur polynomials (see, e.g., [62,
Chap. 7.15] for an introduction to the relevant notions and notations).

Example 7.4 Let us consider the previous lemma for a = 3.We get the linear system

z

⎛

⎝
1 u1(z) u1(z)2

1 u2(z) u2(z)2

1 u3(z) u3(z)2

⎞

⎠

⎛

⎝
F0(z)
F1(z)
F2(z)

⎞

⎠ =
⎛

⎝
u1(z)h+3

u2(z)h+3

u3(z)h+3

⎞

⎠ .

Solving it with Cramer’s rule and rearranging the determinants, we get

F0(z) = s(h+1,1,1)(u1, u2, u3)

z
,

F1(z) = − s(h+1,1,0)(u1, u2, u3)

z
,

F2(z) = s(h+1,0,0)(u1, u2, u3)

z
,

by the definition of Schur polynomials.

Now,we are able to extend the results of the closed form for the sumof coefficients
(Theorem 7.3) even further. At its heart lies the nice expression (7.12): u51 + u52. We
will see that such a phenomenon holds in full generality, involving a sum of uhi .

Theorem 7.9 (General closed forms for lattice paths below a rational slope y =
a
c x + b

c , with b a multiple of a) Let a, c be integers such that a < c, and let b be
a multiple of a. Let As(k) be the number of Dyck walks below the line of slope
y = a

c x + k
c , k ≥ 1, ending at (xs, ys) given by

xs = cs − 1, ys = as − 1.

Then, it holds for s ≥ 1 and � ∈ N such that (� + 1)a < c that

(�+1)a∑

k=�a+1

As(k) = �a + c

(a + c)s + � − 1

(
(a + c)s + � − 1

as − 1

)
.

Proof Consider walks starting at (0, 0), ending at (xs, ys) and staying below the line
a
c x + 1

c . These are counted by As(1). Let us transform such walks by adding a new
horizontal jump at the end. Note that the first � c

a � jumps must be horizontal jumps.
Thus, we can interpret this walk as one starting from (1, 0), ending at (xs + 1, ys)
staying below the given boundary. But as a horizontal jump increases the distance to
the boundary by a

c , this is equivalent to counting walks starting at (0, 0), ending at
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Fig. 10 Transforming walks by moving the first step to the end of the walk. The red dot at (1, 0)
and the red y-axis mark the new origin

(xs, ys) and staying below the boundary a
c x + a+1

c . This process is shown in Fig. 10.
Such walks are counted by As(a + 1).

Thus, the sequence As(1), As(a + 1), As(2a + 1), . . . can be interpreted as count-
ing walks staying always below the boundary a

c x + 1
c , starting at (0, 0) and ending at

(xs, ys), (xs + 1, ys), (xs + 2, ys), . . ., respectively. In particular, for � ≥ 0we define
these new ending points as (x̃s, ỹs) given by

x̃s = xs + � = cs + � − 1, ỹs = ys = as − 1.

Analogously, the same holds for As(2), . . . , As(a − 1).
For the start, we then follow the line of thought from Theorem 7.3 (Closed form

for the sum of coefficients). Let us first derive the respective generating functions.
Therefore, we apply the bijection from Proposition 7.1, reverse the time and allow
to touch y = 0. Then, the sum

∑(�+1)a
k=�a+1 As(k) can be interpreted as walks of length

x̃s + ỹs = (a + c)s + � − 2, starting at altitude a x̃s − c ỹs + i = �a + (c − a) + i
and ending at altitude i for i = 0, . . . , a − 1. To simplify notation, let us introduce
the constant

h := �a + c .

Then, walks end at h − a + i . Therefore, we are now able to apply Lemma 7.3
(Schur polynomial closed form formeanders ending at a given altitude).Additionally,
by reversing the summation order, we get:

(�+1)a∑

k=�a+1

As(k) = [z(a+c)s+�−2]
a−1∑

j=0

(−1) j

z
s(h− j,1 j ,0a− j−1) (u1(z), . . . , ua(z))

= [z(a+c)s+�−1]
(

a∑

i=1

ui (z)
h

)
. (7.18)
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This surprisingly simple result is due to a nice representation theorem of power
symmetric functions in terms of Schur polynomials: [62, Theorem 7.17.1]. One gets
this equation by setting μ = ∅ and restricting the case to a variables. Note that this
is the analogue of (7.12). It is in one sense the reason for the nice closed forms in
this article.

In contrast to Theorem 7.3 (Closed form for the sum of coefficients), we proceed
now differently by Lagrange inversion [48]. From the kernel method, we know that
the small branches ui (z) satisfy the kernel equation 1 − zP(u) = 0, where P(u) =
u−a + uc for general slope a/c. The entire form of the kernel equation satisfies nearly
a Lagrangian scheme

ui (z)
a = z

(
1 + ui (z)

a+c
)
.

By taking the a-th root, one gets for an auxiliary power series U (x):

U (x) = xφ(U (x)), with φ(u) = (
1 + ua+c

)1/a
.

Let ω 	= 1 be an a-th root of unity (i.e., ωa = 1). Then, we recover the ui (z), i =
1, . . . , a, by

ui (z) = U
(
ωi−1z1/a

)
.

Thus, coming back to (7.18) we are actually interested in

a∑

i=1

ui (z)
h =

a∑

i=1

U
(
ωi−1z1/a

)h =
∑

n≥0

Unz
n/a

(
a∑

i=1

ω(i−1)n

)
= a

∑

n≥0

Uanz
n,

where U (x)h = ∑
n≥0Unxn (in fact, by construction many coefficients Un are 0,

because U (z) has an (a + c) periodic support, but this is not altering our reasoning
hereafter). Considering (7.18) again, we need Uan for n = (a + c)s + � − 1. It is
determined by the above Lagrangian scheme:

Uan = [xa((a+c)s+�−1)]U (x)h

= �a + c

a((a + c)s + � − 1)
[ua((a+c)s+�−1)−1]u�a+c−1

(
1 + ua+c

)(a+c)s+�−1

= �a + c

a((a + c)s + � − 1)

(
(a + c)s + � − 1

as − 1

)
.

Rewriting the binomial coefficient by symmetry, the claim follows.

Example 7.5 Knuth’s original problem was dealing with boundaries y = 2
5 x + k

5 ,
(k = 1, . . . , 4). In particular, we may choose � = 0 and � = 1 to get:



The Kernel Method for Lattice Paths Below a Line of Rational Slope 149

2∑

k=1

As(k) = 5

7s − 1

(
7s − 1

2s − 1

)
= 2

7s − 1

(
7s − 1

2s

)
,

4∑

k=3

As(k) = 1

s

(
7s

2s − 1

)
.

The first one is the known result, whereas the second one is yet another surprising
identity.

Now, we come back to the asymptotics of Sect. 6. Some key ingredients were
Proposition 7.2 (Periodic rule of thumb) and the rotation law of the small branches.
Happily, such a rotation law holds in general for any slope, and the derived techniques
can also be applied. This is what we present now.

Let P(u) = u−a + uc be the jump polynomial of directed walks. Thus, we have
a small branches ui (z) satisfying the kernel equation 1 − zP(ui (z)) = 0. As before
let τ be the unique positive root of P ′(τ ), and let ρ be defined as ρ = 1/P(τ ). Recall
that the small branches are possibly singular only at the roots of P ′(u). The jump
polynomial has periodic support with period p = a + c as P(u) = u−aH(u p) with
H(u) = 1 + u. Hence, there are p possible singularities of the small branches

ζk = ρωk, with ω = e2π i/p.

The general version of Lemma 7.1 reads then as follows:

Lemma 7.4 (Rotation law of small branches) Let gcd(a, c) = 1. Then there exists a
permutation σ of {1, . . . , p} without fix points and an integer κ (satisfying κa + 1 ≡
0 mod p) such that

ui (ωz) = ωκuσ(i)(z),

for all z ∈ C with |z| ≤ ρ and 0 < arg(z) < π − 2π/p.

Proof We proceed as in the proof of Lemma 7.1. Define U (z) := ωκui (ωz) and a
function X (z) := U a − zφ(U ) with φ(u) := ua P(u). Then a straightforward com-
putation shows that

X (z) = (ωκui (ωz))
a − zφ (ωκui (ωz)) = ωκaui (ωz)

a − zφ(ui (ωz)),

as φ(u) is p-periodic. Therefore, we get by the following transformation

ωX (z/ω) = ωκa+1ui (z)
a − zφ(ui (z)) = 0,

if κa + 1 ≡ 0 mod p, because of the kernel equation. Thus, X = U a − zφ(U ) = 0
and therefore, U (z) is a root of the kernel equation. It has to be a small root, as it
is converging to 0 if z goes to 0. Furthermore, it has to be a different root, as it has
a different Puiseux expansion. By the analytic continuation principle (as long as we
avoid the cut line arg(z) = −π ), the result follows.



150 C. Banderier and M. Wallner

This is the landscape in the complex plane of
|F(z)|, where F is here the generating function of
Duchon’s club excursions. One can see the five
dominant singularities. It is enough to know the
local behaviour near the real positive singularity,
the rotation law implies the same behaviour at the
other dominant singularities.

Fig. 11 Landscape in the complex plane of the generating function of lattice paths

The last lemma allows us to state the following “meta”-result:

Theorem 7.10 (Metatheorem/rule of thumb: enumeration and asymptotics of lat-
tice paths) Constrained 1-dimensional lattice paths have an algebraic generating
function, expressible in terms of Schur functions (a symmetric function involving
the small branches of the kernel). Singularity analysis gives its asymptotic behav-
ior, which is equal to the asymptotics at the dominant real singularity (times the
periodicity whenever the rotation law holds).

We call this a metatheorem because it is rather informal in the description of
the constraints allowed (it could be positivity, prescribed starting or ending points,
to live in a cone, to stay below a line of rational slope, to have some additional
Markovian behavior, to be multidimensional with one border, or in bijection with
any of these constraints …); in all these cases, the spirit of the kernel method and
analytic combinatorics should give the enumeration and the asymptotics. Different
incarnations of this rule of thumb appear in [7, 8, 10, 12, 19], and no doubt that
many new lattice problems on the one hand, and many new combinatorial problems
involving some typeof periodicity on theother hand,will offer additional incarnations
of this metatheorem (Fig. 11).

9 Conclusion

In this article, we analyzed some models of directed lattice paths below a line of
rational slope. As a guiding thread, we first illustrated our method on Dyck paths
below the line of slope 2/5. Beside the (pleasant) satisfaction of answering a problem
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of Don Knuth, this sheds light on properties of constrained lattice paths, including
the delicate case (for analysis) of a periodic behavior.

We can shortly recall the main methods used in this article to attack lattice path
problems:

Firstly, the method of choice of Nakamigawa and Tokushige was the cycle lemma.
It is a classical result for lattice paths which uses the geometry of the problem.
However, its applications are limited to certain cases.

Secondly, a more general result is given in Theorem 7.9 (General closed forms
for lattice paths below a rational slope y = a

c x + b
c ), via the Lagrange inversion.

This directly gives the sought closed form. However, it does not give access to the
asymptotics.

Thus, thirdly, we used the kernel method to express the generating functions
explicitly in terms of (known) algebraic functions. This gave us access to the asymp-
totics and is an alternative way to access the closed forms. Our Proposition 7.2
(Periodic rule of thumb) explains in which way the asymptotic expansions are mod-
ified in the case of a periodic behavior (via some local asymptotics extractor and the
rotation law); we expect this approach to be reused in many other problems.

Also, the method of holonomy theory used in Theorem 7.3 (Closed form for the
sum of coefficients) shows the possible usage of computer algebra to prove such
conjectured identities. This is probably the fastest technique for checking given
identities and can be automatized to a great extent. The interested reader is referred
to the nicely written introductions [41, 56].

Our approach extends to any lattice path (with any set of jumps of positive coordi-
nates) below a line of (ir)rational slope (see [15]). This leads to some nice universal
results for the enumeration and asymptotics. As an open question, it could be natural
to look for similar results for lattice paths (with any set of jumps with positive and
negative coordinates, and not just jumps to the nearest neighbors) in a cone given by
two lines of rational slope. This is equivalent to the enumeration of non-directed lat-
tice paths in dimension 2.Despite the nice approach from the probabilistic school [26,
31] and from the combinatorial school [22] via the iterated kernel method, this re-
mains a terribly simple problem (to state!), but a challenge for the mathematics of
this century.
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Via Partial Bell Polynomials
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Abstract Weconsider a class of lattice pathswith certain restrictions on their ascents
and down-steps and use them as building blocks to construct various families of Dyck
paths. We let every building block Pj take on c j colors and count all of the resulting
colored Dyck paths of a given semilength. Our approach is to prove a recurrence
relation of convolution type, which yields a representation in terms of partial Bell
polynomials that simplifies the handling of different colorings. This allows us to
recover multiple known formulas for Dyck paths and related lattice paths in a unified
manner.
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d. Thus, every Dyck path can be encoded by a corresponding Dyck word of u’s and
d’s. We will freely pass from paths to words and vice versa.

Much is known about Dyck paths and their connection to other combinato-
rial structures like rooted trees, noncrossing partitions, polygon dissections, Young
tableaux, and other lattice paths. While there is a vast literature on the enumeration
of Dyck paths and related combinatorial objects according to various statistics, for
the scope of the present work, we only refer to the closely related papers [1, 7, 10].
For more information, the reader is referred to the general overview on lattice path
enumeration written by Krattenthaler in [4, Chap. 10].

For a, b ∈ N0 = N ∪ {0} with a + b �= 0 and c = (c1, c2, . . . ) with c j ∈ N0, we
define

Dc
n(a, b) as the set of Dyck words of semilength (a + b)n created from strings of the form

P0 = “d ” and Pj = “u(a+b) j db( j−1)+1” for j = 1, . . . , n, such that eachmaximal (a + b) j-
ascent substring u(a+b) j may be colored in c j different ways. We use c j = 0 if (a + b) j-
ascents are to be avoided. We will refer to the elements of Dc

n(a, b) as colored Dyck paths
or colored Dyck words.

Note that if a = 1, b = 0, and c is the sequence of ones c = 1 = (1, 1, . . . ),
then the building blocks take the form P0 = “d ”, Pj = “u jd ” for j = 1, . . . , n, and
D1

n (1, 0) is just the set of regular Dyck words of semilength n.
In this paper, we are interested in counting the number of elements in Dc

n(a, b).
For the sequence given by yn = ∣

∣Dc
n(a, b)

∣
∣, we prove a recurrence relation of con-

volution type (see Theorem 1) and give a representation of yn in terms of partial Bell
polynomials in the elements of the sequence c = (c1, c2, . . . ) (see Theorem 2).

We conclude with several examples that illustrate the use of our formulas for
various values of the parameters a and b as well as some interesting coloring choices.

2 Enumeration of Colored Dyck Words

Our technique for enumerating Dc
n(a, b) will be to show in Theorem 1 and

Proposition 1 that the sequence yn = ∣
∣Dc

n(a, b)
∣
∣ satisfies the same initial condition

and recurrence relation as a sequence (zn) involving Bell polynomials. As a direct
consequence, we get the promised enumeration of Dc

n(a, b) in terms of partial Bell
polynomials (Theorem 2).

Theorem 1 For a, b ∈ N0 with a + b �= 0 and c = (c1, c2, . . . ) with c j ∈ N0, let
(yn) be the sequence defined by y0 = 1 and yn = ∣

∣Dc
n(a, b)

∣
∣ for n ≥ 1. Then, yn

satisfies the recurrence

yn =
n

∑

�=1

c�

∑

i1+···+ia�+b=n−�

yi1 · · · yia�+b , (8.1)

where each i j is a nonnegative integer.
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Proof We will prove (8.1) by showing that there is a bijection between the sets of
objects counted by each side of the equation. The left-hand side counts colored Dyck
words of semilength (a + b)n. The right-hand side counts tuples of the form

(�,C; D1, D2, . . . , Da�+b),

where

• 1 ≤ � ≤ n,
• C is a color from a choice of c� colors,
• Dj is a member of Dc

i j
(a, b), i.e., a colored Dyck word of semilength (a + b)i j ,

and
• i1 + · · · + ia�+b = n − �.

From this tuple, we will construct a colored Dyck word w of semilength (a + b)n
in the following fashion.

Due to the � and C appearing in the tuple, we begin with the string v =
u(a+b)�db(�−1)+1 with the substring u(a+b)� colored C . We then append D1, D2, …,
Da�+b to v, separating each adjacent pair (Di , Di+1) by an additional copy of the
letter d. In this way, a string w is obtained. We need to check that this map is well
defined, meaning that w is a colored Dyck word of semilength (a + b)n.

Let us first check that w contains equal numbers of the letters u and d. Since the
Di already satisfy this condition, we need

(a + b)� = (b(� − 1) + 1) + (a� + b − 1),

which is true. Similar reasoning shows the “Dyck” property, i.e., that any prefix of
w has at least as many appearances of u as of d. To determine the semilength of w,
we count the number of appearances of u as

(a + b)� + (a + b)(n − �) = (a + b)n,

as desired. By construction, each maximal (a + b) j-ascent has an appropriate color
and we conclude that w is a colored Dyck word of semilength (a + b)n.

To show that this map f from the tuple to w is a bijection, we argue that it has a
well-defined inverse g. Thus, let w be a colored Dyck path of semilength (a + b)n,
and recall that a and b are fixed. The length L and color of the ascent sequence at
the beginning of w determine � = L

a+b and C at the start of the tuple g(w). Let w1

denote the word obtained from w by removing this prefix u(a+b)�db(�−1)+1 from w.
See Fig. 1 for a schematic example. We next wish to determine D1, . . . , Da�+b from
w1. Let us say that w1 has starting height a� + b − 1, meaning that it has this many
more copies of d than of u. Notice that this starting height is nonnegative.

To determine D1, we proceed by finding the smallest r such that the suffix of
w1 corresponding to those letters strictly after position r has starting height one less
than that of w1. Then, we let w2 be that suffix of w and we let D1 be the prefix of
w1 corresponding to those letters strictly before position r . In particular, if the first
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D1 D2

D3

D4 D5

r

w1
w2

Fig. 1 A schematic example of determining (�,C; D1, D2, . . . , Da�+b) from w as in the proof of
Theorem 1, where the semicircles represent colored Dyck paths. We have L = 5, a = 5, b = 0,
� = 1, and D3 is an empty word. For i = 1, 2, we see that wi is the portion of w to the right of the
corresponding dashed line

letter of w1 is d, then we get that D1 is the empty word, and we let w2 be the word
obtained from w1 by deleting this 1-letter prefix. If the first letter of w1 is u, then D1

will be nonempty. If no such position r exists, then it must be the case that w1 has
excess 0 and we let D1 = w1.

By the definition of r , D1 has equal numbers of u’s and d’s, and it satisfies the
Dyck property. Moreover, every maximal (a + b) j-ascent sequence is immediately
followed by a (b( j − 1) + 1)-descent sequence because w has this property, and
because these ascent lengths (a + b) j are at least as large as their partnering descent
lengths (b( j − 1) + 1). In other words, D1 is a colored Dyck word. We continue
in this exact manner to determine the full sequences w3, . . . , ws and D1, . . . , Ds

for some s. Since each wi has starting height one less than wi−1, we deduce that
s = a� + b, as desired.

Notice that the resulting tuple g(w) = (�,C; D1, D2, . . . , Da�+b) satisfies the
properties in the four bullet points given at the beginning of this proof. In particular,
since w has semilength (a + b)n, the total number of u’s in D1, D2, . . . , Da�+b

equals (a + b)n − �(a + b), and so i1 + · · · + ia�+b = n − �. We conclude that g
maps colored Dyck words of semilength (a + b)n to tuples of the desired type.
Finally, one can readily observe that g ◦ f and f ◦ g both equal the identity map.

3 Representation in Terms of Partial Bell Polynomials

Our goal for this section is to use the result of Theorem 1 to give a formula for
yn = ∣

∣Dc
n(a, b)

∣
∣ in terms of partial Bell polynomials.

For a, b ∈ R (not both = 0) and c = (c1, c2, . . . ), consider the sequence (zn)
defined by

z0 = 1, zn =
n

∑

k=1

(
an + bk

k − 1

)
(k − 1)!

n! Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1, (8.2)
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where Bn,k denotes the (n, k)th partial Bell polynomial defined as

Bn,k(x1, . . . , xn−k+1) =
∑

α∈π(n,k)

n!
α1! · · · αn−k+1!

( x1
1!

)α1 · · ·
(

xn−k+1

(n − k + 1)!
)αn−k+1

with π(n, k) denoting the set of multi-indices α ∈ N
n−k+1
0 such that α1 + · · · +

αn−k+1 = k and α1 + 2α2 + · · · + (n − k + 1)αn−k+1 = n. For more information on
partial Bell polynomials, see [6, Sect. 3.3].

The sequence (8.2) satisfies the following convolution formula.

Lemma 1 (cf. [2, Theorem 2.1]) For r, n ≥ 1, we have

z(r)n
def=

∑

m1+···+mr=n

zm1 · · · zmr = r
n

∑

k=1

(
an + bk + r − 1

k − 1

)
(k − 1)!

n! Bn,k(1!c1, 2!c2, . . . ).

Proposition 1 Suppose a, b ∈ N0. For n ≥ 1, the sequence (zn) defined by (8.2)
satisfies the recurrence

zn =
n

∑

�=1

c�

∑

i1+···+ia�+b=n−�

zi1 . . . zia�+b =
n

∑

�=1

c� z
(a�+b)
n−� , (8.3)

where each i j is a nonnegative integer and z
(an+b)
0 = 1. In other words, the sequence

(zn) satisfies the same recurrence as the sequence (yn).

Proof By the previous lemma, omitting the argument of the Bell polynomials,

n−1
∑

�=1

c� z
(a�+b)
n−� =

n−1
∑

�=1

c�(a� + b)
n−�
∑

k=1

(an+b(k+1)−1
k−1

)
(k−1)!
(n−�)! Bn−�,k

=
n−1
∑

�=1

cn−�

(

a(n − �) + b
)

�
∑

k=1

(an+b(k+1)−1
k−1

)
(k−1)!

�! B�,k

=
n−1
∑

k=1

(an+b(k+1)−1
k−1

)

(k − 1)!
n−1
∑

�=k

cn−�(a(n−�)+b)
�! B�,k

=
n

∑

k=2

(an+bk−1
k−2

)
(k−2)!
n!

n−1
∑

�=k−1

n!
�! cn−�(a(n − �) + b)B�,k−1

=
n

∑

k=2

(an+bk−1
k−2

)
(k−2)!
n!

n−1
∑

�=k−1

(

an
(n−1

�

) + b
(n
�

))

(n − �)!cn−�B�,k−1.

Now, using equations (11.11) and (11.12) in [5, Theorem 11.2], one can easily
verify the identities

http://dx.doi.org/10.1007/978-3-030-11102-1_11
http://dx.doi.org/10.1007/978-3-030-11102-1_11
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n−1
∑

�=k−1

an
(n−1

�

)

(n − �)!cn−�B�,k−1 = anBn,k,

n−1
∑

�=k−1

b
(n
�

)

(n − �)!cn−�B�,k−1 = bkBn,k,

which imply

n−1
∑

�=1

c� z
(a�+b)
n−� =

n
∑

k=2

(an+bk−1
k−2

)
(k−2)!
n! (an + bk)Bn,k =

n
∑

k=2

(an+bk
k−1

)
(k−1)!
n! Bn,k .

Finally, by adding cn to each of these sums, we arrive at (8.3).

We now arrive at our main result.

Theorem 2 For a, b ∈ N0 with a + b �= 0 and c = (c1, c2, . . . ), the sequence yn =
∣
∣Dc

n(a, b)
∣
∣ can be written as

yn =
n

∑

k=1

(
an + bk

k − 1

)
(k − 1)!

n! Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1. (8.4)

Moreover, the quantity
(an+bk

k−1

)
(k−1)!
n! Bn,k(1!c1, 2!c2, . . . ) counts the number of Dyck

paths inDc
n(a, b) having exactly k peaks.

Proof Equation (8.4) is a direct consequence of Theorem 1 and Proposition 1. The
second assertion follows by considering both sides of (8.4) as polynomials in the ci ’s
and by equating the terms of degree k. Indeed, note that Bn,k(1!c1, 2!c2, . . . ) contains
as many monomials as there are partitions of n into k parts, and each such monomial
has degree k in the ci ’s. On the other hand, each appearance of a ci in a monomial of
yn corresponds to a coloring of a maximal ascent substring and therefore to a peak.

4 Examples

In this section, we proceed to illustrate the use and versatility of the representa-
tion (8.4). The goal is to take advantage of the partial Bell polynomials to derive
combinatorial formulas for the given enumerating sequence.

First of all, as we mentioned in the introduction, D1
n (1, 0) is nothing but the set

of Dyck paths of semilength n. Recall that we are using the symbol 1 to denote the
sequence of ones c = (1, 1, . . . ).
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Example 1 (Narayana numbers) By [6, Sec. 3.3, eqn. (3h)] for example,

Bn,k(1!, 2!, 3!, . . . ) = n!
k!

(
n − 1

k − 1

)

= (n − 1)!
(k − 1)!

(
n

k

)

for n, k ≥ 1,

so Theorem 2 gives the known fact that the number of Dyck paths of semilength n
with exactly k peaks is given by

(
n

k − 1

)
(k − 1)!

n! Bn,k(1!, 2!, . . . ) = 1

n

(
n

k − 1

)(
n

k

)

,

the Narayana number N (n, k).
In general, for any given parameters a and b, and coloring sequence c, the expres-

sions

N c
a,b(n, k) =

(
an + bk

k − 1

)
(k − 1)!

n! Bn,k(1!c1, 2!c2, . . . )

provide the appropriate analog of the Narayana numbers.

Example 2 (Colored Motzkin paths) It is known that the number of Motzkin paths
of length n is the same as the number of Dyck words of semilength n that avoid uuu
(via the bijection u2d → u, d → d, and ud → h, where h denotes a horizontal step
(1,0)). Thus, for n ≥ 1, the number of Motzkin n-paths whose horizontal steps admit
c1 colors and whose up-steps admit c2 colors is given by

yn =
n

∑

k=1

(
n

k − 1

)
(k − 1)!

n! Bn,k(1!c1, 2!c2, 0, . . . )

=
n

∑

k=	 n
2 


(
n

k − 1

)
(k − 1)!

n!
n!
k!

(
k

n − k

)

c2k−n
1 cn−k

2

=
n

∑

k=	 n
2 


1

n + 1

(
n + 1

k

)(
k

n − k

)

c2k−n
1 cn−k

2

=
� n
2 �

∑

k=0

1

n + 1

(
n + 1

n − k

)(
n − k

k

)

cn−2k
1 ck2

=
� n
2 �

∑

k=0

(
n

2k

)

Ck c
n−2k
1 ck2,

where Ck denotes the Catalan number 1
k+1

(2k
k

)

. Letting c1 = c2 = 1 gives one of the
better-known expressions for the Motzkin numbers.

Example 3 (Schröder numbers) The numbers in the sequence [11, A001003] are
called little Schröder numbers and are known to count (among other things) Dyck
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paths in which the interior vertices of the ascents admit two colors, that is, Dyck paths
in which a maximal j-ascent may be colored in 2 j−1 different ways. The number yn
of such colored paths of semilength n can be obtained from (8.4) with a = 1, b = 0,
and c = (1, 2, 22, . . . ). Thus

yn =
n

∑

k=1

(
n

k − 1

)
(k − 1)!

n! Bn,k(1! · 1, 2! · 2, 3! · 22, . . . )

=
n

∑

k=1

(
n

k − 1

)
(k − 1)!

n! 2n−k Bn,k(1!, 2!, . . . )

=
n

∑

k=1

1

n

(
n

k − 1

)(
n

k

)

2n−k =
n

∑

k=1

N (n, k) 2n−k .

Example 4 (m-ary paths) For m ∈ N, we consider the set D1
n (m, 0) of Dyck words

of semilength mn created from strings of the form P0 = d and Pj = umjd for j =
1, . . . , n.

The elements ofD1
n (m, 0) are in one-to-one correspondence with the elements of

the setLn(m) ofm-ary paths of length (m + 1)n, i.e., lattice paths in the first quadrant
from (0, 0) to ((m + 1)n, 0) with steps (1,m) or (1,−1). Here is an example for
m = 2:

D ∈ D1
5 (2, 0)

←→

D′ ∈ L5(2)

By equation (8.4), the sequence yn = |Ln(m)| = ∣
∣D1

n (m, 0)
∣
∣ is given by

yn =
n

∑

k=1

(
mn

k − 1

)
(k − 1)!

n! Bn,k(1!, 2!, . . . )

=
n

∑

k=1

1

k

(
mn

k − 1

)(
n − 1

k − 1

)

=
n

∑

k=1

1

mn + 1

(
mn + 1

k

)(
n − 1

n − k

)

,

which by Vandermonde’s identity becomes

yn = 1

mn + 1

(
(m + 1)n

n

)

.
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Moreover, the number of such paths with exactly k peaks is given by the expression

N1
m,0(n, k) = 1

k

(
mn

k − 1

)(
n − 1

k − 1

)

= 1

n

(
mn

k − 1

)(
n

k

)

.

These formulas are consistent with [8, Corollary 4.12]. Clearly, Theorem 2 also
provides formulas for other choices of the coloring sequence c.

The next three examples illustrate simple connections with other types of lattice
paths.

Example 5 ([11,A052709]) Ifa = 0,b = 2, and c = (1, 1, 0, 0, . . . ), the setDc
n(0, 2)

consists of Dyck words of semilength 2n created from strings of the form P0 = d,
P1 = u2d, and P2 = u4d3. With the simple map d → (1,−1), u2d → (1, 1), and
u4d3 → (3, 1), we get a one-to-one correspondence between Dc

n(0, 2) and the set
Ln(0, 2) of lattice paths in the first quadrant from (0, 0) to (2n, 0) with steps (1, 1),
(1,−1), or (3, 1).

D ∈ D1
5 (0, 2)

←→
D′ ∈ L5(0, 2)

By means of (8.4), we then get that yn = |Ln(0, 2)| = ∣
∣Dc

n(0, 2)
∣
∣ satisfies

yn =
n

∑

k=1

(
2k

k − 1

)
(k − 1)!

n! Bn,k(1!, 2!, 0, . . . ) =
n

∑

k=	 n
2 


1

k

(
2k

k − 1

)(
k

n − k

)

.

Example 6 ([11,A186997]) Ifa = 1,b = 2, and c = (1, 1, 0, 0, . . . ), the setDc
n(1, 2)

consists of Dyck words of semilength 3n created from strings of the form P0 = d,
P1 = u3d, and P2 = u6d3. With the simple map d → (1,−1), u3d → (1, 2), and
u6d3 → (3, 3), we get a one-to-one correspondence between Dc

n(1, 2) and the set
Ln(1, 2) of lattice paths in the first quadrant from (0, 0) to (3n, 0) with steps (1, 2),
(1,−1), or (3, 3).

D ∈ D1
3 (1, 2)

←→

D′ ∈ L3(1, 2)
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Again, by means of (8.4), we get that yn = |Ln(1, 2)| = ∣
∣Dc

n(1, 2)
∣
∣ satisfies

yn =
n

∑

k=1

(
n + 2k

k − 1

)
(k − 1)!

n! Bn,k(1!, 2!, 0, . . . ) =
n

∑

k=	 n
2 


1

k

(
n + 2k

k − 1

)(
k

n − k

)

.

Example 7 ( 32 -Dyck paths)
In the context of generalized Dyck languages with only two letters, Duchon [9]

studied rational Dyck paths and suggests the need for colored Dyck words. In par-
ticular, he considered the set of Dyck words with slope 3

2 and length 5n, which can
be visualized as generalized Dyck paths starting at (0, 0) and ending at (2n, 3n),
without crossing the line y = 3

2 x . For example, for n = 2,

ababbaabbb ←→

We denote this set by D3/2(5n). In op. cit. Duchon proved that the number of
factor-free elements ofD3/2(5n) is given by Cn−1 + Cn , where Cn is the nth Catalan
number.1 Moreover, for dn = ∣

∣D3/2(5n)
∣
∣, he gives the formula

dn =
n

∑

j=0

1

5n + j + 1

(
5n + 1

n − j

)(
5n + 2 j

j

)

.

This is sequence A060941 in [11].
It turns out that these numbers may also be generated by counting the elements

of Dc
n(5, 0) with coloring sequence c = (C j−1 + C j ) j≥1. In other words, there is

a bijection between D3/2(5n) and the set of Dyck words of semilength 5n created
from strings of the form P0 = “d ” and Pj = “u5 j d” for j = 1, . . . , n, such that each
maximal ascent u5 j is colored by a factor-free Dyck word with slope 3

2 and length
5 j .2

Consequently, since dn = yn = ∣
∣Dc

n(5, 0)
∣
∣, Theorem 2 gives the alternative for-

mula

dn =
n

∑

k=1

(
5n

k − 1

)
(k − 1)!

n! Bn,k(1!(C0 + C1), 2!(C1 + C2), . . . ).

Finally, since j !(C j−1 + C j ) = (2 j − 2) j−1 + (2 j) j−1, we can use the second
identity in [12, Example 3.2] with a = 2, b = −1, and c = 2 to obtain

1A word in a language L is said to be factor-free if it has no proper factor in L .
2For more on this bijection for general rational Dyck paths, we refer to [3].
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dn =
n

∑

k=1

(
5n

k − 1

) k
∑

j=0

(−1)k− j

k

(
k

j

)

(2 j − k)
(2 j − k + 2n − 1)n−1

n!

=
n

∑

k=1

(
5n

k − 1

) k
∑

j=0

(−1)k− j

nk

(
k

j

)

(2 j − k)

(
2 j − k + 2n − 1

n − 1

)

=
n

∑

k=1

(
5n

k − 1

) k
∑

j=0

(−1) j

n

[(
k − 1

j

)

−
(
k − 1

j − 1

)](
2n + k − 2 j − 1

n − 1

)

.
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A Review of the Basic Discrete
q-Distributions

Ch. A. Charalambides

Abstract Consider a sequence of independent Bernoulli trials and assume that the
probability (or odds) of success (or the probability (or odds) of failure) at a trial
varies (increases or decreases) geometrically, with rate q, either with the number of
trials or with the number of successes. Let Xn be the number of successes up the
nth trial and Wn (or Tk) be the number of failures (or trials) until the occurrence of
the nth (or kth) success. The distributions of these random variables turned out to
be q-analogues of the binomial and negative binomial (or Pascal) distributions. The
Heine and Euler distributions, which are q-analogues of the Poisson distribution, are
obtained as limiting distributions of q-binomial distributions (or negative q-binomial
distributions), as the number of trials (or the number of successes) tends to infinity.
Also, introducing the notion of a q-drawing of a ball from an urn containing balls
of various kinds, a q-analogue of the Pólya urn model is constructed and q-Pólya
and inverse q-Pólya distributions are examined. Finally, considering a stochastic
model that is developing in time or space, in which events (successes) may occur at
continuous points, a Heine and an Euler stochastic processes are presented.

Keywords Euler distribution · Euler process · Heine distribution · Heine
process · Negative q-binomial distribution · q-binomial distribution · q-Poisson
distribution · q-Poisson process.
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1 Introduction

The classical binomial and negative binomial (or Pascal) distributions are defined
in the stochastic model of a sequence of independent and identically distributed
Bernoulli trials. The Poisson distribution may be considered as a limiting case of the
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binomial (or negative binomial) distribution as the number of trials (or failures) tends
to infinity. Also, considering a stochastic model that is developing in time or space,
in which events (successes) may occur at continuous points, a Poisson stochastic
process, is introduced as a stochastic process with independent and homogeneous
increments and with success probability in a small time interval analogous to its
length.

Poisson (1837) generalized the binomial distribution (and implicitly the negative
binomial distribution) by assuming that the probability of success at a trial varies
with the number of previous trials. The negative binomial distribution (and implicitly
the binomial distribution) can be generalized to a different direction by assuming that
the probability of success at a trial varies with the number of successes occurring
in the previous trials. The probability function of the number of successes up to a
given number of trials was derived by Woodbury [23]. The Pólya urn model, which
was introduced by Eggenberger and Pólya [11], may be considered as a sequence of
independent Bernoulli trials, with the probability of success at a trial varying with
both the number of trials and the number of successes.

It should be noticed that a stochasticmodel of a sequence of independent Bernoulli
trials, in which the probability of success at a trial is assumed to vary with the number
of trials and/or the number of successes, is advantageous in the sense that it permits
incorporating the experience gained from previous trials and/or successes. If the
probability of success at a trial is a very general function of the number of trials
and/or the number successes, very little can be inferred from it about the distributions
of the various random variables that may be defined on this model. The assumption
that the probability of success (or failure) at a trial varies geometrically, with rate
(proportion) q, leads to the introduction of discrete q-distributions. The study of
these distributions is greatly facilitated by the wealth of existing q-sequences and
q-functions, in q-combinatorics, and the theory of q-hypergeometric series.

In Sect. 2, after introducing the notions of a q-power, a q-factorial, and a q-
binomial coefficient of a real number, two q-factorial convolution formulae are given,
without proof, and, as a corollary of them, two q-binomial convolution formulae are
deduced. Also, the q-binomial and the negative q-binomial formulae are obtained.
In addition, a general q-binomial formula is given and, as limiting forms of it, q-
exponential functions are deduced. Moreover, the q-factorial moments, which apart
from the interest in their own, are used as an intermediate step in the calculation
of the usual factorial moments of a discrete q-distribution are introduced. Also, a
formula expressing the usual factorial moments in terms of the q-factorial moments
is given.

Section 3 deals with discrete q-distributions defined in the stochastic model of a
sequence of independent Bernoulli trials, with success probability at a trial varying
geometrically with the number of previous trials. Specifically, assuming that the odds
of success at a trial are a geometrically varying (increasing or decreasing) sequence,
a q-binomial distribution of the first kind and a negative q-binomial distribution of
the first kind are introduced and studied. In addition, the Heine distribution, which is
a q-Poisson distribution of the first kind, is obtained as a limiting distribution of the
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q-binomial distribution (or the negative q-binomial distribution) of the first kind, as
the number of trials (or the number of successes) tends to infinity.

Section 4 is devoted to the studyof discreteq-distributions defined in the stochastic
model of a sequence of independent Bernoulli trials, with success probability varying
geometrically with the number of previous successes. Introducing the notion of a
geometric sequence of (Bernoulli) trials as a sequence of independent Bernoulli
trials, with constant probability of success, which is terminated with the occurrence
of the first success, an equivalent stochastic model is constructed as follows. A
sequence of independent geometric sequences of trials with success probability at a
geometric sequence of trials varying (increasing or decreasing) geometrically with
the number of previous sequences (successes), is considered. In thismodel, a negative
q-binomial distribution of the second kind and aq-binomial distribution of the second
kind are introduced and examined. In addition, the Euler distribution, which is a q-
Poisson distribution of the second kind, is obtained as a limiting distribution of the
q-binomial distribution (or the negative q-binomial distribution) of the second kind,
as the number of trials (or the number of successes) tends to infinity.

In Sect. 5, after introducing the notion of a q-drawing of a ball from an urn
containing balls of various kinds, a q-Pólya urn model is presented and q-Pólya
and inverse q-Pólya distributions and examined.

Section 6 is devoted to q-Poisson (Heine and Euler) stochastic processes. This
article is based on the tutorial lecture on the basic discrete q-distributions, prepared
for the 8th International Conference on Lattice Path Combinatorics andApplications.

2 Basic q-Combinatorics and q-Hypergeometric Series

Let x and q be real numbers, with q �= 1, and k be an integer. The number

[x]q = 1 − qx

1 − q

is called q-number and in particular [k]q is called q-integer. The base (parameter)
q, in the theory of discrete q-distributions, varies in the interval 0 < q < 1 or in the
interval 1 < q < ∞.

The kth order factorial of the q-number [x]q , which is defined by

[x]k,q = [x]q [x − 1]q · · · [x − k + 1]q , k = 0, 1, . . . ,

is called q-factorial of x of order k. In particular [k]q ! = [1]q [2]q · · · [k]q is called
q-factorial. The q-binomial coefficient (or Gaußian polynomial) is defined by

[
x

k

]
q

= [x]k,q
[k]q ! , k = 0, 1, . . . .
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Note that

lim
q→1

[x]q = x, lim
q→1

[x]k,q = (x)k, lim
q→1

[
x

k

]
q

=
(
x

k

)
, k = 0, 1, . . . .

Furthermore, the lack of uniqueness of q-analogues of expressions and formulae
in q-combinatorics and q-hypergeometric series should be pointed out. It is due to
the presence of powers of q in pseudo-isomorphisms as

[x + y]q = [x]q + qx [y]q and [x + y]q = qy[x]q + [y]q ,

where 0 < q < 1 or 1 < q < ∞. It should also be noticed that the two formulae
may be considered as equivalent in the sense that any of these implies the other by
replacing the base q by q−1. In this framework, the existence of two versions of the
q-analogue of the sum, which may be considered as equivalent, is attributed to the
lack of uniqueness.

The particular cases of the q-binomial coefficients
[n
k

]
q
and

[n+k−1
k

]
q
, with n and

k positive integers, admit q-combinatorial interpretations, which are given, without
proof, in the following theorem.

Theorem 9.1 The q-binomial coefficient
[n
k

]
q
, for n and k positive integers, equals

the k-combinations of the set {1, 2, . . . , n}, {m1,m2, . . . ,mk}, weighted by
qm1+m2+···+mk−(k+1

2 ),

∑
1≤m1<m2<···<mk≤n

qm1+m2+···+mk−(k+1
2 ) =

[
n

k

]
q

.

Also, the q-binomial coefficient
[n+k−1

k

]
q
, for n and k positive integers, equals the

k-combinations of the set {1, 2, . . . , n} with repetition, {r1, r2, . . . , rk}, weighted by
qr1+r2+···+rk−k , ∑

1≤r1≤r2≤···≤rk≤n

qr1+r2+···+rk−k =
[
n + k − 1

k

]
q

.

A discrete q-uniform distribution is derived in the following probabilistic number
theoretic example.

Example 9.1 Discrete q-uniform distribution.Consider a sequence of independent
Bernoulli trials,with constant failure probabilityq, and let X be the number of failures
until the occurrence of the first success. Clearly, the random variable X follows a
geometric distribution with probability function

P(X = x) = (1 − q)qx , x = 0, 1, . . . ,
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where 0 < q < 1. Also, consider a fixed positive integer n and let

Cx = {x + kn : k = 0, 1, . . .}, x = 0, 1, . . . , n − 1.

Clearly, each of the possible values of the random variable X , {0, 1, . . .}, belongs
in one of these n congruence classes (pairwise disjoint sets), modulo n,
{C0,C1, . . . ,Cn−1}. Furthermore, consider a sequence of independent Bernoulli tri-
als, with constant failure probability q, and let Xn be the index of the congruence class
in which the number of failures, until the occurrence of the first success, belongs.
Since the random variable Xn assumes the value x if and only if X belongs to Cx ,
its probability function,

P(Xn = x) = P(X ∈ Cx ) =
∞∑
k=0

(1 − q)qx+kn = (1 − q)qx

1 − qn
,

may be expressed as

P(Xn = x) = qx

[n]q , x = 0, 1, . . . , n − 1, 0 < q < 1.

Note that the limiting probability function, as q → 1,

lim
q→1

P(Xn = x) = 1

n
, x = 0, 1, . . . , n − 1,

is the discrete uniform probability function on the set {0, 1, . . . , n − 1}. For this
reason, the distribution of Xn is called discrete q-uniform distribution.

It is worth noting that the probability function P(X = x |X ≤ n − 1), of a right
truncated geometric distribution, since

P(X = x |X ≤ n − 1) = P(X = x, X ≤ n − 1)

P(X ≤ n − 1)
= P(X = x)

P(X ≤ n − 1)
,

for x = 0, 1, . . . , n − 1, and

P(X ≤ n − 1) =
n−1∑
x=0

(1 − q)qx = 1 − qn,

is readily deduced as

P(X = x |X ≤ n − 1) = qx

[n]q , x = 0, 1, . . . , n − 1, 0 < q < 1.

Twoversions of a q-Vandermonde (q-factorial convolution) formula are presented
in the next theorem.
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Theorem 9.2 Let n be a positive integer and let x, y, and q be real numbers, with
q �= 1. Then,

[x + y]n,q =
n∑

k=0

[
n

k

]
q

q(n−k)(x−k)[x]k,q [y]n−k,q .

Alternatively,

[x + y]n,q =
n∑

k=0

[
n

k

]
q

qk(y−n+k)[x]k,q [y]n−k,q .

Two versions of a q-Cauchy (q-binomial convolution) formula, which by
virtue of [

x

k

]
q

= [x]k,q
[k]q ! , k = 0, 1, . . . ,

may be considered as reformulations of the corresponding two versions of the q-
Vandermonde (q-factorial convolution) formula, are stated in the following corollary
of Theorem 9.2.

Corollary 9.1 Let n be a positive integer and let x, y, and q be real numbers, with
q �= 1. Then, [

x + y

n

]
q

=
n∑

k=0

q(n−k)(x−k)

[
x

k

]
q

[
y

n − k

]
q

.

Alternatively, [
x + y

n

]
q

=
n∑

k=0

qk(y−n+k)

[
x

k

]
q

[
y

n − k

]
q

.

q-Newton (q-binomial and negative q-binomial) formulae are given in the fol-
lowing theorems.

Theorem 9.3 Let n be a positive integer and let t and q be real numbers, with q �= 1.
Then,

n∏
i=1

(1 + tqi−1) =
n∑

k=0

q(k2)
[
n

k

]
q

tk .

Theorem 9.4 Let n be a positive integer and let t and q be real numbers, with |t | < 1
and |q| < 1 or |t | < |q|−(n−1) and |q| > 1. Then,

n∏
j=1

(
1 − tq j−1)−1 =

∞∑
k=0

[
n + k − 1

k

]
q

tk .

Notice that the two versions of the q-Vandermonde formula, given in Theorem9.2,
as well as the two versions of the q-Cauchy formula, deduced in Corollary 9.1, are
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equivalent in the sense that any of two implies the other by replacing the base q
by q−1. It should be pointed out that the replacement of q by q−1 in the q-Newton
(q-binomial and negative q-binomial) formulae, stated in Theorems 9.3 and 9.4, lead,
respectively, to the same expression.

The q-binomial and the negative q-binomial formulaemay be extended to n = x ,
a real number, as

∞∏
i=1

1 + tqi−1

1 + tqx+i−1
=

∞∑
k=0

q(k2)
[
x

k

]
q

tk, |t | < 1, 0 < q < 1, (9.1)

and ∞∏
i=1

1 − tqx+i−1

1 − tqi−1
=

∞∑
k=0

[
x + k − 1

k

]
q

tk, |t | < 1, 0 < q < 1, (9.2)

respectively. A q-analogue of the exponential function can be obtained from (9.1)
by replacing t by (1 − q)t and then taking the limit as x → ∞. Since, for |q| < 1,

lim
x→∞(1 − q)[x − j]q = lim

x→∞(1 − qx− j ) = 1, lim
x→∞(1 − q)k[x]k,q = 1,

a q-exponential function is deduced as

Eq(t) =
∞∏
i=1

(1 + t (1 − q)qi−1) =
∞∑
k=0

q(k2)
t k

[k]q ! , −∞ < t < ∞.

Another q-exponential function can be similarly obtained from (9.2) as

eq(t) =
∞∏
i=1

(1 − t (1 − q)qi−1)−1 =
∞∑
k=0

t k

[k]q ! , |t | < 1/(1 − q).

Clearly, Eq(t)eq(−t) = 1 and Eq−1(t) = eq(t).
The q-factorial moments of a discrete q-distribution are introduced as follows.
Let X be a nonnegative integer valued random variable, with probability function

f (x) = P(X = x), x = 0, 1, . . . . The expected value

E
([X ]m,q

) =
∞∑

x=m

[x]m,q f (x), m = 1, 2, . . . ,

provided the series is convergent, is called the m th order q -factorial moment of the
random variable X.

The usual factorial moments are expressed in terms of the q-factorial moments
by
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E
[
(X) j

] = j !
∞∑

m= j

(−1)m− j (1 − q)m− j sq(m, j)
E

([X ]m,q
)

[m]q ! ,

for j = 1, 2, . . . , where sq(m, j) is the q-Stirling number of the first kind.

Remark 9.1 q-Deformed distributions in quantum physics. Consider a nonnegative
integer valued random variable X with probability mass function fX (x) = P(X =
x), x = 0, 1, . . . . Furthermore, consider the q-number transformation Y = [X ]q ,
which in the language of quantum physics is known as a q-deformation. The distri-
bution of the random variable Y , with probability function

fY ([x]q) = P(Y = [x]q) = P(X = x) = fX (x), x = 0, 1, . . . ,

is called q-deformed distribution. The mean and the variance of the q-deformed
distribution of Y are the q-mean and the q-variance of the distribution of X .

3 Success Probability Varying with the Number of Trials

Consider a sequence of independent Bernoulli trials and assume that the odds of
success at the i th trial is given by

θi = θqi−1, i = 1, 2, . . . , 0 < θ < ∞, 0 < q < 1 or 1 < q < ∞,

which is a geometrically varying sequence, with rate q. Note that the case q = 1 cor-
responds to the classical case of constant odds (or constant probability) of success.
Also, for 0 < q < 1, the sequence θi , i = 1, 2, . . . , is geometrically decreasing,while
for 1 < q < ∞ , is geometrically increasing. Since pi = θi/(1 + θi ), it follows that
the probability of success at the i th trial is given by

pi = θqi−1

1 + θqi−1
, i = 1, 2, . . . , 0 < θ < ∞, 0 < q < 1 or 1 < q < ∞. (9.3)

Let Xn be the number of successes in a sequence of n independent Bernoulli
trials, with probability of success at the i th trial given by (9.3). The distribution
of the random variable Xn is called q-binomial distribution of the first kind, with
parameters n, θ , and q.

Theorem 9.5 The probability function of the q-binomial distribution of the first
kind, with parameters n, θ , and q, is given by

P(Xn = x) =
[
n

x

]
q

θ xq(x2)∏n
i=1(1 + θqi−1)

, x = 0, 1, . . . , n, (9.4)
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for 0 < θ < ∞ and 0 < q < 1 or 1 < q < ∞. Its q-factorial moments are
given by

E([Xn]m,q) = [n]m,q θmq(m2)∏m
i=1(1 + θqi−1)

, m = 1, 2, . . . , n,

and E([Xn]m,q) = 0, for m = n + 1, n + 2, . . . . Furthermore, its (usual) factorial
moments are given by

E[(Xn) j ] = j !
n∑

m= j

(−1)m− j

[
n

m

]
q

θmq(m2)(1 − q)m− j sq(m, j)∏m
i=1(1 + θqi−1)

,

for j = 1, 2, . . . , n , and E[(Xn) j ] = 0, for j = n + 1, n + 2, . . . , where sq(m, j)
is the q-Stirling number of the first kind. In particular, its mean and variance are
given by

E(Xn) =
n∑

i=1

θqi−1

1 + θqi−1
, V (Xn) =

n∑
i=1

θqi−1

(1 + θqi−1)2
.

Example 9.2 Weldon’s classical dice data. Walter F. R. Weldon obtained the data
fromm = 26, 306 throws of n = 12 dice. Among themn = 315, 672 recorded num-
bers from the set of the six faces of a die, {1, 2, 3, 4, 5, 6}, the number of dice showing
face 5 or face 6 was s = 106, 602.

A discrete probability distribution that fits to these data may be defined on a
sequence of independent Bernoulli trials. Specifically, a throw of a die is considered
as a Bernoulli trial, with success the event of showing face 5 or face 6. Then, each
throw of the 12 dice constitutes a sequence of n = 12 independent Bernoulli trials.

Kemp and Kemp [18] examined first the fair dice assumption, which leads to the
usual binomial distribution, with n = 12 and p = 1/3. It was found out that this
distribution does not fit to these data. After this conclusion, they replaced the success
probability p = 1/3 by its moment estimate

p̂ = s

mn
= 106, 602

315, 672
= 0.3377.

Although this equally unbalanced dice hypothesis may give a satisfactory fit to
these data, the assumption that all n = 12 dice are identically unbalanced seems
inherently implausible.

More realistic hypotheses for unfair dice, pi , i = 1, 2, . . . , n, were examined by
Kemp and Kemp [18]. They supposed that there is a spectrum of unfairness among
the dice. A log-linear odds assumption,

log θi = log θ + (i − 1) log q, i = 1, 2, . . . , n,

implies (9.3). Then, the number Xn of successes in n trials obeys the q-binomial
distribution of the first kind with probability function (9.4).
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Also, let Wn be the number of failures until the occurrence of the nth success
in a sequence of independent Bernoulli trials, with probability of success at the i th
trial given by (9.3). The distribution of the random variable Wn is called negative
q-binomial distribution of the first kind, with parameters n, θ , and q.

Theorem 9.6 The probability function of the negative q-binomial distribution of the
first kind, with parameters n, θ , and q, is given by

P(Wn = w) =
[
n + w − 1

w

]
q

θnq(n2)+w∏n+w
i=1 (1 + θqi−1)

, w = 0, 1, . . . , (9.5)

for 0 < θ < ∞ and 0 < q < 1 or 1 < q < ∞. Its q-factorial moments are
given by

E
([Wn]m,q

) = [n + m − 1]m,q

θmq(m2)+(n−1)m
, m = 1, 2, . . . .

Furthermore, its (usual) factorial moments are given by

E[(Wn) j ] = j !
∞∑

m= j

(−1)m− j

[
n + m − 1

m

]
q

(1 − q)m− j sq(m, j)

θmq(m2)+(n−1)m
,

for j = 1, 2, . . . , where sq(m, j) is the q-Stirling number of the first kind.

Remark 9.2 Another negative q-binomial distribution of the first kind. The proba-
bility function of the number Un of successes until the occurrence of the nth failure
is closely connected to (9.5). Specifically,

P(Un = u) = P(Xn+u−1 = u)(1 − pn+u) = P(Wu+1 = n − 1)
1 − pn+u

pn+u

and so

P(Un = u) =
[
n + u − 1

u

]
q

θuq(u2)∏n+u
i=1 (1 + θqi−1)

, u = 0, 1, . . . , (9.6)

for 0 < θ < ∞ and 0 < q < 1 or 1 < q < ∞.

Finally, let X be a discrete random variable with probability function

f (x) = P(X = x) = eq(−λ)
q(x2)λx

[x]q ! , x = 0, 1, . . . , (9.7)

where 0 < λ < ∞, 0 < q < 1 and eq(t) = ∏∞
i=1(1 − t (1 − q)qi−1)−1 is a

q-exponential function. The distribution of the random variable X is called Heine
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distribution, with parameters λ and q. The Heine distribution is a q-Poisson distri-
bution since its probability function, for q → 1, approaches the probability function
of the Poisson distribution.

Theorem 9.7 The q-factorial moments of the Heine distribution are given by

E([X ]m,q) = q(m2)λm∏m
i=1(1 + λ(1 − q)qi−1)

, m = 1, 2, . . . .

Moreover, its factorial moments are given by

E[(X) j ] = j !
∞∑

m= j

(−1)m− j q
(m2)λm

[m]q ! · (1 − q)m− j sq(m, j)∏m
i=1(1 + λ(1 − q)qi−1)

,

for j = 1, 2, . . . , where sq(m, j) is the q-Stirling number of the first kind.

The q-binomial and the negative q-binomial distributions of the first kind can be
approximated by the Heine distribution, according to the following theorem.

Theorem 9.8 The limit of the probability function of the q-binomial distribution of
the first kind, (9.4), as n → ∞, is the probability function of the Heine distribution,

lim
n→∞

[
n

x

]
q

q(x2)θ x∏n
i=1(1 + θqi−1)

= eq(−λ)
q(x2)λx

[x]q ! , x = 0, 1, . . . ,

for 0 < λ < ∞ and 0 < q < 1, with λ = θ/(1 − q).
Also, the limit of the probability function of the negative q-binomial distribution of

the first kind, (9.6), as n → ∞, is the probability function of the Heine distribution,

lim
n→∞

[
n + u − 1

u

]
q

q(u2)θu∏n+u
i=1 (1 + θqi−1)

= eq(−λ)
q(u2)λu

[u]q ! , u = 0, 1, . . . ,

for 0 < λ < ∞ and 0 < q < 1, with λ = θ/(1 − q).

4 Success Probability Varying with the Number
of Successes

Consider a random experiment with sample space � = { f, s}, where the sam-
ple points (events) f and s are characterized as failure and success, respectively.
An experiment with such a sample space is called Bernoulli trial. Furthermore, a
sequence of independent Bernoulli trials, with constant success probability, which
is terminated with the occurrence of the first success, g = ( f, f, . . . , f, s), is called
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geometric sequence of trials. Let us first consider, the casewith probability of success
at the j th geometric sequence of trials given by

p j = 1 − θq j−1, j = 1, 2, . . . , 0 < θ < 1, 0 < q < 1 or 1 < q < ∞, (9.8)

where, for 0 < θ < 1 and 1 < q < ∞, the number j of geometric sequences of tri-
als is restricted by θq j−1 < 1, ensuring that 0 < p j < 1. This restriction imposes
on j an upper bound, j=1, 2, . . . , [r ], with [r ] denoting the integral part of
r =− log θ/ log q > 0. Notice that the probability p j is essentially the conditional
probability of success at any Bernoulli trial, given that j − 1 successes occur in the
previous trials.

Let Wn be the number of failures until the occurrence of the nth success, in a
sequence of independent geometric sequences of trials, with probability of success
at the j th geometric sequence of trials given by (9.8). The distribution of the ran-
dom variable Wn is called negative q-binomial distribution of the second kind, with
parameters n, θ , and q.

Theorem 9.9 The probability function of the negative q-binomial distribution of the
second kind, with parameters n, θ , and q, is given by

P(Wn = w) =
[
n + w − 1

w

]
q

θw
n∏
j=1

(1 − θq j−1), w = 0, 1, . . . , (9.9)

for0 < θ < 1and0 < q < 1or1 < q < ∞with θqn−1 < 1. Its q-factorialmoments
are given by

E([Wn]m,q) = [n + m − 1]m,qθ
m∏m

j=1(1 − θqn+ j−1)
, m = 1, 2, . . . .

Furthermore, its factorial moments are given by

E[(Wn) j ] = j !
∞∑

m= j

(−1)m− j

[
n + m − 1

m

]
q

θm(1 − q)m− j sq(m, j)∏m
i=1(1 − θqn+i−1)

,

for j = 1, 2, . . . , where sq(m, j) is the q-Stirling number of the first kind. In partic-
ular, its mean and variance are given by

E(Wn) =
n∑
j=1

θq j−1

1 − θq j−1
, V (Wn) =

n∑
j=1

θq j−1

(1 − θq j−1)2
.

Remark 9.3 A q-geometric distribution of the second kind. The probability function
of the number Z1 of successes until the occurrence of the first failure is of interest and
may be obtained as follows. Considering the event A j of success at the j th trial, for
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j = 1, 2, . . . , the probability Pz = P(A1A2 · · · Az A′
z+1), that z successes precede

the occurrence of the first failure, on using the multiplication formula, is deduced as

Pz = P(A1)P(A2|A1) · · · P(Az|A1A2 · · · Az−1)P(A′
z+1|A1A2 · · · Az)

=
z∏

j=1

(
1 − θq j−1

)
θqz,

for z = 0, 1, . . . . Also, the probability Q of the occurrence of at least one failure in
an infinite number of Bernoulli trials is readily deduced as

Q = lim
n→∞ P(A′

1 ∪ A′
2 ∪ · · · ∪ A′

n) = 1 − lim
n→∞ P(A1A2 · · · An)

= 1 − lim
n→∞

n∏
j=1

(
1 − θq j−1

) = 1 − Eq
( − θ/(1 − q)

)
,

where Eq(t) = ∏∞
j=1

(
1 + t (1 − q)q j−1

)
is a q-exponential function. Clearly, the

probability function of the random variable Z1 is the conditional probability that z
successes precede the occurrence of the first failure, given the occurrence of at least
one failure in an infinite number of Bernoulli trials, P(Z1 = z) = Pz/Q, and so

P(Z1 = z) = (
1 − Eq

( − θ/(1 − q)
))−1

z∏
j=1

(
1 − θq j−1

)
θqz,

for z = 0, 1, . . . , where 0 < θ < 1 and 0 < q < 1.

Also, let Xn be the number of failures in a sequence of n independent Bernoulli trials,
with probability of success at the j th geometric sequence of trials given by (9.8).
The distribution of the random variable Xn is called q-binomial distribution of the
second kind, with parameters n, θ , and q.

Theorem 9.10 The probability function of the q-binomial distribution of the second
kind, with parameters n, θ , and q, is given by

P(Xn = x) =
[
n

x

]
q

θ x
n−x∏
j=1

(1 − θq j−1), x = 0, 1, . . . , n, (9.10)

for 0 < θ < 1 and 0 < q < 1 or 1 < q < ∞, with θqn−1 < 1. Its q-factorial
moments are given by

E
([Xn]m,q

) = [n]m,qθ
m, m = 1, 2, . . . , n,

and E
([Xn]m,q

) = 0, for m = n + 1, n + 2, . . . . Moreover, its factorial moments are
given by
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E[(Xn) j ] = j !
n∑

m= j

(−1)m− j

[
n

m

]
q

θm(1 − q)m− j sq(m, j),

for j = 1, 2, . . . , n, and E[(Xn) j ] = 0, for j = n + 1, n + 2, . . . , where sq(m, j) is
the q-Stirling number of the first kind. In particular, its mean and variance are given
by

E(Xn) =
n∑

m=1

[n]m,q(1 − q)m−1θm

[m]q

and

V (Xn) = 2
n∑

m=2

[n]m,q(1 − q)m−2θmζm−1,q

[m]q + E(Xn) − [E(Xn)]2,

where ζm,q = ∑m
j=1 1/[ j]q .

Remark 9.4 Absorption and inverse absorption distributions. The success probabil-
ity (9.8), in the case 1 < q < ∞, may be preferably expressed as follows. Replacing
the parameter q by q−1, with 0 < q < 1, and then setting θ = qr , we get

p j = 1 − qr− j+1, j = 1, 2, . . . , [r ], 0 < r < ∞, 0 < q < 1, (9.11)

which is a geometrically decreasing sequence of a finite number of terms. The prob-
ability function of the number Yn = n − Xn of successes in n independent Bernoulli
trials, with probability of success at the j th geometric sequence of trials given by
(9.8), on using the relation P(Yn = y) = P(Xn = n − y), y = 0, 1, . . . , n, and the
expression (9.10), is obtained as

P(Yn = y) =
[
n

y

]
q

q(n−y)(r−y)(1 − q)y[r ]y,q , y = 0, 1, . . . , n, (9.12)

for 0 < r < ∞, 0 < q < 1, and n ≤ [r ]. This q-binomial distribution of the second
kind is particularly known as absorption distribution. Also, in the same stochastic
model, the probability function of the number of failures until the occurrence of the
nth success, on using the expression (9.9), is deduced as

P(Wn = w) =
[
n + w − 1

w

]
q

q(r−n+1)w(1 − q)n[r ]n,q , w=0, 1, . . . , (9.13)

for 0 < r < ∞, 0 < q < 1, and n ≤ [r ]. This negative q-binomial distribution of
the second kind is particularly known as inverse absorption distribution.

Example 9.3 Proofreading a manuscript. Assume that a proofreader reads a
manuscript, which has a fixed number of errors m and when he/she finds an error
corrects it and starts reading themanuscript from the beginning. Also the proofreader
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starts reading the manuscript from the beginning when he/she reaches its end. A scan
(reading) of the manuscript is successful if the proofreader finds (and corrects) an
error and is a failure otherwise. Thus, a scan of the manuscript constitutes a Bernoulli
trial. Assume that the probability of finding any particular error is p = 1 − q. Then,
the conditional probability that a scan (trial) is successful, given that j − 1 scans
(trials) were successful in the previous scans, is

p j = 1 − qm− j+1, j = 1, 2, . . . ,m, 0 < q < 1,

which is of the form (9.11), with r = m a positive integer. Consequently, the distri-
bution of the number Yn of errors found (and corrected) in n scans (readings) of the
manuscript is an absorption distribution, with probability function (9.12). Also, the
distribution of the number Wn of unsuccessful scans until the occurrence of the nth
successful scan, with n ≤ m, is the inverse absorption distribution, with probability
function (9.13).

Finally, let X be a discrete random variable with probability function

f (x) = P(X = x) = Eq(−λ)
λx

[x]q ! , x = 0, 1, . . . , (9.14)

where 0 < λ < 1/(1 − q), 0 < q < 1, and Eq(t) = ∏∞
i=1(1 + t (1 − q)qi−1) is a

q-exponential function. The distribution of the random variable X is called Euler
distribution, with parameters λ and q. The Euler distribution is a q-Poisson distri-
bution since the probability function (9.14), for q → 1, converges to the probability
function of the Poisson distribution.

Theorem 9.11 The q-factorial moments of the Euler distribution are given by

E([X ]m,q) = λm, m = 1, 2, . . . .

Moreover, its factorial moments are given by

E[(X) j ] = j !
∞∑

m= j

(−1)m− j λm

[m]q ! (1 − q)m− j sq(m, j), j = 1, 2, . . . ,

where sq(m, j) is the q-Stirling number of the first kind.

The q-binomial and the negative q-binomial distributions of the second kind can
be approximated by the Euler distribution, according to the following theorem.

Theorem 9.12 The limit of the probability function (9.10) of the q-binomial
distribution of the second kind, as n → ∞, is the probability function of the Euler
distribution,
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lim
n→∞

[
n

x

]
q

θ x
n−x∏
i=1

(1 − θqi−1) = Eq(−λ)
λx

[x]q ! , x = 0, 1, . . . ,

for 0 < λ < 1/(1 − q) and 0 < q < 1, with λ = θ/(1 − q).
Also, the limit of the probability function (9.9) of the negative q-binomial dis-

tribution of the second kind, as n → ∞, is the probability function of the Euler
distribution,

lim
n→∞

[
n + w − 1

w

]
q

θw
n∏

i=1

(1 − θqi−1) = Eq(−λ)
λw

[w]q ! , w = 0, 1, . . . ,

for 0 < λ < 1/(1 − q) and 0 < q < 1, with λ = θ/(1 − q).

An interesting application of the Heine and Euler distributions, as feasible
prior in a Bayesian model for oil exploration, was presented by Benkherouf and
Bather [2].

5 Success Probability Varying with the Number of Trials
and the Number of Successes

Consider a sequence of independent Bernoulli trials, with the conditional probability
of success at the i th trial, given that j − 1 successes occur in the i − 1 previous trials,
given by

pi, j = a j

bi
, j = 1, 2, . . . , i, i = 1, 2, . . . ,

where 0 < a j ≤ bi , for j = 1, 2, . . . , i and i = 1, 2, . . . . The Pólya urn model,
which belongs in this family of stochastic models, may be extended to a q-Pólya
urn model by introducing an appropriate q-analogue of a random drawing of a ball
from an urn.

Let us consider an urn containing r white balls, {b1, b2, . . . , br }, and s black
balls, {br+1, br+2, . . . , br+s}. A random q-drawing of a ball from the urn is carried
out as follows. Assume that the balls in the urn are forced to pass through a ran-
dom mechanism, one by one, in the order (b1, b2, . . . , br+s) or in the reverse order
(br+s, br+s−1, . . . , b1). Also, suppose that each passing ballmay ormay not be caught
by the mechanism, with probabilities p = 1 − q and q, respectively. The first caught
ball is drawn out of the urn. In the case all r + s balls pass through the mechanism
and no ball is caught, the ball passing procedure is repeated, with the same order.
Clearly, the probability that ball bx is drawn from the urn is given by

∞∑
k=0

(1 − q)q(x−1)+k(r+s) = (1 − q)qx−1
∞∑
k=0

q(r+s)k = qx−1

[r + s]q ,
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or by
∞∑
k=0

(1 − q)q(r+s−x)+k(r+s) = qr+s−x

[r + s]q = q−(x−1)

[r + s]q−1
,

where 0 < q < 1, according to whether the ball passing order is (b1, b2, . . . , br+s)

or (br+s, br+s−1, . . . , b1). These probabilities may be expressed as

pr+s(x; q) = P(Xr+s = x) = qx−1

[r + s]q , x = 1, 2, . . . , r + s,

where 0 < q < 1 or 1 < q < ∞. Note that this is the probability function of the
discrete q-uniform distribution on the set {1, 2, . . . , r + s}. Also, the probability
Pr+s(r; q), that a white ball is drawn from the urn is given by

Pr+s(r; q) = P(Xr+s ≤ r) = [r ]q
[r + s]q = (q−1)s[r ]q−1

[r + s]q−1
,

where 0 < q < 1 or 1 < q < ∞. It is worth noticing that the probability Qr+s(s; q)

that a black ball is drawn from the urn is given by

Qr+s(s; q) = P(r < Xr+s ≤ r + s) = qr [s]q
[r + s]q = [s]q−1

[r + s]q−1
,

where 0 < q < 1 or 1 < q < ∞, which conforms with the relation

Pr+s(r; q) + Qr+s(s; q) = 1.

Finally, notice that a random q-drawing of a ball, for q → 1 and since

lim
q→1

Pr+s(r; q) = r

r + s
, lim

q→1
Qr+s(s; q) = s

r + s
,

reduces to the usual random drawing of a ball from the urn.
Furthermore, assume that random q-drawings of balls are sequentially carried

out, one after the other, from an urn, initially containing r white and s black balls,
according to the following scheme. After each q-drawing, the drawn ball is placed
back in the urn together with k balls of the same color. Then, the conditional proba-
bility of drawing a white ball at the i th q-drawing, given that j − 1 white balls are
drawn in the previous i − 1 q-drawings, is given by

pi, j = 1 − qr+k( j−1)

1 − qr+s+k(i−1)
= [α − j + 1]q−k

[α + β − i + 1]q−k
, (9.15)
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for j = 1, 2, . . . , i and i = 1, 2, . . . , where 0 < q < 1 or 1 < q < ∞ andα = −r/k
and β = −s/k, with r and s positive integers and k an integer. This model, which
for q → 1 and since

lim
q→1

pi, j = r + k( j − 1)

r + s + k(i − 1)
= α − j + 1

α + β − i + 1
,

for j = 1, 2, . . . , i and i = 1, 2, . . . , reduces to the (classical) Pólya urn model,
may be called q-Pólya urn model. Characterizing the q-drawing of a white ball as
success and the q-drawing of a black ball as failure, the q-Pólya urn model reduces to
the stochastic model of a sequence of independent Bernoulli trials, with probability
of success at a trial varying with the number of trials and the number of previous
successes, according to (9.15).

Let Xn be the number of white balls drawn in n q-drawings in a q-Pólya urn
model, with the conditional probability of drawing a white ball at the i th q-drawing,
given that j − 1 white balls are drawn in the previous i − 1 q-drawings, given by
(9.15). The distribution of the random variable Xn is called q-Pólya distribution,
with parameters n, α, β, k, and q.

Theorem 9.13 The probability function of the q-Pólya distribution, with parameters
n, α, β, k, and q, is given by

P(Xn = x) =
[
n

x

]
q−k

q−k(n−x)(α−x) [α]x,q−k [β]n−x,q−k

[α + β]n,q−k

= q−k(n−x)(α−x)

[
α

x

]
q−k

[
β

n − x

]
q−k

/[
α + β

n

]
q−k

, (9.16)

for x = 0, 1, . . . , n , where 0 < q < 1 or 1 < q < ∞, and α = −r/k, β = −s/k,
with r and s positive integers and k an integer. Its q-factorial moments are given by

E
([Xn]i,q−k

) = [n]i,q−k [α]i,q−k

[α + β]i,q−k
,

for i = 1, 2, . . . , n and E
([Xn]i,q−k

) = 0, for i = n + 1, n + 2, . . . . Furthermore,
its factorial moments are given by

E[(Xn) j ] = j !
n∑

i= j

(−1)i− j

[
n

i

]
q−k

sq−k (i, j)(1 − q−k)i− j [α]i,q−k

[α + β]i,q−k
,

for j = 1, 2, . . . , n, where sq(i, j) is the q-Stirling number of the first kind, and
E[(Xn) j ] = 0, for j = n + 1, n + 2, . . . .

The q-Pólya distribution, for large r + s, can be approximated by a q-binomial
distribution of the second kind.
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Theorem 9.14 Consider the q-Pólya distribution with probability function (9.16).
For 0 < q < 1, assume that

lim
r+s→∞

[s]q−1

[r + s]q−1
= lim

r+s→∞
q−s − 1

q−(r+s) − 1
= θ (9.17)

and in the case of a negative integer k assume, in addition, that θ < q−k(m−1), for
some positive integer m. Then,

lim
r+s→∞ P(Xn = x) =

[
n

x

]
qk

θn−x
x∏

i=1

(1 − θqk(i−1)),

for x = 0, 1, . . . , n, where 0 < q < 1 and 0 < θ < 1, in the case k is a positive
integer, or 0 < θ < q−k(m−1), for some positive integer m ≥ n, in the case k is a
negative integer.

Also, for 1 < q < ∞, assume that

lim
r+s→∞

[r ]q
[r + s]q = lim

r+s→∞
qr − 1

qr+s − 1
= λ (9.18)

and in the case of a negative integer k assume, in addition, that λ < qk(m−1), for
some positive integer m. Then,

lim
r+s→∞ P(Xn = x) =

[
n

x

]
q−k

λx
n−x∏
i=1

(1 − λq−k(i−1)),

for x = 0, 1, . . . , n, where 1 < q < ∞ and 0 < λ < 1, in the case k is a positive
integer, or 0 < λ < q−k(m−1), for some positive integer m ≥ n, in the case k is a
negative integer.

An interesting application of the q-hypergeometric distribution, which is a par-
ticular case of the q-Pólya distribution for k = −1, in estimating the errors in a
manuscript, is discussed in Charalambides [6].

Now, let Wn be the number of black balls drawn until the nth white ball is drawn
in a q-Pólya urn model, with the conditional probability of drawing a white ball
at the i th q-drawing, given that j − 1 white balls are drawn in the previous i − 1
q-drawings, given by (9.15). The distribution of the random variable Wn is called
inverse q-Pólya distribution, with parameters n, α, β, k, and q.

Theorem 9.15 The probability function of the inverse q-Pólya distribution, with
parameters n, α, β, k, and q, is given by

P(Wn = w) =
[
n + w − 1

w

]
q−k

q−wk(α−n+1) [α]n,q−k [β]w,q−k

[α + β]n+w,q−k
, (9.19)
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for w = 0, 1, . . . , where 0 < q < 1 or 1 < q < ∞, α = −r/k and β = −s/k, with
r and s positive integers and k an integer. Its q-factorial moments are given by

E
([Wn]i,q−k

) = [n − i + 1]i,q−k [β]i,q−k

qik(α−n+1)[α + i]i,q−k
,

for i = 1, 2, . . . , provided α + i �= 0. Furthermore, its factorial moments are given
by

E[(Wn) j ] = j !
∞∑
i= j

(−1)i− j

[
n + i − 1

i

]
q−k

sq−k (i, j)(1−q−k)i− j [β]i,q−k

qik(α−n+1)[α + i]i,q−k
,

for j = 1, 2, . . . , provided α + j �= 0, where sq(i, j) is the q-Stirling number of the
first kind.

The inverse q-Pólya distribution, for large r + s, can be approximated by a neg-
ative q-binomial distribution of the second kind.

Theorem 9.16 Consider the inverse q-Pólya distribution with probability function
(9.19).

For 0 < q < 1, assume that the limiting expression (9.17) holds true. Then,

lim
r+s→∞ P(Wn = w) =

[
n + w − 1

w

]
qk

θw
n∏

i=1

(1 − θqk(i−1)),

for w = 0, 1, . . . , where 0 < q < 1 and 0 < θ < 1, in the case k is a positive integer,
or 0 < θ < q−k(m−1), for some positive integer m ≥ n, in the case k is a negative
integer.

Also, for 1 < q < ∞ assume that the limiting expression (9.18) holds true. Then,

lim
r+s→∞ P(Wn = w) =

[
n + w − 1

w

]
q−k

q−kwλn
w∏
i=1

(1 − λq−k(i−1)),

forw = 0, 1, . . . , where1 < q < ∞and0 < λ < 1, in the case k is a positive integer,
or λ = qkm, for some positive integer m, in the case k is a negative integer.

6 Heine and Euler Stochastic Processes

A nonnegative integer valued stochastic process Xt , t ≥ 0, with independent and
homogeneous increments is called Poisson process, if in a small time interval,
(t, t + δt], either a success, A = {s}, occurs, with probability analogous to the length
of the interval, λδt , or a failure, A′ = { f }. A Heine process, which was studied by
Kyriakoussis and Vamvakari [20] and constitutes a q-analogue of a Poisson process,
may be introduced as follows.
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Consider a stochasticmodel that is developing in time or space and let Xt , t ≥ 0, be
the number of successes (occurrences of event A) in the interval (0, t]. Assume that
Xt , t ≥ 0, is a stochastic process, with independent and homogeneous increments,
which starts at time t = 0 from state 0, P(X0 = 0) = 1, and, in the q-small time
interval (qt, t], of length δt = (1 − q)t , satisfies the condition

p j (δt) = P(Xt − Xqt = j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1 + λ(1 − q)t , j = 0,

λ(1 − q)t
1 + λ(1 − q)t , j = 1,

0, j > 1,

(9.20)

with 0 < λ < ∞ and 0 < q < 1. Then, Xt , t ≥ 0, is called Heine process, with
parameters λ and q.

Theorem 9.17 The probability function of the Heine process Xt , t ≥ 0, with param-
eters λ and q, is given by

px (t) = P(Xt = x) = eq(−λt)
q(x2)(λt)x

[x]q ! , x = 0, 1, . . . , (9.21)

where 0 < λ < ∞, 0 < q < 1 and eq(u) = ∏∞
i=1(1 − u(1 − q)qi−1)−1 is a

q-exponential function.

Furthermore, let Wn be the waiting time until the occurrence of the nth success.
The distribution ofWn is calledq-Erlang distribution of the first kind, with parameters
n, λ, and q. In particular, the distribution of the waiting time until the occurrence of
the first success, W ≡ W1, is called q-exponential distribution of the first kind, with
parameters λ and q.

Theorem 9.18 The distribution function Fn(w) = P(Wn ≤ w), −∞ < w < ∞, of
the q-Erlang distribution of the first kind, with parameters n, λ, and q, is given by

Fn(w) = 1 −
n−1∑
x=0

eq(−λw)
q(x2)(λw)x

[x]q ! , 0 < w < ∞, (9.22)

and Fn(w) = 0, −∞ < w < 0, where n is a positive integer, 0 < λ < ∞, and 0 <

q < 1. Its q-density function fn(w) = dq Fn(w)/dqw is given by

fn(w) = q(n2)λn

[n − 1]q !w
n−1eq(−λw), 0 < w < ∞. (9.23)

Also, its j th q-moment is given by
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μ′
j,q = E(W j

n ) = [n + j − 1] j,q
λ j q( j

2)+nj
, j = 1, 2, . . . .

Kyriakoussis and Vamvakari [20], on using condition (9.20), derived a system of
q-differential equations and deduced the probability function (9.21) of the Heine
process. Also, using the relation P(Wn > w) = P(Xw < n) and expression (9.21),
they derived the distribution function of the q-Erlang distribution of the first kind in
the form (9.22).

An Euler process, which is another q-analogue of a Poisson process, may be
introduced, by considering the geometrically decreasing sequence of time differences

δti = (1 − q)qi−1t, i = 1, 2, . . . , 0 < q < 1,

with
∑∞

i=1 δti = t , to partition the time interval (0, t]. Specifically, consider a
stochastic model that is developing in time or space and let Xt , t ≥ 0, be the number
of successes (occurrences of event A) in the interval (0, t]. Assume that Xt , t ≥ 0,
is a stochastic process, with dependent and homogeneous increments, which starts
at t = 0 from state 0, P(X0 = 0) = 1, and, in the q-small time interval (qi t, qi−1t],
of length δti = (1 − q)qi−1t , for i = 1, 2, . . . , satisfies the condition

p j,k(δti ) = P(Xqi−1t = k|Xqi t = j) =

⎧⎪⎨
⎪⎩
1 − λ(1 − q)qi− j−1t, k = j,

λ(1 − q)qi− j−1t, k = j + 1,

0, k > j + 1,
(9.24)

for j = 0, 1, . . . , i − 1 and i = 1, 2, . . . , with 0 < λt < 1/(1 − q) and 0 < q < 1.
Then, Xt , t ≥ 0, is called Euler process, with parameters λ and q.

It is worth noticing that, in contrast to a Poisson process, an Euler process does
not have independent increments. Also, the condition of the occurrence of at most
one success in a small time interval is expressed in terms of a series of small time
intervals of varying (q-decreasing) lengths.

Theorem 9.19 The probability function of the Euler process Xt , t ≥ 0, with param-
eters λ and q, is given by

px (t) = P(Xt = x) = Eq(−λt)
(λt)x

[x]q ! , x = 0, 1, . . . , (9.25)

where 0 < λt < 1/(1 − q), 0 < q < 1, and Eq(u) = ∏∞
i=1(1 + u(1 − q)qi−1) is a

q-exponential function.

Proof The probability function px (qi−1t) of the Euler process, by the total proba-
bility theorem,

px (q
i−1t) = px (q

i t + δti ) =
x∑

k=0

px−k(q
i t)px−k,x (δti ),
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for x = 0, 1, . . . , i − 1, and condition (9.24), satisfies the system of equations

p0(q
i−1t) = (1 − λ(1 − q)qi−1t)p0(q

i t),

px (q
i−1t) = (1 − λ(1 − q)qi−x−1t)px(q

i t)+λ(1 − q)qi−x tpx−1(q
i t),

for x = 1, 2, . . . , i − 1. Setting u = qi−1t , this system of equations may be rewritten
as

p0(u) = (1 − λ(1 − q)u)p0(qu),

px (u) = (1 − λ(1 − q)q−xu)px (qu) + λ(1 − q)q−(x−1)upx−1(u),

for x = 1, 2, . . . , or as

p0(u) − p0(qu)

(1 − q)u
= −λp0(qu),

px (u) − px (qu)

(1 − q)u
= −λq−x px (qu) + λq−(x−1) px−1(qu),

for x = 1, 2, . . . . Introducing the q-derivative operator Dq , with respect to u, we
deduce the system of q-differential equations

Dq p0(u) = −λp0(qu),

Dq px (u) = −λq−x px (qu) + λq−(x−1) px−1(qu), x = 1, 2, . . . .

Introducing the function g(u) by

px (u) = g(u)
(λu)x

[x]q ! , x = 0, 1, . . . , (9.26)

and since

Dq px (u) = (λu)x

[x]q ! Dqg(u) + λ
(λu)x−1

[x − 1]q !g(qu),

the system of q-differential equations reduces to the q-differential equation

Dqg(u) = −λg(qu),

with initial condition g(0) = p0(0) = 1. Its solution is readily obtained as g(u) =
Eq(−λu), and so, by (9.26), expression (9.25) is established, with u instead of t .

Let Wn be the waiting time until the occurrence of the nth success, with the
successes occurring according to an Euler process. The distribution of Wn is called
q-Erlang distribution of the second kind, with parameters n, λ, and q. In particular,
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the distribution of the waiting time until the occurrence of the first success,W ≡ W1,
is called q-exponential distribution of the second kind, with parameters λ and q.

Theorem 9.20 The distribution function Fn(w) = P(Wn ≤ w), −∞ < w < ∞, of
the q-Erlang distribution of the second kind, with parameters n, λ, and q, is given
by

Fn(w) = 1 −
n−1∑
x=0

Eq(−λw)
(λw)x

[x]q ! , 0 < w < ∞, (9.27)

and Fn(w) = 0, −∞ < w < 0, where n is a positive integer, 0 < λ < ∞ and 0 <

q < 1. Its q-density function fn(w) = dq Fn(w)/dqw is given by

fn(w) = λn

[n − 1]q !w
n−1Eq(−λqw), 0 < w < ∞. (9.28)

Also, its j th q-moment is given by

μ′
j,q = E(W j

n ) = [n + j − 1] j,q
λ j

, j = 1, 2, . . . . (9.29)

Proof The event {Wn > w}, that the nth success occurs after time w, is equivalent to
the event {Xw < n}, that the number of successes up to time w is less than n and so

P(Wn > w) = P(Xw < n) =
n−1∑
x=0

P(Xw = x).

Thus, the distribution function of the random variable Wn , on using the rela-
tion Fn(w) = P(Wn ≤ w) = 1 − P(Wn > w) and expression (9.25), is deduced as
(9.27).

The q-density function of Wn , on taking the q-derivative of (9.27), by using the
q-Leibniz formula, is obtained in the form

fn(w) = λEq(−λqw)

n−1∑
x=0

(λw)x

[x]q ! − λEq(−λqw)

n−1∑
x=1

(λw)x−1

[x − 1]q ! ,

which reduces to (9.28). The j th q-moment of Wn ,

μ′
j,q = E(W j

n ) = λn

[n − 1]q !
∫ ∞

0
wn+ j−1Eq(−λqw)dqw,

using the transformation u = λw and expression

∫ ∞

0
un−1Eq(−qu)dqu = [n − 1]q !,
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is obtained as

μ′
j,q = λn

[n − 1]q !λn+ j

∫ ∞

0
un+ j−1Eq(−qu)dqu = [n + j − 1]q !

[n − 1]q !λ j
.

Since [n + j − 1]q ! = [n − 1]q ![n + j − 1] j,q , the last relation implies the desired
expression.

Remark 9.5 q-Poisson stochastic processes.As has alreadybeennoted, theEuler and
Heine stochastic processes constitute q-analogues of the Poisson stochastic process.
Their probability functions may be expressed by the same functional formula, with
different parametric spaces. Specifically, the probability function (9.21), of the Heine
stochastic process,

px (t) = eq(−λt)
q(x2)(λt)x

[x]q ! , x = 0, 1, . . . ,

with 0 < λt < ∞ and 0 < q < 1, on replacing q by the q−1, with 1 < q < ∞, and
using the relations [x]q−1 ! = q−(x2)[x]q and eq−1(−λt) = Eq(−λt), may be expressed
as

px (t) = Eq(−λt)
(λt)x

[x]q ! , x = 0, 1, . . . ,

with 0 < λt < ∞ and 1 < q < ∞. Note that this is the same expression as that of
the probability function, (9.25), of the Euler stochastic process, with a different para-
metric space. It should also be remarked the significant difference in the definitions
of the two q-Poisson stochastic processes; the increments of a Heine process are
independent, while those of an Euler process are dependent.

Remark 9.6 Elementary derivation of the probability functions of the Heine and
Euler processes. Consider a stochastic model in which successes or failures (events
A or A′)may occur at continuous time (or space) points. Also, consider a time interval
(0, t] and its partition in n subintervals

( [i − 1]q t
[n]q ,

[i]q t
[n]q

]
, i = 1, 2, . . . , n, 0 < q < 1,

with lengths δn,i (t) = tqi−1/[n]q , i = 1, 2, . . . , n, and suppose that in each subin-
terval either a success or a failure may occur.

Kyriakoussis and Vamvakari [20] assumed that the odds of success is analogous
to the length of the subinterval, θn,i (t) = λδn,i (t) = λtqi−1/[n]q , i = 1, 2, . . . , n,
with 0 < λ < ∞. Clearly, by Theorem 9.5, the number of successes Xt,n in the n
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subintervals of (0, t] obeys the q-binomial distribution of the first kind with
probability function

P(Xt,n = x) =
[
n

x

]
q

q(x2)(λt/[n]q)x∏n
i=1

(
1 + λtqi−1/[n]q

) , x = 0, 1, . . . , n,

where 0 < λ < ∞, 0 < t < ∞ and 0 < q < 1. Taking the limit as n → ∞ and using
Theorem 9.8, the limiting probability function P(Xt = x) = limn→∞ P(Xt,n = x),
x = 0, 1, . . . , is readily deduced as (9.21).

Furthermore, assume that the conditional probability of success at any subinterval,
given that j − 1 successes occur in the previous subintervals, is given by pn, j (t) =
1 − λtq j−1/[n]q , for j = 1, 2, . . . , n, with 0 < λt < [n]q . Clearly, byTheorem9.10,
the number of failures Xt,n in the n subintervals of (0, t) obeys the q-binomial
distribution of the second kind, with probability function

P(Xt,n = x) =
[
n

x

]
q

(
λt

[n]q
)x n−x∏

j=1

(
1 − λt

[n]q q
j−1

)
, x = 0, 1, . . . , n,

where 0 < λt < [n]q and 0 < q < 1. Taking the limit as n → ∞ and using
Theorem9.12, the limiting probability function P(Xt = x) = limn→∞ P(Xt,n = x),
x = 0, 1, . . . , is obtained as (9.25).

7 Bibliographic Notes

The introduction of the q-number and its notation stems from Jackson [16], who
published important and influential papers on the subject. A list of his publications is
included in the obituary note by Chaudry [9]. Gauß [14] introduced the q-binomial
coefficients (or Gaußian polynomials) and presented q-analogues of Pascal’s trian-
gular recurrence relation. The discrete q-uniform distribution of the number theoretic
random variable examined in Example 9.1 was discussed by Rawlings [21]. Cauchy
[3] derived the q-factorial and q-binomial convolution formulae, which were stated
in Theorem 9.2 and its Corollary 9.1. The origin of the general q-binomial formulae
is quite uncertain; Hardy [15] attributed these formulae to Euler. The derivation of
the power series expressions of the two q-exponential functions are, indeed, due to
Euler [12]. Several other interesting q-series expansions are presented in the classical
book of Andrews [1]. An authoritative and comprehensive account of the basic q-
hypergeometric series is given byGasper and Rahman [13]. The q-factorial moments
and their connection to the usual factorial moments were discussed in Charalambides
and Papadatos [8].

The q-binomial distribution of the first kind was examined by Kemp and Kemp
[18] in their study of Weldon’s classical dice data. The Heine and Euler distributions
were derived by Benkherouf and Bather [2] as feasible priors in a simple Bayesian
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model for oil exploration. The derivation of the Heine distribution as a limiting
distribution of the q-binomial distribution of the first kind was given by Kemp and
Newton [19]. The q-binomial and the negative q-binomial distributions of the second
kind were presented in Charalambides [4]. The absorption and the inverse absorption
distributions were studied by Dunkl [10] and Kemp [17]. The negative q-binomial
distribution of the second kind and its limit to the Euler distribution was derived by
Rawlings [22]. Charalambides [6] introduced the q-Pólya urn model and studied
in detail the q-Pólya and the inverse q-Pólya distributions. Kupershmidt (2000)
introduced a q-hypergeometric distribution and a q-contagious distribution (q-Pólya
distribution) and represented the corresponding random variable as a sum of two-
valued dependent random variables. The Heine process was recently discussed by
Kyriakoussis and Vamvakari [20], while the presentation of the Euler process has
not been published elsewhere.

Additional q-discrete distributions, defined on Bernoulli trials with geometrically
varying success probability, are presented in the review article of Charalambides
[5]. A comprehensive presentation of discrete q-distributions is given in the book of
Charalambides [7].
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Families of Parking Functions Counted
by the Schröder and Baxter Numbers

Robert Cori, Enrica Duchi, Veronica Guerrini and Simone Rinaldi

Abstract Wedefine two new families of parking functions: one counted by Schröder
numbers and the other by Baxter numbers. These families both include the well-
known class of non-decreasing parking functions, which is counted by Catalan num-
bers and easily represented by Dyck paths, and they both are included in the class of
underdiagonal sequences, which are bijective to permutations. We investigate their
combinatorial properties exhibiting bijections between these two families and classes
of lattice paths (Schröder paths and triples of non-intersecting lattice paths) and dis-
covering a link between them and some classes of pattern avoiding permutations.
Then, we provide a quite natural generalization for each of these families that results
in some enumeration problems tackled by ECO method.
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1 Introduction

The notion of parking functions is recurring in discrete mathematics and arises nat-
urally in the so-called parking problem, which can be stated as follows: there are n
cars C1, . . . , Cn that want to park on a one-way street with ordered parking spaces
0, 1, . . . , n − 1. Each car Ci has a preferred space ai , and the cars enter the street
one at a time in the order C1, . . . , Cn . A car tries to park in its preferred space. If
that space is occupied, then it parks in the next available space. If there is no space,
then the car leaves the street. The sequence a1 . . . an is called a parking function of
length n if all the cars can park, i.e., no car leaves the street. It is easy to see that
a sequence a1 . . . an is a parking function if and only if it has at least i terms less
than i , for each 1 ≤ i ≤ n. Another equivalent definition is that a sequence a1 . . . an

is a parking function if and only if there is a permutation σ of length n such that
0 ≤ aσi < i , for each 1 ≤ i ≤ n.

It is also worth recalling that parking functions have a simple representation in
terms of lattice paths, precisely as labelled Dyck paths [13]. We recall that a Dyck
path of length 2n is a path made of up steps U = (1, 1), of down steps D = (1,−1),
running from (0, 0) to (2n, 0) and remaining weakly above the x-axis, and a labelled
Dyck path is a Dyck path of length 2n whose up steps are labelled by integers from
1 to n, provided that the labels of consecutive up steps are increasing.

The number of parking functions of length n was analytically proved to be equal to
(n + 1)n−1 in [15], but then several combinatorial explanations of this formula were
provided (see, for instance, [16, 21]). Among them, there are also many bijections
between parking functions of length n and labelled trees on n + 1 vertices which by
Cayley’s formula are counted by (n + 1)n−1 as well.

Such bijective proofs show remarkable connections between parking functions
and other combinatorial structures and lead to various generalizations and appli-
cations in different fields, notably in algebra, interpolation theory, probability and
statistics, representation theory and geometry.

We are mainly interested in exploring the connections between parking functions,
lattice paths and permutations, so we underline that two of the most well-known
families of parking functions have simple representations both as lattice paths and
as permutations, and precisely, they are as follows:

(a) non-decreasing parking functions: sequences u1 . . . un such that

ui < i and ui ≤ ui+1, for 1 ≤ i ≤ n − 1 . (10.1)

These sequences are particularly relevant since it is proved that every parking
function can be obtained as a rearrangement of a non-decreasing parking function
[23].
The number of non-decreasing parking functions of length n is given by the
nth Catalan number. This number sequence, reviewed in Sect. 2.2, is almost
ubiquitous in combinatorics, as it counts several classes of combinatorial objects,
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most of which are listed in [23]: one of them is given by (ordinary) Dyck paths
of length 2n; another is that of permutations avoiding a pattern of length 3.

(b) underdiagonal sequences: sequences u1 . . . un such that

ui < i, for 1 ≤ i ≤ n . (10.2)

These sequences of length n are counted by n! as they are trivially bijective to
permutations of length n. They are particularly relevant, since, in the context of
parking functions, they represent all configurations inwhich cars park in the same
order as they enter the street. Also these sequences have a simple representation
as lattice paths, precisely as underdiagonal paths.

The researches carried on in this paper aim at exploring connections between parking
sequences and families of combinatorial objects (especially lattice paths and permu-
tations) which are counted by the Schröder and the Baxter numbers (for brevity,
Schröder and Baxter structures). These two sequences, as well as their most remark-
able combinatorial interpretations, are reviewed in Sects. 2.3 and 2.4.

LikeCatalan and factorial structures, also Schröder andBaxter numbers have quite
popular combinatorial representations in terms of lattice paths (Schröder paths [11,
22] and Baxter triples [12]), and in terms of pattern avoiding permutations (separable
permutations [25] and Baxter permutations [9]).
The general purpose of this paper is to introduce new families of parking functions
which are as follows:

• point-wise larger than the Catalan sequence and contain the family of non-
decreasing parking functions;

• point-wise smaller than the factorial sequence and contained in the family of
inversion tables of permutations.

To reach our goal, such families of parking functions are defined by imposing
constraints on the entries of each sequence, weaker than (10.1) but stronger than
(10.2). Themost important of these families are those of Schröder andBaxter parking
functions. Our aim is that of studying combinatorial properties of each of these
families and, in particular, how the combinatorial properties of the two families (a)
and (b) can be translated to them. Precisely: provide a description of these families
of parking functions in terms of lattice paths and permutations.

Another aspect which unifies our investigation of these families of parking func-
tions is the application of the ECO method and generating trees to handle all enu-
meration problems concerning these objects. ECO method and the related notions
of generating tree and succession rule prove to be powerful tools for describing the
recursive growth of all the considered families of parking functions, and in fact, for
each of these classes we are able to provide an associated succession rule. These
concepts are recalled in Sect. 2.1, but we address the reader to [1, 2, 25] for further
details.

In Sect. 2, we comment upon the numerical sequences which are studied in the
paper and their most important combinatorial interpretations in terms of lattice paths
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and permutations: we consider the Catalan, Schröder, Baxter and factorial numbers.
For each of these sequences, we provide a generating tree describing its recursive
growth, according to the ECO method.

The main character of the first part of the paper is the family of the Schröder
parking functions. These sequences are defined in Sect. 3 by slightly modifying the
definition (10.1) of non-decreasing parking functions. First, we prove that Schröder
parking functions of length n are actually counted by the Schröder numbers by
providing a recursive construction of them by means of the ECO method and then
by providing a bijection with Schröder paths of length n. To reach this goal, we
use an encoding of Schröder parking functions as words of a context-free language.
Moreover, we show how this class of sequences results closely related to a pattern
avoiding permutation class. In Sect. 4, we provide quite a natural extension of the
notion of Schröder parking function, by introducing generalized Schröder parking
functions of degree m, such that with m = 0 and m = 1 we have non-decreasing
and Schröder parking functions. We extend the results of the previous section for a
generic m ≥ 2 and give a representation of generalized Schröder parking functions
as labelled Dyck paths. Then, we also show how to extend to generalized Schröder
parking functions the characterization given for Schröder parking functions in terms
of an algebraic language and a pattern avoiding permutation class.

The second part of the paper is dedicated to the study of Baxter parking functions
and their generalizations. Analogously to what we have done for Schröder parking
functions, firstly we provide an ECO operator for the recursive construction of this
class and then determine a bijection with Baxter triples, proving that Baxter park-
ing functions are enumerated by Baxter numbers. Then, we study two families of
generalized Baxter parking functions, defined by relaxing the definition of Baxter
parking function. Also for these families, we determine a recursive growth according
to the ECO method and the associated succession rule, leaving open some problems
concerning the nature of their generating functions and their representation in terms
of pattern avoiding permutations.

2 Basic Definitions

In this section, we recall the basic definitions and properties of the combinatorial
objects that are studied in the paper.

2.1 ECO Method and Generating Trees

Enumeration of combinatorial objects (ECO) is amethod for the enumeration and the
recursive construction of a classO of combinatorial objects by means of an operator
ϑ which performs “local expansions” on the objects of O . Let p be a parameter on
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O , such that |On| = |{O ∈ O : p(O) = n}| is finite, and let 2On denote the set of
subsets of On .

Definition 10.1 An ECO operator ϑ on the class O is a function from On to 2On+1

such that:

1. for each O ′ ∈ On+1, there exists O ∈ On such that O ′ ∈ ϑ(O),
2. for each O, O ′ ∈ On such that O �= O ′, then ϑ(O) ∩ ϑ(O ′) = ∅,
Clearly, if ϑ is an ECO operator, then the family of sets Fn+1 = {ϑ(O) : O ∈ On}
is a partition of On+1.

ECO method was successfully applied to the enumeration of various classes of
walks, permutations, and polyominoes. We refer to [2] for further details and results.

The recursive construction determined by ϑ can be suitably described through a
generating tree, i.e. a rooted tree whose vertices are objects ofO . The objects having
the same value of the parameter p lie at the same level, and the sons of an object are
the objects it produces through ϑ . We point out that generating trees have first been
introduced by West in [25].

If the construction determined by the ECO operator ϑ is regular enough, it is then
possible to describe it by means of a succession rule (sometimes called generating
tree, as well) of the form:

⎧
⎨

⎩

(b)

(h) � (c1)(c2) . . . (ch),

where b, h, ci ∈ N, meaning that the root object has b sons, and the h objects
O ′

1, . . . , O ′
h , produced by an object O are such that

∣
∣ϑ(O ′

i )
∣
∣ = ci , 1 ≤ i ≤ h. A suc-

cession rule defines a sequence { fn}n≥0 of positive integers, where fn is the number
of nodes at level n of the generating tree. In the years, succession rules have shown
their applicability to several combinatorial problems and have become a versatile
tool to solve enumeration problems as shown in [1].

More recently, in order to solve enumeration problems, the notion of succession
rule has been extended, allowing the nodes of the generating tree to have two or more
labels which take into account different parameters of the object. Some examples of
these succession rules (or generating trees) with two labels have been studied in [4].

2.2 Catalan Structures

The sequence of Catalan numbers (sequence a000108 in [17]) is one of the most
well-know combinatorial sequences. They are defined by the closed formula:

Cn = 1

n + 1

(
2n

n

)

.
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(a) (c)(b)

Fig. 1 a A Dyck path; b a Schröder path; c a Baxter triple

A considerably exhaustive list of combinatorial structures enumerated by Catalan
numbers, that we are going to call Catalan structures, is provided in [23]. Among
those, we will use the following:

• Dyck paths. In the discrete plane, a Dyck path of semi-length n is a path made of
up steps U = (1, 1), of down steps D = (1,−1), running from (0, 0) to (2n, 0)
and remaining weakly above the x-axis (see Fig. 1a). The number of Dyck paths
of semi-length n is given by the nth Catalan number Cn .

• Non-decreasing parking functions. Sequences u = u1 . . . un such that ui < i and
ui ≤ ui+1, for any i = 1, . . . , n − 1; these are a special case of parking functions,
and in particular, it holds that parking functions can be obtained as all possible
rearrangements of non-decreasing parking functions [23].

• τ -avoiding permutations, for any permutation τ of size 3. Recall that a permutation
σ = σ1σ2 . . . σn contains τ = τ1τ2 . . . τk if there exists i1 < i2 < . . . < ik such that
σia < σib if and only if τa < τb. Otherwise, σ avoids τ [23].

Probably, the most well-known succession rule for Catalan numbers is the fol-
lowing (see [2]):

ΩCat :
⎧
⎨

⎩

(2)

(k) � (2) . . . (k)(k + 1) .

The first levels of the generating tree of ΩCat are shown in Fig. 2.

2.3 Schröder Structures

Schröder numbers (sequence a006318 in [17]) are defined by the formula:

Sn = 1

n

n∑

k=1

2k

(
n

k

)(
n

k − 1

)

.

There are several combinatorial structures enumerated by this sequence, and in this
paper, we will consider:
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• Schröder paths. In the discrete plane, a Schröder path of length 2n is a path
made of up steps U = (1, 1), of down steps D = (1,−1) and horizontal steps
H = (2, 0), running from (0, 0) to (2n, 0) and remaining weakly above the x-axis
(see Fig. 1b). The number of Schröder paths of semi-length n is given by the nth
Schröder number Sn .

• Separable permutations. These are introduced and enumerated in [22]. These
permutations can be easily described by the avoidance of the two patterns 2413
and 3142. There are, however, other classes of permutations avoiding two patterns
of length 4 counted by Schröder numbers. The complete list of them is provided
in [24]. Among them, we have permutations avoiding 1423 and 1432, which will
be reconsidered in Sect. 3.3.

Probably, the most well-known succession rule for Schröder numbers is the fol-
lowing, determined in [25], and describing a recursive growth both for Schröder
paths and separable permutations:

ΩSch :
⎧
⎨

⎩

(2)

(k) � (3) . . . (k)(k + 1)2 .

Strictly related to our sequence are the small Schröder numbers sn , sequence
a001003 in [17]. The term sn is precisely half the nth Schröder number Sn , for
n ≥ 1, whereas s0 = 1; in particular, they count Schröder paths with no horizontal
step at level 0 (see [11]).

2.4 Baxter Structures

Baxter numbers (sequence a001181 in [17]) were first introduced in [9], where it is
shown that they count Baxter permutations. Precisely, Baxter numbers are given by
Bn = ∑n−1

k=0 θk,n−k−1, where

θk,l =
(n+1

k

)(n+1
k+1

)(n+1
k+2

)

(n+1
1

)(n+1
2

) , (10.3)

where n = k + l + 1. Baxter numbers also enumerate numerous families of combi-
natorial objects, and their studyhas attracted significant attention, see, for instance, [3,
12]. Among these structures, we will use:

• triples of non-intersecting lattice paths (briefly, Baxter triples) of length n − 1 in
the discrete plane (see Fig. 1c). Precisely, the number of Baxter triples running
from A1 = (0, 2), A2 = (1, 1) and A3 = (2, 0) to (k, l + 2), (k + 1, l + 1) and
(k + 2, l), using north (1, 0) and east (0, 1) unit steps, is given by θk,l in (10.3).

• Baxter permutations can be defined by the avoidance of the two vincular pat-
terns 2 41 3 and 3 14 2, meaning that in a Baxter permutation σ no subsequence
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Fig. 2 The first levels of the
generating trees for rules
ΩCat and ΩBax

(2)

(2)

(2) (3)

(3)

(2) (3) (4)

(1,1)

(2,1)

(3,1) (1,2) (2,2)

(1,2)

(2,1) (2,2) (1,3)

σiσ jσ j+1σk ofσ satisfiesσ j+1 < σi < σk < σ j (resp.σ j < σk < σi < σ j+1). Note
that we do not represent vincular patternswith dashes, as it was done originally.We
prefer the more modern and more coherent notation that indicates by a symbol
the elements of the pattern that are required to be adjacent in an occurrence. Con-
cerning Baxter permutations, the term θk,l in (10.3) counts Baxter permutations of
length n with k ascents and l descents.

A succession rule with two labels, describing the recursive growth of Baxter
permutations, in [4], is the following:

ΩBax :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1, 1)

(p, q) → (p + 1, 1)(p + 1, 2) . . . (p + 1, q)

(1, q + 1)(2, q + 1) . . . (p, q + 1) .

The first levels of the generating tree of ΩBax are shown in Fig. 2.

Remark 10.1 The three sequences we have presented are strictly related, since
Schröder numbers form a sequence point-wise larger than the Catalan sequence,
and it is additionally point-wise smaller than the Baxter sequence. As a matter of
fact,manyBaxter families can be immediately seen to contain aCatalan or a Schröder
subfamily: for instance, the set of triples of non-intersecting lattice paths contains
all pairs of non-intersecting lattice paths (that are in essence parallelogram poly-
ominoes); Baxter permutations (defined by the avoidance of the vincular patterns
2 41 3 and 3 14 2) include separable permutations (avoiding 2413 and 3142), which,
on their turn, include τ -avoiding permutations, for any permutation τ of length 3.

2.5 Factorial Structures

Factorial numbers (sequence a000142 in [17]) are a well-known sequence that enu-
merates permutations of length n and some related structures such as underdiagonal
sequences.
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Given a permutation π of length n, we say that the pair of indices (p, q) forms
an inversion if p < q and πp > πq . The array I (π) = (i1, . . . , in), where

i p = |{q : p < q, such that (p, q) is an inversion}|

is called the left inversion table of π . It can be easily proved that I yields a bijective
mappingφI between permutations of length n and underdiagonal sequences of length
n, i.e. sequences u1 . . . un such that, for any i = 1, . . . , n, we have ui < i . The
mapping φI is defined by setting φI (π) equal to the reverse word of I (π).

For instance, with π = 4 3 6 1 5 2, I (π) = (3, 2, 3, 0, 1, 0), and the correspond-
ing underdiagonal sequence is φI (π) = 0 1 0 3 2 3. The family of underdiagonal
sequences of length n will be denoted by Un . A succession rule describing the
recursive growth of these numbers is [1]:

ΩFac :
⎧
⎨

⎩

(2)

(k) � (k + 1)k .

3 Schröder Parking Functions

In this section, we define a family of parking functions counted by the Schröder
numbers, and then, we study the relations between these objects and some other
Schröder structures.

Definition 10.2 A Schröder parking function s is a sequence s1 s2 . . . sn such that

• si < i , for all i ;
• If i < j then si − s j ≤ 1.

The family of Schröder parking functions of length n will be denoted by S (n).
All the elements of a Schröder parking function s1 . . . sn can be classified into two
groups, as follows:

• s1 is a fall;
• a generic element s j which is equal to 0 or there is a i < j such that si > s j is a
fall. All the other elements are not falls.

Example 10.1 The sequence s = 0 0 0 1 4 3 3 6 7 6 is a Schröder parking function
of length 10, and its falls are s1 = 0, s2 = 0, s3 = 0, s6 = 3, s7 = 3, s10 = 6. On
the other side, the sequence s = 0 0 2 1 0 is not a Schröder parking function, since
s3 − s5 = 2 > 1.

Proposition 10.1 Schröder parking functions are counted by Schröder numbers.
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Proof To prove that Schröder parking functions are counted by Schröder numbers,
we describe an ECO operator θSch for the recursive construction of these objects
and show that the generating tree associated with θSch is precisely ΩSch , defined
in the previous section. Given s1 . . . sn a Schröder parking function of length n, the
application of θSch produces a certain number of Schröder parking functions of length
n + 1, depending on the last value sn , as follows:

(a) If sn is not a fall, then θSch adds sn+1 to the sequence s1 . . . sn , where sn+1 is any
value among n, n − 1, . . . , sn, sn − 1.

(b) If sn is a fall, then θSch adds sn+1 to s1 . . . sn , where sn+1 is any value among
n, n − 1, . . . , sn + 1, sn .

Note that operation performed in case (a) (resp. (b)) produces n + 2 − sn (resp.
n + 1 − sn) sequences of length n + 1 that satisfy Definition10.2 and among them
only one is such that sn+1 is a fall, namely sn+1 = sn − 1 (resp. sn+1 = sn). Easily,
one can verify that θSch satisfies conditions 1 and 2 in Definition10.1.

Now, it is simple to determine the generating tree associated with θSch . To a
sequence s = s1 . . . sn satisfying condition at point (a) we assign label (k), where
k = n − sn + 2. Then, the sequence s ′ = s1 . . . sn sn+1, where sn+1 = n (resp. n −
1, . . . , sn + 1, sn, sn − 1) has label (3) (resp. (4), . . . , (k), (k + 1), (k + 1)). While
to a sequence s = s1 . . . sn satisfying condition at point (b) we assign label (k),
where k = n − sn + 1. And sequence s ′ = s1 . . . sn sn+1, where sn+1 = n (resp. n −
1, . . . , sn + 2, sn + 1, sn), has label (3) (resp. (4), . . . , (k), (k + 1), (k + 1)). These
simple computations allow to prove that ΩSch is the generating tree associated with
this construction.

Example 10.2 The sequence s = 0 1 0 3, where s4 is not a fall, has label (3). Hence,
the application of operator θSch produces the sequences 0 1 0 3 4, 0 1 0 3 3, and
0 1 0 3 2, with labels (3), (4) and (4).

The sequence s = 0 0 1 0, where s4 is a fall, has label (5). Hence, the application
of operator θSch produces the sequences 0 0 1 0 4, 0 0 1 0 3, 0 0 1 0 2, 0 0 1 0 1 and
0 0 1 0 0, with labels (3), (4), (5), (6) and (6).

We would like to observe that it is easy to find out a subclass of Schröder parking
functions counted by the small Schröder numbers.

Definition 10.3 A small Schröder parking function is a Schröder parking function
s such that s = 0 or s begins with the factor 0 1.

By simple symmetry arguments it follows that:

Corollary 10.1 Small Schröder parking functions are counted by the small Schröder
numbers.
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3.1 Encoding Schröder Parking Functions as Words of an
Algebraic Language

A Schröder parking function s can be represented uniquely as a word w = w(s) in
the alphabet {a, b, c} as follows.
1. w(s1) is the empty word ε.
2. Let w′ = w(s1 . . . sn−1), with n > 2. If sn is a fall, then w(s1 . . . sn) = w′a. Oth-

erwise w(s1 . . . sn) = w′ckb and k ≥ 0 is determined either by the difference
between the values sn and sr , where sr is the rightmost non-fall element of
s1 . . . sn−1 if there is any, or by k = sn − 1.

In particular, note that the length n of a Schröder parking function s is given by the
number of occurrences of a and b in the word w(s) plus 1, i.e. |w|a + |w|b = n − 1.

Example 10.3 The Schröder parking function 0 0 0 1 4 3 3 6 7 6 given at the begin-
ning of this section is codified by the word

a a b cccb a a ccb cb a.

From the definition above, we can provide a combinatorial description of the set:

LS(n) = {w(s) : s ∈ S (n + 1)} .

Proposition 10.2 A word w in the alphabet Σ = {a, b, c} belongs to LS(n) if and
only if

• for each prefix v of w, |v|c ≤ |v|a + |v|b,
• w does not contain the factor ca,
• the last letter is not c,
• |w|a + |w|b = n.

To our knowledge, the languageLS provides a new occurrence of Schröder num-
bers.

3.2 Schröder Parking Functions and Schröder Paths

Now, we describe a bijective way to pass from a word of LS(n) to a Schröder path
of length 2n.

Let C (n) be the set of prefixes of Dyck paths of length n with up steps labelled
a or b. Then, each word w of LS(n) can be represented as a path in C (n), ending
at (n, n − |w|c), simply by coding each a (resp. b) as an up step U labelled a (resp.
b), and each c as a down step D. Observe that not all paths in C (n) correspond to a
word in LS(n): it is the case of the path abcab, which contains the factor ca. From
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Fig. 3 The word
w = a a b cccb a a ccb cb a
and its closure
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now on, we will use words of LS(n) and their graphical representations in terms of
Dyck prefixes, indifferently.

Given a path w of LS(n), we define its closure w as the smallest Dyck path
containing w as a prefix, i.e. w = w ch , where h = n − |w|c ≥ 1. Therefore,

LS(n) = {w : w ∈ LS(n)} .

Clearly, LS(n) and LS(n) are bijective. Also observe that, to a generic Dyck path
of length 2n correspond 2q paths in LS(n), where q is the number of up steps not
directly preceded by a down step.

Example 10.4 The graphical representation of the word w = a a b cccb a a ccb cb a
of Example10.3 and its closure w are shown in Fig. 3. The Schröder path Ψ (w) is
depicted in Fig. 4.

Given an up step labelled a (resp. b) in a pathw = u1 a u2 (resp. v1 b v2) ofLS(n),
there exists a unique down step c such thatw = u1 a u3 c u4 (resp. v1 b v3 c v4) and u3

(resp. v3) is a Dyck path. We say that the pair (a, c) (resp. (b, c)) forms a matching,
and a (resp. b) matches c.

We define the function Ψ : LS(n) → S P(n), where S P(n) denotes Schröder
paths of length 2n. There is a unique decomposition for paths w in LS(n)

(1) w is the empty path, or
(2) w = a v′ c v′′ (a, c) is a matching, or
(3) w = b v′ c v′′ (b, c) is a matching.

Observe that in cases (2) and (3) owing to the definition of words inLS(n), we have
that v′′ is the empty path or

v′′ = b g1 c . . . b gk c,
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Fig. 4 The path Ψ (w)

where gi is any Dyck path with up steps labelled a or b, and k ≥ 1. According to
this decomposition, the function Ψ is defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ (ε) = ε ;

Ψ (a v′ c v′′) = Ψ (v′) H Ψ (v′′) ;

Ψ (b v′ c v′′) = U Ψ (v′) D Ψ (v′′) .

where, as usual, ε is the empty path,U (resp. D) denotes up (resp. down) steps, while
H denotes horizontal steps of length 2.

The Schröder path Ψ (w) obtained from the word w considered in Example10.4
is depicted in Fig. 4.

Proposition 10.3 The function Ψ : LS(n) → S P(n) is a bijection.

Proof To prove the main statement, it is sufficient to define the function Φ :
S P(n) → LS(n) and prove that, for all words w ∈ LS(n) we have Φ(Ψ (w)) = w.
So, let P be a Schröder path of length 2n, the function Φ is defined as follows

Φ(P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε if P = ε

a Φ(S) c if P = S H

Φ(S) b Φ(S′)c if P = S U S′ D ,

where S and S′ are Schröder paths.
Let us now prove that Φ(Ψ (w)) = w, by induction on the length of w.

• Clearly if w = ε, Φ(Ψ (w)) = w.
• Let w = b v′ c v′′ (resp. w = a v′ c v′′), where b (resp. a) matches c.
Suppose v′′ = ε, then

Φ(Ψ (w)) = Φ(Ψ (b v′ c)) = Φ(U Ψ (v′) D) = b Φ(Ψ (v′)) c = b v′ c

(resp. Φ(Ψ (a v′ c)) = Φ(Ψ (v′) H) = a Φ(Ψ (v′)) c = a v′ c).
Else if v′′ = b g1 c . . . b gk c, with k ≥ 1, then by applying Ψ recursively it holds

Ψ (v′′) = U Ψ (g1) D . . . U Ψ (gk) D.

Therefore, if w = b v′ c v′′, then
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Φ(Ψ (w)) = Φ(U Ψ (v′) D U Ψ (g1) D . . . U Ψ (gk) D)

= Φ(U Ψ (v′) D U Ψ (g1) D . . . UΨ (gk−1) D) b Φ(Ψ (gk)) c

= . . . . . .

= b Φ(Ψ (v′)) c b Φ(Ψ (g1)) c . . . b Φ(Ψ (gk)) c

= b v′ c b g1 c . . . b gk c.

While, if w = a v′ c v′′, then Φ(Ψ (w)) = Φ(Ψ (v′) H U Ψ (g1) D . . . U Ψ (gk)

D) = . . . =Φ(Ψ (v′) H) b Φ(Ψ (g1)) c . . . b Φ(Ψ (gk)) c = a v′ c b g1 c . . . b gk c.

We observe that, in the language LS , small Schröder parking functions are pre-
cisely words beginning with b. So we have the following:

Corollary 10.2 The function Ψ yields a bijection between small Schröder parking
functions and Schröder paths having no horizontal steps on the x axis.

3.3 Schröder Parking Functions and Pattern Avoiding
Permutations

Since Schröder parking functions are underdiagonal sequences it is natural to inves-
tigate if they correspond, via the bijection φI described in Sect. 2.5, to some known
family of permutations. Below, we are going to prove that they correspond precisely
to the set of inversion tables of a class of pattern avoiding permutations counted by
the Schröder numbers.

Proposition 10.4 Schröder parking functions are bijective to permutations avoiding
1432 and 1423.

Proof We claim that a permutation π ∈ A V n(1432, 1423) if and only if the reverse
word of its left inversion table is a Schröder parking function of length n.

Let s1 s2 . . . sn be the reverse word of the left inversion table of any permutation π .
The property si < i holds for all π and all i ≤ n. Using this fact, we can reduce the
negative form of our statement to prove that a permutation π /∈ A V n(1432, 1423)
if and only if there exist two indices i, j , with i < j , such that si − s j ≥ 2.

A permutation π /∈ A V n(1432, 1423) if and only if π contains 1423 or 1432;
in other words, if and only if there exist four indices u < v < w < t such that πu <

πv, πw, πt and πv > πw, πt .
We can suppose without loss of generality that there is no index u < z < w such

that πz < πu . Let t1 t2 . . . tn be the left inversion table of such π . Since πu < πv

and no elements smaller than πu are between them, tv ≥ tu + 2 holds. Considering
s1 s2 . . . sn as the reverse word of t1 t2 . . . tn . Set i = n + 1 − v and j = n + 1 − u,
it results i < j because of u < v and si = tv ≥ tu + 2 = s j + 2.

Conversely, let s1 s2 . . . sn be the reverse word of the left inversion table t1 t2 . . . tn
of a permutation π . If there exist i and j , with i < j , such that si − s j ≥ 2, then
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tn+1−i − tn+1− j ≥ 2; namely, there exist two indices u = n + 1 − j < v = n + 1 −
i such that tu ≤ tv − 2. Therefore, there must be πu < πv , otherwise tu ≥ tv , and
moreover, since tv − tu ≥ 2, there must be two indices w and t , with w < t ≤ n,
such that πv > πw, πt and πu < πw, πt . This conclude the proof.

From the statement above, it follows that there is a simple subclass of permutations
of A V n(1432, 1423) counted by the small Schröder numbers.

Corollary 10.3 Small Schröder parking functions of length n are bijective to per-
mutations of A V n(1432, 1423) such that (n − 1, n) is an inversion.

4 Generalized Schröder Parking Functions

In this section, we provide quite a natural extension of the notion of Schröder parking
function, by introducing generalized Schröder parking functions of degree m. Then,
we study combinatorial properties of these sequences.

Definition 10.4 A generalized Schröder parking function of degree m ≥ 0 is a
sequence p1 p2 . . . pn such that

• pi < i , for all i ;
• If i < j then pi − p j ≤ m.

Clearly, with m = 0 we have non-decreasing parking functions and with m = 1,
we have Schröder parking functions, which are studied in the previous section.

Our aim is to extend the results of the previous section for a generic m ≥ 2, and
in particular, we start providing a representation of generalized Schröder parking
functions as labelled Dyck paths in order to obtain a generating tree for them, hence
their enumeration. As a special case, we retrieve a new combinatorial definition of
Schröder parking functions in terms of labelled Dyck paths. Then, we also show how
to extend to generalized Schröder parking functions the characterization given for
Schröder parking functions in terms of an algebraic language and a pattern avoiding
permutation class.

4.1 Generalized Schröder Parking Functions and Labelled
Dyck Paths

It is known that generic parking functions can be represented as labelled Dyck paths
[13]. We recall that, to each up step U of a Dyck path, we can assign a nonnegative
integer 
(U ) (called level ofU ) such thatU lies on the line y = x + 
(U ) (see Fig. 5).

Definition 10.5 A labelled Dyck path P of length 2n is a Dyck path of length 2n in
which every up step is labelled with a integer i ∈ {1, . . . , n} and such that the labels
of all the up steps at the same level are increasing.
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Fig. 5 A Dyck path and the
levels of its up steps

0 1 2 43 5 6 7 8

Fig. 6 The generalized
labelled Dyck path
associated with the parking
function 0021023818
according to the bijection φ 1

2
5 4

9 3
6 7

8
10

In a labelled Dyck path P , let i ∈ {1, . . . , n} be the label of an up step U , we
denote 
i := 
(U ). By [13], the bijection φ between labelled Dyck paths and park-
ing functions is given by φ(P) = 
1, . . . , 
n . So, for instance, the parking function
corresponding to the labelled Dyck path depicted in Fig. 6 is 0021023818.

Our aim is to give a characterization to the family of labelledDyckpaths associated
with generalized Schröder parking functions.

Definition 10.6 A generalized labelled Dyck path P of degree m ≥ 0 and length 2n
is a labelled Dyck path such that:

(1) 
i < i , for any i ∈ {1, . . . , n};
(2) if i < j , with i, j ∈ {1, . . . , n}, then 
i − 
 j ≤ m.

Let us denote byDm(n) the class of generalized labelled Dyck paths of degree m
and length 2n. Observe that, for m = 0, we obtain Dyck paths whose up steps are
labelled increasingly from 1 to n, which are trivially bijective to Dyck paths and their
corresponding parking functions are precisely the non-decreasing parking functions.

Proposition 10.5 The mapping φ yields a bijection between generalized labelled
Dyck paths of degree m and generalized Schröder parking functions of degree m.

Now, we provide a recursive construction for the class Dm according to the ECO
method. In order to do it, we introduce the notion of color of a path. Let P ∈ Dm ,
then c(P) (the color of P) is defined asmin(l, m), where l is the level of the rightmost
up step of P . Moreover, the last descent of P is the last sequence of down steps of
P .

Let ϑ be an operator performing the following operations on P:

(a) For each point in the last descent of P , ϑ adds an up step labelled n at this point
and a down step at the end of the path. This operation produces a number of
paths of length 2(n + 1) equal to the number of points in the last descent of P .

(b) Let us consider the c(P) down steps preceding the last descent of P . Then, ϑ

adds an up step labelled by n before each of these steps, and a down step at the
end of the path, thus producing c(P) paths of length 2(n + 1).
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Fig. 7 The production of a
path with c = 1, m = 4,
k = 4

(4)1

(5)1

(5)2

(5)3

(5)1

One can easily verify that ϑ satisfies conditions 1 and 2 in Definition10.1, thus it
is an ECO operator. Now, we aim at formalizing the recursive construction of the
operator ϑ by a generating tree. To do this, let us denote by k(P) the number of
objects produced by P through the application of θ , and distinguish the following
three cases depending on m and k(P):

• 0 ≤ c < k ≤ m. This means that c(P) = l, where l is the level of the rightmost up
step of P . Operation (a) adds an up step at height h = 0, . . . , k − c − 1 of the last
descent of P , thus producing paths with color c′ = min(l ′, m) = k − 1 − h = k −
1, . . . , c and parameter k ′ = h + 2 + c′ = k + 1. Operation (b) can be performed
at level 
 = 0, . . . , c − 1, producing paths with color c′ = c and k ′ = k + 1. See
Fig. 7 for an example.

• 0 ≤ c < m < k. This means again that c(P) = l, but in this case the result of the
application of Operation (a) depends on the height of the point of the last descent
to which the up step is added:

(i) if Operation (a) is applied to a point at height h = 0, . . . , k − m − 1 of the last
descent of P , we obtain k − m paths with color c′ = m and k ′ = h + 2 + c′ =
m + 2, . . . , k + 1;

(ii) if Operation (a) is applied to a point at height h = k − m, . . . , k − c − 1, we
obtain paths with color c′ = m − 1, . . . , c, and k ′ = k + 1.

Operation (b) can be performed at level 
 = 0, . . . , c − 1, producing paths with
color c′ = c and parameter k ′ = k + 1. See Fig. 8, for an example.

• Otherwise, if c = m thenOperation (a), performed at height h = 0, . . . , k − c − 1
of the last descent of P , produces paths with color c′ = m and k ′ = h + 2 +
c′ = m + 2, . . . , k + 1. Operation (b), performed at level 
 = l − m, . . . , l − 1,
produces paths with color c′ = m and k ′ = k + 1. See Fig. 9, for an example.

We are now able to give the succession rule for generalized Schröder parking
functions, obtained from θ operator.

Proposition 10.6 The succession rule associated with the operator ϑ for general-
ized Schröder parking functions of degree m ≥ 0 is:
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(7)4

(8)4

(8)5

(7)5

(8)4

(8)4

(8)4

(8)4

Fig. 8 The production of a path with c = 4, m = 5 and k = 7

(6)3

(7)3

(6)3

(5)3

(7)3

(7)3

(7)3

Fig. 9 The production of a path with c = 3, m = 3 and k = 6

Ωm
Sch

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

(k) → (k + 1)k if k < m + 2

(k) → (m + 2)(m + 3) . . . (k)(k + 1)m+1 otherwise.

Proof Let (k)c be the label of P ∈ Dm(n), where k = k(P) and c = c(P). From the
description of θ operator, we have the following succession rule
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Ωm
θ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)0

(k)c → (k + 1)k−1 . . . (k + 1)c+1(k + 1)c+1
c , 0 ≤ c < k ≤ m

(k)c → (m + 2)m(m + 3)m . . . (k)m(k + 1)m(k + 1)m−1

. . . (k + 1)c+1(k + 1)c+1
c , 0 ≤ c < m < k

(k)m → (m + 2)m(m + 3)m . . . (k)m(k + 1)m+1
m , otherwise.

Hence, it follows rule Ωm
Sch considering the following cases for the parameter k:

• If k ≤ m, then by the first case of ruleΩm
θ , for any c, a label (k)c produces (k + 1)k .

• If k = m + 1 and c < m (resp. c = m), then by the second (resp. third) case of
rule Ωm

θ , for any c, a label (k)c produces (k + 1)k .
• If k ≥ m + 2 and c < m (resp. c = m), then by the second (resp. third) case of
rule Ωm

θ , for any c, a label (k)c produces (m + 2)(m + 3) . . . (k)(k + 1)m+1.

Observe that, if m goes to infinity, the succession rule becomes:

ΩFac

⎧
⎨

⎩

(2)

(k) → (k + 1)k

which is the usual succession rule for factorial numbers.

Proposition 10.7 Let us denote by Fm
Sch(x) the generating function of the generalized

Schröder parking functions of degree m, then

Fm
Sch(x) =

m∑

i=1

i !xi + xm(m + 1)! (1 − x(m + 2) − √
(mx + 1)2 − 4(m + 1)x

2(m + 1)x

Indeed, from the succession rule Ωm
Sch we have that Fm

Sch(x) = ∑m
i=1 i !xi +

xm Gm(x), where Gm(x) is the generating function associated with the succession
rule starting at level (m + 1) of the generating tree T :

Ωm

⎧
⎨

⎩

(m + 2)

(k) → (m + 2)(m + 3) . . . (k)(k + 1)m+1

Let us take a node o ∈ T , we denote by k(o) its label and by n(o) its level in the
generating tree. Note that at level m + 1 of the generating tree of Ωm

Sch there are
(m + 1)! objects all having label (m + 2). Then:
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Gm(x, y) =
∑

o∈T
yk(o)xn(o)

= (m + 1)!ym+2x +
∑

o∈T
((ym+2 + . . . + yk(o) + (m + 1)yk(o)+1)xn(o)+1

= (m + 1)!ym+2x + xy

1 − y
(ym+1Gm(x, 1) − Gm(x, y)) + (m + 1)xyGm(x, y)

We apply the kernel method [1], obtaining the following equation for the kernel
Y (x):

1 − Y (x) + xY (x) − (m + 1)xY (x)(1 − Y (x))

from which we obtain:

Y (x) = (mx + 1) − √
(mx + 1)2 − 4(m + 1)x

2(m + 1)x

Since
Gm(x) = Gm(x, 1) = (m + 1)!(Y (x) − 1)

then

Fm
Sch(x) =

m∑

i=1

i !xi + xm(m + 1)! (1 − x(m + 2) − √
(mx + 1)2 − 4(m + 1)x

2(m + 1)x

We point out that the ruleΩm
Sch was already studied in [10] in the enumeration of per-

mutations avoiding the set of patterns {σ m m + 1 : σ ∈ Sm−1}. We will reconsider
and comment this combinatorial interpretation in Sect. 4.3.

4.2 An Algebraic Language for Generalized Schröder
Parking Functions of Degree m

The algebraicity of the generating function can be explained by providing a coding
of generalized Schröder parking functions of degree m as words of an algebraic
language. As for Schröder parking functions, also generalized Schröder parking
functions of degree m can be described by means of words of an algebraic language
L m in the alphabet {a0, a1, . . . , am, c} as follows. Observe that the case of Schröder
parking functions is readily obtained with m = 1 and by setting a0 = a, a1 = b.

So, let p = p1 . . . pn be a generalized Schröder parking function of degree m.
For i �= 0, an entry pi is a left-to-right maximum of p if pi > p j for all j < i . For
instance, in p = 0 0 1 2 1 2 0 1 3 2 2 1 3 6 7 6 every left-to-right maximum is under-
lined. Therefore, we define w(p) ∈ L m recursively as follows:
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Basis. Let p = p1 . . . pn be such that pi < m + 1, for all i ≤ n. We set w(p) =
ap2 . . . apn . In particular, if p = p1, w(p) = ε, the empty word.

Inductive step. Let w′ = w(p1 . . . pn−1) and suppose there exists a pi ≥ m + 1,
with i ≤ n − 1. We consider two cases:

1. if pn is a left-to-right maxima, let p j be the left-to-right maxima preceding pn

(if there is any, otherwise let p j = 0), and set h = pn − p j > 0. So, we have
w(p) = w′cham .

2. if pn is not a left-to-right maxima, and p j is the left-to-right maxima preceding
pn , let h = p j − pn < m + 1, we set w(p) = w′ah .

So, for instance, given the parking function of degree 2, p = 0012120132213676,
we have

w(p) = a0a1a2a1a2a0a1ca2a1a1a0a2ccca2ca2a1.

The characterization of the set

L m(n) = {w(p) : p is a Schröder parking function of degree m and length n + 1}

is then straightforward.

Proposition 10.8 A word w = w1 . . . wr in the alphabet {a0, . . . , am, c} belongs to
L m(n) if and only if

• if wi = a j then j ≤ i ,
• for each prefix v of w, |v|c ≤ |v|a0 + . . . + |v|am ,
• an entry c can be followed only by c or am,
• the last letter is not c,
• |w|a0 + . . . + |w|am = n.

4.3 Generalized Schröder Parking Functions of Degree m
and Pattern Avoiding Permutations

Proposition10.4 shows that Schröder parking functions are precisely the reverse
words of left inversion tables of permutations avoiding the patterns 1423 and 1432.
Now we extend this result to generalized Schröder parking functions of degree m,
proving that they are bijective to the permutation class described by the avoidance
of the set of patterns:

Δm = {1 m + 3 σ : σ is a permutation of length m + 1} .

Proposition 10.9 Generalized Schröder parking functions of degree m are in bijec-
tion with permutations avoiding the set of patterns Δm.
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Proof Analogously to Proposition10.4 it can be shown that generalized Schröder
parking function of degree m is precisely the set of reverse words of the left inversion
tables of permutations of A V (Δm).

As a matter of fact, with m = 0 we haveA V (132) counted by the Catalan num-
bers [23], and with m = 1 we have A V (1432, 1423).

We point out that in [10] it was proved that, for any m ≥ 0, the ruleΩm
Sch describes

the recursive growth of an ECO operator for permutations avoiding the set of patterns

Γm = {σ m + 2 m + 3 : σ is a permutation of length m + 1} ,

namelyA V (Γm). Due to what we have proved in the previous section and to Propo-
sition10.9, we conclude that there is a (non trivial) bijection betweenA V (Γm) and
A V (Δm).

5 Baxter Parking Functions

In this section, we define a new family of parking functions, and we prove that it is
enumerated by the Baxter numbers, first by describing a recursive growth of them
according to the generating tree ΩBax , then determining a bijection with Baxter
triples, defined in Sect. 2.4.

For any sequence of integers u1u2 . . . ui , denote by Max2(u1u2 . . . ui ) the max-
imal value among the u j appearing twice in the sequence. We use the convention
that Max2(u1u2 . . . ui ) = −1 if all the entries u j ’s are different, so that we can write
formally:

Max2(u1u2 . . . ui ) = Max{u j1 |∃ j2 �= j1, u j1 = u j2}

For the sake of simplicity, from now on, we write Max(u1u2 . . . ui ) in place of
Max{u1, u2, . . . , ui }.
Definition 10.7 A Baxter parking function is a sequence u1u2 . . . un such that, for
any i > 1, ui < i and one of the two constraints are satisfied:

ui > Max(u1u2 . . . ui−1) (10.4)

∃ j < i such that u j = ui and (10.5.1)

ui ≥ Max2(u1u2 . . . ui−1) (10.5.2)

Since every entry ui of a Baxter parking function u (apart from u1 = 0) satisfies
either (10.4) or (10.5.1) and (10.5.2), we classify all the entries u2 . . . un into two
groups and we call the entries that satisfy (10.4) left-to-right maxima of u.
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Example 10.5 An example of Baxter parking function is given by the sequence
u = 0 1 1 3 4 3 3 4 6 7, whose left-to-right maxima are u2, u4, u5, u9, u10.

Clearly ui < i for all i , and condition (10.4) is satisfied for i �= 3, 6, 7, 8. For
these indices, conditions (10.5.1) and (10.5.2) are satisfied:

u3 = u2 = 1 > Max2(0 1) = −1 u6 = u4 = 3 > Max2(0 1 1 3 4) = 1

u7 = u4 = 3 ≥ Max2(0 1 1 3 4 3) = 3 u8 = u5 = 4 ≥ Max2(0 1 1 3 4 3 3) = 3 .

Example 10.6 Examples of non-Baxter parking functions are given by the sequences
v = 0 0 1 1 4 3 3 4 and w = 0 0 1 1 4 0 3 4.

Indeed he have v6 = 3 < Max(0 0 1 1 4) and v6 �= vi for all i < 6, alsow6 = 0 <

Max(0 0 1 1 4) and w6 = 0 < Max2(0 0 1 1 4) = 1.

Proposition 10.10 Baxter parking functions are counted by Baxter numbers.

Proof To prove that Baxter parking functions are counted by Baxter numbers, we
define anECOoperator θBax for this class and show that the generating tree associated
with θBax is equal to ΩBax , defined in Sect. 2.4.
To anyBaxter parking function u = u1 u2 . . . un we associate the label (p, q)where:

• p(u) = n − Max(u1u2 . . . un),
• q(u) is the cardinality of Q(u), the set of all the entries of u greater than

Max2(u1 . . . un) included,

Q(u) = {
x | ∃ j s.t. u j = x and x ≥ Max2(u1, . . . , un)

}
.

The operator θBax adds the entry un+1 to u1 . . . un such that:

(a) un+1 = Max(u) + j , for any 1 ≤ j ≤ p(u);
(b) un+1 = x , for any x ∈ Q(u).

Observe that the sequence u′ = u1 u2 . . . un un+1 obtained by applying operation (a)
(resp. (b)) satisfies condition (10.4) (resp. conditions (10.5.1) and (10.5.2)), thus u′
is a Baxter parking function, and θBax is an ECO operator for this class. Moreover,
there are exactly p + q possible values for un+1, i.e. the application of θBax to u
produces p + q elements of size n + 1.

Now, we prove that the generating tree associated with θBax is equal to ΩBax .
Indeed, let (p, q) be the label of a Baxter parking function u such that p = p(u) and
q = q(u):

(a) if un+1 = Max(u) + j , for 1 ≤ j ≤ p, then p(u′) = (n + 1) − Max(u′) =
(n + 1) − un+1 = p + 1 − j and Q(u′) = Q(u) ∪ {un+1}. Then, q(u′) = q + 1
and 1 ≤ p(u′) ≤ p leading to the productions (i, q + 1), for 1 ≤ i ≤ p, ofΩBax .

(b) if un+1 = x , with x ∈ Q(u), then p(u′) = p + 1 and Q(u′) is a subset of Q(u),
whose cardinality q(u′) depends on x and varies from 1 (if x = Max(u)) to q
(if x = Max2(u)). This leads to have productions (p + 1, i), for 1 ≤ i ≤ q, of
ΩBax .
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Example 10.7 For instance, let u = 0 1 1 3 4 3 3 4 6 7; here Max2(u) = 4, Q(u) =
{4, 6, 7}. Then, u has label (3, 3), and the application of θBax to u produces the Baxter
parking functions:

0 1 1 3 4 3 3 4 6 7 10 with label (1, 4)
0 1 1 3 4 3 3 4 6 7 9 with label (2, 4)
0 1 1 3 4 3 3 4 6 7 8 with label (3, 4)
0 1 1 3 4 3 3 4 6 7 7 with label (4, 1)
0 1 1 3 4 3 3 4 6 7 6 with label (4, 2)
0 1 1 3 4 3 3 4 6 7 4 with label (4, 3) .

5.1 Baxter Parking Functions and Baxter Triples

In this section, we provide a bijective mapping between Baxter parking functions
and Baxter triples defined in Sect. 2.4.

We define a mapping Θ from the class of Baxter triples to the family of under-
diagonal sequences, which sends a triple (pu, pm, pd) of non-intersecting lattice
paths of length n ≥ 0 into an underdiagonal sequence u = u1u2 . . . un+1. As usual,
pu, pm, pd denote the upper, medium and lower paths. Then, we prove that the image
through Θ of any (pu, pm, pd) is a Baxter parking function.

First of all, we set that the Θ image of the empty Baxter triple is u = 0.
Then, given a triple (pu, pm, pd) of non-intersecting lattice paths of length n, with

n > 0, we define itsΦ image u = u1 . . . un+1 setting u1 = 0 and each ui , with i > 1,
depending on the distance between some points of those paths. More precisely, for
any i > 1, let (ai , bi ) be the ending point of the i − 1th step of pm , usually denoted by
pm

i−1. If pm
i−1 = E (resp. pm

i−1 = N ), let us consider the distance j := ji−1 between
the point (ai − 1, bi + 1) (resp. (ai + 1, bi − 1)) and the ending point of the east
(resp. north) step of path pd (resp. pu) ending at abscissa ai + 1 (resp. ordinate
bi + 1). It is well worth noticing that the value j strictly depends on i , but in the
following we write j instead of ji−1 since no misunderstanding occur.

Therefore, we set ui = (i − 1) − j , if pm
i−1 = E . This assignment is well defined

since i − 1 ≥ j .
Else if pm

i−1 = N , let us consider the set

Qi (u) = {uh | ∃h′ s. t. uh′ = uh, uh ≥ Max2(u1 . . . ui ) and h ≤ i},

for any i ≤ n + 1, as defined in the proof of Proposition10.10. Let q0 . . . ql , for
some l, be the sequence of the elements of Qi (u) ordered decreasingly. Then, we set
ui = q j . Also in this case, Φ is well defined as for any i > 1, Qi (u) is non-empty
and j ≤ l.

Observe that by Θ the entry ui is a left-to-right of u if and only if pm
i−1 = E .

For instance, the Baxter triple depicted in Fig. 10 is mapped in the Baxter parking
function 0 1 0 2 0 2 3 6 3.
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Fig. 10 A Baxter triple
mapped by Θ into
0 1 0 2 0 2 3 6 3

Proposition 10.11 The mapping Θ is a bijection between Baxter triples of length
n, having k east steps, and Baxter parking functions of length n + 1, having k left-
to-right maxima.

Proof Given any triple (pu, pm, pd) of non-intersecting lattice paths of length n,
with n > 0, we prove that its Θ image u is a Baxter parking function and Θ is a
one-to-one mapping, so that it is a bijection.

To prove that u = Θ(pu, pm, pd) satisfies Definition10.7, we want to show that
for any i > 1 such that pm

i−1 = E , the value (i − 1) − j is greater than Max(u1 . . . ui ).
Hence, ui satisfies either condition (10.4), if pm

i−1 = E , or conditions (10.5.1) and
(10.5.2), otherwise. Follows from this fact that Θ is one-to-one.

By the recursive definition ofΘ proving (i − 1) − j > Max(u1 . . . ui ), for any i ,
is the same as proving that us < ut , for s and t such that pm

s−1 = pm
t−1 = E . Without

loss of generality, we suppose that pm
s−1 and pm

t−1 are two consecutive instances of
east steps in pm , i.e. pm contains the factor pm

s−1 N t−s−1 pm
t−1. Let j1 (resp. j2) be

the distance between (as + 1, bs − 1) (resp. (as + 2, bt − 1)) and the ending point
(as + 1, y1) (resp. (as + 2, y2)) of the corresponding east step of pd . It holds that

j2 ≤ t − s − 1 + j1,

hence s − 1 − j1 < t − 1 − j2.

As a consequence of Proposition10.10 we have that the term θk,l in (10.3) counts
Baxter parking functions of length n and having k left-to-right maxima. Indeed,
there are θ1,1 = 4 Baxter parking functions of length 3 having only one left-to-right
maximum, namely 001, 010, 011, 002.

6 Generalized Baxter Parking Functions

In this section, we study two families of parking functions, which are still contained
in the family of underdiagonal sequences and are defined by relaxing the defini-
tion of Baxter parking function. Precisely, we obtain G B1-parking functions (resp.
G B2-parking functions) by removing condition (10.5.1) (resp. (10.5.2)) in
Definition10.7.
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6.1 GB1-Parking Functions

Definition 10.8 A G B1-parking function is an underdiagonal sequence u1u2 . . . un

such that, for any i > 1, ui satisfies conditions (10.4) or (10.5.1) of Definition10.7,
precisely:

ui > Max(u1u2 . . . ui−1) (4)

∃ j < i such that u j = ui (5.1)

The first terms of the sequence enumeratingG B1-parking functions are as follows:

1, 2, 6, 23, 106, 566, 3415, 22872, 167796, 1334596, . . .

We point out that this sequence does not appear in the Encyclopedia of Integer
sequences [17]; nevertheless, we are able to write a rule that enumerates it:

Proposition 10.12 G B1-parking functions grow according to the succession rule:

ΩG B1 :
⎧
⎨

⎩

(1, 1)

(p, q) → (1, q + 1)(2, q + 1) · · · (p, q + 1)(p + 1, q)q

Proof The proof is analogous to that of Proposition10.10 for the recursive growth
of Baxter parking functions. We just have to observe that the label (p, q) of a G B1-
parking function u = u1 . . . un is obtained by setting p = p(u) = n − Max(u), and
q = q(u) is the cardinality of the set

Q1(u) = {x | ∃ j s.t. u j = x} .

Then, if un+1 = x , for any x ∈ Q1(u), the sequence u′ = u1 . . . unun+1 has label
(p + 1, q).

For any integers n, p, q such that p, q ≤ n, let an,p,q be the number of
G B1-parking functions u of length n such that p(u) = p and q(u) = q. From
Proposition10.12 follows a recursive formula satisfied by these numbers.

Corollary 10.4 The numbers an,p,q satisfy the following recursive formula:

⎧
⎨

⎩

a1,1,1 = 1,

an,p,q = q an−1,p−1,q + ∑n
j=p an−1, j,q−1 for n > 1 .

(10.6)

Note that we always have p + q ≤ n + 1. In particular, a G B1-parking
function such that p = n + 1 − q is a sequence in which the set of entries is
{0, 1, . . . , Max(u)}, and then, Max(u) = q − 1. For such particular sequences, we
are able to prove the following striking result:
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Proposition 10.13 The numbers an,n+1−q,q are equal to the Stirling numbers of the

second kind

{
n
q

}

.

Proof It is well known that the Stirling number of the second kind

{
n
q

}

counts

the number of set partitions of [n] = {1, 2, . . . n} into q parts. Using a very simple
bijection, we prove that G B1-parking functions of length n such that p = n + 1 − q

are

{
n
q

}

.

Given a G B1-parking function u, define

Xi+1 = { j | u j = i}, for 0 ≤ i ≤ q − 1.

Then, for any i , Xi+1 is non empty and
⋃

i Xi+1 = [n]. Therefore, we have a set
partition of [n] into q parts.

Conversely, let {Xi }q
i=1 be a set partition of [n] and assume without loss of gen-

erality that min(Xi ) < min(Xi+1), for any i . Construct a G B1-parking function of
length n such that p + q = n + 1 simply setting for all j ∈ Xi ,

u j = i − 1.

Let us now consider the generating function F(t; x, y) of G B1-parking functions
according to the length, the parameter p, and the parameter q of a sequence:

F(t; x, y) =
∑

n≥1

⎛

⎝
n∑

p=1

n∑

q=1

an,p,q x p yq

⎞

⎠ tn. (10.7)

Using standard techniques, we can translate the succession ruleΩG B1 into a func-
tional equation satisfied by F(t; x, y):

F(t; x, y) = xyt + xyt

[
F(t; 1, y) − F(t; x, y)

1 − x
+ ∂ F(t; x, y)

∂y

]

(10.8)

We observe that (10.8) resembles the functional equation (3), Proposition8 in [6]. A
more general family of functional equations, including the one in [6], was studied in
[8]. Unfortunately, after a discussion with Guillaume Chapuy, we are led to conclude
that the methods described in [6, 8] cannot be easily extended to our case, so we
have not been able to calculate the generating function F(t; 1, 1) of G B1-parking
functions.

On the other side, there is some experimental evidence that the anisotropic gen-
erating function F(t; x, y) is not differentiably-finite (briefly, D-finite).

As pointed out by Guillaume Chapuy in a personal communication, writing
F(t; x, y) = ∑

k≥1 xkqk(t, y), it holds that, for each k, qk(t, y) is a rational function
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in (t, y): this can be demonstrated by induction since Equation (10.8) is equivalent
to

(1 − t yk)qk(t, y) = δk,1yt + yt

(y − 1)
(qk−1(t, y) − qk−1(t, 1)) .

Using induction, we can state something more about these rational terms qk(t; y).
In fact, there exists a polynomial pk(t, y) such that:

qk(t, y) = pk(t, y)
∏k

i=1(iyt − 1)
∏k−1

i=1 (i t − 1)k−i
,

and pk(t, y) has degree k(k + 1)/2 − 1 in t and degree (k − 1) in y (except the case
k = 1). The first cases are:

q1(t, y) = − yt
ty−1

q2(t, y) = − yt2

(t−1)(t y−1)(2t y−1)

q3(t, y) = − y(2t2 y−1)t3

(t−1)2(2t−1)(t y−1)(2t y−1)(3t y−1)

q4(t, y) = − y(12t5 y2−6t3 y2−18t3 y+13t2 y+2t2−1)t4

(t−1)3(2t−1)2(3t−1)(t y−1)(2t y−1)(3t y−1)(4t y−1) .

Recently, Tony Guttmann [14] suggested a numerical procedure for testing the
solvability of latticemodels based on the study of the singularities of their anisotropic
generating functions. T. Guttmann observed that for a large number of unsolved
models (leading to non D-finite generating functions) the number of different factors
in the denominators increases with n, and suggested that this property could be used
as a test of solvability. This test has been used successfully by A. Rechnitzer for
conjecturing (and then proving) the non D-finiteness of self-avoiding polygons [19],
of directed bond animals [20], and of bargraphs according to the site perimeter [5].
Motivated by Guttmann’s test we make the following conjecture:

Conjecture 1 The anisotropic generating function of G B1-parking functions is not
D-finite.

To prove such a conjecture, we would just need to prove that the number of poles
of qk(t, y) increases, as n grows, so that the function F(t; x, y) has an infinite number
of poles. Due to our previous observations, it would be sufficient to prove that the
denominators do not simplify with the numerators. Such proofs are in general quite
complex, since the expression for the numerators pk(t, y) may be very difficult to
obtain. So, we believe that, to obtain such a proof, it might be convenient to use the
so-called haruspicy techniques developed in [18–20].
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6.2 GB2-Parking Functions

Definition 10.9 A G B2-parking function is an underdiagonal sequence u1u2 . . . un

such that, for any i > 1, ui satisfies conditions (10.4) or (10.5.2) of Definition10.7,
precisely:

ui > Max(u1u2 . . . ui−1) (4)

ui ≥ Max2(u1u2 . . . ui−1) (5.2)

The first terms of the sequence gn enumerating G B2-parking functions are as
follows:

1, 2, 6, 23, 105, 549, 3207, 20577, 143239, 1071704, . . .

Westart defining a recurrence relation satisfied by the number gn,k ofG B2-parking
functions of length n and having k occurrences of 0, whose first values are shown in
the table below.

k 1 2 3 4 5 6
n=1 1
n=2 1 1
n=3 2 3 1
n=4 6 10 6 1
n=5 23 40 31 10 1
n=6 105 187 166 75 15 1

For instance, g4,2 = 10 corresponds to the following 10 G B2-parking functions
of length 4 with 2 occurrences of 0.

0 0 1 1, 0 0 1 2, 0 0 1 3, 0 0 2 1, 0 0 2 2, 0 0 2 3, 0 1 0 1, 0 1 0 2, 0 1 0 3, 0 1 2 0

We can obtain a recurrence relation satisfied by the numbers gn,k by providing a
mappingψ fromG B2-parking functions of length n > 1 ontoG B2-parking functions
of length n − 1.

Definition 10.10 ToanyG B2-parking functionu = u1u2 . . . un of lengthn,we asso-
ciate the sequence ψ(u) = u′ = u′

1u′
2 . . . u′

n−1, such that

u′
i =

{
0 if ui+1 = 0
ui+1 − 1 otherwise

(10.9)

It is not difficult to see that ψ(u) is a G B2-parking function of length n − 1.
Moreover, let us denote by G B2(n, k) the set of G B2-parking functions of length n
such that there are exactly k occurrences of 0. Then, we have:
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Proposition 10.14 For any u′ ∈ G B2(n − 1, k) the number of u ∈ G B2(n, j) such
that ψ(u) = u′ is equal to ⎧

⎨

⎩

0 if j > k + 1
1 if j = k + 1
j if j ≤ k

(10.10)

Proof Since each sequence u in G B2(n, j) has j occurrences of 0, its image through
ψ has at least j − 1 occurrences of 0 (note that the first value u1 = 0 is not used
to compute ψ(u)). Hence, ψ(u) is an element of G B2(n − 1, j ′), with j ′ ≥ j − 1,
proving the first case of (10.10).

The second case of (10.10) holds, since the unique u in G B2(n, k + 1) satisfying
ψ(u) = u′ is obtained by taking ui+1 = u′

i + 1 for any u′
i > 0 and setting u1 and all

the other entries equal to 0.
Concerning the third case, let u′ ∈ G B2(n − 1, k). There are j ways to obtain

a sequence u in G B2(n, j) such that u′ = ψ(u): we have to replace each u′
i > 0

by u′
i + 1, add an occurrence of 0 at the beginning of u, keep unchanged j − 1

occurrences of 0 and replace the other ones by 1. Since u has to satisfy conditions
(10.4) and (10.5.2) defining G B2-parking functions, there is at most one occurrence
of 1 on the left of the rightmost occurrence of 0, so that restricting the sequence u to
the occurrences of 0’s and 1’s we must have the situation below.

0,

j
︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0, 1, · · · , 1
︸ ︷︷ ︸

k

This proves that there are exactly j possible positions for this unique occurrence of
1 followed by some occurrences of 0.

Proposition10.14 has the following consequence:

Theorem 10.1 The numbers gn,k = |G B2(n, k)| satisfy the following recurrence
formula: {

g1,1 = 1,
gn,k = gn−1,k−1 + k

∑n−1
i=k gn−1,i .

(10.11)

Proof In order to prove this corollary, we use Proposition10.14 considering the
subsets G B2(n − 1, i), i ≥ k − 1, and G B2(n, k).

From the proof of Proposition10.14, we obtain a simple generating tree for G B2-
parking sequences, with succession rule given by:

ΩG B2 :
⎧
⎨

⎩

(1)

(k) � (1)(2)2 . . . (k)k(k + 1) ,

where any G B2-parking sequence with exactly k occurrences of 0 has label (k).
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The sequence {gn}n≥0, counting G B2-parking functions, is registered in the Ency-
clopedia of Integer Sequences as A113227 and counts also the number of permu-
tations avoiding the generalized pattern 1 23 4. More precisely, in [7] David Callan
shows that permutations avoiding 1 23 4 are enumerated by a sequence {rn}n≥0, where
rn = ∑

k rn,k , and the terms rn,k satisfy the same recurrence relation as the terms gn,k

in (10.11). In [7], David Callan studies and determines the exponential generating
function of 1 23 4-avoiding permutations according to several parameters. Unfortu-
nately, we have not been able to find parameters on G B2-parking functions which
have the same distribution.

Since the number of G B2-parking functions of length n is equal to the number
of permutations of length n avoiding the pattern 1 23 4, to our opinion it would be
interesting to find a (direct) bijection between Baxter parking functions of type 2,
namely G B2(n), and permutations ofA V n(1 23 4). We believe that this can be done
by determining a recursive growth of A V n(1 23 4) according to ΩG B2 .

Acknowledgements The authors would like to thank Guillaume Chapuy for his valuable help on
the study of the functional equation for G B1-parking functions.
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Some Tilings, Colorings and Lattice
Paths via Stern Polynomials

Karl Dilcher and Larry Ericksen

Abstract We use certain subsequences of two different but related types of
generalized Stern polynomials to characterize all lattice paths, with specific restric-
tions, that go from the origin to the line x + y = n in thefirst quadrant of the xy-plane.
The first kind of lattice paths can also be interpreted as tilings with squares and domi-
noes in one case and “black and white” colorings in another case. The second kind of
lattice paths is certain weighted Delannoy paths; from our analysis, we obtain results
on weighted Delannoy numbers and extensions with polynomial weights. Finally,
we establish some connections with Jacobi polynomials.

Keywords Lattice paths, Stern polynomials, Generating functions, Delannoy
numbers, Jacobi polynomials
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1 Introduction

It is a well-known fact that the number of tilings of an n × 1 rectangle (also known
as an n-board) by 1 × 1 squares and 2 × 1 dominoes is Fn+1, where Fk is the kth
Fibonacci number defined recursively by F0 = 0, F1 = 1 and Fk = Fk−1 + Fk−2
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(k ≥ 2). It is also known that the number of such tilings with exactly j dominoes
(0 ≤ j ≤ � n

2 �) is
(n− j

j

)
; see, e.g., [4, Ch. 1] for these and other related facts.

We now consider the equivalent problem of counting the following lattice paths
from the origin to a point on the line x + y = n that intersects the latticeZ × Z, with
x ≥ 0, y ≥ 0. How many such paths are there if the allowable moves are two units
in the vertical (up) and one unit in the horizontal direction (to the right)?

Clearly, this is equivalent to the tiling mentioned above if we identify a vertical
move with a domino and a horizontal move with a square. This means that there are
Fn+1 such lattice paths, and the number of paths with exactly j vertical moves is(n− j

j

)
. This is, of course, also related to the well-known identity

Fn+1 =
�n/2�∑

j=0

(
n − j

j

)
. (11.1)

This identity, in turn, can be seen as a special case of the explicit expansion

Fn+1(x, y) =
�n/2�∑

j=0

(
n − j

j

)
xn−2 j y j (11.2)

for the (bivariate) Fibonacci polynomials defined by the recurrence relation F0(x, y)
= 0, F1(x, y) = 1, and

Fk(x, y) = xFk−1(x, y) + yFk−2(x, y). (11.3)

These polynomials, which are related to the Chebyshev polynomials, have a long
history, going back to Lucas [20], and are still being applied and extended; see, e.g.,
[1] or [7]. Either one of the univariate polynomials Fn+1(x, 1) or Fn+1(1, y) would
serve to encode not only the number of lattice paths discussed above, but also the
additional information of the number of paths with exactly j vertical moves.

It is the main purpose of this paper to go a step further and introduce a one-
parameter extension of the polynomial sequence {Fn+1(1, y)}n , which will allow us
to “read off,” for each fixed n ≥ 1, all the individual Fn+1 paths. We achieve this
by generalizing one of two recently introduced polynomial extensions of the Stern
(diatomic) sequence.

We define this generalization in Sect. 2, along with an analogous generalization
that has previously been introduced and applied. In Sect. 3, we then apply the first
generalization to the lattice paths (and tilings) discussed above, and to a certain
coloring of the n-board. In Sect. 4, we use the second type of generalized Stern
polynomials to deal with a Delannoy-type lattice path problem and also present a
method of identifying, for a given n, each individual path from the origin to a lattice
point on the line x + y = n. The proofs follow from a more general treatment, using
polynomial weights; this is done in Sect. 5. We conclude this paper with some further
remarks in Sect. 6, including connections with Jacobi polynomials.
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2 Generalized Stern Polynomials

The Stern sequence, also known as Stern’s (diatomic) sequence, is one of the most
remarkable integer sequences in number theory and combinatorics. Using the nota-
tion {a(n)}n≥0, it can be defined by a(0) = 0, a(1) = 1, and for n ≥ 1 by

a(2n) = a(n), a(2n + 1) = a(n) + a(n + 1). (11.4)

Numerous properties and references can be found, e.g., in [5], [22, A002487], or
[24]. This sequence was independently extended to two different concepts of Stern
polynomials in [12, 18]; see also [8, 13], resp. [25, 26, 28, 29], for further properties.

We are now going to define one-parameter extensions of these two polynomial
sequences and derive some important properties.

Definition 11.1 Let t be a fixed real or complex number.
(a) The type-1 generalized Stern polynomials a1,t (n; z) are polynomials in z defined
by a1,t (0; z) = 0, a1,t (1; z) = 1, and for n ≥ 1 by

a1,t (2n; z) = z a1,t (n; zt ), (11.5)

a1,t (2n + 1; z) = a1,t (n + 1; zt ) + a1,t (n; zt ). (11.6)

(b) The type-2 generalized Stern polynomials a2,t (n; z) are polynomials in z defined
by a2,t (0; z) = 0, a2,t (1; z) = 1, and for n ≥ 1 by

a2,t (2n; z) = a2,t (n; zt ), (11.7)

a2,t (2n + 1; z) = a2,t (n + 1; zt ) + z a2,t (n; zt ). (11.8)

See Table 1 for the first 21 of each of these polynomials. When z = 1, both
sequences reduce to the Stern (diatomic) sequence, by comparing with (11.4). Fur-
thermore, {a1,1(n; z)} is the sequence of Stern polynomials introduced in [18], and
{a2,2(n; z)} is the one introduced in [12]. The generalized sequence {a2,t (n; z)} was
recently introduced by the present authors in [9], where it was used in a detailed study
of hyperbinary expansions; further properties were derived in [10]. The sequence
{a1,t (n; z)} is new.

Table 1 indicates that both sequences of polynomials have a special structure.
While it is easily seen that for t = 1 the exponents in a given polynomial can coincide,
for t ≥ 2 the situation is quite different.

Proposition 11.1 For integers t ≥ 2 and n ≥ 0, the coefficients of a1,t (n; z) and
a2,t (n; z) are only 0 or 1. Furthermore, all exponents of z are polynomials in t with
only 0 or 1 as coefficients.

Proof For a2,t (n; z) this was proved in [9]. To deal with a1,t (n; z), we first note that
by (11.5) all exponent polynomials for even n have constant coefficient 1, while by
(11.6) all exponent polynomials for odd n have constant coefficients 0. We are done
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Table 1 a1,t (n; z) and a2,t (n; z), 1 ≤ n ≤ 21

n a1,t (n; z) a2,t (n; z)
1 1 1

2 z 1

3 1 + zt 1 + z

4 zt+1 1

5 1 + zt + zt
2

1 + z + zt

6 z + zt
2+1 1 + zt

7 1 + zt
2 + zt

2+t 1 + z + zt+1

8 zt
2+t+1 1

9 1 + zt
2 + zt

2+t + zt
3

1 + z + zt + zt
2

10 z + zt
2+1 + zt

3+1 1 + zt + zt
2

11 1 + zt + zt
2 + zt

3 + zt
3+t 1 + z + zt+1 + zt

2 + zt
2+1

12 zt+1 + zt
3+t+1 1 + zt

2

13 1 + zt + zt
3 + zt

3+t + zt
3+t2 1 + z + zt + zt

2+1 + zt
2+t

14 z + zt
3+1 + zt

3+t2+1 1 + zt + zt
2+t

15 1 + zt
3 + zt

3+t2 + zt
3+t2+t 1 + z + zt+1 + zt

2+t+1

16 zt
3+t2+t+1 1

17 1 + zt
3 + zt

3+t2 + zt
3+t2+t + zt

4
1 + z + zt + zt

2 + zt
3

18 z + zt
3+1 + zt

3+t2+1 + zt
4+1 1 + zt + zt

2 + zt
3

19 1 + zt + zt
3 + zt

3+t + zt
3+t2

+zt
4 + zt

4+t
1 + z + zt+1 + zt

2 + zt
2+1

+zt
3 + zt

3+1

20 zt+1 + zt
3+t+1 + zt

4+t+1 1 + zt
2 + zt

3

21 1 + zt + zt
2 + zt

3 + zt
3+t + zt

4

+zt
4+t + zt

4+t2
1 + z + zt + zt

2+1 + zt
2+t + zt

3

+zt
3+1 + zt

3+t

if we can show that for a given n the exponent polynomials are all distinct and have
coefficients 0 and 1 only. We do this by induction on n.

The statement is clearly true for n = 1 and 2 (see Table 1). Now suppose it is true
up to some n − 1 ≥ 2. If n is even, then by (11.5) it will also be true for a1,t (n; z).
Suppose then that n is odd, say n = 2k + 1. By induction hypothesis, the property
in question holds for a1,t (k; z) and a1,t (k + 1; z). But one of k, k + 1 is even and
the other one is odd; therefore, by the previous paragraph, no exponent polynomial
in a1,t (k; z) will match one in a1,t (k + 1; z), and all have coefficients 0 and 1. The
same is true when z is replaced by zt , and therefore, by (11.6), a1,t (2k + 1; z) has
the desired property. This completes the proof.

Although generating functions will not be used for the applications in this paper,
we state them as important properties of the sequences in question.

Proposition 11.2 For integers t ≥ 1, the generalized Stern polynomials have the
following generating functions:



230 K. Dilcher and L. Ericksen

Table 2 αn , βn , 1 ≤ n ≤ 10

n 1 2 3 4 5 6 7 8 9 10

αn 1 1 3 5 11 21 43 85 171 341

βn 2 3 7 13 27 53 107 213 427

x
∞∏

j=0

(
1 + x2

j
zt

j + x2
j+1

)
=

∞∑

n=1

a1,t (n; z)xn, (11.9)

x
∞∏

j=0

(
1 + x2

j + x2
j+1
zt

j
)

=
∞∑

n=1

a2,t (n; z)xn . (11.10)

The generating function (11.9) was proved in [11], with the special case t = 1
obtained by Ulas in [28]. The identity (11.10) was proved in [9], with the cases t = 1
and t = 2 earlier obtained in [3, 12], respectively. The corresponding generating
function for Stern’s diatomic sequence was first obtained by Carlitz [6].

The remainder of this sectionwill be devoted to two special subsequences for each
of the two types of generalized Stern polynomials. Through their relationship with
Fibonacci numbers we will ultimately establish the desired connection with lattice
paths.

An important and interesting property of Stern’s diatomic sequence defined by
(11.4) is the fact that in each interval 2n−2 ≤ m ≤ 2n−1 the maximum value of a(m)

is the Fibonacci number Fn . It was apparently first shown by Lehmer [19] that this
maximum occurs at

αn := 1

3

(
2n − (−1)n

)
and βn := 1

3

(
5 · 2n−2 + (−1)n

)
(n ≥ 2), (11.11)

where αn is also defined for n = 0, 1. The two sequences can be found in [22] as
A001045 and A048573, respectively, with numerous properties and references. The
first few values of both are listed in Table 2.

Of the various properties of these sequences we require the recurrence relations

αn+1 = 2αn + (−1)n, βn+1 = 2βn − (−1)n, (11.12)

which immediately follow from (11.11). In particular, these identities show that with
the exception of β2 = 2, all αn and βn , n ≥ 2, are odd.

In [13] the two subsequences of the Stern polynomials a2,2(k; z) given by k = αn

and k = βn were introduced and studied in some detail. In analogy we consider the
sequences

a1,t (αn; z), a1,t (βn; z), a2,t (αn; z), a2,t (βn; z).
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Since for z = 1 the sequences of generalized Stern polynomials reduce to Stern’s
diatomic sequence, by the remarks preceding (11.11) we have

a1,t (αn; 1) = a1,t (βn; 1) = a2,t (αn; 1) = a2,t (βn; 1) = Fn (n ≥ 2), (11.13)

independent of t . By Proposition 11.1 this means that the number of terms in
aε,t (αn; z) and aε,t (βn; z) is Fn for both ε = 1 and 2.

The relation (11.13) also shows that the following recurrence relations can be
seen as analogues of the basic recurrence of the Fibonacci numbers.

Proposition 11.3 For a fixed integer t ≥ 1 we have

a1,t (αn+1; z) = a1,t (αn; z) + zt
n−1

a1,t (αn−1; z) (n ≥ 2), (11.14)

a1,t (βn+1; z) = a1,t (βn; zt ) + zta1,t (βn−1; zt2) (n ≥ 3), (11.15)

a2,t (α2n+1; z) = z a2,t (α2n; zt ) + a2,t (α2n−1; zt2) (n ≥ 1), (11.16)

a2,t (α2n; z) = a2,t (α2n−1; zt ) + z a2,t (α2n−2; zt2) (n ≥ 2), (11.17)

a2,t (β2n+1; z) = a2,t (β2n; zt ) + z a2,t (β2n−1; zt2) (n ≥ 2), (11.18)

a2,t (β2n; z) = z a2,t (β2n−1; zt ) + a2,t (β2n−2; zt2) (n ≥ 2). (11.19)

The proofs of these identities are routine and come from the recurrence relations
(11.5)–(11.8), using the two identities in (11.12).

3 Tilings and Colorings of the n-Board

3.1 Tilings

Asmentioned in the introduction, there is an easy 1-1 correspondence between certain
lattice paths and tilings of the n-board with squares and dominoes. We therefore
restrict our attention in this section to the latter and begin with the main result of this
section. We first fix some terminology. Given an n-board, we number its squares,
from the left, by 1, 2,…, n, and we say that a domino is in position k, 1 ≤ k ≤ n − 1,
if it covers the squares numbered k and k + 1.

Theorem 11.1 Given an integer n ≥ 1, let En+1 be the set of exponents of z in
a1,t (αn+1; z), i.e.,

a1,t (αn+1; z) =
∑

p∈En+1

z p(t). (11.20)

Then each tiling of the n-board corresponds to exactly one polynomial in En+1 as
follows:
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The zero polynomial corresponds to the tiling without dominoes. Otherwise, if

p(t) = ta1 + · · · + tar ∈ En+1, 1 ≤ a1 < · · · < ar , r ≥ 1, (11.21)

then the corresponding tiling has r dominoes, each in position a j , j = 1, . . . , r .

Before proving this, we consider an example.

Example 11.1 For tiling the 5-board we consider a1,t (α6; z) = a1,t (21; z), and in
Table 1 we see that

E6 = {0, t, t2, t3, t3 + t, t4, t4 + t, t4 + t2}.

Accordingly, all the tilings are given by dominoes in positions 1, 2, 3, 1&3, 4, 1&4,
and 2&4, respectively, in addition to the tiling with only squares.

We also note that there is
(5
0

) = 1 tiling with no domino, and there are
(4
1

) = 4
tilings with one domino and

(3
2

) = 3 tilings with two dominoes, consistent with the
remarks at the beginning of the introduction.

Proof (of Theorem 11.1) We use induction on n. For n = 1 and 2 the tilings clearly
correspond to a1,t (α2; z) = 1 and a1,t (α3; z) = 1 + zt , respectively. Suppose now
that the result holds up ton − 1 (n ≥ 3).Weget all tilings of then-board by combining
the following:

(1)The tilings of the (n − 1)-board,with one square added to the end.By induction
hypothesis these are given by the exponents in a1,t (αn; z).

(2) The tilings of the (n − 2)-board, with one domino attached to the end, i.e., in
position n − 1. This amounts to adding tn−1 to each of the coefficient polynomials
in a1,t (αn−1; z) or, equivalently, multiplying a1,t (αn−1; z) by zt

n−1
.

Finally, adding the polynomials obtained in (1) and (2) and using (11.14), we find
that all tilings of the n-board are given by a1,t (αn+1; z). This completes the proof.

Remarks (1) It follows from Theorem 11.1 that in any p(t) ∈ En no two exponents
of t can be adjacent. This property is special to a1,t (αn; z); it does not hold for Stern
polynomials in general, as can be seen in Table 1.

(2) Theorem 11.1 also implies that, by setting t = 1, the coefficients of z j , j ≥ 0,
in a1,1(αn+1; z) count the number of tilings of the n-board with exactly j dominoes.
By the remark at the beginning of the introduction, this means that we have the
explicit expansion

a1,1(αn+1; z) =
� n
2 �∑

j=0

(
n − j

j

)
z j . (11.22)

Since the left-hand side is a Stern polynomial as defined in [18] and the right-hand
side can be written in terms of Chebyshev polynomials, one can obtain results on
zeros and irreducibility of these polynomials; see [14].
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3.2 Colorings

Given the similarities between the sequences αn and βn , it is natural to ask whether
the Stern polynomials a1,t (βn; z) have a similar combinatorial interpretation as the
polynomials a1,t (αn; z) do in Theorem 11.1. This is indeed the case, as we shall now
see.

Given an integer n ≥ 1, we color the squares of the n-board in any of the following
ways:

• If n = 1, the square can be white (W) or black (B).
• If n ≥ 2, then

(i) the positions n − 1, n can only be WW, WB and BB (not BW), and
(ii) apart from positions n − 1 and n, no two adjacent B are allowed.

Example 11.2 For n = 2, the allowable colorings are WW, WB, BB, and for n = 3
they are WWW, WWB, WBB, BWW, BWB. Note that their numbers are F4 = 3 and F5 = 5,
respectively.

Theorem 11.2 Given an integer n ≥ 1, let E ′
n+2 be the set of exponents of z in

a1,t (βn+2; z), i.e.,
a1,t (βn+2; z) =

∑

p∈E ′
n+2

z p(t). (11.23)

Then each of the above colorings of the n-board corresponds to exactly one polyno-
mial in E ′

n+2 as follows:
The zero polynomial corresponds to all squares being W. Otherwise, if

p(t) = tb1 + · · · + tbr ∈ E ′
n+2, 1 ≤ b1 < · · · < br , r ≥ 1, (11.24)

then exactly r squares are B, each in position b j , j = 1, . . . , r .

Once again, before proving this result we give an example.

Example 11.3 For coloring the 4-board we consider

a1,t (β6; z) = a1,t (27; z)
= 1 + zt + zt

2 + zt
4 + zt

4+t + zt
4+t2 + zt

4+t3+t + zt
4+t3 ,

which can be obtained from Table 1 with (11.6). Hence

E ′
6 = {0, t, t2, t4, t + t4, t2 + t4, t + t3 + t4, t3 + t4}.

Accordingly, the colorings are

WWWW, BWWW, WBWW, WWWB, BWWB, WBWB, BWBB, WWBB.
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Proof (of Theorem 11.2) We use again induction on n. For n = 1 and n = 2 the
colorings correspond to

a1,t (β3; z) = 1 + zt and a1,t (β4; z) = 1 + zt
2 + zt

2+t ,

respectively. Suppose now that the result holds up to n − 1 (n ≥ 3). We get all
colorings of the n-board by combining the following:

(1) A W in position 1, followed by the colorings of the (n − 1)-board in positions
2, . . . , n. This shift by one position is achieved if we replace z by zt in the polynomial
a1,t (βn+1; z) which comes from the induction hypothesis. Hence the contribution is
a1,t (βn+1; zt ).

(2) The pair BW in positions 1, 2, followed by the coloring of the (n − 2)-board in
positions 3, . . . , n. This shift by two positions is achieved if we replace z by zt

2
in the

polynomial a1,t (βn; z)which comes from the induction hypothesis, while having a B
in position 1 is achieved by multiplying this polynomial by z. Hence the contribution
in this case is z a1,t (βn; zt2).

Finally, adding the polynomials obtained in (1) and (2) and using (11.15), we
find that all colorings of the n-board are given by a1,t (βn+2; z), which completes the
proof.

Remark In analogy to Remark (2) above, we can set t = 1 in (11.23). Then
Theorem 11.2 implies that the coefficients of z j , j ≥ 0, in a1,1(βn+2; z) count the
number of colorings of the n-board with exactly j black squares. Also, if we set
z = 1, then (11.13) shows that the total number of such colorings of the n-board is
Fn+2. Now, it can be shown by induction, using (11.15) with t = 1, that

a1,1(βn+2; z) = 1 +
� n
2 �+1∑

j=1

((
n + 1 − j

j − 1

)
+

(
n − 1 − j

j

))
z j , (11.25)

with the convention that
(k
j

) = 0 whenever k < j . We have thus obtained the follow-
ing consequence of Theorem 11.2.

Corollary 11.1 For n ≥ 1, the number of colorings of the n-board, as described
above, with exactly j black squares is

(n+1− j
j−1

) + (n−1− j
j

)
.

3.3 Lattice Paths

In the introduction we already discussed the one-to-one correspondence between
the tilings from Sect. 3.1 and a certain class of lattice paths. Thus, with the obvious
translation “domino ↔ two steps up” and “square ↔ one step to the right” (or with
the slight variation of interchanging “up” and “right”), Theorem 11.1 can also be
seen as a result on these lattice paths.

Similarly, the colorings of Sect. 3.2 can also be translated to a class of lattice paths,
somewhat similar to the ones above. We find it convenient to consider the colored
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n-board “from back to front,” and we translate a B into an up (U) move by one unit,
and a W into a right (R) move by one unit. Thus we consider the following class of
lattice paths:

Given an integer n ≥ 1, an allowable path goes from the origin to a lattice point
(x, y), x ≥ 0 and y ≥ 0, on the line x + y = n in a sequence of U and R steps under
the following conditions:

• Starting with U or UU, or with any number of R;
• the initial steps RU are not allowed;
• apart from the beginning, no two consecutive U steps are allowed.

We have seen in the previous subsection that the total number of such lattice
paths is Fn+2, and the number of those with exactly j Umoves is

(n+1− j
j−1

) + (n−1− j
j

)
.

Furthermore, Theorem 11.2, appropriately interpreted, gives each lattice path explic-
itly. Of course, one could also consider the obvious variants with U and R inter-
changed, or “reading the colorings from front to back.”

4 Delannoy Paths

4.1 Some Basics

An interesting andwell-knownclass of lattice paths are theDelannoypaths, defined as
follows. Let (r, s) ∈ Z × Z be a lattice point with r ≥ 0 and s ≥ 0. Then aDelannoy
path is a lattice path from the origin to (r, s), consisting of a sequence of up (0, 1),
right (1, 0), and diagonal (1, 1) steps. The number of Delannoy paths to (r, s)
is called the Delannoy number D(r, s), and it is known that

D(r, s) =
r∑

j=0

(
r

j

)(
s

j

)
2 j . (11.26)

For this and other properties see, e.g., [2] or [15], with historical and biographical
remarks in [2]; see also [22, A008288] for further properties and references.

A generalization of Delannoy numbers is given by weighted Delannoy numbers,
where the up, right, and diagonal steps are assigned real or complex weights
α, β, γ , respectively. Then the weight of each path is the product of the weights
of each of its component steps, and the weighted Delannoy number of (r, s) is the
sum of all the weighted Delannoy paths to (r, s). For further details, including the
analogue to (11.26), namely,

Dα,β,γ (r, s) =
r∑

j=0

(
r

j

)(
s

j

)
αs− jβr− j (αβ + γ ) j , (11.27)
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see [16]. Asymptotic expansions for these numbers were recently obtained in [21],
and a further generalization was introduced and investigated in [15].

In this section we will consider the special weights α = 2 (for up), β = 1 (for
right), and γ = −1 (for diagonal). With (11.27) we immediately get

D2,1,−1(r, s) =
r∑

j=0

(
r

j

)(
s

j

)
2s− j . (11.28)

In general this is different from (11.26), but when r = s, we get by changing the
order of summation and comparing with (11.26) that

D2,1,−1(r, r) = D(r, r). (11.29)

These are the central Delannoy numbers 1, 3, 13, 63, 321, . . . (for r = 0, 1, . . .),
which have been particularly well studied (see, e.g., [22, A001850]). For further
remarks related to (11.28) and (11.29), see Sect. 6.3 below.

4.2 Connections with Stern Polynomials

In this section we will establish a connection between the special weighted Delannoy
numbers (andpaths) and the second typeof generalizedStern polynomials,a2,t (m; z).
In particular, we will be taking m = αn , as defined in (11.11).

We begin with the special case t = 1 and note that the polynomials a2,1(m; z),
in a different notation, were introduced and studied independently in [3, 27] in
connection with hyperbinary expansions; see also [9] for an extension. For m = αn ,
the case of interest here, these polynomials are easy to compute by alternately using
the recurrence relations (11.16) and (11.17). The first few are listed in Table 3.

While in general the degree of a2,t (m; z) is not obvious (see [9, Sect. 4]), here it
is easy to show by induction, using (11.16) and (11.17), that

Table 3 a2,1(αn; z), 1 ≤ n ≤ 12

n a2,1(αn; z) n a2,1(αn; z)
1 1 7 1 + 3z + 5z2 + 4z3

2 1 8 1 + 4z + 8z2 + 8z3

3 1 + z 9 1 + 4z + 9z2 + 12z3 + 8z4

4 1 + 2z 10 1 + 5z + 13z2 + 20z3 + 16z4

5 1 + 2z + 2z2 11 1 + 5z + 14z2 + 25z3 + 28z4 + 16z5

6 1 + 3z + 4z2 12 1 + 6z + 19z2 + 38z3 + 48z4 + 32z5
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deg a2,1(αn; z) = ⌊
n−1
2

⌋
. (11.30)

The following theorem shows the close connection between the special weighted
Delannoy numbers and the Stern polynomials a2,1(αn; z). To fix some notation, we
write

a2,1(αn; z) =
� n−1

2 �∑

j=0

bn, j z
j . (11.31)

Theorem 11.3 For n ≥ 0, the special weighted Delannoy numbers for the lattice
line r + s = n are given by

D2,1,−1(n − s, s) = b2n+2,s, 0 ≤ s ≤ n. (11.32)

This result is in fact a special case of a more general result which we will state
and prove in the following section. Before we do this, we give an example and then
derive some easy consequences.

Example 11.4 Let n = 3. Then, taking the weights into account, we have
D2,1,−1(3, 0) = 1 · 1 · 1 = 1,
D2,1,−1(2, 1) = 1 · 1 · 2 + 1 · 2 · 1 + 2 · 1 · 1 + 1 · (−1) + (−1) · 1 = 4,
D2,1,−1(1, 2) = 2 · 2 · 1 + 2 · 1 · 2 + 1 · 2 · 2 + 2 · (−1) + (−1) · 2 = 8,
D2,1,−1(0, 3) = 2 · 2 · 2 = 8.

This is consistent with a2,1(α8; z) = 1 + 4z + 8z2 + 8z3.

As a first consequence of Theorem 11.3 we get the following result by comparing
(11.32) with (11.28).

Corollary 11.2 The coefficients of the polynomial a2,1(α2n; z) are given by

b2n,s =
n−1−s∑

j=0

(
n − 1 − s

j

)(
s

j

)
2s− j , 0 ≤ s ≤ n − 1. (11.33)

For a different explicit expansion, see Corollary 11.8 in Sect. 6.3. Next we use the
connection with Fibonacci numbers given by (11.13). Setting z = 1 in (11.31), we
get the following relation.

Corollary 11.3 For any n ≥ 0 we have

n∑

s=0

D2,1,−1(n − s, s) = F2n+2. (11.34)

Wenote that the analogous sumfor the usualDelannoynumbers gives the sequence
of Pell numbers 1, 2, 5, 12, 29, 70, . . ., which satisfy the recurrence relation P1 = 1,
P2 = 2, and Pn+1 = 2Pn + Pn−1 for n ≥ 2 (see, e.g., [22, A000129]).
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The next consequence of Theorem 11.3 is an unexpected connection between
the (usual) central Delannoy numbers D(n, n) and the enumeration of hyperbinary
expansions. A hyperbinary expansion of an integer n ≥ 1 is an expansion of n as a
sum of powers of 2, each power being used at most twice. For instance, the hyper-
binary expansions of n = 12 are 8 + 4, 8 + 2 + 2, 8 + 2 + 1 + 1, 4 + 4 + 2 + 2,
4 + 4 + 2 + 1 + 1, five in all. The connection with Stern’s diatomic sequence has
long been known; in [24, Theorem 5.2] it was proved that the number of hyperbinary
expansions of an integer n ≥ 2 is given by a(n + 1), where {a(n)} is Stern’s sequence
defined by (11.4). Note that, indeed, we have a(12 + 1) = 5.

Corollary 11.4 For any n ≥ 1, the central Delannoy number D(n, n) is equal to
the number of hyperbinary expansions of 4

3 (2
4n − 1) that have exactly n repeated

powers of 2.

Example 11.5 Let n = 1. Then 4
3 (2

4n − 1) = 20, and of the a(21) = 8 hyperbinary
expansion of 20, exactly 3 have n = 1 repeated power of 2, namely 16 + 2 + 2,
16 + 2 + 1 + 1, and 8 + 8 + 4. This is consistent with D(1, 1) = 3.

Proof (of Corollary 11.4) Combining (11.29) with (11.32), we get

D(n, n) = D2,1,−1(2n − n, n) = b4n+2,n .

But this is the coefficient of zn of the polynomial a2,1(α4n+2; z). This number, in turn,
is the number of hyperbinary expansions of α4n+2 − 1 that have exactly n repeated
powers of 2, by [3] or [27]; see also [9]. Now, by (11.11),

α4n+2 − 1 = 1
3

(
24n+2 − 1

) − 1 = 4
3

(
24n − 1

)
,

which completes the proof.

4.3 A Variant

Nextwe introduce a variant of the specialweightedDelannoy numbers defined before
(11.28):

As before, we attach the weight 1 to any right step, and −1 to any diagonal
step. To the up step from the origin (0, 0) to (0, 1) only, we attach the weight 1,
while all other up steps will have weight 2, as before.

We denote the corresponding generalized Delannoy number, i.e., the sum of all
the weights of the Delannoy paths from the origin to (r, s), by D̃2,1,−1(r, s). The
following result is analogous to Theorem 11.3; we use again the notation of (11.31).

Theorem 11.4 For n ≥ 0, the modified special weighted Delannoy numbers for the
lattice line r + s = n are given by

D̃2,1,−1(n − s, s) = b2n+1,s, 0 ≤ s ≤ n. (11.35)
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Once again, this follows from a more general result that will be proved later.

Example 11.6 We take again n = 3, for comparison with Example 11.4. Taking the
modified weights (in bold) into account, we have

D̃2,1,−1(3, 0) = 1 · 1 · 1 = 1,
D̃2,1,−1(2, 1) = 1 · 1 · 2 + 1 · 2 · 1 + 1 · 1 · 1 + 1 · (−1) + (−1) · 1 = 3,
D̃2,1,−1(1, 2) = 1 · 2 · 1 + 1 · 1 · 2 + 1 · 2 · 2 + 1 · (−1) + (−1) · 2 = 5,
D̃2,1,−1(0, 3) = 1 · 2 · 2 = 4.

This is consistent with a2,1(α7; z) = 1 + 3z + 5z2 + 4z3.

The next corollary is actually a consequence of Corollary 11.2, rather than of
Theorem 11.4; however, it can be seen as supplementing this theorem.

Corollary 11.5 The coefficients of the polynomial a2,1(α2n+1; z) are given by

b2n+1,s =
n−s∑

j=0

(
n − s

j

) [(
s

j

)
− 1

2

(
s − 1

j

)]
2s− j , 0 ≤ s ≤ n. (11.36)

Proof From (11.17) we have

a2,1(α2n+1; z) = a2,1(α2n+2; z) − z a2,1(α2n; z). (11.37)

Using (11.31) and equating coefficients of z j , we get

b2n+1,s = b2n+2,s − b2n,s−1, 1 ≤ s ≤ n,

having written s instead of j . Finally, using (11.33) we get (11.36) after some easy
manipulations.

For different explicit expansions, see Corollary 11.8 and the remark following it in
Sect. 6.3. The next corollary and its proof are completely analogous toCorollary 11.3.

Corollary 11.6 For any n ≥ 0 we have

n∑

s=0

D̃2,1,−1(n − s, s) = F2n+1. (11.38)

5 Delannoy Paths: Polynomial Weights

5.1 The Basic Case

In this section we continue our study of Delannoy paths and numbers by attaching
polynomial weights to the up and diagonal steps, while leaving all right steps
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with weight 1. The polynomial weights will depend on the starting position of each
step.As consequences of themain results of this sectionwewill obtainTheorems 11.3
and 11.4 from Sect. 4.

Given an integer n ≥ 1, consider all Delannoy paths from the origin (0, 0) to all
points on the lattice line r + s = n, 0 ≤ s ≤ n. We now attach the following weights
to the individual steps, where t ≥ 1 is an integer and z is a variable:

• up from (μ, ν) to (μ, ν + 1): weight zt
2(μ+ν) + zt

2(μ+ν)+1
;

• right from any (μ, ν) to (μ + 1, ν): weight 1;
• diagonal from (μ, ν) to (μ + 1, ν + 1): weight −zt

2(μ+ν)+2
.

As usual, we define the weight of an individual Delannoy path as the product of the
weights of each step, and the weight of a set of paths as the sum of the weights of
each path.

To motivate the next theorem, we consider a few examples.

Example 11.7 (a) For n = 1 there are only two paths:
To (1, 0): weight 1; to (0, 1): weight z + zt .
Total weight: 1 + z + zt .
(b) n = 2. Here we have multiple steps and paths. The weights are as follows:
To (2, 0): 1 · 1 = 1.
To (1, 1): (z + zt ) · 1 + 1 · (zt

2 + zt
3
) + (−zt

2
) = z + zt + zt

3
.

To (0, 2): (z + zt ) · (zt
2 + zt

3
) = zt

2+1 + zt
2+t + zt

3+1 + zt
3+t .

Total weight: 1 + z + zt + zt
2+1 + zt

2+t + zt
3 + zt

3+1 + zt
3+t .

(c) n = 3. The weights are as follows:
To (3, 0): 1 · 1 · 1.
To (2, 1): (z + zt ) · 1 · 1 + 1 · (zt

2 + zt
3
) · 1 + 1 · 1 · (zt

4 + zt
5
) + (−zt

2
) · 1 +

1 · (−zt
4
).

To (1, 2): (z + zt ) · (zt
2 + zt

3
) · 1 + (z + zt ) · 1 · (zt

4 + zt
5
) + 1 · (zt

2 + zt
3
) · (zt

4 +
zt

5
)

+(−zt
2
) · (zt

4 + zt
5
) + (z + zt ) · (−zt

4
).

To (0, 3): (z + zt ) · (zt
2 + zt

3
) · (zt

4 + zt
5
).

In this case we refrain from expanding the weights, which would give a 21-term
polynomial.

By comparing the total weights for n = 1 and n = 2 with the right column of
Table 1, we see that they are a2,t (5; z) = a2,t (α4; z) and a2,t (21; z) = a2,t (α6; z),
respectively. Furthermore, after expanding and adding the terms for n = 3, we could
verify that the total weight is a2,t (85; z) = a2,t (α8; z). This is in fact true in general,
as the following result shows. Recall that a2,t (m; z) is the type-2 generalized Stern
polynomial defined in (11.7), (11.8), and αn is defined in (11.11). Also recall the
recurrence relations (11.16), (11.17).

Theorem 11.5 Let n ≥ 1 and consider all Delannoy paths from (0, 0) to all lattice
points (r, s) on the line segment r + s = n, 0 ≤ s ≤ n. Then with the polynomial
weights as described above, the total weight is a2,t (α2n+2; z).
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For the proofwe require the first part of the following lemma. To simplify notation,
we set

fn(z) := a2,t (αn; z). (11.39)

Lemma 11.1 For integers n ≥ 1 we have

f2n+2(z) = (z + zt ) f2n(z
t2) +

n−1∑

j=1

zt
2 j+1

f2n−2 j (z
t2 j+2

) + 1, (11.40)

f2n+1(z) = z f2n(z
t ) +

n−1∑

j=1

zt
2 j
f2n−2 j (z

t2 j+1
) + 1. (11.41)

Proof Replacing n by n − j and z by zt
2 j+1

( j = 0, 1, . . . , n − 1) in (11.16), we get
with (11.39),

f2n−2 j+1(z
t2 j+1

) = zt
2 j+1

f2n−2 j (z
t2 j+2

) + f2n−2 j−1(z
t2 j+3

). (11.42)

Taking j = 0 and substituting the resulting identity into (11.17), we get

f2n+2(z) = (z + zt ) f2n(z
t2) + f2n−1(z

t3). (11.43)

Next we substitute (11.42) with j = 1 into (11.43), then (11.42) with j = 2 into the
resulting identity, and so on, thus obtaining (11.40) with the final term f1(zt

2n+1
) =

a2,t (1, zt
2n+1

) = 1 (see Table 1), where we have used the fact that α1 = 1.
The proof of (11.41) is similar: We use again (11.16), replacing n by n − j and

this time z by zt
2 j
( j = 0, 1, . . . , n − 1). Then we have

f2n−2 j+1(z
t2 j ) = zt

2 j
f2n−2 j (z

t2 j+1
) + f2n−2 j−1(z

t2 j+2
).

We start with j = 0 and consecutively substitute the corresponding identities for
j = 1, . . . , n − 1, thus obtaining (11.41). As before, the final term reduces to 1.

Proof (of Theorem 11.5) We use induction on n and recall that the cases n = 1 and
n = 2 were explicitly shown in Example 11.7. To these we may add the case n = 0 if
we interpret the empty path as havingweight 1; this is then consistent with f2(z) = 1.

Before we continue with the induction, we fix some notation. For lattice points
A, B,C , let Δ[A, B,C] be the triangle with corners A, B,C . Then all the Delannoy
paths from (0, 0) to the lattice line segment r + s = n, 0 ≤ s ≤ n, lie inside the
right-angled isosceles triangle

Δ := Δ[(0, 0), (n, 0), (0, n)].

We also consider the following right-angled isosceles triangles contained in Δ,
namely
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Δ j := Δ[( j, 1), (n − 1, 1), ( j, n − j)], j = 0, 1, . . . , n − 1.

The hypotenuse of each Δ j forms a section of the lattice line segment in question,
namely those lattice points (r, s) with r + s = n, 1 ≤ s ≤ n − j .

To continue with the induction, we assume that the statement of the theorem holds
up to some n − 1, for n ≥ 3. By this hypothesis, if for some j , 0 ≤ j ≤ n − 1, the
triangleΔ j had its lower left corner at the origin, then the total weight of all Delannoy
paths in Δ j (from the origin) would be f2n−2 j (z). However, Δ j is one step up and j
steps to the right from this position. By the definition of the polynomial weights this
means that the shift amounts to replacing z by zt

2 j+2
, i.e., the Delannoy paths in Δ j ,

starting in its lower left corner ( j, 1), have total weight f2n−2 j (zt
2 j+2

).
For the induction step we now note that all Delannoy paths inΔ that start at (0, 0)

can be obtained as follows:

(a) One up step, followed by any path in Δ0;
(b) for j from 1 to n − 1:

(i) j right steps, followed by an up step, or
(ii) j − 1 right steps, followed by a diagonal step, and
(iii) the steps in (i) and (ii) followed by any path in Δ j ;

(c) n consecutive right steps.

By induction hypothesis and the definition of the weights, these steps translate into
polynomials as follows:

(a) (z + zt ) f2n(zt
2
),

(b)
(
(zt

2 j + zt
2 j+1

) + (−zt
2 j
)
)
f2n−2 j (zt

2 j+2
), 1 ≤ j ≤ n − 1,

(c) add 1.

We note that the sum of these terms is the right-hand side of (11.40), which equals
f2n+2(z). But this was to be shown.

We are now ready to prove Theorem 11.3. We do so by setting t = 1 in
Theorem 11.5. Then the polynomial weights introduced at the beginning of this
section reduce to the following weights, which are now independent of the starting
point:

• up: weight 2z;
• right: weight 1;
• diagonal: weight −z.

This means that going from one (horizontal) lattice row to the next, and only then,
the power of z increases by 1. Hence the paths from (0, 0) to (r, s) for a fixed s,
r + s = n and 0 ≤ s ≤ n, are exactly those whose weights are multiples of zs . In
the notation of (11.31), the sum of these weights is then b2n+2,s zs , which was to be
shown. This completes the proof of Theorem 11.3.
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5.2 A Modification

In the second part of this section we consider a modified version of the polynomial
weights introduced at the beginning of this section. Given an integer n ≥ 1, we
consider again all Delannoy paths from the origin (0, 0) to all lattice points on the
line r + s = n, 0 ≤ s ≤ n.We attach the followingmodifiedweights to the individual
steps, where once again t ≥ 1 is an integer:

• up from (0, 0) to (0, 1): weight z;
• up from (μ, ν) to (μ, ν + 1), (μ, ν) 
= (0, 0): weight zt

2(μ+ν)−1 + zt
2(μ+ν)

;
• right from any (μ, ν) to (μ + 1, ν): weight 1;
• diagonal from (μ, ν) to (μ + 1, ν + 1): weight −zt

2(μ+ν)+1
.

In analogy to Example 11.7 we consider the first few cases:

Example 11.8 (a) n = 1: To (1, 0): weight 1; to (0, 1): weight z.
Total weight: 1 + z.
(b) n = 2. The weights are as follows:
To (2, 0): 1 · 1 = 1.
To (1, 1): z · 1 + 1 · (zt + zt

2
) + (−zt ) = z + zt

2
.

To (0, 2): z · (zt + zt
2
) = zt+1 + zt

2+1.
Total weight: 1 + z + zt+1 + zt

2 + zt
2+1.

(c) n = 3. The weights are as follows:
To (3, 0): 1 · 1 · 1.
To (2, 1): z · 1 · 1 + 1 · (zt + zt

2
) · 1 + 1 · 1 · (zt

3 + zt
4
) + (−zt ) · 1 + 1 · (−zt

3
).

To (1, 2): z · (zt + zt
2
) · 1 + z · 1 · (zt

3 + zt
4
) + 1 · (zt + zt

2
) · (zt

3 + zt
4
)

+(−zt ) · (zt
3 + zt

4
) + z · (−zt

3
).

To (0, 3): z · (zt + zt
2
) · (zt

3 + zt
4
).

By comparing again the total weights for n = 1 and n = 2 with the right column
of Table 1, we see that this time they are a2,t (3; z) = a2,t (α3; z) and a2,t (11; z) =
a2,t (α5; z), respectively. Also, after expanding and adding the terms for n = 3, it is
easy to verify that the total weight in this case is a2,t (43; z) = a2,t (α7; z). These are
special cases of the following result, which is analogous to Theorem 11.5.

Theorem 11.6 Let n ≥ 1 and consider all Delannoy paths from (0, 0) to all
lattice points (r, s) on the line segment r + s = n, 0 ≤ s ≤ n. Then with the modified
polynomial weights described above, the total weight is a2,t (α2n+1; z).
Proof We use the same notation as in the proof of Theorem 11.5, as well as a similar
approach. However, instead of induction we use the assertion of Theorem 11.5.

The proof is again based on the fact that all Delannoy paths inΔ that start at (0, 0)
can be obtained exactly as stated in steps (a)–(c) in the proof of Theorem 11.5. By the
definition of the modified weights, this now translates into polynomials as follows:

(a) z f2n(zt
2
),

(b)
(
(zt

2 j−1 + zt
2 j
) + (−zt

2 j−1
)
)
f2n−2 j (zt

2 j+2
), 1 ≤ j ≤ n − 1,
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(c) add 1.

This time the sum of these terms is the right-hand side of (11.41). But this equals
f2n+1(z), which was to be shown.

Finally in this section, we note that Theorem 11.4 follows from Theorem 11.6 in
exactly the same way as Theorem 11.3 follows from Theorem 11.5; see the proof
above. The one obvious adjustment concerns the up step from (0, 0) to (0, 1) only,
which has weight z as opposed to 2z for all up steps in the case of Theorem 11.5.

6 Further Remarks

6.1 Other Weights

Given the similarities between the sequences {αn} and {βn} defined in (11.11), includ-
ing the relations (11.13) and (11.18), (11.19), it is natural to ask whether there are
results similar to Theorems 11.3–11.6 that involve the polynomials a2,t (βn; z). This
is indeed the case, as we will now briefly describe. We restrict ourselves to analogues
of numerical weights, as in Sect. 4.

First, given an integer n ≥ 1, consider again the Delannoy paths from (0, 0) to any
point on the line r + s = n, 0 ≤ s ≤ n. This time we attach the following weights:

• up: weight 2 for any step (μ, ν) → (μ, ν + 1), μ + ν < n − 1,
• up: weight 1 for any step (μ, ν) → (μ, ν + 1), μ + ν = n − 1,
• right: weight 1 for all steps,
• diagonal: weight −1 for all steps.

In other words, the weights are the same as in the case of Theorem 11.3, with the
exception that any final up step before reaching a target lattice point has weight 1,
instead of 2. We denote the associated weighted Delannoy numbers byD2,1,−1(r, s).

Next, we consider the same modification as in Theorem 11.4, i.e., we assign the
weight 1 (rather than 2) to the up step (0, 0) → (0, 1), and denote the corresponding
weighted Delannoy number by D̃2,1,−1(r, s).

Finally, we note that deg a2,1(βn; z) = � n
2 �, which follows by induction from

(11.18) and (11.19). With the notation

a2,1(βn; z) =
� n
2 �∑

s=0

cn,s z
s, (11.44)

we can now state the following result.

Theorem 11.7 For n ≥ 0, the weighted Delannoy numbers defined above, for the
lattice line r + s = n with 0 ≤ s ≤ n, are given by
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D2,1,−1(n − s, s) = c2n+1,s, D̃2,1,−1(n − s, s) = c2n,s . (11.45)

We leave the proofs of these identities to the reader. They can be done by induc-
tion, using the triangles in the proof of Theorem 11.5. Alternatively, analogues of
Theorems 11.5 and 11.6 could also be derived, based on an analogue of Lemma 11.1
which, in turn, would easily follow from the identities (11.18) and (11.19). For
explicit formulas, see Corollary 11.8 below.

6.2 A Stern Polynomial Identity

In general we have aε,t (αn; z) 
= aε,t (βn; z) for ε ∈ {1, 2} and t ∈ N, which can be
seen by considering the relevant entries in Tables 1 and 2. It is therefore somewhat
surprising that for the type-2 polynomials and t = 1 we have the following identity.

Lemma 11.2 For all n ∈ N we have

a2,1(α2n+1; z) = a2,1(β2n+1; z). (11.46)

Proof We show that the two sides of (11.46) satisfy the same recurrence relation,
with the same initial values. The identity (11.16) with t = 1 gives

a2,1(α2n+1; z) = z a2,1(α2n; z) + a2,1(α2n−1; z). (11.47)

We replace n by n − 1 in (11.47), multiply both sides by z, and subtract it from
(11.47), obtaining

a2,1(α2n+1; z) = z a2,1(α2n; z) + (1 + z)a2,1(α2n−1; z) (11.48)

− z2a2,1(α2n−2; z) − z a2,1(α2n−3; z).

Now (11.17), with t = 1 and both side multiplied by z, gives

z a2,1(α2n; z) − z2a2,1(α2n−2; z) = z a2,1(α2n−1; z).

Subtracting this from (11.48), we get for n ≥ 2,

a2,1(α2n+1; z) = (1 + 2z)a2,1(α2n−1; z) − z a2,1(α2n−3; z). (11.49)

Using (11.18) and (11.19) with similar manipulations, we can see that the recur-
rence relation (11.49) also holds for α replaced by β, for n ≥ 3. Finally we note
that α3 = β3 = 3, and that a2,1(α5; z) = a2,1(11; z) = 1 + 2z + 2z2, a2,1(β5; z) =
a2,1(13; z) = 1 + 2z + 2z2 (see Table 1). This completes the proof.
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Lemma 11.2 has an interesting application: With (11.31) and (11.35) on the one
hand, and (11.44) and (11.45) on the other hand,we obtain the following consequence
of (11.46).

Theorem 11.8 For n ∈ N the modified weighted Delannoy numbers D̃2,1,−1(r, s)
and D2,1,−1(r, s), defined in Sects.4.3 and 6.1, respectively, satisfy

D̃2,1,−1(n − s, s) = D2,1,−1(n − s, s), 0 ≤ s ≤ n.

We illustrate this with the following example, which should be compared with
Examples 11.4 and 11.6.

Example 11.9 Once again we take n = 3. The modified weights are again in bold,
and by the previous subsection we have

D2,1,−1(3, 0) = 1 · 1 · 1 = 1,
D2,1,−1(2, 1) = 1 · 1 · 1 + 1 · 2 · 1 + 2 · 1 · 1 + 1 · (−1) + (−1) · 1 = 3,
D2,1,−1(1, 2) = 2 · 2 · 1 + 2 · 1 · 1 + 2 · 1 · 1 + 2 · (−1) + (−1) · 1 = 5,
D2,1,−1(0, 3) = 2 · 2 · 1 = 4.

This is consistent with Example 11.6.

6.3 Connections with Jacobi Polynomials

The special weighted Delannoy numbers that were the subject of Theorem 11.3 have
occurred before in the literature as asymmetric Delannoy numbers; see [17]. Various
properties were derived in [17], including (11.29) in a different notation. That paper
also contains an alternative explicit expansion similar to (11.28), and the following
connection with Jacobi polynomials, again in a different notation:

D2,1,−1(n − s, s) = P (0,n−2s)
s (3). (11.50)

The Jacobi polynomials, a general class of classical orthogonal polynomials, belong
to the most important special functions in mathematics; see, e.g., [23, Ch. 18]. Here
we only use the following explicit expressions (see, e.g., [23, Eq. 18.5.7–8]):

P (a,b)
k (x) =

k∑

j=0

(
k + a + b + j

j

)(
k + a

k − j

) (
x−1
2

) j
, (11.51)

and the more symmetric identity

P (a,b)
k (x) =

k∑

j=0

(
k + a

j

)(
k + b

k − j

)
(
x+1
2

) j ( x−1
2

)k− j
, (11.52)

as well as the recurrence relation



Some Tilings, Colorings and Lattice Paths via Stern Polynomials 247

P (a,b)
k (x) − P (a,b+1)

k−1 (x) = P (a−1,b+1)
k (x); (11.53)

see, e.g., [23, Eq. 18.9.3]. We are now ready to state and prove the following results.

Theorem 11.9 For any integers n ≥ 0 we have

a2,1(α2n+2; z) =
n∑

k=0

P (0,n−2k)
k (3) · zk, (11.54)

a2,1(α2n+1; z) =
n∑

k=0

P (−1,n+1−2k)
k (3) · zk, (11.55)

a2,1(β2n; z) =
n∑

k=0

P (−2,n+2−2k)
k (3) · zk . (11.56)

Recall that by (11.46) we have a2,1(β2n+1; z) = a2,1(α2n+1; z), which can be seen
as supplementing (11.54)–(11.56).

Proof (of Theorem 11.9) The identity (11.54) is an immediate consequence of
(11.50), together with (11.31) and (11.32). To obtain (11.55), we use (11.37) and
(11.54) to write

a2,1(α2n+1; z) = a2,1(α2n+2; z) − za2,1(α2n; z)

=
n∑

k=0

P (0,n−2k)
k (3) · zk −

n−1∑

k=0

P (0,n−1−2k)
k (3) · zk+1

= P (0,n)
0 (3) +

n∑

k=1

(
P (0,n−2k)
k (3) − P (0,n+1−2k)

k−1 (3)
)
zk .

The desired identity (11.55) now follows from (11.53) and the fact that P (a,b)
0 (x) = 1,

independent of the parameters a, b.
To obtain (11.56), we combine the identity (11.18) for t = 1 with (11.46), obtain-

ing
a2,1(β2n; z) = a2,1(α2n+1; z) − za2,1(α2n−1; z);

we then get (11.56) in the same way as in the previous paragraph, this time using
(11.55).

Finally we note that some intermediate steps, such as the identity (11.18), are
valid only for n ≥ 2. However, the cases n = 0 and n = 1 are easy to verify by direct
computation, using Tables 1 and 2.

As an immediate consequence we get the following identities, where we include
(11.50) for completeness and use the notations of (11.32), (11.35) and (11.45).

Corollary 11.7 For all integers n ≥ 0 and 0 ≤ s ≤ n we have



248 K. Dilcher and L. Ericksen

D2,1,−1(n − s, s) = P (0,n−2s)
s (3),

D̃2,1,−1(n − s, s) = P (−1,n+1−2s)
s (3),

D̃2,1,−1(n − s, s) = P (−2,n+2−2s)
s (3).

To conclude this section, we state some explicit expansions, which follow imme-
diately from (11.51) and Corollary 11.7.

Corollary 11.8 For all integers n ≥ 0 and 0 ≤ s ≤ n we have

D2,1,−1(n − s, s) =
s∑

j=0

(
n − s + j

j

)(
s

s − j

)
,

D̃2,1,−1(n − s, s) =
s∑

j=0

(
n − s + j

j

)(
s − 1

s − j

)
,

D̃2,1,−1(n − s, s) =
s∑

j=0

(
n − s + j

j

)(
s − 2

s − j

)
.

Analogous identities can be obtained from (11.52); we leave this to the reader.
For instance, the identity (11.33) can be obtained in this way.
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p-Rook Numbers and Cycle Counting
in Cp � Sn
James Haglund, Jeffrey B. Remmel and Meesue Yoo

Abstract Cycle-counting rook numbers were introduced by Chung and Graham
[J.Combin. Theory Ser. B 65 (1995), 273–290]. Cycle-countingq-rook numberswere
introduced by Ehrenborg, Haglund, and Readdy [unpublished] and cycle-counting
q-hit numbers were introduced by Haglund [Adv. Appl. Math. 17 (1996), 408–459].
Briggs and Remmel [J. Combin. Theory Ser. A 113 (2006), 1138–1171] introduced
the theory of p-rook and p-hit numbers which is a rook theory model where the
rook numbers correspond to partial permutations in Cp � Sn , the wreath product of
the cyclic group Cp and the symmetric group Sn , and the hit numbers correspond to
permutations in Cp � Sn . In this paper, we extend the cycle-counting q-rook numbers
and cycle-counting q-hit numbers to the Briggs–Remmel model. In such a setting,
we define a multivariable version of the cycle-counting q-rook numbers and cycle-
counting q-hit numbers where we keep track of cycles of permutations and partial
permutations of Cp � Sn according to the signs of the cycles.

Keywords Rook numbers · Hit numbers · Cycle-counting rook numbers ·
Cycle-counting hit numbers · Wreath product

2010 Mathematics Subject Classification Primary 05A15 · Secondary 05E05

J. Haglund
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
e-mail: jhaglund@math.upenn.edu

J. B. Remmel
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA
e-mail: jremmel@ucsd.edu

M. Yoo (B)
Applied Algebra and Optimization Research Center, Sungkyunkwan University, Suwon 16419,
Republic of Korea
e-mail: meesue.yoo@skku.edu

© Springer Nature Switzerland AG 2019
G. E. Andrews et al. (eds.), Lattice Path Combinatorics and Applications,
Developments in Mathematics 58, https://doi.org/10.1007/978-3-030-11102-1_12

250

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11102-1_12&domain=pdf
mailto:jhaglund@math.upenn.edu
mailto:jremmel@ucsd.edu
mailto:meesue.yoo@skku.edu
https://doi.org/10.1007/978-3-030-11102-1_12


p-Rook Numbers and Cycle Counting in Cp � Sn 251

1 Introduction

We let [n] = {1, . . . , n}. We let N = {0, 1, 2, . . .} denote the natural numbers and
P = {1, 2, . . .} denote the positive integers. A board is a subset of P × P. We label
the rows of P × P from bottom to top with 1, 2, 3, . . . , and the columns of P × P

from left to right with 1, 2, 3, . . ., and (i, j) denote the square in the i th column and
j th row. Given b1, . . . , bn ∈ N, we let F(b1, . . . , bn) denote the board consisting
of all the cells {(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ bi }. If a board B is of the form
B = F(b1, . . . , bn), then we say that B is skyline board and if, in addition, b1 ≤
b2 ≤ · · · ≤ bn , then we say that B is a Ferrers board.

Given a board B ⊆ [n] × [n], we let Nk(B) denote the set of all placements of
k rooks in B such that no two rooks lie in the same row or column. Elements of
Nk(B) will be called rook placements. For k = 1, . . . , n, we let rk(B) = |Nk(B)|.
By convention, we set r0(B) = 1. We refer to rk(B) as the kth rook number of B.

Let Sn denote the symmetric group of n elements, i.e. the group of all permutations
of 1, . . . , n under composition. Given a permutation σ = σ1 · · · σn ∈ Sn , we identify
each σ ∈ Sn with the rook placement {(i, σi ) : i = 1, . . . , n} on [n] × [n]. We let

Hk,n(B) = |{σ ∈ Sn : |σ ∩ B| = k}|.

We shall refer to Hk,n(B) as the k-th hit number of B relative to [n] × [n].
Kaplansky and Riordan [13] proved the following fundamental relationship

between the rook numbers and the hit numbers of a board B ⊆ [n] × [n].
Theorem 12.1 For any board B ⊆ [n] × [n],

n∑

k=0

Hk,n(B)xk =
n∑

k=0

rk(B)(n − k)!(x − 1)k . (12.1)

With each rook placement P ∈ Nk(B), we can associate a directed graph GP =
([n], EP), where EP is the set of (i, j) such that P has a rook in cell (i, j). We
let cyc(P) denote the number of cycles in the graph of P . For example, in Fig. 1,
we picture a rook placement P ∈ N5(B), where B is the 6 × 6 board such that
cyc(P) = 2.

For any board B ⊆ [n] × [n], we let

rk(B, y) =
∑

P∈Nk (B)

ycyc(P) and

Hk,n(B, y) =
∑

σ∈Sn , |σ∩B|=k

ycyc(P).

For k ≥ 1,we let (y)↑k= y(y + 1) · · · (y + k − 1) and (y)↓k= y(y − 1) · · · (y −
k + 1). We let (y)↑0= (y)↓0= 1. We then have the following analogue of
Theorem 12.1.
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Fig. 1 Graph associated with a rook placement

Theorem 12.2 For any board B ⊆ [n] × [n],
n∑

k=0

Hk,n(B, y)xk =
n∑

k=0

rk(B, y)(y)↑n−k (x − 1)k . (12.2)

Proof First replace x by x + 1 in Eq. (12.2). Then, we must prove

n∑

k=0

Hk,n(B, y)(x + 1)k =
n∑

k=0

rk(B, y)(y)↑n−k x
k . (12.3)

For (12.3), we consider configurations C which consist of a rook placement cor-
responding to a permutation σ ∈ Sn , where we circle some of the rooks that fall in
B ∩ σ . We let cyc(C) denote the number of cycles in the graph of the underlying per-
mutation of C and circle(C) denote the number of circled rooks in C . It is then easy
to see that the left-hand side of (12.3) can be interpreted as counting ycyc(C)xcircle(C)

over all such configurations. The right-hand side of (12.3) can be interpreted as fol-
lows. First pick the circled rooks which correspond to a placement Q ∈ Nk(B) for
some k. Then, we need to compute

A(Q, y) =
∑

C

ycyc(C), (12.4)

where the sum runs over all configurations whose set of circled rooks equals Q. This
sum is easy to compute. That is, let i be the first column that does not contain a rook
in Q. Then, there are n − k rows to place a rook in column i that do not contain
rooks in Q. We claim that there is exactly one row r where placing a rook in cell
(i, r) completes a cycle in the graph of Q. That is, if there is no rook in Q which
is in row i , then i is an isolated vertex in the graph of Q, so adding a rook in the
cell (i, i) will give a loop on vertex i and hence increase the number of cycles by 1.
Clearly, in such a situation, placing a rook in cell (i, j) for j 
= i cannot complete a
cycle. If there is a rook of Q in row i , then there must be a maximal length path p
in the graph of Q which ends in vertex i since there are no edges coming out of the
vertex i in the graph of Q. If this path starts in vertex j , then there is no rook in row
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j in Q. Hence, if we add a rook to the cell (i, j), then the edge corresponding to the
added rook will complete a cycle. Clearly, adding a rook to any other row in column
i will not complete a cycle in this case. Thus, the placement of a rook in column
i will contribute a factor (y + n − k − 1) to A(Q, y). But then we can repeat the
argument for every placement Q′ which arises from Q by adding a rook in the next
empty column, say column i1. That is, for each such Q′, the addition of a rook in
column i1 will contribute a factor (y + n − k − 2) to A(Q, y). Continuing on in this
way, we see that

A(Q, y) = (y + n − k − 1)(y + n − k − 2) · · · (y) = (y) ↑n−k .

Thus, another way to sum ycyc(C)xcircle(C) over all rook configurations is

n∑

k=0

xk
∑

Q∈Nk (B)

ycyc(Q)A(Q, y)

=
n∑

k=0

xk
∑

Q∈Nk (B)

ycyc(Q)(y)↑n−k

=
n∑

k=0

xk(y)↑n−k

∑

Q∈Nk

ycyc(Q)

=
n∑

k=0

rk(B, y)(y)↑n−k x
k .

Chung and Graham [7] proved that for any Ferrers boards F(b1, . . . , bn) ⊆ [n] ×
[n], we have the following factorization theorem.

Theorem 12.3 Let B = F(b1, . . . , bn) ⊆ [n] × [n] be a Ferrers board. Then
∏

i :bi<i

(x + bi − i + 1)
∏

i :bi≥i

(x + bi − i + y) =
n∑

k=0

rn−k(B, y)(x)↓k . (12.5)

We let

[n]q = qn − 1

q − 1
= 1 + · · · + qn−1,

[n]q ! = [1]q [2]q · · · [n]q , and
[
n

k

]

q

= [n]q !
[k]q ![n − k]q !

be the usualq-analogues of n, n!, and (nk
)
. In general, we let [x]q = qx−1

q−1 . Then for k ≥
1, we let [x]q ↑k= [x]q [x + 1]q · · · [x + k − 1]q and [x]q ↓k= [x]q [x − 1]q · · · [x −
(k − 1)]q . We let [x]q ↑0= [x]q ↓0= 1.
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In an unpublished paper, Ehrenborg, Haglund, and Readdy [8] defined a q-
analogue of the cycle-counting rook numbers rk(B, y, q) for Ferrers boards which
generalized the q-analogue of the rook numbers for Ferrers boards introduced by
Garsia and Remmel [9]. They proved the following generalization of Chung and
Graham’s theorem.

Theorem 12.4 Let B = F(b1, . . . , bn) ⊆ [n] × [n] be a Ferrers board. Then
∏

i :bi<i

[x + bi − i + 1]q
∏

i :bi≥i

[x + bi − i + y]q =
n∑

k=0

rn−k(B, y, q)[x]q ↓k . (12.6)

Haglund [10] also extended the definition of the q-hit numbers of Garsia and
Remmel [9] for Ferrers boards by defining q, x, y-hit numbers algebraically by the
equation

n∑

k=0

Hk,n(B, x, y, q)zk =
n∑

k=0

rn−k(B, y, q)[x]q ↑k z
k

n∏

i=k+1

(1 − zqx+i−1). (12.7)

Haglund [10] developed several connections between formulas for the q, x, y-hit
numbers and hypergeometric series. Later, Butler [5] gave a combinatorial interpre-
tation of Hk,n(B, x, y, q) for Ferrers boards.

Themain goal of this paper is to define analogues of cycle-counting rook numbers,
cycle-counting hit numbers, and their q-analogues relative to the groupCp � Sn which
is the wreath product of the cyclic group Cp of order p with the symmetric group
Sn . In particular, we extend the combinatorics of cycle-counting rook numbers and
cycle-counting hit numbers to the rook theory model of Briggs and Remmel [2–4]
where the rook placements correspond to partial permutations in Cp � Sn and hit
numbers correspond to permutations in Cp � Sn .

Let ω = e
2π i
p . One can think of the group Cp � Sn as the group of matrices under

matrixmultiplicationwhere the underlying set is the set of matrices that one can form
by starting with an n × n permutation matrix M and replacing 1’s by powers of ω.
Thus, we can think of Cp � Sn as the group of pnn! signed permutations where there
are p signs, ω0 = 1, ω, ω2, . . . , ωp−1. We will usually write the signed permutations
in either one-line notation or in disjoint cycle form. For example, if σ ∈ C3 � S8 is
the map sending 1 → ω5, 2 → 8, 3 → ω23, 4 → ω21, 5 → 4, 6 → ω27, 7 → ω2,
and 8 → ω6, then in one-line notation,

σ = ω5 8 ω23 ω21 4 ω27 ω2 ω6,

whereas in disjoint cycle form,

σ = (ω21 ω5 4)(ω2 8 ω6 ω27)(ω23).
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Fig. 2 The board B3
6

In other words, in disjoint cycle form, to determine where i is being mapped, we
ignore the sign on i and only consider the sign on the element to which it is mapped.
Whenever we have an r -cycle C = (ωa0c0, . . . , ωar−1cr−1) in a signed permutation
in Cp � Sn , we define sgn(C) = ∏r−1

i=0 ωai . Thus, in our example,

sgn((ω21 ω5 4)) = 1,

sgn((ω2 8 ω6 ω27)) = ω, and

sgn((ω23)) = ω2.

Given σ ∈ Cp � Sn , we will write σ(i) as εiσi , where σi ∈ [n] = {1, . . . , n}, and
where εi = sgn(σi ) ∈ {1, ω, ω2, . . . , ωp−1} is called the sign of σi . For each 1 ≤
i ≤ n, we define |εiσi | = σi and call this the absolute value of σ(i).

Next we shall describe the rook model due to Briggs and Remmel [4] where
the rook numbers correspond to partial permutations in Cp � Sn and the hit numbers
correspond to permutations in Cp � Sn .

The idea of Briggs andRemmelwas to start with the [n] × [n] board and subdivide
each row into p subrows. We will denote the resulting board by Bp

n . For example, if
n = 6 and p = 3, then B3

6 is pictured inFig. 2.We shall refer to the rowsof the original
[n] × [n] board as levels and label the levels with 1, . . . , n from bottom to top. We
label the columns with 1, . . . , n from left to right. Finally, within each level, we label
the sublevels from bottom to top with 1, ω, ω2, . . . , ωp−1. We let (i, j, k) denote the
square in the i th column, in the j th level, and in the sublevel labelled with ωk .

In the Briggs–Remmelmodel, a board is a subset of Bp
n . Given b1, . . . , bn ∈ [pn],

we let F(b1, . . . , bn) denote the board consisting of all the cells {(i, j, k) : 1 ≤ i ≤
n and 1 ≤ pj + k ≤ bi }. If a board B is of the form B = F(b1, . . . , bn), then we
say that B is a skyline board and if, in addition, b1 ≤ b2 ≤ · · · ≤ bn , then we say
that B is a Ferrers board. If B = F(b1, . . . , bn) is a Ferrers board and bi+1 ≥ rp
whenever (r − 1)p + 1 ≤ bi ≤ rp, then we say that B is a singleton Ferrers board.
Here, the last condition for a singleton Ferrers board in Bp

n says that whenever there
are cells in level r in column i , column i + 1 must contain all the cells in the level
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Fig. 3 Graph associated with a 3-rook placement in N 3
5 (B3

6 )

r . Finally, we shall say that a board B is a full board whenever, if B contains a cell
(i, j, k), then it must contain the cells (i, j, r) for r = 0, . . . , p − 1. In other words,
a Ferrers board F(b1, . . . , bn) is a full board if and only if bi is a multiple of p for all
i = 1, . . . , n. We say that a full Ferrers board B = F(b1, . . . , bn) ⊆ Bn

p is regular if
bi = p · ci , where ci ≥ i for 1 ≤ i ≤ n.

Given a board B ⊆ Bp
n , we letN p

k (B) denote the set of all placements of k rooks
in B such that no two rooks lie in the same level or column. Elements of N p

k (B)

will be called p-rook placements. For k = 1, . . . , n, we let r p
k (B) = |N p

k (B)|. By
convention, we set r p

0 (B) = 1. We refer to r p
k (B) as the kth p-rook number of B.

An alternative model for r p
k (B) was proposed by Wachs and Remmel [12]. In the

case p = 2, Haglund and Remmel [11] gave yet another rook model for r p
k (B).

Given a signed permutation σ = ωa1σ1 · · · ωanσn ∈ Cp � Sn , we identify σ with
the p-rook placement {(i, σi , ai ) : i = 1, . . . , n} on Bp

n . We let

H p
k,n(B) = |{σ ∈ Cp � Sn : |σ ∩ B| = k}|.

We shall refer to H p
k,n(B) as the k-th p-hit number of B relative to Bp

n .
With each p-rook placement P ∈ N p

k (B), we can associate a directed graph
GP = ([n], EP) with labelled edges, where EP is the set of (i, j) such that P has
a rook in cell (i, j, k) and we label the edge (i, j) with ωk . For example, see Fig. 3
for the graph associated with a 3-rook placement on B3

6 . For any p-rook placement,
we let cyci (P) denote the number of cycles in the graph of P such that product of
labels on the cycle is ωi .

For any board B ⊆ Bp
n , we let

r p
k (B, y0, . . . , yp−1) =

∑

P∈N p
k (B)

p−1∏

i=0

y
cyci (P)

i and

Hk,n(B, y0, . . . , yp−1) =
∑

σ∈Cp �Sn ,
|σ∩B|=k

p−1∏

i=0

y
cyci (σ )

i .
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The outline of the paper is as follows. In Sect. 2, we shall prove the analogues of
Theorem 12.2 and Theorem 12.3 as well as give an example of cycle-counting p-Lah
numbers. In Sect. 3, we shall define a q-analogue of the cycle-counting p-rook num-
bers and prove an analogue of the Ehrenborg, Haglund, and Readdy factorization the-
orem [8]. In Sect. 4, we shall define a q-analogue of the cycle-counting p-hit numbers
H p

k,n[B, q, y0, . . . , yp−1] for a full regular Ferrers board B. We will prove analogues
of some results of Haglund [10] and Butler [6] on the q-cycle-counting rook numbers
and q, x, y-hit numbers for full regular Ferrers boards which will allow us to prove
that H p

k,n[B, q, y0, . . . , yp−1] is always a polynomial in q with non-negative coeffi-
cients when y0, . . . , yp−1 are non-negative integers. We will end Sect. 4 by giving a
conjectured combinatorial interpretation of the H p

k,n[B, q, y0, . . . , yp−1]’s.

2 Cycle-Counting p-Rook Numbers and p-Hit Numbers.

We start this section by proving analogues of Theorem 12.2 and Theorem 12.3 for
the cycle-counting p-rook and p-hit numbers.

Suppose that p ≥ 2. Then, for k ≥ 1, we let (y)↑k,p= y(y + p) · · · (y + p(k −
1)) and (y)↓k,p= y(y − p) · · · (y − p(k − 1)). We also let (y)↑0,p= (y)↓0,p= 1.
We then have the following analogue of Theorem 12.2.

Theorem 12.5 For any p ≥ 2 and any board B ⊆ Bp
n ,

n∑

k=0

H p
k,n(B, y0, . . . , yp−1)x

k (12.8)

=
n∑

k=0

r p
k (B, y0, . . . , yp−1)(y0 + · · · + yp−1)↑n−k,p (x − 1)k .

Proof Fix p ≥ 2. First replace x by x + 1 in Eq. (12.8). Thus, we must prove

n∑

k=0

H p
k,n(B, y0, . . . , yp−1)(x + 1)k

=
n∑

k=0

r p
k (B, y0, . . . , yp−1)(y0 + · · · + yp−1)↑n−k,p xk .

(12.9)

For (12.9), we consider configurations C which consist of a rook placement cor-
responding to a permutation σ ∈ Ck � Sn , where we circle some of the rooks that fall
in B ∩ σ . We then let cyci (C) denote the number of cycles of sign ωi in the graph of
the underlying permutation of C and circle(C) denote the number of circled rooks
in C . It is then easy to see that the left-hand side of (12.9) can be interpreted as



258 J. Haglund et al.

counting xcircle(C)
∏p−1

i=0 y
cyci (C)

i over all such configurations. The right-hand side of
(12.9) can be interpreted as follows. First pick the circled rooks which correspond
to a placement Q ∈ N p

k (B) for some k. Then, we need to compute

A(Q, y0, . . . , yp−1) =
∑

C

p−1∏

i=0

y
cyci (C)

i , (12.10)

where the sum runs over all configurations whose set of circled rooks equals Q.
Again this sum is easy to compute. Let i be the first column that does not contain a
rook in Q. Then, there are n − k levels in which to place a rook in column i that do
not contain rooks in Q. We claim that there is exactly one level r where placing a
rook in the cell (i, r, k) for any k, 0 ≤ k ≤ p − 1 completes a cycle in the graph of
Q. That is, if there is no rook in Q which is in level i , then i is an isolated vertex
in the graph of Q, so adding a rook in cell (i, i, k) will give a loop on vertex i with
label ωk and hence increase the number of cycles with sign ωk by 1. Clearly, in
such a situation, placing a rook in cell (i, j, k) for j 
= i and 0 ≤ k ≤ p − 1 cannot
complete a cycle. If there is a rook of Q in level i , then there must be a path p of the
maximal length in the graph of Q which ends in vertex i since there are no edges
coming out of the vertex i in the graph of Q. If this path starts in vertex j , then
there is no rook in level j in Q. Hence, if we add a rook to cell (i, j, k) for any
0 ≤ k ≤ p − 1, then this will complete a cycle. No matter what the labels are on the
edges of the path from j to i in the graph corresponding to Q, there will be exactly
one choice of k which results in the completed cycle having sign ωi for any given
i ∈ {0, . . . , p − 1}. Clearly, adding a rook to any other level in column i will not
complete a cycle in this case. Thus, the placement of a rook in column i will contribute
a factor (y0 + · · · + yp−1 + p(n − k − 1)) to A(Q, y0, . . . , yp−1). But then we can
repeat the argument for every placement Q′ which arises from Q by adding a rook
in the next empty column, say column i1. That is, for each such Q′, the addition
of a rook in column i1 will contribute a factor (y0 + · · · + yp−1 + p(n − k − 2))
to A(Q, y0, . . . , yp−1). Continuing on in this way, we see that A(Q, y0, . . . , yp−1)

equals

(y0 + · · · +yp−1 + p(n − k − 1))(y0 + · · · + yp−1 + p(n − k − 2)) · · · (y0 + · · · + yp−1)

= (y0 + · · · + yp−1) ↑n−k,p .

Thus, another way to sum xcircle(C)
∏p−1

i=0 y
cyci (C)

i over all configurations is

n∑

k=0

xk
∑

Q∈N p
k (B)

p−1∏

i=0

y
cyci (Q)

i A(Q, y0, . . . , yp−1)

=
n∑

k=0

xk
∑

Q∈N p
k (B)

p−1∏

i=0

y
cyci (Q)

i (y0 + · · · + yp−1)↑n−k,p
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=
n∑

k=0

xk(y0 + · · · + yp−1)↑n−k,p

∑

Q∈N p
k (B)

p−1∏

i=0

y
cyci (Q)

i

=
n∑

k=0

r p
k (B, y0, . . . yp−1)(y0 + · · · + yp−1)↑n−k,p xk .

Next we shall prove a factorization theorem for cycle-counting p-rook numbers
for full Ferrers boards B ⊆ Bp

n .

Theorem 12.6 Let p ≥ 2 and B = F(b1, . . . , bn) be a full Ferrers board contained
in B p

n . Then, we have

∏

i :bi<pi

(x + bi − p(i − 1))
∏

i :bi≥pi

(x + bi − pi + y0 + · · · + yp−1)

=
n∑

k=0

r p
n−k(B, y0, . . . , yp−1)(x)↓k,p . (12.11)

Proof The assumption that B is a full board implies that bi is divisible by p for all
i . Since both sides of (12.11) are polynomials in x of degree n, it is enough to prove
that (12.11) holds for infinitely many integers.

First we shall show that (12.11) holds for infinitely many integers px , where
x ∈ P. Given x ∈ P, we let Bx denote the board which results by adding x-levels of
length n below B. For example, if p = 3, B = (3, 6, 6, 6, 9, 9), and x = 6, then the
board Bx is pictured in Fig. 4. We call the boundary between B and the x-levels that
we added below B the bar.

We let N p
k (Bx ) denote the set of all placements of k rooks in Bx such that there

is at most one rook in each level and each column. Given a placement P ∈ N p
n (Bx ),

Fig. 4 The board Bx
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we let wt (P) = ∏p−1
i=0 y

cyci (P∩B)

i . Then, we claim that (12.11) where x is replaced
by px arises from two different ways of computing

S(B, y0, . . . , yp−1) =
∑

P∈N p
n (Bx )

wt (P).

Next we prove a key lemma.

Lemma 12.1 Suppose that Q ∈ N p
t (Bx) is a p-rook placement of t rooks in the

first i − 1 columns of Bx . Let Di (Q) denote the set of all p-rook placements P that
result from Q by adding a rook in column i. Then

∑

P∈Di (Q)

p−1∏

l=0

ycycl (P)

l =
{

(bi + px − p(t + 1) + y0 + · · · + yp−1)
∏p−1

l=0 ycycl (Q∩B)

l if bi ≥ pi,

(bi + px − pt)
∏p−1

l=0 ycycl (Q∩B)

l if bi < pi .

Proof First we claim that there is exactly one level j above the bar such that placing a
rook in a cell (i, j, k)will complete a cycle in the graph of Q ∩ B if bi ≥ pi and there
is no level j above the bar such that placing a rook in a cell (i, j, k) will complete
a cycle in the graph of Q ∩ B if bi < pi . That is, suppose that bi ≥ pi . If there is
no rook in Q ∩ B which is in level i , then i is an isolated vertex in the graph of
Q ∩ B, so adding a rook in cell (i, i, k) will give a loop on vertex i with label ωk and
hence increase the number of cycles with sign ωk by 1. Clearly, in such a situation,
placing a rook in cell (i, j, k) for j 
= i and 0 ≤ k ≤ p − 1 cannot complete a cycle.
If there is a rook in Q ∩ B in row i , then there must be a maximal length path p in
the graph of Q ∩ B which ends in vertex i since there are no edges coming out of i
in the graph of Q ∩ B. If this path starts in vertex j , then j ≤ i ≤ bi/p and there is
no rook in level j in Q ∩ B above the bar. Hence, if we add a rook to cell (i, j, k)
for any 0 ≤ k ≤ p − 1, then it will complete a cycle. No matter what the labels are
on the edges of the path from j to i in the graph corresponding to Q, there will be
exactly one choice for k which results in the completed cycle having sign ωi for any
given i ∈ {0, . . . , p − 1}. In such a situation, we will call the level j such that adding
a rook in a cell (i, j, k) completes a cycle the special level relative to Q. It easily
follows that in this case

∑

P∈Di (Q)

p−1∏

l=0

y
cycl (P)

l = (bi + px − p(t + 1) + y0 + · · · + yp−1)

p−1∏

l=0

y
cycl (Q∩B)

l .

Alternatively, if bi < pi , then we must have that b1 ≤ · · · ≤ bi−1 ≤ p(i − 1)
since we are assuming that B is a full Ferrers board. This implies that there can be no
edge which ends in the vertex i in the graph of Q ∩ B. Hence, i is an isolated vertex
in the graph Q ∩ B. Thus, placing a rook in the cell (i, j, k) where j < i cannot
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create a new cycle. It easily follows that in this case

∑

P∈Di (Q)

p−1∏

l=0

y
cycl (P)

l = (bi + px − pt)
p−1∏

l=0

y
cycl (Q∩B)

l .

Now think of adding rooks column by column starting from the left to form
an element P ∈ N p

n (Bx ). In the first column, we have b1 + px choices. If b1 ≥
p, then if we add a rook in cell (1, 1, k), then we create a cycle of sign ωk and
we do not create a cycle otherwise. Thus, the first column will contribute a factor
(px + b1 − p + y0 + · · · + yp−1) if b1 ≥ p or a factor (px + b1) otherwise. Next
if we start with a placement Q ∈ N p

i−1(Bx ) of i − 1 rooks in the first i − 1 columns
of Bx , then we will have px + bi − p(i − 1) cells to add a rook in column i . By
Lemma 12.1, our choices for placing a rook in these px + bi − p(i − 1) cells will
contribute a factor (px + bi − pi + y0 + · · · + yp−1) if bi ≥ pi and will contribute
a factor (px + bi − p(i − 1)) otherwise. Thus, it follows that

S(B, y0, . . . , yp−1) =
∏

i :bi<pi

(px + bi − p(i − 1))
∏

i :bi≥pi

(px + bi − pi + y0 + · · · + yp−1).

On the other hand, suppose that we fix a p-rook placement Q ∈ N p
n−k(B) of n − k

rooks above the bar. Then, we want to compute

BQ =
∑

P∈N p
n (Bx ):P∩B=Q

wt (P). (12.12)

In this case, there will be k columns below the bar which do not contain rooks in Q.
If those columns are 1 ≤ i1 < · · · < ik ≤ n, then we have px choices to place a rook
below the bar in column i1. Once we have placed a rook in column i1 below the bar,
we will have px − p choices to add a rook below the bar in column i2. Continuing
on in this way, it is easy to see that we have (px)(px − p) · · · (px − p(k − 1)) =
(px)↓k,p ways to extend Q to a placement in N p

n (Bx ). By definition, the weight of

any such placement P is
∏p−1

i=0 y
cyci (Q)

i . Thus

S(B, y0, . . . , yp−1) =
n∑

k=0

∑

Q∈N p
n−k (B)

p−1∏

i=0

y
cyci (Q)

i (px) ↓k,p

=
n∑

k=0

(px) ↓k,p

∑

Q∈N p
n−k (B)

p−1∏

i=0

y
cyci (Q)

i

=
n∑

k=0

r p
n−k(B, y0, . . . , yp−1)(px) ↓k,p .
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A natural question here would be whether there is a similar result for singleton
Ferrers boards or Ferrers boards. In the case where we set yi = 1 for i = 0, . . . , p −
1, Briggs and Remmel [4] proved a factorization theorem for the p-rook numbers
for singleton Ferrers boards, and Barrese, Loehr, Remmel and Sagan [1] proved a
factorization theorem for p-rook numbers for all Ferrers boards.

As an example of an application of Theorem 12.6, we give the cycle-counting
p-rook analogue of the Lah numbers. The Lah numbers Ln,k are defined by the
equation

(x)↑n=
n∑

k=1

Ln,k(x)↓k .

They can also be defined by the following recursion

Ln+1,k = Ln,k−1 + (n + k)Ln,k, (12.13)

with initial conditions L0,0 = 1 and Ln,k = 0 if k < 0 or k > n. The Ln,k’s have
a nice rook theory interpretation, that is, Ln,k = rn−k(Ln), where Ln is the Ferrers
board consisting of n columns of height n − 1, see [9]. From this interpretation, it is
easy to see that

Ln,k = (n − 1)!
(k − 1)!

(
n

k

)
. (12.14)

That is, to create a rook placement of n − k rooks in Ln , we first pick the n − k
columns that will contain the rooks. We can do this in

( n
n−k

) = (n
k

)
ways. Then, we

have to place the rooks in these columns starting from the left. We clearly have n − 1
choices where to put a rook in the leftmost column, then n − 1 − 1 ways to place a
rook in the next column, etc. Thus, we will have (n − 1) ↓n−k= (n−1)!

(k−1)! ways to place
the rooks in the n − k columns that we chose.

For the obvious cycle-counting analogue of the Ln,k’s for Cp � Sn , consider the
Ferrers board Lp

n which consists of n columns of height p(n − 1). We let

L p
n,k(y0, . . . yp−1) = r p

n−k(Lp
n , y0, . . . , yp−1). (12.15)

In this case, (12.11) becomes

x(x + y0 + · · · + yp−1)↑n−1,p=
n∑

k=1

L p
n,k(y0, . . . yp−1)(x)↓k,p . (12.16)

Note that
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n+1∑

k=1

L p
n+1,k(y0, . . . yp−1)(x)↓k,p

= x(x + y0 + · · · + yp−1)↑n,p

= (x + y0 + · · · + yp−1 + p(n − 1))x(x + y0 + · · · + yp−1)↑n−1,p

= (x + y0 + · · · + yp−1 + p(n − 1))
n∑

k=1

L p
n,k(y0, . . . yp−1)(x)↓k,p

=
n∑

k=1

L p
n,k(y0, . . . yp−1)(x)↓k,p (x − kp + y0 + · · · + yp−1 + p(n + k − 1))

=
n∑

k=1

L p
n,k(y0, . . . yp−1)(x)↓k+1,p

+
n∑

k=1

L p
n,k(y0, . . . yp−1)(x)↓k,p (y0 + · · · + yp−1 + p(n + k − 1)).

It thus follows that

L p
n+1,k(y0, . . . yp−1)

= L p
n,k−1(y0, . . . yp−1) + (y0 + · · · + yp−1 + p(n + k − 1))L p

n,k(y0, . . . yp−1).

(12.17)

We also have an analogue of (12.14) in this case. That is, we want to compute

∑

P∈N p
n−k (Lp

n )

p−1∏

i=0

y
cyci (P)

i .

We divide the p-rook placements inN p
n−k(Lp

n ) into two sets: N1 consisting of those
p-rook placements with no rook in the last column and N2 consisting of those p-rook
placements that have a rook in the last column. For N1, there are

(n−1
n−k

) = (n−1
k−1

)
ways

to choose the n − k columns in which we are going to place the rooks. If i ≤ n − 1,
then the height of the i th column is greater than or equal to pi . Hence, we can use
Lemma 12.1 to argue that as we place the rooks in the columns from left to right,
the sum of

∏p−1
i=0 y

cyci (P)

i over the possible placements in the n − k columns that we
choose is

(p(n − 2) + y0 + · · · + yp−1)(p(n − 3) + y0 + · · · + yp−1)

· · ·(p(k − 1) + y0 + · · · + yp−1).

Thus

∑

P∈N1

p−1∏

i=0

y
cyci (P)

i =
(
n − 1

k − 1

)
(p(k − 1) + y0 + · · · + yp−1)↑n−k,p .
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For N2, there are
( n−1
n−k−1

) = (n−1
k

)
ways to choose the columns in which we are

going to place the rooks in the first n − 1 columns.As above, the sumof
∏p−1

i=0 y
cyci (P)

i
over the possible placements in the n − k columns that we choose is

(p(n − 2) + y0 + · · · + yp−1)(p(n − 3) + y0 + · · · + yp−1) · · · (pk + y0 + · · · + yp−1).

Once we place these rooks, we still have to place a rook in the last column. However,
the height of the last column inLp

n is (n − 1)p < np. Thus, byLemma12.1, the factor
contributed by placing the rook in the last column in the n − 1 − (n − k − 1) = k
levels which are possible is pk. Thus

∑

P∈N2

p−1∏

i=0

y
cyci (P)

i =
(
n − 1

k

)
(pk)(pk + y0 + · · · + yp−1)↑n−k−1,p .

Hence,

L p
n,k =

(
n − 1

k − 1

)
(p(k − 1) + y0 + · · · + yp−1)↑n−k,p

+
(
n − 1

k

)
(pk)(pk + y0 + · · · + yp−1)↑n−k−1,p

=
(
n − 1

k − 1

)
(pk + y0 + · · · + yp−1)↑n−k,p .

3 Q-Analogues of Cycle-Counting p-Rook Numbers

In this section, we shall define q-analogues of cycle-counting p-rook numbers and
prove a factorization theorem for such q-analogues for full Ferrers boards.

First, we shall recall the definitions of the q-analogues of the p-rook and p-hit
numbers as defined by Briggs and Remmel [4]. Let B = F(b1, . . . , bn) be a Ferrers
board contained in Bp

n . A rook in cell (i, j, k) is said to rook cancel all cells in level j
that lie strictly its right and all cells that lie directly below it. Then, for any given P ∈
N p

k (B), we let invB(P) be the number of uncancelled cells in B − P . For example,
in Fig. 5 we have pictured a placement in B = F(6, 9, 12, 12, 15, 15) ⊆ B3

6 and we
have put dots in cells which are rook cancelled by rooks in P . Thus, invB(P) = 30
as there is a total of 30 squares which are not rook cancelled by rooks in P .

Suppose that p ≥ 2. Then, for k ≥ 1, we let

[y]q ↑k,p = [y]q [y + p]q · · · [y + p(k − 1)]q and
[y]q ↓k,p = [y]q [y − p]q · · · [y − p(k − 1)]q .
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Fig. 5 An example of rook
cancellation

We let [y]q ↑0,p= [y]q ↓0,p= 1. Then, for any Ferrers board B = F(b1, . . . , bn) ⊆
Bp
n , Briggs and Remmel defined r p

k (B, q) by

r p
k (B, q) =

∑

P∈N p
k

qinv(P) (12.18)

and H p
k,n(B, q) algebraically by

n∑

k=0

H p
k,n(B, q)xk =

n∑

k=0

r p
k (B, q)[p(n − k)]q ↓n−k,p

n∏

�=n−k+1

(x − q p�). (12.19)

Briggs and Remmel [4] then proved the following two theorems.

Theorem 12.7 Let B = F(b1, . . . , bn) ⊆ Bp
n be a Ferrers board. Then

n∏

i=1

[x + bi − p(i − 1)] =
n∑

k=0

r p
n−k(B, q)[px] ↓k,p . (12.20)

Theorem 12.8 Let B = F(b1, . . . , bn) ⊆ Bp
n be a Ferrers board. Then Hn,k(B, q)

is a polynomial in q with non-negative integer coefficients for all k = 0, . . . , n.

In fact, Briggs and Remmel proved p, q-analogues of Theorems 12.7 and 12.8
but we shall not concern ourselves with p, q-analogues in this paper.

We define the q-analogue of the cycle-counting p-rook number by

r p
k (B, q, y0, . . . , yp−1) =

∑

P∈N p
k (B)

⎛

⎝
p−1∏

j=0

[y j ]cyc j (P)
q

⎞

⎠ q inv(P)+∑p−1
j=0 (y j−1)E j (P),

(12.21)
where

inv(P) is the number of uncancelled cells (considering one sublevel as one cell)
when a rook cancels all the cells below it and all the cells to the right in the
same level with the rook, and
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E j (P) is the number of i’s such that bi ≥ pi and there is no rook from P in
column i on or above s j

i (P), where s j
i (P) is the unique sublevel which,

considering only rooks from P in column 1 through i − 1 of B, completes
a ω j cycle.

Then, we have the following q-analogue of the factorization theorem.

Theorem 12.9 Let B = F(b1, . . . , bn) be a full Ferrers board contained in B p
n .

∏

i :bi<pi

[px + bi − p(i − 1)]q
∏

i :bi≥pi

[px + bi − pi + y0 + · · · + yp−1]q

=
n∑

k=0

r p
n−k(B, q, y0, . . . , yp−1)[px]q ↓k,p . (12.22)

Proof It is not difficult to show that it is enough to prove (12.22) holds whenever
x, y0, . . . , yp−1 are positive integers. The proof is similar to the proof of Theo-
rem 12.6. Given x ∈ P, we consider the extended board Bx by adding x-levels of
length n below B. Then, suppose that y0, . . . , yp−1 are fixed elements of P. For a
given P ∈ N p

n (Bx ), we let

wt (P) =
⎛

⎝
p−1∏

j=0

[y j ]cyc j (P∩B)
q

⎞

⎠ q inv(P)+∑p−1
j=0 (y j−1)E j (P∩B).

Then, we claim that (12.22) arises by calculating

S(B, q, y0, . . . , yp−1) =
∑

P∈N p
n (Bx )

wt (P)

in two different ways.
First, we fix a p-rook placement Q ∈ N p

n−k(B) of n − k rooks in B. Then, we
want to compute

AQ =
∑

P∈Nn(Bx ), P∩B=Q

wt (P).

In this case, there are k columns below the bar which do not contain rooks in Q.
First consider the contribution that comes from placing a rook below the bar in the
first available column, reading from left to right. If we place a rook in the top cell
of the first available column, then it would contribute q0 to the weight of the rook
placement. If we place that rook one cell below, then it would give q1 and so on.
Thus, our choices for placing a rook in this column contribute the weight sum

q0 + q1 + · · · + q px−1 = [px]q
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to AQ . Once we place a rook in the first available column, then we can use the same
argument to show that our choices of placing a rook below the bar in the next available
column contribute a factor [px − p]q to AQ . By continuing in this way, we get

AQ =
⎛

⎝
p−1∏

j=0

[y j ]cyc j (Q)
q

⎞

⎠ q inv(Q)+∑p−1
j=0 (y j−1)E j (Q)[px]q [px − p]q · · · [px − p(k − 1)]q .

Thus

S(B, q, y0, . . . ,yp−1) =
n∑

k=0

∑

Q∈N p
n−k (B)

AQ

=
n∑

k=0

[px]q ↓k,p

∑

Q∈N p
n−k (B)

⎛

⎝
p−1∏

j=0

[y j ]cyc j (Q)
q

⎞

⎠ q inv(Q)+∑p−1
j=0 (y j−1)E j (Q)

=
n∑

k=0

r p
n−k(B, q, y0, . . . , yp−1)[px]q ↓k,p

which is the left-hand side of (12.22).
On the other hand,we can calculate S(B, q, y0, . . . , yp−1)by adding rooks column

by column, starting from left to right. To do this, we need an analogue of Lemma 12.1,
whichwe state and prove separately subsequent to the current proof; see Lemma12.2.

Ifwe startwith a placement Q ∈ N p
i−1(Bx) of i − 1 rooks in the first i − 1 columns

of Bx , then the i th column will contribute the factor [px + bi − pi + y0 + · · · +
yp−1]q for placing a rook in the column i if bi ≥ pi and will contribute a factor
[px + bi − p(i − 1)]q if bi < pi . Thus,

S(B, q, y0, . . . , yp−1)

=
∏

i :bi<pi

[px + bi − p(i − 1)]q
∏

i :bi≥pi

[px + bi − pi + y0 + · · · + yp−1]q ,

which is the right-hand side of (12.22).

Lemma 12.2 Suppose that Q ∈ N p
t (Bx) is a p-rook placement of t rooks in the

first i − 1 columns of Bx . Let Di (Q) denote the set of all p-rook placements P that
result from Q by adding a rook in column i. Then

∑

P∈Di (Q)

wt (P) =
{

[bi + px − p(t + 1) + y0 + · · · + yp−1]qwt (Q), if bi ≥ pi,

[bi + px − pt]qwt (Q), if bi < pi.

(12.23)

Proof The proof is similar to the proof of Lemma 12.1. That is, if bi < pi , then any
placement of a rook in column i will not contribute to E j (P ∩ B) for any j . Now,
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there are px + bi − pt uncancelled squares in the i th column. If we place a rook ri
in the j th uncancelled cell from the top in column i , then ri will contribute a factor
q j−1 to wt (P) as the contribution to inv(P) from ri will be j − 1. Thus, in this case,
the placement of ri will contribute a factor

wt (Q)

px+bi−pt∑

j=1

q j−1 = wt (Q)[px + bi − pt]q

to
∑

P∈Di (Q) wt (P).
Ifbi ≥ pi , then there is a level li ≤ i such that placing a rook ri in level �i in column

i will complete a cycle relative to the rooks in Q. Assume that if we place a rook in
cell (i, li , s), then we complete a cycle of sign ωus . Thus, ωu0 , . . . , ωu p−1 must be a
rearrangement of 1, ω, . . . , ωp−1. In addition, assume that there are pti uncancelled
cells above level �i in column i . Then, as before, placing a rook in j th uncancelled
cell from the top, where j ≤ pti , will give a factor q j−1 to

∑
P∈Di (Q) wt (P). Thus,

the placements of a rook in the top pti cells will give a factor

wt (Q)(1 + q + · · · + q pti−1) = wt (Q)[pti ]q
to

∑
P∈Di (Q) wt (P).

Now consider the effect of placing a rook ri in the cell (i, li , p − 1). Then, ri
would contribute a factor

[yup−1]qq pti = q pti + · · · + q pti+yu p−1−1

to wt (P). Here, [yup−1]q comes from the fact that we completed a cycle of sign
ωu p−1 and q pti comes from the contribution of ri to inv(P). Note that ri makes no
contribution to E j (P) for any j in this case. Next consider the effect of placing a
rook ri in the cell (i, li , p − 2). Then, ri would contribute

[yup−2 ]qq pti+1qyup−1−1 = q pti+yu p−1 + · · · + q pti+yu p−1+yu p−2−1

towt (P). Here, [yup−2 ]q comes from the fact that we completed a cycle of signωu p−2 ,
q pti+1 comes from the contribution of ri to inv(P), and qyup−1−1 comes from the fact
that the placement of ri contributes 1 to Eup−1(P). Next consider the effect of placing
a rook ri in the cell (i, li , p − 3). Then, ri would contribute

[yup−3]qq pti+2qyup−1−1+yu p−2−1 = q pti+yu p−1+yu p−2 + · · · + q pti+yu p−1+yu p−2+yu p−3−1

towt (P). Here, [yup−3]q comes from the fact that we completed a cycle of signωu p−3 ,
q pti+2 comes from the contribution of ri to inv(P), and qyup−1−1+yu p−2−1 comes
from the fact that the placement of ri contributes 1 to both Eup−2(P) and Eup−1(P).
Continuing on in this way, one can show that the contribution of all the possible
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placements of ri in level �i in column i contributes a factorwt (Q)q pti [y0 + · · · yp−1]q
to

∑
P∈Di (Q) wt (P).

We have px + bi − pt − pti − p uncancelled cells below level �i in column i .
If we place a rook ri in the sth such cell reading from the top, then ri contributes

q pti+p+s−1q
∑p−1

j=0 yi−1 = q pti+y0+···+yp−1+s−1 to wt (P). Here, q pti+p+s−1 comes from

ri contribution to inv(P) andq
∑p−1

j=0 yi−1 comes from the fact that ri would contribute 1
to E j (P) for j = 0, . . . , p − 1. It follows that contribution to

∑
P∈Di (Q) wt (P) over

all possible placements of rooks in the remaining px + bi − pt − pti − p uncan-
celled cells is

wt (Q)q pti+y0+···+yp−1 [px + bi − pt − pti − p]q .

Hence, the total contribution to
∑

P∈Di (Q) wt (P) of the placements of rooks in the
i th column in the case where bi ≥ pi is

wt (Q)([pti ]q + q pti [
p−1∑

i=0

yi ]q + q pti+∑p−1
i=0 yi [px + bi − pt − pti − p]q)

= wt (Q)[px + bi − p(t + 1) + y0 + · · · + yp−1]q ,

as desired.

Example 12.1 (q-cycle-counting Lah numbers) We consider the q-analogue of
cycle-counting Lah numbers L p

n,k(y0, . . . , yp−1) for Cp � Sn . We let

L p
n,k(q, y0, . . . , yp−1) = r p

n−k(Lp
n , q, y0, . . . , yp−1), (12.24)

whereLp
n is the Ferrers board which consists of n columns of height p(n − 1). Then,

by Theorem 12.9, we have

[px]q [px+y0 + · · · + yp−1]q ↑n−1,p

=
n∑

k=1

[px]q [p(x − 1)]q · · · [p(x − k + 1)]q L p
n,k(q, y0, . . . , yp−1).

(12.25)

Note that

n+1∑

k=1

L p
n+1,k(q, y0, . . . , yp−1)[px]q ↓k,p

= [px]q [px + y0 + · · · + yp−1]q ↑n,p

= [px]q [px + y0 + · · · + yp−1]q ↑n−1,p [px + p(n − 1) + y0 + · · · + yp−1]q

=
n∑

k=1

L p
n,k(q, y0, . . . , yp−1)[px]q ↓k,p [px + p(n − 1) + y0 + · · · + yp−1]q
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=
n∑

k=1

L p
n,k(q, y0, . . . , yp−1)

× [px]q ↓k,p [p(x − k) + p(n + k − 1) + y0 + · · · + yp−1]q

=
n∑

k=1

q p(n+k−1)+y0+···+yp−1 L p
n,k(q, y0, . . . , yp−1)[px]q ↓k+1,p

+
n∑

k=1

L p
n,k(q, y0, . . . , yp−1)[px]q ↓k,p [p(n + k − 1) + y0 + · · · + yp−1]q .

Thus, we get the recurrence relation

L p
n+1,k(q, y0, . . . ,yp−1) = q p(n+k−1)+y0+···+yp−1L p

n,k−1(q, y0, . . . , yp−1)

+ L p
n,k(q, y0, . . . , yp−1)[p(n + k − 1) + y0 + · · · + yp−1]q .

(12.26)

Using this recursion, we can also prove the following closed-form expression

L p
n,k(q, y0, . . . ,yp−1)

= qk(k−1)p+(k−1)(y0+···+yp−1)

[
n − 1
k − 1

]

q p
[pk + y0 + · · · yp−1]q ↑n−k,p .

(12.27)

4 Q-Analogues of Cycle-Counting p-Hit Numbers

Recall that a full Ferrers board B = F(b1, . . . , bn) ⊆ Bn
p is regular if bi = p · ci ,

where ci ≥ i for 1 ≤ i ≤ n. The goal of this section is to define a q-analogue of
cycle-counting p-hit numbers for full regular Ferrers boards and to give a conjectured
combinatorial interpretation for them. Before we start, we introduce an alternate
notation for a Ferrers board. Given a Ferrers board B = F(b1, b2, . . . , bn) ⊆ Bp

n ,
we will also use the notation B = B(h p

1 , d1; . . . ; h p
t , dt ) which uses the step heights

and depths as pictured in Fig. 6.
Now if B = F(pc1, . . . , pcn) is a regular full Ferrers board contained in B

p
n , then,

in the notation B = B(h p
1 , d1; . . . ; h p

t , dt ), h
p
j = p · h j where h j ’s are the number

of levels of the corresponding step. Then, by Theorem 12.9,

n∑

k=0

r p
n−k(B, q, y0, . . . , yp−1)[px]q ↓k,p=

n∏

i=1

[px + p(ci − i) + y0 + · · · + yp−1]q .
(12.28)

We let the right-hand side of (12.28) be
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Fig. 6 Ferrers board
B = B(h p

1 , d1; . . . ; h p
t , dt )

PR[B, x, y0, . . . , yp−1] :=
n∏

i=1

[px + p(ci − i) + y0 + · · · + yp−1]q .

Wedefine our q-analogue H p
k,n(B, q, y0, . . . , yp−1) of the cycle-counting p-hit num-

bers by

n∑

k=0

r p
n−k(B, q, y0, . . . , yp−1)[y0 + · · · + yp−1]q ↑k,p zk

×
n∏

i=k+1

(1 − zq y0+···+yp−1+p(i−1)) =
n∑

k=0

H p
k,n(B, q, y0, . . . , yp−1)z

k .

(12.29)

Note that when q = 1, by changing z to z−1 and multiplying zn on both sides, we
can transform (12.29) to

n∑

k=0

H p
n−k,n(B, 1, y0, . . . , yp−1)z

k

=
n∑

k=0

r pk (B, 1, y0, . . . , yp−1)(y0 + · · · + yp−1)↑n−k,p (z − 1)k .

By comparing it to the result of Theorem 12.5, we can see that

H p
k,n(B, 1, y0, . . . , yp−1) = H p

n−k,n(B, y0, . . . , yp−1).

Our first goal is to give a recursion for the H p
k,n(B, q, y0, . . . , yp−1)’s which will

show that H p
k,n(B, q, y0, . . . , yp−1) is a polynomial in q with non-negative coeffi-

cients when y0, . . . , yp−1 are non-negative integers. To derive our desired recursion
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of H p
k,n(B, q, y0, . . . , yp−1), we define amore general version of it. That is, we define

H p
k,n(B, x, q, y0, . . . , yp−1) by

n∑

k=0

H p
k,n(B, x, q, y0, . . . , yp−1)z

k

=
n∑

k=0

r pn−k(B, q, y0, . . . , yp−1)[px]q ↑k,p zk
n∏

i=k+1

(1 − zq px+p(i−1)).

Remark 12.1 We note that

H p
k,n(B, q, y0, . . . , yp−1) = H p

k,n(B, x, q, y0, . . . , yp−1)
∣∣
x= y0+···+yp−1

p
,

and H p
k,n(B, x, q, y0, . . . , yp−1) is a generalization of Hk(x, y, B) as defined by

Haglund in [10] and used by Butler in [5].

The following two propositions are the generalizations of the result of Haglund
in [10, Lemma 5.1, Lemma 5.7].

Proposition 12.1 Suppose B = F(pc1, . . . , pcn) is a regular full Ferrers board
contained in B p

n . Then, we have

H p
k,n(B, x, q, y0, . . . , yp−1)

=
k∑

j=0

[
n + x
k − j

]

q p

[
x + j − 1

j

]

q p

(−1)k− j q p(k− j
2 )PR[B, j, y0, . . . , yp−1],

(12.30)

where PR[B, j, y0, . . . , yp−1] = ∏n
i=1[pj + p(ci − i) + y0 + · · · + yp−1]q .

Proof In the proof, we use the following short-hand notation

([x]q p ) j = [x]q p [x + 1]q p · · · [x + j − 1]q p .

The right-hand side of (12.30) is

k∑

j=0

[
n + x
k − j

]

q p

(−1)k− j q p(k− j
2 )

[
x + j − 1

j

]

q p

×
n∑

s=0

[p]sq [ j]q p [ j − 1]q p · · · [ j − s + 1]q pr p
n−s(B, q, y0, . . . , yp−1)

=
n∑

s=0

[p]sqr p
n−s(B, q, y0, . . . , yp−1)
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⇒

Fig. 7 B = B(6, 1; 3, 1; 3, 2; 3, 2) and B − h1 − d4 = B(3, 1; 3, 1; 3, 2; 3, 1), for p = 3

×
∑

j≥s

[
n + x
k − j

]

q p

(−1)k− j q p(k− j
2 ) ([x]q p ) j

([1]q p ) j
[ j]q p · · · [ j − s + 1]q p

=
n∑

s=0

[p]sqr p
n−s(B, q, y0, . . . , yp−1)

×
∑

u≥0
j=u+s

[
n + x

k − u − s

]

q p

(−1)k−u−sq p(k−u−s
2 ) ([x]q p )u+s

([1]q p )u+s
([u + 1]q p )s

=
n∑

s=0

[p]sqr p
n−s(B, q, y0, . . . , yp−1)

∑

u≥0

[
n + x
k − s

]

q p

(−1)k−sq p(k−s
2 )

× ([s − k]q p )u

([n + x − k + s + 1]q p )u

([x]q p )s([x + s]q p )u

([s + 1]q p )u

[
u + s
u

]

q p

=
n∑

s=0

[p]sqr p
n−s(B, q, y0, . . . , yp−1)

∑

u≥0

[
n + x
k − s

]

q p

(−1)k−sq p(k−s
2 )

× ([x]q p )s
∑

u≥0

([−k + s]q p )s([x + s]q p )u

([1]q p )u([n + x − k + s + 1]q p )u

=
n∑

s=0

[p]sqr p
n−s(B, q, y0, . . . , yp−1)

×
[
n + x
k − s

]

q p

(−1)k−sq p(k−s
2 )([x]q p )s

([n − k + 1]q p )k−s

([n + x − k + s + 1]q p )k−s

=
n∑

s=0

[p]sq([x]q p )sr
p
n−s(B, q, y0, . . . , yp−1)

[
n − s
k − s

]

q p

(−1)k−sq p(k−s
2 )

= H p
k,n(B, x, y0, . . . , yp−1).
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Proposition 12.2 Suppose B = B(h p
1 , d1; h p

2 , d2; . . . , ; h p
t , dt ), where h

p
i = phi for

non-negative integer hi , i = 1, . . . , t , is regular full Ferrers board contained in B p
n .

Let Hi := h1 + · · · + hi , Di := d1 + · · · + di , and the notation B − hi − d j refer
to the board obtained from B by decreasing hi and d j by one each and leaving the
other parameters fixed. (For an example of the board B − hi − d j , refer to Fig.7).
Then, we have the following recursion for H p

k,n(B, x, q, y0, . . . , yp−1).

H p
k,n(B, x, q,y0, . . . , yp−1)

= [p]q
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

× H p
k,n−1(B − hl − dl , x, y0, . . . , yp−1)

+ [p]q
(

−q p(n+x−1)

[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

+ q p(k+Hl−Dl+dl−2+ y0+···+yp−1
p )[n + x]q p

)

× H p
k−1,n−1(B − hl − dl , x, q, y0, . . . , yp−1).

Proof We have

H p
k,n(B, x, q, y0, . . . , yp−1)

=
k∑

s=0

[
n + x
k − s

]

q p

[
x + s − 1

s

]

q p
(−1)k−sq p(k−s

2 )

×
n∏

i=1

[ps + p(bi − i) + y0 + · · · + yp−1]q

=
k∑

s=0

[
n + x
k − s

]

q p

[
x + s − 1

s

]

q p
(−1)k−sq p(k−s

2 )

× [ps + p(Hl − Dl + dl − 1) + y0 + · · · + yp−1]qPR[B − hl − dl , s, y0, . . . , yp−1]

=
k∑

s=0

[
n + x
k − s

]

q p

[
x + s − 1

s

]

q p
(−1)k−sq p(k−s

2 )

× PR[B − hl − dl , s, y0, . . . , yp−1]

×
{

[p]
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

−q p(s+Hl−Dl+dl−1+ y0+···+yp−1
p )[p][k − s]q p

}

= [p]q
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p
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×
k∑

s=0

[
n + x
k − s

]

q p

[
x + s − 1

s

]

q p
(−1)k−sq p(k−s

2 )PR[B − hl − dl , s, y0, . . . , yp−1]

− [p]qq p(s+Hl−Dl+dl−1+ y0+···+yp−1
p )

k∑

s=0

[n + x]q p

[
n + x − 1
k − s − 1

]

q p

×
[
x + s − 1

s

]

q p
(−1)k−sq

p
(
(k−s

2 )+s
)

PR[B − hl − dl , s, y0, . . . , yp−1]

= [p]q
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

k∑

s=0

[
x + s − 1

s

]

q p
(−1)k−s

×
{[

n + x − 1
k − s

]

q p
q p(k−s

2 ) +
[
n + x − 1
k − s − 1

]

q p
q
p
(
(k−s−1

2 )+n+x−1
)}

× PR[B − hl − dl , s, y0, . . . , yp−1]

− [p]qq p(s+Hl−Dl+dl−1+ y0+···+yp−1
p )

k−1∑

s=0

[n + x]q p

[
n + x − 1
k − s − 1

]

q p

×
[
x + s − 1

s

]

q p
(−1)k−sq

p
(
(k−s−1

2 )+k−1
)

PR[B − hl − dl , s, y0, . . . , yp−1]

= [p]q
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

× H p
k,n−1(B − hl − dl , x, q, y0, . . . , yp−1)

+ [p]q H p
k−1,n−1(B − hl − dl , x, q, y0, . . . , yp−1)

×
{
q p(k+Hl−Dl+dl−2+ y0+···+yp−1

p )[n + x]q p

−q p(n+x−1)
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

}

= [p]q
[
k + Hl − Dl + dl − 1 + y0 + · · · + yp−1

p

]

q p

× H p
k,n−1(B − hl − dl , x, q, y0, . . . , yp−1)

+ [p]q
[
n + x − k − Hl + Dl − dl + 1 − y0 + · · · + yp−1

p

]

q p

× q p(k+Hl−Dl+dl−2+ y0+···+yp−1
p )H p

k−1,n−1(B − hl − dl , x, q, y0, . . . , yp−1).

Proposition 12.3 If B j is the board

B(h p
1 , d1; · · · ; h p

l−1, dl−1; h p
l − pj, dl − j; h p

l+1, dl+1; . . . ; h p
t , dt )

obtained from a regular Ferrers board B by decreasing h p
l by pj and dl by j (here

we assume that j ≤ hl , dl , where h
p
l = phl), then
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H p
k,n(B, x, q, y0, . . . , yp−1) = [p] jq [ j]q p !

k∑

s=k− j

H p
s,n(Bj , x, q, y0, . . . , yp−1)

×
[
Tl − 1 + s
j − k + s

]

q p

[
n − Tl + x − s

k − s

]

q p

q p(k−s)(Tl+k− j−1), (12.31)

where Tl = Hl − Dl−1 + y0+···+yp−1

p .

Proof The proof can be done by induction on j and by using the recursion in Propo-
sition 12.2. The proof is similar to the proof of [10, Theorem 4.1, Theorem 5.8], and
hence, we omit the details.

ByusingProposition12.2,wecanderive the recursion for H p
k,n(B, q, y0, . . ., yp−1).

Theorem 12.10 Suppose B = B(h p
1 , d1; h p

2 , d2; . . . , ; h p
t , dt ), where h p

i = phi , is
regular full Ferrers board contained in B p

n . Let Hi := h1 + · · · + hi , Di := d1 +
· · · + di , and the notation B − hi − d j refers to the board obtained from B by
decreasing hi and d j by one each and leaving the other parameters fixed. Then,
we have the following recursion for H p

k,n(B, q, y0, . . . , yp−1):

H p
k,n(B, q, y0, . . . , yp−1)

= [p]q
[
y0 + · · · + yp−1

p
+ k + dt − 1

]

q p

H p
k,n−1(B − ht − dt , q, y0, . . . , yp−1)

+ [p]qq p
(

y0+···+yp−1
p +k+dt−2

)

[n − k − dt + 1]q p

× H p
k−1,n−1(B − ht − dt , q, y0, . . . , yp−1), (12.32)

where ht and dt are the height (number of levels) and the depth of the last step of B.

We note that it follows from Theorem 12.10 that if B = F(pc1, . . . , pcn) is a
regular full Ferrers board in Bp

n and y0, . . . , yp−1 are non-negative integers, then
H p

k,n(B, q, y0, . . . , yp−1) is a polynomial with non-negative coefficients in q. Here
are some small examples.

Example 12.2 When B1 has only one square (level)with p sublevels, i.e. B1 = F(p),
then

H p
0,1(B1, q, y0, . . . , yp−1)

= r p
1 =

∑

P∈N p
1 (B1)

⎡

⎣
p−1∏

j=0

[y j ]cyc j (P)
q q inv(P)+∑p−1

j=0 (y j−1)E j (P)

⎤

⎦

= q0[yp−1]q + q1+(yp−1−1)[yp−2]q + · · · + q p−1+∑p−1
j=1 (y j−1)[y0]q

= q0[yp−1]q + qyp−1 [yp−2]q + qyp−1+yp−2 [yp−3]q + · · · + q
∑p−1

j=1 y j [y0]q
= [y0 + · · · + yp−1]q ,
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H p
k,1(B1, q, y0, . . . , yp−1) = 0, for k > 0.
We continue computing small examples for n = 2:

Hp
0,2( ,q,y0, . . . ,yp−1) = [y0+ · · ·+ yp−1]q[y0+ · · ·+ yp−1+ p]q,

Hp
k,2( ,q,y0, . . . ,yp 1) = 0, for k > 0.

Furthermore,

Hp
0,2( ,q,y0, . . . ,yp−1) = [y0+ · · ·+ yp−1]2q,

Hp
1,2( ,q,y0, . . . ,yp−1) = q(y0+···+yp−1)[p]q[y0+ · · ·+ yp−1]q,

Hp
2,2( ,q,y0, . . . ,yp 1) = 0.

Based on the q-statistics for the cycle-counting hit numbers defined by Butler in
[5], we conjecture a similar q-statistic for the cycle-counting p-hit numbers. Before
we make a precise statement, we need some definitions.

For a full regular Ferrers board B ⊆ Bp
n , let N p(B) = ∪n

k=1N p
k (B). For p ∈

N p(B), note the Butler’s statistic sB,b(P) [5] defined as the number of squares
on Bp

n which neither contain a rook from P nor are cancelled, after applying the
following cancellation scheme:

1. Each rook cancels all squares to the right in its row.
2. Each rook on B cancels all squares above it in its column (squares both on B and

strictly above B).
3. Each rook on B which also completes a cycle cancels all squares below it in its

column as well.
4. Each rook off B cancels all squares below it but above B.

Define cyc≥ j (P) by

cyc≥ j (P) :=
p−1∑

i= j

cyci (P).

Since bi ≥ pi , there exists a unique level, say u, in column i such that considering
only rooks from P in column 1 through column i − 1 of B completes a cycle. At the
i th column, define Ẽi (P) by

Ẽi (P) =
⎧
⎪⎨

⎪⎩

p, if there is no rook from P in column i on or above the level u,

0, if there is a rook from P in column i above the level u,

p − 1 − j, if there is a rook on the level u completing a cycle of signω j .

Then, we conjecture the following combinatorial formula for H p
k,n(B, q, y0, . . . ,

yp−1).
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Conjecture 12.1 Let Hk,n(B) be the set of all placements corresponding σ ∈ Cp �
Sn such that |σ ∩ B| = k. Then, for a full regular Ferrers board B ⊆ Bp

n ,

H p
k,n(B, q, y0, . . . , yp−1)

=
∑

P∈Hn−k,n(B)

⎛

⎝
p−1∏

j=0

[y j ]cyc j (P)
q

⎞

⎠ qsB,b(P)+∑n
i=1 Ẽi (P)+∑p−1

j=0 ((y j−1)(n−cyc≥ j (P))). (12.33)

An obvious approach to prove Conjecture 12.1 is to give a combinatorial proof that
the recursion of H p

k,n(B, q, y0, . . . , yp−1) in (12.32) holds. We were not able to find
a natural way to partition the rook placements inNk(B) to account for the two terms
on the right-hand side of (12.32). Our next example will show that while we can
verify the recursion holds for B = F(p, 2p, 3p, 4p) ⊂ [4] × [4p], the way that we
can divide the partition the rook placements in B to account for the two terms on
the right-hand side of (12.32) is quite complicated. Thus, we do not see how the
recursion can be derived naturally by extending the rook placement corresponding
to the permutations of n − 1 numbers.

Example 12.3 We consider a staircase board B = F(p, 2p, 3p, 4p) ⊂ [4] × [4p].
Then B − h4 − d4 = F(p, 2p, 3p) and the recursion (12.32) when k = 1 is

H p
1,4(B, q, y0, . . . , yp−1) = [y0 + · · · + yp−1 + p]q H p

1,3(B − h4 − d4, q, y0, . . . , yp−1)

+ qy0+···+yp−1 [p]q [3]q p H p
0,3(B − h4 − d4, q, y0, . . . , yp−1). (12.34)

For a rook placement P ∈ Hn−k,n(B), let

wt (P) =
⎛

⎝
p−1∏

j=0

[y j ]cyc j (P)
q

⎞

⎠ qsB,b(P)+∑n
i=1 Ẽi (P)+∑p−1

j=0 [(y j−1)(n−cyc≥ j (P))].

Then for σ = (1)(2)(3) ∈ S3, X
X
X
••

• •

H p
0,3(B − h4 − d4, q, y0, . . . , yp−1) =

∑

P∈Cp �σ
wt (P) = [y0 + · · · + yp−1]3q .

This can be extended to a placement inH3,4(B) as follows.
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σ1 = (14)(2)(3),
∑

P∈Cp �σ1

wt (P) = [y0 + · · · + yp−1]3qq y0+···+yp−1 [p]q ,

(12.35)

σ2 = (1)(24)(3),
∑

P∈Cp �σ2

wt (P) = [y0 + · · · + yp−1]3qq y0+···+yp−1[p]q ,

(12.36)

σ3 = (1)(2)(34),
∑

P∈Cp �σ3

wt (P) = [y0 + · · · + yp−1]3qq y0+···+yp−1 [p]q .

(12.37)

There are four permutations in S3 which can be considered for H p
1,3(B − h4 −

d4, q, y0, . . . , yp−1) and they can be extended to a placement in H3,4 as follows.

α = (1)(23),
∑

Cp �α
wt (P) = [y0 + · · · + yp−1]2qq y0+···+yp−1[p]q

⇒

α1 = (1)(23)(4),
∑

Cp �α1
wt (P) = [y0 + · · · + yp−1]3qq y0+···+yp−1+p[p]q ,

(12.38)

α2 = (1)(243),
∑

Cp �α2
wt (P) = [y0 + · · · + yp−1]2qq2(y0+···+yp−1)[p]2q ,

(12.39)
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β = (13)(2),
∑

Cp �β
wt (P) = [y0 + · · · + yp−1]2qq y0+···+yp−1 [p]q

⇒

β1 = (13)(2)(4),
∑

Cp �β1
wt (P) = [y0 + · · · + yp−1]3qq y0+···+yp−1+p[p]q ,

(12.40)

β2 = (143)(2),
∑

Cp �β2
wt (P) = [y0 + · · · + yp−1]2qq2(y0+···+yp−1)[p]2q ,

(12.41)

γ = (132),
∑

Cp �γ
wt (P) = [y0 + · · · + yp−1]2qq2(y0+···+yp−1)[p]2q

⇒

γ1 = (132)(4),
∑

Cp �γ1
wt (P) = [y0 + · · · + yp−1]2qq2(y0+···+yp−1)+p[p]2q ,

(12.42)

γ2 = (1432),
∑

Cp �γ2
wt (P) = [y0 + · · · + yp−1]qq3(y0+···+yp−1)[p]3q ,

(12.43)

δ = (12)(3),
∑

Cp �δ
wt (P) = [y0 + · · · + yp−1]2qq y0+···+yp−1+p[p]q
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⇒

δ1 = (12)(3)(4),
∑

Cp �δ1
wt (P) = [y0 + · · · + yp−1]3qq y0+···+yp−1+2p[p]q ,

(12.44)

δ2 = (142)(3),
∑

Cp �δ2
wt (P) = [y0 + · · · + yp−1]2qq2(y0+···+yp−1)[p]2q .

(12.45)

(12.35) + (12.40) + (12.44) has a common factor qy0+···+yp−1 [p]q [3]q p which is
the coefficient of H p

0,3(B − h4 − d4, q, y0, . . . , yp−1) in (12.34) and the rest makes
H p

0,3(B − h4 − d4, q, y0, . . . , yp−1).

(12.35) + (12.40) + (12.44) = [y0 + · · · + yp−1]3qq y0+···+yp−1 [p]q (1 + q p + q2p)

= qy0+···+yp−1 [y0 + · · · + yp−1]3q [p]q [3]q p

= qy0+···+yp−1 [p]q [3]q p H p
0,3(B − h4 − d4, q, y0, . . . , yp−1),

Similarly, ((12.36)+ (12.45)), ((12.37)+ (12.41)), ((12.39)+ (12.43)) and((12.38)+
(12.42)) have a common factor [y0 + · · · + yp−1 + p]q which is the coefficient of
H p

1,3(B − h4 − d4, q, y0, . . . , yp−1) in (12.34).

((12.36) + (12.45)) + ((12.37) + (12.41))

+ ((12.39) + (12.43)) + ((12.38) + (12.42))

= ([y0 + · · · + yp−1]2qq y0+···+yp−1[p]q([y0 + · · · + yp−1]q + qy0+···+yp−1[p]q)
)

+ ([y0 + · · · + yp−1]2qq y0+···+yp−1[p]q([y0 + · · · + yp−1]q + qy0+···+yp−1[p]q)
)

+ ([y0 + · · · + yp−1]qq2(y0+···+yp−1)[p]2q([y0 + · · · + yp−1]q + qy0+···+yp−1[p]q)
)

+ ([y0 + · · · + yp−1]2qq y0+···+yp−1+p[p]q([y0 + · · · + yp−1]q + qy0+···+yp−1[p]q)
)

= ([y0 + · · · + yp−1]q + qy0+···+yp−1 [p]q)
× {[y0 + · · · + yp−1]qq y0+···+yp−1 [p]([y0 + · · · + yp−1]q + qy0+···+yp−1 [p])

+ [y0 + · · · + yp−1]2qq y0+···+yp−1[p](1 + q p)
}

= [y0 + · · · + yp−1 + p]qq y0+···+yp−1 [p]q
× [y0 + · · · + yp−1]q

([y0 + · · · + yp−1 + p]q + [2]q [y0 + · · · + yp−1]q
)

= [y0 + · · · + yp−1 + p]q H p
1,3(B − h4 − d4, q, y0, . . . , yp−1).
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Asymptotic Behaviour of Certain
q-Poisson, q-Binomial and Negative
q-Binomial Distributions

Andreas Kyriakoussis and Malvina Vamvakari

Abstract We study the asymptotic behaviour of a class of discrete q-distributions.
Specifically, the pointwise convergence of the Heine distribution to a deformed con-
tinuous Stieltjes–Wigert distribution and that of the Euler distribution to a deformed
Gaussian distribution are established. Note that the Heine distribution is the limiting
behaviour of both the q-binomial distribution of the first kind (q-Binomial I) and
the negative q-binomial distribution of the first kind (negative q-Binomial I). Also,
the Euler distribution is the limiting behaviour of both the q-binomial distribution
of the second kind (q-Binomial II) and the negative q-binomial distribution of the
second kind (negative q-Binomial II). In this paper, we also establish, by pointwise
convergence, the deformed Gaussian approximation of the q-Binomial II and nega-
tive q-Binomial II distributions. The limiting behaviour of the q-Binomial I and the
negative q-Binomial I distributions have been already studied by the authors.

Keywords Stirling’s formula · q-factorials · Pointwise convergence · Continuous
Stieltjes–Wigert distribution · q-distributions · q-Binomial I and II · Negative
q-Binomial I and II · Heine and Euler distributions
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1 Introduction and Preliminaries
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f HX (x) = eq(−λ)
q(x2)λx

[x]q ! , x = 0, 1, 2, . . . , 0 < q < 1, 0 < λ < ∞ (13.1)

and

f EX (x) = Eq(−λ)
λx

[x]q ! , x = 0, 1, 2, . . . , 0 < q < 1, 0 < λ(1 − q) < 1,

(13.2)
respectively, where

eq(z) :=
∞∑

n=0

(1 − q)nzn

(q; q)n
=

∞∑

n=0

zn

[n]q ! = 1

((1 − q)z; q)∞
, |z| < 1, (13.3)

Eq(z) :=
∞∑

n=0

(1 − q)nq(n2)zn

(q; q)n
=

∞∑

n=0

q(n2)zn

[n]q ! = ((1 − q)z; q)∞, |z| < 1, (13.4)

and

[n]q ! = [1]q [2]q · · · [n]q =
n∏

k=1

1 − qk

(1 − q)n
= (q; q)n

(1 − q)n
, 0 < q < 1, [t]q = 1 − qt

1 − q
,

(13.5)
and he gave many applications. Both q-Poisson distributions are unimodal and log-
concave with the Euler distribution being infinitely divisible but not the Heine distri-
bution. Moreover, the Heine distribution is underdispersed but the Euler distribution
is overdispersed.

Charalambides [1] reproduced the Heine distribution as direct approximation,
as n → ∞, of the q-Binomial I and the negative q-Binomial I distributions, with
probability functions given by

f BX (x) =
(
n

x

)

q

q(x2)θ x
n∏

j=1

(1 + θq j−1)−1, x = 0, 1, . . . , n, (13.6)

and

f N B
X (x) =

(
n + x − 1

x

)

q

q(x2)θ x
n+x∏

j=1

(1 + θq j−1)−1, x = 0, 1, . . . , (13.7)

respectively, where θ > 0 and 0 < q < 1.
Moreover, Charalambides [1] reproduced the Euler distribution as direct approxi-

mation, as n → ∞, of the q-Binomial II and the negative q-Binomial II distributions,
with probability functions given by
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f BSX (x) =
(
n

x

)

q

θ x
n−x∏

j=1

(1 − θq j−1), x = 0, 1, . . . , n, (13.8)

and

f N BS
X (x) =

(
n + x − 1

x

)

q

θ x
n∏

j=1

(1 − θq j−1), x = 0, 1, . . . , (13.9)

respectively, where 0 < θ < 1 and 0 < q < 1 or 1 < q < ∞ with θqn−1 < 1.
Kyriakoussis and Vamvakari [6, 7] proved limit theorems for the q-binomial

distribution of the first kind (13.6) and negative q-Binomial distribution of the first
kind (13.7) for constant q, by using pointwise convergence in a “q-analogous sense”
of the classical de Moivre–Laplace limit theorem. Specifically in [6], for the needs
of their study they established a q-Stirling formula for n → ∞ of the q-factorial of
order n, defined by by relation (13.5). Analytically, for constant q with 0 < q < 1,
we have

[n]q ! = q−1/8(2π(1 − q))1/2

(q log q−1)1/2

q(n2)q−n/2[n]n+1/2
1/q∏∞

j=1(1 + (q−n − 1)q j−1)

(
1 + O(n−1)

)
. (13.10)

Then, the pointwise convergence of the q-binomial distribution of the first kind
to a deformed continuous Stieltjes–Wigert distribution was established. In detail,
transferred from the random variable X of the q-binomial distribution (13.6) to
the equal-distributed deformed random variable Y = [X ]1/q and for n → ∞, the q-
binomial distribution of the first kind was approximated by a deformed standardized
continuous Stieltjes–Wigert distribution as follows:

f BX (x) ∼= q1/8(log q−1)
1/2

(2π)1/2

(
q−3/2(1 − q)1/2

[x]1/q − μq

σq
+ q−1

)1/2

· exp
(

1

2 log q
log2

(
q−3/2(1 − q)1/2

[x]1/q − μq

σq
+ q−1

))
,

x ≥ 0, (13.11)

where θ = θn , for n = 0, 1, 2, . . ., such that θn = q−αn with 0 < a < 1 constant and
μq and σ 2

q the mean value and variance of the random variable Y, respectively.
A similar asymptotic result has been provided in [7] for the negative q-binomial
distribution of the first kind, as an application in a more general context concerning
pointwise convergence of a family of confluent q-Chu–Vandermonde distributions.

Note that, with q := q(n) a sequence of n with q(n) → 1 as n → ∞, Vamvakari
[9] studied the effect of this assumption on the q(n)-analogue of the Stirling type
and on the asymptotic behaviour of the q(n)-Binomial I distribution. Specifically,
the following q(n)-analogue of the Stirling type has been provided, leading to the
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proof of a deformed Gaussian limiting behaviour for the q(n)-Binomial distribution
of the first kind,

[n]q ! = (2π(1 − q))1/2

(q log q−1)1/2

q(n2)q−n/2[n]n+1/2
1/q∏∞

j=1(1 + (q−n − 1)q j−1)

(
1 + O

(
qn(1 − q)

))
,

(13.12)
where q = q(n) with q(n) → 1 as n → ∞ and q(n)n = �(1).

In this paper, we study the pointwise convergence of both the Heine and Euler dis-
tributions,whenλ → ∞. Specifically, we prove that theHeine distribution converges
to a deformed continuous Stieltjes–Wigert distribution and the Euler distribution to
a deformed Gaussian distribution. Moreover, the pointwise convergence of the q-
binomial distribution of the second kind and the negative q-binomial distribution of
the second kind to this deformed Gaussian distribution are proved.

2 Main Results

2.1 Continuous Limiting Behaviour of the Heine Distribution

In this section, we transfer from the random variable X of the Heine distribution
(13.1) to the equal-distributed deformed random variable Y = [X ]1/q , and, using
the q-analogue of Stirling’s formula in (13.10), we establish the convergence of the
Heine distribution to a deformed standardized continuous Stieltjes–Wigert distribu-
tion. Initially, we need to compute the mean value and the variance of the random
variable Y , say μH

q and (σ H
q )2, respectively.

Proposition 13.1 The mean and the variance of the random variable Y = [X ]1/q
are given by

μH
q = E

([X ]1/q
) = λ and (σ H

q )2 = V
([X ]1/q

) = λ2q−1(1 − q) + λ, (13.13)

respectively.

Proof The q-mean of the Heine distribution is equal to

μH
q = E(Y ) = E([X ]1/q) =

∞∑

x=0

[x]1/q fX (x)

= eq(−λ)

∞∑

x=0

[x]1/q q
(x2)λx

[x]q ! . (13.14)

Since

[x]1/q = q−x+1[x]q , q−x+1q(x2) = q(x−1
2 ), [x]q/[x]q ! = [x − 1]q !,
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this can be rewritten as

μH
q = eq(−λ)λ

∞∑

x=1

q(x−1
2 )λx−1

[x − 1]q ! . (13.15)

Using (13.3), we obtain the formula of the q-mean in (13.13).
For the evaluation of the q-variance, we need to find the second order moment of

the random variable Y = [X ]1/q , which is given by

E[Y 2] = E[[X ]21/q ] =
∞∑

x=0

[x]21/q fX (x)

= eq(−λ)

∞∑

x=0

[x]21/q
q(x2)λx

[x]q ! . (13.16)

Since
[x]q = [x − 1]q + qx−1, q−2x+2q(x2) = q−1q(x−2

2 ),

Equation (13.16) becomes

E[Y 2] = eq(−λ)

∞∑

x=0

[x]21/q
q(x2)λx

[x]q !

= eq(−λ)

∞∑

x=0

[x]q [x − 1]qq−2x+2 q
(x2)λx

[x]q ! + eq(−λ)

∞∑

x=0

[x]qq−x+1 q
(x2)λx

[x]q !

= eq(−λ)q−1λ2
∞∑

x=2

q(x−2
2 )λx−2

[x − 2]q ! + eq(−λ)λ

∞∑

x=1

q(x−1
2 )λx−1

[x − 1]q !
= q−1λ2 + λ. (13.17)

So,
(σ H

q )2 = V (Y ) = V ([X ]1/q) = q−1λ2 + λ − λ2. (13.18)

Next we prove that the Heine distribution (13.1) converges to a deformed stan-
dardized continuous Stieltjes–Wigert distribution. The continuous Stieltjes–Wigert
distribution has probability density function

vSWW (w) = q1/8

√
2π log q−1 w

e
(logw)2

2 log q , w > 0, (13.19)

with mean value μSW = q−1 and standard deviation σ SW = q−3/2(1 − q)1/2.
The following lemma can be proved in an elementary way.
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Lemma 13.1 Let the random variable W be distributed according to the Stieltjes–
Wigert probability distribution function (p.d.f) in (13.19). Then, the random variable
X = 1

log q−1 log
(
(q−1 − 1)(σ H

q Z + μH
q ) + 1

)
, where Z = W−μSW

σ SW , has p.d.f.

uDSW
q (x) = q−7/8

σ H
q (2π)1/2

(
log q−1

q−1 − 1

)1/2

·
(
q−3/2(1 − q)1/2

[x]1/q − μH
q

σ H
q

+ q−1

)−1/2

q−x

· exp
(

1

2 log q
log2

(
q−3/2(1 − q)1/2

[x]1/q − μH
q

σ H
q

+ q−1

))
, x ≥ 0. (13.20)

Note that the random variable X is a deformation and standardization of (13.19).

Theorem 13.1 For λ → ∞, the Heine distribution given by the p.f. in (13.1) is
approximated by the deformed standardized continuous Stieltjes–Wigert distribution
(13.20). That is,

f HX (x) ∼= q−7/8

σ H
q (2π)1/2

(
log q−1

q−1 − 1

)1/2 (
q−3/2(1 − q)1/2

[x]1/q − μH
q

σ H
q

+ q−1

)−1/2

q−x

· exp
(

1

2 log q
log2

(
q−3/2(1 − q)1/2

[x]1/q − μH
q

σ H
q

+ q−1

))
, x ≥ 0, (13.21)

where μH
q and σ H

q are given by (13.13).

Proof Using the q-Stirling formula (13.10), the p.f. of the q-Poisson distribution is
approximated by

f HX (x) = eq(−λ)
q(x2)λx

[x]q !
∼= eq(−λ)

q−1/8(q log q−1)1/2

(2π(1 − q))1/2
λxqx/2[x]−(x+1/2)

1/q

∞∏

j=1

(1 + (q−x − 1)q j−1).

(13.22)

From the random variable

Z = [X ]1/q − μH
q

σ H
q

or

X = 1

log q−1
log

(
(q−1 − 1)(σ H

q Z + μH
q ) + 1

)
,
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with μH
q and σ H

q given in (13.13), we get

[x]1/q = σ H
q z + μH

q

= [
λ2q−1(1 − q) + λ

]1/2
z + λ

= λ

[(
q−1(1 − q) + 1

λ

)1/2

z + 1

]
, (13.23)

and, for large λ (λ → ∞), we have

[x]1/q ∼= λq(q−3/2(1 − q)1/2z + q−1). (13.24)

Furthermore, by the previous two equations, we get

q−x = (1 − q)λ

q

[(
q−1(1 − q) + 1

λ

)1/2

z + 1

]
+ 1 (13.25)

and
q−x ∼= (1 − q)λ

(
q−3/2(1 − q)1/2z + q−1

)
. (13.26)

Moreover, by (13.25), we find

x = 1

log q−1
log

(
(1 − q)λ

q

[(
q−1(1 − q) + 1

λ

)1/2

z + 1

]
+ 1

)
(13.27)

and

x ∼= 1

log q−1
log

(
(1 − q)λ

(
q−3/2(1 − q)1/2z + q−1

))
. (13.28)

Finally, by (13.23), we get

[x]x1/q = λx

[(
q−1(1 − q) + 1

λ

)1/2

z + 1

]x

= λx exp

(
x log

[(
q−1(1 − q) + 1

λ

)1/2

z + 1

])
(13.29)

and

[x]x1/q ∼= λx exp

(
1

log q−1
log

(
(1 − q)λ

(
q−3/2(1 − q)1/2z + q−1

))

log
(
q

(
q−3/2(1 − q)1/2z + q−1

)))
. (13.30)
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or

[x]x1/q ∼= λx exp
(− log λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

+ 1

log q−1
log λ(1 − q) log

(
q−3/2(1 − q)1/2z + q−1

))

· exp
(

1

log q−1
log2

(
q−3/2(1 − q)1/2z + q−1)

)
. (13.31)

We also need to estimate the products

∞∏

j=1

(1 + (q−x − 1)q j−1) and
∞∏

j=1

(1 + λ(1 − q)q j−1).

Since the first product is estimated as

∞∏

j=1

(1 + (q−x − 1)q j−1) ∼=
∞∏

j=1

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
q j−1

)
,

(13.32)
and

∞∏

j=1

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
q j−1

)

= exp

⎛

⎝
∞∑

j=1

log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
q j−1

)
⎞

⎠ , (13.33)

where the function

h(x) = log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
qx−1

)

has continuous derivatives in [1,∞) to all orders, we can apply the Euler–Maclaurin
summation formula (see [8, p. 1090]) to the sum in (13.33). So,

∞∑

j=1

log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
q j−1

)

=
∞∫

1

log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1) qu−1) du

+ 1

2
log

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

))
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+
m∑

k=1

β2k

(2k)!h
(2k−1)

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)) + Rk,

(13.34)

where

|Rk | ≤ |β2k |
(2k)!

∞∫

1

|g(2k)
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
qu−1

) | du,

(13.35)
with βk the Bernoulli numbers.

Now, expressing the integral appearing in (13.34) through the dilogarithm func-
tion, we get

∞∫

1

log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
qu−1

)
du

= 1

log q
Li2

(−λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

))
, (13.36)

where

Li2(y) =
∑

k≥1

yk

k2

is the dilogarithm function.
The dilogarithm satisfies Landen’s identity

Li2(−y) = −Li2

(
y

y + 1

)
− 1

2
log2(1 + y). (13.37)

Applying Landen’s identity to (13.36), we obtain

∞∫

1

log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
qu−1

)
du

= 1

2 log q−1
log2

(
λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

))

+ 1

log q−1
Li2

(
λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + 1

)

= 1

2 log q−1
log2 λ(1 − q)

+ 1

2 log q−1
log2

(
q−3/2(1 − q)1/2z + q−1

)
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+ 1

log q−1
log λ(1 − q) log

(
q−3/2(1 − q)1/2z + q−1

)

+ 1

log q−1
Li2

(
λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + 1

)
.

(13.38)

Next, we estimate the sum and the quantity Rk appearing in (13.34):

m∑

k=1

β2k

(2k)!h
(2k−1)

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)) + Rk

= β2

2
h

′ (
1 + λ

(
q−3/2(1 − q)1/2z + q−1

)) + R1 + O(λ−2)

= β2 log q

2

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

)

1 + λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + O(λ−1). (13.39)

So, by applying (13.38) and (13.39) to (13.34), we obtain

∞∑

j=1

log
(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)
q j−1

)

= 1

2 log q−1
log2 λ(1 − q)

+ 1

2 log q−1
log2

(
q−3/2(1 − q)1/2z + q−1)

+ 1

log q−1
log λ(1 − q) log

(
q−3/2(1 − q)1/2z + q−1

)

+ 1

log q−1
Li2

(
λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + 1

)

+ 1

2
log

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1))

+ β2 log q

2

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

)

1 + λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + O(λ−1).

(13.40)

Working similarly with the sum appearing in the product

∞∏

j=1

(
1 + λ(1 − q)q j−1

) = exp

⎛

⎝
∞∑

j=1

log
(
1 + λ(1 − q)q j−1

)
⎞

⎠ , (13.41)
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we obtain

∞∑

j=1

log
(
1 + λ(1 − q)q j−1

)

= 1

2 log q−1
log2 (λ(1 − q)) + 1

log q−1
Li2

(
λ(1 − q)

λ(1 − q) + 1

)

+ 1

2
log (1 + λ(1 − q))

+ β2 log q

2

λ(1 − q)

1 + λ(1 − q)
+ O(λ−1). (13.42)

Substituting the previous approximations (13.24), (13.26), (13.28), (13.30), (13.40),
(13.42) in the p.f. f HX (x) in (13.22), we derive the approximation

f HX (x) ∼= q−1/8(q log q−1)1/2

(2π(1 − q))1/2
(1 − q)−1/2λ−1/2

(
q−3/2(1 − q)1/2z + q−1

)−1/2

· λ−1/2q−1/2(q−3/2(1 − q)1/2z + q−1)−1/2

· exp
(
log λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

− 1

log q−1 log λ(1 − q) log
(
q−3/2(1 − q)1/2z + q−1

))

· exp
(

− 1

log q−1 log2
(
q−3/2(1 − q)1/2z + q−1

))

· exp
(

1

2 log q−1 log2 λ(1 − q) + 1

2 log q−1 log2
(
q−3/2(1 − q)1/2z + q−1

))

· exp
(

1

log q−1 log λ(1 − q) log
(
q−3/2(1 − q)1/2z + q−1

)

+ 1

log q−1 Li2

⎛

⎝
λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + 1

⎞

⎠

⎞

⎠

· exp
(
1

2
log

(
1 + λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

))

+β2 log q

2

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

)

1 + λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + O(λ−1)

⎞

⎠

· exp
(

− 1

2 log q−1 log2 (λ(1 − q)) − 1

log q−1 Li2

(
λ(1 − q)

λ(1 − q) + 1

)

−1

2
log (1 + λ(1 − q)) − β2 log q

2

λ(1 − q)

1 + λ(1 − q)
+ O(λ−1)

)

z = [x]1/q − μH
q

σ H
q

, x ≥ 0. (13.43)
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Carrying out all the manipulations and using the approximation

exp

(
1

log q−1 Li2

(
λ(1 − q)

(
q−3/2(1 − q)1/2z + q−1

)

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + 1

))

· exp
(

β2 log q

2

λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

)

1 + λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

) + O(λ−1)

)

· exp
(

− 1

log q−1 Li2

(
λ(1 − q)

λ(1 − q) + 1

)
− β2 log q

2

λ(1 − q)

1 + λ(1 − q)
+ O(λ−1)

)
→ 1,

as λ → ∞,

the previous expression, reduces to

f HX (x) ∼= q−1/8(q log q−1)1/2

(2π(1 − q))1/2
(1 − q)−1/2λ−1/2

(
q−3/2(1 − q)1/2z + q−1

)−1/2

· λ−1/2q−1/2(q−3/2(1 − q)1/2z + q−1)−1/2

· λ3/2(1 − q)3/2
(
q−3/2(1 − q)1/2z + q−1

)3/2

· exp
(

− 1

2 log q−1
log2

(
q−3/2(1 − q)1/2z + q−1)

)

· λ−1/2(1 − q)−1/2,

z = [x]1/q − μH
q

σ H
q

, x ≥ 0. (13.44)

Next, rearranging the terms of the last asymptotic formula, we derive the approxi-
mation

f HX (x) ∼= q−1/8(q log q−1)1/2

(2π(1 − q))1/2
(1 − q)−1/2λ−1q−1/2

(
q−3/2(1 − q)1/2z + q−1

)−1/2

· λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

)

· exp
(

− 1

2 log q−1
log2

(
q−3/2(1 − q)1/2z + q−1

))
,

z = [x]1/q − μH
q

σ H
q

, x ≥ 0. (13.45)

From (13.13) and (13.26), we have

σ H
q

∼= λq1/2(1 − q)1/2 and q−x ∼= λ(1 − q)
(
q−3/2(1 − q)1/2z + q−1

)
,



Asymptotic Behaviour of Certain q-Poisson, q-Binomial … 295

respectively. So,

f HX (x) ∼= Cq−1/8

σ H
q (2π)1/2

(
log q−1

q−1 − 1

)1/2

·
(
q−3/2(1 − q)1/2

[x]1/q − μH
q

σ H
q

+ q−1

)−1/2

q−x

· exp
(

1

2 log q
log2

(
q−3/2(1 − q)1/2

[x]1/q − μH
q

σ H
q

+ q−1

))
, x ≥ 0,

where C is a normalizing constant. By Lemma 13.1, C = q−3/4, and the proof is
completed.

2.2 Continuous Limiting Behaviour of the Euler Distribution

In this section, we transfer from the random variable X of the Euler distribution
(13.2) to the equal-distributed deformed random variable Y = [X ]q , and using the
q-analogue of Stirling’s formula in (13.12), we establish the convergence of the Euler
distribution to a deformed standardized continuous Gaussian distribution. Initially,
we need to compute the mean value and the variance of the random variable Y , say
μE
q and (σ E

q )2, respectively. Using Charalambides’ q-factorial moments of the Euler
distribution [1], we easily derive that the mean and the variance of Y are given by

μE
q = E

([X ]q
) = λ and (σ E

q )2 = V
([X ]q

) = λ (1 − λ(1 − q)) , (13.46)

respectively.
The following lemma can be proved in an elementary way.

Lemma 13.2 Let the random variable Z be distributed according to the standard-
ized Gaussian distribution. Then, the random variable

X = 1

log q
log

(
1 − (1 − q)(σ E

q Z + μE
q )

)

has p.d.f.

vDG
q (x) = (log q−1)1/2

σ E
q (2π(1 − q)1/2

qx exp

⎛

⎝−1

2

((
1 − q

log q−1

)1/2

· [x]q − μE
q

σ E
q

)2
⎞

⎠ .

(13.47)

Note that the random variable has a deformed standardized Gaussian distribution.
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Theorem 13.2 Let q := q(λ) with 1 − 1/λ < q < 1. Then, for λ → ∞ with λ(1 −
q) → 0, the Euler distribution given by the p.f. in (13.2) is approximated by a
deformed standardized Gaussian distribution as follows:

f EX (x) ∼= (log q−1)1/2

σ E
q (2π(1 − q)1/2

qx exp

⎛

⎝−1

2

((
1 − q

log q−1

)1/2

· [x]q − μE
q

σ E
q

)2
⎞

⎠ , x ≥ 0,

(13.48)
where μE

q and (σ E
q )2 are given by (13.46).

Proof Using the q-Stirling formula (13.12), for q = q(λ)with q(λ) → 1, asλ → ∞
and q(λ)λ = �(1), the Euler distribution (13.2) is approximated by

f EX (x) = Eq(−λ)
λx

[x]q !
∼= Eq(−λ)

(q log q−1)1/2

(2π(1 − q))1/2
λxq−(x2)qx/2[x]−(x+1/2)

1/q

∞∏

j=1

(1 + (q−x − 1)q j−1)

or

f EX (x) ∼= Eq(−λ)
(log q−1)1/2

(2π(1 − q))1/2
λxqx

2/2q−x/2[x]−(x+1/2)
q

∞∏

j=1

(1 + q(q−x − 1)q j−1).

(13.49)

Consider the random variable [X ]q = 1−qX

1−q and the q-standardized random vari-

able Z = [X ]q−μE
q

σ E
q

with μE
q and σ E

q given by (13.46). Then, the following relations

are easily derived:

[x]q = μE
q

(
σ E
q

μE
q

z + 1

)

= λ
(
1 + (1 − λ(1 − q))1/2λ−1/2z

)
, (13.50)

qx = 1 − (1 − q)μE
q

(
σ E
q

μE
q

z + 1

)

= 1 − (1 − q)λ
(
1 + (1 − λ(1 − q))1/2λ−1/2z

)
, (13.51)

x = 1

log q
log

(
1 − (1 − q)μE

q

(
σ E
q

μE
q

z + 1

))

= 1

log q
log

(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))
, (13.52)

qx2/2 = exp

(
1

2 log q
log2

(
1 − (1 − q)μE

q

(
σ E
q

μE
q

z + 1

)))
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= exp

(
1

2 log q
log2

(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)))
,

(13.53)

and

[x]xq = (μE
q )x exp

(
1

log q
log

(
1 − (1 − q)μE

q

(
σ E
q

μE
q

z + 1

))
log

(
σ E
q

μE
q

z + 1

))

= λx exp

(
1

log q
log

(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))

· log (
1 + (1 − λ(1 − q))1/2λ−1/2z

))
. (13.54)

Expanding the logarithms appearing in (13.54) in a Taylor series and carrying out
all the manipulations, we get

exp

(
1

log q
log

(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))

· log (
1 + (1 − λ(1 − q))1/2λ−1/2z

))

= exp

(
1 − q

log q−1

z2

2
(1 + λ(1 − q))1/2 + O(λ(1 − q))

)
. (13.55)

Moreover, we have

∞∏

j=1

(1 + q(q−x − 1)q j−1) =
∞∏

j=1

(1 + q(1 − q)q−x [x]qq j−1)

=
∞∏

j=1

⎛

⎝1 + q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)
q j−1

⎞

⎠

= exp

⎛

⎝
∞∑

j=1

log

⎛

⎝1 + q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1

·
(

σ E
q

μE
q
z + 1

)
q j−1

))

(13.56)

with

(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q

z + 1

))−1 (
σ E
q

μE
q

z + 1

)

= (1 − q)λ
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))−1

· (
1 + (1 − λ(1 − q))1/2λ−1/2z

)
, (13.57)
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which is derived by applying the Euler–Maclaurin summation formula (see Odlyzko
[8, p 1090]) to the sum in (13.56) as follows:

∞∑

j=1

log

⎛

⎝1 + q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)
q j−1

⎞

⎠

= 1

2 log q−1 log2

⎛

⎝1 + q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)⎞

⎠

+ 1

log q−1 Li2

⎛

⎜⎜⎜⎝

q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)

q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)
+ 1

⎞

⎟⎟⎟⎠

+ 1

2
log

⎛

⎝1 + q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)⎞

⎠

+ β2 log q

2

q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)

1 + q(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μE
q
z + 1

))−1 (
σ E
q

μE
q
z + 1

)

+ O (λ(1 − q)) (13.58)

with

(1 − q)μE
q

(
1 − (1 − q)μE

q

(
σ E
q

μEuq
z + 1

))−1 (
σ E
q

μE
q

z + 1

)

= (1 − q)λ
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))−1

· (
1 + (1 − λ(1 − q))1/2λ−1/2z

)
,

where Li2 is the dilogarithm function and β2 the second Bernoulli number.
Furthermore, working similarly with the sum appearing in the product

∞∏

j=1

(
1 − λ(1 − q)q j−1

) = exp

⎛

⎝
∞∑

j=1

log
(
1 − λ(1 − q)q j−1

)
⎞

⎠ , (13.59)

we obtain
∞∑

j=1

log
(
1 − λ(1 − q)q j−1

)

= − 1

2 log q−1
log2 (1 − λ(1 − q)) − 1

log q−1
Li2

( −λ(1 − q)

1 − λ(1 − q)

)

+ 1

2
log (1 − λ(1 − q)) + β2 log q−1

2

λ(1 − q)

1 − λ(1 − q)
+ O(λ(1 − q)).

(13.60)
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Applying the previous estimations (13.53)–(13.60) to the p.f. f E (x) (13.49), we get

f EX (x) ∼= (log q−1)1/2

(2π(1 − q))1/2

· exp
(

1

2 log q
log2

(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)))

·
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))−1/2

· λ−1/2
(
1 + (1 − λ(1 − q))1/2λ−1/2z

)−1/2

· exp
(

− 1 − q

log q−1

z2

2
(1 + λ(1 − q))1/2 + O(λ(1 − q))

)

· exp
(

1

2 log q−1 log2
(
1 + q(1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))
))

· exp
⎛

⎜⎝
1

log q−1 Li2

⎛

⎜⎝

q(1−q)λ
(
1+(1−λ(1−q))1/2λ−1/2z

)

(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))
q(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z)

(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))
+ 1

⎞

⎟⎠

⎞

⎟⎠

· exp
(
1

2
log

(
1 + q(1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))
))

· exp
⎛

⎜⎝
β2 log q

2

q(1−q)λ
(
1+(1−λ(1−q))1/2λ−1/2z

)

(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))

1 + q(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z)
(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))

+ O (λ(1 − q))

⎞

⎟⎠

· exp
(

1

2 log q−1 log2 (1 − λ(1 − q)) + 1

log q−1 Li2

( −λ(1 − q)

1 − λ(1 − q)

))

· exp
(

−1

2
log (1 − λ(1 − q))

)

· exp
(

−β2 log q−1

2

λ(1 − q)

1 − λ(1 − q)
+ O(λ(1 − q))

)
, z = [x]q − μE

q

σ E
q

, x ≥ 0.

(13.61)

Note that the following approximation holds:

exp

(
1

2 log q
log2

(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)))

· (
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))−1/2

· (
1 + (1 − λ(1 − q))1/2λ−1/2z

)−1/2

· exp
(

1

2 log q−1
log2

(
1 + q(1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))
))

· exp
⎛

⎜⎝
1

log q−1
Li2

⎛

⎜⎝

q(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z)
(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))
q(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z)

(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))
+ 1

⎞

⎟⎠

⎞

⎟⎠
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· exp
(
1

2
log

(
1 + q(1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

)
(
1 − (1 − q)λ

(
1 + (1 − λ(1 − q))1/2λ−1/2z

))
))

· exp
⎛

⎜⎝
β2 log q

2

q(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z)
(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))

1 + q(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z)
(1−(1−q)λ(1+(1−λ(1−q))1/2λ−1/2z))

+ O (λ(1 − q))

⎞

⎟⎠

· exp
(

1

2 log q−1
log2 (1 − λ(1 − q)) + 1

log q−1
Li2

( −λ(1 − q)

1 − λ(1 − q)

))

· exp
(

−β2 log q−1

2

λ(1 − q)

1 − λ(1 − q)
+ O(λ(1 − q))

)
→ 1,

as λ → ∞ with λ(1 − q) → 0.

From (13.46) and (13.51), we get σ E
q = λ1/2(1 − λ(1 − q))1/2 and qx ∼= 1. So,

f EX (x) ∼= (log q−1)1/2

σ E
q (2π(1 − q)1/2

qx exp

⎛

⎝−1

2

((
1 − q

log q−1

)1/2

· [x]q − μE
q

σ E
q

)2
⎞

⎠ , x ≥ 0,

and by Lemma 13.2 the proof is completed.

Remark 13.1 Possible realizations of the sequence q := q(λ) considered in
Theorem 13.2 above are among others

q(λ) = 1 − α

λβ
, α > 1, β > 1

or
q(λ) = 1 − exp(−λ).

2.2.1 Continuous Limiting Behaviour of the q-Binomial and Negative
q-Binomial Distributions of the Second Kind

In this section, we transfer from the random variable X of the q-Binomial II dis-
tribution (13.8) to the equal-distributed deformed random variable Y = [X ]q , and
using the q-analogue of Stirling’s formula in (13.12), we establish the convergence
of the q-Binomial II distribution to a deformed standardized continuous Gaussian
distribution. Initially, we need to compute the mean value and the variance of the ran-
dom variable Y , sayμBS

q and (σ BS
q )2, respectively. Using Charalambides’ q-factorial

moments of the q-Binomial II distribution [1], we easily derive that the mean and
variance of Y , are given by

μBS
q = E

([X ]q
) = [n]q θ and (σ BS

q )2 = V
([X ]q

) = [n]qθ
(
1 − θ

(
1 − qn−1)) ,

(13.62)
respectively.
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Theorem 13.3 Let θ = θn = (1 − q)a, 0 < a < 1, q = q(n) with q(n) → 1, as
n → ∞, and q(n)n = �(1). Then, for n → ∞, the q-binomial distribution of the
second kind given by the p.f. in (13.8) is approximated by a deformed standardized
Gaussian distribution as follows:

f BSX (x) ∼= (log q−1)1/2

σ BS
q (2π(1 − q)1/2

qx exp

⎛

⎝−1

2

((
1 − q

log q−1

)1/2

· [x]q − μBS
q

σ BS
q

)2
⎞

⎠ ,

x ≥ 0,
(13.63)

where μBS
q and σ BS

q
2
are the mean value and the variance of the random variable

[X ]q , respectively, given in (13.62).

Proof Using the q-Stirling formula in (13.12), for q = q(n), with q(n) → 1 as
n → ∞, and q(n)n = �(1), the q-binomial distribution of the second kind (13.8)
is approximated by

f BSX (x) =
(
n

x

)

q

θ x
n−x∏

j=1

(1 − θq j−1)

∼=
∞∏

j=1

(1 − θq j−1)
(q log q−1)1/2

(2π(1 − q))1/2

(
θ

1 − q

)x

q−(x2)q−x/2[x]−(x+1/2)
1/q

·
∞∏

j=1

(1 + q(q−x − 1)q j−1)

or

f BSX (x) ∼=
∞∏

j=1

(1 − θq j−1)
(log q−1)1/2

(2π(1 − q))1/2

(
θ

1 − q

)x

qx2/2q−x/2[x]−(x+1/2)
q

·
∞∏

j=1

(1 + q(q−x − 1)q j−1).

(13.64)

Consider the random variable [X ]q = 1−qX

1−q and the q-standardized random vari-

able Z = [X ]q−μBS
q

σ BS
q

, withμBS
q and σ BS

q given by (13.62). Then the following relations

are easily derived:
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[x]q = μBS
q

(
σ BS
q

μBS
q

z + 1

)

= [n]qθ
(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

)
, (13.65)

qx = 1 − (1 − q)μBS
q

(
σ BS
q

μBS
q

z + 1

)

= 1 − (1 − q)[n]qθ
(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

)
, (13.66)

x = 1

log q
log

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))

= 1

log q
log

(
1 − (1 − q)[n]qθ

(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))
, (13.67)

qx2/2 = exp

(
1

2 log q
log2

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

)))

= exp

(
1

2 log q
log2

(
1 − (1 − q)[n]qθ

(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

)))
,

(13.68)

and

[x]xq = (μBS
q )x exp

(
1

log q
log

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))
log

(
σ BS
q

μBS
q

z + 1

))

= ([n]qθ)x exp

(
1

log q
log

(
1 − (1 − q)[n]qθ

(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))

· log
(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))
. (13.69)

Expanding the logarithms appearing in (13.69) in Taylor series and carrying out all
the manipulations, we get
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exp

(
1

log q
log

(
1 − (1 − q)[n]qθ

(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))

· log
(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))

= exp

(
1 − q

log q−1

z2

2

(
1 + (1 − q)[n]qθ)

)1/2 + O((1 − q)[n]qθ))

)
.

(13.70)

Moreover, we have

∞∏

j=1

(1 + q(q−x − 1)q j−1) =
∞∏

j=1

(1 + q(1 − q)q−x [x]qq j−1)

=
∞∏

j=1

⎛

⎝1 + q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)
q j−1

⎞

⎠

= exp

⎛

⎝
∞∑

j=1

log

⎛

⎝1 + q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1

·
(

σ BS
q

μBS
q

z + 1

)
q j−1

))
, (13.71)

with

(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)

= (1 − q)[n]qθ
(
1 − (1 − q)[n]qθ

(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))−1

·
(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

)
, (13.72)

which is derived by applying the Euler–Maclaurin summation formula (see Odlyzko
[8, p. 1090]) to the sum in (13.56) as follows:

∞∑

j=1

log

⎛

⎝1 + q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)
q j−1

⎞

⎠

= 1

2 log q−1 log2

⎛

⎝1 + q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1
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·
(

σ BS
q

μBS
q

z + 1

))

+ Li2

⎛

⎜⎜⎜⎝

q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)

q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σq
μq

z + 1
)

+ 1

⎞

⎟⎟⎟⎠

+ 1

2
log

⎛

⎝1 + q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)⎞

⎠

+ β2 log q

2

q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)

1 + q(1 − q)μBS
q

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)

+ O (log q) , (13.73)

with

(1 − q)μq

(
1 − (1 − q)μBS

q

(
σ BS
q

μBS
q

z + 1

))−1 (
σ BS
q

μBS
q

z + 1

)

= (1 − q)[n]qθ
(
1 − (1 − q)[n]qθ

(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

))−1

·
(
1 +

(
1 − θ

(
1 − qn−1

))1/2

([n]qθ)1/2
z

)
,

where Li2 is the dilogarithm function and β2 the second Bernoulli number.
Furthermore, working similarly with the sum appearing in the product

∞∏

j=1

(
1 − θq j−1

) = exp

⎛

⎝
∞∑

j=1

log
(
1 − θq j−1

)
⎞

⎠ , (13.74)

we obtain

∞∑

j=1

log
(
1 − θq j−1

) = − 1

2 log q−1
log2 (1 − θ) − 1

log q−1
Li2

( −θ

1 − θ

)

+ 1

2
log (1 − θ) + β2 log q−1

2

θ

1 − θ
+ O(θ).

(13.75)
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Applying the previous expressions (13.68)–(13.75) to the p.f. f BSX (x) in (13.64), and
carrying out all the necessary manipulations, we derive our desired asymptotic result
(13.63). By Lemma 13.2, the proof is completed.

Remark 13.2 Possible realizations of the sequences θ := θn and q := q(n) consid-
ered in Theorem 13.3 above are

θn = n−1/2 and q(n) = 1 − α

n
, α > 0,

or
θn = (log n)−1/2 and q(n) = 1 − 1/ log n.

Next we transfer from the random variable X of the distribution (13.9) to the
equal-distributed deformed random variable Y = [X ]q . Using Charalambides’ q-
factorial moments of the negative q-Binomial II distribution [1], we easily derive
that the mean and the variance of the random variable Y are given by

μNBS
q = E

([X ]q
) = [n]q θ

1 − θqn
(13.76)

and

(σ NBS
q )2 = V

([X ]q
)

= [n]q [n + 1]qθ2

(1 − θqn)(1 − θqn+1)
+ [n]q θ(1 − θ)

(1 − θqn)(1 − θqn+1)
− [n]2q θ2

(1 − θqn)2
,

(13.77)

respectively. Considering the random variable [X ]q = 1−qX

1−q and the q-standardized

random variable Z = [X ]q−μNBS
q

σ NBS
q

, with μNBS
q and σ NBS

q given by (13.76) and (13.77),

respectively, and working analogously as in the proofs of Theorems 13.2 and 13.3,
we obtain the following theorem concerning the asymptotic behaviour of the negative
q-binomial distribution of the second kind.

Theorem 13.4 Let θ = θn = (1 − q)a, 0 < a < 1, q = q(n), with q(n) → 1 as
n → ∞, and q(n)n = �(1). Then, for n → ∞, the negative q-binomial distribution
of the second kind given by the p.f. (13.9) is approximated by a deformed standardized
Gaussian distribution as follows:

f N BS
W (x) ∼= (log q−1)1/2

σ NBS
q (2π(1 − q)1/2

qx exp

⎛

⎝−1

2

((
1 − q

log q−1

)1/2

· [x]q − μNBS
q

σ NBS
q

)2
⎞

⎠ ,

x ≥ 0,
(13.78)

where μNBS
q and (σ NBS

q )2 are given by (13.76) and (13.77), respectively.
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3 Concluding Remarks

In this paper, we studied the pointwise convergence of the Heine and Euler distribu-
tions when λ → ∞. Specifically, we proved that the Heine distribution converges to
a deformed standardized continuous Stieltjes–Wigert distribution, and that the Euler
distribution converges to a deformed standardized Gaussian distribution. Moreover,
the pointwise convergence of the q-binomial distribution of the second kind and the
negative q-binomial distribution of the second kind to this deformed standardized
Gaussian distribution were proved.
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Abstract We consider the Mt/Mt/1 queue, the multi-server queue (Mt/Mt/ct ),
and queues with jumps of size one and two. Results are extensible to more general
ergodic quasi-birth-death processes (QBDs) with time-varying periodic transition
rates of period one. The estimates are asymptotic in the level of the process (the
length of the queue). These asymptotic estimates highlight the connections between
the asymptotic periodic distribution of a stable queue with time-varying rates and the
same type of queuewith constant rates. The estimates can also be used to approximate
other performance measures such as the waiting time distribution. We illustrate the
method with several examples.

Keywords Mt/Mt/1 queues ·Multi-server queues · Queues with jumps ·Waiting
time distribution · Generating function

2010 Mathematics Subject Classification Primary: 60K25 · Secondary: 60J10
60J80

1 Introduction

Systems with time-varying periodic rates are pervasive. They include telephone call
centers, hospital emergency rooms, airports, any system which exhibits seasonal
behavior whether natural or man-made, ambulances, police and fire service and
many, many others. The recent paper by Schwarz, Selinka and Stolletz [7] provides
both a useful survey of applications and a survey of methods for analyzing queueing
systems with time-varying parameters.

In this paper,we consider theMt/Mt/1queue, themulti-server queue (Mt/Mt/ct ),
and queues with jumps of size one and two. Results are extensible to more general
ergodic quasi-birth-death processes (QBDs) with time-varying periodic transition
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length of the queue). These asymptotic estimates highlight the connections between
the asymptotic periodic distribution of a stable queue with time-varying rates and the
same type of queuewith constant rates. The estimates can also be used to approximate
other performance measures such as the waiting time distribution. We illustrate the
method with several examples.

The basic approach is to solve for the generating function of the queueing system
using the assumption that if the process is in its asymptotic periodic distribution at
some time t , then the generating function at time t will equal the generating function
at time t + 1. That is, we assume the system is in the periodic analog of steady state.
For more detail on when the asymptotic periodic distribution exists, see [5]. This
will yield a function for the generating function in terms of an integral equation. We
find the poles of this function to create our asymptotic estimates. The poles of the
generating function depend only on the evolution of the system over the course of a
single period.

For the single-server queue, these estimates take a particularly simple form. Let
λ̄ be the average arrival rate in a time period and μ̄ be the average departure rate.
Then an asymptotic estimate for the probability that there are n in the queue at

time t is given by πn(t) ≈ f (t)
(

λ̄
μ̄

)n
. For constant rates, the formula is exact and

f (t) = π0 = 1 − λ̄
μ̄
. In general, f (t) depends on π0(t). Given π0(t), f (t) can be

easily computed for any stable periodic Mt/Mt/1 queue. Similar formulas can be
developed using this approach for more complex quasi-birth-and-death processes.

In Sect. 2, we find the transient solution of the Mt/Mt/1 queue up to an integral
equation. In Sect. 2.1, we find the generating function for the single-server queuewith
periodic rates and use that to find the asymptotic periodic distribution of the number
in the system in terms of an integral equation. In Sect. 2.2, we obtain asymptotic
estimates for the distribution of the number in the queue at time t within the period.
Section 2.3 provides numerical examples for the single-server queue with time-
varying transition rates. In Sect. 3 we find similar quantities for the multi-server
queue with time-varying transition rates. In Sect. 4, we illustrate the method for
another type of queue.

2 Mt/Mt/1 Queue Example

Consider a single-server queue with time-varying arrival and departure rates. Let Xt

represent the number in the queue at time t , and let Xs = i give the length of the
queue at some given initial time s. Define pi,n(t) = P{Xt = n|Xs = i}.

We have the Chapman–Kolmogorov equations:

ṗi,0(t) = −λ(t)pi,0(t) + μ(t)pi,1(t)

ṗi,n(t) = λ(t)pi,n−1(t) − (λ(t) + μ(t))pi,n(t) + μ(t)pi,n+1(t),
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with pi,n(s) = δi=n for some initial time s. We define the generating function
P(z, s, t) = ∑∞

n=0 z
n pi,n(t), then P(z, s, t) satisfies the ordinary differential equa-

tion:

Ṗ(z, s, t) = (λ(t)(z − 1) + μ(t)(z−1 − 1))P(z, s, t) + (μ(t) − z−1μ(t))pi,0(t).

This has solution

P(z, s, t) =
∫ t

s
μ(u)(1 − z−1)pi,0(u)Φ(z, u, t)du + P(z, s, s)ΦY (z, s, t),

where Φ(z, u, t) is defined below. Note that since pi,n(s) = δi=n , P(z, s, s) = zi .
We define the randomized random walk, Yt with jumps to the left occurring at

rate μ(t) and to the right at rate λ(t). Let

M(s, t) =
∫ t

s
μ(u)du

and

Λ(s, t) =
∫ t

s
λ(u)du,

then

P{Yt = n + k|Ys = k} = e−(M(s,t)+Λ(s,t))

(
Λ(s, t)

M(s, t)

)n/2

In(2
√

Λ(s, t)M(s, t)),

where In(·) is the modified Bessel function of the first kind.We denote the generating
function for Yt as ΦY (z, s, t) with

ΦY (z, s, t) =
∞∑

n=−∞
P{Yt = n + i |Ys = i}zn = eΛ(s,t)(z−1)+M(s,t)(z−1−1).

Furthermore, we define

φn(s, t) = P{Yt = n + i |Ys = i}.

Note that φn(s, t) does not depend on i , the location of the random walk at time s.
ΦY (z, s, t) is the solution of the evolution equation:

∂

∂t
ΦY (z, s, t) = ΦY (z, s, t)

(
λ(t)(z − 1) + μ(t)(z−1 − 1)

)

and
Φ(z, s, s) = I.
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We will use the notation [zn](A(z)) to represent the coefficient an of zn in the
series A(z) = ∑

n anz
n (see Flajolet and Sedgewick [1]). The transient solution for

the single-server queue with time-varying transition rates is then given by

pi,n(t) = [zn]P(z, s, t) =
∫ t

s
pi,0(u)μ(u)(φn(u, t) − φn+1(u, t))du + φn−i (s, t).

To find pi,0(u), we solve the Volterra equation

pi,0(t) = [z0]P(z, s, t) =
∫ t

s
pi,0(u)μ(u)(φ0(u, t) − φ1(u, t))du + φ−i (s, t).

2.1 Periodic

Now suppose transition rates are periodic with period one. In this case, we use πn(t)
to designate the asymptotic periodic probability of n in the queue at time t rather
than pi,n(t) for the transient probability. We wish to solve directly for the asymptotic
periodic solution. In that case, P(z, t − 1, t) = P(z, t − 1, t − 1), so

P(z, t − 1, t) =
∫ t

t−1
π0(u)μ(u)(1 − z−1)ΦY (z, u, t)du (1 − Φ(z, t − 1, t))−1

(14.1)
Now,

(I − Φ(z, t − 1, t))−1 =
∞∑
k=0

Φ(z, t − 1, t)k =
∞∑
k=0

Φ(z, t, t + k),

and
Φ(z, u, t)Φ(z, t, t + k) = Φ(z, u, t + k),

so

πn(t) = [zn]P(z, t − 1, t) =
∫ t

t−1
π0(u)μ(u)

∞∑
k=0

(
φn(u, t + k) − φn+1(u, t + k)

)
du.

Although we have an explicit formula for φn(u, t + k) = P{Y (u, t + k) = n}, com-
putation of these quantities is very cumbersome and in general convergence is slow.

In the next section, we describe asymptotic methods for approximating these
infinite sums.
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2.2 Asymptotic Methods

Define λ̄ = Λ(0, 1) = ∫ t
t−1 λ(u)du and μ̄ = M(0, 1) = ∫ t

t−1 μ(u)du. These repre-
sent the expected number of steps to the right (λ̄) or to the left (μ̄) during one period
for the random walk Yt . We have zeros in the denominator of equation (14.1), where

λ̄(z − 1) + μ̄(z−1 − 1) = 0.

This expression has two zeros: z = 1, and z = μ̄/λ̄. z = 1 is a root of both the
numerator and the denominator, so we factor it out:

P(z, t − 1, t) =
∫ t

t−1
π0(u)

μ(u)

μ̄ − λ̄z
ΦY (z, u, t)du

×
( ∞∑

k=1

(λ̄(z − 1) + μ̄(z−1 − 1))k−1

k!

)−1

.

We can rewrite this as

P(z, t − 1, t) =
∞∑
j=0

(
λ̄

μ̄

) j ∫ t

t−1
π0(u)

μ(u)

μ̄
ΦY (z, u, t)duz j

×
( ∞∑

k=1

(λ̄(z − 1) + μ̄(z−1 − 1))k−1

k!

)−1

.

(14.2)

This is suggestive of the relation between the asymptotic periodic solution for the
queue with time-varying parameters and the steady-state solution for the constant
rate queue which is given by

π j = π0

(
λ

μ

) j

=
(
1 − λ

μ

)(
λ

μ

) j

.

To obtain the asymptotic estimate, we use the following result (see [1, p. 228, IV.2]):

[zn] h(z)

(1 − z)
∼ h(1).

So

[zn] h(z)(
1 − λ̄

μ̄
z
) ∼ h

(
μ̄

λ̄

)
.

Hence an asymptotic estimate is given by
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πn(t) ≈ 1

μ̄

∫ t

t−1
π0(u)μ(u)ΦY

(
μ̄

λ̄
, u, t

)
du

(
λ̄

μ̄

)n

= 1

μ̄

∫ t

t−1
π0(u)μ(u) exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(μ̄ − λ̄)

}
du

(
λ̄

μ̄

)n

.

(14.3)

We have shown that

πn(t) ∼
(

λ̄

μ̄

)n

f (t),

where

f (t) = 1

μ̄

∫ t

t−1
π0(u)μ(u) exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(μ̄ − λ̄)

}
du. (14.4)

Note that, if μ(t) = μ̄ and λ(t) = λ̄, the expression simplifies to

πn = π0

(
λ

μ

)n

=
(
1 − λ

μ

)(
λ

μ

)n

.

If we let α(z) = λ̄(z − 1) + μ̄(z−1 − 1), then we obtain

( ∞∑
k=1

(λ̄(z − 1) + μ̄(z−1 − 1))k−1

k!

)−1

= α(z)

1 − eα(z)
.

This has Maclaurin series in α of

α

1 − eα
= 1 − α

2
+ α2

12
− α4

720
+ α6

30240
+ · · · =

∞∑
n=0

Bn

n! αn,

where the Bn’s are the Bernoulli numbers. See, for example, [6, p. 289]. Additional
terms of an asymptotic expansion for the number in queuemay be obtained using this
expansion, since as z → μ̄/λ̄, α → 0. In what follows, we will use the asymptotic
estimate given in Eq. (14.3).

2.3 Numerical Examples for the Mt/Mt/1 Queue

We consider several numerical examples:
These examples collectively illustrate the convergence behavior toward the

asymptotic estimates for the probabilities of the number in queue for three dif-
ferent traffic intensities: ρ = 0.75 (examples 1–3), ρ = 0.9 (examples 4–5), and
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Examples 1 2 3

Arrival rate λ(t) 3 − 2 cos(2π t) 0.3 − 0.2 cos(2π t) 3 − 2 cos(2π t)
Departure rate μ(t) 4 + 2 cos(2π t) 0.4 + 0.2 cos(2π t) 4 − 2 cos(2π t)
λ̄ 3 0.3 3
μ̄ 4 0.4 4

ρ = λ̄
μ̄

0.75 0.75 0.75

Examples 4 5 6

Arrival rate λ(t) 3.6 − 2.8 cos(2π t) 0.36 − 0.28 cos(2π t) 0.4 − 0.3 cos(2π t)
Departure rate μ(t) 4 + 2 cos(2π t) 0.4 + 0.2 cos(2π t) 4 − 2 cos(2π t)
λ̄ 3.6 0.36 0.4
μ̄ 4 0.4 4

ρ = λ̄
μ̄
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Fig. 1 Example 1. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

ρ = 0.1 (example 6); for different rates and for arrival and service intensities that
move together or do not. For each of the examples, the convergence to the asymp-
totic estimate is fairly rapid. The behavior of periodic probabilities for some sets
of parameters is close to the constant rate steady state probabilities, but for other
examples (those with greater rates), the probabilities show greater variability within
the period (Fig. 1).

For each of these six examples, we provide two graphs. One shows the asymptotic
periodic probabilities of having j in the queue for j = 0–5 (solid lines) compared
to the asymptotic estimate of the probability shown as dashed lines. The second
graph shows the estimate for the function f (t) used in the asymptotic estimates for
each of probabilities zero to five compared to the exact f (t), where f (t) is given in
Eq. (14.4). As the number in the queue increases, it can be seen that the quality of
the asymptotic estimate improves (Fig. 2).
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Fig. 2 Example 2. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

3 Example: Multi-server Queue

Next, we consider the multi-server queue with time-varying periodic rates and c
servers. The analysis parallels the analysis for the single-server queue (Fig. 3).

We have the Chapman–Kolmogorov equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0
(t)

1
(t)

2
(t)

3
(t)

4
(t)

5
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0
(t)

1
(t)

2
(t)

3
(t)

4
(t)

5
(t)

comparison

Fig. 3 Example 3. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j
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ṗi,0(t) = −λ(t)pi,0(t) + μ(t)pi,1(t)

ṗi,1(t) = λ(t)pi,0(t) − (λ(t) + μ(t))pi,1(t) + 2μ(t)pi,2(t)

...

ṗi, j (t) = λ(t)pi, j−1(t) − (λ(t) + jμ(t))pi, j (t) + ( j + 1)μ(t)pi, j+1(t), 0 < j < c

...

ṗi,c−1(t) = λ(t)pi,c−2(t) − (λ(t) + (c − 1)μ(t))pi,c−1(t) + cμ(t)pi,c(t)

ṗi,n(t) = λ(t)pi,n−1(t) − (λ(t) + cμ(t))pi,n(t) + cμ(t)pi,n+1(t), n ≥ c.

We define the generating function P(z, s, t) = ∑∞
n=0 z

n pi,n(t). The function
P(z, s, t) satisfies the ordinary differential equation

Ṗ(z, s, t) = λ(t)
∞∑
n=0

pi,n(t)(z
n+1 − zn)

− μ(t)
c−1∑
n=0

npi,n(t)z
n − cμ(t)

∞∑
n=c

pi,n(t)z
n

+ μ(t)
c−1∑
n=0

npi,n(t)z
n−1 + cμ(t)

∞∑
n=c

pi,n(t)z
n−1

In line 1 on the right-hand side of the preceding equation, we replace the infinite
sum with the generating function for the number in queue. In lines 2 and 3, we add
and subtract like quantities so that we can rewrite the expressions in terms of the
generating function for the number in queue:

Ṗ(z, s, t) = λ(t)(z − 1)P(z, s, t)

+ μ(t)
c−1∑
n=0

(c − n)pi,n(t)z
n − cμ(t)

∞∑
n=0

pi,n(t)z
n

+ μ(t)
c−1∑
n=0

(n − c)pi,n(t)z
n−1 + cμ(t)

∞∑
n=0

pi,n(t)z
n−1.

We replace the series in lines 2 and 3 of the right-hand side of the previous equation
with the generating function for the number in queue:

Ṗ(z, s, t) = (
λ(t)(z − 1) + cμ(t)(z−1 − 1)

)
P(z, s, t)

+ μ(t)
c−1∑
n=0

(c − n)zn(1 − z−1)pi,n(t).

This differential equation has solution
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P(z, s, t) =
∫ t

s
μ(u)

c−1∑
n=0

(c − n)zn(1 − z−1)pi,n(u)ΦY (z, u, t)du

+ P(z, s, s)ΦY (z, s, t),

where we denote the generating function for Yt as ΦY (z, s, t) and

ΦY (z, s, t) =
∞∑

n=−∞
P{Yt = n}zn = eΛ(s,t)(z−1)+cM(s,t)(z−1−1).

ΦY (z, s, t) is the solution of the evolution equation

∂

∂t
ΦY (z, s, t) = ΦY (z, s, t)

(
λ(t)(z − 1) + cμ(t)(z−1 − 1)

)

and
Φ(z, s, s) = I.

The transient distribution for number in queue is given by

pi, j (s, t) = [z j ]P(z, s, t)

=
∫ t

s
μ(u)

c−1∑
n=0

(c − n)pi,n(s, u)
(
φ j−n(u, t) − φ j−n+1(u, t)

)
du

+ φ j−i (s, t).

Let
pi (s, t) = [

pi,0(s, t) pi,1(s, t) · · · pi,c−1(s, t)
]

and
φi (s, t) = [

φ−i (s, t) φ−i+1(s, t) · · · φ−i+c−1(s, t)
]
.

Define the matrix function K(s, t)

K(s, t) = [
k0(s, t) k1(s, t) . . . kc−1(s, t)

]
,

where k j (u, t) is the column vector

k j (u, t) = μ(s)

⎡
⎢⎢⎢⎢⎢⎣

c(φ j (s, t) − φ j+1(s, t))
(c − 1)(φ j−1(s, t) − φ j (s, t))

...

2(φ j−c+2(s, t) − φ j−c+3(s, t))
(φ j−c+1(s, t) − φ j−c+2(s, t))

⎤
⎥⎥⎥⎥⎥⎦

.
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Fig. 4 Example 4. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

Then

pi (s, t) =
∫ t

s
pi (s, u)K(u, t)du + φi (s, t),

and

pi, j (s, t) =
∫ t

s
pi (s, u)k j (u, t)du + φ j−i (s, t).

To compute these transient probabilities, we discretize each component of the matrix
function K(s, t) so that we have a matrix of matrices. Let m be the mesh size, then
we weight each component matrix by 1

m .
In the case where transition rates are periodic only the firstm rows of each compo-

nent matrix need be computed. Subsequent blocks of m rows are equal to preceding
blocks shifted m columns to the right. We also weight the diagonal and the top row
of each component matrix by 1

2 . These weights allow us to use matrix multiplica-
tion to apply the trapezoidal rule of numerical integration to solve for the transient
probabilities (Fig. 4).

3.1 Periodic

Now suppose transition rates are periodic with period one. In this case, we use πn(t)
to designate the asymptotic periodic probability of n in the queue at time t rather
than pi,n(t) for the transient probability. We wish to solve directly for the asymptotic
periodic solution. In that case, P(z, t − 1, t) = P(z, t − 1, t − 1), so
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P(z, t − 1, t)

=
∫ t

t−1
μ(u)

c−1∑
n=0

(c − n)zn(1 − z−1)πn(u)ΦY (z, u, t)du (1 − Φ(z, t − 1, t))−1 .

(14.5)

The coefficient on z j gives us the following integral formula for the periodic proba-
bility, π j (t), of j in the queue at time t within the period:

π j (t) =[z j ]P(z, t − 1, t)

=
∫ t

t−1
μ(u)

c−1∑
n=0

(c − n)πn(u)

∞∑
k=0

(
φ j−n(u, t + k) − φ j−n+1(u, t + k)

)
du.

We have zeros in the denominator of equation (14.5), where

λ̄(z − 1) + cμ̄(z−1 − 1) = 0.

This expression has two zeros: z = 1, and z = cμ̄/λ̄. The value z = 1 is a root of
both the numerator and the denominator, so we factor it out:

P(z, t − 1, t) =
∫ t

t−1

c−1∑
n=0

(c − n)znπn(u)
μ(u)

cμ̄ − λ̄z
ΦY (z, u, t)du

×
( ∞∑

k=1

(λ̄(z − 1) + cμ̄(z−1 − 1))k−1

k!

)−1

.

We can rewrite this as

P(z, t − 1, t) =
∫ t

t−1

c−1∑
n=0

(c − n)znπn(u)
μ(u)

cμ̄
ΦY (z, u, t)du

( ∞∑
k=1

(λ̄(z − 1) + cμ̄(z−1 − 1))k−1

k!

)−1 ∞∑
j=0

(
λ̄

cμ̄

) j

z j .

(14.6)

An asymptotic estimate is then given by

π j (t) ≈
∫ t

t−1

μ(u)

cμ̄
ΦY

(
cμ̄

λ̄
, u, t

) c−1∑
n=0

(c − n)πn(u)du

(
λ̄

cμ̄

) j−n
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=
∫ t

t−1

μ(u)

cμ̄
exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(cμ̄ − λ̄)

} c−1∑
n=0

(c − n)πn(u)

(
λ̄

cμ̄

) j−n

du.

(14.7)

We may estimate π j (t) as

π j (t) ≈ f (t)

(
λ̄

cμ̄

) j

,

where

f (t) =
∫ t

t−1

μ(u)

cμ̄
exp

{(
Λ(u, t)

λ̄
− M(u, t)

μ̄

)
(cμ̄ − λ̄)

} c−1∑
n=0

(c − n)πn(u)

(
cμ̄

λ̄

)n
du.

The resulting expression for f (t) in the multi-server case is analogous to that in
the single-server case in Eq. (14.4). For a c server queue, the expression depends on
the first c periodic probabilities for number in queue. The expression reduces to the
single-server expression when c = 1. The queue length probabilities are asymptoti-
cally geometric with rate λ̄

cμ̄ .

4 Example: The Queue with Transitions of Size One and
Two

For this queueing system, the classical single-server queueing system, M/M/1 is
generalized to allow transition rates of size two in addition to the standard transition
rates of size one (Fig. 5).

In terms of the queueing models, these systems each allow customers to arrive or
be served instantly in pairs as well as individually (Fig. 6).

Krinik and Shun [2] have derived the steady-state distributions explicitly and
determined a condition for the existence of a steady-state distribution. Assuming
that a steady-state condition prevails, they determined the canonical performance
measures, including expressions for the average number of customers in either system
or queue. They also derived formulae for the average waiting time that a customer
spends in the system or queue.

In this example, we generalize their model to allow transition rates to vary peri-
odically with period of length one.

We have the Chapman–Kolmogorov equations with β(t) and γ (t) giving the rates
at which transitions of size two occur:
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Fig. 5 Example 5. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j
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Fig. 6 Example 6. The graph on the left shows π j (t), j = 0, . . . , 5 (solid lines) and the asymptotic

estimates for each of these probabilities (dashed lines). The graph on the right shows π j (t)
(

μ̄

λ̄

) j
,

j = 0, . . . , 5 and the asymptotic estimate for f (t) = π j (t)
(

μ̄

λ̄

) j
which does not depend on j

ṗi,0(t) = −(λ(t) + β(t))pi,0(t) + μ(t)pi,1(t) + γ (t)pi,2(t)

ṗi,1(t) = λ(t)pi,0(t) − (λ(t) + β(t) + μ(t))pi,1(t) + μ(t)pi,2(t) + γ (t)pi,3(t)

ṗi,n(t) = β(t)pi,n−2(t) + λ(t)pi,n−1(t)

−(λ(t) + β(t) + μ(t) + γ (t))pi,n(t) + μ(t)pi,n+1(t) + γ (t)pi,n+2(t).

We define the generating function P(z, t) = ∑∞
n=0 z

n pi,n(t). Then we have

Ṗ(z, t) =(z2β(t) + zλ(t) − (λ(t) + β(t) + μ(t) + γ (t)) + z−1μ(t) + z−2γ (t))P(z, t)

+ γ (t)(z − z−1)pi,1(t) + (γ (t) + μ(t) − z−1μ(t) − γ (t)z−2)pi,0(t).
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This has solution

P(z, s, t) =
∫ t

0

(
γ (t)(z − z−1)pi,1(u) + (γ (t)(1 − z−2) + μ(t)(1 − z−1))pi,0(u)

)

× Φ(z, u, t)du + P(z, s, s)Φ(z, s, t),
(14.8)

where

Φ(z, s, t) = exp

{∫ t

s
(z2β(u) + zλ(u)

−(λ(u) + β(u) + μ(u) + γ (u)) + z−1μ(u) + z−2γ (u))du
}

= exp

{∫ t

s
(zλ(u) − (λ(u) + μ(u)) + z−1μ(u))du

}

× exp

{∫ t

s
(z2β(u) − (β(u) + γ (u)) + z−2γ (u))du

}

= ΦY (z, s, t)ΦX (z2, s, t),

and Xt and Yt are the randomized random walks. For the walk Xt steps to the right
occur at rate β(t) and to the left at rate γ (t). For the walk Yt steps to the right occur
at rate λ(t) and to the left at rate μ(t). ΦX (z, s, t) and ΦY (z, s, t) are the generating
functions for the randomized random walks Xt and Yt , respectively. Expanding the
generating function in terms of coefficients on zn , we have

Φ(z, s, t) =
∞∑

n=−∞
znφn(s, t)

=
∞∑

n=−∞
zn

∞∑
j=−∞

P{Xt = j |Xs = 0}P{Yt = n − 2 j |Ys = 0}.

Assume that pi, j (s) = δ j=i . Matching coefficients on zn , we see that

pi,0(t) =
∫ t

s

(
pi,1(u)γ (u) (φ−1(u, t) − φ1(u, t))

+pi,0(u) ((γ (u) + μ(u))φ0(u, t) − μ(u)φ1(u, t) − γ (u)φ2(u, t))
)
du

+ φ−i (s, t)

pi,1(t) =
∫ t

s

(
pi,1(u)γ (u) (φ0(u, t) − φ2(u, t))

+pi,0(u) ((γ (u) + μ(u))φ1(u, t) − μ(u)φ2(u, t) − γ (u)φ3(u, t))
)
du

+ φ−i+1(s, t),

and more generally
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pi,n(t) =
∫ t

s

[
pi,1(u)γ (u)

(
φi,n−1(u, t) − φi,n+1(u, t)

)

+pi,0(u)
(
(γ (u) + μ(u))φn(u, t) − φn+1(u, t)μ − γφn+2(u, t)

)]
du

+ φ−i+n(s, t).

Now suppose that transition rates are time-varying and periodic. Further suppose that
our generating function is for the asymptotic periodic distribution of the number in
the system. Then we have the generating function

P(z, t − 1, t) =
∫ t

t−1

(
π1(u)γ (u)(z − z−1)

+π0(u)(γ (u)(1 − z−2) + μ(u)(1 − z−1))
)
Φ(z, u, t)du

× (1 − Φ(z, t − 1, t))−1 (14.9)

and

π0(t) =
∫ t

0

⎡
⎣π1(u)γ (u)

∞∑
k=0

(
φ−1(u, t + k) − φ1(u, t + k)

)

+ π0(u)

⎛
⎝(γ (u) + μ(u))

∞∑
k=0

φ0(u, t + k)

−
∞∑
k=0

φ1(u, t + k)μ(u) − γ (u)

∞∑
k=0

φ2(u, t + k)

⎞
⎠

⎤
⎦ du,

π1(t) =
∫ t

0

⎡
⎣π1(u)γ (u)

∞∑
k=0

(φ0(u, t + k) − φ2(u, t + k))

+ π0(u)

⎛
⎝(γ (u) + μ(u))

∞∑
k=0

φ1(u, t + k)

−μ(u)

∞∑
k=0

φ2(u, t + k) − γ (u)

∞∑
k=0

φ3(u, t + k)

⎞
⎠

⎤
⎦ du,

and more generally

πn(t) =
∫ t

0

[
π1(u)γ (u)

∞∑
k=0

(
φn−1(u, t + k) −

∞∑
k=0

φn+1(u, t + k)

)

+ π0(u)

(
(γ (u) + μ(u))

∞∑
k=0

φn(u, t + k)
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−
∞∑
k=0

φn+1(u, t + k)μ(u) − γ (u)

∞∑
k=0

φn+2(u, t + k)

)]
du.

These expressions are difficult to evaluate numerically. So as in the Mt/Mt/1 exam-
ple, we apply an asymptotic estimate of the transition probabilities.

The first step is to factor out z − 1 since one is a root of both the numerator
and the denominator. Second, we follow Krinik and Shun and find the roots of the
denominator. Then following the approach outlined by Sedgewick and Flajolet [1],
we approximate the integrand as a sum of geometric series. We will need to do a
partial fractions decomposition.

Factorization of the numerator of Eq. (14.9) by z − 1 yields

∫ t

t−1

[
γ (u)(1 + z−1)p1(u) + (γ (u)(z−1 + z−2) + μ(u)z−1)p0(u)

]
Φ(z, u, t)du.

The denominator is zero when Φ(z, t − 1, t) = 1, that is, when

(
β̄z2 + λ̄z − (β̄ + λ̄ + μ̄ + γ̄ ) + μ̄z−1 + γ̄ z−2

) = 0.

One root occurs at z = 1:

(
β̄z2 + λ̄z − (β̄ + λ̄ + μ̄ + γ̄ ) + μ̄z−1 + γ̄ z−2

)

= (z − 1)(β̄z + λ̄ + β̄ − (μ̄ + γ̄ )z−1 − γ̄ z−2).

Factorization of the denominator of equation (14.9) by z − 1 yields

(β̄z + λ̄ + β̄ − (μ̄ + γ̄ )z−1 − γ̄ z−2)

×
∞∑
k=1

(
β̄z2 + λ̄z − (β̄ + λ̄ + μ̄ + γ̄ ) + μ̄z−1 + γ̄ z−2

)k−1

k! .

There are three other real roots of the denominator. These were computed by
Krinik and Shun [2, Lemma 1.1]. Their reciprocals are given by

1

r1
= −a

3
−2

√
U cos

(
θ

3

)
,

1

r2
= −a

3
− 2

√
U cos

(
θ

3
+ 4π

3

)
,

1

r3
= −a

3
− 2

√
U cos

(
θ

3
+ 2π

3

)
,

where U = a2−3b
9 , V = 2a3−9ab+27c

54 , θ = cos−1
(

V√
U 3

)
, a = μ̄+γ̄

γ̄
, b = − β̄+γ̄

γ̄
, c =

− β̄

γ̄
and 1

r1
< −1 < 1

r2
< 0 < 1

r3
.



324 B. Margolius

We are considering stable queues, so r1 is also a root of the numerator. We apply
a partial fractions decomposition to

1(
1 − z

r2

) (
1 − z

r3

) = −r3

(r2 − r3)
(
1 − z

r2

) + r2

(r2 − r3)
(
1 − z

r3

) .

Define

H(z, t) = −z2
∫ t

t−1

[
γ (u)(1 + z−1)p1(u) + (γ (u)(z−1 + z−2)

+μ(u)z−1)p0(u)
]
Φ(z, u, t)du

(
γ̄

(
1 − z

r1

)
(r2 − r3)

)−1

.

So we may write our asymptotic estimate as

πn(t) ≈ −r3H(r2, t)

rn2
+ r2H(r3, t)

rn3
.

This solution is analogous to that obtained by Krinik and Shun for the steady-state
distribution. They had

πn = c2
rn2

+ c3
rn3

for constants c2 and c3 which they give explicitly in their paper [2].

5 Asymptotic Estimates for Level Independent
Quasi-Birth-Death Processes

The same method can be used to obtain estimates for the level distribution for QBDs
with level independent transitions. Such QBDswill have infinitesimal generator with
block tri-diagonal structure:

Q(t) =

⎡
⎢⎢⎢⎢⎢⎣

B(t) A1(t) 0 0 · · ·
A−1(t) A0(t) A1(t) 0 · · ·

0 A−1(t) A0(t) A1(t) · · ·
0 0 A−1(t) A0(t) · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

, (14.10)

whereA−1(t),A0(t),A1(t) andB(t) are squarematrices of orderm, andm represents
the number of phases.
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We partition π(t) by levels into subvectors πn(t), n ≥ 0, where πn(t) hasm com-
ponents. The QBD system satisfies the Chapman–Kolmogorov forward equations

π̇0(t) = π0(t)B(t) + π1(t)A−1(t)

π̇n(t) = πn−1(t)A1(t) + πn(t)A0(t) + πn+1(t)A−1(t),

with the additional requirement that

∞∑
n=0

πn(t)1 = 1.

For periodic rates with period of length one, if stability conditions are met, there
will be a solution of the Chapman–Kolmogorov equations such that

πn(t) = πn(t + k),

k ∈ Z.
The generating function for the random walk corresponding to this QBD satisfies

Φ(z, s, t) =
∞∑

n=−∞
φn(s, t)z

n,

∂

∂t
Φ(z, u, t) = Φ(z, u, t)

(
z−1A−1(t) + A0(t) + zA1(t)

)
,

where φn(s, t) is an m × m matrix of transition probabilities. The (i, j) component
represents the probability of traveling to phase j by time t and remaining there until
at least time t and traveling to a level n units to the right of the level occupied at time
s given that the random walk process was in phase i at time s. For more details on
the set up and analysis of such systems with time-varying periodic transitions, see
[4] or [5]. For more background on quasi-birth-death processes in general see [3].

The generating function for the levels of the QBD solves the differential equation

∂

∂t
P(z, s, t) = P(z, s, t)

(
z−1A−1(t) + A0(t) + zA1(t)

)

+ π0(t)
(
B(t) − z−1A−1(t) − A0(t)

)
,

so

P(z, s, t) =
∫ t

s
π0(u)

(
B(u) − z−1A−1(u) − A0(u)

)
Φ(z, u, t)du

+P(z, s, s)Φ(z, s, t),

and for the periodic case with period 1,
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P(z, t − 1, t) =∫ t

t−1
π0(u)

(
B(u) − z−1A−1(u) − A0(u)

)
Φ(z, u, t)du×

(I − Φ(z, t − 1, t))−1 .

There will be poles in the determinant of the matrix (I − Φ(z, t − 1, t)). These poles
will reveal the geometric behavior of the level distribution.

6 Conclusion

This approach to the analysis of time-varying queues with periodic transition rates
offers considerable promise for improving the understanding of the behavior of such
systems. In particular, it shows that such queues are asymptotically geometric in the
queue length distribution. Futureworkwill involve extending these results and further
analyzing quasi-birth-and-death problems that fit this framework. For scalar queue-
ing models, computation of the roots is straightforward. For quasi-birth-and-death
processes, computation of the roots is feasible in special cases, but is challenging for
general QBDs.
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A Combinatorial Analysis of the
M/M[m]/1 Queue

Guven Mercankosk and Gopalan M. Nair

Abstract Neuts’ Matrix Geometric Method makes use of the left-skip free charac-
teristic of M/G/1-type Markov chains and determines the first passage distribution
matrixG by solving a non-linear matrix equation. In this paper, we focus on the k-step
first passage problem. In particular, we identify three associated matrices, namely the
matrix Gk , the conditional first passage probability matrix Pk , and the first passage
count matrix Tk . The reformulation allows for combinatorial techniques. Specifically,
we refer to an extension of Takács’ ballot theorem. We note that the matrix Pk exhibits
some ballot properties. In the case of the M/M[m]/1 queue, we establish the special
structure of the count matrix Tk using lattice path arguments. Furthermore, we obtain
a closed-form expression for the G matrix, where the first passage probabilities are
expressed in terms of generalized hypergeometric functions.
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Generalized hypergeometric functions · Lattice paths
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1 Introduction

Neuts [6] makes use of the left-skip free characteristic of M/G/1 type Markov chains
to define a fundamental period and determines the associated first passage distribu-
tion matrix G by solving a non-linear matrix functional equation. In this paper, we
limit our focus to M/G/1 type Markov chains embedded at the service termination
epochs of a queueing system where service is carried out in batches of size m. In
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doing so, we reformulate the first passage problem in a way to allow for combinatorial
techniques.

The state space of a Markov chain of M/G/1 type consists of semi-infinite strips
of the form {(i, j) : i ≥ 0, 0 ≤ j < m}. The set of states {(i, j) : 0 ≤ j < m} is
referred to as level i , and the state (i, j) is referred to as phase j in level i . Neuts
[7] defines G jl , 0 ≤ jl < m, the entries of the first passage distribution matrix G =
[G jl ], as the probability that level i − 1, i ≥ 1, is eventually reached for the first time,
by a visit to (i − 1, l), given that the Markov chain started in state (i, j). Neuts [7]
also defines them × m matrix Gk, jl , 0 ≤ j, l < m, as the probability that level i − 1,
i ≥ 1, is reached for the first time in exactly k transitions, by a visit to (i − 1, l),
given that the Markov chain started in state (i, j).

Our formulation starts by conditioning Gk, jl by the exact number of arrivals
needed for the first passage from (i, j) to (i − 1, l) for the first time in k steps.
We observe that the associated conditional first passage probabilities Pk, jl are of
ballot type, and an extension of Takács’ ballot theorem shows that the conditional
first passage probability matrix Pk exhibits some ballot properties, which can then
be used in conjunction with other combinatorial techniques. More specifically, we
identify the distinct arrival patterns that are problem specific. Then the problem is
equivalent to counting the number of arrival patterns that satisfy the first passage
conditions, and we thereby define the conditional first passage count matrix Tk .

For the case of an M/M[m]/1 queue, the associated count matrix Tk has a special
structure of identical rows. We develop a lattice path formulation for proving this
special structure. Using the diagonal properties of the matrix Pk and the special
structure of the matrix Tk , we obtain a closed-form solution for the matrix Gk .
Summing Gk over k yields closed-form expressions in terms of hypergeometric
functions for the entries of the G matrix.

This paper is organized as follows: In Sect. 2, we provide an illustration of the first
passage problem and outline the problem reformulation that allows for combinatorial
techniques. We then formally define the matrices, Gk , Pk , and Tk . In Sect. 3, for the
sake of completeness, we restate the extended ballot theorem and elaborate on the
diagonal properties of the Pk matrix. In Sect. 4, we further limit our scope to the
M/M[m]/1 queue. We first introduce a lattice path formulation and prove the special
structure of identical rows for the count matrix Tk . We then apply the extended ballot
theorem to obtain a closed-form solution for the first passage matrix G. Section 5
concludes the paper.

2 Reformulation of the First Passage Problem

In this section, we first provide a summary of the essential elements of the matrix-
analytic method pioneered by Neuts [7]. After stating the common structure of tran-
sition probability matrices of Markov chains of M/G/1 type, we review the concept
of fundamental period of a Markov chain and present an associated first passage
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problem as our starting point. We then outline our approach and elaborate on its
combinatorial nature.

2.1 The Canonical Form

The canonical form refers to the common structure of transition probability matrices
of Markov chains of M/G/1 type. Let Q denote a transition probability matrix in
canonical form of the Markov chain with state space {(i, j) : i ≥ 0; 0 ≤ j < m},
then it is given by

Q =

⎡
⎢⎢⎢⎢⎢⎣

B0 B1 B2 B3 · · ·
A0 A1 A2 A3 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

,

where the matrices Aγ , Bγ , γ ≥ 0, are square matrices of order m. The matrix Q
is also referred to as a stochastic matrix of M/G/1 type as its rows add up to 1. The
structure of the matrix Q implies that the chain is left-skip free for levels. That is,
any path leading from a state in a higher level to a state in a lower level must visit
every intermediate level at least once.

2.2 The Fundamental Period

In order to have a recurrent chain Q, it is necessary that the level i − 1 is eventually
reached from any state in level i with probability one. Accordingly, for a Markov
chain of M/G/1 type, the fundamental period is defined as the first passage time
taken to visit level i − 1 for the first time, having started in level i for i ≥ 1. For
the purpose of our discussion, we restrict our attention to the number of transitions
during a fundamental period.

From the definition of G and Gk , k ≥ 1, it follows that

G =
∞∑
k=1

Gk .

The matrix sequence {Gk}k≥1 is referred to as the matrix density of the number of
transitions in the fundamental period of visiting (i − 1, l) from (i, j). It has been
shown in [7] that {Gk}k≥1 satisfies the matrix equations

G1 = A0, Gk =
k−1∑
ν=1

AνG
(ν)
k−1 for k ≥ 2, (15.1)
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where

G(ν)
r =

r−ν+1∑
i=1

G(1)
i G(ν−1)

r−i . (15.2)

Note that G(ν)
r, jl is the conditional probability that level i , i ≥ 0, is reached for the

first time by a visit to (i, l) in exactly r transitions, given that the Markov chain
started in (i + ν, j). The matrix G has been proven by Neuts [5] to be the minimal
non-negative solution to the non-linear matrix equation

G = A(G) =
∞∑
k=0

AkG
k . (15.3)

One can obtain the non-linear matrix equation (15.3) by summing the matrix sequence
{Gk}k≥1 as defined by (15.1).

2.3 Service in Batches of Size m

Returning our attention to M/G/1 type Markov chains embedded at the service termi-
nation epochs of a queueing system where service is carried out in batches of size m,
let V (i, j; i − 1, l) denote the number of batch service completions in a fundamental
period of visiting (i − 1, l) from (i, j). Note that

Gk, jl = Pr{V (i, j; i − 1, l) = k}.

Also, let A(t, t + τ) denote the number of arrivals during an interval covering τ

successive service intervals during a fundamental period and let Rt represent the
number in the system just after a service completion at time t . Again, note that we
necessarily and exactly have (k − 1)m + l − j arrivals during a fundamental period
of k service completions, that is

A(t, t + k) = (k − 1)m + l − j.

Conditioning Gk, jl on the number of arrivals during the fundamental period, we have

Gk, jl = Pr{V (i, j; i − 1, l) = k | A(t, t + k) = (k − 1)m + l − j}
× Pr{A(t, t + k) = (k − 1)m + l − j}.

(15.4)

Let Pk, jl denote the conditional probability on the right-hand side of (15.4). Then,
we have

Gk, jl = Pk, jl × Pr{A(t, t + k) = (k − 1)m + l − j}. (15.5)
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( )1  arrivalsk m l j− + −

tR im j= + ( )1t kR i m l+ = − +tR imτ+ ≥

t kR γ+ −

( )1  arrivalsk m l j− + −

tR im j= + ( )1t kR i m l+ = − +tR imτ+ ≥

t kR γ+ −

Fig. 1 First passage from level i to level i − 1 in k transitions

Given (k − 1)m + l − j arrivals during a fundamental period of k service comple-
tions we also require that the associated arrival pattern, as illustrated in Fig. 1, to
satisfy Rt+τ ≥ im, for τ = 0, 1, . . . , k − 1.

That is,

{V (i, j; i − 1, l) = k | A(t, t + k) = (k − 1)m + l − j}
= {Rt+τ ≥im for τ = 0, 1, . . . , k − 1 | A(t, t + k) = (k − 1)m + l − j}.

(15.6)

Therefore we have

Pk, jl = Pr{Rt+τ ≥ im for τ = 0, 1, . . . , k − 1 | A(t, t + k) = (k − 1)m + l − j}.
(15.7)

We further note that the number in the system just after a batch service completion,
Rt+τ , during a fundamental period is related to the number in the system at the start
of the fundamental period, Rt , as

Rt+τ = Rt + A(t, t + τ) − τm, for τ = 0, 1, . . . , k − 1. (15.8)

2.4 The Conditional First Passage Probabilities Pk, j l

The change of variables γ ← k − τ , in (15.7), and use of (15.8) lead to

Pk, jl = Pr{ max
1≤γ≤k

[A(t + k − γ, t + k) − γm] < l − (m − 1)

|A(t, t + k) = k(m − 1) + l − j},
(15.9)

where 0 ≤ j, l < m and A(t, t + k) < km. Note that each entry of the matrix Pk as
given by (15.9) is of ballot type and, for m = 1, the matrix Pk reduces to a scalar as

Pk = Pr{ max
1≤γ≤k

[A(t + k − γ, t + k) − γ ] < 0 | A(t, t + k) = k − 1}. (15.10)
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The expression given in (15.10) was used by Takács [8] and is known to be equal to
1/k under any cyclically interchangeable arrival patterns. Consequently, the scalar
first passage probabilities in k transitions for Poisson arrivals are given by

Gk =
∫ ∞

0
e−λx (λx)k−1

(k − 1)! dBk(x), (15.11)

where Bx (x) denotes the kth iterated convolution of the service time distribution
B(x) with itself.

2.5 The First Passage Counts Tk, j l

In determining the conditional probabilities given in (15.9), we generally encounter
an associated combinatorial problem. In fact, it is an arrangement problem of
(k − 1)m + l − j arrival epochs and k service termination epochs in a way that
the condition given in (15.6) for k transition first passage is satisfied. So, we define
Tk, jl to denote the number of arrival patterns that satisfy the condition (15.6).

The associated arrangement problem is generally specific to the queueing system
in hand. In the case of an M/D[m]/1 queue, the arrivals occur according to the Poisson
distribution. So, each of the (k − 1)m + l − j arrivals is uniformly distributed over k
service periods. With deterministic service times, we have k(k−1)m+l− j equally likely
arrival patterns. Noting that Tk, jl denotes the number of arrival patterns that satisfy
the condition (15.6), the problem is reduced to counting such arrival patterns.

It can be shown (see [2]) that the numbers Tk, jl for an M/D[m]/1 queue satisfy the
recurrence

T1, jl = 0, if l < j,

T1, jl = 1, if l ≥ j,

Tk, j0 =
k−1∑
r=1

(
(k − 1)m − j − 1

rm − j − 1

)
Tr, j (m−1)rTk−r,00,

Tk, jl = kTk, j (l−1) +
k−1∑
r=1

(
(k − 1)m − j − 1

rm − j − 1

)
Tr, j (m−1)Tk−r,0l, (15.12)

and consequently we may determine the ballot probabilities defined in (15.9) as

Pk, jl = Tk, jl
k(k−1)m+l− j

. (15.13)

In tabulating the matrix-sequence Pk for a given m > 1, we note that the entries
Pk, jl are independent of not only the arrival rate λ but also of the length of the
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deterministic service time. This in turn allows the matrix-sequence Pk associated
with any M/D[m]/1 queue for a specified m > 1 to be pre-computed and stored.

Finally, the first passage probabilities Gk, jl from level i to level i − 1 in k transi-
tions for an M/D[m]/1 queue is given by

Gk, jl = Pk, jl
(λk)(k−1)m+l− j

[(k − 1)m + l − j]!e
−λx , (15.14)

where the deterministic service time has been taken as unity.

2.6 A Numerical Example

We next provide a numerical example to illustrate the computation of the matrix
triple {Tk, Pk,Gk}, when k = 3, for the M/D[3]/1 queue, and highlight an important
property.

The matrix entries T3, jl , for j, l = 0, 1, 2, can be computed using (15.12) as

T3 =
⎡
⎣

42 393 2187
26 213 1065
15 106 474

⎤
⎦

Using this and Eq. (15.13), the entries of P3 (independent of arrival rate λ) can be
obtained:

P3 =
⎡
⎣

14/243 131/729 1/3
26/243 71/243 355/729

5/27 106/243 158/243

⎤
⎦ .

Hence, using (15.14), we have

G3 =
⎡
⎢⎣

7
120λ6 131

1680λ7 243
4480λ8

13
60λ5 71

240λ6 71
336λ7

5
8λ4 53

60λ5 79
120λ6

⎤
⎥⎦ e−3λ.

Alternatively, without paying attention to numerical efficiency, we may use (15.1)
for calculating the matrix Gk and then Pk and Tk using (15.14) and (15.13) in order.

Note an important property: P3,02 = 1/3, P3,01 + P3,12 = 2/3, and finally on the
main diagonal we have P3,00 + P3,11 + P3,22 = 3/3. This is an interesting combina-
torial structure, which is explained by a generalization of the ballot theorem, and our
objective is to exploit any such combinatorial structures available in order to achieve
numerical efficiency. As a matter of fact, this is the approach we take for the rest of
the paper in obtaining a closed-form solution for the M/M[m]/1 queue.
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3 Takács’ Ballot Theorem

In this section, we first state two results extending Takács’ ballot theorem. These
results first appeared in [3], but are repeated here without proof for the sake of
completeness. We then elaborate on the upper diagonal properties of the conditional
first passage matrix Pk .

3.1 Extended Results

Theorem 15.1 Let n1, n2, . . . , nk be non-negative integers with sum n1 + · · · +
nk = n < km. Consider the k cyclic permutations of (n1, n2, . . . , nk). For d =
0, 1, . . . ,m − 1, let Cd denote the number of cyclic permutations for which the sum
of the first r elements is less than rm − d for all r = 1, 2, . . . , k.

• If a cyclic permutation of (n1, n2, . . . , nk) contributes toCd, then it also contributes
to C0,C1, . . . ,Cd−1.

• Furthermore,wehaveC0 + C1 + · · · + Cm−1 = km − n for d = 0, 1, . . . ,m − 1.

Theorem 15.2 Let ν1, ν2, . . . , νk be cyclically interchangeable random variables
taking on non-negative integer values. Set Ns = ν1 + · · · + νs for 1 ≤ s ≤ k with
Nk < km. Then we have

m−1∑
d=0

Pr{ max
1≤s≤k

[Ns − sm] < −d | Nk} = m − Nk

k
. (15.15)

Corollary 15.1 More specifically, for Nk = km − x, where 1 ≤ x ≤ m, we have

x−1∑
d=0

Pr{ max
1≤s≤k

[Ns − sm] < −d | Nk} = x

k
. (15.16)

According to Theorem 15.1, the sum on the left-hand side of (15.15) simplifies
to the left-hand side of (15.16) as the second bullet point leads to

C0 + C1 + · · · + Cm−1 = x < m,

and by the first bullet point, we necessarily have

Cx = Cx+1 = · · · = Cm−1 = 0.

Then the right-hand side of (15.16) trivially follows from (15.15).
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3.2 Upper Diagonal Properties of the Matrix Pk

We next return our attention to (15.9). Using Corollary 15.1, we can derive an impor-
tant property for the upper diagonal entries in the conditional first passage matrix
Pk . Let Ed represent the event

{ max
1≤γ≤k

[A(t + k − γ, t + k) − γm] < −d},

and Ak,x = {A(t, t + k) = (k − 1)m + x}. Then Pk takes the form

Pk =

⎡
⎢⎢⎣

Pr{Em−1|Ak,0} Pr{Em−2|Ak,1} ··· Pr{E1|Ak,m−2} Pr{E0|Ak,m−1}
Pr{Em−1|Ak,−1} Pr{Em−2|Ak,0} ··· Pr{E1|Ak,m−3} Pr{E0|Ak,m−2}
Pr{Em−1|Ak,−2} Pr{Em−2|Ak,−1} ··· Pr{E1|Ak,m−4} Pr{E0|Ak,m−3}
...

...
...

...
Pr{Em−1|Ak,−m+1} Pr{Em−2|Ak,−m+2} ··· Pr{E1|Ak,−1} Pr{E0|Ak,0}

⎤
⎥⎥⎦ (15.17)

By taking x = 1 in (15.16), we observe that the entry Pk,0(m−1), at the top-right
corner of the matrix Pk is always 1/k, resembling Takács’ result. As a matter of
fact, it holds, by Theorem 15.2, for any cyclically interchangeable arrival patterns,
which is a weaker condition than Poisson arrivals. Furthermore, by taking x = m in
(15.16), the main diagonal entries of Pk always add up to m/k.

In general, numbering off diagonals away from the top-right corner and including
the main diagonal, for the x th off diagonal, 1 ≤ x ≤ m, we have

x−1∑
y=0

Pk,y(m−x+y) = x

k
, (15.18)

which again holds for any cyclically interchangeable arrival patterns. Note also that
the equality given in (15.18) is independent of the service time distribution. For more
details on this result see [3, Theorem 6]. These upper diagonal properties enable us
to evaluate Pk explicitly for the M/M[m]/1 queue.

4 Application of the Extended Ballot Theorem

So far, all is applicable for the M/M[m]/1 queue. We can even replace Poisson arrivals
by any cyclically interchangeable arrival process. Here, we look at the case where the
service time distribution is negative exponential with parameter μ. The inter-arrival
distribution parameter is taken as λ.

Note that we can easily obtain closed-form expressions for matrices T1, P1, and
G1. Indeed, the fundamental period, from (i, j) to (i − 1, l) in one step, is only
possible when l − j ≥ 0. Hence, T1, jl = P1, jl = G1, jl = 0 for l < j . Furthermore,
when l − j ≥ 0, there is only one possible arrival pattern which also leads to a
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fundamental period in one step. Therefore, we have T1, jl = P1, jl = 1 for l ≥ j .
Using the relation in (15.5), we obtain

G1, jl = P1, jl × Pr{A(t, t + 1) = l − j} = λl− jμ

(λ + μ)l− j+1
. (15.19)

For k > 1, we observe that the first passage counting matrix Tk has a special structure.
We use a lattice path formulation (see [4]) to prove the generality of this special
structure. Then, using the extended ballot results, we obtain closed-form expressions
for the matrices Tk , Pk , and Gk .

4.1 A Lattice Path Formulation

Suppose there are u events occurring from one Poisson process, say P1, and v events
occurring from another independent Poisson process, say P2, over an interval of
specified length. The number of different ways these events can be arranged in the
interval depends neither on the process’ parameters nor on the length of the interval.
In fact, the number of possible arrangements is

C(u, u + v) = (u + v)!
u! v! .

In terms of lattice paths, each arrangement corresponds to a path from (0, 0) to (u, v)
where events from process P1 and P2 are represented by horizontal and vertical
units, respectively.

For the case of an M/M[m]/1 queue, we are interested in a fundamental period
of k transitions. Let, as before, Tk, jl denote number of arrival patterns that result
in a fundamental period of k transitions starting in phase j and ending in phase l.
Consider an arrival pattern contributing to Tk, jl over the interval. We accordingly have
(k − 1)m + l − j arrival events and k − 1 service completion events. Therefore, by
taking P1 as the arrival process and P2 as the service completion process, for each
arrival pattern the associated lattice path starts at (0, 0) and ends at ((k − 1)m + l −
j, k − 1). We note that the very last event by definition has to be a service completion
event and therefore it has been left out without loss of generality.

Note that the conditional first passage probabilities Pk, jl for an M/M[m]/1 queue
are then related to first passage counts Tk, jl by

Pk, jl = Tk, jl(
(k−1)m+l− j+k−1

k−1

) . (15.20)

In the lattice path context, we represent the fundamental period requirement by
a straight line that the path representing an arrival pattern cannot cross upwards.
Recall that A(t, t + τ) denotes the number of arrivals during an interval covering τ
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Fig. 2 Lattice path representation of an arrival pattern

successive transitions during a fundamental period and Rt+τ represents the number
in the system (queue length) just after the transition at t + τ . Formally, we need
Rt+τ to stay at or above level i for τ = 0, 1, . . . , k − 1. In other words, we need
Rt + A(t, t + τ) − τm ≥ im. This means that im + j + A(t, t + τ) − τm ≥ im.
Hence we must have A(t, t + τ) ≥ τm − j . Replacing A(t, t + τ) by x and τ by y,
we see that an arrival pattern satisfies the requirements of a fundamental period if it
does not cross the line

y = 1

m
x + j

m
.

Since 0 ≤ j < m, we have m such barriers to consider for the matrix Tk as illustrated
in Fig. 2.

4.2 The M/M[m]/1 Queue

Lemma 15.1 For an M/M[m]/1 queue, with k > 1, Tk,0l = Tk, jl for j = 1, 2, . . . ,

m − 1.

Proof It suffices to show that for every path contributing to Tk,0l one can construct a
path contributing to Tk, jl and vice versa. Note that a path contributing to Tk,0l consists
of (k − 1)m + l horizontal steps, and the first vertical step can occur only after m
horizontal steps, as otherwise it would cross the associated line y = xm. In fact,
any vertical step, say the yth, 2 ≤ y < k, can occur only after ym horizontal steps.
Similarly, if a path contributes to Tk, jl , it consists of (k − 1)m + l − j horizontal
steps, its first vertical step may occur only after m − j horizontal steps, and any
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other vertical step, say the yth, 2 ≤ y < k, can occur only after ym − j horizontal
steps.

For a path contributing to Tk,0l , by removing its first j horizontal steps and shifting
the remaining path horizontally to the origin, we obtain a path with (k − 1)m + l − j
horizontal steps and with none of its vertical steps crossing the line y = (x + j)m.
Hence, the path obtained as such contributes to Tk, jl . Conversely, let us consider a
path contributing to Tk, jl . Inserting j horizontal steps at the beginning results in a
path that does not cross the line y = xm and increases the number of horizontal steps
to (k − 1)m + l in total. Hence, the new path contributes to Tk,0l . This completes the
proof of the lemma.

Theorem 15.3 For an M/M[m]/1 queue, with k > 1, we have

Tk, jl = l + 1

(k − 1)m + l + 1

(
(k − 1)m + l + k − 1

k − 1

)
. (15.21)

Proof Since the expression given in (15.21) does not depend on j , we prove the
theorem, without loss of generality, for j = 0.

By the diagonal property of the matrix Pk as expressed in (15.18), we have

x−1∑
y=0

Pk,y(m−x+y) =
x−1∑
y=0

Tk,y(m−x+y)(
(k−1)m+m−x+y−y+k−1

k−1

) = x

k
, (15.22)

where we also make use (15.20). Since Tk,y(m−x+y) = Tk,0(m−x+y) by Lemma 15.1,
and using the change of variables l ← m − x , one can rewrite (15.22) as

m−l−1∑
y=0

Tk,0(l+y) = Tk,0l + Tk,0(l+1) + · · · + Tk,0(m−1) = m − l

k

(
(k − 1)m + l + k − 1

k − 1

)
.

Hence

Tk,0l =
m−l−1∑
y=0

Tk,0(l+y) −
m−(l+1)−1∑

y=0

Tk,0(l+1+y)

= m − l

k

(
(k − 1)m + l + k − 1

k − 1

)
− m − (l + 1)

k

(
(k − 1)m + (l + 1) + k − 1

k − 1

)

= 1

k

{
(m − l) −

[
(k − 1)m + l + k

(k − 1)m + l + 1

]
(m − l − 1)

}(
(k − 1)m + l + k − 1

k − 1

)

= l + 1

(k − 1)m + l + 1

(
(k − 1)m + l + k − 1

k − 1

)
.

This completes the proof of the theorem.

In what follows, we obtain an explicit expression for the entries of the first passage
distribution matrix G in terms of hypergeometric functions. The definition and an
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identity for hypergeometric functions are given in the Appendix. Note that these
functions can be evaluated in mathematical packages such as MATHEMATICA and
MAPLE.

Theorem 15.4 For an M/M[m]/1 queue, the first passage distribution matrix G =
[G jl ] is given by

G jl =
{
pl− j q m+1Fm

(
al1, a

l
2, . . . , a

l
m+1; bl1, bl2, . . . , blm; z) , if j ≤ l,

pl− j q
[
m+1Fm

(
al1, a

l
2, . . . , a

l
m+1; bl1, bl2, . . . , blm; z) − 1

]
, if j > l,

(15.23)
where

ali = l + i

m + 1
, for i = 1, 2, . . . ,m + 1,

bli = l + 1 + i

m
, for i = 1, 2, . . . ,m,

z = (m + 1)m+1

nm
pmq,

(p, q) =
(

λ

λ + μ
,

μ

λ + μ

)
.

Proof From the discussion preceding (15.19), for an M/M[m]/1 queue, we have

G1, jl =
{
pl− j q, if j ≤ l,

0, if j > l.

Further noting that the probability of having (k − 1)m + l − j arrivals from a Pois-
son process with parameter λ over k exponentially distributed intervals each with
parameter μ is given by

Pr{A(t, t + k) = (k − 1)m + l − j} =
(

(k − 1)m + l − j + k − 1

k − 1

)
p(k−1)m+l− j qk,

(15.24)
by substituting (15.24) in (15.5) and making use of (15.20) and (15.21), for k > 1
we arrive at

Gk, jl = l + 1

(k − 1)m + l + 1

(
(k − 1)m + l + k − 1

k − 1

)
p(k−1)m+l− j qk . (15.25)
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Hence, for j ≤ l, the fundamental period probability G jl is given by

G jl =
∑
k≥1

Gk, jl

=
∑
k≥1

l + 1

(k − 1)m + l + 1

(
(k − 1)m + l + k − 1

k − 1

)
p(k−1)m+l− j qk

=
∑
k≥0

l + 1

km + l + 1

(
km + l + k

k

)
pkm+l− j qk+1

= pl− j q
∑
k≥0

l + 1

km + l + 1

(
km + l + k

k

) [
pmq

]k
.

By taking x = pmq in (15.27), the result follows for j ≤ l.
On the other hand, for j > l, the probability G jl is given by

G jl =
∑
k≥2

Gk, jl

=
∑
k≥2

l + 1

(k − 1)m + l + 1

(
(k − 1)m + l + k − 1

k − 1

)
p(k−1)m+l− j qk

=
∑
k≥1

l + 1

km + l + 1

(
km + l + k

k

)
pkm+l− j qk+1

= pl− j q

[
−1 + 1 +

∑
k≥1

l + 1

km + l + 1

(
km + l + k

k

)
pkmqk

]

= pl− j q
[
m+1Fm

(
al1, a

l
2, . . . , a

l
m+1; bl1, bl2, . . . , blm; z) − 1

]

where {al1, . . . , alm+1}, {bl1, . . . , blm}, and z are given in the theorem. This completes
the proof of the theorem.

5 Conclusion

This paper presents a combinatorial approach to Neuts’ first passage problem for the
left-skip free Markov chains. The key to the presented approach is an extension of
Takács’ ballot theorem. The particular application of the extension to the M/M[m]/1
queue yields closed-form expressions for the entries of the first passage distribution
matrix G. Preliminary results suggest that Takács’ elegant combinatorial methods
can be carried beyond the M/G/1 queue.

Acknowledgements We would like to thank Sri Gopal Mohanty for fruitful discussions and valu-
able suggestions.
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Appendix: A Result on Generalized Hypergeometric
Functions

First define (a)r , called Pochhammer symbol by (a)0 = 1 and

(a)r = a(a + 1) · · · (a + r − 1).

Then the generalized hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; x) is
defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑
r=0

(a1)r (a2)r · · · (ap)r

(b1)r (b2)r · · · (bq)r
xr

r ! . (15.26)

See [1] for detailed properties of these functions. We need the following identities
in order to establish a closed-form for the first passage distribution matrix G.

Lemma 15.2 If m and l are positive integers such that m > 1 and 0 ≤ l < m, then

∑
k≥0

l + 1

km + l + 1

(
km + l + k

k

)
xk = m+1Fm(a1, . . . , am+1; b1, . . . , bm; u),

(15.27)
where

ai = l + i

m + 1
, for i = 1, 2, . . . ,m + 1,

bi = l + i + 1

m
, for i = 1, 2, . . . ,m,

u = (m + 1)m+1

mm
x .

Proof This amounts to a routine verification which is left to the reader.
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Laws Relating Runs, Long Runs,
and Steps in Gambler’s Ruin, with
Persistence in Two Strata

Gregory J. Morrow

Abstract Define a certain gambler’s ruin process X j , j ≥ 0, such that the
increments ε j := X j − X j−1 take values±1 and satisfy P(ε j+1 = 1|ε j = 1, |X j | =
k) = P(ε j+1 = −1|ε j = −1, |X j | = k) = ak , all j ≥ 1, where ak = a if 0 ≤ k ≤
f − 1, and ak = b if f ≤ k < N . Here, 0 < a, b < 1 denote persistence parameters
and f, N ∈ N with f < N . The process starts at X0 = m ∈ (−N , N ) and termi-
nates when |X j | = N . Denote by R ′

N , U
′
N , and L ′

N , respectively, the numbers of
runs, long runs, and steps in the meander portion of the gambler’s ruin process.

Define XN :=
(
L ′

N − 1−a−b
(1−a)(1−b)R

′
N − 1

(1−a)(1−b)U
′
N

)
/N and let f ∼ ηN for some

0 < η < 1. We show limN→∞ E{eit XN } = ϕ̂(t) exists in an explicit form. We obtain
a companion theorem for the last visit portion of the gambler’s ruin.

Keywords Runs · Generating function · Excursion · Gambler’s ruin · Last visit ·
Meander · Persistent random walk · Generalized Fibonacci polynomial

2010 Mathematics Subject Classification Primary: 60F05 · Secondary: 05A15

1 Introduction

Define a gambler’s ruin process {X j , j ≥ 0}, with values in Z ∩ [−N , N ], such
that the increments ε j := X j − X j−1 take values ±1 and satisfy P(ε j+1 = 1|ε j =
1, |X j | = k) = P(ε j+1 = −1|ε j = −1, |X j | = k) = ak , all j ≥ 1, where ak = a if
0 ≤ k ≤ f − 1, and ak = b if f ≤ k < N . Here, 0 < a, b < 1 denote persistence
parameters and f, N ∈ N with f < N . The process starts at some fixed level m ∈
(−N , N ) and terminates at an epoch j when |X j | = N . For initial probabilities,
take π+ = P(ε j = 1) = π− = P(ε j = −1) = 1

2 . We call the two ranges of values
|k| ≤ f − 1 and f ≤ |k| < N as strata for the two persistence parameter values a
and b, respectively. In gambling, X j denotes a fortune after j games on which the
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gambler makes unit bets. If a, b > 1
2 , then any run of fortune tends to keep going

in the same direction. Thus, for example, a win [loss] resulting in fortune k for
some |k| ≤ f − 1 is followed by another win [loss] with probability a, whereas a
change in fortune occurs with probability 1 − a. Henceforth, we shall simply refer to
{X j = XN

j } as the gambler’s ruin process, with or without mention of the parameters
a, b, f , and N . Note that {X j } is the classical fair gambler’s ruin process in case
a = b = 1

2 , with symmetric boundaries N and−N . For the homogeneous case a = b,
the increments, {ε j , j ≥ 0}, form a strictly stationary processwith zeromeans, where
the correlation between ε j and ε j+1 is 2a − 1. If a = b and also N = ∞, then {X∞

j }
becomes a symmetric persistent (or correlated) random walk on Z that is recurrent
by [19, Thm. 8.1].

Physical models of persistence often consider the velocity of a particle either
staying the sameor being changed according to a randomcollisionprocess [1, 17, 21];
in ourmodel, the velocity only takes values±1.Our introductionof strata corresponds
to a change in medium over which the persistence parameter, or likelihood of the
velocity staying the same, would deterministically change. In [21], the authors obtain
a Wiener limit for the normalized sum of velocities under a random environment,
that includes our deterministic model. Our aim is different since we want results for
discrete statistics that have no analogue in the Wiener process. In this context, our
stratified model seems to be new.

We define a nearest neighbor path of length n in Z to be a sequence Γ =
Γ0, Γ1, . . . , Γn, where Γ j ∈ Z and δ j := Γ j − Γ j−1 satisfies |δ j | = 1 for all j =
1, . . . , n. We also call n the number of steps of Γ . We connect successive lattice
points ( j − 1, Γ j−1) and ( j, Γ j ) in the plane by straight line segments and term this
connected union of straight line segments the lattice path. See Figs. 1 and 2. We
define the number of runs along Γ as the number of inclines, either straight line
ascents or descents, of maximal extent along the lattice path; the length of a run is
the number of steps in such a maximal ascent or descent. A long run is itself a run
that consists of at least two steps; in gambling terminology, a long run means that
the run of fortune does not immediately change direction. A short run is on the other
hand a run of length exactly one, so every run is either a long run or a short run.
In Fig. 2, the lattice path shown has 15 runs, with 7 short runs and 8 long runs. An
excursion is a nearest neighbor path that starts and ends at m = 0, Γ0 = Γn = 0, but
for which Γ j 
= 0 for 1 ≤ j ≤ n − 1. A positive excursion is an excursion whose
graph lies above the x-axis save for its endpoints. For a positive excursion path, the
number of runs is just twice the number of peaks, where a peak at lattice point ( j, Γ j )

corresponds to δ j = 1 and δ j+1 = −1.
The last visit is defined as

LN := max{ j ≥ 0 : j = 0, or X j = 0 for some j ≥ 1}. (16.1)

The meander is the portion of the process that extends from the epoch of the last
visit LN until the gambler’s ruin process terminates. So the meander process never
returns to the level m = 0. See Fig. 1. It is shown by [14] that, for a = b = 1

2 , ifRN

denotes the total number of runs over all excursions of the absolute value process
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Fig. 1 Last visit and meander; N = 4

{|X j |} until the last visit, then, with the order N scaling, it holds that (LN − 2RN )/N
converges in law. Also, if R ′

N and L ′
N denote respectively the number of runs and

steps over themeander portion of the process, then (L ′
N − 2R ′

N )/N converges in law
to a density ϕ(x) = (π/4)sech2(πx/2),−∞ < x < ∞, with characteristic function∫∞
−∞ ϕ(x)eixt dx = t/ sinh(t).We first generalize this result for themeander case. Let
R ′

N , V
′
N ,L

′
N denote, respectively, the numbers of runs, short runs, and steps, in the

meander portion of the gambler’s ruin; for the lattice path of Fig. 1, we haveR ′
4 = 3,

V ′
4 = 1, L ′

4 = 6. Define the following scaled random variable over the meander:

XN := 1

N

(
L ′

N − 2 − a − b

(1 − a)(1 − b)
R ′

N + 1

(1 − a)(1 − b)
V ′
N

)
. (16.2)

Theorem 16.1 Let f = ηN for some fixed 0 < η < 1. Denote κ1 := ησ1

1−b and κ2 :=
(1−η)σ2

1−a , with σ1 = √
a + b2 − 2ab and σ2 = √

b + a2 − 2ab. Let XN be defined by
(16.2). Then, lim

N→∞ E{eit XN } = ϕ̂(t), where

(bκ1σ2 + aκ2σ1)t/ϕ̂(t) := aσ1 cosh(κ1t) sinh(κ2t)

+ bσ2 sinh(κ1t) cosh(κ2t) + i(b − a)2 sinh(κ1t) sinh(κ2t). (16.3)

In Theorem16.1, we obtain that ϕ(x) := 1
2π

∫∞
−∞ e−i t x ϕ̂(t)dt is real since the

complex conjugate of ϕ(x) is equal to itself; observe this by making a change of
variables t → −t after conjugation of the integral.

We have a bivariate result for the homogeneous case as follows. Define

Y1,N := 1

N

(
R ′

N − 1

(1 − a)
V ′
N

)
; Y2,N := 1

N

(
L ′

N − 1

(1 − a)
R ′

N

)
− Y1,N .

(16.4)

Corollary 16.1 Suppose a = b. Then the limiting joint characteristic function of
the random variables Y1,N and Y2,N is:

lim
N→∞ E{eisY1,N+i tY2,N } =

√
(1 − a)s2 + at2

sinh(
√

(1 − a)s2 + at2)
. (16.5)
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Remark 16.1 Leta = b, anddefine Xζ,N := 1
N

(
L ′

N − 1+ζ

(1−a)
R ′

N + ζ

(1−a)2
V ′
N

)
. Then

by setting s = (1 − a − ζ )t/(1 − a) in (16.5) we obtain, for all ζ ∈ R,

lim
N→∞ E{eit Xζ,N } = Aζ t

sinh(Aζ t)
; Aζ :=

√
[(2ζ − 1)a + (1 − ζ )2]/(1 − a).

Example 16.1 As a special case of Theorem16.1, consider b = 1 − a and η = a.
Then κi = σ j = σ := √

1 − 3a + 3a2, for all i, j = 1, 2. In this case, we have

ϕ̂(t) = σ 2t/
{
sinh(σ t)[σ cosh(σ t) + i(1 − 2a)2 sinh(σ t)]} . (16.6)

The complex factor of the denominator of ϕ̂(t) in (16.6) is equal to zero if and
only if e2σ t = −σ+(1−2a)2i

σ+(1−2a)2i . The smallest root is t = i
2σ (π − arctan 2σ(1−2a)2

σ 2−(1−2a)4
), with

σ 2 − (1 − 2a)4 = a(1 − a)(5 − 16a + 16a2) > 0. Thus, we can analytically con-
tinue ϕ̂(t) to a suitably chosen ball of positive radius ε0 about the origin such that
sup|ξ |≤ε0

‖ϕ̂(· + iξ)‖2 < ∞. It follows by [18, Thm. IX.13] that the inverse Fourier
transform ϕ(x) of ϕ̂(t) has exponential decay, meaning eε|x |ϕ(x) is square integrable
for any ε < ε0. However, the probability density, ϕ(x), is not symmetric in x under
(16.6) with a 
= 1

2 ; see Fig. 4 at the end of the paper; see also [15] for computational
details.

We now introduce the definitions of the excursion statistics to further describe our
results. For the definitions in this paragraph, we assume X0 = 0 and N = ∞. Define
the index j , or step, of first return of {X j } to the origin by L := inf{ j ≥ 1 : X j = 0}.
Define the excursion sequence from the origin byΓΓΓ := {X j , j = 0, . . . , L}; again L
is the number of steps ofΓΓΓ . Define the height H of the excursionΓΓΓ as the maximum
absolute value of the path over this excursion:

H := max{|X j | : j = 1, . . . , L}. (16.7)

Also define R as the number of runs along ΓΓΓ , and further define V as the number of
short runs along ΓΓΓ . Thus, officially U := R − V is the number of long runs along
ΓΓΓ . In Fig. 1, there are 4 excursions until the last visit to the origin, with respective
heights: 2, 1, 3, 2. The numbers of runs in the excursions of the absolute value
process {|X j |} until the last visit of Fig. 1, wherein negative excursions are reflected
into positive excursions, are: 2, 2, 2, 4. The corresponding numbers of short runs
in this last visit portion of the absolute value process are: 0, 2, 0, 2.

The first motivation of the present paper is to show how the method of [14]
extends to the three statistics, runs, short runs, and steps, in the homogeneous setting
(a = b). As a particular result, we find the following Corollary16.2, which connects
the present work with a certain combinatorial domain in the study of Dyck paths.
Note that the generating function method which drives the present study depends
heavily on a return to the level 1 type recurrence approach that has been applied
extensively in the field of lattice path combinatorics; see [2–4, 7, 9, 10, 12]. Let Pa
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denote the probability for the homogeneous model with persistence parameter a. We
obtain the following symmetry for the joint distribution of the excursion statistics.

Corollary 16.2 Let a = b and assumeX0 = 0 and N = ∞. Then for all n ≥ 2 there
holds:

(1 − a)Pa(L = 2n, R = 2k, U = 
) = aP1−a(L = 2n, L − R = 2k, U = 
).

(16.8)
In particular, if a = 1

2 , then E{eirReisUeitL} − E{eir(L−R)eisUeitL} = 1
2e

2i t

(e2ir − 1).

Corollary16.2 extends the known result for the simple symmetric random walk
that P(L = 2n, R = 2k) = P(L = 2n, L − R = 2k), n ≥ 2. Our proof depends on
algebraic manipulation of the generating function; see Sect. 3.5.1.

The secondmotivation is to extend the persistencemodel to the case of two distinct
strataa 
= b. This fullmodel, togetherwith its solution, has interesting features,which
include:

1. its intrinsic value as physical model; cf. [1, 21],
2. completely explicit formulae throughout for key polynomials, identities, and gen-

erating functions;
3. new limiting distributions for a scaling of order N in both the meander and the

last visit portions of the gambler’s ruin.

We finally state a companion result to Theorem16.1, again for the full model, that
gives a scaling limit of order N over the last visit portion of the gambler’s ruin. Let
RN and VN denote the total number of runs and short runs of the absolute value
process {|X j |} until the epoch of the last visit,LN , defined by (16.1). DefineMN as
the number of consecutive excursions of height at most N − 1 of the absolute value
process {|X j |} until LN . In Fig. 1, we have M4 = 4, R4 = 10, V4 = 4, L4 = 18.

Define:

XN := 1

N

(
LN − 2 − a − b

(1 − a)(1 − b)
RN + 1

(1 − a)(1 − b)
VN − a(b − a)

(1 − a)(1 − b)
MN

)
.

(16.9)

Theorem 16.2 Let f ∼ ηN, as N → ∞, for some fixed 0 < η < 1. Let XN be
defined by (16.9). Let also κ j , j = 1, 2, and σ j , j = 1, 2, be as defined in Theo-
rem16.1. Let ϕ̂ be defined by (16.3). Then, lim

N→∞ E{eitX N } = ψ̂(t)/ϕ̂(t), where

(abσ1σ2)/ψ̂(t) := abσ1σ2 cosh(κ1t) cosh(κ2t)+a2σ 2
1 sinh(κ1t) sinh(κ2t)

+iaσ1(b − a)2 cosh(κ1t) sinh(κ2t).

Theorem16.1, Corollary16.1, and Theorem16.2 are proved in Sect. 4, naturally
following Sect. 3 on building blocks for the proofs.
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2 Elements of the Proof

Recall the definitions of the excursion statistics in (16.7) and following. We define
the conditional joint probability generating function of the excursion statistics for
runs, short runs, and steps given the height is at most N by

KN (a, b) := E{rRyVzL|X0 = 0, H ≤ N }. (16.10)

Tocalculate (16.10), our proofs feature bivariateFibonacci polynomials {qn(x, β)}
and {wn(x, β)}, defined as follows.

Definition 16.1 Define sequences qn(x, β) andwn(x, β) generated by the following
recurrence relations, valid for n ≥ 1.

qn+1 = βqn − xqn−1, q0 = 0, q1 = 1;wn+1 = βwn − xwn−1, w0 = 1,w1 = 1.
(16.11)

Here, β, x ∈ C. The polynomials qn(x, β) generalize the univariate Fibonacci poly-
nomials Fn(x) = qn(x, 1), see [10, p. 327]; also wn(x, 1) = Fn+1(x). In the case
of steps alone in the classical fair gamblers ruin problem (a = b = 1

2 ; β = 1 and
x = 1

4 z
2 in (16.11)), the {qn = Fn(x)} are classically numerator polynomials, and

the {wn = Fn+1(x)} are the denominator polynomials for the excursion generating
function of height less than n, namely Kn−1(

1
2 ,

1
2 )with r = y = 1 in (16.10), [6], [10,

Sect.V.4.3]. Here, numerator and denominator refer to the convergent of a continued
fraction representation of K∞. See [4] for an interesting direction on excursions with
different step sets besides the classical steps ±1.

Wewrite an interlacing property of any two-term recurrence vn+1 = βvn − xvn−1,

n ≥ 1, with coefficients β and x independent of n:

vn+1vn−1 − v2n = β−1xn−1(v3v0 − v2v1), β 
= 0; (16.12)

see [14, Eqs. (2.7)–(2.8)]. Note that when v0 = 0, v1 = 1, the polynomials vn =
vn(β,−x) are called the generalized Fibonacci polynomials in β and −x , and by
standard generating function techniques, the fundamental sequences (16.11) have
closed formulae given as follows: cf. [20, Eqs. (2.1) and (2.3)]; or [14, Eqs. (2.11)–
(2.12)]. Define α := √

β2 − 4x . Then, for all n ≥ 1, and with q0(x, β) = 0,

qn(x, β) = 2−n

α

(
(β + α)n − (β − α)n

) ;wn(x, β) = qn(x, β) − xqn−1(x, β).

(16.13)
The formula for wn follows from that of qn , for n ≥ 1, since q1 − xq0 = 1 = w1,

and q2 − xq1 = β − x = w2.
We need some additional notation to describe our method as follows. For any

pair of integers m, n ∈ (−N , N ) with m 
= n, we define the following first passage
length for the process {X j } that starts at X0 = m:
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Lm,n := inf{ j ≥ 1 : X j = n or |X j | = N }. (16.14)

For any starting level, X0 = m, let ΓΓΓ m,n := {X j , j = 0, . . . , Lm,n} denote the ordi-
naryfirst passagepath from levelm to either leveln or to theboundaryof thegambler’s
ruin process. For our key definition (16.15), additional conditions are placed on the
first passage path to make it one-sided.

Denote by Rm,n the number of runs and by Vm,n the number of short runs, respec-
tively, along ΓΓΓ m,n , where Lm,n denotes the number of steps along this path. For
n > m, define gm,n = gm,n(a, b) as the following upward conditional joint proba-
bility generating function for these counting statistics given two conditions on the
path: (1) The path is a one-sided first passage path that starts at m and stays at or
above level m until it reaches level n, and (2) the first two steps of this path are both
in the positive direction. If still n > m, then we also define the analogous downward
conditional joint generating function gn,m :

gm,n := E(rRm,n yVm,n zLm,n |ε1 = ε2, X0 = m, X j ≥ m, j = 0, . . . , Lm,n).

gn,m := E(rRn,m yVn,m zLn,m |ε1 = ε2, X0 = n, X j ≤ n, j = 0, . . . , Ln,m). (16.15)

The condition that the first two steps be in the same direction in the definition (16.15)
arises due to the inclusion of the statistic Vm,n in the analysis. The path in Fig. 2 is a
downward, first passage path from level 5 to level 0.

Let n > m. In the formulation of the recurrence for gm,n , we must take account of
the unconditional probability that a first passage from level m to level n remains at
or above the starting level; we must also define the corresponding probability ρn,m ,
as follows.

ρm,n := P(X j ≥ m, j = 0, . . . , Lm,n|X0 = m);
ρn,m := P(X j ≤ n, j = 0, . . . , Ln,m |X0 = n). (16.16)

For a = b = 1
2 , the probability ρn,0 = ρ0,n is determined by the classical solution of

the probability of ruin started from fortune n on the interval [0, n + 1]. For a = b,
ρm,n depends only on k = n − m and is determined by ρm,m+
 = 1

2 (
 − (
 − 1)a)−1,
see [13, Eq. (2.4)].

There are many calculations used to establish various formulae by the help of cer-
tain key definitions. We reserve the phrase direct calculation to mean that computer
algebra (Mathematica [22]) is used to help verify the results. The companion docu-
ment [15] to the present paper provides details of the verifications. In our approach,
the complication of a second stratum is solved by finding the right formulae and then
rendering a proof; we often utilize induction based on the proposed formulae. Our
proofs may be termed elementary, since we use path decompositions to establish
explicit formulae for the conditional generating functions gm,n .

Our method for the full model is to show that the appropriate denominators {wm,n}
of the conditional generating functions gm,n , together with certain singly indexed
numerators {qn}, give rise also to a nice representation of (16.10); see Theorem16.3,
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in which our approach involves conditioning on the height H = n of an excursion.
For the homogeneous case of Proposition16.5, the formula for (16.10) follows in a
standard way of dealing with a finite continued fraction. In the homogeneous case,
an alternative approach based on the format of [10], PropositionV.3, could probably
be devised. Yet we need a closed formula for the one-sided first passage generating
function g0,N to handle the meander in the full model, and this leads us to take an
approach via recurrences proper, not only for gm,n but for wm,n . Accordingly, by
Propositions16.3 and 16.4, we obtain our main results with the help of trigonometric
substitutions and direct calculations.

3 Proofs of the Building Blocks

3.1 Recurrence for gm,n

We first establish the general recurrence relations governing the upward and down-
ward generating functions of (16.15). The condition initial two steps the same on
the trajectory of the lattice path yields immediately that

gm,m+2(a, b) := r z2, gm+2,m(a, b) := r z2, m ≥ 0. (16.17)

The path decomposition of [14] handles runs and steps; here, we extend that approach
for short runs as well. It is convenient to focus on gn,0 with some n ≥ 3; see the
definition (16.15). Fig. 2 is an illustration of one lattice path counted by g5,0.

Let U or D stand for one step up or down, respectively, in a lattice path, and let
(UD)
 be shorthand for UDUD · · · with 
 repetitions of the pattern UD for some

 ≥ 0. Since any downward lattice path from n to 0 must first reach the level m = 1,
we have an initial factor gn,1 in a product formula for gn,0.

Any section of a lattice path for gn,1, which must end in DD, is followed by a
sequence of steps of the form (UD)
UU or by a terminal sequence (UD)
D. To
handle transitions that do not start UU or DD, we introduce:

ω(a, b) := 1 − (1 − a)(1 − b)r2y2z2, k(a, b) := (a + b − ab)/ω(a, b),

τ (a, b) := 1 + (1 − a)(1 − b)r2z2y(1 − y); h(a, b) := τ(a, b)/ω(a, b).
(16.18)

Denote 1 = (1, 1, 1) and evaluation of any function u(a, b) at (r, y, z) by
u(a, b)[r, y, z]. For brevity, we may write ua in place of u(a, a). By (16.18),
k(a, b)[1] = τ(a, b)[1] = 1. Thus, k(a, b) is a probability generating function;
the term h(a, b)/h(a, b)[1] is as well. In our discussion of gn,0, if f ≥ 3, then
ka = k(a, a) accounts for a generating factor for an upward preamble (UD)
 from
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level m = 1, succeeding DD and preceding UU ; in this case, ka = c
∑∞


=0((1 −
a)2r2y2z2)
 = c/ωa , where c = a(2 − a). If instead f = 2 is the change of stratum
parameter, then we obtain k(a, b) in place of ka due to the fact that now a change in
direction at level m = 2 occurs with probability (1 − b) while a change in direction
at level m = 1 occurs with probability (1 − a). To handle the dependence on f , we
define

[a, b]+m :=

⎧
⎪⎨
⎪⎩

(a, a), if m ≤ f − 2

(a, b), if m = f − 1,

(b, b), if m ≥ f ;
[a, b]−n :=

⎧
⎪⎨
⎪⎩

(a, a), if n ≤ f − 1,

(a, b), if n = f,

(b, b), if n ≥ f + 1.
(16.19)

Let us suppose that the continuation of the path after the first downward passage
to level m = 1 is not yet passing into a terminal sequence, so takes the form
(UD)kUU . . . . Starting thus from UU , the path makes an upward first passage
to level n again (or not), and the pattern “up to level n and down to level 1” repeats
for an indefinite number of times, 
 ≥ 0. To handle the probability associated with
the turning of the path downward from a level it will no longer exceed in the future
of the path, or in turning from the bottom level m = 1 to upwards (in the return to
level 1), we define the turning probability at altitude m by

γm :=
{
1 − a, if m ≤ f − 1,

1 − b, if m ≥ f.
(16.20)

By definition (16.16), it now follows that gn,0 = cgn,1λ1,nλ1,n−1 · · · λ1,3zh[a, b]+1 ,

with λ1,n := ∑∞

=0(4γ1γnρ1,nρn,1k[a, b]+1 k[a, b]−n g1,ngn,1)


, or

λ1,n = 1

1 − 4γ1γnρ1,nρn,1k[a, b]+1 k[a, b]−n g1,ngn,1
.

Here, the factor of 4 arises due to the fact that the stationary probabilities for first step
up and down, namely π+ = 1

2 and π− = 1
2 , get replaced by γ1 and γn , respectively, in

ρ1,n and ρn,1. The factor k[a, b]−n takes account of a downward preamble succeeding
UU and preceding DD from the maximum possible level M2 ≥ 3 in the remainder
of the downward lattice path. Here, the successive maximum levels n = M1 ≥ M2 ≥
· · · ≥ Mr over the whole future of the path, determined in turn from the points of
each of its returns to level m = 1 from the previous such maximum, are the future
maxima (cf. [14]) of a downward path from level n ≥ 3 to levelm = 0. See Fig. 2, in
which we have M1 = 5, and M2 = 4, M3 = 3; there is no second future maximum
of level 4, for example, because there is no return to level 1 between the two peaks
at level 4, but instead, we see a downward preamble (DU )1 at M2. By definition, we
have Mr ≥ 3, and the downward path goes into a terminal sequence after a return to
level 1 from Mr ; the terminal sequence is of form (UD)k D; see Fig. 2. Eventually,
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in the beginning, the path will never rise to level n again, but to lower future maxima
at levels 3 ≤ m ≤ n − 1; thus, the product λ1,nλ1,n−1 . . . λ1,3. The factor zh[a, b]+1
corresponds to the terminal sequence. Now replace m = 1 by m ≥ 1 for a final
destination level m − 1, to obtain the following downward recurrence relation for
any m < n − 1:

gn,m−1 = czh[a, b]+mgn,m

n∏
j=m+2

λm, j . (16.21)

for a normalization constant c such that gn,m−1[1] = 1. Here, we officially define
λm, j = λm, j (a, b):

λm, j := 1

1 − 4γmγ jρm, jρ j,mk[a, b]−j k[a, b]+mgm, j g j,m
, m + 2 ≤ j. (16.22)

By symmetric arguments, we also obtain the upward recurrence relation for any
m < n − 1:

gm,n+1 = czh[a, b]−n gm,n

n−2∏
j=m

λ j,n, (16.23)

where c denotes a generic normalization constant. Each factor λm,n/λm,n[1] defined
by (16.22) is a probability generating function for a class of paths starting and ending
at the same level n (say), with probability of first step given by the turning probability
(at n). Each path besides the empty path makes a positive number of consecutive
down–up transitions of type “a first passage downward transition to m followed
immediately by a first passage upward transition to n”. See Fig. 3, where a path starts
at level n = 3 at the first marker γn , makes exactly 2 down–up transitions between
n = 3 and m = 0, and ends at the third marker γn . We obtain the same generating
function if the paths instead start and end at m, with up–down transitions.

By (16.21)–(16.23), we retrieve a closed recurrence for gm,n . Indeed, by (16.23),
for m < n − 2, we simply have gm,n+1/gm+1,n+1 = c1gm,nλm,n/gm+1,n, for a nor-
malization constant c1. Hence,

gm,n+1 = c1gm,ngm+1,n+1(gm+1,n)
−1λm,n, n − m ≥ 3. (16.24)

Similarly, by applying (16.21), gn,m−1/gn−1,m−1 = c2gn,mλm,n/gn−1,m, for a normal-
ization constant c2 and m < n − 2. Hence,

gn,m−1 = c2gn,mgn−1,m−1(gn−1,m)−1λm,n, n − m ≥ 3. (16.25)

Observe that the factor λm,n of (16.22), with m + 2 < n, appears exactly the same
in both (16.21) and (16.23), and again in (16.24)–(16.25).

We introduce some notation for the basic method to calculate (16.10), which
consists of conditioning on {H = n}. In the remainder of this section, we assume
f ≥ 3. Let Gn denote the conditional joint probability generating function of the
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Fig. 2 Downward transition with future maxima M1 = 5, M2 = 4, M3 = 3

number of runs, short runs, and steps in an excursion given that the height is H = n
for some 1 ≤ n < N :

Gn := E(rRyVzL|H = n, X0 = 0), n ≥ 1. (16.26)

In definition (16.26), the condition is that after the first step from m = 0, the path
does not return to the x-axis until it terminates, but that also, for a positive excursion,
the path reaches the specified height, n, as a maximum. Now we work with positive
excursions. We consider an initial sequence U (UD)
UU that brings a lattice path
for the first time to level m = 3 while never returning to level m = 0. The joint
generating function for the numbers of runs, short runs, and steps, for only the part
U (UD)
 of this initial sequence is simply Ja := a(2 − a)zha , with ha defined by
(16.18). Now, to make a positive excursion that starts at level m = 0 and reaches a
level n ≥ 3 for a first time, we also consider any upward path Γ +

1,n for g1,n that starts
at levelm = 1 withUU . We link the initial sequenceU (UD)
UU and Γ +

1,n together
by making them overlap on the end UU of the initial sequence and beginning of
Γ +
1,n . Thus, the factor of Gn corresponding to a lattice path first reaching level n ≥ 3

is given by Jag1,n . The remaining factor corresponds to a downward preamble from
level n followed by a downward path from level n to level 0. Hence,

Gn = a(2 − a)zhag1,nk[a, b]−n gn,0, n ≥ 3, f ≥ 3. (16.27)

Moreover, by symmetry, we have g0,−n = g0,n for all n ≥ 2. Hence, the joint gener-
ating function of the meander statistics is:

E{rR ′
N yV

′
N zL

′
N } = a(2 − a)zhag1,N , f ≥ 3. (16.28)

3.2 Formula for ρm,n

In this section, we establish a formula for ρm,n as defined by (16.16). Note that
1 − ρ1,N is the probability of ruin for the gambler’s ruin persistence model with two
strata on [0, N ] in case X0 = 1. The novelty of our approach, based on induction, is
unnecessary if a = b, since by [13] a difference equation will solve the probability
of ruin in this case.
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The method we use to establish a formula is based first on the future maxima con-
struction of Sect. 3.1; only in (16.16), there is no condition on upward or downward
paths starting UU or DD. In place of λm, j of (16.22), here define:

um, j := 1

1 − 4γmγ jρm, jρ j,m
, m + 1 ≤ j. (16.29)

Let m < n. By the way, we developed the formulae (16.21)–(16.23), we have

(i) ρm,n+1 = (1 − γn)ρm,n

n−1∏
j=m

u j,n;

(ii) ρn,m−1 = (1 − γm)ρn,m

n∏
j=m+1

um, j . (16.30)

The factor (1 − γn) in (16.30)(i) gives the probability (a or b) of the last step in any
one-sided first passage path from level m to level n; a similar comment applies to
(16.30)(ii). See Fig. 3. By the same method as shown to obtain (16.24)–(16.25), we
have by (16.29)–(16.30) that

(i) ρm,n+1 = ρm,nρm+1,n+1

ρm+1,n
um,n;

(ii) ρn,m−1 = ρn,mρn−1,m−1

ρn−1,m
um,n. (16.31)

With the help of (16.31), we will now develop a closed recurrence for ρm,n . We first
make a definition to establish a convenient form of ρm,n .
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Fig. 3 Illustration of ρ0,n+1 = (1 − γn)ρ0,n
n−1∏
j=0

u j,n for n = 3. For the path shown, u0,n has 2

down–up transitions and u1,n has none, while u2,n has 1 down–up transition

Definition 16.2 Let ρm.n be defined by (16.16). We define a denominator termΠm,n

for ρm,n as follows, with m < n in all cases:

(I) (1) ρm,n = 1
2

b/a
Πm,n

, m ≤ f − 1; (2) ρm,n = 1
2

1
Πm,n

, f ≤ m.

(II) (1) ρn,m = 1
2

b/a
Πn,m

, n ≤ f − 1; (2) ρn,m = 1
2

1
Πn,m

, f ≤ n.
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Proposition 16.1 The terms Πm,n determined by Definition16.2 satisfy:

(I) Between strata formulae:

(1) Π f −
, f + j = j + 
( ba ) − (
 + j − 1)b, 
 ≥ 1, j ≥ 0;
(2) Π f + j, f −
 = ( j + 1) + (
 − 1)( ba ) − (
 + j − 1)b, 
 ≥ 1, j ≥ 0.

(II) Within-stratum formulae:

(1) Πm,m+
 = Πm+
,m = b
a {
 − (
 − 1)a}, m < m + 
 ≤ f − 1;

(2) Πm,m+ j = Πm+ j,m = j − ( j − 1)b, f ≤ m < m + j .

Remark 16.2 If a = b, we have Πm,m+
 = Πm+
,m = 
 − (
 − 1)a in all cases of
Proposition16.1, consistent with Definition16.2 and [13, Eq. (2.4)].

Proof (of Proposition16.1) By Remark16.2, and Definition16.2, the within-stratum
formulae (II)(1), (2) hold in general. The proof of the between strata cases pro-
ceeds by induction on n − m, where we assume n > m throughout. Recall that
the first step ε1 of the gambler’s ruin process is determined by π+ = P(ε j = 1) =
1
2 . We have ρm,m+1 = ρm,m−1 = 1

2 , so the case n − m = 1 is easily checked. We
next verify the cases n − m = 2 for Πm,n and Πn,m in (I)(1), (2). We apply
(16.29)–(16.30) with um,m+1 = (1 − γmγm+1)

−1. Thus, for all m, ρm,m+2 = 1
2

(1 − γm+1)/(1 − γmγm+1). In particular, by (16.20), ρ f −1, f +1 = 1
2b/(1 − (1 − a)

(1 − b)) = 1
2 (b/a)/

(
1 + b

a − b
)
. This gives the correct form for the denominator in

(I)(1) byDefinition16.2(I)(1).We apply direct calculation to check the other between
strata cases. Thus, all the cases n − m = 2 have been verified.

Assumeby induction that all statements of the proposition hold for 2 ≤ n − m ≤ k
for some k ≥ 2. We wish to show the following induction step:

Both (i) : Πm,n+1, and (i i) : Πn,m−1, conform to statements (I)(1) and (I)(2),

respectively, for all m ≤ f − 1 and n ≥ f, with n − m = k + 1. (16.32)

There are two boundary cases,Π f −k−1, f andΠ f +k, f −1, that aren’t covered formally
by this scheme. However, both of these cases actually fall under the within-stratum
regime. For example, in the calculation of ρ f −k−1, f , the one-sided first passage path
from f − k − 1 to f never oscillates between levels f − 1 and f , so the probability
ρ f −k−1, f is governed by a single stratum design. Hence, ρ f −k−1, f = 1

2/(k + 1 −
ka) = 1

2 (b/a)/
{
(k + 1)

(
b
a

) − kb
}
, consistent with (I)(1). For the other boundary

case, by similar reasoning, ρ f +k, f −1 = 1
2/(k + 1 − kb), consistent with (I)(2). So

the boundary cases have been resolved for all k.
We proceedwith our argument for establishing (16.32). By our ranges form and n,

we have γm = 1 − a and γn = 1 − b throughout. By Definition16.2(I), we compute
um,n by (16.29) under (16.32) as follows.

um,n =
{
1 − γmγn

b/a

Πm,nΠn,m

}−1

= Πm,nΠn,m

Πm,nΠn,m − γmγn(b/a)
. (16.33)
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Nowwritem = f − 
 and n = f + j for some 
 ≥ 1 and j ≥ 0with 
 + j = k ≥ 2.
By the induction hypothesis, we canwriteΠm,n = j + 
( ba ) − (
 + j − 1)b and also
Πn,m = ( j + 1) + (
 − 1)( ba ) − (
 + j − 1)b. Now, by direct calculation, we have
a simple identity for the denominator of the right-hand side of (16.33):

Πm,nΠn,m − γmγn(b/a) =
{
j + 1 + 
(

b

a
) − (
 + j)b

}
Πm+1,n, (16.34)

where we applied the induction hypothesis forΠm,n ,Πn,m , andΠm+1,n . Now rewrite
(16.31)(i) by applying Definition16.2 and (16.33)–(16.34), as follows. We have that
ρm,n+1 is given by:

[
1
2b/a

Πm,n

][
1
2b/a

Πm+1,n+1

][
1
2b/a

Πm+1,n

]−1
Πm,nΠn,m{

j + 1 + 
( ba ) − (
 + j)b
}
Πm+1,n

,

(16.35)

with the caveat that if m + 1 = f , then the factor b/a in the second and third fac-
tors on the left is replaced by 1. Finally, we use that, by the induction hypothesis
and all statements of the proposition themselves, we have Πm+1,n+1 = Πn,m for all
n > m under (16.32). Therefore, simply by cancelation of 3Π–factors, (16.35) yields

ρm,n+1 = 1
2 b/a{ j+1+
( b
a )−(
+ j)b} .Thus, byDefinition16.2(I)(1), the induction step (16.32)

has been verified for case (i). The argument for the downward case (ii) is wholly sim-
ilar to the upward case (i). In fact by direct calculation, the relevant identity in place
of (16.34) is the same except with Πn−1,m, in place of Πm+1,n . And in (16.35), the
roles of b/a and 1 are reversed. Thus, ρ f + j, f −
−1 = 1

2/
{
j + 1 + 
( ba ) − (
 + j)b

}
,

as required. Therefore, the induction step (16.32) has been verified.

3.3 The Denominators wm,n of gm,n

Wefirst consider the homogeneous case a = b and establish formulae for the denom-
inators w∗

n(a) of g0,n(a, a) defined by (16.15), where of course gm,n(a, a) depends
only on |n − m|. We will abbreviate gn := g0,n without confusion for this homoge-
neous case. Denote ρn := ρ0,n = 1

2/(n − (n − 1)a), by Definition16.2 and Propo-
sition16.1, and λn := λm,m+n = {1 − 4(1 − a)2k2aρ

2
n g

2
n}−1, defined by (16.22). By

(16.24), we have

gn+1 = c1g
2
ng

−1
n−1λn, n ≥ 3; g3 = czhag2λ2. (16.36)

We now establish that, for a certain sequence of polynomials

{w∗
n(a) = w∗

n(a; r, y, z), n ≥ 1},
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with constant coefficient 1, we have

gn = Cn,aωar z
nτ n−2

a /w∗
n(a), n ≥ 2; Cn,a := an−2(n − (n − 1)a)/(2 − a).

(16.37)
The proposed formula (16.37) holds for n = 2 with w∗

2(a) := ωa , since C2,a = 1.
We also define w∗

1(a) := 1. Motivated by the idea that w∗
n(a) satisfies a Fibonacci

recurrence, we introduce

xa := a2z2τ 2
a ; βa := 1 + z2(a2 − (1 − a)2r2(y2 + a2(1 − y)2z2)), (16.38)

and we define
w∗
n+1(a) = βaw

∗
n(a) − xaw

∗
n−1(a), n ≥ 2. (16.39)

The form of (16.38) used to make the definition (16.39) may be guessed by taking
account of (16.12) together with the proposed form (16.37). That is, we already have
defined w∗

1(a) and w∗
2(a), consistent with (16.37), and we can derive g3 via (16.36).

So we will have thereby guessed w∗
3(a). We can likewise predict w∗

4(a). But (16.12)
gives that the appropriate xa for (16.39) is

xa = (
w∗
3(a)2 − w∗

4(a)w∗
2(a)

)
/
(
w∗
2(a)2 − w∗

3(a)w∗
1(a)

)
.

Once we have xa , we find βa via (16.39), and we also extend the definition (16.39)
to n = 0 by solving (16.39) backward: w∗

0(a) := (βa − ωa)/xa . We define also
the associated numerators {q∗

n (a)} defined by the Fibonacci recurrence q∗
n+1(a) =

βaq∗
n (a) − xaq∗

n−1(a), n ≥ 1, with initial conditions

q∗
0 (a) := −(1 − y)(1 + y + (1 − a)2r2y2z2(1 − y))/τ 2

a , q∗
1 (a) := y2. (16.40)

By the choice of q∗
1 (a), we obtain the form K1 = r2z2q∗

1 (a)/w∗
1(a) for (16.10). By

the choice of q∗
0 (a), we obtain by direct computation an interlacing form w∗

n+1q
∗
n −

w∗
nq

∗
n+1 = a2z2xn−1

a at n = 0. By direct computation to check the initial conditions
for Fibonacci recurrences, we have:

q∗
n (a) = c1qn(xa, βa) + c2wn(xa, βa), c2 := q∗

0 (a), c1 = y2 − c2;
w∗
n(a) = c′

1qn(xa, βa) + c′
2wn(xa, βa), c′

2 := w∗
0(a), c′

1 = 1 − c′
2. (16.41)

We first verify (16.37) for n = 3. By (16.18) and (16.23), we have g3 =
czhag2λ2 = cz(τa/ωa)r z2(1 − a2(1 − a)2r2z4/ω2

a)
−1, since ρ2 = 1

2/(2 − a) and
ka = a(2 − a)/ωa . This yields g3 = C3,aωar z3τa/w∗

3(a), by direct computation.
Now assume by induction that (16.37) holds with m in place of n for all 2 ≤
m ≤ n, for some n ≥ 3. Then by (16.36), we have gn+1 = cn+1[ωar znτ n−2

a /w∗
n]2

[ωar zn−1τ n−3
a /w∗

n−1]−1λn , where cn+1 incorporates both the constant c1 of (16.36)
and the factor C2

n,a/Cn−1,a . By direct substitution of the induction hypothesis, and
taking care to write the term g2n that appears in λn in terms of xa via τ 2

a = a−2z−2xa ,
so that
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λn = (
1 − a2(1 − a)2r2z4xn−2

a /w∗
n(a)2

)−1
,

we obtain

gn+1 = cn+1ωar z
n+1τ n−1

a w∗
n−1(a)/{w∗

n(a)2 − a2(1 − a)2r2z4xn−2
a }. (16.42)

To compute the denominator in this last expression, we note the following.

Lemma 16.1 Let w∗
n(a) be defined as the solution to (16.39). Then for all n ≥ 1, we

have: w∗
n(a)2 − w∗

n+1(a)w∗
n−1(a) = a2(1 − a)2r2z4xn−2

a .

Proof By the definition (16.39) and by (16.12), we have:

w∗
n(a)2 − w∗

n+1(a)w∗
n−1(a) = −β−1

a xn−1
a (w∗

3(a)w∗
0(a) − w∗

2(a)w∗
1(a)). (16.43)

By direct calculation,w∗
3(a)w∗

0(a) − w∗
2(a)w∗

1(a) = −a2r2z4(1 − a)2βa/xa .Hence,
the lemma follows by substitution of this last formula into (16.43).

Up to the form of the constant Cn,a , relation (16.37) now follows by induction
from (16.42) and Lemma16.1. To verify the constant, we need only verify the claim:
w∗
n(a)[1] = an−1(n − (n − 1)a). This is easily verified by induction, (16.39), and

direct computation. Hence, we have verified (16.37).
Now turn to the full model. We recursively define an array of functions {wm,n =

wm,n(a, b)} such that wm,n will turn out to be the denominator polynomial with
constant term 1 for the rational expression of gm,n . We first define initial cases:

wm,m+2 := ω[a, b]+m, m ≥ 0; wn,n−2 := ω[a, b]−n , n − 2 ≥ 0;
wm,m+1 = wm+1,m = 1, m ≥ 0. (16.44)

For example, if m ≤ f − 2, then [a, b]+m = (a, a), so wm,m+2 := ωa . We require a
generalization of xa, and βa of (16.38) to make our definition of {wm,n} for two
strata, as follows. Define

x(a, b) := b2z2τ 2(a, b); β(a, b) = βb − (b − a)b2(1 − b)r2(1 − y)2z4. (16.45)

for βb defined by (16.38). Here, we note that τ(a, b) is symmetric in a and b, so
x(b, a) = a2z2τ 2(a, b) for τ(a, b) defined by (16.18).

Definition 16.3 Denote wm,n = wm,n(a, b).

(I) Define the upward denominator wm,n for all n − m ≥ 2 by:

(1) wm,m+
 := w∗

 (a), m < m + 
 ≤ f ; wm,m+
 := w∗


 (b), f ≤ m < m + 
;
(2) w f −
, f +1 := 1−b

1−a w
∗

+1(a) + b−a

1−a w
∗

 (a), 1 ≤ 
 ≤ f ;

(3) wm, f +2 := β(a, b)wm, f +1 − x(a, b)wm, f , m ≤ f − 1;
(4) wm, f + j+1 := βbwm, f + j − xbwm, f + j−1, m ≤ f − 1, j ≥ 2.
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(II) Define the downward denominator wn,m for all n − m ≥ 2 by:

(1) wm+
,m := w∗

 (a), m < m + 
 ≤ f − 1; wm+
,m := w∗


 (b), f − 1 ≤ m;
(2) w f + j, f −2 := 1−a

1−bw
∗
j+2(b) + a−b

1−bw
∗
j+1(b), 0 ≤ j ;

(3) wn, f −3 := β(b, a)wn, f −2 − x(b, a)wn, f −1, f ≤ n;
(4) wn, f −
−2 := βawn, f −
−1 − xawn, f −
, f ≤ n, 
 ≥ 2.

Notice that in Definition16.3(II), we are effectively reversing the roles of a and
b from (I). In case a = b, we simply have wm,n = w∗

|n−m|(a), |n − m| ≥ 2.
Wewrite the first step of crossing over the threshold of the stratum in either upward

or downward directions as a linear combination of two successive homogeneous case
solutions. For the next step over the threshold, we use the mixed parameters for x
and β, and for further steps, we use the appropriate homogeneous parameters for x
and β. With no crossing over a stratum, the homogeneous solution is shown. Finally,
Definition16.3 and (16.44) are consistent. For example, in part (I)(2) of the definition,
we find:

w f −1, f +1 = 1 − b

1 − a
w∗
2(a) + b − a

1 − a
w∗
1(a) = 1 − b

1 − a
ω(a, a) + b − a

1 − a
= ω(a, b).

3.3.1 Interlacing Identity and Closed Formula for wm,n

To establish a formula for gm,n , we will employ an interlacing identity for the denom-
inators wm,n . Define the interlacing bracket:

[w]m,n := wm,nwm+1,n+1 − wm,n+1wm+1,n, m ≤ n − 2. (16.46)

It actually suffices to consider only the upward direction for [w]m,n , since by
Lemma16.2, the natural corresponding downward definition,

[w]n,m := wn,mwn−1,m−1 − wn,m−1wn−1,m, m ≤ n − 2,

satisfies [w]n,m = [w]m,n.

Proposition 16.2 The following identities hold for [w]m,n:

(1) [w] f −
, f + j = a2r2z4(1 − a)(1 − b)x
−2
a x(a, b)x j−1

b , 
 ≥ 2, j ≥ 1;
(2) [w] f −
, f = a2r2z4(1 − a)(1 − b)x
−2

a , 
 ≥ 2;
(3) [w] f −1, f + j = b2r2z4(1 − a)(1 − b)x j−1

b , j ≥ 1;
(4) [w]m,m+
 = a2r2z4(1 − a)2x
−2

a , m + 
 ≤ f − 1;
(5) [w]m,m+ j = b2r2z4(1 − b)2x j−2

b , f ≤ m, j ≥ 2.

Proof By Definition16.3(I)(1) and by Lemma16.1, we have that statements (4)–(5)
of the proposition hold. Next fix 
 ≥ 2 and notice that the case j = 0 in (1) is similar
to the case of statement (2), the difference being x(a, b) 
= xb. We will first verify
(2). Thus, we write, using the Definition16.3 and (16.46), that [w] f −
, f is given by:
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w∗

 (a){1 − b

1 − a
w∗


 (a) + b − a

1 − a
w∗


−1(a)} − {1 − b

1 − a
w∗


+1(a) + b − a

1 − a
w∗


 (a)}w∗

−1(a).

(16.47)

The w∗

 (a)w∗


−1(a) terms cancel in (16.47). Thus, by (16.47) and Lemma16.1,
[w] f −
, f = 1−b

1−a

(
w∗


 (a)2 − w∗

+1(a)w∗


−1(a)
) = a2(1 − a)(1 − b)r2z4x
−2

a . Hence,
statement (2) is proved.

We now turn to statement (1). Fix 
 ≥ 2 and let j ≥ 0. Denote [a, b]0 = (a, b)
and [a, b] j = (b, b) for j ≥ 1. Thus, by Definition16.3(I)(3)–(4) and (16.46),

[w] f −
, f + j+1 = w f −
, f + j+1
{
β[a, b] jw f −
+1, f + j+1 − x[a, b] jw f −
+1, f + j

}

− {
β[a, b] jw f −
, f + j+1 − x[a, b] jw f −
, f + j

}
w f −
+1, f + j+1.

(16.48)
Now the terms of (16.48) involving β[a, b] j cancel, and we obtain from (16.48) and
(16.46) that

[w] f −
, f + j+1 = x[a, b] j [w] f −
, f + j . (16.49)

Now put j = 0 in (16.49) and conclude by (2) and (16.49) that statement (1) holds
for the initial case j = 1 for the given fixed 
 ≥ 2. Now for the same fixed index 
,
take statement (1) as an induction hypothesis for induction on j ≥ 1. We have just
established this induction hypothesis for j = 1. Thus, verify by (16.49) again that
the induction step holds since x[a, b] j = x(b, b) = xb for all j ≥ 1. Thus, statement
(1) is proved.

Finally, we turn to statement (3). We note that (16.48)–(16.49) continue to hold
by Definition16.3(I)(3) with 
 = 1 as long as j ≥ 1. Now we compute by (16.44)–
(16.45), Definition16.3(I)(3), and the interlacing bracket definition (16.46) that,
since by (16.44), w f −1, f +1 = ω(a, b), while by Definition16.3, w f, f +2 = w∗

2(b) =
ω(b, b),

[w] f −1, f +1 = ω(a, b)ω(b, b) − (β(a, b)ω(a, b) − x(a, b) · 1) · 1
= ω(a, b) (ω(b, b) − β(a, b)) + x(a, b) = b2(1 − a)(1 − b)r2z4,

(16.50)

where at the last step, we make a direct calculation based on the definitions in
(16.18) and (16.45). Now take statement (3) as an induction hypothesis for induction
on j ≥ 1. By (16.50) have established this induction hypothesis for j = 1. Thus,
verify by (16.49) with 
 = 1 and j ≥ 1 that the induction step holds since x[a, b] j =
x(b, b) = xb for all j ≥ 1. So, statement (3) is proved.

We turn to the task of obtaining a closed formula forwm,n . ByDefinition16.3(I)(4),
given m = f − 
 < f , wm, f +1 and wm, f +2 form the initial conditions for a recur-
rencewm, f + j+1 := βbwm, f + j − xbwm, f + j−1, j ≥ 2. Putm = f − 
 for some 
 ≥ 1.
We denote the vector of these upward initial conditions across the stratum threshold
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by the 2 × 1 vector W(
). Then we define a 2 × 2 matrix Q(b), and for each 
 < f ,
a 2 × 1 vector d = d(
) by

Q(b) :=
[
q∗
1 (b) w

∗
1(b)

q∗
2 (b) w

∗
2(b)

]
, W(
) :=

[
w f −
, f +1

w f −
, f +2

]
= Q(b)d; d :=

[
d1(
)
d2(
)

]
.

(16.51)
By Definitions16.3(I)(1–3), we can write each term of the right side of the recur-
rence of (I)(3) using (I)(1–2) in terms of w∗


 (a) and w∗

+1(a) as follows: w f −
, f +1 =

1−b
1−a w

∗

+1(a) + b−a

1−a w
∗

 (a) and w f −
, f = w∗


 (a), so

w f −
, f +2 = β(a, b)

(
1 − b

1 − a
w∗


+1(a) + b − a

1 − a
w∗


 (a)

)
− x(a, b)w∗


 (a).

We combine terms with the notation κ(a, b) := (
b−a
1−a

)
β(a, b) − x(a, b). Thus,

W(
) = B

[
w∗


 (a)

w∗

+1(a)

]
; B =

[ b−a
1−a

1−b
1−a

κ(a, b) 1−b
1−aβ(a, b)

]
. (16.52)

By equating the two expressions for the vector W(
) in (16.51) and (16.52), we
recover

d(
) =
[
d1(
)
d2(
)

]
= M

[
w∗


 (a)

w∗

+1(a)

]
; M := Q(b)−1B. (16.53)

Here, it is clear that the entries of the matrix M = (
μi, j

)
, with μi, j = μi, j (a, b)

1 ≤ i, j ≤ 2, do not depend on 
. We note by direct calculation from (16.51) that
det (Q(b)) = −b2z2, so we have a straightforward formula for M via (16.51) and
(16.53).

Proposition 16.3 Let d1(
) and d2(
) be defined by (16.51)–(16.53). Then

w f −
, f + j = d1(
)q
∗
j (b) + d2(
)w

∗
j (b), 
 ≥ 1, j ≥ 1. (16.54)

Proof Fix 
 ≥ 1. By Definition16.3(I)(4), for all j ≥ 2 it holds that w f −
, f + j+1 =
βbw f −
, f + j − xbw f −
, f + j−1. But if we denote the right side of (16.54) by v j , then
also v j+1 = βbv j − xbv j−1, j ≥ 2, because by construction each of {q∗

j (b)} and
{w∗

j (b)} satisfy the same two-term recurrence, and the coefficients d1(
) and d2(
)
in (16.54) are independent of j . Also by definition (16.51), for any given 
 ≥ 1,
(16.54) holds for j = 1 and j = 2, that is, v j = w f −
, f + j , j = 1, 2. Hence, we have
v j = w f −
, f + j for all j ≥ 1. Since 
 was arbitrary, the proof is complete.

Lemma 16.2 For all 1 ≤ m < n, there holds: wm,n = wn−1,m−1.

Proof Notice that the lemma holds in the initial cases n − m = 1, 2 by (16.44). Also,
if f ≤ m < n or 1 ≤ m < n ≤ f , then the statement holds by (I)(1) and (II)(1) in
Definition16.3. So consider now w f −
, f + j for 1 ≤ 
 < f and j ≥ 1. Our method
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is to prove that the statement: (H)
, j: w f −
, f + j = w f + j−1, f −
−1, holds for both the
initial cases 
 = 1 and 
 = 2, and all j ≥ 1.

We first establish (H)
, j for 
 = 1 and all j ≥ 1. On the one hand, write
w f −1, f + j by (16.54) with 
 = 1, and on the other hand, write w f + j−1, f −2 by
Definition16.3(II)(2), as follows.

w f −1, f+ j = d1(1)q
∗
j (b) + d2(1)w

∗
j (b);w f + j−1, f −2 = 1 − a

1 − b
w∗
j+1(b) + a − b

1 − b
w∗
j (b).

(16.55)
By (16.51), (16.53) and direct calculation, we have that d1(1) = μ1,1w∗

1(a) +
μ1,2w∗

2(a) = −(1 − a)(1 − b)r2z2, and d2(1) = μ2,1w∗
1(a) + μ2,2w∗

2(a) = 1.
Therefore, by substitution into (16.55), we find that the two expressions in (16.55)
are equal if and only if

− (1 − b)2r2z2q∗
j (b) = w∗

j+1(b) − w∗
j (b). (16.56)

By direct computation, we check that (16.56) is true at both j = 1 and j = 2. Thus,
since {q∗

j (b)} and {w∗
j (b)} each satisfy the same Fibonacci recurrence, (16.56) holds

for all j ≥ 1.
Next we establish that (H)
, j holds with 
 = 2 and all j ≥ 1. Write w f −2, f + j by

(16.54) with 
 = 2, and write w f + j−1, f −3 by Definition16.3(II)(3), as follows.

(i) w f −2, f + j = d1(2)q
∗
j (b) + d2(2)w

∗
j (b);

(ii) w f + j−1, f −3 = β(b, a)w f + j−1, f −2 − x(b, a)w f + j−1, f −1, (16.57)

with w f + j−1, f −2 = 1−a
1−bw

∗
j+1(b) + a−b

1−bw
∗
j (b);w f + j−1, f −1 = w∗

j (b). By (16.51) and
(16.53), we directly verify that d1(2) = −(1 − a)(1 − b)r2z2β(b, a); d2(2) =
β(b, a) − x(b, a). To verify that the expressions (i) and (ii) in (16.57) are equal,
we substitute d1(2) and d2(2), and obtain, after a little algebra in which x(b, a)x∗

j (b)
cancels on the two sides, the condition

−(1 − b)2r2z2β(b, a)q∗
j (b) = β(b, a)

(
w∗

j+1(b) − w∗
j (b)

)
, for all j ≥ 1.

This is obviously equivalent to the condition (16.56). Hence, the two expressions in
(16.57) are equal for all j ≥ 1, so (H)
, j holds also at 
 = 2 for all j ≥ 1.

Finally, fix any j ≥ 1. We appeal to (16.53) and (16.54) and to
Definition16.3(II)(4), to obtain, for any 
 ≥ 3,

w f −
, f + j = (
μ1,1w

∗

 (a) + μ1,2w

∗

+1(a)

)
q∗
j (b)

+ (
μ2,1w

∗

 (a) + μ2,2w

∗

+1(a)

)
w∗

j (b);
w f + j−1, f −
−1 = βaw f + j−1, f −
 − xaw f + j−1, f −
+1. (16.58)

For any 
 ≥ 1, write u
 := w f −
, f + j and v
 := w f + j−1, f −
−1 for the two lines of
(16.58). Since u
 is a linear combination of two successive terms of the sequence
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{w∗

 (a)}, it follows that,{u
} itself satisfies the recursion u
+1 = βau
 − xau
−1, 
 ≥

2. But also {v
} satisfies the same recurrence. Moreover, we proved that (H)
, j holds
for 
 = 1 and 
 = 2, sowe have u1 = v1, and u2 = v2. Therefore, we have u
 = v
 for
all 
 ≥ 1. Thus, by (16.58), (H)
, j is proved for all 
 ≥ 1. Since j ≥ 1 was arbitrary,
(H)
, j is true for all 
, j ≥ 1.

Lemma 16.3 The following identities hold.

(1) w f −
, f + j [1] = a
b j−1Π f −
, f + j , for all 
 ≥ 1, j ≥ 1.
(2) w f + j, f −
[1] = a
−1b jΠ f + j, f −
, for all 
 ≥ 2, j ≥ 0.
(3) q∗


 (a)[1] = 
a
−1, w∗

 (a)[1] = a
−1 (
 − (
 − 1)a); for all 
 ≥ 1.

Proof At (r, y, z) = 1, we haveβa = 2a and xa = a2. Thus,α = 0 in (16.13). There-
fore by (16.13), q∗


 (a)[1] = limα→0
2−


α
{(2a + α)
 − (2a − α)
} = 
a
−1. Thus, by

the second formula of (16.13), we obtain w∗

 (a)[1] by xa[1] = a2, so (3) is proved.

Nowapply (16.54), also at (r, y, z) = 1. By (16.53) and direct calculation, d1(
)[1] =
−(1 − a)(1 − b)
a
−1, and d2(
)[1] = a
−1[
 − (
 − 1)a]. Now plug in q∗

j (b)[1]
and w∗

j (b)[1] from (3), into (16.54) to obtain formula (1) from Proposition16.3 after
direct simplification. The proof of (2) follows from (1) and Lemma16.2, in view of
Definition16.2.

3.4 Closed Formula for gm,n

Proposition 16.4 We have the following formulae for gm,n.

(I) The formulae for upward between-strata cases, j ≥ 1 and 
 ≥ 2:

(1)
g f −
, f + j = ω(a,a)

2−a r z j+
τ (a, b)[aτ(a, a)]
−2[bτ(b, b)] j−1

× (
aΠ f −
, f + j/w f −
, f + j

)
,

(2) g f −1, f + j = ω(a,b)
a+b−ab r z

j+1[bτ(b, b)] j−1
(
aΠ f −1, f + j/w f −1, f + j

)
;

(II) The formulae for downward between-strata cases, j ≥ 1 and 
 ≥ 2:

(1)
g f + j, f −
 = ω(b,b)

2−b r z j+
τ (a, b)[aτ(a, a)]
−2[bτ(b, b)] j−1

× (
aΠ f + j, f −
/w f + j, f −


)
,

(2) g f, f −
 = ω(a,b)
a+b−ab r z


[aτ(a, a)]
−2
(
aΠ f, f −
/w f, f −


)
;

(III) The formulae for within-stratum cases:

(1) gm,m+
 = gm+
,m = ω(a,a)

2−a r z
[aτ(a, a)]
−2
(
a
bΠm,m+
/w∗


 (a)
)
,

m < m + 
 ≤ f − 1;
(a) g f −
, f = ω(a,a)

2−a r z
[aτ(a, a)]
−2
(
a
bΠ f −
, f /w∗


 (a)
)
, 
 ≥ 1;

(2) gm,m+ j = gm+ j,m = ω(b,b)
2−b r z j [bτ(b, b)] j−2

(
Πm,m+ j/w∗

j (b)
)

,

f ≤ m < m + j ;

(a) g f + j, f −1 = ω(b,b)
2−b r z j+1[bτ(b, b)] j−1

(
Π f + j, f −1/w∗

j+1(b)
)
, j ≥ 1.
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Furthermore, the following identity holds for all n ≥ m + 2, where λm,n is defined
by (16.22).

λm,n = wm,nwm+1,n+1

wm,n+1wm+1,n
. (16.59)

Remark 16.3 Since τ(a, b)[1] = 1 for all a and b, one easily checks by Defini-
tion16.2 and Lemma16.3 that the formulae of Proposition16.4 all yield the evalua-
tion gm,n[1] = 1. The factor Πm,n appears in Lemma16.3 the same as it does in the
statements (I)–(II), so these factors cancel at 1.

Remark 16.4 All formulae in (III) hold by (16.37) for the homogeneous case. For
example, in the statement (III)(1), we have a

bΠm,m+
 = 
 − (
 − 1)a, so there is no
dependence on b.

Proof (of Proposition16.4) Recall by (16.17) that gm,m+2 = gm+2,m = r z2. One can
easily check by Definitions16.2 and (16.44) that in each of (I)(1) with j = 1, and
(II)(2) with 
 = 2, the formulae reduce to r z2. By (16.24)–(16.25), wemust calculate
a term λm,n defined by (16.22). The term λm,n is the same in both (16.24) and (16.25),
so we only consider m < n in (16.22). The structure of the proof is to first establish
(16.59) for n = m + 2 and to establish the initial cases n − m = 3 of the statements
(I)–(II) of the proposition. Following this, an induction step will be established for
all cases at once, wherein an inductive step for (16.59) shall be the main stepping
stone of the proof.

Thus, consider first n := m + 2 in (16.22). We consider 4 cases: (i) n ≤ f − 1;
(ii) m = f − 2, n = f ; (iii) m = f − 1, n = f + 1; (iv) m ≥ f . We verify by
(16.18)–(16.20), Definition16.2, Propositions16.1, 16.2, and direct calculation, that

in all cases (i)–(iv), λm,n = ω[a,b]+mω[a,b]+m+1

ω[a,b]+mω[a,b]+m+1−[w]m,n
. Verification of this initial identity

by direct calculation suffices for (16.59), since for the numerator we have by (16.44)
that wm,n = ω[a, b]+m and wm+1,n+1 = ω[a, b]+m+1, and since for the denominator,
we have by definition (16.46) that wm,nwm+1,n+1 − [w]m,n = wm+1,nwm,n+1.

We turn to the initial conditions for (I)–(II). There are again four cases to consider.
We conformwith the notation of (16.21) and (16.23). For the upward cases, we write
the lower index m and the upper index m + 3. For the downward cases, we write the
upper index m + 2 and the lower index m − 1. The cases are (I.1) m = f − 2, m +
3 = f + 1; (I.2)m = f − 1, m + 3 = f + 2; (II.1)m + 2 = f + 1, m − 1 = f −
2; (II.2)m + 2 = f, m − 1 = f − 3.Weusedirect calculationof gm,m+3 or gm+2,m−1

for the upward and downward cases, respectively. Besides the formulae (16.21) and
(16.23), we use λm,m+2 given by (16.59), where wm+1,m+2 = 1 by definition (16.44).
Since the denominator ofλm,m+2 in each case iswm,m+3 = wm+2,m−1 by Lemma16.2,
we compute pm,m+3 := (1/c)gm,m+3wm,m+3 and pm+2,m−1 := (1/c)gm+2,m−1wm,m+3

in the upwards and downwards cases, respectively. Schematically, since g[1] = 1,
we have p/p[1] = gw/w[1] = numerator/w[1], where numerator stands for the
stated formula without the denominator w. By cancelation of the Π–factors as in
Remark16.3, we match p/p[1] with (numerator/Π)/(w[1]/Π) for verification by
direct calculation.
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We now proceed by induction on all cases of the proposition at once, where we
assume that all statements hold for gm,n and gn,m with 2 ≤ n − m ≤ k, for some k ≥
3. By the above, we have established all the initial cases, k = 3, for this hypothesis;
as noted earlier, the case n − m = 2 is trivial.We now apply the formulae (16.24) and
(16.25) to establish an induction step in each of the upward (I)(1), (2) and downward
(II)(1), (2) cases, respectively. We are allowed to use any of the statements of (III)
by Remark16.4. Notice that for the range of indices we must now consider, in all
cases n ≥ f and m ≤ f − 1, so by (16.20), γmγn = (1 − a)(1 − b).

Consider first (I)(1). Let first (i) n + 1 = m + k + 1, for some m ≤ f − 2 and
n ≥ f + 1; there is another subcase (ii) n = f that we handle as a special case by
direct calculation below. We rewrite (16.24) for easy reference:

gm,n+1 = c1gm,ngm+1,n+1(gm+1,n)
−1λm,n.

In the definition (16.22), we have by (16.18)–(16.20) that k[a, b]+m = k(a, a) =
a(2−a)

ω(a,a)
, k[a, b]−n = k(b, b) = b(2−b)

ω(b,b) . Also, by Definition16.2 and Proposition16.1,

4ρm,nρn,m = (b/a)

Πm,nΠn,m
= ab

(aΠm,n)(aΠn,m)
. Therefore by (16.22) and the induction

hypothesis (I)(1), for gm,n , and (II)(1), for gn,m , the expression (†) 1 − 1/λm.n , is
written as

γmγnab(
aΠm,n

) (
aΠn,m

) ab(2 − a)(2 − b)

ω(a, a)ω(b, b)
gm,ngn,m

= γmγna2r2z2 j+2
b2τ 2(a, b)[a2τ 2
a ]
−2[b2τ 2

b ] j−1

wm,nwn,m
.

(16.60)

Now apply (16.38) and (16.45) to write xa , x(a, b) = b2z2τ 2(a, b), and xb, using all
but 4 powers of z. So the numerator of the right member of (16.60) is simply the inter-
lacing bracket [w]m,n of Proposition16.2(1). Thus, after writing wn,m = wm+1,n+1

by Lemma16.2, and applying the bracket definition (16.46), we have established
that (†) is given by wm,nwm+1,n+1−wm,n+1wm+1,n

wm,nwm+1,n+1
, so (16.59) holds. Finally, apply (16.24)

and the induction hypothesis (I)(1) and (16.59). Since the lower index m + 1 is
the same in both the numerator and denominator of the ratio gm+1,n+1/gm+1,n ,
we obtain, by (I)(1) for m + 1 ≤ f − 2, or by (I)(2) for m + 1 = f − 1, that
gm+1,n+1/gm+1,n = cz[bτ(b, b)]wm+1,n/wm+1,n+1. Thus,

gm,n+1 = c1
gm,ngm+1,n+1

gm+1,n

wm,nwm+1,n+1

wm,n+1wm+1,n
= cz[bτ(b, b)] (gm,nwm,n

)
/wm,n+1.

Hence, by plugging in the numerator pm,n := gm,nwm,n (ignoring the constants) from
the induction hypothesis for (I)(1), the induction step for (I)(1)(i), including (16.59),
is complete by Remark16.3.
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To recapitulate, in general, there are two steps, where for the upward and down-
ward cases we conform to the recurrences (16.24) and (16.25), respectively.

1. Establish (16.59) by showing that the numerator in the analogue of the right-hand
member of (16.60) gives a bracket [wm,n] = [wn,m] from Proposition16.2, for the
parameters m, n of λm,n .

2. Establish that when the induction hypothesis is applied, the condition

(u)
pm,n pm+1,n+1

pm,n[1]pm+1,n+1[1] − pm+1,n pm,n+1

pm+1,n[1]pm,n+1[1] = 0,

is verified for (I), and condition

(d)
pn,m pn−1,m−1

pn,m[1]pn−1,m−1[1] − pn−1,m pn,m−1

pn−1,m[1]pn,m−1[1] = 0,

is verified for (II).

For all the remaining cases of the induction steps in (I)–(II), including the subcase
(I)(1)(ii), we proceed by direct calculation to check the details of these 2 Steps.

In Step 1, it is implicit that the factors of ω(a, b) that occur variously by sub-
stitution from factors k(a, b) in the formula for λm,n , and also from the numera-
tors of gm,n and gn,m , cancel one another in every case. This is borne out in the
direct calculations, where the pattern of substitutions from the induction hypoth-
esis is shown. By Remark16.3, conditions (u)–(d) are equivalent to showing, for
the ratio pm+1,n+1

pm+1,n
= czτ , in the upward case, or pn−1,m−1

pn−1,m
= czτ , in the downward

case, that the factor of zτ completes the form of the numerator pm,n+1 [respectively
pn,m−1] as one extra factor of the numerator form pm,n [respectively pn,m]. Here, the
factor τ depends on subcases; it is τ(a, b) in subcases (I)(1)(ii), and in (II)(1)(ii):
n ≥ f + 2, m = f − 1.We show the pattern of substitutions for (u)–(d) in the direct
calculations [15].

3.5 Generating Function of the Excursion Statistics

We derive a closed formula for KN (a, b) of (16.10). Recall by (16.41) that {q∗
n (a)}

and {w∗
n(a)} share a common Fibonacci recurrence: vn+1 = βavn − xavn−1, n ≥ 1.

We extend the {q∗
n (a)} from the homogeneous model to the full model as {qn},

analogous to {w0,n} of Definition16.3, except with qn we start the stratum crossing
at index n = f rather than n = f + 1.

Definition 16.4 Define qn for all n ≥ 1 by:

(1) qn := q∗
n (a), 1 ≤ n < f ;

(2) q f := 1−b
1−a q

∗
f (a) + b−a

1−a q
∗
f −1(a);

(3) q f +1 := β(a, b)q f − x(a, b)q f −1;
(4) q f + j+1 := βbq f + j − xbq f + j−1, j ≥ 1.
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Denote the single indexed bracket (cf. Casorati determinant, see [11])

[w, q]n := wn,0qn+1 − qnwn+1,0, n ≥ 1; (16.61)

We note that the homogeneous case of (16.61) is written as

[w∗(a), q∗(a)]n := w∗
n(a)q∗

n+1(a) − q∗
n (a)w∗

n+1(a), n ≥ 1.

Lemma 16.4 The following identities hold:

(1) [w∗(a), q∗(a)]n = a2z2xn−1
a , n ≥ 1;

(2) [w, q] f −1 = 1−b
1−a [w∗(a), q∗(a)] f −1 = 1−b

1−a a
2z2x f −2

a ;

(3) [w, q] f + j−1 = 1−b
1−a a

2z2x f −2
a x(a, b)x j−1

b , for all j ≥ 1.

Before we can prove Lemma16.4, we write a formula for qn as follows.

Lemma 16.5 Let M := Q(b)−1B, for Q(b) defined by (16.51) and B defined by
(16.52). Then,

q f + j−1 = [
q∗
j (b) w

∗
j (b)

]
M

[
q∗
f −1(a)

q∗
f (a)

]
, for all j ≥ 1. (16.62)

Proof The proof is almost the same as the proof of Proposition16.3. Define Q(b)
as before in (16.51), but write now a revision Wq( f ) of W(
), and write Wq( f ) in
two ways as follows.

Wq( f ) :=
[
q f

q f +1

]
= Q(b)dq( f ); Wq( f ) = B

[
q∗
f −1(a)

q∗
f (a)

]
. (16.63)

We have B given by (16.52), because by Definitions16.3 and 16.4 the equations that
define B in (16.63) are the same as those defining B in (16.52). By equating the two

expressions for the vector Wq( f ) in (16.63), we recover dq( f ) = M

[
q∗
f −1(a)

q∗
f (a)

]
.

Now the formula (16.62) follows because by (16.63) and the definition of Q(b) we
have established the formula for j = 1, 2. Therefore, by the fact that either side of
(16.62) satisfies the same recurrence v j+1 = βbv j − xbv j−1, j ≥ 2, we have that both
sides are equal as stated.

Proof (of Lemma16.4) We first prove statement (1). By the simple fact that {q∗
n (a)}

and {w∗
n(a)} satisfy the same Fibonacci recurrence, we have:

[w∗(a), q∗(a)]n = w∗
n(βaq

∗
n − xaq

∗
n−1) − q∗

n (βaw
∗
n − xaw

∗
n−1) = xa[w∗, q∗]n−1

holds for all n ≥ 1, where we suppressed the a in q∗
n and w∗

n . By direct calculation
from (16.38)–(16.40) and (16.61), [w∗(a), q∗(a)]0 = w∗

0(a)q∗
1 (a) − q∗

0 (a)w∗
1(a) =

a2z2/xa . Therefore, since we may iterate the one-step recursion for [w∗(a), q∗(a)]n ,
we obtain statement (1) of the lemma.
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Next, by Definitions16.3 and 16.4,

[w, q] f −1 = w1, f q f − q f −1w1, f +1

= w∗
f −1

(
1 − b

1 − a
q∗
f + b − a

1 − a
q∗
f −1

)
− q∗

f −1

(
1 − b

1 − a
w∗

f + b − a

1 − a
w∗

f −1

)

= 1 − b

1 − a
[w∗, q∗] f −1.

Therefore, statement (2) of the lemma follows by statement (1).
Finally, note that by Lemma16.2, we have wn,0 = w1,n+1. Further by (16.53) and

Proposition16.3 with 
 = f − 1, we may write

w1, f + j = [
q∗
j (b) w

∗
j (b)

]
M

[
w∗

f −1(a)

w∗
f (a)

]
. (16.64)

Now write n = f + j − 1 for some j ≥ 1. Also for simplicity abbreviate q0 =
q∗
f −1(a), q1 = q∗

f (a), w0 = w∗
f −1(a), w1 = w∗

f (a), u = q∗
j (b), v = w∗

j (b), U =
q∗
j+1(b), V = w∗

j+1(b). By (16.61), Lemma16.5, and (16.64),

[w, q]n = [
u v

]
M

{[
w0

w1

] [
U V

]
M

[
q0
q1

]
−
[
q0
q1

] [
U V

]
M

[
w0

w1

]}
.

Denote M = (μi, j ), and calculate the expression under the curly brackets as fol-

lows: (w0q1 − q0w1)

[
μ1,2 μ2,2

−μ1,1 −μ2,1

] [
U
V

]
. Therefore, after multiplying through

by
[
u v

]
M , we obtain:

[w, q]n = (w0q1 − q0w1)
[
u v

] [ 0 det(M)

− det(M) 0

] [
U
V

]
. Putting back our vari-

ables, we thus have

[w, q]n = [w∗(a), q∗(a)] f −1(− det(M))[w∗(b), q∗(b)] j , valid for all j ≥ 1.

Also, by direct calculation, det(M) = − 1−b
1−a τ(a, b)2. Thus, by (16.45) and statement

(1), the statement (3) of the lemma is proved.

Theorem 16.3 The conditional generating function (16.10) has the following for-
mula.

KN (a, b) = CN ,a,b
r2z2qN

w1,N+1
, N ≥ 1,

where qN and w1,N+1 are given by Lemma16.5 and (16.64), respectively, each with
j = N − f + 1, and where CN ,a,b = (1 − a)

(N− f )a+( f −1)b−(N−1)ab
(N− f )a+( f −1)b−Nab .

In the homogeneous case a = b, Theorem16.3 takes the following form.
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Proposition 16.5 Suppose a = b. Then KN (a) of (16.10) has the following

formula. KN (a) = 1
N (N − (N − 1)a)

r2z2q∗
N (a)

w∗
N (a)

, N ≥ 1,where q∗
N (a) and w∗

N (a) are
defined by (16.38)–(16.41).

Proof (of Proposition16.5 and Theorem16.3) First let a = b. The proof parallels
the construction of convergents to a continued fraction; see [5, Ch. III]. By Gn(a) of
(16.27) and by formula (16.37), for all n ≥ 3,

Gn(a) = a(2 − a)zhakagn−1gn = cn,ar
2z2nτ 2n−4

a /[w∗
n(a)w∗

n−1(a)], (16.65)

for cn,a := a2(2 − a)2Cn,aCn−1,a , withCn,a given by (16.37), where we have written
hakaω2

a = a(2 − a)τa by the definitions (16.18). Further, for the full model we have:

P(H = n) = 4aρ1,nγnρn,0, n ≥ 2;
P(H ≥ n + 1) = 2aρ1,n+1, n ≥ 2;

P(H = 1) = 2
1

2
(1 − a) = 1 − a. (16.66)

By first principles, we find G1(a) = r2y2z2 and G2(a) = r2z4ka . Therefore, by
(16.10) and (16.26), P(H ≤ N )KN (a) = ∑N

n=1 Gn(a)P(H = n) is written by:

(1 − a)r2y2z2 + a(1 − a)

2 − a
r2z4ka +

N∑
n=3

cn,a P(H = n)
r2z2nτ 2n−4

a

w∗
n(a)w∗

n−1(a)
. (16.67)

By (16.65)–(16.66) and direct calculation, cn,a P(H = n) = (1 − a)a2n−2. Also, by
(16.18) and (16.38), a2n−2r2z2nτ 2n−4

a = a2r2z4xn−2
a while ka = a(2−a)

w∗
2(a)

, since ωa =
w∗
2(a). Therefore, by (16.67), P(H ≤ N )KN (a) is written:

(1 − a)r2z2
(
y2 + a2z2

w∗
2(a)

+
N∑

n=3

a2z2xn−2
a

w∗
n(a)w∗

n−1(a)

)
. (16.68)

By (16.38)–(16.41) and direct calculation, we have that y2 = q∗
1 (a)/w∗

1(a) and
y2 + a2z2/w∗

2(a) = q∗
2 (a)/w∗

2(a). But, by Lemma16.4(1), we may write

q∗
n

w∗
n

− q∗
n−1

w∗
n−1

= [w∗(a), q∗(a)]n−1

w∗
nw

∗
n−1

= a2z2xn−2
a

w∗
nw

∗
n−1

, n ≥ 1,

where we suppressed the dependence on a in q∗
n and w∗

n . Therefore, the sum
in (16.68) telescopes. Therefore, for all N ≥ 1 the right side of (16.68) becomes:
(1 − a)r2z2q∗

N (a)/w∗
N (a). Finally, apply (16.66) and Proposition16.1 to compute

P(H ≤ N ) = N (1−a)

N−(N−1)a , so that, by (16.68), Proposition16.5 is proved.
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We now indicate the additional steps required to prove the Theorem16.3. First,
with N = f − 1 in Proposition16.5, and by Lemma16.4, (16.68) yields:

f −1∑
n=1

GnP(H = n) = (1 − a)r2z2
(
y2 +

f −1∑
n=2

[w∗(a), q∗(a)]n−1

w∗
n(a)w∗

n−1(a)

)
, (16.69)

where here and in the rest of the proof we abbreviateGn = Gn(a, b). Next by (16.27)
and Proposition16.4, (III)(1)(a) and (II)(2),

G f = a(2 − a)zhak(a, b)g1, f g f,0 = c f
r2z2 f (aτa)

2 f −4

w∗
f −1(a)w f,0

. (16.70)

Moreover, by (16.27) and Proposition16.4, (I)(1) and (II)(1), for all j ≥ 1, G f + j

becomes:

a(2 − a)zhak(b, b)g1, f + j g f + j,0 = c f + j
r2z2 f +2 j (aτa)

2 f −4 τ(a, b)2 (bτb)
2 j−2

w1, f + jw f + j,0
.

(16.71)
In (16.70) and (16.71), the constants c f and c f +1, respectively, can be determined
from Lemma16.3 since Gn[1] = 1. Indeed, we find in this way, and by Defi-
nition16.2, Proposition16.1, (16.66), and direct calculation that c f P(H = f ) =
a2(1 − b) and c f + j P(H = f + j) = a2b2(1 − b), j ≥ 1. Thus, by (16.38), (16.45),
and (16.70)–(16.71), and since w∗

f −1(a) = w1, f , for all j ≥ 0, G f + j P(H = f + j)
equals

a2(1 − b)
r2z4x f −2

a

w1, f w f,0
, if j = 0; a2(1 − b)

r2z4x f −2
a x(a, b)x j−1

b

w1, f + jw f + j,0
, if j ≥ 1.

(16.72)
Therefore, by (16.69), (16.72) and Lemma16.4, for all j ≥ 0 there holds:

f + j∑
n=1

GnP(H = n) = (1 − a)r2z2
(
y2 +

f + j∑
n=2

[w, q]n−1

w1,nwn,0

)
, (16.73)

where the fraction 1−b
1−a enters to form [w, q]n−1 when n = f + j for j ≥ 0 because

we have factored out (1 − a) from the entire sum on the right. But by the definition
(16.61) and Lemma16.2, we have that [w,q]n−1

w1,nwn,0
= qn

w1,n+1
− qn−1

w1,n
. Hence, the sum in

(16.73) telescopes, and thereby, we finally obtain KN (a, b) = P(H ≤ N )−1(1 −
a)

r2z2qN
w1,N+1

, N ≥ f, where P(H ≤ N )−1 = (N+1− f )a+( f −1)b−(N−1)ab
(N+1− f )a+( f −1)b−Nab by (16.66) and

direct calculation.
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3.5.1 Proof of Corollary 16.2

The unconditional joint generating function of the excursion statistics is K :=
E{rRyVzL}. We develop a simple representation of K in the homogeneous case,
as follows.

Corollary 16.3 Let a = b and define αa := √
β2
a − 4xa for xa and βa given by

(16.38). Then K = limN→∞ KN (a) = (
1 − 1

2βa − 1
2αa

)
/(1 − a).

Proof (of Corollary16.3) Since we have explicitly seen in the proof of Proposi-
tion16.5 that if a = b, then P(H ≤ N ) = N (1−a)

N−(N−1)a , we have that the persistent
random walk is recurrent: limN→∞ P(H ≤ N ) = 1. So we obtain that (∗)K =
lim
N→∞ KN (a) = (1 − a)r2z2 limN→∞ q∗

N/w∗
N . Here and in the rest of the proof, we

suppress dependence on a when convenient; in particular denote x = xa and β = βa .
We introduce a substitution variable θ as follows:

β := √
4x cos θ; β ± α = √

4x(cos θ ± i sin θ) = √
4xe±iθ , (16.74)

with �θ < 0 for |r | < 1, |y| < 1, z 
= 0. The idea of the substitution (16.74) may
be found in [8, p. 352]. By (β + α)n − (β + α)n = (4x)n/2einθ (1 + e−2inθ ), the
formulae (16.13) may be rewritten, where by our convention for the sign of �θ ,
1 + e−2inθ = 1 + o(1), as n → ∞. We then substitute these expressions into the
formulae (16.41) and find that q∗

n (a)/w∗
n(a) is given by:

(y2 − q∗
0 )qn(x, β) + q∗

0wn(x, β)

(1 − w∗
0)qn(x, β) + w∗

0wn(x, β)
= y2(1 − e−2inθ ) − √

xq∗
0 e

−iθ (1 − e−2i(n−1)θ )

1 − e−2inθ − √
xw∗

0e
−iθ (1 − e−2i(n−1)θ )

.

Therefore, using e−iθ = (β − α)/
√
4x , we obtain limn→∞

q∗
n

w∗
n

= y2−q∗
0 (β−α)/2

1−w∗
0 (β−α)/2 .

Finally, we simplify this expression by multiplying both numerator and denominator
by 1 − w∗

0(β + α)/2. The new denominator becomes 1 + xaw∗
0(a)2 − βaw∗

0(a) =
(1 − a)2r2z2/τ 2

a , by direct calculation. Therefore, by bringing the τ 2
a of this last

expression to the numerator, we obtain that limn→∞(1 − a)2r2z2q∗
n/w

∗
n = τ 2

a (y2 −
q∗
0 (β − α)/2)(1 − w∗

0(β + α)/2), or

[y2 − βa(q
∗
0 + y2w∗

0)/2 + xaw
∗
0q

∗
0 ]τ 2

a + αa[q∗
0 − y2w∗

0]τ 2
a /2 = I + αa I I,

after cancelation of terms ±q∗
0w

∗
0αβ/4. By direct calculation, we find that I = 1 −

1
2βa , and I I = − 1

2 . Hence by (∗) the proof is complete.

We may view the excursion statistics in the case a = b by the way they are
weighted relative to one another. Indeed, a specific excursion path of 2n steps
and 2k runs is weighted with the probability 1

2a
2n−2k(1 − a)2k−1, for k peaks and

k − 1 valleys. In the unweighted case a = 1
2 , it is known that the joint distribution of
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(L, R) is essentially the same as that of (L, L − R) [see [16, A001263; symmetry
of the Narayana numbers]].

Proof (of Corollary16.2) We establish the joint generating function identity in the
unweighted case via a direct calculation. Let r , u and z belong to the unit circle. By
applying Corollary16.3 with a = 1

2 , we obtain the joint generating function of runs,
long runs, and steps by

K (
1

2
)[ru, 1/u, z] = 1

16

(
16 − 4z2 + 4r2z2 + r2z4 − 2r2uz4 + r2u2z4 − S

)
,

with S given by S = S1S2S3S4, for:

S1 =
√
4 + 2z + 2r z + r z2 − ruz2,

S2 =
√
4 + 2z − 2r z − r z2 + ruz2,

S3 =
√
4 − 2z + 2r z − r z2 + ruz2, S4 =

√
4 − 2z − 2r z + r z2 − ruz2.

On the other hand, with the very same main term S, we have

K (
1

2
)[u/r, 1/u, r z] = 1

16

(
16 + 4z2 − 4r2z2 + r2z4 − 2r2uz4 + r2u2z4 − S

)
.

The two generating functions differ by

K (
1

2
)[ru, 1/u, z] − K (

1

2
)[u/r, 1/u, r z] = 1

2
z2(r2 − 1).

The difference is mirrored only in the event that L = 2, when it happens that R = 2
and U = 0. Thus, (16.8) holds for a = 1

2 and n ≥ 2.
Perhaps the simplest way to obtain (16.8) for a 
= 1

2 is to apply (16.8) for the
case a = 1

2 . Consider an excursion path Γ with L(Γ ) = 2n and L(Γ ) − R(Γ ) =
2k. Then Pa(Γ ) = 1

2a
2k(1 − a)2n−2k−1. Here, R(Γ ) − 1 = 2n − 2k − 1 counts the

number of turns in the path, so is the exponent of (1 − a) under Pa . Alternatively,
L(Γ ) − R(Γ ) is the total length of long runs minus the number of long runs in
Γ , and this gives the exponent of a in Pa(Γ ). If 2n ≥ 4, then by the first part of
the proof there are exactly as many paths Γ with the joint information L(Γ ) =
2n, L(Γ ) − R(Γ ) = 2k, and U(Γ ) = 
, as there are paths Γ ′ with L(Γ ′) = 2n,
R(Γ ′) = 2k, and U(Γ ′) = 
. Therefore, since for any such path Γ ′, the probability
assigned by the probability measure P1−a yields P1−a(Γ

′) = 1
2a

2k−1(1 − a)2n−2k ,
we have that aP1−a(Γ

′) = (1 − a)Pa(Γ ), for all Γ with L(Γ ) ≥ 4. Hence, (16.8)
holds.
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4 Proofs of Theorems 16.1 and 16.2

Proof (of Theorem16.1) We fix t ∈ R. All big oh terms in the proof will refer to the
parameter N → ∞ with implied constants depending only on a, b, and t . Since, by
[13], for fixedm > 0 and f ∼ ηN → ∞, P(X j = 0 before X j = f |X0 = m) → 1,
we may assume that X0 = 0. Let

rN := e−i t (2−a−b)/((1−a)(1−b)N ), yN := eit/((1−a)(1−b)N ), zN := eit/N . (16.75)

Since {(1 + 1
N )XN+1} converges in distribution if and only if {XN } does, by (16.2)

it suffices to establish that E{eit (1+ 1
N )XN+1} = ϕ̂(t), as N → ∞. It is clear that

a(2 − a)zNha[rN , yN , zN ] → 1 as N → ∞. Therefore, by (16.28), we must show
that limN→∞ g0,N [rN , yN , zN ] equals the limit in (16.3). By Proposition16.4(I)(1),
we have a formula for g0,N , and by Proposition16.3, we have a formula for its
denominator w0,N . The main work is in calculating an asymptotic expression for
w0,N [rN , yN , zN ].

We now make substitutions analogous to (16.74), one for each stratum:

cos(θ1) := βa/
√
4xa ; cos(θ2) := βb/

√
4xb,

βa ± αa = √
4xae

±iθ1 ,

βb ± αb = √
4xbe

±iθ2 , (16.76)

where all functions on the right sides of these expressions are composed with
[rN , yN , zN ] of (16.75). Here, we write

√
4xa as a shorthand for the expression

2azτa ; see (16.38). Note that the coefficients in (16.2) have been chosen such
that the first order term of the Taylor expansions about t = 0 of the substitutions
cos θ j [rN , yN , zN ], j = 1, 2, do in fact vanish in the following:

cos θ1 = 1 + 1

2

σ 2
1 t

2

(1 − b)2N2 + O

(
1

N3

)
; cos θ2 = 1 + 1

2

σ 2
2 t

2

(1 − a)2N2 + O

(
1

N3

)
,

(16.77)

where σ 2
1 and σ 2

2 are as defined in the statement of the theorem, andwe obtain (16.77)
by direct computation. Therefore, by (16.77), and by applying the Taylor expansion
of arccos(u) about u = 1, we find that θ1 and θ2 are both of order 1/N as follows:

θ1 = i
σ1t

(1 − b)N
+ O

(
1

N 3

)
; θ2 = i

σ2t

(1 − a)N
+ O

(
1

N 3

)
. (16.78)

By Proposition16.3,

w0.N = d1( f )q
∗
N− f (b) + d2( f )w

∗
N− f (b). (16.79)
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We focus first on the coefficients d j ( f ), which are written in terms of w∗
f (a) and

w∗
f +1(a) by (16.53). By (16.13) and (16.41), suppressing dependence on a, w∗

f =
(1 − w∗

0)q f + w∗
0(q f − xq f −1) = q f (x, β) − w∗

0xq f −1(x, β). Thus, by (16.13), and
(16.76),

w∗
f (a) = 2iα−1

a (azτa)
f
{
sin f θ1 − √

xaw
∗
0(a) sin( f − 1)θ1

}

w∗
f +1(a) = 2iα−1

a (azτa)
f √

xa
{
sin( f + 1)θ1 − √

xaw
∗
0(a) sin f θ1

} ; (16.80)

with verification bydirect algebra forq f (xa, βa) = 2iα−1
a (azτa)

f sin( f θ1), andwith√
xa to stand for a factor of (azτa). Next denote

e j = e j ( f ) := d j ( f )

Λ1
, j = 1, 2, for Λ1 := 2iα−1

a (azτa)
f = (sin θ1)

−1 (azτa)
f −1 ,

(16.81)
since αa = i

√
4xa sin θ1 = 2iazτa sin θ1. By (16.80)–(16.81) and direct algebra,

through (16.53) we can write an expression for e j as follows:

(
μ j,1 − μ j,2xaw

∗
0(a)

)
sin f θ1 + √

xa
[
μ j,2 sin( f + 1)θ1 − μ j,1w

∗
0(a) sin( f − 1)θ1

]
.

(16.82)

Next we apply the trigonometric identity for the sine of a sum or difference to
sin( f + 1)θ1 and sin( f − 1)θ1 in (16.82). At this point, we also introduce some
abbreviations to keep the notation a bit compact. Thus, write

s1 := sin f θ1; c1 := cos f θ1. (16.83)

We rewrite (16.82), with abbreviation w∗
0 = w∗

0(a), by collecting terms with a factor√
xa . Thus for each j = 1, 2,

e j =(μ j,1 − μ j,2xaw
∗
0)s1

+ √
xa
{
μ j,2(s1 cos θ1 + c1 sin θ1) − μ j,1w

∗
0(s1 cos θ1 − c1 sin θ1)

}
. (16.84)

We introduce a book-keeping notation for the coefficient t j of the variable x j in square
brackets, within a linear expression

∑
i tixi in parentheses: [x j ]

(∑
i tixi

) = t j . Our
method for e j is to asymptotically expand [s1](e j ) and [c1 sin θ1](e j ) by (16.84). We
will treat sin θ1 separately from the asymptotic expansions of the other terms due to
the convenient fact that, by (16.78), we have sin θ1 = θ1 + O(N−3), and this will
suffice for our purposes. Note that by (16.78) and (16.83), and f ∼ ηN , s1 and c1 are
both O(1). Further, by direct calculation, μi, j are polynomial, and q∗

0 (a) and w∗
0(a)

only involve negative powers of τa , where τa[1] = 1. Thus, the Taylor expansions of
[s1](e j ) and [c1 sin θ1](e j ) about t = 0 are well behaved.
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We next find reduced expressions for the terms q∗
N− f (b) and w

∗
N− f (b) of (16.79).

The approach is as above, but now with b in place of a, N − f in place of f , and
using the second substitution θ2 in (16.76). Similar to (16.81), we introduce

q∗ := q∗
N− f (b)

Λ2
, w∗ := w∗

N− f (b)

Λ2
;

Λ2 := 2iα−1
b (bzτb)

N− f = (sin θ2)
−1 (bzτb)

N− f −1 . (16.85)

Similar as for (16.80), by (16.13) and both lines of (16.41) applied in turn, and
(16.85),

q∗ = y2 sin(N − f )θ2 − √
xbq

∗
0 (b) sin(N − f − 1)θ2,

w∗ = sin(N − f )θ2 − √
xbw

∗
0(b) sin(N − f − 1)θ2. (16.86)

Introduce abbreviations also for the second stratum sines and cosines:

s2 := sin(N − f )θ2; c2 := cos(N − f )θ2. (16.87)

We illustrate the book-keeping method by expanding sin(N − f − 1)θ2 =
s2 cos θ2 − c2 sin θ2 to obtain by (16.86),

[s2]
(
q∗) = y2 − √

xbq
∗
0 (b) cos θ2; [c2 sin θ2]

(
q∗) = √

xbq
∗
0 (b);

[s2]
(
w∗) = 1 − √

xbw
∗
0(b) cos θ2; [c2 sin θ2]

(
w∗) = √

xbw
∗
0(b).

To handle the asymptotic expansions for the four terms on the right side of (16.79),
we expand the coefficients of s1, c1 sin θ1, s2, and c2 sin θ2 by direct computation and
thereby find

w0,N

Λ1Λ2
= O(N−2) +

[(
−(1 − a)(1 − b) + 2(1 − ab)

i t

N

)
s1

] [(
1 + 2

1 − a

it

N

)
s2

]

+
[(

1 − a − a(b − a)

1 − b

it

N

)
s1 + ac1 sin θ1

]

×
[(

1 − b − b(2 − a − b)

1 − a

it

N

)
s2 + bc2 sin θ2

]
. (16.88)

Since, by (16.78), sin θ1 and sin θ2 are of order 1/N , observe that the two terms of
order 1 on the right-hand side of (16.88) are of form ±(1 − a)(1 − b) and therefore
cancel. Also, since sin θ j = θ j + O(N−3) for θ j as given by (16.78), we substi-
tute these relations into (16.88) and collect the order 1/N terms to find by direct
asymptotics that:

w0,N

Λ1Λ2
= {

aσ1c1s2 + bσ2s1c2 + (b − a)2s1s2
} i t

N
+ O(N−2). (16.89)
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To render a partial check on the book-keeping procedure for (16.89), write out a
formula for e j = e j (a, b, rN , yN , zN , s1, c1 sin θ1) of (16.84) by leaving sin θ1 as an
auxiliary variable. Then sin θ j is replaced by the order 1/N term of (16.78), whereas
cos θ j is defined exactly by (16.76). So, expand e1q∗ + e2w∗ as

e1
([s2](q∗)s2 + [c2 sin θ2](q∗)c2 sin θ2

) + e2
([s2](w∗)s2 + [c2 sin θ2](w∗)c2 sin θ2

)
,

and apply a Taylor series about t = 0 to recover (16.89); see [15].
Now plug (16.89) into the formula for g0,N in Proposition16.4(I)(1), apply

Proposition16.1(I)(1) to rewrite Π0,N , and recall Λ j in (16.81) and (16.85). So

g0,N = ωaτ(a, b)r z2

a(2 − a)τa

(
sin θ1 sin θ2[(N − f )a + f b − (N − 1)ab][

aσ1c1s2 + bσ2s1c2 + (b − a)2s1s2
]

i t
N + O(N−2)

)
.

Finally, to find the limit as N → ∞ of this last expression, we substitute (16.78)
into the definitions (16.83) and (16.87), and again employ sin θ j ∼ θ j . We note:
limN→∞ ωa[a(2 − a)]−1rN z2N τ(a, b)τ−1

a = 1, since ωa[1] = a(2 − a) and
τ(a, b)[1] = 1. Since by assumption f ∼ ηN , we have [(N − f )a + f b − (N −
1)ab] ∼ N [(1 − η)a + ηb − ab], and since by (16.78), θ1θ2 ∼ i2 σ1σ2

(1−a)(1−b) t
2N−2,

we obtain, as N → ∞,

g0,N ∼ i2t2

N

σ1σ2

(1 − a)(1 − b)

(1 − η)a + ηb − ab[
aσ1c1s2 + bσ2s1c2 + (b − a)2s1s2

]
i t
N

.

Here, we use implicitly that sin(i x) = i sinh(x) and cos(i x) = cosh(x), so that by
(16.78), (16.83), and (16.87), and by definition of κ1 and κ2, s j ∼ i sinh(κ j t), j =
1, 2, and c j ∼ cosh(κ j t), j = 1, 2. Thus, we obtain, lim

N→∞ g0,N [r,sN , tN ] = ϕ̂(t), for

ϕ̂(t) given by (16.3).

Proof (of Corollary16.1) We now assume that a = b and consider the random vari-
able sY1,N + tY2,N defined by (16.4) in place of t XN in the proof of Theorem16.1.
By the definition (16.4), we write

sY1,N + tY2,N = 1

N

(
tL ′

N + (1 − a)s − (2 − a)t

(1 − a)
R ′

N + t − s

(1 − a)
V ′
N

)
.

Accordingly, define

rs,t,N := ei((1−a)s−(2−a)t)/((1−a)N ), ys,t,N := ei(t−s)/((1−a)N ), zs,t,N := eit/N .

(16.90)
It suffices to prove that, for each fixed pair of real numbers s, t ∈ R,

lim
N→∞ g0,N (a, a)[rs,t,N , ys,t,N , zs,t,N ]
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exists and is given by the right side of (16.5). Define θ = θs,t,N via cos θ = βa/
√
4xa ,

where the functions βa and xa are composed with the complex exponential terms in
(16.90). It follows by making a direct calculation that

cos θ = 1 + 1

2

(1 − a)s2 + at2

N2 + O

(
1

N3

)
; θ = i

√
(1 − a)s2 + at2

N
+ O

(
1

N3

)
.

(16.91)
Since the model is homogeneous, we need only apply the first line of (16.80) with
f := N to obtain

w∗
N (a) = (

√
xa sin θ)−1[azτa]N

{
sin Nθ − √

xaw
∗
0(a) sin(N − 1)θ

}
. (16.92)

Expand sin(N − 1)θ = s cos θ − c sin θ , for s := sin Nθ and c := cos Nθ . PutΛ :=
(sin θ)−1 (azτa)

N−1. After direct calculation, we find

1 − √
xaw

∗
0(a) = 1 − a + O(N−1).

Therefore, by (16.92), we have

w∗
N (a)

Λ
= s − √

xaw
∗
0(a)(s cos θ − c sin θ) = (1 − a)s + O

(
1

N

)

Note that there is no cancelation of the order 1 term in this expression. Now plug
w∗

N (a)

Λ
into (16.37) to obtain

g0,N = ωa

a(2 − a)
r zτ−1

a

(N − (N − 1)a) sin θ

(1 − a)s + O(N−1)
.

Finally apply the asymptotic expression for θ in (16.91) and let N → ∞.

Proof (of Theorem16.2) By the same reasoning given at the outset of the proof
of Theorem16.1, we may assume that X0 = 0. By the fact that the absolute value
process starts afresh at the end of each excursion, we have that 1 + MN is a standard
geometric random variable with success probability P(H ≥ N ). Thus

P(MN = ν) = [P(H < N )]ν P(H ≥ N ), ν = 0, 1, 2, . . . . (16.93)

Let LN , RN , and VN , respectively, be random variables for the number of steps,
runs, and short runs, in an excursion, given that the height of the excursion is at most
N − 1. Therefore, in distribution, we may write:

RN =
M N∑
ν=0

R(ν), VN =
M N∑
ν=0

V(ν), LN =
M N∑
ν=0

L(ν),
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where R(1), R(2), . . . ; V(1), V(2), . . . ; and L(1), L(2), . . . , respectively, are sequences
of independent copies of RN , VN , and LN . Since the random variables RN , VN , and
LN already have built into their definitions the condition {H ≤ N − 1}, the prob-
ability generating function KN−1 = E{rRN yVN zLN } is calculated by Theorem16.3.
Thus by (16.93), and by calculating a geometric sum there holds:

E{rRN yVN zLN uMN } =
∞∑

ν=0

P(MN = ν)
(
uKN−1

)ν = P(H ≥ N )

1 − uP(H < N )KN−1[r, y, z] .

(16.94)

We define (rN , yN , zN ) by (16.75), and also set uN := e−i ta(b−a)/[(1−a)(1−b)N ]. By
(16.9), it suffices to show that limN→∞ E{eit (1+1/N )X N+1} = ψ̂(t)/ϕ̂(t); see (16.98).
We define θ1 and θ2 by (16.76), so that also (16.77)–(16.78) hold. By the statement
of Theorem16.3, we must replace the calculation of w0,N , starting with (16.79),
with instead w1,N+1. However, by (16.53), (16.64), and (16.79), the difference in the
two calculations is simply accounted for by replacing f by f − 1 in the calculation
of w0,N , because j in (16.64) for w1,N+1 is determined by j = N + 1 − f = N −
( f − 1), so 1

Λ2
w1,N+1 = d1( f ′)q∗ + d2( f ′)w∗ with f ′ := f − 1 in place of f in

both (16.53) and (16.85). This is reflected by the fact that, by Lemma16.2,w1,N+1 =
wN ,0. We must now also calculate qN = dq,1( f )q∗

N− f +1(b) + dq,2( f )w∗
N− f +1(b)

given by Lemma16.5, with dq, j ( f ) = μ j,1q∗
f −1(a) + μ j,2q∗

f (a), j = 1, 2, defined
by (16.63) in the proof of Lemma16.5. In summary, f ′ = f − 1 yields (†)qN =
dq,1( f ′ + 1)q∗

N− f ′(b) + dq,2( f ′ + 1)w∗
N− f ′(b). Thus, because we simply replace f

by f − 1 in the required substitutions, and since f ∼ ηN , we will not change the
name of f . With this understanding, we may use the calculation of w0,N in (16.79)–
(16.89) verbatim in place of the calculation of w1,N+1, and we will do this without
changing the names of e j , q∗, w∗ and Λ j ; see (16.81) and (16.85). Further with this
understanding, by (†), with f now recouping the role of f ′, and with q∗ and w∗
defined by (16.85), we have 1

Λ2
qN = dq,1q∗ + dq,2w∗ for

dq, j := μ j,1q
∗
f (a) + μ j,2q

∗
f +1(a). (16.95)

Here, by (16.13), (16.41) and (16.76), in analogy with (16.80), we have

q∗
f (a) = 2iα−1

a (azτa)
f
{
y2 sin f θ1 − √

xaq
∗
0 (a) sin( f − 1)θ1

}

q∗
f +1(a) = 2iα−1

a (azτa)
f √

xa
{
y2 sin( f + 1)θ1 − √

xaq
∗
0 (a) sin f θ1

}
.

Denote eq, j := dq, j/Λ1. Therefore, by (16.95), the definition of Λ1 in (16.81), and
these equations for q∗

f (a) and q∗
f +1(a),

eq, j =
(
y2μ j,1 − μ j,2xq

∗
0

)
sin f θ1 + √

x
{
y2μ j,2 sin( f + 1)θ1 − μ j,1q

∗
0 sin( f − 1)θ1

}
,

(16.96)
where x = xa and q∗

0 = q∗
0 (a). Rewrite (16.96) by applying the notations (16.83).

Thus eq, j is written, with dependence on a suppressed, by
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(y2μ j,1 − μ j,2xq
∗
0 )s1 + √

x{y2μ j,2(s1 cos θ1 + c1 sin θ1) − μ j,1q
∗
0 (s1 cos θ1 − c1 sin θ1)}

(16.97)
In summary, by (16.95), we have qN/(Λ1Λ2) = eq,1q∗ + eq,2w∗, for eq, j in (16.97),
and Λ j defined by (16.81) and (16.85).

To guide the asymptotic expansions of (16.97), we rewrite (16.94) by substituting
the last line of the proof of Theorem16.3:

E{eit (1+1/N )X N+1} = P(H ≥ N + 1)w1,N+1

w1,N+1 − (1 − a)uNr2N z
2
NqN

. (16.98)

It turns out that there is a cancelation in the order of the denominator of (16.98).
That is, the leading order of each of w1,N+1/(Λ1Λ2) and qN/(Λ1Λ2) will be some
order 1 trigonometric factor times i t/N ; in fact there holds (1 − a)qN/w1,N+1 ∼ 1,
as N → ∞. Define

ΔN := w1,N+1 − (1 − a)uNr
2
N z

2
NqN . (16.99)

By direct calculation, we will establish that ΔN/(Λ1Λ2) = O(N−2), and we find
the exact coefficient of the order N−2 term.

For the asymptotics of (16.97)wemay still treat sin θ1 = θ1 + O(N−3)by (16.78),
but must render precisely the O(N−2) term in cos θ1 = 1 + O(N−2) of (16.77). In
an appendix to [15], we display the many terms of the book-keeping method for this
problem. For the present, we simply exhibit the asymptotics of (16.99) obtained by
machine computation with sin θ j substituted by the corresponding order 1/N term
of (16.78):

ΔN

Λ1Λ2
= 1

(1 − a)(1 − b)

t2

N 2
{−abσ1σ2c1c2 − aσ1(a − b)2c1s2 + a2σ 2

1 s1s2}

+O

(
1

N 3

)
. (16.100)

Finally, we compute the limit of the ratio (16.98) by the asymptotic relations
(16.76), and by (16.89) and (16.100). Thus, because by (16.66) and Proposition16.1
we have that P(H ≥ N + 1) ∼ Ca,bN−1 for Ca,b = ab/[(1 − η)a + ηb − ab], we
find E{eit (1+1/N )X N+1} is asymptotic to

Ca,bN
−1

{
[aσ1c1s2 + bσ2s1c2 + (b − a)2s1s2] i t

N
+ O

(
1

N 2

)}

/{
1

(1 − a)(1 − b)
[−abσ1σ2c1c2 − aσ1(a − b)2c1s2 + a2σ 2

1 s1s2] t
2

N 2

+O

(
1

N 3

)}
.



380 G. J. Morrow

As in the proof of Theorem16.1, we have c j ∼ cosh(κ j t), and s j ∼ i sinh(κ j t), j =
1, 2. Therefore, with C̃a,b := (1 − a)(1 − b)Ca,b, we obtain that E{eit (1+1/N )X N+1}
has the following limit as N → ∞, where we refer to (16.3) and statement of
Theorem16.2 for the definitions of ϕ̂(t) and ψ̂(t):

lim
N→∞ E{eit (1+1/N )X N } = C̃a,b

t
× (bκ1σ2 + aκ2σ1)t

ϕ̂(t)
× ψ̂(t)

abσ1σ2
.

We have C̃a,b = abσ1σ2/(aσ1κ2 + bσ2κ1), so the proof is complete.

Corollary 16.4 Assume a = b. Define

Z1 = 1

N

(
RN − 1

(1 − a)
VN + aMN

)
;

Z2 = 1

N

(
LN − 1

(1 − a)
RN + a

1 − a
MN

)
− Z1.

Then, limN→∞ E{ei(sZ1+t Z2)} = tanh(
√

(1−a)s2+at2)√
(1−a)s2+at2

.

Proof One simplifies the lines of proof of Theorem16.2. We leave details in an
appendix to [15].

For illustration of Theorem 16.1, see Fig. 4.

2 1 0 1 2

0.2

0.4

0.6

0.8

Fig. 4 The density ϕ(x) whose transform ϕ̂(t) = ∫∞
−∞ eitxϕ(x) dx is given by (16.6) for a = 1

4 ,

and the density π
4 sech

2(πx/2), that is instead determined by a = 1
2 and corresponds to simple

random walk. Numerically, the mean of ϕ is
∫∞
∞ xϕ(x) dx = − 1

4 , and argmax
x

ϕ(x) = −0.131619
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Paired Patterns in Lattice Paths

Ran Pan and Jeffrey B. Remmel

Abstract Let Ln denote the set of all paths from [0, 0] to [n, n] which consist of
either unit north steps N or unit east steps E or, equivalently, the set of all words
L ∈ {E, N }∗ with n E’s and n N ’s. Given L ∈ Ln and a subset A of [n] = {1, . . . , n},
we let psL(A) denote the word that results from L by removing the i th occurrence
of E and the i th occurrence of N in L for all i ∈ [n] − A, reading from left to right.
Then, we say that a paired pattern P ∈ Lk occurs in L if there is some A ⊆ [n] of
size k such that psL(A) = P . In this paper, we study the generating functions of
paired pattern matching inLn .

Keywords Lattice paths · Words · Paired patterns · Generating function

2010 Mathematics Subject Classification Primary: 05A15 · Secondary: 05A19

1 Introduction

Let Ln denote the set of all paths from [0, 0] to [n, n] which consist of either unit
north [0, 1] steps or unit east [1, 0] steps. The six paths inL2 are pictured at the top
of Fig. 2. Clearly,

|Ln| =
(
2n

n

)
.

We code elements in Ln as words over the alphabet {N , E} with n N ’s and n
E’s. Given L ∈ Ln and a subset A of [n] = {1, . . . , n}, we let psL(A) denote the
word that results from L by removing the i th occurrence of E and the i th occurrence
of N in L for all i ∈ [n] − A, reading from left to right. For example, suppose
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L = NEEENN ∈ L3, then psL({1}) = NE , psL({2}) = EN , psL({3}) = EN ,
psL({1, 2}) = psL({1, 3}) = NEEN , and psL({2, 3}) = EENN . We shall think
of a word in {N , E} with n N ’s and n E’s as a paired pattern where the i th occur-
rence of E is paired with the i th occurrence of N , reading from left to right, for
i = 1, . . . , n.

Definition 17.1 Given a set of paired patterns Γ ⊆ Lk and word L ∈ Ln , we say
that

1. Γ occurs in L if there is an A ⊆ [n] of size k such that psL(A) ∈ Γ ,
2. There is a Γ -match in L starting at the j th paired step

if psL({ j, j + 1, j + 2, . . . , j + k − 1}) ∈ Γ .
3. L avoids Γ if there is no Γ -matches in L .

Alternatively, we can code a path L as a 2 × n array T (L) where the bottom row
of T consists of the positions of the east steps, reading from left to right, and the top
row of T consists of the positions of the north steps, reading from left to right. We
let T (L)k,1 denote the element in the kth column of the bottom row of T (L), and let
T (L)k,2 denote the element in the kth column of the top row. Given any 2 × n array
S filled with pairwise distinct positive integers, let the reduction of S, red(S), denote
the 2 × n array which results from S by replacing the i th smallest integer in S by i .
An example of the reduction operation red is pictured at the bottom of Fig. 1.

It is then easy to see that given L ∈ L and A ⊆ [n], the array associated with
psL(A) corresponds to the array obtained by taking the columns in T (L) correspond-
ing to A and reducing. This process is pictured in Fig. 1. This given, we can restate
our pattern matching conditions in terms of 2 × n arrays. That is, the Tn denote the
set of all 2 × n arrays T filled with the numbers 1, 2 . . . , 2n such that the rows of T
are increasing reading from left to right. Given T ∈ Tn and A ⊆ [n], we let T [A] be
the array that results by removing the columns corresponding to elements in [n] − A.
For example, if T = T (L) is the array pictured in Fig. 1, then T [{1, 4, 5}] is pictured
at the bottom left of Fig. 1.

Fig. 1 Correspondence between paths and 2 × n arrays



384 R. Pan and J. B. Remmel

Fig. 2 L2 = {P1, P2, P3, P4, P5, P6.}

Then from the point of viewof arrays inTn , our paired patternmatching conditions
can be stated as follows.

Definition 17.2 Given a set of 2 × k arrays Γ ⊆ Tk and a 2 × n array S ∈ Tn , we
say that

1. Γ occurs in S if there is an A ⊆ [n] of size k such that red(S[A]) ∈ Γ .
2. There is aΓ -match in S starting at column j if red(S[{ j, j + 1, j + 2, . . . , j +

k − 1}]) ∈ Γ .
3. S avoids Γ if there is no Γ -matches in S.

Note that from this point of view, Γ -matches correspond naturally to consecutive
patterns matches in 2 × n arrays. Results about consecutive patterns in arrays can
be found in [4]. We let Γ -mch(L) denote the number of Γ -matches in L . If Γ -
mch(F)=0, then we will say that L has no Γ -matches. If Γ = {P} is a singleton,
then we will write P-mch(L) for Γ -mch(L).

For example, there are six possible patterns of length four, as pictured in Fig. 2,
namely P1 = EENN , P2 = ENEN , P3 = NEEN , P4 = ENNE, P5 = NENE,

P6 = NNEE .
We note that paired patterns differ from classic consecutive patterns inwords (e.g.,

[2, 10, 11]). Paired patterns actually describe relationships between paths and the
diagonal y = x , the subdiagonal y = x − 1, and the superdiagonal y = x + 1. For
our purposes, the set of Dyck paths Dn is the set of paths of Ln which stay weakly
below the diagonal y = x . For example, inL2, the only two Dyck paths are P1 and
P2. Actually, a path L is aDyck path if and only if L has no (L2 − {P1, P2})-matches.
More details and geometric interpretation of paired patterns can be found in Sect. 2.

By Theorems17.2 and 17.3, we see that certain paired patterns are equivalent
to returns (bouncings) and crossings of a path. These classical statistics have been
studied in literature such as [3, 5–9, 13].

In this paper, we will focus on paired patterns of length 4 and pattern matching
for subsets of these pattern. In other words, we would study generating functions of
the form

FPk (x, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x Pk -mch(L), (17.1)
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where k ∈ {1, 2, 3, 4, 5, 6}, and

FΔ(x, t) := 1 +
∑
n≥1

tn
∑
L∈L n

⎛
⎝∏

j∈Δ

x
Pj -mch(L)

j

⎞
⎠ , (17.2)

where Δ is a subset of {1, 2, 3, 4, 5, 6}.
Note there are two basic symmetries in our study of paired patterns. First, one can

reflect a path L ∈ Ln about the diagonal y = x which has the effect of interchanging
E’s with N ’s in the word of L or interchanging the rows in the diagram of T (L) of L .
Second, one can rotate the path by 180 degrees which has the effect of interchanging
the E’s and N ’s and then reversing the word of L . These symmetries immediately
show that

FP1(x, t) = FP6(x, t),

FP2(x, t) = FP5(x, t), and

FP3(x, t) = FP4(x, t).

Thus we need only to compute three generating functions of the form FPk (x, t).
We can also give geometric interpretations to Pk-matches for each k. For exam-

ple, we shall show that the number of P1-matches in a path L ∈ Ln is the number of
east steps that are below the subdiagonal y = x − 1. The formulas for the generating
functions that we will derive then lead to many interesting bijective problems. For
example, we will show that the total number of east steps that lie below the subdi-
agonal y = x − 1 over all paths L ∈ Ln equals the sum of the areas under all Dyck
paths in Dn .

The outline of this paper is as follows. In Sect. 2, we shall give the geometric
interpretations of the number of Pk-matches in paths in Ln . In Sect. 3, we shall
derive closed formulas for the generating functions FPk (x, t) for k = 1, . . . , 6 and
explore some of the consequences of such formulas. In Sect. 4, we derive a number
of formulas for FΔ(x, t) for certainΔ ⊆ {P1, . . . , P6}. Finally, in Sect. 5, we discuss
topics for future research such as finding bijections between paths with certain pat-
tern matching condition and other known objects, extending the definition of paired
patterns to Delannoy paths and finding generating functions FP(x, t) for paths P of
length greater than 4.

2 The Geometric Interpretation of the Number
of Pk-Matches

In this section, we shall give our geometric interpretations of Pk-matches for k =
1, . . . , 6.
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Theorem 17.1 Let L ∈ Ln. Then the number of P1-matches in L is the number of
east steps below the subdiagonal y = x − 1. Hence, by symmetry, the number of
P6-matches in L is the number of north steps above the superdiagonal y = x + 1.

Proof Suppose that the i th east step in L occurs below the subdiagonal y = x − 1
and that this step corresponds to the j th letter in the word w1 . . .w2n of L . Then it
must be the case that the number of E’s in w1 . . .wj exceeds the number of N ’s in
w1 . . .wj by at least two. This means that when we restrict the diagram T (L) to the
letters 1, . . . , j , then there are no elements in the (i − 1)th and i th columns of the
bottom row. This means that T (L)i−1,1 < T (L)i,1 < T (L)i−1,2 < T (L)i,2 so that
red(T (L)[{i − 1, i}])matches the array for P1. Hence each such east step represents
a P1-match in L .

On the other hand suppose red(T (L)[{i − 1, i}]) matches the array for P1. If
T (L)i,1 = j , then in the word w = w1 . . .w2n of L , the j th E , reading from right to
left, must be preceded by at most i − 2 north steps which means that the east step
corresponding to wj is below the subdiagonal y = x − 1.

Given a path L ∈ Ln , we let bounce−(L) denote the number of points [x, x]
on L such that the preceding step is a north step N and the following step is an
east step E . This means that the path bounces off the diagonal to the right. We let
bounce+(L) denote the number of points [y, y] on L which is preceded by an east
step E and followed by a north step N . This means that the path bounces off the
diagonal to the left. For example, for the path L pictured in Fig. 3, the points [6, 6],
[7, 7], and [8, 8] are points preceded by a north step and followed by an east step so
that bounce−(L) = 3 and the point [4, 4] is preceded by an east step and followed
by a north step so that bounce+(L) = 1.

Theorem 17.2 Let L∈Ln. Then the number of P2-matches in L equals bounce−(L).
Hence, by symmetry, the number of P5-matches in L equals bounce+(L).

Fig. 3 bounce+(L) = 1,
bounce−(L) = 3,
crossh(L) = 1, and
crossv(L) = 2
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Proof Consider the diagram T (L) of L . Then a P2-match in L corresponds to a pair of
columns i − 1 and i such red(T (L)[{i − 1, i}])matches the array for P2. This means
that T (L)i−1,1 < T (L)i−1,2 < T (L)i,1 < T (L)i,2. Now suppose that T (L)i−1,2 = x .
It follows that all the elements in the columns to the right of x must be greater than
x and all the elements in the columns to the left of x must be less than x . Since
x > T (L)i−1,1 it follows that x = 2(i − 1). Similarly, if T (L)i,1 = y, then all the
elements in the columns to the right of y must be greater than y and all the elements
in the columns to the left of y must be less than y. Since y < T (L)i−1,1 it follows that
y = 2(i − 1) + 1. This means that in the word of w = w1 . . .w2n of L , w2(i−1) = N
and is preceded by i east steps and i − 1 north steps so that point [i, i] is on the path
of L and is preceded by a north step and followed by an east step.

Vice versa, if [i, i] is on the path of L and is preceded by a north step and followed
by an east step, then it is easy to see that in the array T (L) of L , we must have that
T (L)i−1,2 = 2(i − 1) and T (L)i,1 = 2(i − 1) + 1 so that red(T (L)[{i − 1, i}])must
match P2.

Given a path L ∈ Ln , we let crossh(L) denote the number of points [x, x] on
L such that the preceding step is an east step E and the following step is an east
step E . This means that the path crosses the diagonal horizontally. We let crossv(L)

denote the number of points [y, y] on L which is preceded by a north step N and
followed by a north step N . This means that the path crosses the diagonal vertically.
For example, for the path L pictured in Fig. 3, there is a horizontal crossing of the
diagonal at the point [5, 5] so that crossh(L) = 1 and there are vertical crossings at
the points [4, 4] and [9, 9] so that crossv(L) = 2.

Theorem 17.3 Let L ∈ Ln. Then the number of P3-matches in L equals crossh(L).
Hence, by symmetry, the number of P4-matches in L equals crossv(L).

Proof Consider the diagram T (L) of L . Then a P3-match in L corresponds to a
pair of columns i − 1 and i such that red(T (L)[{i − 1, i}]) matches the array for
P3. This means that T (L)i−1,2 < T (L)i−1,1 < T (L)i,1 < T (L)i,2. Now suppose that
T (L)i−1,1 = x . It follows all the elements in the columns to right of x must be greater
than x and all elements in the columns to the left of x must be less than x . Since
x > T (L)i−1,2 it follows that x = 2(i − 1). Similarly, if T (L)i,1 = y. It follows all
the elements in the columns to the right of y must be greater than y and all the
elements in the columns to the left of y must be less than y. Since y < T (L)i−1,1 it
follows that y = 2(i − 1) + 1. This means that in the word of w = w1 . . .w2n of L ,
w2(i−1) = E and is preceded by i − 1 east steps and i north steps so that point [i, i]
is on the path of L and is preceded by an east step and followed by an east step.

Vice versa, if [i, i] is on the path of L and is preceded by an east step and followed
by an east step, then it is easy to see that in the array T (L) of L , we must have that
T (L)i−1,1 = 2(i − 1) and T (L)i,1 = 2(i − 1) + 1 so that red(T (L)[{i − 1, i}] must
match P3.
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3 Generating Functions

Let Fi (x, t) = FPi (x, t) for i = 1, . . . , 6. The goal of this section is to compute the
generating functions Fk(x, t) for k = 1, . . . , 6.

To obtain a recurrence for Dyck paths, the usual way is to factorize Dyck paths
based on where it returns to the diagonal for the first time. Application of this decom-
position can be found in many papers focused on lattice path enumeration such as
[2, 3, 11]. We shall show that similar ideas allow us to obtain recurrences for the
number of Pk-matches.

3.1 Pattern P1

For pattern P1, consider the ordinary generating function F1(x, t) as follows,

F1(x, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P1-mch(L). (17.3)

We know for a path L , P1-mch(L) is equal to the number of east steps below subdi-
agonal y = x − 1. By our observation in the introduction, F1(x, t) = F6(x, t).

We split the analysis of P1-mch(L) into two cases. Case 1 iswhen P1-mch(L) = 0,
that is, path L stays above y = x − 1. It is easy to see that the number of paths in
Ln above y = x − 1 is Cn+1 = 1

n+2

(2n+2
n+1

)
, the (n + 1)th Catalan number. Case 2 is

when P1-mch(L) > 0, that is, path L has at least one east step below y = x − 1.
Now consider the first time the path touches y = x − 1 and the first time after that
where the path hits a point [i, i] on the diagonal. It is easy to see that the two steps
preceding the point [i, i] must be north steps. An example of recurrence is pictured
in Fig. 4, where two boxes are the two positions mentioned above and three diagonal
dots stand for a whatever path follows the second box.

Fig. 4 An example of recurrence based on P1
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Suppose the position of the first box has coordinates [ j, j − 1], j ≥ 1, clearly
there are C j ways to choose steps before reaching [ j, j − 1]. Similarly, suppose the
position of the second box has coordinates [i + j, i + j], i ≥ 1, clearly there are Ci

ways to choose steps between [ j, j − 1] and [i + j, i + j].
Since the ordinary generating function for Catalan numbers is

C(x) =
∑
n≥0

Cnx
n = 1 − √

1 − 4x

2x
= 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + · · · ,

(17.4)
it follows that

F1(x, t) =
∑
n≥0

Cn+1t
n +

∑
i≥1

∑
j≥1

CiC j x
i t i+ j F1(x, t)

= C(t) − 1

t
+

∑
i≥1

Ci (xt)
i
∑
j≥1

C j t
j F1(x, t)

= C(t) − 1

t
+

∑
i≥1

Ci (xt)
i (C(t) − 1)F1(x, t)

= C(t) − 1

t
+ (C(xt) − 1)(C(t) − 1)F1(x, t),

and therefore by Eq. (17.4),

F1(x, t) = C(t) − 1

t (1 − (C(xt) − 1)(C(t) − 1))
= 2x

x
√
1 − 4t + √

1 − 4xt + x − 1
.

Some initial terms of F1(x, t) are

F1(x, t) = 1 + 2t + (x + 5)t2 + (2x2 + 4x + 14)t3 + (5x3 + 9x2 + 14x + 42)t4

+ (14x4 + 24x3 + 34x2 + 48x + 132)t5

+ (42x5 + 70x4 + 95x3 + 123x2 + 165x + 429)t6 + · · · .

The number of paths inLn avoiding P1 isCn+1, (n + 1)th Catalan number. In general,
the number of paths having exactly k P1-matches has the generating function as
follows,

1

k!
∂k F1(x, t)

∂xk

∣∣∣∣
x=0

or
1

k!
∂k F1(x, t)

∂xk

∣∣∣∣
x→0

.

We evaluate the derivative at x = 0 or when x = 0 is a singularity of the derivative,
we take the limit as x approaches zero. For example,
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∂F1(x, t)

∂x

∣∣∣∣
x→0

=
(

−1 + √
1 − 4t + 2t

2t

)2

= t2 + 4t3 + 14t4 + 48t5 + 165t6 + 572t7 + 2002t8 + · · · .

The sequence 1, 4, 14, 48, 165, 572, 202, . . . is sequence A002057 in the OEIS [14].
It have a number of combinatorial interpretations including the number of standard
tableaux of shape (n + 2, n − 1) and, with an offset of 4, the number of 123-avoiding
permutations on {1, 2, . . . , n} for which the integer n is in the fourth spot. It follows
from the hook length formula for the number of standard tableaux that the number of
paths L inLn with exactly one east below the subdiagonal y = x − 1 equals 4((2n −
1)!)/((n − 2)!(n + 2)!) and is equal to the number of 123-avoiding permutations on
{1, 2, . . . , n + 2} for which the integer n is in the fourth spot.

Similarly, one can obtain the generating function for the number of paths having
exactly two east steps below the subdiagonal as follows,

1

2!
∂2F1(x, t)

∂x2

∣∣∣∣
x→0

= −
(−1 + √

1 − 4t − 2t
) (−1 + √

1 − 4t + 2t
)2

8t2

= 2t3 + 9t4 + 34t5 + 123t6 + 440t7 + 1573t8 + 5642t9 + · · · .

The sequence 2, 9, 34, 123, 440, 1573, 5642, . . . is sequence A120989 in the
OEIS [14]. The nth term in this sequence counts the level of the first leaf in preorder
of a binary tree, summed over all binary trees with n − 2 edges. Thus the number of
paths L in Ln with exactly two east steps below the subdiagonal y = x − 1 equals
the sum of the level of the first leaf in preorder over all binary trees with n − 2 edges.
We leave open the problem of giving a bijective proof of this fact.

Next, we shall answer the following question, for a random path L ∈ Ln , what
is the expectation of P1-mch(L), or in other words, on average how many east steps
of L are below y = x − 1? Consider that

∂F1(x, t)

∂x

∣∣∣∣
x=1

= −−1 + √
1 − 4t + 2t

2(1 − 4t)3/2

= t2 + 8t3 + 47t4 + 244t5 + 1186t6 + 5536t7 + · · · . (17.5)

For example, a random L ∈ L7, expectation of P1-mch(L)

E[P1-mch(L) : L ∈ L7] = 5536(14
7

) ≈ 1.63,

which implies in average there are roughly 1.63 east steps below y = x − 1.
In general, by the OEIS, the coefficient of tn in Eq. (17.5) has formula 1

2 ((n +
1)

(2n
n

) − 4n). Using Stirling’s formula to approximate n!, we have
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E[P1-mch(L) : L ∈ Ln] = (n + 1)
(2n
n

) − 4n

2
(2n
n

) ∼ n + 1

2
− √

πn, (17.6)

which implies when n is large, for a random path L ∈ Ln , the expected number of
east steps that lie below y = x − 1 is n+1

2 − √
πn.

The sequence 1, 8, 47, 244, 1186, 5536, . . . from Eq. (17.5) is sequence
A029760 and A139262 in the OEIS [14]. A029760 and A139262 count the total
area under all the Dyck paths from [0, 0] to [n, n], the total number of inversions
in all 132-avoiding permutations of length n and also total number of two-element
anti-chains over all ordered trees on n edges. Again we leave open the problem of
finding a bijective proof of these facts. We suspect that finding a bijective proof is a
challenge because Dyck paths, 132-avoiding permutations, and ordered trees are all
Catalan objects while lattice paths inLn are not.

Next, by manipulating F1(x, t) we can also find the number of paths having an
even number of east steps below the subdiagonal y = x − 1. The generating function
is as follows,

1

2
(F1(1, t) + F1(−1, t)) = 1 + 2t + 5t2 + 16t3 + 51t4 + 180t5 + 622t6 + 2288t7 + · · · .

Similarly, the generating function for the number of paths having an odd number of
east steps below the subdiagonal y = x − 1 is

1

2
(F1(1, t) − F1(−1, t)) = t2 + 4t3 + 19t4 + 72t5 + 302t6 + 1144t7 + 4643t8 + · · · .

Neither of the series correspond to entries in the OEIS [14].

3.2 Pattern P2

For pattern P2, P2-mch(L) counts the number of times L bounces off the diagonal
y = x to the right, in other words, P2-mch(L) = bounce−(L). We shall study

F2(x, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P2-mch(L). (17.7)

As we observed in the introduction, F2(x, t) = F5(x, t).
We shall consider two cases. Case 1 is the paths that start with an east step and

Case 2 is the paths that start with a north step. We define

G2(x, t) :=
∑
n≥1

tn
∑

L∈L n starting with E

x P2-mch(L)
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Fig. 5 An example of recurrence based on P2

and
H2(x, t) :=

∑
n≥1

tn
∑

L∈L n starting with N

x P2-mch(L).

Clearly, F2(x, t) = 1 + G2(x, t) + H2(x, t). For H2(x, t), we consider where is the
first time a path starting with a north step crosses the diagonal y = x horizontally.
In the middle diagram of Fig. 5, the three dots stand for a path starting with ‘E’ or
an empty path.

H2(x, t) =
∑
j≥1

C j t
j (G2(x, t) + 1) = (C(t) − 1)(G2(x, t) + 1). (17.8)

Similarly, forG2(x, t), we consider where is the first time a path starting with an east
step crosses the diagonal y = x vertically. In the right diagram of Fig. 5, three dots
stand for a path starting with ‘N ’ or an empty path. Since we want to keep track of
P2-matches, here we need to introduce Catalan’s triangle Ci, j , which is the number
of Dyck paths in L2 j with i returns to the diagonal [2]. By [2], Ci, j has generating
function as follows,

C(x, t) =
∑
i≥0

∑
j≥0

Ci, j x
i t j = 1 + 1 − √

1 − 4t

(
√
1 − 4t − 1)x + 2

(17.9)

Then

G2(x, t) =
∑
i≥0

∑
j≥1

Ci, j x
i t j (H2(x, t) + 1) = 1 − √

1 − 4t

(
√
1 − 4t − 1)x + 2

(H2(x, t) + 1).

(17.10)
By Eq. (17.8),

G2(x, t) = 1 − √
1 − 4t

(
√
1 − 4t − 1)x + 2

((C(t) − 1)(H2(x, t) + 1) + 1). (17.11)
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We can then solve G2(x, t) to obtain that

G2(x, t) =
1−√

1−4t
(
√
1−4t−1)x+2

C(t)

1 + 1−√
1−4t

(
√
1−4t−1)x+2

− 1−√
1−4t

(
√
1−4t−1)x+2

C(t)

= (
√
1 − 4t − 1)2

2(
√
1 − 4t(t (x − 1) + 1) − t (x − 5) − 1)

.

Then we have

F2(x, t) = 1 + G2(x, t) + H2(x, t)

= 1 + G2(x, t) + (C(t) − 1)(G2(x, t) + 1)

= (G2(x, t) + 1)C(t)

= −(
√
1 − 4t − 1)(

√
1 − 4t x − √

1 − 4t − x + 3)

2(
√
1 − 4t xt − xt − √

1 − 4t t + 5t + √
1 − 4t − 1)

.

A few initial terms of F2(x, t) are

F2(x, t) = 1 + 2t + (x + 5)t2+(x2 + 4x + 15)t3 + (x3 + 5x2 + 16x + 48)t4

+ (x4 + 6x3 + 23x2 + 62x + 160)t5 + · · · .

F2(0, t) is the generating function for the number of paths that do not bounce off the
diagonal to the right. One can compute that

F2(0, t) = 2(t + √
1 − 4t − 1)

(
√
1 − 4t − 5)t − √

1 − 4t + 1

= 1 + 2t + 5t2 + 15t3 + 48t4 + 160t5 + 548t6 + 1914t7 + · · · .

The sequence 1, 2, 5, 15, 48, 160, 548, 1914, . . . does not appear in the OEIS [14].
Similarly, we can compute the generating function of the number of paths that

bounce at diagonal to right exactly one time. That is,

∂F2(x, t)

∂x

∣∣∣∣
x=0

=
(

−1 + √
1 − 4t + 2t

1 − √
1 − 4t + (−5 + √

1 − 4t
)
t

)2

= t2 + 4t3 + 16t4 + 62t5 + 238t6 + 910t7 + · · · .

The sequence 1, 4, 16, 62, 238, 910, . . . does not appear in the OEIS [14].
Also we could ask, for a random path L ∈ Ln , what is the expectation of

P2-mch(L), or in other words, on average how many times do L bounce at y = x to
right? Consider that
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∂F2(x, t)

∂x

∣∣∣∣
x=1

=
(

−1 + √
1 − 4t + 2t

−1 + √
1 − 4t + 4t

)2

= t2 + 6t3 + 29t4 + 130t5 + 562t6 + 2380t7 + · · · . (17.12)

Coefficient of tn in Eq. (17.12) agrees with sequence A008549 of the OEIS [14]
which counts the total area of all the Dyck excursions of length 2n − 2. By OEIS
[14], the coefficient of tn is given by the formula 4n−1 − (2n−1

n−1

)
. Using Stirling’s

formula to approximate n!, one finds that

E[P2-mch(L) : L ∈ Ln] =
∑

L∈L n
bounce−(L)

|Ln| =4n−1 − (2n−1
n−1

)
(2n
n

)

∼
√

πn

4
− 1

2
≈ 0.443

√
n,

which implies when n is large, the expected number of times a random path L ∈ Ln

bounces off the diagonal to the right is roughly 0.443
√
n.

Next, by manipulating F2(x, t) we can also find the number of paths having even
number of bounces off the diagonal to the right. The generating function is as follows,

1

2
(F2(1, t) + F2(−1, t)) = 1 + 2t + 5t2 + 16t3 + 53t4 + 184t5 + 654t6 + 2368t7 + · · · .

Similarly, the generating function for the number of paths having odd number of
bounces off the diagonal to the right is

1

2
(F2(1, t) − F2(−1, t)) = t2 + 4t3 + 17t4 + 68t5 + 270t6 + 1064t7 + 4181t8 + · · · .

Again, neither of the series correspond to sequences in the OEIS [14].

3.3 Pattern P3

For pattern P3, as discussed in Sect. 2, P3-mch(L) counts the number of times L
crosses the diagonal y = x horizontally. We shall study

F3(x, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P3-mch(L). (17.13)

By our observation in the introduction F3(x, t) = F4(x, t).
Similar to the discussion of P2, we consider two cases. Case 1 is the paths that

start with a north step and Case 2 is the paths that start with an east step. We define
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G3(x, t) :=
∑
n≥1

tn
∑

L∈L n starting with E

x P3-mch(L)

and
H3(x, t) :=

∑
n≥1

tn
∑

L∈L n starting with N

x P3-mch(L).

Clearly, F3(x, t) = 1 + G3(x, t) + H3(x, t). Essentially, the way we shall decom-
pose the paths in this case is the same as how we decomposed the paths for pattern
P2. For paths starting with a north step, we consider where is the first the path crosses
the diagonal y = x from left to right and then it is followed by a path starting with
an east step or an empty path. Then

H3(x, t) =
∑
j≥1

C j t
j (xG3(x, t) + 1) = (C(t) − 1)(xG3(x, t) + 1) (17.14)

Similarly, for paths starting with an east step, we consider where is the first time that
the path crosses the diagonal vertically. Then

G3(x, t) =
∑
j≥1

C j t
j (H3(x, t) + 1) = (C(t) − 1)(H3(x, t) + 1). (17.15)

Then by Eq. (17.14),

H3(x, t) = (C(t) − 1) (x(C(t) − 1)(H3(x, t) + 1) + 1)

and we solve the formula above for H3(x, t)

H3(x, t) = (1 − C(t))(x(C(t) − 1) + 1)

x(C(t) − 1)2 − 1

= −
(
2t + √

1 − 4t − 1
) (
2t (x − 1) + (

√
1 − 4t − 1)x

)
2

(
2t2(x − 1) + 2

(√
1 − 4t − 2

)
t x − √

1 − 4t x + x
)

Therefore,

F3(x, t) = 1 + G3(x, t) + H3(x, t)

= 1 + C(t)H3(x, t) + C(t) − H3(x, t) − 1 + hN (x, t)

= (H3(x, t) + 1)C(t)

= 2

(2t (x − 1) + (
√
1 − 4t − 1)x + √

1 − 4t + 1)
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A few initial terms of F3(x, t) are

F3(x, t) = 1 + 2t + (x + 5)t2 + (6x + 14)t3

+ (x2 + 27x + 42)t4 + (10x2 + 110x + 132)t5 + · · · .

Next, we shall find the generating function of the number of paths crossing the
diagonal horizontally exactly once.

∂F3(x, t)

∂x

∣∣∣∣
x=0

= −2
(−1 + √

1 − 4t + 2t
)

(
1 + √

1 − 4t − 2t
)2

= t2 + 6t3 + 27t4 + 110t5 + 429t6 + 1638t7 + · · · ,

The sequence 1, 6, 27, 110, 429, 1638, . . . is sequence A003517 on OEIS [14]. This
sequence has several combinatorial interpretations such as the number of standard
tableaux of shape (n + 3, n − 2) and the number of permutations of {1, . . . , n + 1}
with exactly one increasing subsequence of length 3. It follows from the hook length
formula for the number of standard tableaux that the number of paths L in Ln with
exactly one horizontal crossing equal 6((2n + 1)!)/(n − 2)!(n + 4)!).

Similarly, the number of paths L in Ln with exactly 2 horizontal crossings has
the following generating function:

1

2!
∂2F3(x, t)

∂x2

∣∣∣∣
x→0

= 4
(−1 + √

1 − 4t + 2t
)

(
1 + √

1 − 4t − 2t
)2

= t4 + 10t5 + 65t6 + 350t7 + 1700t8 + 7752t9 + · · · ,

The sequence 1, 10, 65, 350, 1700, . . . is sequence A003519 onOEIS [14]. It counts
the number of standard tableaux of shape (n − 5, n − 4) from which it follows that
the number of paths L inLn with exactly 2 horizontal crossings equals 10

n+6

(2n+1
n−4

)
.

Also we could ask, for a random path L ∈ Ln , what is the expectation of
P3-mch(L), or in other words, on average how many times does L cross y = x
from left to right? In this case, we have computed that

∂

∂x
F3(x, t)|x=1 = −1 = √

1 − 4t + 2t

−2 + 8t
= t2 + 6t3 + 29t4 + 130t5 + 562t6 + 2880t7 + 9949t8 + · · ·
= ∂

∂x
F2(x, t)|x=1,

which means the total number of P3-matches in paths in Ln is equal to the total
number of P2-matches paths in Ln .

Next we give a bijection that shows this fact. Since the total number of P3-matches
in paths inLn is half of total {P3, P4}-matches in paths inLn and the total number of
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Fig. 6 L is mapped to L3 by the bijection

P2-matches in paths inLn is half of total {P2, P5}-matches in paths in Ln , we only
need to show that the total number of {P2, P5}-matches in paths inLn is equal to the
total number of {P3, P4}-matches in paths in Ln . In other words, we only need to
show that the total number of times that all the paths in Ln bounce off the diagonal
is equal to the total number of times that all the paths inLn cross the diagonal.

By the reflection principle, we can construct a bijection between the set of paths
in Ln crossing the diagonal k times, denoted by Cn,k and the set of paths in Ln

bouncing off the diagonal k times, denoted by Bn,k . The procedure of the bijection
is as follows. For any path L ∈ Cn,k , L crosses the diagonal k times and suppose L
touches the diagonal j times at positions {p1, p2, . . . , p j }, j ≥ k. First we retain the
part between [0, 0] and p1 of the path and flip the path between p1 and [n, n] along
the diagonal, then we can get a new path L1. At the second step, we retain the part
between [0, 0] and p2 of the path L1 and flip the part between p2 and [n, n] along
the diagonal, then we can get a new path L2. We repeat the process above until we
acquire L j . L j is a path in Bn,k because the procedure above transforms a crossing
of L into a bouncing of L j and a bouncing of L into a crossing of L j . An example
is pictured in Fig. 6. L ∈ C5,2 is mapped to L3 ∈ B5,2 under the bijection.

Therefore,

E[P3-mch(L)] = E[P2-mch(L)] ∼
√
nπ

4
− 1

2
≈ 0.443

√
n.

Next, by manipulating F3(x, t) we can also find the number of paths having even
number many horizontal crossings. The generating function is as follows,

1

2
(F3(1, t) + F3(−1, t)) = 1 + 2t + 5t2 + 14t3 + 43t4 + 142t5 + 494t6 + 1780t7 + · · · ,

The sequence 1, 2, 5, 14, 43, 142, 494, . . . is sequence A005317 in the OEIS [14]
where no combinatorial interpretation is given. Thus we have given a combinatorial
interpretation to this sequence.

Similarly, the generating function for the number of paths having odd number
many horizontal crossings is

1

2
(F3(1, t) − F3(−1, t)) = t2 + 6t3 + 27t4 + 110t5 + 430t6 + 1652t7 + 6307t8 + · · · ,
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in which coefficient of tn also counts number of unordered pairs of distinct length-n
binary words having the same number of 1’s according to A108958 in the OEIS [14].
We leave open the problem of giving a bijective proof of this fact.

4 Multivariate Generating Functions

In this section, we shall study multivariate generating functions for Δ-matches for
certain Δ ⊆ {P1, . . . , P6}. Our choices for the Δ that we consider are motivated
by picking those pattern matching conditions which have the clearest geometric
interpretations. Let

FΔ(x, t) := 1 +
∑
n≥1

tn
∑
L∈L n

⎛
⎝∏

j∈Δ

x
Pj -mch(L)

j

⎞
⎠ ,

where Δ is a subset of {1, 2, 3, 4, 5, 6}. We start by looking at the two elements sets
that have symmetry, namely Δ = {1, 6}, Δ = {2, 5}, and Δ = {3, 4}.

4.1 P1 and P6

Pattern P1 has one east step below y = x − 1 and P6 has one east step above
y = x + 1, as shown in Fig. 7. We know that for a path L ∈ Ln , P1-mch(L) and
P6-mch(L) are the numbers of east steps below y = x − 1 and above y = x + 1,
respectively.

In this subsection, we shall consider the multivariate generating function

F1,6(x1, x6, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P1-mch(L)
1 x P6-mch(L)

6 .

We use essentially the same ideas as in Sect. 3.1 to decompose the paths in Ln

to obtain recurrences that will allow us to compute F1,6(x1, x6, t). In this case, we
take three cases into account. Case 1 is the paths that have no P1-match or P6-match.
In addition, we can see paths avoiding P1 and P6 must stay between y = x − 1 and
y = x + 1. It is easy to see that if the word of such a path is u1 . . . u2n , then either

Fig. 7 Pattern P1 and P6
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u2i−1u2i = EN or u2i−1u2i = NE for all i . Thus the number of paths inLn bounded
by y = x − 1 and y = x + 1 is 2n . Case 2 are the paths L such that the first pattern
matching of either P1 or P6 in path L is P1 and Case 3 are the paths L such that the
first pattern matching of either P1 or P6 in L is P6. Then we have

F1,6(x1, x6, t) =
∑
n≥0

2ntn +
∑
i≥1

∑
j≥1

(
Ci2

j−1xi1t
i+ j + CiC2 j−1xi6t

i+ j
)
F1,6(x1, x6, t)

= 1

1 − 2t
+ t

1 − 2t
(C(x1t) + C(x6t) − 2)F1,6(x1, x6, t).

Then solving above equation for F1,6, we have

F1,6(x1, x6, t) = 2x1x6(−1 + √
1 − 4x1t

)
x6 + (−1 + √

1 − 4x6t
)
x1 + 2x1x6

= 1 + 2t + (x1 + x6 + 4)t2 + (2x21 + 4x1 + 2x26 + 4x6 + 8)t3

+ (5x31 + 9x21 + 12x1 + 5x36 + 9x26 + 12x6 + 2x1x6 + 16)t4 + · · · .

Clearly, F1,6(x, 1, t) = F1,6(1, x, t) = F1(x, t). Next, we discuss coefficients of x1tn

and x1x6tn in F1,6(x1, x6, t) which count the number of paths in Ln having exactly
one P1 pattern and avoiding P6 and the number of paths in Ln having exactly one
P1 and exactly one P6. In general, the generating function for coefficients of x

j
1 x

k
6 is

1

j !k!
∂ j+k F1,6(x1, x6, t)

∂x j
1 ∂x

k
6

∣∣∣∣∣
x1=0,x6=0

, (17.16)

where if the derivative cannot be evaluated at zero, we take the limit.
By the symmetry of P1 and P6, the coefficient of x1tn in F1,6(x1, x6, t) equals the

coefficient of x6tn in F1,6(x1, x6, t). By Eq. (17.16), the generating function for the
coefficients of x1tn in F1,6(x1, x6, t) equals

t2

(1 − 2t)2
= t2 + 4t3 + 12t4 + 32t5 + 80t6 + 192t7 + 448t8 + · · · .

The sequence 1, 4, 12, 32, 80, 192, . . . is A001787 in the OEIS [14]. The nth term of
this sequence is n2n−1 whichmeans that the number of paths L ∈ Ln with exactly one
east step below the subdiagonal y = x − 1 and no east step above the superdiagonal
y = x + 1 equals (n − 1)2n−2. This is easy to prove directly. That is, if L is such
a path, the one east that occurs below the subdiagonal y = x − 1 must arise by
starting at a point [a, a] on the diagonalwhere 0 ≤ a ≤ n − 2 followed by a sequence
EENN . If we remove this sequence from theword of L , wewill end upwith theword
u1 . . . u2n−4 of path L ′ ∈ Ln−2 which has no east steps either below the subdiagonal
y = x − 1 or above the superdiagonal y = x + 1. It is easy to see that in such a
path L ′ either u2i−1u2i = EN or u2i−1u2i = NE for all i . Hence there are 2n−2 such
paths L ′ so that the number of paths L ∈ Ln with exactly one east step below the
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subdiagonal y = x − 1 and no east step above the superdiagonal y = x + 1 equals
(n − 1)2n−2.

The generating function of the coefficients of x1x6tn in F1,6(x1, x6, t) equals

2t4

(1 − 2t)3
= 2t4 + 12t5 + 48t6 + 160t7 + 480t8 + 1344t9 + · · · .

The sequence 2, 12, 48, 160, 480, . . . is sequenceA001815 in theOEIS [14].We can
show directly that the number of paths L ∈ Ln with exactly one east step below the
subdiagonal y = x − 1 and exactly step above the superdiagonal y = x + 1 equals
(n − 2)(n − 3)2n−4. That is, if L is such a path, then the one east that occurs below the
subdiagonal y = x − 1 must arise by starting at a point [a, a] on the diagonal where
0 ≤ a ≤ n − 2 followed by a sequence EENN and the one east that occurs above
the subdiagonal y = x + 1 must arise by starting at a point [b, b] on the diagonal
where 0 ≤ a ≤ n − 2 followed by a sequence NNEE .We have n − 1 choices for the
point [a, a]. But these n − 1 choices lead to different situations according to different
values of a. If a = 0 or a = n − 2, we have n − 3 choices to choose a point [b, b]
on the diagonal followed by a sequence NNEE . If 0 < a < n − 2, there are n − 4
choices to choose a point [b, b] on the diagonal followed by a sequence NNEE .
So the total ways to choose positions of one P1-match and one P6-match are equal
to 2(n − 3) + (n − 3)(n − 4) = (n − 2)(n − 3). We remove sequence EENN and
NNEE from the word of L , we will end up with the word u1 . . . u2n−8 of path
L ′ ∈ Ln−4 which has no east steps either below the subdiagonal y = x − 1 or above
the superdiagonal y = x + 1. Hence there are 2n−4 such paths L ′ so that the number
of path L ∈ Ln with exactly one east step below the subdiagonal y = x − 1 and
exactly on east step above the superdiagonal y = x + 1 equals (n − 2)(n − 3)2n−4.

If we are interested in counting lattice paths by the number of east steps below
y = x − 1 or above y = x + 1, then we consider the following generating function:

F1,6(x, x, t) = x

−1 + x + √
1 − 4xt

.

And also clearly,
∂F1,6(x, x, t)

∂x

∣∣∣∣
x=1

= 2
∂F1(x, t)

∂x

∣∣∣∣
x=1

because the symmetry of P1 and P6. Then by Eq. (17.6),

E[{P1, P6}-mch(L) : L ∈ Ln] = 2E[P1-mch(L) : L ∈ Ln] ∼ n + 1 − 2
√

πn.

Next, by manipulating F1,6(x1, x6, t)we can also find the number of paths having
even number many east steps below y = x − 1 or above y = x + 1. The generating
function equals (Fig. 8)
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Fig. 8 Pattern P2 and P5

1

2

(
F1,6(1, 1, t) + F1,6(−1,−1, t)

)
= 1 + 2t + 4t2 + 12t3 + 36t4 + 132t5 + 456t6 + 1752t7 + · · · .

(17.17)

Similarly, the generating function for the number of paths having odd number
many east steps below the subdiagonal y = x − 1 or above y = x + 1 is

1

2

(
F1,6(1, 1, t) − F1,6(−1,−1, t)

)
= 2t2 + 8t3 + 34t4 + 120t5 + 468t6 + 1680t7 + 6530t8 + · · · . (17.18)

Neither of the two sequences above is recorded in the OEIS [14].

4.2 P2 and P5

In this subsection, we shall study

F2,5(x2, x5, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P2-mch(L)
2 x P5-mch(L)

5 .

F2,5(x2, x5, t) is the generating function which keeps track of the number of lattice
paths by the number of times it bounces off the diagonal to the right or to the left.
By the symmetry induced by reflecting paths about the diagonal discussed in the
introduction, it is easy to see that F2,5(x2, x5, t) is a symmetric function in x2 and
x5. It is also clear that F2,5(x, x, t) is the generating function which counts number
of times a lattice path inLn bounces off the diagonal y = x .

First we define

G2,5(x2, x5, t) :=
∑
n≥1

tn
∑

L∈L n starting with E

x P2-mch(L)
2 x P5-mch(L)

5 tn

and
H2,5(x2, x5, t) :=

∑
n≥1

tn
∑

L∈L n starting with N

x P2-mch(L)
2 x P5-mch(L)

5 tn.
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Clearly,
F2,5(x2, x5, t) = 1 + G2,5(x2, x5, t) + H2,5(x2, x5, t).

Here we employ the decomposition of paths used in Sect. 3.2, then we have

G2,5(x2, x5, t) =
∑
i≥0

∑
j≥1

Ci, j x
i
2t

j
(
H2,5(x2, x5, t) + 1

)

= (C(x2, t) − 1)(H2,5(x2, x5, t) + 1)

and

H2,5(x2, x5, t) =
∑
i≥0

∑
j≥1

Ci, j x
i
5t

j
(
G2,5(x2, x5, t) + 1

)

= (C(x5, t) − 1)(G2,5(x2, x5, t) + 1),

where C(x, t) is given as Eq. (17.9). Then

G2,5(x2, x5, t) = (C(x2, t) − 1)
(
(C(x5, t) − 1) (G2,5(x2, x5, t) + 1) + 1

)
.

Solving the above formula for G2,5 we have,

G2,5(x2, x5, t) = − (C(x2, t) − 1)C(x5, t)

C(x2, t)(C(x5, t) − 1) − C(x5, t)

= − 2(1 − x5)t + (x5 − 2)
(
1 − √

1 − 4t
)

1 + √
1 − 4t + x2(x5 − 1)

(
1 − √

1 − 4t
) − x5 + √

1 − 4t x5 + 2(1 − x2x5)t
.

Therefore,

F2,5(x2, x5, t) = 1 + G2,5(x2, x5, t) + H2,5(x2, x5, t)

= 1 + G2,5(x2, x5, t) + (C(x5, t) − 1)(G2,5(x2, x5, t) + 1)

= C(x5, t)(G2,5(x2, x5, t) + 1)

=
(
1 + 1 − √

1 − 4t

2 − x5
(
1 − √

1 − 4t
)
)

·

×

⎛
⎜⎜⎜⎝1 − 2(1 − x5)t + (x5 − 2)

(
1 − √

1 − 4t
)

(
1 + √

1 − 4t + x2(x5 − 1)
(
1 − √

1 − 4t
)

−x5 + √
1 − 4t x5 + 2(1 − x2x5)t

)

⎞
⎟⎟⎟⎠ .
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A few initial terms of F2,5(x2, x5, t) are

F2,5(x2, x5, t) = 1 + 2t + (x2 + x5 + 4)t2 + (x22 + 4x2 + x25 + 4x5 + 10)t3

+ (x32 + 5x22 + 14x2 + x35 + 5x25 + 14x5 + 2x2x5 + 28)t4

+ (x42 + 6x32 + 21x22 + 48x2 + x45 + 6x35 + 21x25 + 48x5

+ 2x22 x5 + 2x2x
2
5 + 12x2x5 + 84)t5 + · · · .

By Eq. (17.16), we can obtain the generating functions of the coefficients of x2tn in
F2,5(x2, x5, t) which equals

∂F2,5(x2, 0, t)

∂x2

∣∣∣∣
x2=0

= 1 − √
1 − 4t + 2t (−2 + √

1 − 4t + t)

2t2

= t2 + 4t3 + 14t4 + 48t5 + 165t6 + 572t7 + 7072t8 + · · ·
= ∂F1(x, t)

∂x

∣∣∣∣
x→0

.

This implies there exists a bijection between paths having exactly one P2-match but
no P5-matches and paths having exactly one step below y = x − 1. We leave this as
an open problem.

Similarly, we can get coefficients of x2x5tn ,

∂2F2,5(x2, x5, t)

∂x2∂x5

∣∣∣∣
x2=x5=0

= 2t4 + 12t5 + 56t6 + 236t7 + 948t8 + 3712t9 + · · · .

The sequence 2, 12, 56, 236, 948, . . . is not in the OEIS [14].
It is also the case that F2,5(1, x, t) = F5(x, t) = F2(x, t) = F2,5(x, 1, t) and

F2,5(0, 0, t) = 1 + 2t + 4t2 + 10t3 + 28t4 + 84t5 + 264t6 + · · ·
= 1 + 2C1t + 2C2t

2 + 2C3t
3 + 2C4t

4 + 2C5t
5 + · · · ,

where Ck is the kth Catalan number. F2,5(x, x, t) is the generating function over
paths L inLn by the number of times L bounces off the diagonal:

F2,5(x, x, t) = 1 − √
1 − 4t − t − x + x2t

−x + (1 + x2)t

= 1 + 2t + 2(x + 2)t + 2(x + 2)t2 + 2(x2 + 4x + 5)t3

+ 2(x3 + 6x2 + 14x + 14)t4 + 2(x4 + 8x3 + 27x2 + 48x + 42)t5 + · · · .
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We take the partial derivative of F2,5(x, x, t) with respect to x and evaluate at x = 1,

∂F2,5(x, x, t)

∂x

∣∣∣∣
x=1

=
√
1 − 4t

−1 + 4t
− 1 − 2t

−1 + 4t

=
∑
n≥2

(
4n

2
− 2

(
2n − 1

n − 1

))
tn

= 2t2 + 12t3 + 58t4 + 260t5 + 1124t6 + 4760t6 + 19898t8 + · · ·
= 2

∂F2(x, t)

∂x

∣∣∣∣
x=1

.

It follows that

E[{P2, P5}-mch(L) : L ∈ Ln] = 2E[P2-mch(L) : L ∈ Ln] ≈
√

πn

2
− 1 ≈ 0.886

√
n

gives the expected number of times a path in Ln bounces off the diagonal.
1
2 (F2,5(1, 1, t) + F2,5(−1,−1, t)) is the generating function of the number of

lattice paths in Ln that bounce off the diagonal an even number of times. We have
computed that

1

2

(
F2,5(1, 1, t) + F2,5(−1,−1, t)

)

= 1 − √
1 − 4t + (−6 + 4

√
1 − 4t

)
t + 4t2

1 − √
1 − 4t + (−4 + 2

√
1 − 4t

)
t

= 1 + 2
∑
n≥1

(
2n − 2

n − 1

)
tn

= 1 + 2t + 4t2 + 12t3 + 40t4 + 140t5 + 504t6 + · · · .

The sequence 2, 4, 12, 40, 140, . . . is sequence A028329 in the OEIS [14]. It would
be nice to have a direct combinatorial proof that the number of lattice paths in Ln

that bounce off the diagonal an even number of times equals 2
(2n−2
n−1

)
.

1
2 (F2,5(1, 1, t) − F2,5(−1,−1, t)) is the generating function of the number of

lattice paths L inLn that bounce off the diagonal an odd number of times. We have
computed that

1

2

(
F2,5(1, 1, t) − F2,5(−1,−1, t)

)

= 2
∑
n≥2

(
2n − 2

n − 2

)
tn

= 2t2 + 8t3 + 30t4 + 112t5 + 420t6 + 1584t7 + · · · .
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Fig. 9 Pattern P3 and P4

The sequence 2, 8, 30, 112, 420, 1584, . . . is sequence A162551 in the OEIS [14]. It
would be nice to have a direct combinatorial proof of that the number of lattice paths
inLn that bounce off the diagonal an odd number of times equal 2

(2n−2
n−2

)
(Fig. 9).

4.3 P3 and P4

We define
F3,4(x3, x4, t) := 1 +

∑
n≥1

tn
∑
L∈L n

x P3-mch(L)
3 x P4-mch(L)

4 , (17.19)

where x3 is used to keep track of the number of horizontal crossings and x4 is used to
keep track of the number of vertical crossings. Clearly, F3,4(x3, x4, t) is symmetric
in x3 and x4.

We also define

G3,4(x3, x4, t) :=
∑
n≥1

tn
∑

L∈L n starting with E

x P3-mch(L)
3 x P4-mch(L)

4

and
H3,4(x3, x4, t) :=

∑
n≥1

tn
∑

L∈L n starting with N

x P3-mch(L)
3 x P4-mch(L)

4 .

We employ the same decomposition of paths used in Sect. 4.2 for P3 and P4. Then

H3,4(x3, x4, t) =
∑
j≥1

C j t
j (
x3G3,4(x3, x4, t) + 1

) = (C(t) − 1)(x3G3,4(x3, x4, t) + 1)

and

G3,4(x3, x4, t) =
∑
j≥1

C j t
j (
x4H3,4(x3, x4, t) + 1

) = (C(t) − 1)(x4H3,4(x3, x4, t) + 1).

Combining the two equations above, we can then solve for G3,4 to obtain that
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G3,4(x3, x4, t) = (1 − C(t))((x4C(t) − 1) + 1)

x3x4(C(t) − 1)2 − 1

= −
(−1 + √

1 − 4t + 2t
) (
2t (1 − x4) + (−1 + √

1 − 4t
)
x4

)
−2(−1 + √

1 − 4t)x3x4 + 4(−2 + √
1 − 4t)x3x4t + 4(x3x4 − 1)t2

.

Then

F3,4(x3, x4, t) = 1 + G3,4(x3, x4, t) + H3,4(x3, x4, t)

= 1 + G3,4(x3, x4, t) + (C(t) − 1)(x3G3,4(x3, x4, t) + 1)

= (x3C(t) − x3 + 1)G3,4(x3, x4, t) + C(t)

= 1 − √
1 − 4t

2t
−

(
1 − 1 − √

1 − 4t

2t

)

×
(
1 − x3 + 1−√

1−4t
2t x3

) (
1 − x4 + 1−√

1−4t
2t x4

)

−1 +
(
−1 + 1−√

1−4t
2t

)2
x3x4

.

A few initial terms of F3,4(x3, x4, t) are

F3,4(x3, x4, t) = 1 + 2t + (x3 + x4 + 4)t2 + (4x3 + 4x4 + 2x3x4 + 10)t3

+ (14x3 + 14x4 + x23 x4 + x3x
2
4 + 12x3x4 + 28)t4

+ (48x3 + 48x4 + 2x23 x
2
4 + 8x23 x4 + 8x3x

2
4 + 54x3x4 + 84)t5

+ · · · .

By symmetry, F3,4(1, x, t) = F4(x, t) = F3(x, t) = F3,4(x, 1, t). It is also clear that
F3,4(0, 0, t) = F2,5(0, 0, t) = 2C(t), where C(t) is the generating function of Cata-
lan numbers, since if a path in Ln has no vertical or horizontal crossings, then the
path either stays on or below the diagonal or on and above the diagonal.

By Eq. (17.16), we see that coefficients of x3tn in F3,4(x3, x4, t) yield the generat-
ing function of the number of paths inLn that have exactly one horizontal crossing
and no vertical crossings. We have computed that

∂F3,4(x3, 0, t)

∂x3

∣∣∣∣
x3=0

= 1 − √
1 − 4t + 2t (−2 + √

1 − 4t + t)

2t2

= t2 + 4t3 + 14t4 + 48t5 + 165t6 + 572t7 + 7072t8 + · · ·
= ∂F1(x, t)

∂x

∣∣∣∣
x→0

= ∂F2,5(x2, 0, t)

∂x2

∣∣∣∣
x2=0

,
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which implies the number of paths inLn having exactly one P3-match and avoiding
P4 is equal to the number of paths inLn having exactly one P2-match and avoiding
P5. This can be verified by the bijection defined in Sect. 3.3. However, coefficients
of x3x4tn in F3,4(x3, x4, t) are not equal to the coefficient of x2x5tn in F2,5(x2, x5, t).
This is due to the fact that a path inLn cannot cross the diagonal horizontally twice
without crossing the diagonal vertically. We have computed that

∂2F3,4(x3, x4, t)

∂x3∂x4

∣∣∣∣
x3=x4=0

= 2
∂F3(x, t)

∂x

∣∣∣∣
x=0

= − 8t2
(−1 + √

1 − 4t + 2t
)

(
√
1 − 4t

(
1 + √

1 − 4t − 2t
)3

= 2t2 + 12t3 + 54t4 + 220t5 + 858t6 + 3276t7 + · · · ,

The sequence 2, 12, 54, 220, 858, 3276, . . . is Column 2 in A118920 and the exactly
same interpretation is given by Emeric Deutsch in the OEIS [14].

For F3,4(x, x, t), we can show that F3,4(x, x, t) = F2,5(x, x, t) by the bijection
defined in Sect. 3.3, which gives us that for a random L ∈ Ln , the expectation of the
number of crossings has asymptotic approximation as follows,

E[{P3, P4}-mch(L)] ∼
√

πn

2
− 1 ≈ 0.886

√
n,

and also

1

2
(F3,4(1, 1, t) + F3,4(−1,−1, t)) = 1

2
(F2,5(1, 1, t) + F2,5(−1,−1, t)).

4.4 P2 and P4

Due to space limitations, we shall consider only one more set of patterns of size 2,
namely Δ = {2, 4} as shown in Fig. 10. First, we define

F2,4(x2, x4, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P2-mch(L)
2 x P4-mch(L)

4 .

F2,4(x2, x4, t) counts the number of lattice paths by the number of times it bounces
off the diagonal to the right and by the the number of times it crosses the diagonal
vertically. It follows that F2,4(x, x, t) is the generating function over lattice paths L
inLn by the number of times L touches the diagonal with a north step. By symmetry,
F3,5(x, x, t) is also the generating function over lattice paths L inLn by the number
of times L touches the diagonal with an east step.
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Fig. 10 Pattern P2 and P4

First we define

G2,4(x2, x4, t) :=
∑
n≥1

tn
∑

L∈L n starting with E

x P2-mch(L)
2 x P4-mch(L)

4

and
H2,4(x2, x4, t) :=

∑
n≥1

tn
∑

L∈L n starting with N

x P2-mch(L)
2 x P4-mch(L)

4 .

Clearly,
F2,4(x2, x4, t) = 1 + G2,4(x2, x4, t) + H2,4(x2, x4, t).

Employing the same decomposition that is used in Sect. 4.2, we have

G2,4(x2, x4, t) =
∑
i≥0

∑
j≥1

Ci, j x
i
2t

j
(
x4H2,4(x2, x4, t) + 1

)

= (C(x2, t) − 1)
(
x4H2,4(x2, x4, t) + 1

)

and

H2,4(x2, x4, t) =
∑
j≥1

C j t
j (G2,4(x2, x4, t) + 1)

= (C(t) − 1)(G2,4(x2, x4, t) + 1).

Combining the two equations above, we can solve them for G2,4,

G2,4(x2, x4, t) = − (C(x2, t) − 1)(x4(C(t) − 1) + 1)

x4(C(x2, t) − 1)(C(t) − 1) − 1
.

Then

F2,4(x2, x4, t) = 1 + G2,4(x2, x4, t) + H2,4(x2, x4, t)

= 1 + G2,4(x2, x4, t) + (C(t) − 1)(G2,4(x2, x4, t) + 1)

= C(t)(G2,4(x2, x4, t) + 1)

= (x2 − 2)
(−1 + √

1 − 4t
) + 2(x2 − 1)t

x4
(−1 + √

1 − 4t
) + x2

(
2 + (−1 + √

1 − 4t
) + 3x4 − x4

√
1 − 4t

)
t
.
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A few initial terms are

F2,4(x2, x4, t) = 1 + 2t + (x2 + x4 + 4)t2 + (x22 + 3x2 + 5x4 + x2x4 + 10)t3

+ (x32 + 4x22 + 9x2 + x24 + 19x4 + x22 x4 + 7x2x4 + 28)t4

+ (x42 + 5x32 + 14x22 + 28x2 + 8x24 + 68x4 + x32 x4 + 2x2x
2
4

+ 9x22 x4 + 32x2x4 + 84)t5 + · · · .

By Eq. (17.16), the coefficient of x2tn in F2,4(x2, x4, t) is the number of paths in
Ln which bounce off the diagonal to the right exactly one time but do not cross the
diagonal vertically. We have computed that

∂F2,4(x2, 0, t)

∂x2

∣∣∣∣
x2=0

= −
(−1 + √

1 − 4t
)3

8t

= t2 + 3t3 + 9t4 + 28t5 + 90t6 + 297t7 + 1001t8 + · · · .

The sequence 1, 3, 9, 28, 90, 297, . . . is sequence A000245 in the OEIS [14] which
has several interpretations such as the number of permutations on {1, 2, . . . , n + 2}
that are 123-avoiding and for which the integer n is in the third spot, the number of
lattice paths inLn−1 which touch but do not cross the y = x − 1 and the number of
Dyck paths inLn that start with ‘EE .’

Similarly, the coefficient of x4tn in F2,4(x2, x4, t) is the number of paths in Ln

which have exactly one vertical crossing but never bounce off the diagonal to the
right. We have computed that

∂F2,4(0, x4, t)

∂x4

∣∣∣∣
x4=0

= −
(−3 + √

1 − 4t
) (−1 + √

1 − 4t + 2t
)2

8t2

= t2 + 5t3 + 19t4 + 68t5 + 240t6 + 847t7 + 3003t8 + · · · .

The sequence 1, 5, 19, 68, 240, . . . is sequence A070857 in the OEIS [14] which has
no combinatorial interpretation. Thus we have given a combinatorial interpretation
to this sequence.

The coefficient of x2x4tn in F2,4(x2, x4, t) is the number of paths in Ln which
bounce off the diagonal to the right exactly once and cross the diagonal vertically
exactly one. The corresponding generating function equals

∂2F2,4(x2, x4, t)

∂x2∂x4

∣∣∣∣
x2=x4=0

= −
(−1 + √

1 − 4t
)3 (−2 + √

1 − 4t
) (−1 + √

1 − 4t + 2t
)

16t2

= t3 + 7t4 + 32t5 + 129t6 + 495t7 + 1859t8 + · · · ,

which has no matches in the OEIS [14].



410 R. Pan and J. B. Remmel

Fig. 11 L is mapped to L ′ by the bijection

As we mentioned, F2,4(x, x, t) is the generating function for the times of paths
touching the diagonal y = x with a north step,

F2,4(x, x, t) = 1 − √
1 − 4t − t − x + x2t

−x + (1 + x)2t

= 1 + 2t + (2x + 4)t2 + (2x2 + 8x + 10)t3 + (2x3 + 12x2 + 28x + 28)t4 + · · ·
= F2,5(x, x, t) = F3,4(x, x, t).

This fact can be also shown by constructing a bijection. Let Cn,k denote the set
of paths inLn that cross the diagonal k times and Tn,k denote the set of paths inLn

that touch the diagonal with a north step k times.
Next, we shall construct a bijection betweenTn,k and Cn,k , which is similar to the

bijection defined in Sect. 3.3. For any path L ∈ Tn,k , assume L touches the diagonal
j times and these positions are denoted by {p1, p2, . . . , p j }. We let p0 = [0, 0] and
p j+1 = [n, n]. If pi is a bouncing right position or pi is a horizontal crossing position,
weflip the part between pi−1 and pi along the diagonal. Thenwe obtain a newpath L ′.
In this bijection,we can see that the number of crossings of L is equal to the number of
north-touchings of L ′, and the number of north-touchings of L is equal to the number
of crossings of L ′. For example, in Fig. 11, L is mapped to L ′ and {P2, P4}-mch(L) =
{P3, P4}-mch(L ′) = 3 and {P3, P4}-mch(L) = {P2, P4}-mch(L ′) = 2.

Because F2,4(x, x, t) = F3,4(x, x, t), for a random L ∈ Ln ,

E[{P2, P4}-mch(L)] ∼ πn

2
− 1 ≈ 0.886

√
n

4.5 P2, P3, P4, and P5

The last example of this section is a generating function of a subset of {1, . . . , 6} of
size 4. That is, we shall study the generating function
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F2,3,4,5(x2, x3, x4, x5, t) := 1 +
∑
n≥1

tn
∑
L∈L n

x P2-mch(L)
2 x P3-mch(L)

3 x P4-mch(L)
4 x P5-mch(L)

5 .

For convenience, in this subsection we use F2,3,4,5 to denote F2,3,4,5(x2, x3, x4, x5, t),
G2,3,4,5 to denote G2,3,4,5(x2, x3, x4, x5, t), and H2,3,4,5 to denote H2,3,4,5(x2, x3, x4,
x5, t) where

G2,3,4,5 := 1 +
∑
n≥1

tn
∑

L∈L n starting with E

5∏
k=2

x Pk -mch(L)
k

and

H2,3,4,5 := 1 +
∑
n≥1

tn
∑

L∈L n starting with N

5∏
k=2

x Pk -mch(L)
k .

Similar to the recurrences used in previous subsections, we have

G2,3,4,5 =
∑
i≥0

∑
j≥1

Ci, j x
i
2t

j
(
x4H2,3,4,5 + 1

)

= (C(x2, t) − 1)
(
x4H2,3,4,5 + 1

)

and

H2,3,4,5 =
∑
i≥0

∑
j≥1

Ci, j x
i
5t

j
(
x3G2,3,4,5 + 1

)

= (C(x5, t) − 1)
(
x3G2,3,4,5 + 1

)

Combining the two equations above, we can solve them for G2,3,4,5,

G2,3,4,5 = (C(x2, t) − 1)(x4(C(x5, t) − 1) + 1)

x3x4(C(x2, t) − 1)(C(x5, t) − 1) − 1
.

Then

F2,3,4,5 = 1 + G2,3,4,5 + H2,3,4,5

= 1 + G2,3,4,5 + (C(x5, t) − 1)
(
x3G2,3,4,5 + 1

)
= C(x5, t)

(
x3G2,3,4,5 + 1

) + (1 − x3)G2,3,4,5

= P(x2, x3, x4, x5, t)

Q(x2, x3, x4, x5, t)
,
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where

P(x2, x3, x4, x5, t) =
(
(−1 + √

1 − 4t + 2t)x3(−1 + x4) + x4 − √
1 − 4t x4

−2t x4 + x2(−(−1 + √
1 − 4t)(−2 + x5) − 2t (−1 + x5)

)

+2
√
1 − 4t x5 + 2t x5 − 2(−2 + √

1 − 4t + x5)

and

Q(x2, x3, x4, x5, t) = 2 + (−1 + √
1 − 4t + 2t)x3x4 + (−1 + √

1 − 4t)x5

+x2
(
−1 + √

1 − 4t − (−1 + √
1 − 4t + 2t)x5

)
.

One can imagine that even a few initial terms of F2,3,4,5(x2, x3, x4, x5, t) are very
long so that we will not list them here. However, it is easy to verify that the constant
coefficient of tn is just 2Cn because there are two sets of Dyck paths, namely the ones
that stay on or above the diagonal and the ones that stay on or below the diagonal.

By manipulating F2,3,4,5(x2, x3, x4, x5, t), one is able to answer certain compli-
cated enumerative problems, such as how many paths in Ln are there that cross the
diagonal vertically exactly once and horizontally exactly twice, and bounce off the
diagonal to the right once but not to the left. The answer to this question has the
generating function as follows,

1

2!
∂4F2,3,4,5(x2, x3, x4, 0, t)

∂x2∂x23∂x4

∣∣∣∣
x2=x3=x4=0

=
(
1 − √

1 − 4t
)5

16
= 2t5 + 10t6 + 40t7 + 150t8 + 550t9 + 2002t10 + 7280t11 + · · · .

Amazingly, the sequence2, 10, 40, 150550, 2002, . . . is twice the sequenceA000344
in the OEIS [14], which has interpretations such as the number of paths inLn−3 that
touch but do not cross y = x − 2 and the number of standard tableaux of shape
(n − 1, n − 5). We leave open the problem of finding a bijective proofs of these
facts.

Next, we consider the formula F2,3,4,5(x, x, x, x, t)which gives us the generating
functions for the times of touching the diagonal,

F2,3,4,5(x, x, x, x, t) = 1 + (x − 1)
(−1 + √

1 − 4t
)

1 + (−1 + √
1 − 4t

)
x

= 1 + 2t + (4x + 2)t2 + (8x2 + 8x + 4)t3 + (16x3 + 24x2 + 20x + 10)t4

+ (32x4 + 64x3 + 72x2 + 56x + 28)t5 + · · · .
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Next, we want to ask for a random L ∈ Ln how many times in average that L
touches the diagonal. Applying the same idea that we used in previous sections, we
see that

∂F2,3,4,5(x, x, x, x, t)

∂x

∣∣∣∣
x=1

=
(√

1 − 4t − 1
)2

4t − 1

= 4t2 + 24t3 + 116t4 + 520t5 + 2248t6 + 9530t7 + · · ·
= 4

∂F2(x, t)

∂x

∣∣∣∣
x=1

.

So for a random L ∈ Ln , the expectation of times L touches the diagonal is that

E[{P2, P3, P4, P5}-mch(L)] = 4n − 4
(2n−1
n−1

)
(2n
n

) ∼ √
πn − 2 ≈ 1.772

√
n.

Similarly, we can also obtain the generating functions for the number of paths
touching the diagonal an even number of times or an odd number of times. We have
computed that

1

2

(
F2,3,4,5(1, 1, 1, 1, t) + F2,3,4,5(−1,−1,−1,−1, t)

)

= 4t + √
1 − 4t

4t + 2
√
1 − 4t − 1

= 1 + 2t + 2t2 + 12t3 + 34t4 + 132t5 + 468t6 + 1752t7 + 6530t8 + · · · .

(17.20)

and

1

2

(
F2,3,4,5(1, 1, 1, 1, t) − F2,3,4,5(−1,−1,−1,−1, t)

)

= −2
(−1 + √

1 − 4t + 2t
)

−1 + 2
√
1 − 4t + 4t

= 4t2 + 8t3 + 36t4 + 120t5 + 456t6 + 1680t7 + 6340t8 + · · · .

Neither of the two series have matches in the OEIS [14].
By observing Eqs. (17.17) and (17.18), we find that coefficient of t k in Eq. (17.20)

is equal to

{
coefficient of t k in 1

2 (F1,6(1, 1, t) − F1,6(1, 1, t)), if k is even

coefficient of t k in 1
2 (F1,6(1, 1, t) + F1,6(1, 1, t)), if k is odd.

This is because all the six patterns in L2 are mutually exclusive. For any path
L ∈ Lk ,L2-mch(L) = k − 1, which implies that
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{P1, P6}-mch(L) + {P2, P3, P4, P5}-mch(L) = k − 1.

If k is odd, {P1, P6}-mch(L) and {P2, P3, P4, P5}-mch(L) have the same parity and
otherwise, they do not.

5 Future Research

In this paper, we computed the generating functions FPk (x, t) for k = 1, . . . 6 and
FΔ(x, t) for certain selected Δ ⊆ {1, . . . , n}. In a subsequent paper, we will system-
atically compute FΔ(x, t) for all sets of size two. There are only nine such generating
functions up to symmetry and we have computed five of them since FP2,P3(x2, x3, t)
is a specialization of F2,3,4,5. The ones that we have not computed in the paper are rep-
resented by FP1,P2(x1, x2, t), FP1,P3(x1, x3, t), FP1,P4(x1, x4, t), and FP1,P5(x1, x5, t).
As a special case for pattern P1, P2, F1,2(x, x, t) keeps track of the number of paths
in Ln that have k steps below the diagonal. For any fixed k, the coefficient of xktn

in F1,2(x, x, t) is also Catalan number Cn , shown by Chung and Feller [1]. We shall
explore these generating functions in a subsequent paper where we will also add
some additional parameters which keep track of both the area below the diagonal
and the area above the diagonal in path inLn .

There are many interesting bijective problems that arise from our results. For
example, in Sect. 3.1, we find that the total east steps below y = x − 1 of all the
paths in Ln is equal to the total area under all Dyck paths in Ln . We take L3 as an
example, there are 6 paths having P1-matches and there are 5 Dyck paths, pictured in
Fig. 12. The total east steps below y = x − 1 are equal to 2 + 2 + 1 + 1 + 1 + 1 = 8
and the total area under all the Dyck paths is also equal to 0 + 1 + 2 + 2 + 3 = 8.
Although how to design the bijection is unknown, it is interesting to see paired pattern
matching does have connection to other statistics for lattice paths.

Fig. 12 Total number of east steps below y = x − 1 inLn equals the total area below Dyck paths
in Dn , n = 3 as an example



Paired Patterns in Lattice Paths 415

Another direction for further research is to consider Delannoy paths. In this paper,
we only consider paths consisting of north steps [0, 1] and east steps [1, 0]. Naturally,
we can extend our definitions to Delannoy paths which are paths consisting of east
steps [1, 0], north steps [0, 1], and northeast steps [1, 1] which start at [0, 0] and end
at [n, n]. We denote the steps [1, 0], [0, 1], and [1, 1] by E , N , and D, respectively.
The set of all the Delannoy paths from [0, 0] to [n, n] is denoted by Sn .

According to [12], a Schröder path is a path from [0, 0] to [n, n] consisting of east
steps [1, 0], north steps [0, 1], and northeast steps [1, 1] which never goes above the
diagonal y = x . The number of Schröder paths from [0, 0] to [n, n] is counted by
large Schröder number Dn whose ordinary generating function equals

D(x) =
∑
n≥0

Dnx
n = 1 − x − √

1 − 6x + x2

2x
= 1 + 2x + 6x2 + 22x3 + 90x4 + 394x5 + · · · .

The nth little Schröder number D̃(n) counts the number of Schröder paths from [0, 0]
to [n, n] without northeast steps on the diagonal y = x whose ordinary generating
function equals

D̃(x) =
∑
n≥0

D̃nx
n = 1 + x − √

1 − 6x + x2

4x
= 1 + x + 3x2 + 11x3 + 45x4 + 197x5 + · · · .

Here, we adopt the same definition of paired pattern for Delannoy paths. For
example, in Fig. 13, L = EDNDDNNEDE ∈ S7. psL(1, 2) = ENNE = P4 and
psL(2, 3) = NNEE = P6, that is, P4-mch(L) = P6-mch(L) = 1. It matches our
observation: L crosses the diagonal y = x ‘vertically’ once and there is one east step
above y = x + 1.

Fig. 13 L = EDNDDNNEDE ∈ S7
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We take pattern P4 as example, P4-mch(L) is the number of times L crosses the
diagonal y = x vertically. We shall study the ordinary generating function

FS4(x, t) := 1 +
∑
n≥1

tn
∑
L∈Sn

x P4-mch(L).

We split the discussion into two cases. Case 1 is the paths in Sn that start with a
north step and Case 2 is the path inSn that start with an east step or a northeast step.
We define

GS4(x, t) :=
∑
n≥1

tn
∑

L∈Sn starting with E or D

x P4-mch(L)

and
HS4(x, t) :=

∑
n≥1

tn
∑

L∈Sn starting with N

x P4-mch(L).

Clearly,
FS4(x, t) = 1 + GS4(x, t) + HS4(x, t).

We obtain following formulas based on recursion on where is the first time the path
starting with ‘E’ or ‘D’ crosses the diagonal y = x from bottom to top.

GS4(x, t) =
(
D(t) − 1

1 − t

)
(xHS4(x, t) + 1) + t

1 − t
(HS4(x, t) + 1)

Similarly, we consider where is the first time a path starting with a north step and
having no northeast steps on the diagonal crosses the diagonal ‘horizontally.’

HS4(x, t) =
(
D̃(t) − 1

)
(GS4(x, t) + 1)

Solving for GS4(x, t), we have

GS4(x, t) = − (t − 1)D(t)((D̃(t) − 1)x + 1) + (D̃(t) − 1)x − t + 1

(D̃(t) − 1)x(D(t)(t − 1) + 1) − 2t + 1

Then we have

FS4(x, t) = 1 + GS4(x, t) + HS4(x, t)

= 1 + GS4(x, t) +
(
D̃(t) − 1

)
(GS4(x, t) + 1)

= D̃(t)(GS4(x, t) + 1)

= 2

3 + √
1 − 6t + t2 − 2(x−1)

t−1 + t (x − 1) − 3x + √
1 − 6t + t2x

.



Paired Patterns in Lattice Paths 417

Fig. 14 Examples of two
patterns in L3

A few initial terms of FS4(x, t) are

FS4(x, t) =1 + 3t + (x + 12)t2 + (11x + 52)t3 + (x2 + 84x + 236)t4

+ (19x2 + 556x + 1108)t5 + (x3 + 220x2 + 3428x + 5340)t6 + · · · .

By setting x = 0 in FS4(x, t), we obtain the generating function of the number
of Delannoy paths that do not cross the diagonal vertically,

FS4(0, t) =
(t − 1)

(
−1 + 3t + √

1 − 6t + t2
)

t2
(
3 − t + √

1 − 6t + t2
)

= 1 + 3t + 12t2 + 52t3 + 236t4 + 1108t5 + 5340t6 + · · · .

The sequence 1, 3, 12, 52, 236, . . . does not appear in the OEIS [14].
Finally, one can study patternmatching for paired patterns in both lattice paths and

Delannoy paths for patterns P of length≥ 6. For example, based on Definitions 17.1
and 17.2 and Theorems 17.2 and 17.3, one can obtain geometric interpretations for
the number of P-matches in a path L .

For example, consider the two patterns Pa and Pb are pictured in Fig. 14. Note
that Pa has one east step below y = x − 2 and Pb has a vertical crossing immedi-
ately followed by a horizontal crossing. For any path L ∈ Ln , Pa-mch(L) can be
interpreted as the number of east steps of L below y = x − 2 and Pb-mch(L) can be
interpreted as the number of such pairs of crossings of L .
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