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Abstract. The Pattern Formation problem is one of the most impor-
tant coordination problem for robotic systems. Initially the entities are
in arbitrary positions; within finite time they must arrange themselves
in the space so to form a pattern given in input. In this chapter, we will
mainly deal with the problem in the OBLOT model.
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1 Introduction

In this chapter, we will describe the Pattern Formation problem, where the
robots are required to form, in a not predetermined area of the plane where they
operate, a pattern they receive in input. The pattern can be given as a set of
points in the plane (expressed in their Cartesian coordinates), or as a geometric
predicate (e.g., “form a circle”).

The standard requirements are that, initially, no two entities are in the same
position (i.e., there are no dense points), and that the number of points pre-
scribed in the pattern and the number of robots are the same. The robots are
said to form the pattern if, at the end of the computation, the positions of the
robots coincide, in everybody’s local view, with the points of the pattern (or
satisfy the predicate). Depending on the application, the formed pattern may
be translated, and/or rotated, and/or scaled, and/or flipped into its mirror posi-
tion with respect to the initial pattern. If dense points are allowed in the robots
configurations and in the pattern, the problem is called pattern formation with
multiplicity.

The Pattern Formation problem is practically relevant because, if the
robots can form a given pattern, they can agree on their respective roles in a
subsequent, coordinated action.

The more general and difficult version of this problem is the Arbitrary
Pattern Formation problem, where the robots must be able to form any
arbitrary pattern P they are given in input, starting from any arbitrary initial
configuration where the robots occupy distinct location. The pattern formation
problem, in its general as well as in the more specific versions, has been exten-
sively investigated (e.g., see [1–11]).
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2 Views and Symmetricity

Useful tools to study what patterns are formable by oblivious robots are based on
the notion of view [9,12]: this notion is strictly related to that of a symmetricity
of a set of entities in the plane (either point or robots). In this chapter we will
just give a quick overview of these concepts, that will be detailed in Chap. 6.

Let Zi denote the local coordinate system of robot ri. The global view GVi(t)
from robot ri at time t is the infinite rooted tree defined as follows (refer also to
Fig. 1):

1. The root vi of GVi(t) corresponds to ri.
2. Node vi has n − 1 children, one for each robot rj , with j �= i. The edge from

node vi to node vj corresponding to rj is labeled ((a, b), (c, d)), where (a, b)
is the position of rj with respect to Zi, and (c, d) is the position of ri with
respect to Zj .

3. Node vj , with j �= i has n − 1 children, one for each robot rl, with j �= l; the
edge from vj to vl is labeled ((a′, b′), (c′, d′)), where (a′, b′) is the position of
rj with respect to Zi, and (c′, d′) is the position of ri with respect to Zj .

Since in general a robot does not know the coordinate systems of the other
robots, which are integral part of the definition of global view, the global view
of a configuration is in general not available to the robots and, in most cases,
impossible to derive.

Something that the robots can locally compute in absence of any other infor-
mation is the local view. The local view LVi(t) of robot ri at time t is the set
of vectors vec(ri, rj) for all j �= i with respect to Zi. In other words, the local
view LVi(t) corresponds to the information that ri obtains when performing
Look at time t. Two local views LVi(t) and LVj(t) are said to be equivalent
(LVi(t) ≡ LVj(t)) if they are equal up to rotations, mirroring, and scaling.

An important property of the equivalence classes defined by the views (both
in the case of global views, and of local views) is that they all have the same
size.

Lemma 1 ([9]). Given a configuration E at time t, all the equivalence classes
of robots with the same global (resp., local) view, have the same cardinality m.

Moreover, the robots can be partitioned into n
m groups of m robots each,

such that two robots have an equivalent view if and only if they belong to the
same group. Note that, in the case of global view, the equivalence relationship
is equality.

Lemma 2 ([9]). If the system has Chirality, given a configuration E at time
t, the robots in the same equivalence class form a regular m-gon, and the regular
m-gons formed by all the groups have a common center.

The size m of the equivalence classes, called symmetricity, is denoted by σ(E)
in the case of global views, and by ρ(E) in the case of local views.
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Fig. 1. (a) A configuration of robots. (b) The global view of r1.

For example, in the configuration of robots depicted in Fig. 1(a) there are
two classes of symmetry, each containing 4 robots, both when considering global
and local views: In this case σ(E) = ρ(E) = 4. Moreover, since in this example
there is chirality, Lemma 2 holds and the robots can be partitioned into 2 groups
of 4 robots each group forming a 4-gon with a common centre.

Note that Lemma 2 does not hold when there is no chirality, i.e., when the
axis of the coordinate systems of the robots are not rotationally symmetric.
Consider, for example, the configuration depicted in Fig. 1(b). It is clear that all
robots have the same global and local views, thus belong to the same equivalence
class; they however do not form a single n-gon, but rather 2 distinct n

2 -gons.
More examples are shown in Fig. 2 where, in all cases, the robots have the

same local views; thus ρ(E1) = ρ(E2) = ρ(E3) = n. On the other hand, the
global views are not always the same. More precisely, in Fig. 2(a), we have that
σ(E1) = 1 because all global views are different; in Fig. 2(b), σ(E2) = n because
the global views are all identical; finally, in Fig. 2(c), σ(E3) = n
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Fig. 2. Three configurations of robots: (a) E1, with ρ(E1) = n and σ(E1) = 1; (b) E2,
with ρ(E2) = σ(E2) = n; and (c) E3, with ρ(E3) = n and σ(E3) = n
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.



40 G. Prencipe

So far we have defined the symmetricity in terms of configurations; this con-
cept can be extended also to patterns. The symmetricity of a pattern P can be
defined analogously to the one of a configuration with respect to local views from
the points of the pattern. It shall be indicated with ρ(P).

An equivalent alternative definition of symmetricity ρ and σ is based on
rotations and groups, and is detailed in Chap. 6.

3 Arbitrary Pattern Formation

In the most general version of the problem, the robots are required to form
any arbitrary pattern P they are given in input, starting from any arbitrary
plain initial configuration; that is, they are required to solve the Arbitrary
Pattern Formation problem. We note that, since rotation is allowed, two
robots always form the desired pattern. Therefore we will assume to have at
least three robots in the system. Also, we will assume that the robots operate
under the OBLOT model.

3.1 Arbitrary Pattern Formation and Leader Election

A problem related to the Arbitrary Pattern Formation problem is the
Leader Election problem: the robots in the system are said to elect a leader
if, after a finite number of cycles, all the robots deterministically agree on (i.e.,
choose) the same robot l, called the leader. A deterministic algorithm that lets
the robots in the system elect a leader in a finite number of cycles, given any
initial configuration, is called a leader election algorithm.

The relationship between the arbitrary pattern formation problem and the
leader election problem, is as follows:

Theorem 1 ([5]). If it is possible to solve the Arbitrary Pattern Forma-
tion problem for n ≥ 3 robots, then the Leader Election problem is solvable
too.

Proof. Let A be a pattern formation algorithm. Let P be a pattern defined in
the following way:

1. All the robots but one are evenly placed on the same line L; the distance
between two adjacent robots is d; and

2. the last robot is on L, but the distance from its unique adjacent robot is 2d.

After all the robots execute A to form P, the unique robot that has only one
neighbor, and whose distance from it is 2d, is identified as the leader.

We will now show that in general, the leader election problem is determinis-
tically unsolvable.

Theorem 2 ([5]). There exists no deterministic algorithm that solves the
Leader Election problem, even in Fsync with Chirality.
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Fig. 3. Theorem 2: The unbreakable symmetry of a 5-gon.

Proof. By contradiction, let A be a deterministic algorithm for solving the
Leader Election problem, and let us assume that the robots have no agree-
ment on the local compasses (i.e., Disorientation holds). Consider any pattern
different from a regular n-gon or a single point, and let the initial positions be
such that the robots form a regular n-gon. Let α = 360◦/n be the characteristic
angle of the n-gon, and let the local coordinate system of each robot be rotated
by α with respect to its neighbor on the polygon (see Fig. 3). In this situation, all
the robots have the same (local) view of the world. Now, for any move that any
one robot can make in its local coordinate system by executing algorithm A, we
know that each robot can make the same move in its local coordinate system.
If all of them move in the exact same way at the same time (i.e., they move
according to a synchronous schedule), they again end up in a regular n-gon or
a single point. Therefore, by letting all the robots move at the same time in the
same way, we always proceed from one regular n-gon or single point to the next.
Hence, no leader can be elected. The same argument applies even if Chirality
holds.

Thus, by Theorem 1, we can state the following:

Corollary 1. In a system with n > 2 robots, the Arbitrary Pattern For-
mation problem is unsolvable.

Furthermore, even if the robots agree on the direction and direction of one
axis (agreement k-Axes, with k = 1), the Leader Election problem is still
unsolvable when n is even: in the following, we will refer to this kind of agreement
as OneAxis.

Theorem 3 ([5]). Let the robots agree only on the direction and orientation of
one axis; there exists no deterministic algorithm that solves the Leader Elec-
tion problem, hence the Arbitrary Pattern Formation problem, when n is
even.
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Proof. By contradiction, let A be a deterministic leader election algorithm.
Without loss of generality, let us assume that the robots agree on the direction
and orientation of the Y axis, and consider an initial placement of the robots
symmetric with respect to a vertical axis; i.e., each robot r has a specular partner
r̂. In addition, let the local coordinate systems be specular with respect to the
symmetry axis: the directions of the X axis of r and of the X axis of r̂ are oppo-
site; thus the (local) view of the world is the same for r and r̂. In this setting,
at time t = 0, both r and r̂ are in the same state; i.e., τ(r, 0) = τ(r̂, 0). Consider
now a semi-synchronous scheduler: robots are activated at discrete time instants;
each robot is activated infinitely often; an active robot performs its operations
instantaneously. Additionally, if a robot r is activated at time t ≥ 0, the sched-
uler will activate at that time also r̂. As a consequence, if τ(r, t) = τ(r̂, t), since
the two robots execute the same protocol A, their next state will still be the
same: if r moves to d, r̂ moves to the point ̂d specular to d with respect to the
symmetry axis. In other words, in this execution of protocol A, τ(r, t) = τ(r̂, t)
for all t ≥ 0. On the other hand, since A is an election protocol, it must exist a
time t′ > 0 such that a robot, say r′ becomes leader. Since the leader is unique,
τ(r′, t′) �= τ(r, t′) for all r �= r′, contradicting the fact that τ(r′, t′) = τ(̂r′, t′).

Let us consider now the converse relationship between the Arbitrary Pat-
tern Formation problem and the Leader Election problem. Assume that
all robots share a common protocol Leader(E) that, given any configuration
E, deterministically returns a unique leader in E. We can now employ such a
protocol to form an arbitrary target pattern P, i.e., to solve the Arbitrary
Pattern Formation problem, assuming that the robots agree on a common
chirality. The overall idea of the algorithm consists of three main steps [13]: (1)
the robots move to some appropriate positions, and build a kind of global coor-
dinate system; (2) next, they compute the final positions to occupy in order to
form the input pattern; (3) finally, the robots move towards these final positions,
paying attention to maintain unchanged the global coordinate system.

In particular, given a set of points P and its SEC (P ), we call the concentric
enclosing circles of SEC (P ) all the circles having the same center of SEC (P )
and passing through at least one point in P . Starting from a leader configuration
(i.e., a configuration where a leader can be located), the robots first move to an
agreement configuration:

Definition 1 (Agreement Configuration). A configuration T is an agree-
ment configuration if and only if both following conditions hold:

1. There exists a robot rl in T such that rl is the unique robot located on the
smallest concentric enclosing circle of SEC (T);

2. There is no robot at the center of SEC (T).

In order to achieve an agreement configuration from a leader configuration
E, the robots act as follows. If there is a robot r that is located at the center c
of SEC (E), let s be the closest robot to c among the robots in E\{r}, and p the
median point on the segment rs. Then, by moving r towards p, an agreement
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configuration is achieved. Otherwise (no robot is at c), we consider the smallest
concentric enclosing circle of SEC (E), call it C; if there is only one robot on
this circle, then the robots are already in an agreement configuration. Thus, let
us assume there is more than one robot on C. Now, the availability of protocol
Leader() is exploited: let r∗ = Leader(E), and let r be the first robot on C,
according to the clockwise orientation, with respect to the half-line

−→
cr∗ (recall

that Assumption Chirality holds). By moving r towards the median point of
the segment rc, an agreement configuration is obtained. Note that the previous
strategy works also when all robots are on SEC (E) (i.e., when C ≡ SEC (E)):
the only difference is in the way robot r is chosen. In fact, in this case, r is the
first non-critical robot on C, i.e. the first robot on C whose movement would not
change SEC (E) (in this case r might coincide with r∗).

Once the robots are in an agreement configuration T, they can also agree
on their final positions: in particular, the center c of SEC (P) is mapped onto
the center o of SEC (T); the pattern is rotated so that −→orl is mapped onto −→cs,
with s the first non-critical point located on the smallest concentric enclosing
circle of P; and P is scaled with respect to the radius of SEC (T) so that all the
distances are expressed according to the radius of SEC (T) (in particular SEC (T)
= SEC (P)).

Then, the robots occupy these positions, starting from those situated on SEC,
and then on all the circles concentric to SEC from the largest to the smallest.
During this phase, the final positions are maintained unchanged, by making sure
that the robots remain in an agreement configuration until the pattern is formed.
In particular, the protocol makes sure that no angle above 180◦ is created on
SEC (otherwise the smallest enclosing circle changes), and that the leader of
the agreement configuration remains the unique closest robot from the center of
SEC and does not leave the radius where it is located. In other words,

Theorem 4 ([13]). In Async, assuming Chirality, for any n ≥ 4 if the
Leader Election problem is solvable, then the Arbitrary Pattern For-
mation problem is solvable.

3.2 Arbitrary Pattern Formation and Compasses

The solvability of the Arbitrary Pattern Formation problem, and in gen-
eral which patters can be formed regardless of the starting configuration, strictly
depend on the level of agreement that the robots have about their local coordi-
nate systems.

Following the ideas of the proof of previous Theorem2, it is possible to show a
necessary condition for the solvability of the Arbitrary Pattern Formation
problem: the absence of common agreement on the coordinate system, leads to
the inability to form arbitrary patterns.

Theorem 5 ([5]). Without any agreement on the local compasses, Arbitrary
Pattern Formation is impossible, even in Fsync with chirality.
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As a consequence, some agreement is necessary.

Sense of Direction. Total agreement on the coordinate system (Assumption
ConsistentCompass) is indeed sufficient to solve the Arbitrary Pattern
Formation problem even in Async. To see how, consider the following pro-
tocol [5]:

1. Each robot establishes the (lexicographic) total order of the points of the
local pattern (Fig. 4(a)).

2. Each robot establishes the (lexicographic) total order of the robots’ positions
retrieved in the last Look (Fig. 4(b)). As we will see, this order will be the
same for all robots.

3. The first and second robots move to the positions matching the first and
second pattern points. This movement can be performed in such a way that
the order of the robots does not change (Fig. 4(c) and (d)). Once this is done,
the first two robots’ positions will determine the translation and scaling of
the pattern (Fig. 4(e)).

4. All other robots go to the other points of the pattern. This can be done by
moving the robots sequentially to the pattern’s points. The sequence is chosen
in such a way to guarantee that, after one robot has made even only a small
move towards its destination, no other robot will move before that one has
reached its destination (Fig. 4(f)).

We note that the final positions of the robots are not rotated w.r.t. the input
positions; in other words the algorithm keeps the “orientation” given by the
input pattern. Moreover, in this case Theorem1 holds also for n = 2, since the
rightmost and topmost robot in the system can always be identified as the leader.

Theorem 6 ([5]). With ConsistentCompass, Arbitrary Pattern Forma-
tion is solvable in Async.

Partial Agreement: Odd Number of Robots. Let us now consider the case when
the robots have partial agreement: they agree only on the orientation of one axis,
say Y ; that is, there is common agreement also on the direction of the X axis,
but not on its orientation (assumption OneAxis). Note that this case, if there is
also chirality, would trivially coincide with the total agreement one.

As stated by Corollary 1, the Arbitrary Pattern Formation problem
is unsolvable in general; furthermore, by Theorem3, it is also unsolvable by
an even number of robots when the Assumption OneAxis considered in this
section holds, since symmetric initial configuration can impede the formation of
arbitrary patterns. However, for breaking the symmetry, it is sufficient to know
that the number n of robots is odd: in this case, in fact, either the robots are in
a symmetric initial situation, in which there is a unique middle robot that will
move in order to break the symmetry; or the initial situation is not symmetric,
and this asymmetry can be used to identify an orientation of the X axis.

In more detail, let us define some references related to a set of points E that
will be used in the following:
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Fig. 4. An example of the arbitrary pattern formation protocol in presence of
ConsistentCompass. (a) The input pattern P. The robots have complete knowledge
on the local coordinate systems. The numbers represent the lexicographical ordering
the robots give to the points of P, and α = Angle(p1, p2). (b) The robots sort the
robots’ positions retrieved in the last Look state, and compute β = Angle(r1, r2). (c)
r1 moves in such a way that Angle(r1, r2)= α. (d) The relative positions of r1 and
r2 are such that Angle(r1, r2)= α. (e) At this point, all the robots can translate and
scale the input pattern according to r1r2. Then, all the robots, one at a time, reach
the final positions of the pattern to form. (f) The final configuration.

– The two vertical lines that are tangent to the convex hull of E, and the vertical
axis ΦE

m that is in the middle between them.
– These three vertical lines delimit two regions (or sides): one to the left of ΦE

m

and one to its right. Let ME and LE denote the side in E with more and less
points, respectively. If the two sides have the same number of points, then
ME is the rightmost side. If |ME| �= |LE|, then E is said to be unbalanced;
otherwise, we will call it balanced.
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– Finally, ΦE

M denotes the one of the two axes tangent to the convex hull of E
that lies in ME, and ΦE

L the other.

We will describe now the protocol to form any pattern with an odd number
of points, where the points are not all on the same vertical line. The case, where
the robots have to form a vertical line is easier.

First, the robots check that the robots are not on the same vertical line
Ξ; otherwise, the second topmost robot on this line, say r, moves towards its
(local) right, up to a distance equal to the distance between the topmost and
the bottommost robot on Ξ (no other robot move until r reaches this distance).
At this point, the references on both the input pattern P and on the observed
configuration D can be computed: in particular, let Υm = ΦP

m, Υ+ = ΦP

M, Υ− =
ΦE

L the references in P, and Km = ΦD

m, and K+ = ΦD

M, K− = ΦE

L the references
in D. The final goal of the robots is to find a way of mapping these two sets of
references onto each other so that the final destinations the robots have to reach
to form P can be uniquely computed.

To this aim, the robots need to unbalance D, so that also an agreement on
the orientation of the x axis cen be reached. If D is balanced, the symmetry that
derives from having the two sides with the same number of robots is broken as
follows. First all the robots1 in MD are moved on K+ and all the robots in LD

on K−. After all the robots have performed these movements, since D is still
balanced and the total number of robots is odd, there is an odd number of robots
on Km: the topmost robot on Km, say top∗, is selected to move towards its (local)
right, so that an unbalanced configuration can be achieved. This movement is
performed carefully since, as soon as top∗ leaves Km and enters the side to its
right, the configuration will become unbalanced.

The fact that the configuration is unbalanced allows the robots to implicitly
reach an agreement on the direction of the x axis; hence, on a global coordinate
system (GCS): the common orientation of the x axis is given by mapping MP

onto MD.
Once the GCS has been established, the topmost robots on K+ and on K−

(top+ and top−, respectively) move vertically on K+ and on K−, respectively,
until they reach positions corresponding to the two topmost points on Υ+ and
Υ− in P. Once top+ and top− place themselves in the correct positions, they
will never move again. At this point, the set of final positions of the robots can
be easily computed, by scaling the pattern according to these mappings. Note
that here the pattern does not need to be rotated.

Now, all robots are ready to reach their final destinations. Note that at this
point it might be possible that the unbalancing process is not completed yet;
i.e., top∗ is still moving towards its destination. Should this be the case, the
other robots can however detect it, and will not start their move until top∗ stops
(again, details can be found in [5]). The robots reach their final destinations
sequentially:
1 Note that, since at this time the robots still do not have a common agreement on

the direction of the X axis, for some robots MD and LD might be different. All of
them, however, agree on Km.
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– First, the robots in S− (side of D where K− lies) sequentially fill the final
positions that are in S−. If there are more robots than available final positions,
the “extra” robots are sequentially moved towards Km, starting from the
topmost robots that is closest to Km.

– Second, the robots in S+ (side of D where K− lies), except for the bottommost
on K+, sequentially fill the final positions in S+. If there are more robots than
available final positions, the “extra” robots are sequentially moved towards
Km, starting from the topmost robots that is closest to Km.

– Third, if there are still unfilled final positions in S+ (that is, there were not
enough robots in S+ in the second step), the robots on Km are sequentially
moved in S+, starting from the topmost, to fill the final positions occupied
by no robots.

– Fourth, if there are still unfilled final positions in S− (that is, there were
not enough robots in S− in the first step), the robots on Km are sequen-
tially moved in S−, starting from the topmost, to fill the final positions still
available.

At this point, all the robots not on Km occupy the correct positions except
one: the bottommost robot on K+, say r.

– If there is an available destination in S+, then r goes there. At this point, all
the robots but those on Km are in correct positions. Note that now all avail-
able destinations are also on Km: thus, the robots on Km move sequentially
(and only vertically on Km) towards the available final destinations.

– If there are no available final positions inside S+ and S−, r moves towards
Km. Once it reaches the median axis, all the robots but those on Km are in
correct positions, and again the algorithm proceeds as in the previous case.

– If there is an available destination in S−, r first moves towards Km. Then,
the topmost robot on Km moves in S− on the last unfilled final position.
Once also this position becomes occupied, only the robots on Km must be
adjusted, as in the two previous cases.

Thus, the above plus Theorem 3 imply the following:

Theorem 7 ([5]). With OneAxis, Arbitrary Pattern Formation is solv-
able only if n is odd, and this can be done in Async.

Partial Agreement: Even Number of Robots. By Theorem 3, an arbitrary pattern
can not be formed by an even number of robots with OneAxis. In this section,
we are interested in determining which class of patterns, if any, can be formed
in this case starting from any initial position. Again, we will assume that the
robots in the system have common agreement on the direction and orientation
of only the Y axis, and that the number n of robots in the system is even.

We say that P is a symmetric pattern if it has at least one axis of symmetry
Λ; that is, for each p ∈ P there exists exactly another point p′ ∈ P such that p
and p′ are symmetric with respect to Λ (see Figs. 5(b), (c) and (d)).

The proof of the unsolvability result of Theorem3 is useful to better under-
stand what kind of patterns can not be formed, hence what kind of pattern
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Fig. 5. (a) An unachievable asymmetric pattern. (b) An achievable pattern with one
axis of symmetry not passing through any vertex. (c) An unachievable pattern. (d) An
achievable pattern that has three axes of symmetry not passing through any vertex.
Note that this pattern has also axes of symmetry passing through vertexes.

formation algorithms can not be designed. In fact, the ability to form a partic-
ular type of patterns would imply the ability to elect a robot in the system as
the leader. Formally,

Theorem 8 ([5]). If an algorithm A lets the robots form (a) an asymmetric
pattern, or (b) a symmetric pattern that has all its axes of symmetry passing
through some vertex, then A is a leader election algorithm.

From Theorems 3 and 8, it follows that:

Corollary 2. There exists no pattern formation algorithm that lets the robots
in the system form (a) an asymmetric pattern, or (b) a symmetric pattern that
has all its axes of symmetry passing through some vertex.

Let us call T the class containing all the arbitrary patterns, and P ⊂ T the
class containing only patterns with at least one axis of symmetry not passing
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through any vertex (e.g., see Figs. 5(b) and (d)); let us call empty such an axis.
Corollary 2 states that if P ∈ T \P, then P can not be in general formed; hence,
according to Part (b), the only patterns that might be formed are symmetric
ones with at least one empty axis.

The idea behind the algorithm that solves the Arbitrary Pattern For-
mation problem with partial agreement and an even number of robots is as
follows. First, the robots compute locally an empty axis of the input pattern P,
say Λ, and then rotate P so that Λ is parallel to the common understanding of
the orientation of y; let us denote by PR the rotated pattern.

If the robots lie all on the same line, the algorithm forces them to place on
at least two distinct vertical lines, Γ and Γ ′ (this is achieved as for the odd
case). Then, the topmost robot on Γ , say Out , and the topmost robot on Γ ′, say
Out ′, move so that they place themselves in the correct position: in particular,
since PR is symmetric with respect to Λ, Out and Out ′ must place themselves
to the same height. This is because, by Corollary 2, the input pattern can not
be a vertical line.

At this point, the set of final positions can be computed, by scaling the input
pattern with respect to ΓΓ ′, and by translating it so that the topmost point on
the rightmost vertical axis tangent to P is mapped onto Out , and the topmost
point on the leftmost vertical axis tangent to P is mapped onto2 Out ′.

At this point, the robots move to reach a balanced configuration, with each
side containing half of the robots. The balancing is obtained as follows. Let S
and S ′ be the two sides determined by Γm, the vertical median axis between Γ
and Γ ′.

– In the side that has more than n/2 robot (if any), the robots are moved
sequentially (starting from the topmost with the smallest horizontal distance
from Γm) towards Γm, using a path that avoids collisions, until there are
exactly n/2 robots in that side.

– In a side that has ≤n/2 robots, the robots are moved towards the final posi-
tions in that side.

– The robots that are on Γm wait until |S | ≤ n/2 and |S ′ | ≤ n/2, and all
the robots in the two sides are on a final position. At this point, sequentially
(from the topmost) they move towards the final positions still available in the
two sides. In fact, by the way the input pattern has been rotated, no final
positions can be on Γm.

Thus, we can state the following:

Theorem 9 ([5]). With OneAxis, when n is even only patterns in P can be
formed, and this can be done in Async.

2 Note that, since PR is symmetric, nothing changes if the topmost point on the
leftmost vertical axis tangent to P is mapped onto Out , and the topmost point on
the rightmost vertical axis tangent to P is mapped onto Out ′.
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No Agreement. In absence of any additional assumption, and in particular in
absence of any agreement on the compasses, Theorem 2 implies that no asymmet-
ric pattern can be formed from all arbitrary initial configurations. Furthermore,
as discussed later in Sect. 4, a symmetric pattern A with symmetricity σ(A),
can be formed only with the same or lower symmetricity. This means that the
only patterns that might (possibly) be formed from all initial configurations are
either an n-gon, or the uniform circle (i.e. a circle along which the robots are
placed at equal distance), or the point (i.e., all robots are gathered at the same
location). Note that this fact holds regardless of the synchronicity (i.e., even in
Fsync).

The problem of forming a point (a.k.a. Gathering) and forming a uniform
circle are important in their own right, and are analyzed respectively in Chap. 4
and Chap. 5, respectively. Interestingly, to date it is not known whether these
problems can be solved in Async without additional assumptions; in the case
of Ssync, they are both solvable.

3.3 Landmarks Covering: Formation of Visible Patterns

An interesting problem related to Arbitrary Pattern Formation (APF)
is the Landmarks Covering problem: in the space there are n points, the
landmarks, visible to all robots3; the problem is for the robots to reach a config-
urations where at each landmark there is precisely one robot. A solution protocol
must enable the robots to cover the landmarks, regardless of the location of the
landmarks and of the initial location of the robots.

In other words, the Landmarks Covering problem is precisely the Arbi-
trary Pattern Formation problem when the points of the input pattern
are globally visible. Clearly, any solution to APF under some conditions, will
solve also Landmarks Covering under those conditions. The research interest
is whether Landmarks Covering can be solved more efficiently than APF,
or with fewer conditions than APF, or in situations where APF is not (known
to be) solvable. In terms of efficiency, the main goal of any Landmarks Cov-
ering solution protocol is that of minimizing the robots movements, i.e., the
total amount traveled by the robots to reach the final configurations in which
all landmarks are covered.

Interestingly, unlike the Arbitrary Pattern Formation problem, the
Landmarks Covering problem can always be solved in Async, provided there
is Chirality. Furthermore this can be done always with minimal travel costs
and without collisions [14].

The solution strategy consists in the robots computing a unique perfect
matching between robots and landmarks which minimizes the total travel costs
from each robot to the landmark assigned by the matching; each robot then
moves until it reaches the assigned landmark, avoiding collisions. The clear dif-
ficulty is to perform this process obliviously; to do so, the determined matching
must be invariant to the movements of the robots towards their destination, so

3 Equivalently, the position of the landmarks is known a priori to all robots.
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Fig. 6. Examples of matchings.

that each robot, every time it becomes active, can determine which landmark
was initially assigned it, regardless of the progress made by the other robots
towards their assigned landmarks.

Consider the initial configuration of the robots A and let B denote the pattern
of the landmarks. We can view a perfect matching M from A to B as a set of
pairs {(a, b)} where a is a robot location in A and b is a landmark in B, and its
cost is the sum

∑

(a,b)∈M |ab| of the Euclidean distances between the matched
points. Let M(A,B) denote the set of all perfect matchings M of minimum cost
between A to B such that for all distinct pairs (a, b), (a′, b′) ∈ M , the points
a, a′, b′, b do not reside on the same line in that specific order. For example, M
may not include the match shown in Fig. 6(a), but may include the pairs shown
in Fig. 6(b). We call the matchings in this set optimal. It is easy to verify that
M(A,B) �= ∅; note that there might be more than one optimal matching between
A and B.

We can compute a unique optimal matching, called clockwise matching,
between two set of n distinct points, A and B, as follows:

(1) First consider the bipartite graph G[A,B] = (V,E) whose vertex set
V = A ∪ B comprises of the points of A and B, and where the edge set E =
∪M∈M(A,B)M contains all pairs matched in at least one optimal matching.
(2) Consider now the connected components G1, G2, . . . , Gk of G[A,B], and
the periphery4 Ci of component Gi; let Ai and Bi be the points of A in Gi\Ci

and the points of B in Gi \ Ci, respectively.
(3) Consider next the subgraph Ĝ[A,B] of G[A,B] recursively defined as fol-
lows: Ĝ[A,B] = ∅ if A = B = ∅; otherwise Ĝ[A,B] = ∪1≤j≤k(Ci ∪ Ĝ[Ai, Bi]).
Note that each connected component Q of Ĝ[A,B] is either a cycle or a single
edge.
(4) Finally, for each connected component Qi of Ĝ[A,B], construct the match-
ing Wi where Wi = Qi if Qi is a single edge, otherwise, Wi is a clockwise tour
(a1, b1), (a2, b2), . . . , (am, bm) of Qi.

4 For a plane graph, the periphery is the boundary of the exterior face.
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The clockwise matching W [A,B] between A and B is just the union of the
matchings Wi of all the connected components Qi of Ĝ[A,B].

Important properties are that the clockwise matching W so determined is
unique and indeed optimal; i.e., W [A,B] ∈ M(A,B). But the crucial fact is
that these properties are invariant with respect to robots moving towards the
matched landmarks. In fact,

Lemma 3 ([14]). Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and = {c1, . . . , cn}
be set of points which satisfy following:

1. {(a1, b1), (a2, b2), . . . , (an, bn)} ∈ W [A,B]
2. ci ∈ aibi

3. if there exists j �= i such that aj ∈ aibi then ci = ai

Then {(c1, b1), (c2, b2), . . . , (cn, bn)} ∈ W [C,B].

Thus, the (collision avoiding) solution protocol is simply [14]:

Algorithm LandmarkCover
Assumptions: Visible Landmarks; Chirality.

1. Let A = {a1, . . . , an} be the position of the robots (as returned by Look)
and let B = {b1, . . . , bn} be the positions of the landmarks in my coordi-
nate system.

2. Compute the clockwise matching W [A,B]. Let a ∈ A be my position and
b ∈ B the landmark assigned to me in W [A,B].

3. If ∀a′ ∈ A \ {a}, a′ /∈ ab, then move towards b.

Theorem 10 ([14]). The Landmarks Covering problem can be solved in
Async with minimal travel costs, provided there is Chirality.

In other words, with Chirality, every visible pattern can be formed in
Async.

4 Pattern Formation and Initial Configuration

The proof of Theorem2 shows that, with no agreement on the local coordi-
nate systems, the Arbitrary Pattern Formation problem cannot be solved.
Thus, an interesting question is what patterns could be formed, in absence of
common coordinate system, starting from a specific configuration E. Once again,
we will assume the OBLOT scenario.

4.1 Impossibility

The patterns that the robots can or cannot form starting from configuration E

at time t = 0 are strictly related to the classes of equivalence derived from the
definition of views (seen in Sect. 2).
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If the views of two or more robots are identical, in some executions (e.g.,
under a scheduler that activates them always at the same time) those robots will
always perform the same actions, without being able to break their symmetry;
so, the patterns that can be possibly formed must have the same or higher
symmetricity, but always a multiple of the original one.

Theorem 11 ([9]). Starting from a configuration E with symmetricity σ(E), it
is impossible to form any pattern P with σ(P) < σ(E), or σ(P) �= k · σ(E) for
some integer k > 1.

In other words, if E is totally asymmetric (i.e., σ(E) = 1), all patterns are
potentially formable; on the other hand, if σ(E) = m > 1, only patterns with the
same symmetricity or with a symmetricity that is a multiple of m are candidate
to be formable. Notice that this impossibility holds even if the robots are not
oblivious. In case of systems with chirality, by Lemma 2, we obtain the inability
to form a pattern that cannot be partitioned, as the initial configuration, in n

m
regular m-gons.

Theorem 12 ([9]). In systems with Chirality, starting from a configuration
E with symmetricity σ(E) = m, it is impossible to form any pattern unless it is
the union of n

m regular m-gons all having the same center.

4.2 Possibility

Once we know which are the only patterns that could be formed starting from
a configuration E, the questions become whether those patterns can be formed,
and how. In Async, no answers are known. In the case of Ssync there are some
conditional answers.

If the robots are not oblivious (recall that the impossibility holds even in this
case), they can record all the snapshots in which they are active; the change
of coordinates in two successive snapshots allows to detect movement and to
measure it; hence information can be communicated by moving appropriate dis-
tances [9]. In particular, they can communicate their own coordinate systems
and unit of measures, so that the complete views can be locally constructed and
examined; once this is done, forming the pattern is straightforward.

We are however interested in oblivious robots, for which there is no memory,
and hence no tool to record information, to detect and measure movement, and
thus to communicate. Interestingly, it is possible for oblivious robots to form
all the formable patterns [15], if the robots have Chirality, move with fixed
mobility (possibly different for each robot) and know the maximum movement δ̂.

Theorem 13 ([15]). A team of oblivious robots in Ssync with Chirality, fixed
mobility, and known maximum movement, starting from configuration E with
σ(E) = m can form any pattern P decomposable into n

m regular m-gons all having
the same center.
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Fig. 7. A T -stable configuration with six robots.

Notice that, since the robots do not agree on a common coordinate system,
the level of symmetry perceived by the robots (given by their local views) might
not correspond to the actual level of symmetry of the global view which, as
defined earlier, take into account also the coordinate systems.

Let P = p1, . . . , pn be the pattern to be formed and let us assume that the
robots start in n distinct positions. For simplicity we describe only the case
when the pattern does not contain dense points. Moreover, we assume (again
for simplicity) that each robot knows the origin of its own coordinate system,
which does not change throughout the algorithm. The result still holds with some
modifications also when these assumptions are removed. Also for simplicity we
assume the unit distance of a robot coincides with δ̂.

The algorithm distinguishes the case when ρ(E) = 1, and thus the initial
configuration is totally asymmetric, even without considering the coordinate
systems, from the case when ρ(E) > 1.
Case ρ(E) = 1. In this case the initial configuration E is perceived as asymmetric.
This is the simplest case and also a building block possibly used in the other
cases.

Since the symmetricity is 1 and there is chirality, a total order can be imposed
on the robots, even in absence of a common coordinate system. The robots are
in fact ordered in non decreasing order of their radii with respect to the centre c
of the smallest enclosing circle SEC (E) (for points with the same distance, ties
are broken by using chirality). Let this order correspond to r1, . . . , rn, where the
robots are aware of their own index. The algorithm is designed in such a way
that SEC will never change until the pattern is “almost” formed.

Intuitively, the robots move from E to a special configuration, called a
T -stable configuration, where SEC contains exactly three robots on the circum-
ference: two opposite on a diameter and the third at 90◦ from both, and no
robots occupy the center (see Fig. 7). The robots can then agree on a common
coordinate system by selecting as X the line passing through the two robots
positioned opposite on the diameter of SEC, and as Y the line passing through
c and through the third robot placed at 90◦ on the circumference.
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The unit distance of this common coordinate system is chosen in a very
specific way as Rad

2l
where Rad is the radius of SEC, and l is the smallest positive

integer such that |rj | < |pj | for each 1 ≤ j ≤ n, where |rj | (resp., |pj |) indicates
the distance from point rj (resp., vertex pj) to its own origin. This choice is made
for the unit distance to be sufficiently small so that robots never move away from
c while going towards their position to form the pattern. The robots now move
one by one to their final destination following their order (which implies that
robots closer to c move to their destination first). This order, combined with the
fact that no robot has to move away from c in the process, guarantees that the
magnitude of the unit distance does not change in the formation process, and
that a robot that has reached its final position does not have to move anymore.
The movements are performed without destroying the T -stable configuration,
paying particular attention to the movements of the last three robots.

Case ρ(E) > 1. When the robots perceive ρ(E) > 1, it does not necessarily mean
that σ(E) > 1, because the different coordinate systems might induce more
asymmetry. In this general case, the robots perform two procedures. First they
try to move from E to a configuration that reflects a symmetry m that divides
ρ(P). Once/if such a situation is reached, they proceed to form the pattern.
If, while changing symmetricity, they happen to form a configuration E

′ with
ρ(E′) = 1, they instead form the pattern using the algorithm described in the
previous case.

Let us describe the first procedure that allows the robots to appropriately
reduce the perceived symmetricity ρ until it divides the symmetricity of the
pattern to be formed.

The idea is the following. First the centre of the smallest enclosing circle c
is identified. Point c is also the centre of symmetry of E; that is, the unique
point such that the robots can be divided in n

ρ(E) groups each forming a regu-
lar ρ(E)-gon with centre c. Then each robot moves away from c in a straight
line according to its coordinate system of a small amount. The amount is very
carefully computed so to guarantee that: (1) it is smaller than the robot’s unit
distance and thus can be reached instantaneously in one step, (2) if two robots
are located symmetrically with respect to c and have non symmetrical local
coordinate systems, they will move of a different amount.

Depending on the activation schedule of the robots, the above procedure is
shown to either break completely the symmetry in one step reaching a configu-
ration E

′ where ρ(E′) = 1, or to reduce the symmetry eventually reaching, after
repeated applications of the procedure, a configuration A such that m = ρ(A)
divides ρ(P).

Now both the pattern and the configuration can be partitioned into k = n
m

regular m-gons all having the same center so to have a correspondence between
each m-gon with a group of m robots. Let R1, . . . ,Rk be the k sets of robots
and let Rk = {r1, . . . , rm}. Set Rk is special and it is used to create consistent
coordinate systems. In fact, in this case it is not possible for the robots to agree
on a common coordinate system based on a T -stable configuration (like for the
asymmetric case). Because of the rotational symmetry induced by the n

m regular
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m-gons around c, each robot in one class of symmetry decides its destination
individually. Each robot sj in Ri chooses as X-axis the line passing through
the common centre c and the closest among the robots in Rk; while the unit
distance is chosen as described earlier. As for the destination point: each robot
chooses the closest location among the m possible locations and ties are broken,
for example, by chirality. In this way, the coordinate systems of robots belonging
to the same class are rotational symmetric with respect to c and intervals 2π

m ,
and the destinations form a regular m-gon with the same centre that matches
the one to be formed.

Notice that the algorithm described above works also for configurations and
patterns with dense points, provided the robots have strong multiplicity detec-
tion. Indeed it allows to form in Ssync all patterns formable according to the
strong global symmetricity σ(E) of the initial configuration E.

Possibility in Async. If we restrict ourselves to just plain patterns and initial
configurations, and consider the weaker local symmetricity ρ(E) of the initial con-
figuration E, than it is possible to form the patterns with symmetricity divisible
by ρ(E), even in Async:

Theorem 14 ([16]). A team of oblivious robots in Async with Chirality,
starting from a plain configuration E with ρ(E) can form any pattern P such
that ρ(E) divides ρ(P).

It is unknown whether this can be done without chirality.

5 Forming a Sequence of Patterns in SSYNC

In this chapter we have discussed, under a variety of assumptions on the robots’
capabilities and features, how to form a (possibly arbitrary) pattern given in
input. A natural question is whether the robots can form not just a single pattern
but a series of distinct patterns, given in a particular order, or, more generally
of characterizing the series that can be formed. To enable a series of pattern to
be formed, a protocol must guarantee that a robot that wakes up in an arbitrary
configuration can, in spite of its obliviousness, figure out what pattern in the
sequence is being formed so to join the others in performing the required tasks.
In other words, a solution must provide, through the robots’ movement some
form of memory in an otherwise memoryless system.

In this section we consider OBLOT robots with Chirality, in Ssync under
unlimited mobility (i.e., all robots always reach their destinations when per-
forming their move). The focus is on infinite series: periodic (or cyclic) series
S

∞ = 〈P1,P2, . . . ,Pm〉∞, i.e. the periodic repetition of a finite series S of dis-
tinct patterns. The results are then generalizable to infinite aperiodic series.
Three different scenarios are analyzed, depending on the level of anonymity of
the robots: completely anonymous robots, visibly indistinguishable but ordered
set of robots and distinctly labeled robots.

Before describing the three scenarios, we introduce some special patterns
needed in the rest of the section: (1) POINT is the pattern consisting of a
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single point; (2) TWO-POINTS is the pattern consisting of exactly two points;
(3) POLYGON(k), for any k ≥ 3, is the pattern consisting of points p1, p2, . . . , pk

that are vertexes of a regular convex polygon of k sides.

5.1 Anonymous Robots

Consider n identical robots starting from distinct locations. Central to the anony-
mous case is the notion of symmetry in a configuration, which is quantified using
the concept of centered view, and centered symmetricity, ρ̂, a slight modification
of the notion of local view and of symmetricity ρ discussed in Sect. 4.

If ri is not located at the centre of the smallest enclosing circle, its centered
view CVi(t) contains the coordinates of all the other robots considering as origin
(0, 0) its own position and as (1, 0) the position of the center. On the other
hand, if ri is in the centre of the smallest enclosing circle, the origin is still the
location of r, but any robot rj whose view CVj(t) is minimum among all the
other robots is thought to be at coordinate (1, 0). Finally, no information about
the coordinate system of the robots is available in these views because they are
assumed unknown and not necessarily consistent.

Notice that, given any arbitrary configuration E, there is a total order of the
distinct centered views of the robots in E, in spite of their anonymity. The ele-
ments of CVi can be ordered lexicographically to obtain an ordered sequence
Q(CVi), for each robot ri ∈ E. For any two robots ri and rj , the ordered
sequences Q(CVi) and Q(CVj) contain the same number of elements and these
sequences can be ordered lexicographically. So, CVi < CVj if and only if Q(CVi)
is lexicographically smaller than Q(CVj).

An obvious consequence of anonymity is that from a configuration E con-
sisting of anonymous robots at w distinct locations, a configuration E

′ where
the robots occupy more than w distinct locations might not be reachable, which
restricts the size of patterns in any formable series of patterns. To form repeti-
tively any series S of patterns, all the patterns in S should be of the same size.
Thus, only patterns of size n are considered, where n is the number of robots.
Each robot starts from a distinct location and during the pattern formation
algorithm, no two robots should occupy the same location (i.e. no dense points
are allowed). Moreover, those patterns are indeed formable.

The formation algorithm is based on the identification of special configura-
tions: the bi-circular and the q-symmetric-circular configurations. Before giving
an intuition of the technique employed, we define these special configurations
(see Fig. 8 for an example of a bi-circular configuration).

Definition 2 (BCC). A configuration is called bi-circular (denoted by BCC) if:
(i) there is a unique location (called the pivot), such that the smallest enclosing
circle SEC containing all the robots, has diameter more than three times the
diameter of the circle C containing all robots except those at the pivot; (ii) SEC
and C intersect at exactly one point: the point directly opposite the pivot (called
the base-point).
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a. b.

Fig. 8. (a) An arbitrary configuration of robots and the smallest enclosing circle. (b)
A bi-circular configuration.

Definition 3 (SCC). A configuration containing n robots is called q-symmetric-
circular or, SCC(q), 1 < q < n, if: (i) the smallest enclosing circle SEC has
exactly q points on its circumference that are occupied by robots; (ii) all the
other robots lie on or in the interior of a smaller circle C that is concentric to
SEC such that Diameter(SEC ) ≥ (5 + sin−1(π/q)) · Diameter(C); (iii) there
are no robots in the center of SEC .

In both configurations, the former circle (SEC ) is called the primary enclo-
sure while the latter (C) is called the secondary enclosure. The point on the
secondary enclosure directly opposite the base-point is called the frontier-point.
The ratio of the diameter of the primary enclosure over the diameter of the
secondary enclosure is called the stretch of the configuration.

An interesting property of the bi-circular configuration is that in such a
configuration the robots can agree on a coordinate system and define a unique
way to order the robots. It can also be shown that from an arbitrary initial
configuration either a particular type of BCC configuration or a particular type
of SCC(q) configuration can always be formed. More precisely:

Lemma 4 ([17]). Starting from any configuration E with symmetricity ρ̂(E) =
q, and for any k ≥ (5 + sin−1(π/q)) we can reach a configuration E

′ such that
either (i) E

′ is SCC(q′) having stretch k, where q′ > 1 is a factor of q, or, (ii) E
′

is BCC having stretch k′ = (k + 1)/2.

It can also be shown that, once a bi-circular configuration containing n robots
is formed, any pattern P of size n can be formed.

Lemma 5 ([17]). (i) In any bi-circular configuration, the robots can agree on
a unique coordinate system. (ii) Starting from a bi-circular configuration with
n ≥ 4 robots in distinct locations, any pattern P of size n can be formed.
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Similarly, it can be shown that:

Lemma 6 ([17]). Starting from a configuration of type SCC(q), q > 1, with
n robots occupying distinct locations any pattern P such that the symmetricity
ρ̂(P) = q · a, a ≥ 1 and size(P) = n can be formed.

Based on the above properties, the idea of the algorithm for forming a
cyclic series of distinct patterns 〈P1,P2, . . . ,Pm〉∞ by n anonymous robots is the
following.

Let F be a function that maps each pattern Pi to a real number ti = F (Pi)
that satisfies the condition of Lemma 6. To signal the formation of pattern Pi, one
of the following configurations is unambiguously used: either SCC(x) with stretch
ki, where x is any factor of q or, configuration BCC with stretch k′

i = (ki + 1)/2.
Due to Lemma 4 it is possible to form one of these configurations starting from
an arbitrary configuration of symmetricity q. By computing the stretch of the
configuration, the robot can then identify which pattern Pi is being formed. The
robots can then form, by Lemmas 5 and 6, pattern Pi. During the formation of
pattern Pi, at each intermediate configuration, each robot can uniquely identify
which pattern is being formed. Once the pattern has been completed the resulting
configuration has symmetricity q. Hence, by Lemma 4, it is again possible to form
a SCC or BCC configuration having the appropriate stretch for the next pattern
Pi+1 in the sequence. Using this technique, the robots can move from one pattern
to the next, and thus they can form the required sequence of patterns.

Theorem 15 ([17]). In Ssync with unlimited mobility and chirality, n anony-
mous robots starting from distinct locations in an arbitrary configuration E, can
form a cyclic series of distinct patterns 〈P1,P2, . . . ,Pm〉, each of size n, if and
only if ρ̂(Pi) = ρ̂(Pj) ≥ ρ̂(E) ∀i, j ∈ {1, 2, . . . m}.

The condition imposed by the previous theorem on the kind of patterns in
the sequence can be relaxed if the robots are equipped with lights: this scenario
will be analyzed in Chap. 11.

5.2 Robots with Distinct Visible Identities

Let us consider now the case when each robot ri has a unique identity IDi (w.l.g,
IDi = i) and any other robot can see this identity. During the Look operation, a
robot ri obtains a snapshot containing (j, xj , yj) tuples where j �= i and (xj , yj)
is the location of the j-th robot, with respect to the local coordinate system of
robot ri. In this case, even in absence of agreement on directions, the symmetry
among the robots can be broken by the use of distinct labels. The view of each
robot is unique as it contains information about both the identities and locations
of the other robots. Thus, there are no symmetric configurations. Moreover, as
opposed to the anonymous case, robots can be allowed to form dense points,
since the robots can be separated later, if required.

When there is only one robot, the only pattern that can be formed is obvi-
ously POINT. With n = 2 robots, only two patterns can be formed: POINT
and TWO-POINTS and it is easy to form the sequence (POINT, TWO-POINTS)∞,
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by movement of a single robot (say r2). The more interesting cases occur when
there are at least three robots (i.e., n ≥ 3), in this case any sequence of distinct
patterns S = 〈P1,P2, . . .Pm〉 can be formed, with the only restriction that each
pattern Pi has at most n points. A description of the algorithm is given below.

Robots r1, r2 and rn have special roles. In particular, r1 and r2 remain fixed
in distinct locations for the entire algorithms serving as fixed points of reference
for the other robots. The idea is to apply a known function F to each pattern Pj

so to obtain a real number wj = F (Pj), wj ∈ (1,∞) (distinct for every pattern).
Before forming pattern Pj , robot rk moves to a location between r1 and r2 such
that the ratio of distances dist(r1, r2)/dist(r1, rn) is equal to wj . This is the
signal for the other robots to indicate which pattern is being formed. Each robot
ri, 2 < i < n can compute the location where it should move to in order to
form pattern Pj . Once each of these robots has moved into the correct positions,
robot rn moves to complete the pattern. During the execution of the algorithm
every configuration of the robots (excluding at most the first two configurations)
either corresponds to some pattern Pl ∈ S, or is an intermediate configuration
which signals the formation of Pl (i.e. where r1, r2, and rn maintain a ratio
of wj = F (Pl)). The function F must be chosen in such a way that the ratio
dist(r1, r2)/dist(r1, rn) in an actual pattern never matches any values in the
range of F . Thus, each robot can unambiguously determine the location that it
needs to move to, by looking at the current configuration.

This algorithm works for any sequence of patterns not containing the POINT
pattern. In order to include the POINT pattern in the sequence of patterns formed,
small modifications must be done to the algorithm in the behaviour of robots r2
and rn. Based on the algorithm above, the author conclude that:

Theorem 16 ([17]). In Ssync with unlimited mobility and chirality, n ≥ 2
robots having distinct visible identities, can form any cyclic sequence of distinct
patterns 〈P1,P2, . . . ,Pm〉 provided that ∀i, size(Pi) = ni ≤ n.

5.3 Robots with Invisible Distinct Identities

In this case the identities of the robots are not visible to other robots. The
robots are assumed to be ordered with labels 1, 2, 3, . . . , n and each robot ri

knows its own label i, but it can not visibly identify the label of other robots.
In this case, the information contained in the views of the robots is similar to
the anonymous case. Thus, two robots may have identical views (in particular,
robots at the same location have identical views). However, since the robots have
distinct identities, they can execute different algorithms depending on their own
labels.

Consider first the case when there are at least four robots. The BCC configura-
tion, defined for the anonymous case, is used here as well to signal the formation
of specific patterns in a series. As already mentioned, dense points are allowed
and the algorithm must ensure that there is at least one robot at the pivot and
one at the base-point of the bi-circular configuration.

From any arbitrary configuration E with more than 3 robots, a bi-circular
configuration of any given stretch k > 3, can be formed by the movement of a
single robot (this single robot will place itself in a pivot position).
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The technique for forming any given pattern P starting from a bi-circular
configuration of stretch ki is as follows: As mentioned before, the bi-circular
configuration can be formed by robot rn jumping to the pivot location. Once
the robots are in bi-circular configuration BCC with stretch ki, robot r1 and robot
rn−1 occupy the base-point and the frontier-point. These three robots remain in
their location while the other robots move to the required positions for forming
pattern P. The positions are assigned in the following manner. The points in the
pattern P are mapped to locations in the bi-circular configuration such that the
smallest enclosing circle of pattern P coincides with the secondary enclosure of
the configuration and the base-point coincides with the lexicographically smallest
point pi on the smallest enclosing circle of P, i.e., pi ∈ SEC (P) and pi ≤ pj , for
any pj ∈ SEC (P). Notice that this mapping is unique. Let Γ (P) be the unique
mapping obtain by each robot (i.e., the locations that correspond to points in
the pattern P). The elements of Γ (P) are sorted in such a way that the first
point is the base-point of the current BCC configuration of the robots, and all
points which lie on the secondary enclosure C precede those that are located in
the interior of C. For 1 ≤ i ≤ size(Pi) robot ri is assigned the ith location in
Γ (P) and for size(Pi) < j ≤ n robot rj is assigned the n-th location in Γ (P).

During the formation of a pattern Pi of size size(Pi), the algorithm ensures
that the BCC configuration is maintained by keeping robots r1, rn−1 and rn sta-
tionary at the base-point, at the frontier-point and at the pivot positions respec-
tively. Only when all the other robots have moved to their assigned location,
robot rn−1 moves to its own assigned location, and also this is done ensuring
that BCC is preserved with the appropriate stretch so that robot rn can unam-
biguously move to the required position to complete the pattern.

The remaining cases are when there are exactly 2 or 3 robots. For n = 2,
the case of invisible identities is same as that of visible identities. The case of
n = 3 has been studied in [18] and an algorithm for forming any sequence of
patterns of at most three points has been given. As mentioned before, the trans-
formations between any two patterns of size 3 is straightforward and requires
the movement of a single robot (say r3). The only challenging scenario involves
the formation of POINT and TWO-POINTS, where the intermediate configurations
before and after forming POINT must be distinguished from the configuration
forming TWO-POINTS. In conclusion:

Theorem 17 ([17]). In Ssync with unlimited mobility and chirality, n robots
having distinct invisible identities can form any cyclic sequence of distinct pat-
terns 〈P1,P2, . . . ,Pm〉 where ∀i, size(Pi) ≤ n.
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