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Abstract. Group search and evacuation are fundamental tasks per-
formed by a set of co-operating, autonomous mobile agents. The two
tasks are similar in that they both aim to search a given domain so as
to locate a target which has been placed at an unknown location in the
domain. However they also differ in that the former terminates when the
first searcher in the group reaches the target while the latter when the
last searcher in the group reaches the target. Variations where termina-
tion is determined by some designated agent have also been considered.
Depending on the domain being explored we distinguish linear search
when the target is placed on the infinite line and circular search when
the target is placed on the perimeter of a disk. The agents move with
their own maximum speed, and the goal is to design algorithms that
minimize the worst case termination time. Two communication models
between the robots are being considered: in the non-wireless (or face-
to-face) communication model, robots exchange information only when
simultaneously located at the same point, and wireless communication in
which robots can communicate with one another anywhere at any time.
In this paper we survey some of the most interesting recent algorith-
mic results on search and evacuation concerning mobile agents with and
without faults.

Keywords: Autonomous agents · Cycle · Evacuation · Exit · Line
Search

1 Introduction

Search in theoretical computer science is primarily concerned with the algorith-
mic probing of a well-defined (data-) domain in order to find a stored target
object. The main focus of this survey, is on presenting recent algorithmic devel-
opments on search performed by a group of collaborating autonomous agents.
During the search, the mobile agents are pursuing their own trajectories and are
required to locate a target and conclude the task in the minimum amount of
time. To begin we introduce some basic concepts and ideas that will be used in
later sections.
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Searchers

Throughout this paper the terms mobile agent, searcher and robot will be iden-
tical. We assume that n robots are initially placed at a start position on a
geometric domain. The robots can move on a continuous trajectory with a pre-
defined maximum speed (usually one) along a geometric domain (which is either
an infinite line or a cycle in the plane).

Search and Evacuation

We distinguish between search and evacuation. The former succeeds when the
first searcher in the group reaches the target and the latter when the last searcher
in the group reaches the target. Variations where only distinguished searchers
need to reach the target are also considered. In all cases, the target can be
identified only by robots that reach its location.

Linear and Circular Search

The search domain may be either on an infinite line or on a closed curve, like
disk. In the first case it is called linear search and was first proposed by Bell-
man [9] and independently by Beck [8] in a stochastic setting and by [6,7]) in a
deterministic setting. In the linear search model the environment is an infinite
line and the robots start at a given point, called the origin, on this line. An
hidden object/target (exit) is placed on the line at a location which is unknown
to the robots. In the second case it is sometimes called circular search and the
model was first studied in [17]. In the unit disk search model the environment
is a disk, usually of unit radius; the robots start their movement either at the
center of the disk (and they can move anywhere on the plance) or on the disk
(and they can move only on the perimeter). The only information robots have
is that the target has been placed at an unknown location on the perimeter.

Communication

Two models of communication between the robots are being considered: in the
non-wireless (or face-to-face) communication model, robots exchange informa-
tion only when they are simultaneously located at the same point, and wireless
communication in which robots can communicate with one another anywhere at
any time.

Performance Metrics

When operating in geometric environments, performance is measured by the
geometric distance traveled, while in discrete settings the number of hops in
a trajectory. By default, algorithmic performance is measured with respect to
worst case analysis. The competitive ratio of an algorithm is the worst case ratio
between the performance of the algorithm and the performance of the best offline
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algorithm, i.e., an algorithm that knows in advance the location of the “hidden”
object. In traditional search the task ends when the first agent finds the object.
This is different for evacuation since we are interested in the search makespan
which refers to the max (or even, total) length of the search strategy when all the
agents (or sometimes a specific number of the agents) have finished processing
their respective tasks.

Some Related Literature

There is a vast literature investigating all aspects of search. Several papers are
cited throughout the survey but here we mention only a few books. It is worth
cittng the classical book on optimal search [36], the compendium of search prob-
lems in [1] and the game theoretic approach in the treatise [5]. Applications of
search to foraging and evolution can be found in [30,35]. Further, [33] provides
an introduction to the analysis and design of dynamic multiagent networks, and
[14] an introduction to the distributed control of robotic networks with a blend
of computer science and control theory. Additional specialized monographs are
[10,11] as well as the pleasant monograph [34] which provides a different per-
spective with chases and escapes.

2 Linear Search

In this section we focus on linear search on an infinite line and discuss search
for robots which may suffer from crash and/or byzantine faults. In the last part
of the section we also explore search on linear terrains (a generalization of the
infinite line).

2.1 Crash Faults

In this section we present the linear search by a collection of robots, some of
which may turn out to be faulty [24].

Model Specifics and Problem Definition

By A(n, f) we denote a linear search problem using n mobile robots where at
most f robots may turn out to be faulty. The robots are placed at the origin of
an infinite line. Robots may walk along the line with the same unit speed. At
some point on the line, at distance d from the origin, is placed a stationary target
that needs to be found by the collection of robots. A robot finds the target when
it visits the position of the line where the target is located. A sub-collection of
up to f robots may experience crash faults. A faulty robot cannot identify the
target despite visiting its location. The search is completed when at least one
non-faulty robot finds the target.

The bound f on the number of faulty robots is known to the search algo-
rithm. However, the identities of the faulty robots are unknown to the algorithm.
Consequently, the set of the faulty robots is controlled by the adversary, which
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knows the search algorithm in advance. The distance d to the target position is
also unknown to the algorithm, but the performance of the algorithm is mea-
sured as a function of d. More exactly, the algorithm efficiency is defined by a
competitive ratio, which is the worst case ratio of the arrival of the first reliable
robot to the target, and the distance d from the source to the target.

For any potential target position, the best adversarial strategy is to choose
the first f robots incoming to such position to be faulty. It is clear that, when
n ≥ 2f + 2, there exists a simple algorithm with competitive ratio 1 that sends
two groups of f+1 robots in each direction of the line. Below we focus on efficient
search strategies when f < n < 2f + 2.

Zig-Zag Strategies

For n < 2f + 2, the trajectories of all robots considered are using zig-zag strate-
gies, i.e. solutions in which each robot walks alternately in both directions, where
its turning points for each direction are more and more distant from the origin. It
is useful to illustrate the zig-zag movements using the Cartesian plane in which
x-axis corresponds to the line of robots’ movement and t-axis represent time.
The trajectory of a robot is represented by a function of time t whose absolute
slope is bounded by 1 (as robots move using maximal unit speed). By a turning
point (xi, ti) we mean that at time ti the robot is at point xi of the line and it
changes the direction of its movement.

The strategies used are such that the turning points (xi, ti) belong to some
geometric cone of the Cartesian plane. Let Cβ denote the cone starting at the
origin and extending in the positive direction of t-axis such that it is bounded
by two semi-lines, each having angle β with the t-axis. We have

Definition 1. Suppose that at time aβ a robot visits point a of the line. We say
that the robot follows a zig-zag movement defined by cone Cβ and point (a, aβ)
if the robot walks with unit speed inside the cone Cβ starting at point (a, aβ) and
that it reverses its direction whenever it arrives at the boundary of Cβ.

Figure 1 illustrates movements of robots defined by the cone Cβ .
It is possible to prove the following lemma.

Lemma 1 ([24]). Let x0 be the initial position of a robot on the line at time
t0. Consider the zig-zag movement of this robot defined by point (x0, t0) and the
cone Cβ, where β > 1. The turning points of the robot are given by the formula

xi = x0

(
β + 1
β − 1

)i

(−1)i (1)

Proportional Schedules

When several robots participate in the search, they all move according to zig-zag
strategies using the same cone Cβ , but the choice of the parameter β depends
on the ratio of assumed bound of the faulty robots. Moreover, the most efficient
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Fig. 1. Proportional schedule for n robots a0, a1, . . . , an−1, in the cone Cβ .

search is achieved when the robots’ trajectories are forming so-called propor-
tional schedules (see Fig. 1). Roughly speaking, for a proportional schedule, the
infinite sequence of the consecutive positive x-coordinates of the turning points
of all robots form a geometric progression. The same is true for the consecutive
negative x-coordinates of all turning points. More precisely, we give the following
definition.

Definition 2. Suppose that a collection of robots performs zig-zag movements
defined by the same cone Cβ. Consider the infinite sequence of the consecutive
positive turning points 0 < τ0 < τ1 < · · · obtained from the zig-zag movements
of all the robots of the collection. We say that the schedule is proportional if
for some real value r, the ratio τi+1−τi

τi−τi−1
= r, for i = 1, 2, . . .. We call r the

proportionality ratio of the schedule.

We have the following lemma.
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Lemma 2 ([24]). Consider any constant β > 1 and n robots performing zig-zag
movements defined by the cone Cβ. Suppose that the movements of the robots
constitute the proportional schedule Sβ(n). The proportionality ratio of schedule
Sβ(n) equals

r =
(

β + 1
β − 1

)2/n

. (2)

Moreover, suppose that τi, τi+1 are two consecutive, positive turning points of
some two robots a, b, such that robot a visited τi at time ti and robot b visited
τi+1 at time ti+1. Then we have ti+1 = ti + τiβ(r − 1) and τi+1 = rτi. Note that
by symmetry a similar result applies to negative turning points.

Suppose that n robots, which may include at most f faulty ones execute a
proportional schedule Sβ(n) using cone Cβ . Let CRn,f

β denote the competitive
ratio of schedule Sβ(n). The following lemma proves the upper bound on the
competitive ratio of the proportional schedule Sβ(n).

Lemma 3 ([24]). Let Sβ(n) be a proportional schedule executed by n robots,
which may include at most f faulty ones, where f < n < 2f + 2. Then we have
the following bound on the competitive ratio of this proportional schedule:

CRn,f
β = (β + 1)

2f+2
n (β − 1)1− 2f+2

n + 1. (3)

For any configuration of parameters n, f it is possible to find the value of
β which minimizes the function F (β) := (β + 1)

2f+2
n (β − 1)1− 2f+2

n + 1, where
β > 1. This can be done by taking the derivative of F with respect to β and
setting it equal to 0. Such optimal vale of β turns out to be β = 4f+4

n − 1.
Consequently, we conclude with the following theorem.

Theorem 1 ([24]). Consider a collection of n robots up to f of which are faulty.
Then there exists an algorithm A(n, f) performing search on infinite line, whose
competitive ratio is at most equal to

(
4f + 4

n

) 2f+2
n

(
4f + 4

n
− 2

)1− 2f+2
n

+ 1 (4)

Figure 2 illustrates the search algorithm for three robots containing one that
may turn out to be faulty. Inside the cone Cβ may be identified the region R
bound by bold polygonal lines (that reminds the Sacrada Familia Barcelonian
church). Each point (x, t) inside region R has the property that before time t
point x of the line has been visited by at least two robots, hence it is considered
successfully searched. If point (x, t) is outside region R, that means that only one
robot visited x before time t (as that robot may be faulty, x cannot be declared
as successfully searched). The competitive ratio of the algorithm is determined
by the two lines that pass through the origin, belong to R and have maximal and
minimal slopes (thin grey lines OA and OB on Fig. 2). Indeed, the competitive



Group Search and Evacuation 341

ratio equals the smaller of the absolute values of both slopes. An interested
reader may verify that if we perturb slightly the movement of any robot by
changing slightly the positions where its trajectory touches the cone Cβ (i.e. the
zig-zag strategy becomes not proportional) the competitive ratio becomes larger.
This suggest that the proportional strategies are optimal. Indeed, the optimality
of the proportional strategies has been formally proven in the recent work of
Kupavskii and Welzl [31].

Cβ

L

V

t

x

R
A B

O

Fig. 2. Searching by three robots one of which is faulty.

2.2 Byzantine Faults

The section presents linear search when a collection of searchers contains Byzan-
tine robots (cf. [23]). A Byzantine robot may fail to see the target or it may
communicate to other robots a position of the target that is not the real one.

Model Specifics and Problem Definition

A collection of n robots is initially placed at the origin of an infinite line. Each
robot can move left or right along the line with a speed that does not exceed
its maximum speed (which is the same for all robots). Robots have a distinct
identity and they may communicate wirelessly, so a message sent by any robot
is instantaneously heard by all other robots. As the trajectories of all robots are
determined in advance, the only possible message that a robot may communicate
is that it found the target. Some robots may turn out to experience Byzantine
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faults and they may fail to communicate a position of the target they find or they
may communicate a position of the target which is wrong. Each communicated
message is associated with the identity of the robot sending it and it is assumed
that a Byzantine robot cannot lie on its identity. There are at most f robots
which may behave in Byzantine way.

The search algorithm is designed by a central authority, which knows the
bound f on the number of faulty robots, but is unaware which subset of robots
is faulty, neither is their behavior predictable (i.e. faulty robots may misreport
their findings). The search algorithm does not have a knowledge of the distance d
to the target from the origin. The trajectory of each robot is designed so it may
be possibly altered when robot hears about a potential position of the target
announced by some other, clearly identified robot.

We suppose that the adversary knows our algorithm and may choose the
subset of (at most) f Byzantine robots and their malicious actions in order to
delay the moment when the target position is known. By Sd(n, f) we denote the
search time, i.e. the time it takes for a search algorithm using a collection of n
robots at most f of which are faulty, to find the location of a target placed at
an a priori unknown distance d from the origin of the line. The corresponding
competitive ratio is defined as S(n, f) = supd Sd(n, f)/d, which is the worst case
ratio of the algorithm’s search time and the lower bound d on the time taken by
any algorithm for the problem.

Observe that if n ≥ 4f +2 it is possible to obtain an optimal algorithm (with
competitive ratio 1). Indeed, we can partition the set into two groups of 2f + 1
robots and make one group to walk together in the left direction and the other
group in the right direction. When the target is found, it is announced by all
non-faulty robots arriving at its location at time d. As that group contains at
least f + 1 non-faulty robots, by the majority vote the target position is clearly
identified. On the other hand, if n ≤ 2f , there does not exist any algorithm
that may decide the position of the target, as no majority voting is possible.
Consequently, the non-trivial solutions are interesting only when 2f < n <
4f + 2.

Algorithms for Single Byzantine Robot

Following the last observation, and when f = 1, it is interesting to consider only
the cases of n = 3, 4 or 5. The simplest case concerns the collection of n = 4
robots.

Case 1: n = 4. The algorithm instructs two groups of 2 robots to walk together
in opposite directions. As each group contains at least one reliable robot, at
some point a target position is announced, say at some position at distance x
from the origin. If two robots announce (i.e. report that the target is found),
then the algorithm finishes in time d = x. Otherwise, i.e. when only one robot
announces, the groups are instructed to swap their positions and then continue
in the opposite directions. If the target is confirmed by the robots arriving at
the position being announced, the algorithm finishes in time 3d. Otherwise, a
Byzantine robot is identified and the remaining robots continue, not reacting on
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any further announcements of the identified Byzantine robot. An announcement
by any other robot (at time 2x+d) finishes the algorithm. As x < d, we conclude
that

S(4, 1) ≤ 3.

Case 2: n = 5. Two groups of 2 robots continue in opposite directions as in
Case 1, and the fifth robot waits, stationary at the origin. Again an announce-
ment must be made at some time x and in case when two robots make the
announcement the algorithm finishes at time d = x. Suppose then that a single
robot makes that announcement. Then the robot which was stationary walks
to the announcement point (for simplicity suppose that all other robots wait
motionless for time x, until the fifth robot reaches the announced position). If
this robot may confirm the announcement, then in time 2x = 2d the target is
found. Otherwise the Byzantine robot is identified, the robots restart walking in
the same direction and a further announcement by any other robot concludes
the algorithm. The search time equals x + d, and as x < d we have

S(5, 1) ≤ 2.

Case 3: n = 3. In this case, [23] conjectured that the best search algorithm was
for all three robots to walk together performing a standard cow-path trajectory,
that finishes in time Sd(5, 1) < 9d. However only a lower bound S(5, 1) > 3.93
was proven in [23]. This lower bound was later improved in [31] to

S(3, 1) >
8
3

3
√

4 ≈ 5.23.

Algorithms for Large Collections of Robots

The proposed upper bounds of the algorithms for large number of robots are
usually a function of ratio r = f/n. As previously observed, we are interested
in the interval 2f + 1 ≤ n < 4f + 2, so we are interested in the case when
1/2 ≥ r ≥ 1/4. Observe first, that already for n = 2f + 1, the problem is
feasible, i.e. there exists an algorithm, which finds the target in finite time. More
exactly, for any f ≥ 0 we have

S(2f + 1, f) ≤ 9.

Indeed, we can instruct the robots to walk together along the path and the
majority vote before time 9d concludes the algorithm.

Asymptotically, for 1/2 < r < 1/4 we have the competitive ratio

1 ≤ S(f/r + c, f) ≤ 9,

where c denotes some constant value. More formally, we can define

Ŝ(r) = min {q | ∃ constant cr such that ∀f > 0, S (f/r + cr, f) ≤ q} (5)

Clearly, the larger is the proportion 1− r of the non-faulty robots, the better
is the competitive ratio that may be expected from an efficient search. Below is
the example of an upper bound for some particular density of Byzantine robots.
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Proposition 1 ([23]). S
(

14f+4
5 , f

)
≤ 3 provided f ≡ 4 mod 5.

The idea of the algorithm providing the bound claimed in Proposition 1 is the
following. Two groups of robots, L and R, each containing 7f+2

5 participants,
walk in left and right directions, respectively. Suppose that an announcement is
made at time x. If less than 2f+2

5 robots vote that target is at x or they vote that
the target is not at x, then this subgroup is eliminated from consideration (as
identified Byzantine robots) and both groups continue walking in their respective
directions. So we can assume that the vote is such that each group voting on point
x contains at least 2f+2

5 robots. By symmetry, suppose that the announcement
has been made by a sub-collection of group R (i.e. when visiting point x > 0).
At this point, we send 3f+3

5 robots belonging to group L to move from their
current position at −x to point x. At the same time the sub-collections of 2f+2

5

robots that voted YES and 2f+2
5 that voted NO are sent from x to −x. Once the

groups sent swap their positions from −x to x and from x to −x, two cases are
possible. If the exit is confirmed at x (note that altogether 7f+2

5 + 3f+3
5 = 2f +1

robots visited x so the state of point x is decided), then the algorithm terminates
in time 3x = 3d. Otherwise we can eliminate from the consideration a set of at
least 2f+2

5 Byzantine robots (present now at point −x), so there exist still at
most f ′ = f − 2f+2

5 = 3f−2
5 undisclosed Byzantine robots. At that point the

number of robots l′ present at −x whose state is unknown equals at least

l′ ≥ 7f + 2
5

− 3f + 3
5

+
2f + 2

5
=

6f + 1
5

.

At point x we have then r′ robots and

r′ ≥ 7f + 2
5

− 2
(

2f + 2
5

)
+

3f + 3
5

=
6f + 1

5
.

As l′ = r′ ≥ 2f ′ + 1 we have at both points −x and x the sub-collections
of robots, each containing more reliable than Byzantine robots. Both groups
continue searching away from the origin until a majority vote is present, which
concludes the search. The cost of the algorithm is the sum of the search time d
and the swap time 2x. As x ≤ d the claim of Proposition 1 is true.

The algorithms for larger values of the ratio r of Byzantine robots may include
more than one swap between the groups L and R during the search. The results
for these cases are summarized in Table 1.

Table 1. Upper bounds on the asymptotic competitive search ratio Ŝ(r) for various
ranges of r. Recall that for r > 1

2
the search problem is infeasible.

r ≤ 1
4 ( 1

4 , 3
10 ] ( 3

10 , 1
3 ] ( 1

3 , 5
14 ] ( 5

14 , 13
34 ] ( 13

34 , 19
46 ] ( 19

46 , 47
110 ] ( 47

110 , 65
146 ] ( 65

146 , 157
396 ] ( 157

396 , 1
2 ]

UB 1 2 3 3 4 5 6 7 8 9
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2.3 Linear Terrains

We now explore a setting (first considered in [26]) which generalizes the infinite
straight line setting first considered in [6,7] and [8,9], in which the search domain
is no longer a straight line but rather a linear terrain with “hills” and valleys. By
this we mean that the search is along a curve which is formed by a continuous
function (depicted in Fig. 3 whose representation y = f(x) may be known to
the robot. As an example, f(x) may be a monotone polygon consisting of n
straight-line segments, for some integer n ≥ 1.

Fig. 3. Search in an infinite one-dimensional terrain y = f(x). The robot may move in
either direction along the terrain, the point O is the origin (considered as the starting
position of the robot) and the exit is located on the terrain at a position unknown to
the robot.

Model Specifics and Problem Definition

The objective is to design search algorithms that achieve good competitive ratios
for the time spent by the robot to complete its search divided by the time spent
by an omniscient robot that knows the location of the target. Searching for the
exit, could involve variants of the well-known zig-zag, doubling search strategies
along the linear terrain. However, the traditional doubling strategy leading to an
optimal competitive ratio of 9 for linear search may no longer be adequate and
one is required to investigate different approaches and more elaborate strategies
for searching that take the shape of the linear terrain y = f(x) into account.

The canonical zig-zag search algorithm (or strategy) is parametrized by an
infinite sequence of positive distances X = {xk}k≥1 from the origin O that spec-
ifies the turning points of the robot. Obviously, to ensure progress in searching,
each trip of the robot away from the origin must cover more distance than the
previous trip in the same direction. A natural measure of the efficacy of the
zig-zag search strategy X, is how well it performs in competition with an omni-
scient adversary that knows the exact location of the target. If d is the unknown
distance of the target from the origin, let σX(d) be the ratio between the time
taken by the robot using the zig-zag strategy X to reach an unknown target
divided by the time taken by the adversary to proceed directly to the target
(placed at distance d from the origin). In addition, σX � supd>1 σX(d) denotes
the competitive ratio of the strategy X. We denote the optimal competitive ratio
by σ∗.

In general, and unlike traditional linear search, the speed of the robot may
depend on the physical properties of the terrain. Further, the robot’s speed may
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depend on the direction of travel along the terrain, or on the profile of the terrain,
e.g. when the line is inclined the robot may accelerate or decelerate depending
on whether it is moving uphill or downhill, respectively. For example, on uphill
segments the robot moves with speed 1 while on the i-th downhill segment it
moves with speed si, where si = 1+ g sinαi ≥ 1, g is the well-known gravitation
constant (which is approximately equal to 9.8 m/s2), and αi is the angle of
inclination of the i-th (downhill) segment, for i = 1, 2, . . . , n.

Search Strategies

The first class of models considered is depicted in Fig. 4 and concerns two-speed
models of linear search: tailwind (unit speed going left and tailwind speed s > 1
going right), beacon (unit speed moving away from the origin and speed s moving
towards it), and exploration history (the robot explores unknown regions slowly
and deliberately with unit speed, but is able to search faster–with speed s–when
it encounters a region already seen earlier in its search). Here are some of the
results obtained in [26] (Note that Theorem 3 was independently proved also
by [12]).

Fig. 4. Two-speed models based on (a) absolute direction and (b) direction relative to
origin

Theorem 2 (Tailwind Model, [26]). Assume the robot has speed s ≥ 1 when
moving left to right and speed 1 otherwise. For α, r such that α = (1 − s +√

(s − 1)2 + 4r2s)/(2r), r =
√

2 + (s + 1)/
√

s, and X = {s, αr, r2s, αr3, . . .}
we have that

2 + 1/s ≤ σ∗ ≤ σX ,

σX ≤ 1 +
s + 2

√
s + 1

s +
√

s + 1
· s + 1

2s
·
(

s + 1 +
√

(s − 1)2 + 8s + 4
√

s(s + 1)
)

(6)

Theorem 3 (Beacon Model, [26]). The doubling strategy D is optimal for
the beacon model, i.e.

σ∗ = σD = 5 +
4
s
. (7)
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Theorem 4 (Exploration History Model, [26]). Let r = 1 +
√

2/(s + 1),
and X = (r0, r1, r2, . . .) be an expansion strategy. Then, with this strategy, the
zig-zag algorithm’s competitive ratio satisfies

2 + 1/s ≤ σ∗ ≤ σX = 2 +
1
s

(
3 + 2

√
2s + 2

)
. (8)

Fig. 5. Constant acceleration models: (a) Line (b) Inclined line (c) Hill (d) Valley

The second class of models is depicted in Fig. 5 and concerns constant accel-
eration models of linear terrain search. In inclined linear terrains (the robot can
operate in two modes where it is moving with unit speed when moving uphill and
with constant acceleration when moving downhill. The different terrains include
an inclined line, a symmetric hill with the hill-top at the origin, or a symmet-
ric valley with the valley-bottom at the origin). Here are some of the results
obtained in [26].

Theorem 5 (Constant acceleration in both directions, [26]). Assume the
robot is searching with constant acceleration c in either direction, starting from
rest initially, as well as at turning points. Then:

3(
√

2 + 1/
√

2) ≤ σ∗ ≤ σD ≤ 2
√

3√
2 − 1

+
√

3 + 1 (9)

Theorem 6 (Moving on an inclined line, [26]). Assume the robot moves
with acceleration c in the positive direction, and constant speed 1 in the negative
direction using the doubling strategy D. Then for any d ≥ 1,

√
2c

√
d < σD(d) ≤

√
8c ·

√
d + O(1). (10)

Furthermore, σ∗ ≥ supd>1 min{2 +
√

2/(cd),
√

2 +
√

cd/2}.
Theorem 7 (Starting at the top of a hill, [26]). Assume that the robot
travels with constant acceleration c away from the origin, and with unit speed
towards the origin. Then σD(d) = Θ(

√
d) and this is optimal.

Theorem 8 (Starting at the bottom of a valley, [26]). Assume that the
robot travels with constant acceleration c towards the origin, and with unit speed
away from the origin. Then for any d ≥ 1:

σD(d) ≤ 5 + O(d−1/2)

Furthermore, σ∗ ≥ 5.
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3 Evacuation

In this section we discuss search and evacuation which takes place on the perime-
ter of a closed domain, like circle, triangle or square. We also consider the case
of faulty robots.

3.1 Evacuating from a Disk

Consider k mobile robots inside a circular disk of unit radius. The robots are
required to evacuate the disk through an unknown exit point situated on its
perimeter. We assume all robots have the same (unit) maximal speed and start
at the centre of the disk. The robots may communicate in order to inform them-
selves about the presence (and its position) or the absence of an exit. The goal
is for all the robots to evacuate through the exit in minimum time.

A single (k = 1) robot can find the exit by going to the perimeter and
traversing in the clockwise, say, direction. This takes time 1 + 2π to reach the
exit, in the worst case. It is clear that for any ε > 0 the robot can cover at
most a length 2π − ε of the perimeter (because its maximum speed is one and
the adversary can place the exit in the unvisited portion of the perimeter).
Therefore 1+2π−ε is a lower bound for evacuation, for any ε > 0. Hence, 1+2π
is also a tight bound for evacuation of one robot.

Model Specifics and Problem Definition

In general, if the k robots are placed in arbitrary initial positions in the interior
of the disk then the resulting optimization problem is very difficult and very
few (if any) non-trivial evacuation algorithms are known. For this reason in the
sequel, the robots are placed at the start at the center of the disk.

An exit is represented as a point on the perimeter of the disk and the robot
may locate the exit only if it is colocated with it. Further, two communication
models are being considered. F2F (Face-to-Face) which requires that the two
robots may communicate only if they are colocated at the same time, and Wire-
less in which the robots can communicate regardless of their distance. The more
general case where the robots have limited communication range r > 0 has never
been discussed in the scientific literature.

Evacuation for Two Robots

In the sequel we analyze in somewhat detail the evacuation problem for two
robots.

Figure 6 depicts two evacuation algorithms which were originally published in
[17]: Left-hand-side figure depicts the F2F model and the right-hand-side figure
depicts the wireless communication model. There are two robots that need to
evacuate from an unknown exit. One robot is represented by the bold arrow and
the other by the blank arrow. In both communication models the robots start at
the same time at the center K of the disk. In the first part, the two algorithms
are identical. The robots move together to the perimeter, say to point A, and
from there they move in opposite direction along the perimeter. This is where
the similarities end.
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Fig. 6. Evacuating two robots from a disk. The robots start at the center K of the
disk and the (unknown) exit is located at B. Left picture depicts the algorithm in the
F2F, while the right picture in the wireless communication model.

1. In the F2F model (see left picture of Fig. 6) when the robot represented by
the bold arrow, say, finds the exit at B it makes a cross-cut along the interior
of the disk and travels to meet the robot represented by the bold arrow at
D. From this point on the two robots move together along the interior of the
disk to the exit B.

2. In the Wireless model (see right picture of Fig. 6) when the robot represented
by the blank arrow, say, finds the exit at B it communicates to the robot
represented by the bold arrow that it has found the exit and the latter robot
moves to the exit B along the interior of the disk.

We can summarize the performance of the two algorithms in the following
theorem.

Theorem 9 (Upper Bounds for 2 Robots, [17]). Consider two robots start-
ing at the same time from the center of a unit disk.

1. (Wireless Model) There is an algorithm for evacuating two robots from an
unknown exit located on the perimeter of the disk which takes time at most
1 + 2π

3 +
√

3 ≈ 4.826.
2. (F2F Model) There is an algorithm for evacuating the robots from an

unknown exit located on the perimeter of the disk which takes time 1 + α/2 +
3 sin(α/2) where the angle α satisfies the equation cos(α/2) = −1/3. It follows
that the evacuation algorithm takes time ∼5.74.

Proof. For the proof below, we refer to the two pictures in Fig. 6 (left for the
F2F and right for wireless model).

First we consider the F2F model. We calculate the time required until both
robots reach the exit. Denote x = BA = AC , y = BD = CD and α = BD .
The total time required is g(α) = 1 + x + 2y. Observe that α = 2x + y, and y =
2 sin(α/2), because y is a chord of the angle α. Substituting x and y in the
function f we can express the evacuation time as a function of the angle α as
follows
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g(α) = 1 +
α − y

2
+ 2y = 1 +

α

2
+

3y

2
= 1 +

α

2
+ 3 sin(α/2).

Now we differentiate with respect to α and we obtain: dg(α)
dα = 1

2 + 3
2 cos(α/2). Set

the derivative equal to 0 to find the maximum of the function g(α), which yields
as value for α the solution of cos(α/2) = −1/3. This completes the analysis for
the F2F communication model.

Second we consider the Wireless model. We refer to Fig. 6. If the angular
distance between A and B equals x, then the length of the chord taken by the
robot r2 equals to c(x) = 2 sin(π − x). Thus the evacuation time T satisfies

T ≤ max
0≤x≤π

{1 + x + 2 sin(π − x)} = max
0≤x≤π

{1 + x + 2 sin x}.

The function h(x) = 1 + x + 2 sin x in the interval [0, π] is maximized at the
point x∗ = 2π/3 and h(x∗) = 1+2π/3+

√
3. This completes the analysis for the

Wireless communication model. 
�
We also mention the lower bounds for two robots, but the proof is more

technical and we refer the reader to [17] for additional details.

Theorem 10 (Lower Bounds for 2 Robots, [17]). Consider two robots
starting at the same time from the center of a unit disk.

1. (Wireless Model) For any algorithm it takes at least 1+ 2π
3 +

√
3 (≈ 4.826)

time in the worst case for two robots to evacuate from an unknown exit located
in the perimeter of the disk.

2. (F2F Model) It takes at least 3+ π
4 +

√
2 (≈ 5.199) time units for two robots

to evacuate from an unknown exit located in the perimeter of the disk.

Note that the bounds for the F2F communication model are not tight. Table 2
summarizes what is known and indicates the existing gap.

Table 2. Upper and lower bounds for the evacuation of 2 robots in the F2F commu-
nication model.

Paper Upper bound Lower bound

[17] 5.74 5.199

[20] 5.628 5.255

[13] 5.625

Evacuation for k ≥ 3 Robots

It is apparent that the evacuation time improves by the collaboration of the
robots. This is because a robot can share the search results of its exploration
with the other robots in the group (using either F2F or Wireless communication).
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Therefore it is not surprising that the evacuation time should improve as the
number of robots increases. This is in fact confirmed by the results as listed in
Table 3.

Table 3. Upper and Lower bounds for k ≥ 3 robots as proved in [17].

Model Bound k = 3 k ≥ 4

F2F Upper ∼5.09 3 + 2π
k

< 4.58

Lower ∼4.519 3 + 2π
k

− O(k−2)

Wireless Upper ∼4.22 3 + π
k

+ O(k−4/3)

Lower ∼4.159 3 + π
k

> 3.785

Nevertheless, it is much harder to obtain good bounds for the evacuation
of any small number of robots, say three. For example, for three robots [17]
gives upper and lower bounds for both the F2F and the wireless communication
models, but they are not tight (see Table 3). The interested reader can find
additional details for the case of k = 3 robots in [17].

Fortunately, it is possible to obtain asymptotically tight bounds for evacua-
tion as the number k of robots tends to infinity. The basic idea is for the robots
to explore different parts of the perimeter and share with each other their search
results. However the main difficulty is to ensure that when a robot finds (respec-
tively, announces) the exit the rest of the robots are as close to it as possible.
An outline of the algorithms are given below.

1. (F2F Model) The k robots “spread” at equal angles 2π/k and upon reaching
the perimeter, they all move clockwise (along the perimeter) for 2π/k time
units. In one additional time unit, all robots move to the center of the disk.
Since at least one robot has found the exit it can inform the remaining robots
and in one additional time unit all robots move to the exit.

2. (Wireless Model) The k robots are divided into two groups: Group Gα of
size kα = �k2/3, and Group Gβ of size kβ = k − kα. The robots in group
Gα are assigned to “spread” and search a continuos arc AB of length of
length π − 2

√
πk−1/3, while the robots in group Gβ are assigned to “spread”

and search the complement BA of arc AB . The robots explore specifically
assigned subarcs of the arcs AB, BA of length AB /kα BA , respectively,
and upon receiving a notification about the position of the discovered exit
they all cut across a chord to the exit.

We can prove that the two algorithms above are asymptotically optimal in their
respective communication model (see [17] for additional details).

Theorem 11 (F2F Model, [17]). It is possible to evacuate k robots from an
unknown exit located on the perimeter of the disk in time 3 + 2π

k . It takes time
at least 3+ 2π

k −O(k−2) in the worst case to evacuate k robots from an unknown
exit located on the perimeter of the disk.
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Theorem 12 (Wireless Model, [17]). If k ≥ 100 then it is possible to evac-
uate k robots from an unknown exit located in the perimeter of the disk in time
3 + π

k + O(k−4/3). Moreover, it takes at least 3 + π
k time in the worst case to

evacuate k ≥ 2 robots from an unknown exit located on the perimeter of the disk.

3.2 Evacuating from Triangles and Squares

Two of the main requirements of the algorithms designed for evacuating robots
from a disk were that the robots agree in advance on the search strategy they
will follow and also have knowledge of the “shape” of the perimeter on which
they need to search for the exit. The former was important so that robots can
estimate each other’s position at any given time and the latter for traversing
the perimeter. Further, any robot that finds the exit can take a “straight-line”
short-cut through the interior of the disk so as to either meet another robots
or go to the exit. These assumptions can be easily satisfied by any “convex”
closed curve (e.g., triangles and squares as depicted in Fig. 7) though this will
not necessarily make the optimization problem any simpler regardless of the
communication model.

Fig. 7. General setting of robot evacuation from equilateral triangles and squares.
Robots start in general positions at the interior (or perimeter) and the exit is located
on the perimeter of the triangle or square.

Model Specifics and Problem Definition

Throughout this section we assume the wireless communication model. Consider
an equilateral triangle or square with sides of length 1. A number of robots
starting at the same location on the perimeter or in the interior of the triangle
or square are required to evacuate from an exit which is located at an unknown
location on its perimeter. At any time the robots can move at identical speed
equal to 1, and they can cooperate by communicating with each other wirelessly.
Thus, if a robot finds the exit it can broadcast “exit found” to the remaining
robots which then move in a straight line segment towards the exit to evacuate.
Our task is to design robot trajectories that minimize the evacuation time of
the robots, i.e., the time the last robot evacuates from the exit. Designing such
optimal algorithms turns out to be a very intricate problem and even the case
of equilateral triangles turns out to be challenging.
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Evacuation Algorithm

Consider the case where the robots start at a point P on the perimeter of tri-
angle ABC and at distance x from the midpoint of edge BC (see Fig. 8). Now
consider the following algorithm. From the midpoint the robots move in opposite
directions along the perimeter, i.e. Robot 1 towards vertex A via vertex B, and
the other Robot 2 towards vertex A via vertex C. When a robot finds the exit it
broadcasts “Exit found” to the other robot which immediately goes in a straight
line segment to the exit. A similar approach is required when the two robots
start together at an interior point of the triangle.

These algorithms are not difficult to analyze and we can prove the following
theorems (details can be found in [25]).

x 1/2

α

d

A

BC
P A B

C
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D

F
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N M
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x

Fig. 8. Evacuating from an equilateral triangle. Left: the two robots start at a point
P at distance x from the midpoint of edge BC. Right: the starting position of the two
robots is in �AFD. N, M, D are the midpoints of the corresponding sides.

Theorem 13 (Robots starting on the perimeter, [25]). Assume that two
robots are initially located on the perimeter of an equilateral triangle at distance
x from the closest midpoint of an edge of the triangle. Then x + 3

2 is a tight
bound for evacuating these two robots.

Theorem 14 (Robots start in the interior, [25]). Assume that two robots
are initially located at point s inside the equilateral triangle, and let x =
min{d(s,m) | m is a mid point of an edge}. Then x + 3

2 is a tight bound for
evacuating these two robots.

Similar techniques can be used to analyze evacuation in unit squares. To sum
up the results obtained in [25] include the following.

1. Equilateral Triangle. Optimal evacuation trajectories (algorithms) for 2
robots and for any (same) starting position. 3 or more robots starting on the
perimeter cannot achieve better evacuation time than two robots.
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2. Square. Optimal evacuation trajectories (algorithms) for 2 robots for starting
positions on the perimeter. 3 or more robots starting at one of the corners
cannot achieve better evacuation time than 2 robots.

Additional results for more robots and more generally for regular polygons
can be found in [25]. For evacuation from an equilaterla triangle in the F2F
model see [16]. An interesting problem concerns evacuation on an ellipse or an
arbitrary convex polygon.

3.3 Evacuation with Faulty Agents

Evacuating robots from the disk is a well studied problem, first introduced and
studied in [17]. In particular when the communication model between robots is
wireless, i.e. information can be shared between them instantaneously, nearly
tight upper and lower bounds are known. Of course, in such a model what
becomes particularly relevant is that information shared among agents is reliable.
In contrast, operational algorithmic solutions need to be, in practice, robust
against malfunctions. This translates to robots that either fail to report their
findings, or even to misreports. The fundamental question that arises then is
how is evacuation time affected in the presence of faulty robots. Note that the
minimum number n of robots for which the problem is non degenerate is n = 3,
out of which 1 robot is faulty. This is the subject of study in [22].

Model Specifics and Problem Definition

FE is an evacuation problem whose search domain is the disk of radius 1. In this
problem, 3 non-distinguishable robots (searchers) of maximum speed 1 start from
the center of the disk, and they can communicate with each other their findings
instantaneously, i.e. they operate under the wireless model. Somewhere on the
perimeter of the disk lies a hidden object (exit) that can be identified only if a
robot goes over it. Among the searchers there is distinct robot, thereafter referred
as faulty. An evacuation algorithm is a search trajectory for all three robots, in
which eventually all robots reach the hidden object. Given a placement of the
hidden object, the cost of the search algorithm is the time till the last non-faulty
robot reaches the hidden item. The evacuation time of the algorithm is defined
as the worst case cost of the algorithm.

Clearly, given a search algorithm, and in the spirit of worst case analysis, the
adversary controls not only where the hidden object is placed, but also which
of the searchers is faulty. In the same direction, the adversary also controls the
actions of the faulty robot, and therefore one needs to determine the limitations
of such adversarial choices. In the crash-faulty model, the faulty robot may only
fail to report that the hidden object is found, whereas in the byzantine-faulty
model, the faulty robot may misreport at any moment its findings. We denote
the two evacuation problems in the corresponding faulty models as FEc and
FEb, respectively.
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Disk Evacuation Against Crash Faults

The advantage of trying to evacuate 3 robots in the crash-fault model is that
once the location of the hidden object is reported, the remaining non-faulty
robot may abandon searching and move toward the exit along a shortest (line
segment) path. Maybe the simplest family of algorithms one may consider first is
a symmetric-type, in which robots partition the circle in three contiguous arcs.
The robots deploy to the endpoints of these arcs, and start searching in the same
direction, each of them its own contiguous arc till the exit is found (reported). It
is not hard to prove that the best algorithm of this family deploys the searchers
in equidistant points, i.e. the three arcs are of length 2π/3 each, and the induced
evacuation time is 1 + 4π/3 +

√
3.

One of the main contributions of [22] is to show how a non-symmetric algo-
rithm can evacuate the two non-faulty robots efficiently. Practically, one may
again define a family of, non-symmetric evacuation trajectories this time, as fol-
lows. Fix parameter β. Two robots deploy to an arbitrary point of the disk, with
the intension to explore in opposite directions. The third robot is deployed to a
point of the disk at arc distance β from the deployment point of the other robots,
with the intention to explore toward the closest robot (and hence in opposite
direction than that robot), see Fig. 9.

Fig. 9. The deployment of the three robots, and their initial direction of movements
for the algorithm the shows the upper bound of Theorem 15

Consider now the following two adversarial choices. First, the two non-fault
robots are those at arc distance β moving toward each other. Assuming that β ≤
4π/3 one can show that the worst placement of the exit is at time 2π/3, after they
search their in-between arc segment (this is because the maximizer of function
x+2 sin (x/2) is attained at x = 2π/3) inducing cost 1+β/2+2π/3+

√
3. Second,

assume that the non-faulty robots are those moving in the same direction. It is
easy to see that the worst placement of the exit makes the non-faulty robots
search the perimeter for 2π − β, which maintain throughout the exploration arc
distance β (hence the last robot needs additional time 2 sin (β/2) to reach the
exit). Overall, this second case induces worst evacuation time 1+2π−β+2 sin (β).
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The best algorithm known for FEc is exactly the one above that uses as β the
value that equates the evacuation costs in the aforementioned adversarial inputs.

Theorem 15 ([17]). Let β0 be the solution to equation 3β0/2 − 2 sin (β0/2) =
4π/3 − √

3, where β0 ≈ 2.966. Then FEc admits solution with evacuation time
at most 1 + β0/2 + 2π/3 +

√
3 ≈ 6.309.

Disk Evacuation Against Byzantine Faults

The best performance achieved for FEc with symmetric algorithms turns out to
be the best performance known for FEb, but remarkably with a different type
of algorithm. The inherent difference in the byzantine-fault model is that once
the exit is reported, it firsts needs to be confirmed as a reliable message before
the non faulty robot attempts to reach it, as otherwise performance would be
suboptimal. Indeed, evacuating in the presence of a byzantine faulty robot who
may misreport her findings, all robots are asked to first explore, in the same
direction, a contiguous arc segment of length 2π/3. Depending on the report(s)
that have been circulated, robots have information to either go to the exit or
continue searching the circle for additional time 2π

3 . The fact that each point is
searched twice, allows them to resolve any conflicts and deduce the real location
of the exit. This idea gives rise to the following upper bound.

Theorem 16 ([17]). FEb admits solution with evacuation time at most 1 +
4π/3 +

√
3 ≈ 6.92.

A Unified Lower Bound Argument

As it is common in lower bounds arguments, in order to show negative results
for FE, one has to identify special time moments in which, independently of
the algorithm considered, certain points in the search domain have not all been
explored by non-faulty robots. Specifically for FE, the following predicate P (·),
given any evacuation algorithm, plays a crucial role in the lower bound argument.

P (T ): At time T , there are two critical points on the circle at arc distance
2π/3, and none of them is visited more than once by any of the three searchers.

One of the main technical contributions in [22] was to prove that
P

(
1 + 13

7

√
3
)

is true. Now in FEb, there must be a robot that has visited none
of the two critical points. The adversary can chose that robot to be non-faulty,
and clearly that robot requires extra at least

√
3/2 to reach any of them. For

FEb, the adversary has more power to mislead non-faulty robots, and in fact can
call a potentially misreport of the exit. Independently of the performance of the
evacuation algorithm, it is shown that the non-faulty robot must be at least 2π/3
away from the true location of the exit, inducing extra cost 2 sin (2π/3) =

√
3.

Overall, the results of the lower bound arguments are summarized below.

Theorem 17 ([17]). Let T0 = 1 + 13
7

√
3. Then no algorithm can solve FEc

with evacuation time less than T0 +
√

3/2 ≈ 5.082. Also, no algorithm can solve
FEb with evacuation time less than T0 +

√
3 ≈ 5.948.
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4 Multiple Targets on a Circle

Evacuation type problems emerged by requiring collections of robots to identify
the location of a hidden item, and to reach it as fast as possible. It is natural to
also assume variations in which there may be more than one objects hidden in
the domain, and search termination to be defined as the latest time in which the
last robot reaches any of the hidden objects. From a practical perspective, the
hidden objects can be thought as available exits that are placed in the underlying
domain in which searchers collectively try to reach any of them (and evacuate)
efficiently, possibly using as partial information the relative distance of the exits,
but not their locations. The main reference work for this model with multiple
exits described above is [21].

Model Specifics and Problem Definition

FEk is an evacuation problem whose search domain is the circle of perimeter 1
(i.e. of radius 1/2π). In this problem, k hidden and identical (non distinuishable)
objects (exits) are located on the circle. The relative distance between the hidden
items is known, thereafter referred as the map, but not their locations. Two
identical robots are placed at arc distance L on the circle, they can move at
speed 1, and they can see each other. They can see any of the hidden object only
if they are collocated with the object, and they can communicate wirelessly and
instantaneously their findings. Their goal is that each of them reaches any of the
hidden objects (exits). The evacuation time is defined as the worst case time of
the last robot to reach an(y) exit.

There are two variations of the problem, where the initial placement (relative
distance) L of the robots is either part of the input, or is the subject of an
algorithmic choice based on the provided map. In both variations, the goal is
to design trajectories for the two searchers on the circle so as to minimize their
evacuation time.

Multiple Exit Evacuation with Given Robot Placement

Maybe the simplest case of all is the one when the map contains only one exit.
The two robots start at known arc distance L, and they try to minimize the time
that the last robot reaches the exit. It is convenient for the moment to think that
the two robots are co-located. Very naturally the robots should start exploring
in opposite directions till the exits is found, say at time x ≤ 1

2 . Then, the other
robot is notified, and can evacuate choosing the shortest route (along the circle)
of length min{2x, 1 − 2x}. Given that the adversary controls the location of the
exit, that would induce worst case performance

max
x∈[0,1/2]

{x + min{2x, 1 − 2x}} = 3/4.

If on the other hand the robots are at distance L, then it is natural to first
have them explore the arc between them, taking time L/2, and then running the
previous algorithm of extra cost 3/4. It turns out that this simple idea is also
optimal.
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Theorem 18 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two robots
is part of the input, EME1 can be solved with evacuation time 3

4 + 1
2L. Moreover

this is optimal.

EMEk becomes more interesting for k ≥ 2. Since exits are not distinguish-
able, one needs to identify the critical information that can be deduced from
every map. Given an instance of EMEk, e.g. a map for the placement of k exits,
the critical parameter that can be utilized algorithmically turns out to be longest
arc length of the circle that does not strictly contain any exit. This can be also
thought as a pessimistic estimation for the distance of a hidden item from the
location of an exit currently found (and reported). A map in which the longest
arc not strictly containing an exit has length D will be called a map with critical
value D, see also Fig. 10 for an example of an EMEk instance. Note that by
definition, any map of EMEk has critical value D ∈ [1/k, 1].

E

R

R

E
E

Fig. 10. An instance of EME3. Robots placements are depicted with circles R, and
exit placements are depicted by squares E.

Theorem 19 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two robots
is part of the input, a map of EMEk with critical distance D can be evacuated
in time

3
4
D +

1
2
L.

Moreover no algorithm can have evacuation time better than 3
4D − 1

2L.

The upper bound for Theorem19 is due to an algorithm similar to the optimal
algorithm for EME1. Indeed, when there is only 1 exit, the critical value of the
map is D = 1, whereas for general critical value D ∈ [1/k, 1], each of the two
robots performs, in the worst case, within an arc of length D, which is similar
to performing on a circle of perimeter D. Nevertheless this argument is not
strong enough to derive a matching upper and lower bound. In contrast, when
all consecutive exits are equidistant, we do know the best possible evacuation
time.
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Theorem 20 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two
robots is part of the input, a map of EMEk with critical distance D = 1/k can
be evacuated it time 3

4D + 1
2λ, where

λ =

{
L mod 1

k , if L mod 1
k ≤ 1

2k

1
k − L mod 1

k , if L mod 1
k > 1

2k

Moreover this performance is optimal.

The heart of the argument for proving Theorem20 relies on the idea of reduc-
ing EMEk on the circle of perimeter 1 to EME1 on a circle of perimeter 1/k
(which is possible due to that all consecutive exits are equispaced). The fact
that evacuation performance is non-monotonic has to do with the initial dis-
tance of the robots. When the circle is partitioned in arcs of length 1/k, their
original distance L evaluated mod1/k can be either larger or smaller than 1/2k.
If λ0 = L mod 1/k ≤ 1/2k, then the problem is equivalent to EME1 on the
circle of perimeter 1/k, with initial robots distance λ0. Otherwise, the distance
of the two robots in the new instance is 1/k − λ0.

Multiple Exit Evacuation with Chosen Robot Placement

Evacuation problem EMEk, when the initial relative distance L of the robots
can be chosen as a function of the given map of critical value D, i.e. when we
allow L = L(D), requires a more elaborate analysis. At a high level, given
initial distance L of the robots, optimal, or near-optimal evacuation trajec-
tories are known. For these trajectories, an adversary can choose when the
first exit is found, say at time x ≤ 1

2 − 1
2L. If the induced evacuation cost

is denoted by g(D,L, x), then the evacuation cost of the algorithm is given
by maxx∈[0, 12− 1

2L] {g(D,L, x)}. If in addition we allow the algorithm to pick
L = L(D), then one has to solve optimization problem

min
L∈[0,1/2]

max
x∈[0, 12− 1

2L]
{g(D,L, x)}

in order to determine the best possible evacuation algorithm. This is exactly
what the next theorem describes.

Theorem 21 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two robots
can be chosen algorithmically based on a map of EMEk with critical distance
D ∈ [1/k, 1], there is an evacuation algorithm with cost at most⎧⎨

⎩
3
4D, if D ∈ [1/k, 4/5), achieved for L = 0
1 − 1

2D, if D ∈ [4/5, 6/7) achieved for L = 5
2D − 2

5
4D − 1

2 , if D ∈ [6/7, 1], achieved for L = 1 − D.

5 Search and Fetch

Search and Fetch type problems are common in search-and-rescue operations
where a hidden object (a victim) not only has to be located, but also has to be
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carried (fetched) to a designated spot. From a theoretical perspective, which is
the focus of the current work, such problems fall under the generic evacuation
type problems, where evacuation has to be accomplished only by a subset of the
involved objects/mobile agents, hence delivering a combinatorial flavor to the
problem. An attempt to model and study such search and fetch problems on the
plane with 1 and 2 mobile agents appeared first in [28] and [27], respectively.

Model Specifics and Problem Definition

TEn
α is an evacuation-type problem whose domain is the unit disk. In this prob-

lem, n ∈ {1, 2} mobile agents start from the center of the disk and can move
at maximum speed 1 anywhere on the plane. Two hidden objects, a treasure T
and an exit E, reside on the perimeter of the disk at known arc distance α. E is
immobile, while T can be moved by any mobile agent. Any of the hidden objects
can be located only by a robot that walks over it.

An evacuation algorithm for TEn
α is composed by the trajectory for each of

the n robots which guarantees that T reaches E in a finite amount of time. For
any placement of the objects (at known arc distance α), the completion time
is defined as the time it takes T to reach E, i.e. the time to evacuate T . The
completion (evacuation) time for an evacuation algorithm for TEn

α is the worst
case evacuation time over all placements of hidden objects T,E. Finally, the
evacuation time of TEn

α is the minimum completion time over all evacuation
algorithms.

Relevant Literature

TE1
α is closely related to search-type problems that involve a searcher and a

hider in numerous variants for which the literature is vast [3,4]. Evacuation-type
problems similar to TE2

α in which the model of computation between the robots
becomes relevant but without the fetching/combinatorial component, have been
studied is a series of papers [13,17,20,21,25,32]. From a practical perspective,
search-and-rescue problems have been studied since the late 90’s by the robotics
community, e.g. see [29], and extensively by the operations research community,
e.g., see [15]. Maybe the most similar problem to TEn

α studied before is the one
introduced by Alpern in [2], where the domain was discrete (a tree), and the
goal of the rescuer was to fetch a treasure hidden in a leaf back to the root of
the tree.

Model Motivation

The underlying model of TEn
α is admittedly simplistic, yet its’ importance is

fivefold.
First, as it will be clear in the remaining of the section, solving optimally

either TE1
α, TE2

α seems a particularly challenging task. Moreover any upper or
lower bounds for TE1

α, TE2
α require non-trivial and sometimes technical argu-

ments. Together with the fact the known upper and lower bounds are far from
being matched, solving TEn

α qualifies as a challenging mathematical puzzle.
Second, TEn

α is by definition an online problem where an algorithm is asked to
perform well against an unknown input (here the position of the hidden objects).
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A fundamental subject of theoretical computer science is exactly to study the
boundaries of computational capabilities given limited resources, and for TEn

α

that would be the knowledge of the input. In that direction, TEn
α proposes a

compromise between no information and full information about the input. From
an algorithmic perspective, TEn

α asks the fascinating question of utilizing the
partial information available about the input (the distance between the two
hidden objects) in order to improve upon an algorithm with no information
about the input.

Third, TEn
α is maybe the first attempt to inject a combinatorial flavour to

evacuation type problems. This far, evacuation problems treated robots equiv-
alently, meaning that completion time was oblivious to robot’s identities. In
contrast, TEn

α requires a specific immobile robot, the treasure, to be fetched to
a hidden exit, and specifically it poses no constraints to the facilitators (other
robots) which try to expedite the evacuation of the treasure. Only very recently,
two more papers studied evacuation problems with similar combinatorial-type
requirements [18,19].

Fourth, and when n ≥ 2, TEn
α emphasizes the relevance of the communication

protocol between robots in search-and-rescue operations. Indeed, when access
to information is overall restricted in online problems, i.e. no information about
hidden objects is available, search protocols where robots are allowed to commu-
nicate wirelessly are expected to outperform search protocols where robots can
exchange information only by meeting (face-to-face model). In contrast, when
partial information becomes available, in our case the distance between the hid-
den objects, a face-to-face algorithm is better equipped against the uncertainty
that even wireless algorithms face, allowing possibly for solutions whose costs
do not differ by much in the two communication models.

Fifth, the domain of TEn
α as well as robots specifications follow closely model

specifications of fundamental problems in search theory and rendezvous, and as
such TEn

α proposes a natural extension of them. Since all of these problems
intend to introduce fundamental search/algorithmic techniques with applicabil-
ity to real life search-and-rescue operations, TEn

α in particular becomes relevant
when rescuers performance is quantified not by their evacuation time, rather by
the evacuation time of the victim they are trying to save.

5.1 Searching with One Robot

Search and fetch with one robot, i.e. TE1
α, has been studied in two variations

depending on the precise knowledge regarding the location of the two hidden
objects. In one of them, a bound α is known for the exact distance of the objects,
while in the other, α is guaranteed to be the distance of the objects. Clearly, the
first variation gives rise to an optimal completion time which at least as costly
than the one of the second variation. However, somehow surprisingly, providing
an optimal algorithm for the first variation is a relatively easy task, compared
to the other variation where a similar result is still eluding.



362 J. Czyzowicz et al.

Knowledge of a Bound of the Critical Distance

Consider the variation of TE1
α where the online algorithm has access to a lower

bound α of the actual distance 
 of the two hidden objects, i.e. 
 ≥ α. In other
words, one tries to minimize the worst case completion time of fetching the
treasure T to the exit E, assuming that the arc-distance between T,E is at least
α. We denote this variant as TE1

≥α.

Theorem 22 ([28]). An instance of TE1
≥α where T,E are at arc distance 
 ≥ α

can be solved with worst case completion time 1+2π−α+2 sin (α/2)+2 sin (
/2),
and this is optimal.

Notice that the description of a treasure evacuation algorithm concerns only
the part of the execution till the locations of both objects are identified. Then,
robot(s) may fetch the treasure to the exit in an optimal way, given objects’ and
robot’s locations. The algorithm that proves the upper bound of Theorem22
utilizes nicely the key component to all evacuation protocols for all TEn

α, and
concerns an “arc-avoidance” step during the exploration phase of the algorithm.
Indeed, assume that a robot explores the perimeter of the disk, searching still
for the first hidden object, and assume that already an arc of length at least α
has been explored. Once the first hidden item is located, the other has to be arc-
distance at least α away. Therefore cross-cutting along the corresponding chord
of length 2 sin (α/2) induces total savings of α − 2 sin (α/2). Note that such a
move is beneficial independently of whether the first item found is the treasure
or the exit. From an adversarial perspective, the first item to be found has to
be the exit, so that an extra 2 sin (
/2) is required for the fetching phase, as well
as the two hidden items are to be located (in the worst case) as late in the time
horizon as possible. Overall, this explains why the worst case evacuation time of
the following algorithm is indeed 1 + 2π − α + 2 sin (α/2) + 2 sin (
/2).

Algorithm 1. Arc Avoidance Evacuation Algorithm for TE1
≥α

Step 1: Starting from an arbitrary point on the disk, start searching cw till the first
hidden object I is found.

Step 2: Move along the chord connecting I to point at cw arc-distance α.
Step 3. Continue exploring cw till the second hidden object is found.

The lower bound of Theorem22 is based on a simple observation regard-
ing any evacuation algorithm. If a robot has explored less than 2π − α of the
perimeter of the disk, then there is a chord of length at least 2 sin(α/2) (say of
corresponding arc length 
) neither of whose endpoints has been visited by the
robot. Therefore, any adversary could let any algorithm run for 1 + 2π − α − ε,
before she fixes the locations of the two hidden points, and she can do that by
making the first explored point to be the exit.
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Knowledge of the Exact Critical Distance

Now we turn our attention to the variant of TE1
α, denoted as TE1

=α, in which
the two hidden items are exactly at arc distance α, and α is known. Notably,
Algorithm 1 is still applicable, and it is no surprise that Theorem22 predicts
its worst case performance to be equal to 1 + 2π − α + 4 sin (α/2). With some
technical work, one can improve upon the previous upper bound.

The main idea behind the best algorithm known for TE1
=α relies on the

partition of the search space, i.e. the perimeter of the disk, into contiguous
segments that will be searched, and others that can be “skipped”. Indeed, fix
some α, and consider a robot having searched an arc of length a1 ≥ α. If any
of the hidden items lies within b1 ≤ α arc distance from the robot, then the
location of the other hidden item can be deduced. Hence, the robot has an
incentive to move along the chord of length 2 sin (b1) (without ever missing both
hidden items), and continue searching a new arc. If the latter has length b2 ≥ α,
then the previous argument applies again.

Consider now a partition of the disk into arc of length a1, b1, . . . , an, bn, an+1,
such that bi ≤ α ≤ ai. A robot can search each of the arcs of length ai, following
a “jump” along the chords of length 2 sin (bi), till one of the hidden items is
found. Call the search strategy associated with such a partition greedy. If the
first hidden item is found by the greedy algorithm while searching arc ai, i ≤ n,
then the robot may have to check two locations for the second hidden object.
However, any jump saves locally time bi − 2 sin (bi/2) > 0, as long as bi > 0.
Moreover, bi −2 sin (bi/2) is monotone in bi, hence it is intuitive that one should
choose a partition of the disk that induces as much savings as possible. In that
direction, it is natural to pack as many maximal jumps as possible of length
bi = α, making sure that if a hidden object is found in the last arc to be
searched, then the other object location is deduced from the searched space.
Omitting several technicalities, one can show that the number nα of such jumps
must be equal to

nα :=
⌊

2π − 3α − 2 sin (α)
2α

⌋

giving rise to the following positive result.

Theorem 23 ([28]). For an instance of TE1
=α, consider a greedy search algo-

rithm using disk partition a1, b1, a2, b2, . . . , anα
, bnα

, anα+1. If nα < π−sin(α)
α −2,

then the worst evacuation time of the algorithm is

2π − (nα + 2)α + 2(nα + 3) sin (α/2)

and otherwise, the worst evacuation time is

(nα + 2)α + 2(nα + 2) sin (α/2) + 2 sin
(

2nα + 3
2

α + sin α

)
+ 2 sin α

Moreover the analysis it tight.
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Although it is conjectured that the above upper bound is the best possible,
a tight lower bound is still eluding. At the same time, a non trivial lower bound
can be obtained by consider a “weaker” adversary that is restricted to choose
the locations of the two hidden items after a search algorithm has left only
one contiguous unexplored arc of length α. Given such a restricted adversary,
it is not difficult to show that the most efficient algorithms must be greedy,
hence, their trajectories must be determined by a sequence of non-negative reals
a1, b1, a2, b2, . . . , al−1, bl−1, al for some integer l ≥ 1, with bi ≤ α. Placing the
two hidden objects at the very end of the search (where the first item found is
the exit) induces cost 1 +

∑l
i=1 ai +

∑l−1
i=1 2 sin(bi/2) + 4 sin(α/2). Hence, the

values of the following family of Non-Linear Programs gives a lower bound for
the best evacuation time for TE1

=α

minimize 1 +
l∑

i=1

ai +
l−1∑
i=1

2 sin(bi/2) + 4 sin(α/2)

subject to
l∑

i=1

ai +
l∑

i=1

bi = 2π

bi ≤ α for i = 1, 2, . . . , l

ai, bi ≥ 0 for i = 1, 2, . . . , l

Some technical work is required to obtain the maximum value of the optimization
problems above (over all intefers l ≥ 1), resulting in the following theorem.

Theorem 24 ([28]). No algorithm for TE1
=α has evacuation time better than

1 + π + min

{
4 sin α

2 + 2
(⌈

π
α

⌉ − 1
)
sin π−α

2(� π
α−1) ,

π − α
⌊

π
α

⌋
+ 2

(⌊
π
α

⌋
+ 1

)
sin α

2

}

5.2 Searching with Two Robots

Known results for TE1
α indicate that optimal trajectories for TE2

α must employ
complicated trajectories for the two robots using alternating arcs of the disk that
are to be searched and skipped. Such complications seem unnecessary, given that
efficient algorithms for TE2

α are far from being plain-vanilla type, especially
in the face-to-face model. Indeed, the work in [27] indicates that even if one
considers a special family of search algorithms in which robots do not abandon
searching before at least one hidden item is found, efficient search trajectories
do require ingenuity.

Upper Bound in the Wireless Model

It is worthwhile investigating a simple-minded algorithm for TE2
α, demonstrating

the need for algorithms that are adaptive in α, especially given that in the
wireless model, robots share information instantaneously.

Indeed, consider an algorithm, thereafter referred as Aw
1 , that deploys two

robots in an arbitrary point on the disk, and robots start searching in opposite
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directions till the first hidden object is found, after time, say, x. Due to the
communication model, robots can coordinate in order to explore all possible
locations of the second hidden object, fetching the treasure to the exit in an
optimal way (from the time that both objects have been found).

It turns out that Aw
1 performs well when α is not too big, and indeed, one

can show that the worst case evacuation time is at most 1 + π − α + 4 sin (α/2),
as long as α ≤ 2π/3. Performance analysis is based on case analysis as to where
the hidden objects are placed. It is not difficult to see that one of the worst
input configurations occur when the first object found is the exit, say after time
x, see Fig. 11. If 2x ≤ α, there is still uncertainty as to where the treasure is,
even though it must be at distance 2 sin (α/2) from the found object. The two
robots can search independently the two candidate locations, and as long as x
is not too big, the exit founder reaches the actual location of the treasure after
the other robot, overall inducing cost at least

1 + α/2 − arcsin (sin (α/2) − sin (α)) + 4 sin (α/2) ,

which provably exceeds the bound of 1 + π − α + 4 sin (α/2) for large enough α.

E

T

?

Fig. 11. An example of robots’ trajectories in which the first interesting point found is
the exit, depicted with the square E. At distance δ = 2 sin (α/2) is the other interesting
point. The actual location of the treasure is depicted with the square T and it’s other
possible location by the square?

To circumvent the poor behavior of Aw
1 , we employ another search strategy,

that we call Aw
2 . In this algorithm, robots deploy in two antipodal points of the

disk, and search the perimeter in the same direction till the first hidden item is
found, say at time x. In this case, uncertainty about the location of the second
item occurs when x ≤ α and when π − x ≤ α, and hence the algorithm can
deduce the location of both items in more cases, when α is large enough. In fact,
one can show that if α ≥ 2π/3, then the worst evacuation time of Aw

2 is at most
1 + π − α + 4 sin (α/2). Overall, we have algorithms Aw

1 ,Aw
2 , each achieving the

same upper bound (as a function of α) for complementary values of α concluding
the following theorem.

Theorem 25 ([27]). TE2
α admits a solution in the wireless model with evacu-

ation time 1 + π − α + 4 sin (α/2).
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Upper Bound in the Face-to-Face Model

The optimal strategy known in the wireless model for TE2
α indicates that strate-

gies adaptive to the value of α are necessary in order to achieve efficient evacua-
tion times. Such strategies become more relevant in the face-to-face model where
information cannot be shared by the searchers from distance.

In order to circumvent the lack of communication, it is no surprise that effi-
cient algorithms for TE2

α in the face-to-face model need to adapt not only with
α, but as well as with the timing of certain findings. For example, it is natu-
ral to aim for search strategies that change behavior as a function of when the
first hidden object is found, and of the type of the hidden object. Especially
challenging seems that task of having the robots coordinate their trajectories
from distance, given that any findings cannot be shared unless the searchers
meet. Nevertheless, robots may be able to indirectly exchange information from
distance given that they have agreed in advance to meet in predetermined loca-
tions assuming certain configurations have been encountered by the robots. If
the meeting is realized, then clearly robots exchange information regarding their
findings. Similarly, if the meeting is not realized, robots may preclude certain
configurations, hence deducing information about the topology of hidden objects
indirectly. Of course the challenge with such an approach is (a) to coordinate
the robots properly and independently of the encountered configurations, and
(b) to achieve the same upper bound for all possible placements of the hidden
objects.

In this direction, [27] invented various search strategies in the face-to-face
model, each of them performing well for different values of α, achieving the
following result.

Theorem 26 ([27]). TE2
α admits a solution in the face-to-face model with

evacuation time 1 + π − α/2 + 3 sin (α/2).

There are three different search algorithms Af
1 ,Af

2 ,Af
3 , that need to be

employed in order to achieve the bound of Theorem26, which we briefly out-
line next. All of them, deploy both robots to an arbitrary point of the disk, and
have them start exploring in opposite directions till the first hidden object is
found, and the algorithms are distinguished with respect to what happens next.
Figure 12 depicts possible executions of the three algorithms.

In Af
1 , each robot greedily tries to find locations of the hidden items, and the

treasure founder fetches the treasure to the exit without attempting coordination
(or any exchange of information via a coordinated meeting) as if there was only
one searcher. Some technical analysis shows that this algorithm works well (see
Theorem 26) as long as α is not large enough.

Af
2 is employed either when α is between two critical values, and the treasure

is found within a carefully predetermined time window. In this case, the treasure
founder goes to the center of the disk, and waits for as long as it would take the
other robot to find the exit in a candidate location and come to notify the trea-
sure holder. No matter whether the meeting is realized or not, the treasure holder



Group Search and Evacuation 367

Fig. 12. Possible executions of algorithms Af
1 , Af

2 , Af
3 . On the left, the first robot that

finds an interesting point, depicted with square I, tries one of the possible locations
of the other interesting point. In the middle, the founder of the first interesting point
which is the treasure, goes to the center of the circle, and waits till it collects enough
information as to where the exit is (possible trajectories depicted with dotted arrows).
On the right, the founder of the treasure follows a special chord specified by points
A, B, C, D (described in the definition of Af

3 below) only up to a total length y. There-
after, there are two possibilities of movements depicted with the dotted arrows, and
that depend on the information the robot will have collected about the location of the
exit.

deduces the location of the exit, and fetches it inducing worst case evacuation time
equal to the one promised by Theorem26.

Finally, Af
3 is employed in all other cases and utilizes the most involved

trajectories and is based, at a high level, on the following idea. Suppose a hidden
object is located at point A, and that object is the treasure. If there is uncertainty
about the location of the exit, then this must be at arc distance α either cw or
ccw, forming an imaginary triangle ABC. What would induce a bad performance
is the treasure holder to check points B,C alone. Instead, the treasure founder
can utilize her knowledge that her peer robot is searching one of the arcs AB or
AC, and the length of these arcs is known since robots started exploring the disk
from the same point. So say that arc is AB. Had the other robot found the exit
at point B, that would induce for her another triangle ABD with the possible
locations of the second hidden object. In fact, Af

3 instructs such a robot to check
point D for the object, and if failed to start moving toward point A to notify
the treasure founder. Hence, the treasure founder has an incentive, instead of
checking her candidate points B,C to first start moving toward point D, just in
case the other robot has already encountered the other hidden object. No matter
whether the meeting is realized, the treasure holder would be able to deduce the
location of the exit, fetching to it the treasure efficiently.

Lower Bounds for TE2
α

The only lower bound known for TE2
α is for the face-to-face model and relies

on an adversary that waits for the two robots to explore the disk until there are
three points A,B,C on the disk, where arcs AB,BC are both of length α and
at most one of the points A,B,C has been visited. One can argue that this has
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to take every algorithm time at least 1 + π/3. Now depending on the value of
α, an adversary can fix the locations of the two hidden items in the other two
locations, inducing different worst case evacuation times that are summarized in
the next theorem.

Theorem 27 ([27]). No face-to-face search algorithm can solve TE2
α with evac-

uation time less than

1 + π/3 + 2 sin (α/2) +
{

2 sin (α/2) , if 0 ≤ α ≤ 2π/3
2 sin (α) , o.w.

6 Conclusion

Search has always been an inexhaustible source of challenging mathematical opti-
mization problems. In this paper a brief survey has been provided of recent devel-
opments in group search and evacuation in linear and circular search domains.
The paper is no doubt biased in favor of recent work by the authors and their
collaborators. Also note that the survey is not meant to be exhaustive but rather
provide the reader with the flavor of some of the recent, challenging and exciting
questions on this topic.
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