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Preface

The past two decades have seen the rapid growth and development of the field of
distributed computing by mobile entities, whose concern is the study of the compu-
tational and complexity issues arising in systems of decentralized computational
entities operating in a spatial universe U. The entities can move in U (their movement is
constrained by the nature of U), and are autonomous in their actions (e.g., they are not
directed by an external controller). Depending on the nature of U, two different settings
are usually identified.

The first setting, called discrete universe (sometimes, netscape or graph world), is
when U is a simple graph and the entities, usually called agents, move from node to
neighboring node. This setting has a long history. The pioneering work of Shannon in
1951 on Exploration [6] was the first of a prolific line of algorithmic investigations
on computations by a single agent. It was, however, only later that multiple agents
(two, to be precise) were first considered [2]. The distributed computing concerns
started in full in 2001 with the study of the Black-Hole Search [3, 4] and
Intruder Capture [1] problems. Interestingly, in parallel and independently of this
theoretical work, the notion and use of mobile agents were being intensively investi-
gated in other fields, noticeably AI and software engineering. Indeed, the use of mobile
software agents has been very popular in networked environments, ranging from the
Internet to the Data Grid, both as a theoretical paradigm and as a system-supported
programming platform; in these fields, the theoretical research had focused mainly on
the descriptive and semantic concerns.

The other setting, called continuous universe, is when U is a Euclidean space that
the entities, usually called robots, can perceive and move in. The continuous setting
had long been investigated in the traditional fields of AI, robotics, and control. Within
the distributed computing community, the setting was introduced in 1996 with the
study of the Pattern Formation problem [7, 8]. The investigations in the field
were initially sporadic; this situation has drastically changed over the years, and a
continuously increasing number of algorithmic investigations examine this setting.
A comprehensive snapshot of the status of the research in this setting at that time
appeared in 2012 [5].

In both settings, the research concern is on determining what tasks can be performed
by the entities, under what conditions, and at what cost. In particular, the central
question is to determine what minimal hypotheses allow a given problem to be solved.

Encompassing and modeling a large variety of application environments and sys-
tems, from robotic swarms to networks of mobile sensors, from software mobile agents
in communication networks to crawlers and viruses on the Web, the theoretical
research in this area intersects distributed computing with the fields of computational
geometry (especially for continuous spaces), control theory, graph theory, and com-
binatorics (especially for discrete spaces).



In spite of the apparent differences between the two settings, and of the distinct
technical tools required in each, at a higher level, the basic principles are similar; the
vision and mind frame required to examine questions and solve problems share many
commonalities. This fact has allowed ideas, problems, and questions to be transferred
from one setting to the other. Indeed, it is quite common for researchers in the field to
do research in both settings.

As mentioned, over the years, the community of researchers investigating the field
of distributed computing by mobile entities has become quite large. An important
aggregation point of this community has been the series of research meetings, called
MOVING AND COMPUTING (MAC). Since their inception in 2004, these events have com-
prised scheduled tutorials and lectures and, more importantly, open sessions for the
presentations of open problems, new results, discussions, and free research. Regardless
of their length (micro-MAC, mini-MAC, big-MAC), the goals of these meetings have been
first of all to create a clearer picture of the state of the art in the field, then to identify
outstanding open problems and research directions, and finally to foster a collaborative
attack of some problems. While so much has been done to advance our knowledge
of the field, the larger part of the territory is still unexplored and remains uncharted.

Since the field has expanded so rapidly in recent years, and the many results are
spread through a large number of conferences and journals, these meetings have
provided a snapshot of the state of the art. However, since the MAC events are without
proceedings, this benefit has been limited mostly to the participants. The need for a
comprehensive description of the state of the art, to be available to all researchers
already working or interested in the area, as well as to those (e.g., PhD students and
postdocs) entering the field for the first time, is clearly felt. The main motivation of this
book is to satisfy this need.

This book is based on the lectures and tutorial presented at the MAC meeting held in
La Maddalena Island in 2017. Greatly expanded, revised, and updated, each of the
lectures forms an individual chapter. Together, they provide a map of the current
knowledge about the boundaries of “moving and computing.”

This has been a truly collective project, and we would like to thank all the authors
for the enthusiasm with which they have embarked this project and carried it through.

The book is organized in five parts. Part 1 contains two chapters focusing on
“moving and computing” models in the two spatial settings; Part 2 and Part 3 are
devoted to robots in the classic Look–Compute–Move model and in a continuous time
variation, respectively; Part 4 contains chapters on agents in discrete settings; finally,
Part 5 is dedicated to novel subjects.

December 2018 Paola Flocchini
Giuseppe Prencipe

Nicola Santoro

VI Preface
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Moving and Computing Models: Robots
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Abstract. This chapter provides a map of the current knowledge about
the boundaries of Moving and Computing in Continuous Spaces, describ-
ing the “models” under which the results known so far have been
obtained.

1 Introduction

Within the field of Distributed Computing by Mobile Entities, or Moving and
Computing, a prominent role is played by the theoretical investigations on the
computational and complexity issues related to systems of mobile computational
entities that operate and move in continuous spaces. Because the original inspi-
ration and motivation for these studies arose from the application field of swarm
robotics, the computational entities are usually called robots.

The last two decades have seen a flurry of studies on the computational
and complexity issues related to distributed computing by such robots, and a
large number of results have been established. Each individual study, with its
results derived under specific set of assumptions, has contributed to forming and
detailing the map of the “computational universe” of Moving and Computing in
Continuous Spaces, enlarging our understanding of this universe, of its nature,
its limits, its boundaries, of its critical factors. On the other hand, the specific
assumptions under which each one of these results is established constitutes the
restricted view point from which the universe is observed and described; this
obviously limits what can be seen, observed and found. Furthermore, the set of
all the assumptions of all these results is very large and varied, encompassing
many elements and factors of very different nature and whose interaction is
often unknown. In other words, there is no such a thing as a single “Model”
of Moving and Computing in Continuous Spaces. Rather, there are parts of
the universe that are defined and delimited by particular sets of assumptions,
“models” which have been well-studied and clearly defined. To these, as a result
of recent investigations, new “models” have been added to describe other parts
of the universe newly discovered.

Aim of this chapter is to provide a map of the current knowledge about
the boundaries of Moving and Computing in Continuous Spaces, describing the
c© Springer Nature Switzerland AG 2019
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4 P. Flocchini et al.

“models” under which the known results so far (topic of Chaps. 3–15) have been
obtained.

2 Standard Model: OBLOT

Perhaps the most general, well-known and investigated model is the one where
the robots, silent and anonymous, are oblivious, that is, every time they are
activated, they have no recollection of past activities. This de-facto standard
model, which we shall call OBLOT , is defined by a set of fundamental features,
which are are presented first.

The OBLOT model covers a large spectrum of settings and situations, each
defined by specific choices, among a range of possibilities, with respect to a
fundamental component, time, as well as two less crucial but still important
elements, orientation and mobility; these will be described next.

2.1 Fundamental Features

The system is composed of a set R = {r1, . . . , rn} of n computational entities,
called robots, that live and operate in a connected spatial universe U ⊆ R

d, d ≥ 1,
in which they can move. The robots are viewed as points in R

d; let r(t) denote
the position of robot r at time t. More than one robot can occupy the same
location at the same time; when this occurs, we say that there is multiplicity.

Each robot is provided with its own local memory and is capable of perform-
ing local computations with (infinite precision) real arithmetic. Each robot is
endowed with motorial capabilities; it can turn and move in any direction.

The robots are externally identical; that is, they are indistinguishable by their
appearance. They are anonymous, that is, the do not have distinct identities that
can be used during the computation. The robots are autonomous; that is, they
operate without a central control or external supervision. They are homogeneous;
that is, they all have and execute the same protocol, or algorithm.

Each robot has its own local coordinate system, whose origin always coincides
with the robot’s position (hence it follows the robot as it moves), while its unit
of length as well as the orientation and handedness are fixed. The coordinate
systems of different robots might be different in all their aspects.

A robot is capable of observing the universe U within its visibility range ν
(the same for all robots); as a result, it determines the positions (expressed in
its local coordinate system) of all the robots within distance ν. The visibility is
said to be limited if ν �= ∞, unlimited otherwise. We say that there is multiplicity
detection if the observation distinguishes if a point is occupied by a one, or more
than one robot; the multiplicity detection is said to be strong if it allows to
detect the exact number of robots on the same point.

The robots are silent: they have no means of direct communication of infor-
mation to other robots. Thus the only means of interaction between robots are
observations and movements: that is, communication is stigmergic.
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Each robot operates in Look-Compute-Move (LCM) cycles; in each cycle, it
observes its surroundings, it computes a destination, and it moves towards it.
Specifically:

(i) Look: The robot observes U . This operation is instantaneous and the result
is a snapshot indicating the positions of all robots within its radius of visi-
bility expressed in its own coordinate system.

(ii) Compute: The robot executes the algorithm (the same for all robots), using
the snapshot of the Look operation as input. The result of the computation
is a destination point.

(iii) Move: The robot moves towards the computed destination; if the destination
is the current location, the robot stays still, performing a null movement.

The sequence Look-Compute-Move forms an operational cycle of the robot. At
the end of a cycle, a robot may either start a new cycle or become inactive; in
the latter case, it does not perform any operation (“sleeps”) until it becomes
active again, and then starts a new cycle.

The robots are oblivious: at the end of a cycle, all obtained information
(observations, computations, and move) are erased. In other words, at the begin-
ning of a cycle, the robots have no memory of past actions and computa-
tions (“every time is the first time”), and the computation is based solely on
what determined in the current cycle. The importance of this property, some-
times called memoryless or stateless, comes from its link to reliability and self-
stabilization.

This concludes the description of the fundamental features of the OBLOT
model. Any system exhibiting these features (i.e., meeting these specifications)
is an OBLOT system. This definition does not impose any specific restriction
on several important component of a system: e.g., the activation schedule, the
synchronization between cycles of different robots, the mobility range, etc. The
range of possibilities, all still within the OBLOT model, are discussed in the
next subsections.

2.2 Temporal Features: Time, Activation and Synchronization

The temporal dimension is perhaps the most important, as any assumption made
on this regards greatly impact the computational capabilities of the robots.

Although time is easily defined in terms of an external observer, this notion
might generally not be available to the robots; even if each robot were to be
endowed with a local clock, the clocks might not sign the same value, nor run at
the same rate, nor be otherwise synchronized. The duration of a cycle, i.e. the
time spent by a robot computing and moving, might be different for different
cycles, and different for different robots. The delay between two successive cycles
of the same robot (i.e., the duration of inactivity), might not be the same, and
could be different for different robots.

Assumptions made on the last two aspects of the temporal dimension, the
activation schedule of the robots and of timing of the operations within their
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cycles, define specific instances of the general OBLOT model. The two most
important models, intensively and extensively studied in the literature, are
Async and Ssync.

Fig. 1. Ssync

In the synchronous model (Ssync) (originally called semi-synchronous), the
activations of the robots is logically divided into global rounds; in each round,
one or more robots are activated and obtain the same snapshot; based on that
snapshot, they compute and perform their move, ending their cycle by the next
round. Note that such a system is computationally equivalent to a synchronous
system in which the chosen robots are activated simultaneously and all oper-
ations are instantaneous. The choice of which robots are activated in a given
round is assumed to be made by the activation scheduler (or daemon) (Fig. 1).

An extreme case of activation scheduler in Ssync defines the fully-
synchronous (Fsync) model: all the robots are activated in every round; intro-
duced in [20], used e.g. in [10,13,21].

Another extreme case of daemon is the so-called centralized activation sched-
uler, which defines the sequential model (Sequential) where only one robot is
active at any time.

In all cases, in Ssync the activation scheduler is fair: for every robot r and
time t, there exists a time t′ ≥ t at which r is activated; that is, every robot is
activated infinitely often.
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Fig. 2. Async

In the asynchronous (Async) model, there is no common notion of time, each
robot is activated asynchronously and independently from the other robots. Fur-
thermore, the duration of each Compute, Move and Sleep are finite but otherwise
unpredictable. As a result, computations can be made based on totally obsolete
observations, taken arbitrarily far in the past. Also, robots can be seen while
moving, creating further inconsistencies in the robots’ understanding of the uni-
verse. Also in Async the activation scheduler is fair: for every robot r and time t,
there exists a time t′ ≥ t at which r is activated; that is, every robot is activated
infinitely often (Fig. 2).

Although the activation scheduler is fair both in Async and Ssync, between
two successive activations of the same robot r, the number of activations of
the other robots is possibly unbounded. A stronger requirement is that offered
by a k-bounded (or k-fair) scheduler: For every r ∈ R, between two successive
activations of r, every other robot has been activated at most k times [9]. The
bound k may be not known to the robots, in which case the daemon is called
just bounded. Note that, in Fsync, the scheduler is 1-bounded by definition.

An example of 2-bounded centralized scheduler is the slicing scheduler: start-
ing from time t = 0, after n successive rounds (a slice), all the robots in the
system have been activated exactly once [7,9]. A particular slicing daemon is
the classical round-robin scheduler: In each slice, all robots are activated always
in the same order.

2.3 Orientation Features

Each robot r has its own unit of length, and a local Cartesian coordinate system
defining the directions of the coordinate axes, together with their orientations.
This local coordinate system of Rd is self-centric, i.e. the origin is the position
of the robot.

The absence of any a-priori assumption on consistency of the local coordinate
systems is called Disorientation, in which case we say that the robots are
disoriented.

Depending on the level of (a-priori known) consistency among the local coor-
dinate systems, different levels of global geometric agreement can be identified.
The strongest form is GlobalConsistency: all robots agree on the direction and
the orientation of all axes; a weaker form is k-Axes: all robots agree on the
direction and orientation of k axes (1 ≤ k < d).
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An important factor in R
2 is Chirality: the robots agree on a cyclic orien-

tation (e.g., clockwise) of the plane.
Notice that, regardless of the level of global consistency of the local coordinate

systems, there might be no agreement among the robots on the unit of length.
However observe that, in the unit-disc model of limited visibility (i.e., when all
robots have the same visibility radius), the robots have a de facto agreement on
the unit of length.

2.4 Mobility Features

Mobility Scheduler
The actual movement of a mobile robot is controlled by an external mobility
scheduler. The scheduler decides how fast the robot moves toward its destination
point, and it may even interrupt its movement before the destination point is
reached.

In a Ssync system, the speed of the robot in a given Move is not important
as all movements terminate before the next global round starts; in Async, the
speed determines the duration of the Move operation of the robot in that cycle.

Regardless of the speed, a move may stop before the robot reaches its des-
tination, e.g. because of energy limit. In this regards, two main sub-models can
be defined:

– rigid (or unlimited) mobility: All robots always reach their destinations when
performing Move; this type of mobility is also called undisturbed-motion [2].

– fixed mobility: There exists a constant γ > 0 such that every robot perform-
ing Move will move exactly Min{dest, γ}, where dest is the distance to the
destination point. The quantity γ might not be known a priori to the robots.
Fixed mobility is usually assumed when working in Ssync.

– non-rigid mobility: The scheduler may stop a move before the robot reaches
its destination; the robot is not notified that an interruption has occurred (but
it may be able to infer it from its next observation). However, the distance
traveled in a move by r is not infinitesimally small (unless it brings the robot
to its destination): there exists an (arbitrarily small) constant δ > 0, such
that, if the destination is closer than δ, r will reach it; otherwise, 5 will move
towards it by at least δ. This guarantees, for example, that if a robot keeps
computing the same destination point, it will reach it in a finite number of
iterations; without this assumption, it would be impossible for r to ever reach
its destination, following a classical Zenonian argument. The quantity δ might
not be known to the robots.

Trajectories
In the standard model, robots move towards their destination in straight line
movement. A stronger assumption is for the robots to capable of moving along a
specified curve; in this variant, which we shall call guided movement, the result
of the Compute operation is not only the destination point but also the trajectory
to be followed. Note that the concepts of rigid, fixed and non-rigid mobility can
be extended to the variant when movement is guided.
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Collisions
Multiplicity can be accidentally created during the Move operation; indeed mov-
ing robot might non-intentionally be at the same place of other robots, moving
or stationary. More precisely, a robot r is said to collide with robot s at time t
if r(t) = s(t) and at time t, r is performing Move, and its destination is not r(t).
With respect to collisions, there are three main approches.

– immaterial collisions: Since robots are viewed as points, a moving robot
causing a collision proceeds in its movement unaware that the collision
occurred (e.g., [21]).

– fail-stop collisions: A moving robot stops moving when it collides with
another robot (e.g., [5]).

– intolerable collisions: Collisions are undesirable events (with possibly neg-
ative consequences), and thus to be avoided. Since the only times a robots
is aware of other robots is during Look, and while moving it cannot detect
the position of other robots, collision avoidance must be done algorithmically,
designing protocols that are collision-free in every feasible execution.

3 Weaker Variants: Opacity and Extent

In the standard model, the robots are viewed as points; i.e., they are dimension-
less. Furthermore, a snapshot contains the set of the positions of all the robots
within the visibility range. In other words, the visibility of a robot is consid-
ered to be unobstructed: if three robots r, s and z are collinear with s in the
middle, s does not prevent r from viewing z; i.e., the robots are transparent.
That is, in the standard model, the robots have neither extent (because they
are dimensionless) nor opacity (because they are transparent).

Three weaker models have been defined with respect to these two qualities:
extent and opacity.

3.1 Opaque Robots with No Extent

Even with robots with no extent, one can consider the case when the line of
sight of a robot is obstructed by the closest robot on that line; that is, they
are opaque. Specifically, two robots r1 and r2 within visibility range of each
other can see each other if and only if there is no other robot on the segment
r1r2. Clearly opacity restricts visibility; collisions are defined as in the standard
model. This weaker model has been considered e.g., in [3,15,17,18].

3.2 Opaque Robots with Extent

Opacity can be a natural consequence of robots that have a physical dimension;
that is, entities with an extent.

Opaque robots with a physical dimension, also called solid, are viewed as
opaque circular disks of a fixed diameter (hence they are are assumed to have a
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common unit distance). The distance between a robot and some point (or some
other robot) is defined as the distance from (or to) the centre of the corresponding
circular disks, and the perimeter of the disk is called contour.

The robots’ visibility is clearly affected by their opacity and extent. Specifi-
cally, a point p is visible by a robot r1 (or equivalently, r1 can see p) if p is within
the visibility range of r1 and if there is a point p1 on the contour of r1 such that
the straight segment p1p does not contain any point occupied by other robot.
Robot r1 can see another robot r2 if there is at least one point on the contour of
r2 that is visible by r1. Note that if a robot r1 can see robot r2, it can see some
non-zero arc of its bounding circle and thus it can always compute its centre.

In addition to restricted visibility, extent clearly restricts mobility because
robots with extent cannot cross each other. Collisions occur when two (or more)
robots touch. It is sometimes assumed that, when a robot collides with another,
its movement stops (fail-stop collision).

This much weaker model has been considered e.g., in [4,5].

3.3 Transparent Robots with Extent

Opacity does not need to be implied by the fact that robots have an extent.
In fact, it is possible that the snapshot contains the positions of all the robots
within visibility range even if they have an extent; e.g., the snapshot is provided
by a drone. In this model, the drawbacks due to the physical dimension of the
robots are all present; however, visibility is not affected. This model has been
considered e.g. in [1].

Notice that the models transparent with extent and opaque with no extent
are computationally orthogonal, and a solution in one model cannot generally
be transformed into a solution in the other.

4 Stronger Variants: Memory and Communication

In the standard model, robots are oblivious and silent, i.e., they have no memory
of past cycles and no explicit means of communication. Stronger variants of the
standard model have been studied in the literature, where little memory and
communication capabilities are provided by the presence of lights, introduced in
[6,7]. The variants described below are discussed in detail in Chap. 11.

4.1 Finite-State Robots F-state

In addition to the algorithm, each robot has a local working memory, or
workspace, used for computations and to store various information (e.g., regard-
ing the location of other robots) obtained during the cycles. In the standard
OBLOT model, this workspace is volatile and it is initialized to be empty at
every new activation. Consider now the situation when robots are equipped with
some persistent memory. In this case, part (or all) of the workspace is legacy:
unless explicitly erased by the robot, it will persist throughout the robot’s cycles.
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In this model, an important parameter is the size of the persistent workspace.
One extreme is the unbounded memory case, where no information is ever erased;
hence robots can remember all past computations and actions (e.g., see [19,21]).

On the opposite side is the case when the size of the persistent workspace
is constant, that is, is contains only a constant number of bits. In this case, the
model is called F-state (e.g., [8,12,14]).

In between these two extremes one may consider different sizes of the persis-
tent workspace: with f(n)-state we indicate robots with a persistent workspace
of size O(f(n)) bits.

4.2 LUMINOUS Robots

Robots are endowed with a persistent and externally visible state variable, called
visible light, that can assume values from a finite set of colors. The light can be
set in each cycle by the robot at the end of its Compute operation. It is externally
visible in the sense that its color at time t is visible to all robots in its visibility
radius that perform a Look operation at that time. It is persistent in the sense
that, while the robot is oblivious and forgets all information from previous cycles,
the variable is not automatically reset at the end of a cycle. The color a robot
sees is used as input during the computation. In other words, LUMINOUS
robots are finite-state robots where the state variable is visible to the other
robots within range during their Look phase, which means that this persistent
information can be used, not only to remember, but also to communicate. Also
in this case, we can generalize the concept to larger sets of colors by indicating
with f(n)-Luminous robots whose lights have O(f(n)) colors available.

Luminous robots have been studied, for example, in [7,12,16]; see also [11].

4.3 Finite-Communication Robots F-comm

In the F-comm model, robots are still endowed with an externally visible light
that can be set during the Compute operation and that persists through cycles,
unless erased or changed by the robots. However, the light of a robot is visible
only to the other robots within that are performing the Look operation. In other
words, when a robot is activated, it cannot see the current color of its light, but
it can reset it. In this model, the light variable cannot be used to remember
information from past activations, but it can be used as a communication tool.
With f(n)-comm we indicate robots whose external lights have O(f(n)) colors
available. F-comm robots have been studied, for example, in [12].

5 Germane Models

5.1 Robots in Discrete Spaces

The oblivious robots model has been employed also in discrete spaces, i.e., when
the spatial universe U in which the robots operate is a graph. Oblivious robots
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in graphs are discussed in Chap. 8 for the gathering problem, and in Chap. 9 for
the exploration problem.

Let G = (V,E) be an undirected connected simple graph where V is the set
of vertexes and E the set of edges, with |V | = n; E(x) be the edges incident to
x ∈ V . The vertexes are unlabeled (i.e., the graph is anonymous), while the edges
might or might not be labeled. If the graph is edge-labeled, let λx : E(x) → L be
an injective local labeling function that associates a label from a set L to each
edge incident on x.

Let λ = {λx : x ∈ V } be the global labeling function and let (G,λ) denote
the resulting edge-labeled graph. Let Ψ be the placement function describing
the position of the robots in the graph. Let (G,Ψ) (resp. (G,λ, Ψ)) denote the
graph (reps. edge-labeled graph) with the placement of the robots. More than
one robot could be on the same node; μ(v) denotes the number of robots present
in node v. The description of the graph, together with the indication of the exact
number of robots located on each vertex, is called a configuration and is denoted
by (G,μ).

The robots move from node to neighbouring node still operating in Look-
Compute-Move cycles. The Async, Ssync, Fsync models can be defined sim-
ilarly to the continuous space case, with some distinctions due to discreteness.
In particular, the Look operation provides a snapshot of the graph (or part of it
in case of limited visibility), showing the presence or absence of robots on the
nodes. The Move operation is considered instantaneous in all three models. In
Async the robots look in arbitrarily different moments and the time to com-
plete both Compute and Move operations is finite but unpredictable, in Fsync
all robots simultaneously perform each of the operations, while in Ssync in each
cycle a subset of the robots is active, and those robots simultaneously perform
each of the operations.

Like in the case of continuous spaces, the robots might have limited visibility
(i.e., see only up to a certain distance given in terms of number of hops), they
may have multiplicity detection capabilities and be able to distinguish nodes
containing more than one robots (often called towers). In this setting also local
multiplicity detection has been considered, where a robot can detect multiplicity
(or strong multiplicity) only on the node it resides.

5.2 Continuous Time Robots

In the continuous time model, all robots continuously observe and at the same
time measure and adjust their movement paths. This causes the trajectories
of the robots, that are assumed to have some constant maximum movement
speed, to become (continuous) curves. Robots might be able to change their
speed and movement direction, resulting in trajectories that are continuous but
not necessarily differentiable; usually, however, trajectories are restricted to be
right-differentiable.

Continuous time robots are discussed in Chap. 13 for the gathering problem,
in Chap. 14 for Search and Evacuation, and in Chap. 15 for patrolling problems.
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6 Fault Tolerance

Robots are typically assumed to be correct, that is to operate without faults.
More realistically, failures may occur. The robots’ faults that have been inves-
tigated fall in two categories: crash faults (i.e. a faulty robot stops executing
its cycle forever) and Byzantine faults (i.e. a faulty robot may exhibit arbitrary
behavior and movement). Of course, the Byzantine fault model encompasses the
crash fault model, and is thus harder to address. Chapter 10 is fully devoted to
fault-tolerant robots.
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Abstract. This chapter introduces and discusses the existing compu-
tational models employed in the literature for studying the feasibility
and complexity of computations by mobile agents: computational mobile
entities that operate and move in discrete spaces, modeled as graphs.

While almost all models share some fundamental features, making
basic common assumptions, their fundamental differences depend on the
assumptions made on the capabilities of the agents, in particular on the
means of interaction with the environment and of inter-agent commu-
nication. Clearly, there are many variations of the models, depending
on the assumed level of synchrony, anonymity, persistent memory, and
topological knowledge. This Chapter aims to provide an overview of these
models and assumptions.

Keywords: Mobile agents · Graph · Communication
Coordination · Synchronization · Whiteboards · Tokens
Face-to-Face · Wireless · Memory

1 Introduction

Distributed computing by mobile computational entities operating in a discrete
space, i.e. a graph, is a research field with a long research history, antecedent
the one of mobile entities in continuous spaces.

Its original inspiration derives from the research on mobile agents (MA), an
area extensively studied for a long time by investigators especially in the fields of
Artificial Intelligence and of Software Engineering. Indeed, MA offer a simple and
natural way to describe systems where mobility is inherent, and an explicit and
direct way to model the entities of those systems, such as mobile code, software
agents, viruses, web crawlers, etc. Hence their success as a programming and
software design paradigm for a variety of networked systems (e.g., [13,57,61,69]).

From a computational point of view, the settings of autonomous mobile enti-
ties operating in graphs are an immediate and natural extension of the tradi-
tional message-passing network settings studied in distributed computing, as
first observed by David Wall [68] in his pioneering vision of messages as the
active agents of the distributed computation.
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This setting can be described as a collection of autonomous mobile com-
putational entities, called agents, operating in a graph G, called netscape. The
agents have limited computing capabilities and private storage, can move from
node to neighboring node in the graph, and perform computations at each node,
according to a predefined set of behavioral rules called protocol, the same for
all agents. They may be synchronous, i.e acting simultaneously at each step, or
they may be asynchronous, in the sense that every action they perform (com-
puting, moving, etc.) takes a finite but otherwise unpredictable amount of time
and there is no synchronization between the actions of different agents. The
communication and interaction between agents can be explicit and direct (e.g.,
wireless) although possibly limited in range (e.g., face-to-face); explicit but indi-
rect, through shared memory areas provided by each node (i.e., whiteboard); or
implicit, through the positioning of identical pebbles (e.g., tokens) that can be
carried, dropped and picked up by the agents.

The algorithmic focus has been on how to develop efficient protocols that will
allow a team of such identical simple agents to cooperatively perform (possibly
complex) tasks. Examples of basic tasks are Search, Traversal, Exploration,
Rendezvous, Election. The coordination of the agents necessary to perform
these tasks is not necessarily simple or easy to achieve. In fact, the computational
problems related to these operations are definitely non trivial, and a great deal
of theoretical research is devoted to the study of conditions for the solvability of
these problems and to the discovery of efficient algorithmic solutions; e.g., see
[1,2,7–9,31,36,37,41,43].

The main research concern has been on determining what tasks can be per-
formed by such entities, under what conditions, and at what cost. In particular, a
central question is to determine what minimal hypotheses allow a given problem
to be solved.

Different computational models exist, each based on different assumptions
about the capabilities of the agents, mainly with respect to communication and
synchronization. Aim of this Chapter is to provide an overview of these models.
We will first start with the fundamental features, that is, the basic assumptions
common to (almost) all models.

2 Fundamental Features

The setting is a simple, finite, connected undirected1 graph G = (V,E), where
V is the set of nodes (or sites) and E ⊆ V × V is the set of edges (or links).

The nodes of G may or may not have distinguished names or labels; For
generality, we assume the nodes to be anonymous (i.e. without labels) unless
otherwise specified. The incident links at any node are however locally labeled,
providing a total order on the set of incident links. Let V (u) = {v ∈ V : (u, v) ∈
E} denote the set of neighbours of u; E(u) denote the set of edges incident to
node u ∈ V ; and let λu : E(u) → L be an injective function that associates to
1 Although directed graphs may be more natural for certain applications, the problems

of agents moving in directed graphs are largely unexplored.



Moving and Computing Models: Agents 17

each incident edge a distinct label, sometimes called port number, from a set of
labels L. Note that for each edge e = (u, v) there are two associated labels, λu(e)
and λv(e), which are possibly different. The set λ = {λu : u ∈ V } constitutes
the labeling of G, and by (G,λ) we shall denote the corresponding edge-labeled
graph.

The edge-labeled graph (G,λ), also called graph world or netscape, defines
the discrete spacial universe under consideration.

Operating in (G,λ), is a finite set A = {a1, ..., ak} of autonomous mobile
computational entities called agents. The agents have computing capabilities
and bounded storage, execute the same protocol, and can move from node to
neighbouring node in G; the initial location of an agent is usually called home-
base. Each agent has a personal persistent memory (bounded number of bits)
which defines the state of the agent (c.f. Sect. 4.2).

The lifetime of an agent a ∈ A is a sequence of activity stages, possibly
separated by periods of inactivity.

At the beginning of an activity stage, an agent a ∈ A is at a node u ∈ V ;
it observes its surrounding and interacts with it. The nature of the observation
and interaction differs depending on the specific model, and will be discussed
later; in any case, the agent can see the outgoing label λu(u, v) of each edge
(u, v) ∈ E(u) incident to u.

The agent then executes a protocol (the same for all agents) to determine
what to do; in particular whether or not it will move and, if so, to which neigh-
boring node v ∈ V (u) (by specifying λu(u, v)). If the decision is not to move,
described as a move to a null port, the current activity stage terminates, and the
agent may become inactive. If the decision is to move (e.g., to v ∈ V (u)) a per-
forms the move (e.g., the system transports a to the node at the other end of the
specified edge). In general, upon arriving to v, the agent has available the label
λv(v, u) of the edge from which it arrived; this allows the agent to backtrack if
needed. Once the move is completed, the current activity stage terminates, and
the agent may become inactive.

When the next activity stage starts, the agent is reactivated in the same state
in which it terminated the previous stage; in other words, the personal memory
of the agent is persistent from stage to stage.

In general it is assumed that the agents have no prior knowledge of the graph
G as well as the parameters |V | = n, |E| = m, and k. In some cases, the agents
may have partial knowledge of the network (c.f. Sect. 4.4).

There are several cost measures used to express the complexity of a problem
and the efficiency of a solution protocol. The main ones are (i) the team size: the
number of agents employed to solve the problem; and (ii) the number of moves
made by the agents in total to solve the problem. For synchronous environments
(i.e., under the assumption of a synchronous scheduler, discussed in Sect. 4.1),
another important one is time: the amount of time elapsed until the problem
is solved. Other important measures are those related to memory and to the
communication and interaction mechanisms, which will be discussed next.
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3 Communication and Interaction

The communication and interaction between mobile agents, referred to as coor-
dination in the MA community [14], is perhaps the most crucial element for
computing in such distributed environments.

There are several models of communication and interaction between mobile
agents that have been studied in the distributed computing literature. They can
be classified depending on the temporal and spatial requirements imposed on
the sender (the “writer”) and the receiver (the “reader”) of the information, and
on whether or not the communication is explicit.

Consider an agent a ∈ A communicating some information I at node v ∈ V
at time t. With an abuse of the MA terminology, that communication is said to
be temporally coupled (T ) if it can only be received at time t, and spatially coupled
(S) if it can only be received at node v. Hence, there are four possible categories:
ST , ST̄ , S̄T , S̄T̄ , where X̄ indicates absence of requirement X ∈ {S, T}. The
communication is said to be explicit if the content of the communication is
precisely I, implicit otherwise.

The main models of communication and interaction studied in the literature
can be categorized using these four classes; see Fig. 1, where the darker boxes
indicate models in which communication is implicit.

Fig. 1. Communication model classes.

3.1 S̄T̄ : Globalspace

A model where communication is fully uncoupled both spatially and temporally
is the powerful Globalspace model. In this model, there is a global shared
memory area, called globalspace, with concurrent-read and exclusive-write, that
every agent can access from any node; reading the globalspace is an unlocked
operation, while writing is in fair mutual exclusion. In MA, this model corre-
sponds to the associative blackboard of Linda-like models [14]. The interaction
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between agents is only through the globalspace; in particular, agents are not
visible to each other even when at the same node.

Summarizing, in the Globalspace model, each agent is capable of explicit
communication with all other agents, regardless of their location and without
need of synchronization. This overly powerful communication model can be used
to show impossibility results, i.e. to prove that certain distributed tasks are
impossible even under full exchange of information.

3.2 ST̄ : Whiteboard

A spatially coupled (but temporally uncoupled) explicit form of interaction and
communication is offered by the Whiteboard model. In this model, each node
v ∈ V of the network, also called host, provides a local shared memory area,
called whiteboard, where any agent visiting v can read and write (and erase)
information; access to a whiteboard is restricted by fair mutual exclusion so
that at most one agent can access the whiteboard of a node at the same time,
and any requesting agent will be granted access within finite time.

In this model, the observation and interaction by agents is only through the
whiteboards; in particular, agents are not visible to each other even when at
the same node. Starting an activity stage, agent a ∈ A at node v ∈ V asks for
access to the whiteboard of node v. On obtaining access, it reads the contents of
the whiteboard; based on this information (and its own state), it performs com-
putations according to the protocol (the same for all agents), possibly updates
the content of the whiteboard (by erasing and writing), and determines its des-
tination (possibly the null port). Finally the agent relinquishes access to the
whiteboard and performs its (possibly null) move.

If the agents are anonymous, the author(s) of the information written on the
whiteboard might not be identifiable. In general, no limitations are assumed on
the size of the whiteboards; however, reducing the required size for whiteboards
is one of the optimization issues for the design of efficient algorithms in this
model.

This model has been extensively used in the literature and solutions devel-
oped for a variety of problems (e.g., see [9,18,31,32,43,67]).

Notice that, under the Whiteboard model, the problems of Election and
Rendezvous are computationally equivalent; that is, any solution protocol for
one can be easily modified to solve the other. If a leader is elected, the leader
can easily make all the other agents gather in a node of its choice, say node
v, simply by writing in the whiteboard of each node a sequence of edge-labels
corresponding to a path to the node v. Conversely, if the agents gather in a node,
a leader can easily be elected by exploiting the mutual-exclusion access to the
whiteboard of that node; e.g., the first agent to access it becomes the leader.
Hence, the answer to any computational question for either problem is valid for
both.

It has also been shown [19,33] that a system of mobile agents in a graph
(G,λ) under the Whiteboard model can solve the same set of problems as
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a traditional message-passing distributed network having the same underlying
topology as the graph (G,λ).

3.3 ST̄ (Implicit): T okens

The T oken model is one of the oldest ones, introduced for graph explorations
and rendezvous search [11,12]. Although spatially coupled and temporally uncou-
pled like Whiteboard, in this model communication is implicit. It is achieved
by means of identical tokens (sometimes called pebbles) that can be held by the
agents, placed on nodes, and (in the case of removable tokens) picked-up from
nodes.

In this model, the observation and interaction by agents is only through the
tokens. In particular, agents are not visible to each other even when at the same
node, while tokens placed on a node are visible to the agents at that node,
once they are given access. Initially, the tokens are held by (some of) the agents
and/or placed at (some of) the nodes; it is usually assumed that initially an
agent has only a small constant number of tokens (typically one).

Starting an activity stage, agent a ∈ A at node v ∈ V asks for access to
the tokens at node v; access is granted in fair mutual exclusion. On obtaining
access, it counts the number of tokens in v. Based on this information (and its
own state), it performs computations according to the protocol (the same for all
agents) and decides whether (1) to place a subset of its own tokens at the node,
(2) to pick up a subset of the tokens from the node (in the case of removable
tokens), or (3) do nothing; it then determines its destination (possibly the null
port). Finally the agent relinquishes access to the token area and performs its
(possibly null) move. This model has been used e.g. in [4,12,42,49,62].

A more restrictive model is that of Uunmovable T oken in which Action
(2) is not allowed: once a token is placed at a node, it cannot be picked up (and
thus moved) by any agent (e.g. [17]).

A more powerful model is the Enhanced T oken model introduced in [42].
This model allows the agent to place tokens on a node to mark specific ports
(i.e. specific incident edges) of the node; an agent having access to the tokens
at node v is then able to see how many tokens are placed in correspondence of
each port of v. Note that h tokens in the Enhanced T oken model correspond
to at most hΔ tokens in the T oken model, where Δ is the maximum degree
in G.

There are some obvious interesting computational relationships between the
T oken and Whiteboard models. In fact, any protocol which uses at most τ
tokens in T oken, can be directly implemented in Whiteboard using white-
boards of size at most �log τ� bits. This measure τ , called the token load, is
clearly important in that it determines the usability of token-protocols in the
whiteboard model, and provides a simple mechanism to transform complexity
results from the token setting to the whiteboard one. Importantly, the transfor-
mation preserves also other costs (such as total number of moves by agents and
time). Note that an automatic transformation exists also in the other direction:
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any solution that uses whiteboards of size s bits can be implemented with a
token load τ ≤ 2sn.

3.4 S̄T : Wireless

An explicit form of interaction and communication that is spatially uncoupled
but temporally coupled is offered by the Wireless model.

In this model, agents are not visible to each other even when at the same node.
Each agent is capable of explicit and direct communication with all other agents.
More precisely, every agent is capable of transmitting information; whenever an
agent transmits, all other agents active at that time receive the information
regardless of their location in the graph G. An agent, not active at the time of
the transmission, will not receive the information.

To guarantee that an agent is active when a transmission takes place, tempo-
ral coupling (i.e., synchronization) is required. This model is usually associated
with the assumption of a fully synchronous scheduler (discussed later), so that
all agents are active whenever a transmission takes place. In such a case, each
agent has possibly full information about the actions taken by other agents dur-
ing the execution of a distributed algorithm. This abstraction helps to separate
the problem of communication from the problem of solving the actual tasks such
as Searching, Gathering, Scattering or Pattern Formation.

In the model it is assumed that more than one transmission can take place
at the same time, and that each active agent will receive all the messages. This
model has been used e.g. in [30,54].

A weaker form of this model is when reception of a transmission by an active
agent is limited to those who are not transmitting at that time. In other words,
an active agent can either transmit or listen but not both. An even weaker form of
the model considers the effect of collisions (i.e. multiple simultaneous transmis-
sions) to all active agents (not only the transmitting ones); different sub-models
are considered depending on the assumed outcome on reception after a collision
(e.g., no information, the information of the closest transmitter, information of
an arbitrary transmitter, etc.).

A different type of restriction is the one described by the l −Hop Wireless
model, 1 ≤ l ≤ diam(G), in which the transmission range of the agents is limited
to the l-neighbourhood of the node they are currently in, where diam(G) is the
diameter of G. Clearly, when l ≥ diam(G), the two models coincide. Obviously
weaker forms of this model can be defined by considering collisions as we did for
the general model.

3.5 S̄T (Implicit): Beeping

The most recent model of inter-agent communication and coordination is the
Beeping model, introduced in [22]; like in Wireless, the communication is
spatially uncoupled and temporally coupled; however, unlike in Wireless, com-
munication is implicit and thus severely limited.
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In this model, agents are not visible to each other even when at the same node.
Every agent is capable of transmitting a simple signal, called beep. Whenever a
beep is transmitted, every agent active at that time hears a beep regardless
of the current location, unless it is also transmitting a beep; that is, an active
agent can either transmit or listen but not both. Agents that are not active at
the time of a transmission will not hear it. This model is usually associated with
the assumption of a fully synchronous scheduler (discussed in Sect. 4.1), so that
all agents are active whenever a transmission takes place. This model has been
used e.g. in [23,46,53].

Clearly one can define the restricted model l − Hop Beeping in a way anal-
ogous to what done in the l − Hop Wireless model.

3.6 ST : Face-to-Face

The simplest model of communication is the direct and explicit exchange of
information between agents at the same node at the same time. Both spatially
and temporally coupled, this model is called Face-to-Face (F2F).

In this model, when at a node v, an agent can see the other agents present
at v, it can distinguish one from another (even if they are anonymous), and
communicate with each one of them. Communication happens in a pair-wise
manner, with each agent in each pair reading the content of the memory of the
other agent.

This model is usually associated with the assumption of a fully synchronous
scheduler (discussed in Sect. 4.1), so that the activity stages of all agents take
place simultaneously. Starting an activity stage, each agent at node v ∈ V com-
municates with all other agents at node v. Each agent then executes the protocol
(the same for all agents) to determine, based on the information received, from
which port (possibly null) to leave v. Finally, they all execute their (possibly
null) move. This model has been used e.g. in [37,40].

Computationally, Face-to-Face is a very weak model for communication
between agents. Being the model both spatially and temporally coupled, to
communicate two agents need to be at the same node at the same time; this
means that the two agents will never be able to direcly exchange information
unless they rendezvous at a node. Since Rendezvous is in itself a difficult and
sometime unsolvable problem, many tasks become impossible in this model of
communication.

4 Fundamental Dimensions

4.1 Time

Although time is easily defined in terms of an external observer, this notion
might generally not be available to the agents; even if each agent were to be
endowed with a local clock, the clocks might not sign the same value, nor run at
the same rate, nor be otherwise synchronized. The duration of an activity stage,
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i.e. the time spent by a agent observing and interacting with its surrounding,
computing, and moving, might be different for different stages, and different for
different agents. The delay between two successive stages of the same agent (i.e.,
the duration of inactivity), might not be the same, and could be different for
different agents.

Assumptions made on the last two aspects of the temporal dimension, the
activation schedule of the agents and the duration of the operations within their
stages, define specific instances, or models, of the computational universe in
which the agents operate. The two most important models, intensively and exten-
sively studied in the literature, are Async and Ssync.

In the semi-synchronous (or simply synchronous) model (Ssync), time is
logically divided into global rounds; in each round, some agents are activated
and perform their activities (interact with the environment, compute and move),
ending them by the end of the round; the other agents are inactive for the entire
round. The choice of which agents are activated in a given round is made by an
adversarial activation scheduler (or daemon), which is however assumed to be
fair: for every agent a ∈ A and time t, there exists a time t′ ≥ t at which a is
activated; that is, every agent is activated infinitely often.

An extreme case of activation scheduler in Ssync defines the fully-
synchronous (Fsync) model: all the agents are activated in every round. Another
extreme case of daemon is the so-called centralized activation scheduler, which
defines the sequential model (Sequential) where only one agent is active in
each round.

In the asynchronous (Async) model, there is no common notion of time,
each agent is activated asynchronously and independently from the other agents.
Furthermore, the duration of each operation is finite but otherwise unpredictable.
As a result, computations can be made based on totally obsolete observations,
taken arbitrarily far in the past. Also in Async the activation scheduler is fair:
for every agent a and time t, there exists a time t′ ≥ t at which r is activated;
that is, every agent is activated infinitely often.

Although the activation scheduler is fair both in Async and Ssync, between
two successive activations of the same agent a, the number of activations of the
other agents is possibly unbounded. A stronger requirement rs that offered by
a p-bounded (or p-fair) scheduler: For every a ∈ A, between two successive
activations of a, every other agent has been activated at most p times. Note
that, in Fsync, the scheduler is 1-bounded by definition.

4.2 Memory

The computational capabilities of the agents and the solvability of tasks depend
on the amount of persistent memory (bits of information) available to the agents.
By persistent we mean that the information the agent carries when moving from
one node to another is preserved during the inactivity periods (i.e., it is the same
at the end of a stage and at the beginning of the next). This does not include the
working memory used by the agent when performing computations at a node for
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which there are, in general, no restrictions. An optimization issue is minimizing
the amount of persistent memory used by the agent.

4.2.1 Finite-State
A finite-state mobile agent has O(1) bits of persistent memory i.e. the amount
of memory is a constant independent of the size of the problem (the parameters
n, m, k and Δ); e.g., see [10,17,29,62]. There are several limitations with finite-
state agents. Note that such an agent cannot identify a node, even in a labelled
graph (since any unique identifiers assigned to nodes must have O(log n) bits).
Moreover, it is known that any such agent (or any constant-size team of such
agents) cannot explore an arbitrary graph of degree 3 or more [55,66]. Finite-
state agents can navigate only in special topologies such as ring networks, trees,
complete graphs and other specific topologies. A finite-state agent equipped with
a few tokens can explore a larger set of graphs including e.g. unoriented grids
and tori.

A special case of the finite-state agent is the oblivious agent which has zero
persistent memory c.f. Chaps. 8 and 9.

4.2.2 Bounded
A bounded memory agent has an amount of persistent memory either logarithmic
(i.e. O(log n)) or polynomial (i.e. O(f(n)) for some polynomial function f) in the
size of the graph. The former is called log-Bounded, while the latter is called poly-
Bounded. Note that any agent having Ω(log n) memory can explore all graphs
of size n with termination, even if the nodes of the graph are unlabelled and the
agents have no means of marking the nodes. Thus many distributed tasks can be
performed by log-bounded agents, given sufficient time. However, there is often
a trade-off between time complexity and the memory complexity of a problem,
so poly-bounded agents can often perform a task much faster than log-bounded
agents. In particular a poly-bounded agent can store complete information of the
graph G in its memory. In particular, this allows such an agent to solve the prob-
lem of Map-Construction—to explore and build a map of an unknown graph.
Most results concerning mobile agents assume poly-bounded agents, unless oth-
erwise specified.

4.2.3 Unbounded
The most powerful agent in terms of memory is the Unbounded memory agent,
which does not have any limits of the amount of information it can store in its
memory. Such agents are mainly used for proving impossibility results, i.e to
show that certain tasks can not be solved irrespective of the amount of mem-
ory available to an agent. Unbounded memory agents are also used for solving
distributed tasks in infinite graphs, see e.g. [28].
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4.3 Visibility

4.3.1 Local Visibility
Mobile agents are generally assumed to have only local visibility of the graph
structure; that is, an agent is only aware of the port numbers, and hence the
degree, of the node where it currently is. Depending on the amount of persistent
memory, the agent can keep some knowledge of the nodes and edges that it has
visited so far; clearly this knowledge may not be sufficient for the agent to build
a coherent image of the subgraph that has visited.

4.3.2 q-hop Visibility
In some cases, the mobile agent may have a larger visibility of the graph structure
allowing it to see the subgraph containing all nodes at a distance of at most k
from the current node, for some small constant integer q ≥ 1. This model is
called q-hop visibility and studied e.g. in [10,29,59]. It was recently shown [20]
agents with 1-hop visibility are more powerful than agents with local visibility
for the tasks of Exploration and Map Construction in unlabelled graphs. Note
that the visibility range q here, is a constant independent of the size or diameter
of the graph.

At the other extreme, when the visibility range is as large as the diame-
ter of the graph, the agents are said to have global visibility. This feature has
been assumed, for example in the “Robots in Graphs” model studied in Chaps. 8
and 9.

4.4 Knowledge

Some tasks require the mobile agents to have some prior knowledge about its
environment. For example, it is well known that visiting all the nodes of an
unknown and unlabelled graph is impossible without some knowledge about the
size of the graph, under the face-to-face model of communication. We list below
some types of knowledge that may be provided to the agent as input in order to
facilitate its task.

– n (number of nodes of G): Each agent is provided as input the value n of
the number of nodes in the graph. Sometimes, the exact value of N may not
be needed and instead the agent may be provided with an upper-bound N
on the number of nodes in the graph.

– m (number of edges of G): Each agent is provided as input the value of M ,
the number of edges in the graph. This is sometimes equivalent to knowing
the number of nodes of the graph (e.g. ring or tree). In other cases, this
information can be used to deduce the value of n during exploration. Note
that the value of m+1 is an upper bound on the value of n for any connected
graph.

– k (number of agents): Each agent is provided as input the value n, the
total number of agents. This knowledge is particularly useful for tasks such
as gathering all agents at a node, or scattering the agents uniformly in a given
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space. When the homebases of agents are marked, the knowledge of k can be
used to deduce the size n of the graph. However, when the agents are not
allowed to mark their homebases (e.g. under the F2F model), the knowledge
of k is less powerful than the knowledge of n.

– Topology of G: In some cases the agents may be provided with information
about the topology of G. Using this information, the agents may execute
distinct algorithms for different families of graphs, e.g. trees, grids, rings,
hypercubes etc.

– Sense of direction: In many cases the agents do not need information about
the complete topology of the graph; instead it is sufficient for the agents to
have a sense of direction allowing it to navigate in the graph. As an example,
in an oriented grid graph where the outgoing edges at each node are marked
consistently as North, East, South and West, an agent following any given
sequence of edges can determine whether it will arrive at an already visited
node or a new one. For an arbitrary graph, this concept can be generalized
by labelling the edges appropriately and then providing the agents with a
“Sense of direction” encoding that maps any sequence of edge labels to a
unique integer such that the following property holds: The encoding for any
two sequences of edge labels are equal if and only if the two corresponding
paths from the homebase of the agent lead to the same node. When the
agents are provided with such an encoding function, we say that the agents
have Sense of Direction (SoD) information [50,52].

– Map of the graph: We say that an agent is provided with a map of the
graph, if the input to the agent is a copy of the underlying graph, each edge
is labelled with the port-numberings on its end-points, and where the node
corresponding to the current location of the agent is specially marked.

– Full Knowledge: We say that the agents have full knowledge if each agent
is provided with a map of the graph as well as the starting location of all
the agents present in the graph. With this knowledge, each agents can inde-
pendently compute the optimal solution strategy (if it exists) to any given
distributed task, without the need to move from its starting location. This
corresponds to executing a centralized algorithm for precomputing the strat-
egy of each agent.

In general, an algorithm to solve a distributed task must correctly solve
the problem in any graph of any size. Such an algorithm is said to work for
arbitrary topology. On the other hand, if an algorithm works for a specific family
of graphs, then we say that the algorithms works for fixed topology and for such
an algorithm, the knowledge of topology is the usual assumption.

4.4.1 Quantitative Model for Knowledge
Instead of providing knowledge as input to the mobile agent, another possibility
is to provide knowledge in an online fashion as and when needed by the agent.
Several research investigation on mobile agents have considered the so-called
Oracle model (e.g., see [56,64]). Under this model, a mobile agent can ask ques-
tions to an “oracle” which has full knowledge about the environment as well
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as the current locations of the the agents. Typically the questions must have a
“YES -or- NO” answer. The optimization issue is to minimize the amount of
information (in bits) needed by any agent during the execution of an algorithm,
assuming a one-bit answer to each question asked by the agent.

5 Security and Fault Tolerance

In systems supporting mobile agents, security is the most pressing concern and
possibly the most difficult to address. Among the severe security threats faced
in these systems, two are particularly troublesome. The first is the threat to
the network caused by harmful mobile agents (e.g., viruses); this problem is
particularly acute in unregulated noncooperative settings such as the Internet.
The second is the threat to the agents posed by harmful network components,
hosts or links; this problem exists also in environments with regulated access
and where agents cooperate toward common goals (e.g., sharing of resources
or distribution of a computation on the grid); in fact, a local (hardware or
software) failure might render a component harmful. In the context of distributed
computing, security problems of both types have been considered and studied.

5.1 Dangerous Mobile Agents

Dangerous agents are typically extraneous to the system, e.g. intruders or viruses
entering the system from outside. On the other hand, even internal agents, which
are by definition cooperative, might create problems due to failures.

5.1.1 External Agents: Intruders and Viruses
Consider the presence of an external harmful mobile agent in the system. A type
of harmful agents that has been well investigated is that of a mobile virus that
infects any visited network site. In this case, the crucial task is clearly to decon-
taminate the infected network; this task, called Network Decontamination is to
be carried out by a team of anti-viral system agents (the cleaners), able to decon-
taminate visited sites, avoiding any recontamination of decontaminated areas.
This problem is equivalent to the one of Intruder Capture [7], and is related
to the classical problem known as Graph Search (e.g., see [63,65]), which is in
turn closely related to standard graph parameters. A detailed description of this
problem and the existing solutions can be found in Chap. 19.

The intruders considered in the above results do not cause any direct harm
or affect in any way the functioning of the mobile agents. A more powerful
adversarial entity, simply called the malicious agent, was considered recently
[34,35] in the context of the Gathering problem. The malicious agent prevents
access to the node that it occupies, any mobile agent that attempts to move
to the same node receives a failure notification. Further, the malicious agent
is assumed to move arbitrarily fast and has full knowledge of the graph, the
positions of all the agents and even the algorithm followed by the mobile agents.
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Thus, any single mobile agent can be blocked forever by the malicious agent.
However, a team of multiple mobile agents may be able to defeat the malicious
agent by surrounding it, and thus bypass it. The connectivity of the graph is
important in this context, since the malicious agent can block any articulation
point in a graph, potentially dividing the graph into disconnected components.

5.1.2 Internal Agents: Crashes and Byzantine Faults
System agents, also called internal agents, are typically assumed to be correct,
that is to operate without faults. More realistically, failures may occur, leading
some internal agents to behave in a possibly harmful way with respect to the
execution of the common protocol.

The agents’ faults that have been investigated fall in two categories: crash
faults (i.e. a faulty agent stops executing its cycle forever) and Byzantine faults
(i.e. a faulty agent may exhibit arbitrary behavior and movement). Of course, the
Byzantine fault model encompasses the crash fault model, and is thus harder to
address. When agents have unique identities, weak byzantine agents may not lie
about their identities, while strong Byzantine agents may assume fake identities.

Agent crashes in graphs were studied in [24,26,33], and Byzantine agents
have been studied in [25,40].

5.2 Dangerous Graphs

The term dangerous graph is usually used in reference to networks where there
are (possibly several) harmful components, called black holes and black edges.
These components, as well as the related harmful presence of a black virus, are
described next. The problems and solutions related to this topic are treated in
Chap. 18.

5.2.1 Black Holes and Edges
A severe harmful component is a black hole, a node that disposes of any incoming
agent, leaving no observable trace of its destruction (see e.g. [27,43–45]). The
task, called BlackHoleSearch is for a team of system agents to unambiguously
determine and report the location of the black hole within finite time. The task is
clearly dangerous for the agents, as any agent entering the black hole is destroyed
without trace. The research concern is to determine under what conditions and
at what cost mobile agents can successfully accomplish this task.

Similarly harmful components are the black edges, links that dispose of any
agent traversing them, leaving no observable trace of the destruction [18].

5.2.2 Black Virus
The fact that a node is black hole can be seen as of the presence at that node
of a harmful process disposing of the incoming agents; such a process is static,
i.e. it does not move from the node where it resides. A harmful process that
has some of the destructive aspects of a black holes and some of the mobility of
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an intruder is the black virus [15]. Like a black hole, a black virus disposes of
the system agents arriving at the note; when such an event occurs, the process
migrates to all neighboring nodes installing itself there (unless a system agent is
already there). The migration consists of the original black virus sending clones
of itself along all incident edges and then becoming inactive. The task, called
BlackVirusDecontamination is for a team of system agents to remove all black
viruses from the network.

5.2.3 Other Dangerous Nodes
While black holes are extremely dangerous nodes that always destroy any agent
that enters it, there are less malicious but still faulty nodes. A gray hole is a
dangerous node that may or may not destroy an agent entering this node [3,6].
Such a node acts sometimes as a black hole and sometimes acts as a normal
node, which makes it difficult to locate it. The gray hole fault may also change
the contents of the whiteboard of the node after an agent has successfully left
the node. Another less dangerous fault is the Repairable hole [21] which acts like
a black hole until an agent visits this node. The first agent visiting such a node
is destroyed after repairing the fault. On any subsequent visits the node acts
like a fault-free node. Naturally, repairable holes are easier to locate than black
holes.

6 Agents in Other Discrete Spaces

6.1 Agents in Infinite Graphs

Most results on mobile agents assume that the agents are moving in a finite
graph.

There are also some results on infinite graphs [28], in particular infinite lines
and infinite grids of finite dimensions [5]. Some tasks on infinite graphs, such as
Exploration and Gathering, require the agents to explore a finite region around
their homebases. For instance, to solve the rendezvous of two agents which are a
distance D apart, each agent may need to visit nodes at most distance D from
its starting location.

A large body of research on agents in infinite graphs is constituted by the
investigations on the geometric Amoebot model, discussed in Chap. 22: the
entities (called particles) are finite-state machines communicating in the 1−Hop
Wireless model, operating and moving in the infinite graph of the hexagonal
tasselation of the Euclidean plane.

For solving tasks on infinite graphs, the complexity is clearly measured in
terms of the finite parameters of the problems, e.g. maximum degree of the
graph, distance between agents, number of agents etc.

6.2 Agents in Dynamic Graphs

Mobile agents have been recently studied also when they operate on dynamic
graphs; that is, on graphs whose structure varies over time. Various models



30 S. Das and N. Santoro

have been defined to describe dynamic graphs (time-varying graphs, evolving
graphs, temporal graphs, etc.) each with a slightly different focus, and each
using different terminology. In the following we define the most general one,
that encompasses most of the others [16].

A time-varying graph (TVG) is defined as a quintuple G = (V,E, T , ρ, ζ),
where V is a finite set of nodes; E ⊆ V × V is a finite set edges, T ⊆ T is the
time-span of the graph (or lifetime of the system), and the temporal domain T

is generally assumed to be N for discrete-time systems or R
+ for continuous-

time systems; ρ : E × T → {0, 1} is the edge presence function, which indicates
whether a given edge is available at a given time; ζ : E × T → T, is the latency
function, which indicates the time it takes for an agent to cross a given edge if
starting at a given time. The footprint of G is a static graph composed by the
union of all nodes and edges ever appearing during the lifetime T.

Typically, the study of mobile agents in dynamic graphs has considered fully
synchronous or semi-synchronous activation schedules; in these cases, time is
discrete (i.e., T = N), the agents operate at discrete rounds, and ζ is constant
(usually ζ = 1). Under these assumptions, it is common to view the time-varying
graph as a sequence of static graphs G1, G2, . . ., called Evolving Graph, where
Gt corresponds to the static snapshot of G at time t [48,58].

Problems studied in dynamic graphs are, for example, Exploration and
Gathering, for which solutions under particular restrictions on the graph’s
connectivity and on its footprint are made. Solutions have been proposed for
decentralized settings (e.g., see [38,39,51]), as well for centralized ones (e.g., see
[47,60]). Chapter 20 is devoted to this topic and contains details on the model,
as well as on the existing results.

References

1. Albers, S., Henzinger, M.: Exploring unknown environments. In: Proceedings of
29th ACM Symposium on Theory of Computing (STOC), pp. 416–425 (1997)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Chapman &
Hall, Kluwer (2003)
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Abstract. The Pattern Formation problem is one of the most impor-
tant coordination problem for robotic systems. Initially the entities are
in arbitrary positions; within finite time they must arrange themselves
in the space so to form a pattern given in input. In this chapter, we will
mainly deal with the problem in the OBLOT model.

Keywords: Pattern formation · Agreement · Multiplicity detection

1 Introduction

In this chapter, we will describe the Pattern Formation problem, where the
robots are required to form, in a not predetermined area of the plane where they
operate, a pattern they receive in input. The pattern can be given as a set of
points in the plane (expressed in their Cartesian coordinates), or as a geometric
predicate (e.g., “form a circle”).

The standard requirements are that, initially, no two entities are in the same
position (i.e., there are no dense points), and that the number of points pre-
scribed in the pattern and the number of robots are the same. The robots are
said to form the pattern if, at the end of the computation, the positions of the
robots coincide, in everybody’s local view, with the points of the pattern (or
satisfy the predicate). Depending on the application, the formed pattern may
be translated, and/or rotated, and/or scaled, and/or flipped into its mirror posi-
tion with respect to the initial pattern. If dense points are allowed in the robots
configurations and in the pattern, the problem is called pattern formation with
multiplicity.

The Pattern Formation problem is practically relevant because, if the
robots can form a given pattern, they can agree on their respective roles in a
subsequent, coordinated action.

The more general and difficult version of this problem is the Arbitrary
Pattern Formation problem, where the robots must be able to form any
arbitrary pattern P they are given in input, starting from any arbitrary initial
configuration where the robots occupy distinct location. The pattern formation
problem, in its general as well as in the more specific versions, has been exten-
sively investigated (e.g., see [1–11]).
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2 Views and Symmetricity

Useful tools to study what patterns are formable by oblivious robots are based on
the notion of view [9,12]: this notion is strictly related to that of a symmetricity
of a set of entities in the plane (either point or robots). In this chapter we will
just give a quick overview of these concepts, that will be detailed in Chap. 6.

Let Zi denote the local coordinate system of robot ri. The global view GVi(t)
from robot ri at time t is the infinite rooted tree defined as follows (refer also to
Fig. 1):

1. The root vi of GVi(t) corresponds to ri.
2. Node vi has n − 1 children, one for each robot rj , with j �= i. The edge from

node vi to node vj corresponding to rj is labeled ((a, b), (c, d)), where (a, b)
is the position of rj with respect to Zi, and (c, d) is the position of ri with
respect to Zj .

3. Node vj , with j �= i has n − 1 children, one for each robot rl, with j �= l; the
edge from vj to vl is labeled ((a′, b′), (c′, d′)), where (a′, b′) is the position of
rj with respect to Zi, and (c′, d′) is the position of ri with respect to Zj .

Since in general a robot does not know the coordinate systems of the other
robots, which are integral part of the definition of global view, the global view
of a configuration is in general not available to the robots and, in most cases,
impossible to derive.

Something that the robots can locally compute in absence of any other infor-
mation is the local view. The local view LVi(t) of robot ri at time t is the set
of vectors vec(ri, rj) for all j �= i with respect to Zi. In other words, the local
view LVi(t) corresponds to the information that ri obtains when performing
Look at time t. Two local views LVi(t) and LVj(t) are said to be equivalent
(LVi(t) ≡ LVj(t)) if they are equal up to rotations, mirroring, and scaling.

An important property of the equivalence classes defined by the views (both
in the case of global views, and of local views) is that they all have the same
size.

Lemma 1 ([9]). Given a configuration E at time t, all the equivalence classes
of robots with the same global (resp., local) view, have the same cardinality m.

Moreover, the robots can be partitioned into n
m groups of m robots each,

such that two robots have an equivalent view if and only if they belong to the
same group. Note that, in the case of global view, the equivalence relationship
is equality.

Lemma 2 ([9]). If the system has Chirality, given a configuration E at time
t, the robots in the same equivalence class form a regular m-gon, and the regular
m-gons formed by all the groups have a common center.

The size m of the equivalence classes, called symmetricity, is denoted by σ(E)
in the case of global views, and by ρ(E) in the case of local views.



Pattern Formation 39

y
x

x

x

x

y

y

y

x

y x

x

x
y

y
y

r1

r2

r3

r4

r5

center

(a)

V1(0)

V2(0) V3(0) V4(0) V5(0)

((a,b ), (c,d ))

(b)

Fig. 1. (a) A configuration of robots. (b) The global view of r1.

For example, in the configuration of robots depicted in Fig. 1(a) there are
two classes of symmetry, each containing 4 robots, both when considering global
and local views: In this case σ(E) = ρ(E) = 4. Moreover, since in this example
there is chirality, Lemma 2 holds and the robots can be partitioned into 2 groups
of 4 robots each group forming a 4-gon with a common centre.

Note that Lemma 2 does not hold when there is no chirality, i.e., when the
axis of the coordinate systems of the robots are not rotationally symmetric.
Consider, for example, the configuration depicted in Fig. 1(b). It is clear that all
robots have the same global and local views, thus belong to the same equivalence
class; they however do not form a single n-gon, but rather 2 distinct n

2 -gons.
More examples are shown in Fig. 2 where, in all cases, the robots have the

same local views; thus ρ(E1) = ρ(E2) = ρ(E3) = n. On the other hand, the
global views are not always the same. More precisely, in Fig. 2(a), we have that
σ(E1) = 1 because all global views are different; in Fig. 2(b), σ(E2) = n because
the global views are all identical; finally, in Fig. 2(c), σ(E3) = n
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Fig. 2. Three configurations of robots: (a) E1, with ρ(E1) = n and σ(E1) = 1; (b) E2,
with ρ(E2) = σ(E2) = n; and (c) E3, with ρ(E3) = n and σ(E3) = n
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.
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So far we have defined the symmetricity in terms of configurations; this con-
cept can be extended also to patterns. The symmetricity of a pattern P can be
defined analogously to the one of a configuration with respect to local views from
the points of the pattern. It shall be indicated with ρ(P).

An equivalent alternative definition of symmetricity ρ and σ is based on
rotations and groups, and is detailed in Chap. 6.

3 Arbitrary Pattern Formation

In the most general version of the problem, the robots are required to form
any arbitrary pattern P they are given in input, starting from any arbitrary
plain initial configuration; that is, they are required to solve the Arbitrary
Pattern Formation problem. We note that, since rotation is allowed, two
robots always form the desired pattern. Therefore we will assume to have at
least three robots in the system. Also, we will assume that the robots operate
under the OBLOT model.

3.1 Arbitrary Pattern Formation and Leader Election

A problem related to the Arbitrary Pattern Formation problem is the
Leader Election problem: the robots in the system are said to elect a leader
if, after a finite number of cycles, all the robots deterministically agree on (i.e.,
choose) the same robot l, called the leader. A deterministic algorithm that lets
the robots in the system elect a leader in a finite number of cycles, given any
initial configuration, is called a leader election algorithm.

The relationship between the arbitrary pattern formation problem and the
leader election problem, is as follows:

Theorem 1 ([5]). If it is possible to solve the Arbitrary Pattern Forma-
tion problem for n ≥ 3 robots, then the Leader Election problem is solvable
too.

Proof. Let A be a pattern formation algorithm. Let P be a pattern defined in
the following way:

1. All the robots but one are evenly placed on the same line L; the distance
between two adjacent robots is d; and

2. the last robot is on L, but the distance from its unique adjacent robot is 2d.

After all the robots execute A to form P, the unique robot that has only one
neighbor, and whose distance from it is 2d, is identified as the leader.

We will now show that in general, the leader election problem is determinis-
tically unsolvable.

Theorem 2 ([5]). There exists no deterministic algorithm that solves the
Leader Election problem, even in Fsync with Chirality.



Pattern Formation 41

x

α

x
y

y

x

y
y
x

y
x

Fig. 3. Theorem 2: The unbreakable symmetry of a 5-gon.

Proof. By contradiction, let A be a deterministic algorithm for solving the
Leader Election problem, and let us assume that the robots have no agree-
ment on the local compasses (i.e., Disorientation holds). Consider any pattern
different from a regular n-gon or a single point, and let the initial positions be
such that the robots form a regular n-gon. Let α = 360◦/n be the characteristic
angle of the n-gon, and let the local coordinate system of each robot be rotated
by α with respect to its neighbor on the polygon (see Fig. 3). In this situation, all
the robots have the same (local) view of the world. Now, for any move that any
one robot can make in its local coordinate system by executing algorithm A, we
know that each robot can make the same move in its local coordinate system.
If all of them move in the exact same way at the same time (i.e., they move
according to a synchronous schedule), they again end up in a regular n-gon or
a single point. Therefore, by letting all the robots move at the same time in the
same way, we always proceed from one regular n-gon or single point to the next.
Hence, no leader can be elected. The same argument applies even if Chirality
holds.

Thus, by Theorem 1, we can state the following:

Corollary 1. In a system with n > 2 robots, the Arbitrary Pattern For-
mation problem is unsolvable.

Furthermore, even if the robots agree on the direction and direction of one
axis (agreement k-Axes, with k = 1), the Leader Election problem is still
unsolvable when n is even: in the following, we will refer to this kind of agreement
as OneAxis.

Theorem 3 ([5]). Let the robots agree only on the direction and orientation of
one axis; there exists no deterministic algorithm that solves the Leader Elec-
tion problem, hence the Arbitrary Pattern Formation problem, when n is
even.
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Proof. By contradiction, let A be a deterministic leader election algorithm.
Without loss of generality, let us assume that the robots agree on the direction
and orientation of the Y axis, and consider an initial placement of the robots
symmetric with respect to a vertical axis; i.e., each robot r has a specular partner
r̂. In addition, let the local coordinate systems be specular with respect to the
symmetry axis: the directions of the X axis of r and of the X axis of r̂ are oppo-
site; thus the (local) view of the world is the same for r and r̂. In this setting,
at time t = 0, both r and r̂ are in the same state; i.e., τ(r, 0) = τ(r̂, 0). Consider
now a semi-synchronous scheduler: robots are activated at discrete time instants;
each robot is activated infinitely often; an active robot performs its operations
instantaneously. Additionally, if a robot r is activated at time t ≥ 0, the sched-
uler will activate at that time also r̂. As a consequence, if τ(r, t) = τ(r̂, t), since
the two robots execute the same protocol A, their next state will still be the
same: if r moves to d, r̂ moves to the point ̂d specular to d with respect to the
symmetry axis. In other words, in this execution of protocol A, τ(r, t) = τ(r̂, t)
for all t ≥ 0. On the other hand, since A is an election protocol, it must exist a
time t′ > 0 such that a robot, say r′ becomes leader. Since the leader is unique,
τ(r′, t′) �= τ(r, t′) for all r �= r′, contradicting the fact that τ(r′, t′) = τ(̂r′, t′).

Let us consider now the converse relationship between the Arbitrary Pat-
tern Formation problem and the Leader Election problem. Assume that
all robots share a common protocol Leader(E) that, given any configuration
E, deterministically returns a unique leader in E. We can now employ such a
protocol to form an arbitrary target pattern P, i.e., to solve the Arbitrary
Pattern Formation problem, assuming that the robots agree on a common
chirality. The overall idea of the algorithm consists of three main steps [13]: (1)
the robots move to some appropriate positions, and build a kind of global coor-
dinate system; (2) next, they compute the final positions to occupy in order to
form the input pattern; (3) finally, the robots move towards these final positions,
paying attention to maintain unchanged the global coordinate system.

In particular, given a set of points P and its SEC (P ), we call the concentric
enclosing circles of SEC (P ) all the circles having the same center of SEC (P )
and passing through at least one point in P . Starting from a leader configuration
(i.e., a configuration where a leader can be located), the robots first move to an
agreement configuration:

Definition 1 (Agreement Configuration). A configuration T is an agree-
ment configuration if and only if both following conditions hold:

1. There exists a robot rl in T such that rl is the unique robot located on the
smallest concentric enclosing circle of SEC (T);

2. There is no robot at the center of SEC (T).

In order to achieve an agreement configuration from a leader configuration
E, the robots act as follows. If there is a robot r that is located at the center c
of SEC (E), let s be the closest robot to c among the robots in E\{r}, and p the
median point on the segment rs. Then, by moving r towards p, an agreement
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configuration is achieved. Otherwise (no robot is at c), we consider the smallest
concentric enclosing circle of SEC (E), call it C; if there is only one robot on
this circle, then the robots are already in an agreement configuration. Thus, let
us assume there is more than one robot on C. Now, the availability of protocol
Leader() is exploited: let r∗ = Leader(E), and let r be the first robot on C,
according to the clockwise orientation, with respect to the half-line

−→
cr∗ (recall

that Assumption Chirality holds). By moving r towards the median point of
the segment rc, an agreement configuration is obtained. Note that the previous
strategy works also when all robots are on SEC (E) (i.e., when C ≡ SEC (E)):
the only difference is in the way robot r is chosen. In fact, in this case, r is the
first non-critical robot on C, i.e. the first robot on C whose movement would not
change SEC (E) (in this case r might coincide with r∗).

Once the robots are in an agreement configuration T, they can also agree
on their final positions: in particular, the center c of SEC (P) is mapped onto
the center o of SEC (T); the pattern is rotated so that −→orl is mapped onto −→cs,
with s the first non-critical point located on the smallest concentric enclosing
circle of P; and P is scaled with respect to the radius of SEC (T) so that all the
distances are expressed according to the radius of SEC (T) (in particular SEC (T)
= SEC (P)).

Then, the robots occupy these positions, starting from those situated on SEC,
and then on all the circles concentric to SEC from the largest to the smallest.
During this phase, the final positions are maintained unchanged, by making sure
that the robots remain in an agreement configuration until the pattern is formed.
In particular, the protocol makes sure that no angle above 180◦ is created on
SEC (otherwise the smallest enclosing circle changes), and that the leader of
the agreement configuration remains the unique closest robot from the center of
SEC and does not leave the radius where it is located. In other words,

Theorem 4 ([13]). In Async, assuming Chirality, for any n ≥ 4 if the
Leader Election problem is solvable, then the Arbitrary Pattern For-
mation problem is solvable.

3.2 Arbitrary Pattern Formation and Compasses

The solvability of the Arbitrary Pattern Formation problem, and in gen-
eral which patters can be formed regardless of the starting configuration, strictly
depend on the level of agreement that the robots have about their local coordi-
nate systems.

Following the ideas of the proof of previous Theorem2, it is possible to show a
necessary condition for the solvability of the Arbitrary Pattern Formation
problem: the absence of common agreement on the coordinate system, leads to
the inability to form arbitrary patterns.

Theorem 5 ([5]). Without any agreement on the local compasses, Arbitrary
Pattern Formation is impossible, even in Fsync with chirality.
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As a consequence, some agreement is necessary.

Sense of Direction. Total agreement on the coordinate system (Assumption
ConsistentCompass) is indeed sufficient to solve the Arbitrary Pattern
Formation problem even in Async. To see how, consider the following pro-
tocol [5]:

1. Each robot establishes the (lexicographic) total order of the points of the
local pattern (Fig. 4(a)).

2. Each robot establishes the (lexicographic) total order of the robots’ positions
retrieved in the last Look (Fig. 4(b)). As we will see, this order will be the
same for all robots.

3. The first and second robots move to the positions matching the first and
second pattern points. This movement can be performed in such a way that
the order of the robots does not change (Fig. 4(c) and (d)). Once this is done,
the first two robots’ positions will determine the translation and scaling of
the pattern (Fig. 4(e)).

4. All other robots go to the other points of the pattern. This can be done by
moving the robots sequentially to the pattern’s points. The sequence is chosen
in such a way to guarantee that, after one robot has made even only a small
move towards its destination, no other robot will move before that one has
reached its destination (Fig. 4(f)).

We note that the final positions of the robots are not rotated w.r.t. the input
positions; in other words the algorithm keeps the “orientation” given by the
input pattern. Moreover, in this case Theorem1 holds also for n = 2, since the
rightmost and topmost robot in the system can always be identified as the leader.

Theorem 6 ([5]). With ConsistentCompass, Arbitrary Pattern Forma-
tion is solvable in Async.

Partial Agreement: Odd Number of Robots. Let us now consider the case when
the robots have partial agreement: they agree only on the orientation of one axis,
say Y ; that is, there is common agreement also on the direction of the X axis,
but not on its orientation (assumption OneAxis). Note that this case, if there is
also chirality, would trivially coincide with the total agreement one.

As stated by Corollary 1, the Arbitrary Pattern Formation problem
is unsolvable in general; furthermore, by Theorem3, it is also unsolvable by
an even number of robots when the Assumption OneAxis considered in this
section holds, since symmetric initial configuration can impede the formation of
arbitrary patterns. However, for breaking the symmetry, it is sufficient to know
that the number n of robots is odd: in this case, in fact, either the robots are in
a symmetric initial situation, in which there is a unique middle robot that will
move in order to break the symmetry; or the initial situation is not symmetric,
and this asymmetry can be used to identify an orientation of the X axis.

In more detail, let us define some references related to a set of points E that
will be used in the following:
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Fig. 4. An example of the arbitrary pattern formation protocol in presence of
ConsistentCompass. (a) The input pattern P. The robots have complete knowledge
on the local coordinate systems. The numbers represent the lexicographical ordering
the robots give to the points of P, and α = Angle(p1, p2). (b) The robots sort the
robots’ positions retrieved in the last Look state, and compute β = Angle(r1, r2). (c)
r1 moves in such a way that Angle(r1, r2)= α. (d) The relative positions of r1 and
r2 are such that Angle(r1, r2)= α. (e) At this point, all the robots can translate and
scale the input pattern according to r1r2. Then, all the robots, one at a time, reach
the final positions of the pattern to form. (f) The final configuration.

– The two vertical lines that are tangent to the convex hull of E, and the vertical
axis ΦE

m that is in the middle between them.
– These three vertical lines delimit two regions (or sides): one to the left of ΦE

m

and one to its right. Let ME and LE denote the side in E with more and less
points, respectively. If the two sides have the same number of points, then
ME is the rightmost side. If |ME| �= |LE|, then E is said to be unbalanced;
otherwise, we will call it balanced.



46 G. Prencipe

– Finally, ΦE

M denotes the one of the two axes tangent to the convex hull of E
that lies in ME, and ΦE

L the other.

We will describe now the protocol to form any pattern with an odd number
of points, where the points are not all on the same vertical line. The case, where
the robots have to form a vertical line is easier.

First, the robots check that the robots are not on the same vertical line
Ξ; otherwise, the second topmost robot on this line, say r, moves towards its
(local) right, up to a distance equal to the distance between the topmost and
the bottommost robot on Ξ (no other robot move until r reaches this distance).
At this point, the references on both the input pattern P and on the observed
configuration D can be computed: in particular, let Υm = ΦP

m, Υ+ = ΦP

M, Υ− =
ΦE

L the references in P, and Km = ΦD

m, and K+ = ΦD

M, K− = ΦE

L the references
in D. The final goal of the robots is to find a way of mapping these two sets of
references onto each other so that the final destinations the robots have to reach
to form P can be uniquely computed.

To this aim, the robots need to unbalance D, so that also an agreement on
the orientation of the x axis cen be reached. If D is balanced, the symmetry that
derives from having the two sides with the same number of robots is broken as
follows. First all the robots1 in MD are moved on K+ and all the robots in LD

on K−. After all the robots have performed these movements, since D is still
balanced and the total number of robots is odd, there is an odd number of robots
on Km: the topmost robot on Km, say top∗, is selected to move towards its (local)
right, so that an unbalanced configuration can be achieved. This movement is
performed carefully since, as soon as top∗ leaves Km and enters the side to its
right, the configuration will become unbalanced.

The fact that the configuration is unbalanced allows the robots to implicitly
reach an agreement on the direction of the x axis; hence, on a global coordinate
system (GCS): the common orientation of the x axis is given by mapping MP

onto MD.
Once the GCS has been established, the topmost robots on K+ and on K−

(top+ and top−, respectively) move vertically on K+ and on K−, respectively,
until they reach positions corresponding to the two topmost points on Υ+ and
Υ− in P. Once top+ and top− place themselves in the correct positions, they
will never move again. At this point, the set of final positions of the robots can
be easily computed, by scaling the pattern according to these mappings. Note
that here the pattern does not need to be rotated.

Now, all robots are ready to reach their final destinations. Note that at this
point it might be possible that the unbalancing process is not completed yet;
i.e., top∗ is still moving towards its destination. Should this be the case, the
other robots can however detect it, and will not start their move until top∗ stops
(again, details can be found in [5]). The robots reach their final destinations
sequentially:
1 Note that, since at this time the robots still do not have a common agreement on

the direction of the X axis, for some robots MD and LD might be different. All of
them, however, agree on Km.
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– First, the robots in S− (side of D where K− lies) sequentially fill the final
positions that are in S−. If there are more robots than available final positions,
the “extra” robots are sequentially moved towards Km, starting from the
topmost robots that is closest to Km.

– Second, the robots in S+ (side of D where K− lies), except for the bottommost
on K+, sequentially fill the final positions in S+. If there are more robots than
available final positions, the “extra” robots are sequentially moved towards
Km, starting from the topmost robots that is closest to Km.

– Third, if there are still unfilled final positions in S+ (that is, there were not
enough robots in S+ in the second step), the robots on Km are sequentially
moved in S+, starting from the topmost, to fill the final positions occupied
by no robots.

– Fourth, if there are still unfilled final positions in S− (that is, there were
not enough robots in S− in the first step), the robots on Km are sequen-
tially moved in S−, starting from the topmost, to fill the final positions still
available.

At this point, all the robots not on Km occupy the correct positions except
one: the bottommost robot on K+, say r.

– If there is an available destination in S+, then r goes there. At this point, all
the robots but those on Km are in correct positions. Note that now all avail-
able destinations are also on Km: thus, the robots on Km move sequentially
(and only vertically on Km) towards the available final destinations.

– If there are no available final positions inside S+ and S−, r moves towards
Km. Once it reaches the median axis, all the robots but those on Km are in
correct positions, and again the algorithm proceeds as in the previous case.

– If there is an available destination in S−, r first moves towards Km. Then,
the topmost robot on Km moves in S− on the last unfilled final position.
Once also this position becomes occupied, only the robots on Km must be
adjusted, as in the two previous cases.

Thus, the above plus Theorem 3 imply the following:

Theorem 7 ([5]). With OneAxis, Arbitrary Pattern Formation is solv-
able only if n is odd, and this can be done in Async.

Partial Agreement: Even Number of Robots. By Theorem 3, an arbitrary pattern
can not be formed by an even number of robots with OneAxis. In this section,
we are interested in determining which class of patterns, if any, can be formed
in this case starting from any initial position. Again, we will assume that the
robots in the system have common agreement on the direction and orientation
of only the Y axis, and that the number n of robots in the system is even.

We say that P is a symmetric pattern if it has at least one axis of symmetry
Λ; that is, for each p ∈ P there exists exactly another point p′ ∈ P such that p
and p′ are symmetric with respect to Λ (see Figs. 5(b), (c) and (d)).

The proof of the unsolvability result of Theorem3 is useful to better under-
stand what kind of patterns can not be formed, hence what kind of pattern
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Fig. 5. (a) An unachievable asymmetric pattern. (b) An achievable pattern with one
axis of symmetry not passing through any vertex. (c) An unachievable pattern. (d) An
achievable pattern that has three axes of symmetry not passing through any vertex.
Note that this pattern has also axes of symmetry passing through vertexes.

formation algorithms can not be designed. In fact, the ability to form a partic-
ular type of patterns would imply the ability to elect a robot in the system as
the leader. Formally,

Theorem 8 ([5]). If an algorithm A lets the robots form (a) an asymmetric
pattern, or (b) a symmetric pattern that has all its axes of symmetry passing
through some vertex, then A is a leader election algorithm.

From Theorems 3 and 8, it follows that:

Corollary 2. There exists no pattern formation algorithm that lets the robots
in the system form (a) an asymmetric pattern, or (b) a symmetric pattern that
has all its axes of symmetry passing through some vertex.

Let us call T the class containing all the arbitrary patterns, and P ⊂ T the
class containing only patterns with at least one axis of symmetry not passing
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through any vertex (e.g., see Figs. 5(b) and (d)); let us call empty such an axis.
Corollary 2 states that if P ∈ T \P, then P can not be in general formed; hence,
according to Part (b), the only patterns that might be formed are symmetric
ones with at least one empty axis.

The idea behind the algorithm that solves the Arbitrary Pattern For-
mation problem with partial agreement and an even number of robots is as
follows. First, the robots compute locally an empty axis of the input pattern P,
say Λ, and then rotate P so that Λ is parallel to the common understanding of
the orientation of y; let us denote by PR the rotated pattern.

If the robots lie all on the same line, the algorithm forces them to place on
at least two distinct vertical lines, Γ and Γ ′ (this is achieved as for the odd
case). Then, the topmost robot on Γ , say Out , and the topmost robot on Γ ′, say
Out ′, move so that they place themselves in the correct position: in particular,
since PR is symmetric with respect to Λ, Out and Out ′ must place themselves
to the same height. This is because, by Corollary 2, the input pattern can not
be a vertical line.

At this point, the set of final positions can be computed, by scaling the input
pattern with respect to ΓΓ ′, and by translating it so that the topmost point on
the rightmost vertical axis tangent to P is mapped onto Out , and the topmost
point on the leftmost vertical axis tangent to P is mapped onto2 Out ′.

At this point, the robots move to reach a balanced configuration, with each
side containing half of the robots. The balancing is obtained as follows. Let S
and S ′ be the two sides determined by Γm, the vertical median axis between Γ
and Γ ′.

– In the side that has more than n/2 robot (if any), the robots are moved
sequentially (starting from the topmost with the smallest horizontal distance
from Γm) towards Γm, using a path that avoids collisions, until there are
exactly n/2 robots in that side.

– In a side that has ≤n/2 robots, the robots are moved towards the final posi-
tions in that side.

– The robots that are on Γm wait until |S | ≤ n/2 and |S ′ | ≤ n/2, and all
the robots in the two sides are on a final position. At this point, sequentially
(from the topmost) they move towards the final positions still available in the
two sides. In fact, by the way the input pattern has been rotated, no final
positions can be on Γm.

Thus, we can state the following:

Theorem 9 ([5]). With OneAxis, when n is even only patterns in P can be
formed, and this can be done in Async.

2 Note that, since PR is symmetric, nothing changes if the topmost point on the
leftmost vertical axis tangent to P is mapped onto Out , and the topmost point on
the rightmost vertical axis tangent to P is mapped onto Out ′.
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No Agreement. In absence of any additional assumption, and in particular in
absence of any agreement on the compasses, Theorem 2 implies that no asymmet-
ric pattern can be formed from all arbitrary initial configurations. Furthermore,
as discussed later in Sect. 4, a symmetric pattern A with symmetricity σ(A),
can be formed only with the same or lower symmetricity. This means that the
only patterns that might (possibly) be formed from all initial configurations are
either an n-gon, or the uniform circle (i.e. a circle along which the robots are
placed at equal distance), or the point (i.e., all robots are gathered at the same
location). Note that this fact holds regardless of the synchronicity (i.e., even in
Fsync).

The problem of forming a point (a.k.a. Gathering) and forming a uniform
circle are important in their own right, and are analyzed respectively in Chap. 4
and Chap. 5, respectively. Interestingly, to date it is not known whether these
problems can be solved in Async without additional assumptions; in the case
of Ssync, they are both solvable.

3.3 Landmarks Covering: Formation of Visible Patterns

An interesting problem related to Arbitrary Pattern Formation (APF)
is the Landmarks Covering problem: in the space there are n points, the
landmarks, visible to all robots3; the problem is for the robots to reach a config-
urations where at each landmark there is precisely one robot. A solution protocol
must enable the robots to cover the landmarks, regardless of the location of the
landmarks and of the initial location of the robots.

In other words, the Landmarks Covering problem is precisely the Arbi-
trary Pattern Formation problem when the points of the input pattern
are globally visible. Clearly, any solution to APF under some conditions, will
solve also Landmarks Covering under those conditions. The research interest
is whether Landmarks Covering can be solved more efficiently than APF,
or with fewer conditions than APF, or in situations where APF is not (known
to be) solvable. In terms of efficiency, the main goal of any Landmarks Cov-
ering solution protocol is that of minimizing the robots movements, i.e., the
total amount traveled by the robots to reach the final configurations in which
all landmarks are covered.

Interestingly, unlike the Arbitrary Pattern Formation problem, the
Landmarks Covering problem can always be solved in Async, provided there
is Chirality. Furthermore this can be done always with minimal travel costs
and without collisions [14].

The solution strategy consists in the robots computing a unique perfect
matching between robots and landmarks which minimizes the total travel costs
from each robot to the landmark assigned by the matching; each robot then
moves until it reaches the assigned landmark, avoiding collisions. The clear dif-
ficulty is to perform this process obliviously; to do so, the determined matching
must be invariant to the movements of the robots towards their destination, so

3 Equivalently, the position of the landmarks is known a priori to all robots.



Pattern Formation 51

b

a. b.

a a

b

a a
b

b

Fig. 6. Examples of matchings.

that each robot, every time it becomes active, can determine which landmark
was initially assigned it, regardless of the progress made by the other robots
towards their assigned landmarks.

Consider the initial configuration of the robots A and let B denote the pattern
of the landmarks. We can view a perfect matching M from A to B as a set of
pairs {(a, b)} where a is a robot location in A and b is a landmark in B, and its
cost is the sum

∑

(a,b)∈M |ab| of the Euclidean distances between the matched
points. Let M(A,B) denote the set of all perfect matchings M of minimum cost
between A to B such that for all distinct pairs (a, b), (a′, b′) ∈ M , the points
a, a′, b′, b do not reside on the same line in that specific order. For example, M
may not include the match shown in Fig. 6(a), but may include the pairs shown
in Fig. 6(b). We call the matchings in this set optimal. It is easy to verify that
M(A,B) �= ∅; note that there might be more than one optimal matching between
A and B.

We can compute a unique optimal matching, called clockwise matching,
between two set of n distinct points, A and B, as follows:

(1) First consider the bipartite graph G[A,B] = (V,E) whose vertex set
V = A ∪ B comprises of the points of A and B, and where the edge set E =
∪M∈M(A,B)M contains all pairs matched in at least one optimal matching.
(2) Consider now the connected components G1, G2, . . . , Gk of G[A,B], and
the periphery4 Ci of component Gi; let Ai and Bi be the points of A in Gi\Ci

and the points of B in Gi \ Ci, respectively.
(3) Consider next the subgraph Ĝ[A,B] of G[A,B] recursively defined as fol-
lows: Ĝ[A,B] = ∅ if A = B = ∅; otherwise Ĝ[A,B] = ∪1≤j≤k(Ci ∪ Ĝ[Ai, Bi]).
Note that each connected component Q of Ĝ[A,B] is either a cycle or a single
edge.
(4) Finally, for each connected component Qi of Ĝ[A,B], construct the match-
ing Wi where Wi = Qi if Qi is a single edge, otherwise, Wi is a clockwise tour
(a1, b1), (a2, b2), . . . , (am, bm) of Qi.

4 For a plane graph, the periphery is the boundary of the exterior face.
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The clockwise matching W [A,B] between A and B is just the union of the
matchings Wi of all the connected components Qi of Ĝ[A,B].

Important properties are that the clockwise matching W so determined is
unique and indeed optimal; i.e., W [A,B] ∈ M(A,B). But the crucial fact is
that these properties are invariant with respect to robots moving towards the
matched landmarks. In fact,

Lemma 3 ([14]). Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and = {c1, . . . , cn}
be set of points which satisfy following:

1. {(a1, b1), (a2, b2), . . . , (an, bn)} ∈ W [A,B]
2. ci ∈ aibi

3. if there exists j �= i such that aj ∈ aibi then ci = ai

Then {(c1, b1), (c2, b2), . . . , (cn, bn)} ∈ W [C,B].

Thus, the (collision avoiding) solution protocol is simply [14]:

Algorithm LandmarkCover
Assumptions: Visible Landmarks; Chirality.

1. Let A = {a1, . . . , an} be the position of the robots (as returned by Look)
and let B = {b1, . . . , bn} be the positions of the landmarks in my coordi-
nate system.

2. Compute the clockwise matching W [A,B]. Let a ∈ A be my position and
b ∈ B the landmark assigned to me in W [A,B].

3. If ∀a′ ∈ A \ {a}, a′ /∈ ab, then move towards b.

Theorem 10 ([14]). The Landmarks Covering problem can be solved in
Async with minimal travel costs, provided there is Chirality.

In other words, with Chirality, every visible pattern can be formed in
Async.

4 Pattern Formation and Initial Configuration

The proof of Theorem2 shows that, with no agreement on the local coordi-
nate systems, the Arbitrary Pattern Formation problem cannot be solved.
Thus, an interesting question is what patterns could be formed, in absence of
common coordinate system, starting from a specific configuration E. Once again,
we will assume the OBLOT scenario.

4.1 Impossibility

The patterns that the robots can or cannot form starting from configuration E

at time t = 0 are strictly related to the classes of equivalence derived from the
definition of views (seen in Sect. 2).



Pattern Formation 53

If the views of two or more robots are identical, in some executions (e.g.,
under a scheduler that activates them always at the same time) those robots will
always perform the same actions, without being able to break their symmetry;
so, the patterns that can be possibly formed must have the same or higher
symmetricity, but always a multiple of the original one.

Theorem 11 ([9]). Starting from a configuration E with symmetricity σ(E), it
is impossible to form any pattern P with σ(P) < σ(E), or σ(P) �= k · σ(E) for
some integer k > 1.

In other words, if E is totally asymmetric (i.e., σ(E) = 1), all patterns are
potentially formable; on the other hand, if σ(E) = m > 1, only patterns with the
same symmetricity or with a symmetricity that is a multiple of m are candidate
to be formable. Notice that this impossibility holds even if the robots are not
oblivious. In case of systems with chirality, by Lemma 2, we obtain the inability
to form a pattern that cannot be partitioned, as the initial configuration, in n

m
regular m-gons.

Theorem 12 ([9]). In systems with Chirality, starting from a configuration
E with symmetricity σ(E) = m, it is impossible to form any pattern unless it is
the union of n

m regular m-gons all having the same center.

4.2 Possibility

Once we know which are the only patterns that could be formed starting from
a configuration E, the questions become whether those patterns can be formed,
and how. In Async, no answers are known. In the case of Ssync there are some
conditional answers.

If the robots are not oblivious (recall that the impossibility holds even in this
case), they can record all the snapshots in which they are active; the change
of coordinates in two successive snapshots allows to detect movement and to
measure it; hence information can be communicated by moving appropriate dis-
tances [9]. In particular, they can communicate their own coordinate systems
and unit of measures, so that the complete views can be locally constructed and
examined; once this is done, forming the pattern is straightforward.

We are however interested in oblivious robots, for which there is no memory,
and hence no tool to record information, to detect and measure movement, and
thus to communicate. Interestingly, it is possible for oblivious robots to form
all the formable patterns [15], if the robots have Chirality, move with fixed
mobility (possibly different for each robot) and know the maximum movement δ̂.

Theorem 13 ([15]). A team of oblivious robots in Ssync with Chirality, fixed
mobility, and known maximum movement, starting from configuration E with
σ(E) = m can form any pattern P decomposable into n

m regular m-gons all having
the same center.
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Fig. 7. A T -stable configuration with six robots.

Notice that, since the robots do not agree on a common coordinate system,
the level of symmetry perceived by the robots (given by their local views) might
not correspond to the actual level of symmetry of the global view which, as
defined earlier, take into account also the coordinate systems.

Let P = p1, . . . , pn be the pattern to be formed and let us assume that the
robots start in n distinct positions. For simplicity we describe only the case
when the pattern does not contain dense points. Moreover, we assume (again
for simplicity) that each robot knows the origin of its own coordinate system,
which does not change throughout the algorithm. The result still holds with some
modifications also when these assumptions are removed. Also for simplicity we
assume the unit distance of a robot coincides with δ̂.

The algorithm distinguishes the case when ρ(E) = 1, and thus the initial
configuration is totally asymmetric, even without considering the coordinate
systems, from the case when ρ(E) > 1.
Case ρ(E) = 1. In this case the initial configuration E is perceived as asymmetric.
This is the simplest case and also a building block possibly used in the other
cases.

Since the symmetricity is 1 and there is chirality, a total order can be imposed
on the robots, even in absence of a common coordinate system. The robots are
in fact ordered in non decreasing order of their radii with respect to the centre c
of the smallest enclosing circle SEC (E) (for points with the same distance, ties
are broken by using chirality). Let this order correspond to r1, . . . , rn, where the
robots are aware of their own index. The algorithm is designed in such a way
that SEC will never change until the pattern is “almost” formed.

Intuitively, the robots move from E to a special configuration, called a
T -stable configuration, where SEC contains exactly three robots on the circum-
ference: two opposite on a diameter and the third at 90◦ from both, and no
robots occupy the center (see Fig. 7). The robots can then agree on a common
coordinate system by selecting as X the line passing through the two robots
positioned opposite on the diameter of SEC, and as Y the line passing through
c and through the third robot placed at 90◦ on the circumference.
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The unit distance of this common coordinate system is chosen in a very
specific way as Rad

2l
where Rad is the radius of SEC, and l is the smallest positive

integer such that |rj | < |pj | for each 1 ≤ j ≤ n, where |rj | (resp., |pj |) indicates
the distance from point rj (resp., vertex pj) to its own origin. This choice is made
for the unit distance to be sufficiently small so that robots never move away from
c while going towards their position to form the pattern. The robots now move
one by one to their final destination following their order (which implies that
robots closer to c move to their destination first). This order, combined with the
fact that no robot has to move away from c in the process, guarantees that the
magnitude of the unit distance does not change in the formation process, and
that a robot that has reached its final position does not have to move anymore.
The movements are performed without destroying the T -stable configuration,
paying particular attention to the movements of the last three robots.

Case ρ(E) > 1. When the robots perceive ρ(E) > 1, it does not necessarily mean
that σ(E) > 1, because the different coordinate systems might induce more
asymmetry. In this general case, the robots perform two procedures. First they
try to move from E to a configuration that reflects a symmetry m that divides
ρ(P). Once/if such a situation is reached, they proceed to form the pattern.
If, while changing symmetricity, they happen to form a configuration E

′ with
ρ(E′) = 1, they instead form the pattern using the algorithm described in the
previous case.

Let us describe the first procedure that allows the robots to appropriately
reduce the perceived symmetricity ρ until it divides the symmetricity of the
pattern to be formed.

The idea is the following. First the centre of the smallest enclosing circle c
is identified. Point c is also the centre of symmetry of E; that is, the unique
point such that the robots can be divided in n

ρ(E) groups each forming a regu-
lar ρ(E)-gon with centre c. Then each robot moves away from c in a straight
line according to its coordinate system of a small amount. The amount is very
carefully computed so to guarantee that: (1) it is smaller than the robot’s unit
distance and thus can be reached instantaneously in one step, (2) if two robots
are located symmetrically with respect to c and have non symmetrical local
coordinate systems, they will move of a different amount.

Depending on the activation schedule of the robots, the above procedure is
shown to either break completely the symmetry in one step reaching a configu-
ration E

′ where ρ(E′) = 1, or to reduce the symmetry eventually reaching, after
repeated applications of the procedure, a configuration A such that m = ρ(A)
divides ρ(P).

Now both the pattern and the configuration can be partitioned into k = n
m

regular m-gons all having the same center so to have a correspondence between
each m-gon with a group of m robots. Let R1, . . . ,Rk be the k sets of robots
and let Rk = {r1, . . . , rm}. Set Rk is special and it is used to create consistent
coordinate systems. In fact, in this case it is not possible for the robots to agree
on a common coordinate system based on a T -stable configuration (like for the
asymmetric case). Because of the rotational symmetry induced by the n

m regular
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m-gons around c, each robot in one class of symmetry decides its destination
individually. Each robot sj in Ri chooses as X-axis the line passing through
the common centre c and the closest among the robots in Rk; while the unit
distance is chosen as described earlier. As for the destination point: each robot
chooses the closest location among the m possible locations and ties are broken,
for example, by chirality. In this way, the coordinate systems of robots belonging
to the same class are rotational symmetric with respect to c and intervals 2π

m ,
and the destinations form a regular m-gon with the same centre that matches
the one to be formed.

Notice that the algorithm described above works also for configurations and
patterns with dense points, provided the robots have strong multiplicity detec-
tion. Indeed it allows to form in Ssync all patterns formable according to the
strong global symmetricity σ(E) of the initial configuration E.

Possibility in Async. If we restrict ourselves to just plain patterns and initial
configurations, and consider the weaker local symmetricity ρ(E) of the initial con-
figuration E, than it is possible to form the patterns with symmetricity divisible
by ρ(E), even in Async:

Theorem 14 ([16]). A team of oblivious robots in Async with Chirality,
starting from a plain configuration E with ρ(E) can form any pattern P such
that ρ(E) divides ρ(P).

It is unknown whether this can be done without chirality.

5 Forming a Sequence of Patterns in SSYNC

In this chapter we have discussed, under a variety of assumptions on the robots’
capabilities and features, how to form a (possibly arbitrary) pattern given in
input. A natural question is whether the robots can form not just a single pattern
but a series of distinct patterns, given in a particular order, or, more generally
of characterizing the series that can be formed. To enable a series of pattern to
be formed, a protocol must guarantee that a robot that wakes up in an arbitrary
configuration can, in spite of its obliviousness, figure out what pattern in the
sequence is being formed so to join the others in performing the required tasks.
In other words, a solution must provide, through the robots’ movement some
form of memory in an otherwise memoryless system.

In this section we consider OBLOT robots with Chirality, in Ssync under
unlimited mobility (i.e., all robots always reach their destinations when per-
forming their move). The focus is on infinite series: periodic (or cyclic) series
S

∞ = 〈P1,P2, . . . ,Pm〉∞, i.e. the periodic repetition of a finite series S of dis-
tinct patterns. The results are then generalizable to infinite aperiodic series.
Three different scenarios are analyzed, depending on the level of anonymity of
the robots: completely anonymous robots, visibly indistinguishable but ordered
set of robots and distinctly labeled robots.

Before describing the three scenarios, we introduce some special patterns
needed in the rest of the section: (1) POINT is the pattern consisting of a
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single point; (2) TWO-POINTS is the pattern consisting of exactly two points;
(3) POLYGON(k), for any k ≥ 3, is the pattern consisting of points p1, p2, . . . , pk

that are vertexes of a regular convex polygon of k sides.

5.1 Anonymous Robots

Consider n identical robots starting from distinct locations. Central to the anony-
mous case is the notion of symmetry in a configuration, which is quantified using
the concept of centered view, and centered symmetricity, ρ̂, a slight modification
of the notion of local view and of symmetricity ρ discussed in Sect. 4.

If ri is not located at the centre of the smallest enclosing circle, its centered
view CVi(t) contains the coordinates of all the other robots considering as origin
(0, 0) its own position and as (1, 0) the position of the center. On the other
hand, if ri is in the centre of the smallest enclosing circle, the origin is still the
location of r, but any robot rj whose view CVj(t) is minimum among all the
other robots is thought to be at coordinate (1, 0). Finally, no information about
the coordinate system of the robots is available in these views because they are
assumed unknown and not necessarily consistent.

Notice that, given any arbitrary configuration E, there is a total order of the
distinct centered views of the robots in E, in spite of their anonymity. The ele-
ments of CVi can be ordered lexicographically to obtain an ordered sequence
Q(CVi), for each robot ri ∈ E. For any two robots ri and rj , the ordered
sequences Q(CVi) and Q(CVj) contain the same number of elements and these
sequences can be ordered lexicographically. So, CVi < CVj if and only if Q(CVi)
is lexicographically smaller than Q(CVj).

An obvious consequence of anonymity is that from a configuration E con-
sisting of anonymous robots at w distinct locations, a configuration E

′ where
the robots occupy more than w distinct locations might not be reachable, which
restricts the size of patterns in any formable series of patterns. To form repeti-
tively any series S of patterns, all the patterns in S should be of the same size.
Thus, only patterns of size n are considered, where n is the number of robots.
Each robot starts from a distinct location and during the pattern formation
algorithm, no two robots should occupy the same location (i.e. no dense points
are allowed). Moreover, those patterns are indeed formable.

The formation algorithm is based on the identification of special configura-
tions: the bi-circular and the q-symmetric-circular configurations. Before giving
an intuition of the technique employed, we define these special configurations
(see Fig. 8 for an example of a bi-circular configuration).

Definition 2 (BCC). A configuration is called bi-circular (denoted by BCC) if:
(i) there is a unique location (called the pivot), such that the smallest enclosing
circle SEC containing all the robots, has diameter more than three times the
diameter of the circle C containing all robots except those at the pivot; (ii) SEC
and C intersect at exactly one point: the point directly opposite the pivot (called
the base-point).
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a. b.

Fig. 8. (a) An arbitrary configuration of robots and the smallest enclosing circle. (b)
A bi-circular configuration.

Definition 3 (SCC). A configuration containing n robots is called q-symmetric-
circular or, SCC(q), 1 < q < n, if: (i) the smallest enclosing circle SEC has
exactly q points on its circumference that are occupied by robots; (ii) all the
other robots lie on or in the interior of a smaller circle C that is concentric to
SEC such that Diameter(SEC ) ≥ (5 + sin−1(π/q)) · Diameter(C); (iii) there
are no robots in the center of SEC .

In both configurations, the former circle (SEC ) is called the primary enclo-
sure while the latter (C) is called the secondary enclosure. The point on the
secondary enclosure directly opposite the base-point is called the frontier-point.
The ratio of the diameter of the primary enclosure over the diameter of the
secondary enclosure is called the stretch of the configuration.

An interesting property of the bi-circular configuration is that in such a
configuration the robots can agree on a coordinate system and define a unique
way to order the robots. It can also be shown that from an arbitrary initial
configuration either a particular type of BCC configuration or a particular type
of SCC(q) configuration can always be formed. More precisely:

Lemma 4 ([17]). Starting from any configuration E with symmetricity ρ̂(E) =
q, and for any k ≥ (5 + sin−1(π/q)) we can reach a configuration E

′ such that
either (i) E

′ is SCC(q′) having stretch k, where q′ > 1 is a factor of q, or, (ii) E
′

is BCC having stretch k′ = (k + 1)/2.

It can also be shown that, once a bi-circular configuration containing n robots
is formed, any pattern P of size n can be formed.

Lemma 5 ([17]). (i) In any bi-circular configuration, the robots can agree on
a unique coordinate system. (ii) Starting from a bi-circular configuration with
n ≥ 4 robots in distinct locations, any pattern P of size n can be formed.



Pattern Formation 59

Similarly, it can be shown that:

Lemma 6 ([17]). Starting from a configuration of type SCC(q), q > 1, with
n robots occupying distinct locations any pattern P such that the symmetricity
ρ̂(P) = q · a, a ≥ 1 and size(P) = n can be formed.

Based on the above properties, the idea of the algorithm for forming a
cyclic series of distinct patterns 〈P1,P2, . . . ,Pm〉∞ by n anonymous robots is the
following.

Let F be a function that maps each pattern Pi to a real number ti = F (Pi)
that satisfies the condition of Lemma 6. To signal the formation of pattern Pi, one
of the following configurations is unambiguously used: either SCC(x) with stretch
ki, where x is any factor of q or, configuration BCC with stretch k′

i = (ki + 1)/2.
Due to Lemma 4 it is possible to form one of these configurations starting from
an arbitrary configuration of symmetricity q. By computing the stretch of the
configuration, the robot can then identify which pattern Pi is being formed. The
robots can then form, by Lemmas 5 and 6, pattern Pi. During the formation of
pattern Pi, at each intermediate configuration, each robot can uniquely identify
which pattern is being formed. Once the pattern has been completed the resulting
configuration has symmetricity q. Hence, by Lemma 4, it is again possible to form
a SCC or BCC configuration having the appropriate stretch for the next pattern
Pi+1 in the sequence. Using this technique, the robots can move from one pattern
to the next, and thus they can form the required sequence of patterns.

Theorem 15 ([17]). In Ssync with unlimited mobility and chirality, n anony-
mous robots starting from distinct locations in an arbitrary configuration E, can
form a cyclic series of distinct patterns 〈P1,P2, . . . ,Pm〉, each of size n, if and
only if ρ̂(Pi) = ρ̂(Pj) ≥ ρ̂(E) ∀i, j ∈ {1, 2, . . . m}.

The condition imposed by the previous theorem on the kind of patterns in
the sequence can be relaxed if the robots are equipped with lights: this scenario
will be analyzed in Chap. 11.

5.2 Robots with Distinct Visible Identities

Let us consider now the case when each robot ri has a unique identity IDi (w.l.g,
IDi = i) and any other robot can see this identity. During the Look operation, a
robot ri obtains a snapshot containing (j, xj , yj) tuples where j �= i and (xj , yj)
is the location of the j-th robot, with respect to the local coordinate system of
robot ri. In this case, even in absence of agreement on directions, the symmetry
among the robots can be broken by the use of distinct labels. The view of each
robot is unique as it contains information about both the identities and locations
of the other robots. Thus, there are no symmetric configurations. Moreover, as
opposed to the anonymous case, robots can be allowed to form dense points,
since the robots can be separated later, if required.

When there is only one robot, the only pattern that can be formed is obvi-
ously POINT. With n = 2 robots, only two patterns can be formed: POINT
and TWO-POINTS and it is easy to form the sequence (POINT, TWO-POINTS)∞,
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by movement of a single robot (say r2). The more interesting cases occur when
there are at least three robots (i.e., n ≥ 3), in this case any sequence of distinct
patterns S = 〈P1,P2, . . .Pm〉 can be formed, with the only restriction that each
pattern Pi has at most n points. A description of the algorithm is given below.

Robots r1, r2 and rn have special roles. In particular, r1 and r2 remain fixed
in distinct locations for the entire algorithms serving as fixed points of reference
for the other robots. The idea is to apply a known function F to each pattern Pj

so to obtain a real number wj = F (Pj), wj ∈ (1,∞) (distinct for every pattern).
Before forming pattern Pj , robot rk moves to a location between r1 and r2 such
that the ratio of distances dist(r1, r2)/dist(r1, rn) is equal to wj . This is the
signal for the other robots to indicate which pattern is being formed. Each robot
ri, 2 < i < n can compute the location where it should move to in order to
form pattern Pj . Once each of these robots has moved into the correct positions,
robot rn moves to complete the pattern. During the execution of the algorithm
every configuration of the robots (excluding at most the first two configurations)
either corresponds to some pattern Pl ∈ S, or is an intermediate configuration
which signals the formation of Pl (i.e. where r1, r2, and rn maintain a ratio
of wj = F (Pl)). The function F must be chosen in such a way that the ratio
dist(r1, r2)/dist(r1, rn) in an actual pattern never matches any values in the
range of F . Thus, each robot can unambiguously determine the location that it
needs to move to, by looking at the current configuration.

This algorithm works for any sequence of patterns not containing the POINT
pattern. In order to include the POINT pattern in the sequence of patterns formed,
small modifications must be done to the algorithm in the behaviour of robots r2
and rn. Based on the algorithm above, the author conclude that:

Theorem 16 ([17]). In Ssync with unlimited mobility and chirality, n ≥ 2
robots having distinct visible identities, can form any cyclic sequence of distinct
patterns 〈P1,P2, . . . ,Pm〉 provided that ∀i, size(Pi) = ni ≤ n.

5.3 Robots with Invisible Distinct Identities

In this case the identities of the robots are not visible to other robots. The
robots are assumed to be ordered with labels 1, 2, 3, . . . , n and each robot ri

knows its own label i, but it can not visibly identify the label of other robots.
In this case, the information contained in the views of the robots is similar to
the anonymous case. Thus, two robots may have identical views (in particular,
robots at the same location have identical views). However, since the robots have
distinct identities, they can execute different algorithms depending on their own
labels.

Consider first the case when there are at least four robots. The BCC configura-
tion, defined for the anonymous case, is used here as well to signal the formation
of specific patterns in a series. As already mentioned, dense points are allowed
and the algorithm must ensure that there is at least one robot at the pivot and
one at the base-point of the bi-circular configuration.

From any arbitrary configuration E with more than 3 robots, a bi-circular
configuration of any given stretch k > 3, can be formed by the movement of a
single robot (this single robot will place itself in a pivot position).
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The technique for forming any given pattern P starting from a bi-circular
configuration of stretch ki is as follows: As mentioned before, the bi-circular
configuration can be formed by robot rn jumping to the pivot location. Once
the robots are in bi-circular configuration BCC with stretch ki, robot r1 and robot
rn−1 occupy the base-point and the frontier-point. These three robots remain in
their location while the other robots move to the required positions for forming
pattern P. The positions are assigned in the following manner. The points in the
pattern P are mapped to locations in the bi-circular configuration such that the
smallest enclosing circle of pattern P coincides with the secondary enclosure of
the configuration and the base-point coincides with the lexicographically smallest
point pi on the smallest enclosing circle of P, i.e., pi ∈ SEC (P) and pi ≤ pj , for
any pj ∈ SEC (P). Notice that this mapping is unique. Let Γ (P) be the unique
mapping obtain by each robot (i.e., the locations that correspond to points in
the pattern P). The elements of Γ (P) are sorted in such a way that the first
point is the base-point of the current BCC configuration of the robots, and all
points which lie on the secondary enclosure C precede those that are located in
the interior of C. For 1 ≤ i ≤ size(Pi) robot ri is assigned the ith location in
Γ (P) and for size(Pi) < j ≤ n robot rj is assigned the n-th location in Γ (P).

During the formation of a pattern Pi of size size(Pi), the algorithm ensures
that the BCC configuration is maintained by keeping robots r1, rn−1 and rn sta-
tionary at the base-point, at the frontier-point and at the pivot positions respec-
tively. Only when all the other robots have moved to their assigned location,
robot rn−1 moves to its own assigned location, and also this is done ensuring
that BCC is preserved with the appropriate stretch so that robot rn can unam-
biguously move to the required position to complete the pattern.

The remaining cases are when there are exactly 2 or 3 robots. For n = 2,
the case of invisible identities is same as that of visible identities. The case of
n = 3 has been studied in [18] and an algorithm for forming any sequence of
patterns of at most three points has been given. As mentioned before, the trans-
formations between any two patterns of size 3 is straightforward and requires
the movement of a single robot (say r3). The only challenging scenario involves
the formation of POINT and TWO-POINTS, where the intermediate configurations
before and after forming POINT must be distinguished from the configuration
forming TWO-POINTS. In conclusion:

Theorem 17 ([17]). In Ssync with unlimited mobility and chirality, n robots
having distinct invisible identities can form any cyclic sequence of distinct pat-
terns 〈P1,P2, . . . ,Pm〉 where ∀i, size(Pi) ≤ n.
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Abstract. In this Chapter, we focus on the Gathering problem: that
is, the problem of having the robots, initially located in arbitrary distinct
points of the plane, gather in the exact same location. In this Chapter
we examine Gathering in the standard OBLOT model when robots
have unlimited visibility; we also briefly review results about the relaxed
problem of Convergence, where robots only need to move infinitely
close to each other, without necessarily reaching the same point.

1 Introduction

The previous Chapter treated one of the most important problems for OBLOT :
pattern formation. Among specific patterns, a special place is occupied by two
classes: Point and Uniform Circle. The class Point is the set consisting of a
single point; point formation corresponds to the important Gathering problem
requiring all robots to gather at a same location, not determined in advance. The
other important class of patterns is Uniform Circle: the points of the pattern
form the vertices of a regular n-gon, where n is the number of robots.

In addition to their relevance as individual problems, the classes Point and
Uniform Circle play another important role. As seen in the previous Chapter,
a crucial observation is that formability of a pattern P from an initial config-
uration Γ depends on the relationship between the symmetricity of P and the
symmetricity of Γ . More precisely, a pattern P can be formed from a configu-
ration Γ only if the symmetricity of Γ divides that of P [20,30]. Based on this
observation, it follows that the only patterns that might be formable from any
arbitrary initial configuration are the ones with maximum symmetricity, that
is, Point and Uniform Circle. It is rather easy to see that both points and
uniform circles can be formed in Fsync, i.e., if the robots are fully synchronous.
After a long quest by several researchers, it has finally been shown that Point,
as well as Uniform Circle are indeed formable in Async (and thus also in
Ssync), but with extremely complex solutions. The complexity of the problems
is due to the difficulties inherent in the simultaneous presence of asynchrony,
obliviousness, and disorientation. As we will see in the next Chapter, Uniform
Circle can be formed from arbitrary initial configurations without additional
assumptions in the standard OBLOT model; on the other hand, as we will see
in this Chapter, the formation of Point requires the introduction of either some
form of orientation or multiplicity detection.
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This Chapter is mainly devoted to the solution to Gathering in Async
[7]. More precisely, in Sect. 4 we show the impossibility result for Gathering
with disoriented robots without multiplicity detection; in Sect. 5 we describe
the solution to Gathering for disoriented robots in Async with multiplicity
detection, and in Sect. 6 for oriented robots in absence of multiplicity detection;
in Sect. 7 we briefly summarize the current state of the art for the related problem
of Convergence, and for the special case of Rendezvous (where the system
contains only two robots), as well as for the case of robots with limited visibility
(treated in detail in Chap. 7); in Sect. 8 we summarize the feasibility results.

2 The Problems

Let R = {r1, . . . , rn} be a set of n robots in the plane, operating in Look-
Compute-Move cycles following the OBLOT model (for the details of the model
see Chap. 1).

Let distt(ri, rj) denote the distance between robots ri and rj at time t, and
D(t) = max{distt(ri, rj)} the maximum distance between any two robots at
that time.

The Gathering problem is solved if ∃t : ∀t′ ≥ t,D(t′) = 0, that is, in finite
time all robots are located at the same point, not necessarily determined a priori.
When n = 2 the problem is usually called Rendezvous.

Convergence is achieved if limt→∞D(t) = 0, that is, if the robots get
arbitrarily close to each other.

3 Preliminary Observations

Rendezvous. Rendezvous occupies a special place in the research on mobile
robots because such a simple situation presents more challenges than the general
case. The problem is easily solvable in Fsync, where the simple strategy that
lets a robot move to the half point between the robots’ positions would achieve
rendezvous, but, without introducing agreement on the coordinate system, it is
unsolvable in Ssync.

Theorem 1 ([30]). Without any agreement on the local coordinate systems,
in Ssync, Gathering of n = 2 robots is impossible, even with multiplicity
detection.

It is not difficult to see why this is the case. Consider two robots r and s
that agree on one axis but not on the orientation of the other. These robots have
specular view of the environment. Assume by contradiction that a solution exists
and let A the corresponding protocol. Consider an execution E of A where, in
the very last round before achieving rendezvous, robot r is activated and moves
while robot s sleeps. Such an execution can be shown to exist. Consider now the
execution E ′ up to (and excluding) the last round; at this point, let both robots
be activated. When this happens, r will perform the same move as in E , whose



Gathering 65

destination is the observed position of s and, since the view of s is specular, s will
choose the observed position of r as its destination. The result will be a switch
of the positions of the robots. Since they are oblivious, in the same conditions
they will repeat the same actions; this means that, if they are both activated in
every turn from now on, they will continue to switch without ever gathering.

Gathering in Fsync. In Fsync, the move-to-half solution can be generalized
to solve Gathering of n > 2 robots by having the robots move to the centre of
gravity of their positions. In Fsync all robots are activated at the same time,
they can all easily compute the centre of gravity (which is the same for all
robots), and they all move there (Algorithm go-to-CoG).

Theorem 2 ([9]). Gathering is solvable in Fsync in the standard OBLOT
model.

This simple algorithm, however, can achieve Gathering only because of
synchronicity. In fact, in Ssync, where only a subset of robots is activated at
each round, the protocol fails. The reason of the failure is that the center of
gravity is not invariant with respect to robots’ movements towards it, and the
robots are oblivious. Once a robot makes a move towards the center of gravity,
its position changes; since the robots act independently and have no memory
of the past, a robot (even the same one) observing the new configuration will
compute and move towards a different point.

4 Impossibility of Gathering in SSYNC

If the robots have no agreement on the coordinate system and cannot detect
multiplicity, Gathering is not solvable in Ssync (and thus in Async) [28].

Theorem 3 ([28]). In absence of multiplicity detection and of any agreement
on the coordinate systems, Gathering is deterministically unsolvable in Ssync.

To see why this is the case, assume that the n > 2 robots in the system
have no agreement on the coordinate system and cannot detect multiplicity.
By contradiction, let Ag be a deterministic algorithm that correctly solves the
Gathering problem in Ssync.

Consider the following scenario: (i) All robots have the same unit distance;
(ii) All robots move of at each round of at least δ (the same for all robots);
(iii) Robots r1, . . . , rn−1, called the black robots, have the same orientation and
direction of the local coordinate system, while rn, f called the white robot, has
a local coordinate system where both axes have the same direction but opposite
orientation with respect to the coordinate system of the black robots.

Note that the information on the unit distance or the common minimum
movement, as well as the black and white colouring, are not known to the robots.

Clearly, Ag must solve gathering also in the scenario described above. By
definition, if the robots execute Ag, they will gather on the same point, say p,
in finite time, say at time tg. Let E be an arbitrary execution (defined in terms
of the activation of the robots) of Ag in Ssync. We now design an alternative
activation schedule of the robots, E ′, that behaves exactly as E until time tg −1.
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1. If rn is not on p at time tg − 1, then in E ′ rn is left inactive at this time
and all the other robots behave like in E . At time tg the robots then reach
a configuration E1 where all the black robots occupy the same position pb,
while the white robot does not (see Fig. 1a). At time tg the robots in the
system sense the world as if there were only two robots (they cannot detect
multiplicity), and these two robots have the same view of the world. Hence,
following the same reasoning of the impossibility proof for n = 2, we can
conclude that Ag does not correctly solve the Gathering problem.

2. Otherwise (i.e., if rn is on p at time tg − 1), in E ′ at time tg − 1, rn−1 is left
inactive, while all the other robots behave like in E . Also in this case, at time
tg the robots reach a configuration where n − 2 of the black robots and the
white robot occupy the same position pw, while the last black robot does not:
we will denote such a configuration as E2 (see Fig. 1b).

X
pb

b.

pw

a.

pb

pw

Y

Y

X

Fig. 1. [28]: configurations used in the proof of Theorem3. (a) A E1-configuration, (b)
a E2-configuration.

In this case, the situation is more delicate. As before, only two points on the
plane are occupied by robots: on one, pb, there is rn−1 (a black robot), and on
the other one, pw, there are r1, . . . , rn−2 (black robots) and rn (white robot).
However, the robots on pw do not all have the same view of the world, hence
the argument of the previous case cannot be used.
We build a new activation schedule E ′′ as follows. E ′′ is the same as E ′ until
time tg. After time tg, E ′′ activates r1, . . . , rn−2 always together (i.e., as if
they were one robot); rn−1 and rn are arbitrarily and fairly activated by E ′′.
Since, by hypothesis, Ag solves Gathering, in a finite number of cycles, say
at time t̃, the robots gather at p.
Note that, at time t̃ − 1, it is not possible that both rn and rn−1 are already
at p. In fact, this would imply that rn (and rn−1) would not move between
time t̃− 1 and t̃, and that only the robots r1, . . . , rn−2 would move. However,
the view of the world of rn and of r1, . . . , rn−2 at time t̃−1 is the same; hence,
since Ag is assumed to be deterministic, r1, . . . , rn−2 should take the same
decision taken by rn, that is to not move, thus not reaching gathering at time t̃.
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A similar argument can be applied to show that (1) It is impossible that, at
time t̃ − 1, r1, . . . , rn−1 are already at p, while rn is not; (2) It is impossible
that, at time t̃ − 1, rn and rn−1 are already at p, while r1, . . . , rn−2 are not.
At this point, we build a third activation schedule E ′′′ that is the same as E ′′

until time t̃ − 1. The behaviour of E ′′′ is as follows:

(a) If at time t̃ − 1 no robot is at p, then in E ′′′ robots r1, . . . , rn−1 are
activated, while rn is not. Hence, at time t̃ the robots are in a E1-
configuration.

(b) If at time t̃ − 1 only rn−1 is at p, then in E ′′′ robots r1, . . . , rn−2 are
activated, while rn is not. Hence, at time t̃ the robots are in a E1-
configuration.

(c) If at time t̃ − 1 only robots r1, . . . , rn−2 are at p, then in E ′′′ robots
rn−1 is activated, while rn is not. Hence, at time t̃ the robots are in a
E1-configuration.

(d) If at time t̃ − 1 only rn is at p, then in E ′′′ robots r1, . . . , rn−2 are active,
while rn−1 is not. Hence, the robots are once again in a E2-configuration.

In (a)–(c), a contradiction is reached by following the previous case. In
(d), by iterating the above argument, we have that either the robots keep
forming E2-configuration, or they form an E1-configuration; in both cases,
it is shown that Ag cannot correctly solve the Gathering problem.

This impossibility holds even if the adversary is very restricted in the choice
of the scheduler. Indeed it holds if the scheduler is not only fair and centralized
but also slicing (i.e., only one robot is activated in each round, and starting
from time t = 0, after n successive rounds, all the robots in the system have
been activated exactly once) [14].

5 Gathering in ASYNC with Multiplicity Detection

As seen earlier, gathering is impossible in absence of any form of agreement on
the coordinate system and of multiplicity detection (see Theorem 3); this is true
even if the robots are rigid (i.e., they always reach their destination in a single
round). The question then becomes what additional capabilities/assumptions
need to be made for gathering to become possible. The algorithm described in
this section achieves Gathering in Async and uses, as additional assumption,
multiplicity detection.

5.1 Preliminary Observation and Terminology

Convergence Based on Invariant Target Points. Before describing the solu-
tion to the Gathering problem, we make some observation about the simpler
Convergence problem, where the robots are required only to move infinitely
close to each other, without necessarily gathering at the same point. Conver-
gence can be easily solved by having each robot compute some appropriate
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target point (e.g., the centre of gravity) and move there. The center of gravity,
however, is not invariant with respect to robots’ movements towards it, which
means that after a robot moves in its direction, the position of the center of
gravity changes. As a consequence, since the robots are oblivious and they act
independently from each other, a robot performing the Look operation will not
necessarily compute the same point it computed in the previous cycle. For Con-
vergence this is shown not to be a problem, because the targets get closer and
closer to each other, but Gathering cannot be achieved.

The natural solution for gathering would be then to choose as destination a
point that, unlike the center of gravity, is invariant with respect to the robots’
movements towards it. The only known point with such a property is the unique
point in the plane that minimizes the sum of the distances between itself and
all positions of the robots (the Weber (or Fermat or Torricelli) point) [25,31].
Unfortunately, the Weber point is not expressible as an algebraic expression
involving radicals since its computation requires finding zeroes of high-order
polynomials [2]. In other words, the Weber point is not computable even by
radicals; thus it cannot be used to solve the gathering for n ≥ 5. Interestingly,
even convergence towards the Weber point can not be guaranteed due to its
instability with respect to changes in the point set [17].

In conclusion, to solve Gathering a very different strategy has then to be
devised.

Background and Difficulties. If robots can detect multiplicity, a strategy
starting from distinct initial positions of the robots could be to have some of
them create a unique point of multiplicity (a dense point). Once such a point
is created, all the other robots could simply move there solving the problem.
This idea has been employed in the Ssync model, with the assumption of fixed
mobility (i.e, a robot always travels the minimum between the distance to its
destination and a fixed δ, reaching its destination point) [30]. Depending on the
initial configuration, the dense point is formed either in the centre of the smallest
enclosing circle containing all the robots, or on the rim of the smallest enclosing
circle. Such a solution is however heavily based on instantaneous movements and
on synchronicity.

In the asynchronous setting the general strategy of creating a unique dense
point can be employed, but in this case the overall gathering algorithm is very
complex [7]. In fact, several difficulties have to be overcome because of the com-
bination of asynchrony and obliviousness.

Collision Avoidance. Among the various difficulties is the one of avoiding colli-
sions: since the robots do not look while moving, and the destination is computed
based on possibly outdated information about the position (and moves) of the
other robots, to avoid collisions, the computation of a robot r must take into
account all possible movements of all the other robots from the time t of the
Look to the unknown and a-priori unbounded time t′ > t when r will actually
end its move. In other words, collision avoidance, if required, is difficult and it is
sole responsibility of the protocol. As we will see, the algorithm of [7] will ensure
that collision are never except for the final gathering point.
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Symmetry Breaking. An additional difficulty due to obliviousness and related to
collisions is that if two robots (accidentally or by design) terminate a cycle at
the same location, then they become potentially indistinguishable, and from that
moment on they might behave exactly in the same way (in fact there is at least
one execution in which they will do so); in particular, it might not be possible
for them to separate ever again. More generally, due to asynchrony, symmetric
configurations are more difficult to break.

Symmetry Recognition. Symmetric configuration can be an advantage for gath-
ering. Consider, for example the equiangular configuration (i.e., all the robots
are the vertexes of a n-gon). In such a case the only strategy the robots can
apply to possibly solve Gathering would be to move towards the center of
the n-gon (Go-to-center strategy); in fact, any other movement would be
symmetrically executed by all the robots by an adversary that would create a
perfectly synchronized execution, resulting in yet another equiangular configu-
ration. So, if a robot perceives an equiangular configuration, it must act in this
way. On the other hand, if such a configuration is “accidentally” created by
the movement of some robots during the execution, a robot starting the Look
phase might observe the equiangular configuration and decide to apply the go-
to-center strategy, while those already moving continue their procedure (possibly
destroying the newly formed equiangularity). Any algorithm must ensure that, if
a symmetric configuration like this one is formed during the execution, all robots
become aware of it (recall, however, that the robots are oblivious and do not
remember previous observations), so that all robots follow the same strategy.
As we will see, the algorithm of [7] will ensure this for the class of biangular
configuration (of which the equiangular is a particular case).

Notation and Basic Definition. We now introduce some important terminol-
ogy used in the algorithm.

– succ() and pred(). Given a set P of n distinct points in the plane, a point
c /∈ P called the center, and the set RadSet(P, c), we define the successor of
p ∈ P with respect to c, denoted by succ(p, c), as the point q ∈ P such that
(refer to Fig. 2a): either q is the closest point to p on the radius where p lies, with
dist(c, q) > dist(c, p) (if any); or −→cq is the radius following −→cp in the order implied
by the clockwise direction, and q is the closest point to c on −→cq. Symmetrically,
given a point q ∈ P , the predecessor of q with respect to c, denoted by pred(q, c),
is the point p ∈ P such that succ(p, c) = q.

– Cyclic String of Angles. The functions succ() and pred() define a
unique cyclic order on P , which we shall denote by <p0, p1, . . . , pn−1>, where
pi+1 = succ(pi), and all operations on indices are modulo n. This, in turns,
defines a cyclic string of angles SA+(P, c) = <α0, α1, . . . , αn−1>, where αi =
�(pi, c, pi+1); pi is called the (clockwise) start point of αi. The string of angles
in the opposite direction is denoted by SA−(P, c) = <αn−1, . . . , α0>.

Associated to the cyclic string of angles SA+(P, c) there is the set of strings
SA+(P, c)[i] = <αi, αi+1, . . . , αi+n−1>, with 0 ≤ i ≤ n − 1 (refer to example
depicted in Fig. 2b, where the string of angles are computed with respect to
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Fig. 2. [7]: (a) Example: succ(p, c) = q, pred(q, c) = p, succ(q, c) = s, pred(s, c) = q.
(b) Example of the string of angles of P = p0, . . . , p7, computed with respect
to their SEC, with a clockwise orientation of the circle. We have SA+(P, c)[1] =
〈α, β, γ, α, α, β, γ, α〉; LexMinString(P, c) = 〈α, α, β, γ, α, α, β, γ〉; StartSet+(P, c) =
{p3, p7}; and StartSet−(P, c) = ∅.

the SEC of the 8 points); similarly, associated to SA−(P, c) there is the set of
strings SA−(P, c)[i] = <αi−1, . . . , αi>; here and in the following, all operations
on the indices are modulo n. We define the start point of SA+(P, c)[i] as the
start point of αi, that is pi. Finally, let SA(P, c)[i] = SA+(P, c)[i]∪SA−(P, c)[i],
and SA(P, c) =

⋃
i SA(P, c)[i].

– Simple/Mixed String of Angles. We say that SA(P, c) is simple if
SA+(P, c) does not contain any angle of zero degrees; otherwise, at least two
points are on the same radius, and we say that SA(P, c) is mixed.

– Lexographically Minimum String of Angles. We denote by LexMin-
String(P, c) the lexicographically minimum string among all strings in SA(P, c).
Let StartSet+(P, c) = {pi ∈ P |SA+(P, c)[i] = LexMinString(P, c)} be the set
of start points of LexMinString(P, c) in SA+(P, c), and let StartSet−(P, c) be
defined similarly. Let StartSet(P, c) = StartSet+(P, c) ∪ StartSet−(P, c).

– Biangular Configurations. We say that a set of n distinct points in the
plane P is biangular if there exists a point b such that ∀i ≥ 0 αi = αi+2 > 0
where SA+(P, b) = <α0, . . . , αn−1>; b is then called center of biangularity of P .
Given a set P of n − 1 points on the plane we say that P is biangular with one
gap and center b if there exists a point xg 	∈ P , such that P ∪ {xg} is biangular
with center b. Analogous definition holds for a set of points biangular with two
gaps. Finally, given a set P of n points, we say that P is irregular biangular if
there exists a point p ∈ P , the center, such that P \{p} is regular biangular with
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Fig. 3. [7]: (a) A regular biangular and (b) irregular biangular set of 8 points.

one gap with center p. (refer to Fig. 3b). Note that it can be shown that, if P is
irregular biangular, then its center is unique.

– Periodic Configurations. We say that a set P of n points is regular periodic
if SA+(P, c) is a periodic string with period greater than or equal to 3, where c
is the center of the SEC of P ; Similarly to the “gaps” introduced for a biangular
set of points, we say that a set P of n− 1 points is periodic with one gap if there
exists a string W , with |W | ≥ 3, and e ≥ 2 such that SA+(P, c) = W e−1 ◦ W ′,
with W = 〈w0, . . . , wn/e−1〉 and W ′ = 〈w0, w1, . . . , wi−1, w, wi+2, . . . , wn/e−1〉,
for some 0 ≤ i ≤ n/e − 1, and with w = wi + wi+1 (refer to Fig. 5b). Note
that, since n ≥ 5 and e ≥ 2, if P is periodic with one gap, then i is unique.
Furthermore, we say that a set P of n points is irregular periodic, if one of the
points in P is at c, and P \ {c} is periodic with one gap.

5.2 The Strategy

The overall strategy follows the principle of making the robots create a unique
dense point within finite time and then have all the remaining robots gather at
this point. As already observed, since the robots are disoriented, oblivious, and
operate in a totally asynchronous manner, several difficulties are encountered.
There are two main difficulties already discussed to consider, the first is ensuring
that a unique dense point is created other than the final gathering one (i.e.,
that the robots never collide during their movement); the other is to have the
robot collectively recognize the presence of special symmetric configurations: the
biangular configurations.

In particular, Algorithm GoGather works by examining the configuration
observed by a robot in the Look operation (see also Fig. 4). First of all, a robot
checks whether there is already a single dense point, p; if so, the robot moves
towards p. If no dense point is present, the robot verifies whether the current
configuration is biangular (of which a special case is the equiangular). If the check
for a biangular configuration is positive, the robot moves towards the center of
biangularity b if no other robots are in the way (routine moveIfFreeWay). The
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Algorithm 1. Asynchronous Gathering Algorithm – GoGather

R := Set of positions of the robots;
If One dense point p Then moveIfFreeWay(p).
Else

If The robots are in regular (resp. irregular) biangular configuration Then
b := Center of regular (resp. irregular) biangularity;
moveIfFreeWay(b).

Else
SEC := Smallest Enclosing Circle of all robots;
c := Center of SEC ;
If No robot is at c Then

Compute the set of strings SA(R), LexMinString(R);
Compute StartSet+(R), StartSet−(R);
s := |StartSet+(R) ∪ StartSet−(R)|;
If SA(R) is simple Then Case 1. Else Case 3.

Else %One robot r is at c%
R := R \ {c};
Compute the set of strings SA(R), LexMinString(R);
Compute StartSet+(R), StartSet−(R);
s := |StartSet+(R) ∪ StartSet−(R)|;
If SA(R) is simple Then Case 2. Else Case 4.

dense at p
3a1

2

3b

4a 4b

Move to b

SA mixed
no r at c

SA simple
one r at c

SA mixed
one r at c

Move to p

biangular
w.r.t. b

Case 1. Case 3.

Case 4.Case 2.

GoGather

SA simple
no r at c

Fig. 4. [7]: Schematic overview of our solution; the numbers on the arrows represent
the ordering of the tests performed by Algorithm GoGather.

algorithm ensures that, if this case is recognized by one robot, then all robots
will recognize it, and will move towards the same point b; in this case, within
finite time b will become dense.

If the first two tests fail, the robot analyzes the string of angles (SA) of
the robots with respect to the center c of the smallest enclosing circle. (See an
Example in Fig. 5).
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The algorithm distinguishes four cases depending on whether there is one or
no robot at the center of SEC, and on whether the SA is simple (i.e., the string
does not contain any angle of zero degrees) or mixed (i.e., at least one angle of
zero degrees is in the string, which implies that at least two robots are on the
same radius).
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Fig. 5. [7]: (a) Example with |StartSet+(P, c)| = 4, LexMinString(P, c) =
〈α0, . . . , α11〉 with period 〈α0, α1, α2〉. There are n

k
= 12

3
= 4 periods, with β = 90◦.

and β = α1 + α2 + α3 = 360◦/n
k

= 360◦/ 12
3

= 90◦. The thick lines represent the
starting points of each of the four periods. Robots xi, yi, ui, and vi, 0 ≤ i ≤ 2, are
equivalent. (b) If y2 is removed from P , we obtain an example of a set of points that is
periodic with one gap, with β = α1 + α2.

In all these cases, the algorithm “elects” a subset of the robots as leaders, on
the basis of the string of angles. Several cases arises (see Fig. 6 where s is the size
of the elected set) and the algorithm is complicated by various technicalities.

At a high level of description, the simplest situation is when the elected set
consists of a single robot, in which case that robot moves in such a way that
it maintains the leader status, until it reaches another robot, thus creating a
unique dense point. If there are more robots elected, they all move towards the
center of the smallest enclosing circle c. In doing so they move cautiously, that
is, ensuring that the smallest enclosing circle stays invariant during their move-
ments, and paying attention to potential biangular configuration that might be
formed during their movements. Indeed, if there is this possibility, the robots will
try to reach a biangular configuration rather than avoiding it. This is achieved
as follows: in the Compute phase, an elected robot checks if there exists sets of
points in the trajectories of all the robots that might render the configuration
biangular (critical points), and it explicitly computes all those sets. If the elected
robot has a critical point on its way towards the destination, it will move towards
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such a point. the algorithm ensures that the critical point will be reached and
that when this happens, no robot is moving or about to move (the configuration
is still). This is orchestrated by a careful synchronization mechanism collectively
performed by the robots. Hence, if a biangular configuration is formed during
the movements of the elected robots, all the other robots will observe it in their
next Look state, and they will eventually gather in the center of biangularity. If
instead no biangular configuration can be formed, the elected robots will create
a unique dense point at c, where all other robots will gather.

Correctness is proven by a sequence of lemmas, where the following termi-
nology will be used. The robots that, at time t are not moving nor about to
move are called still. The robots that, at time t, are moving or are computing
a non-null movement are said to be acting at time t. Furthermore, c the acting
robots at time t are acting on p if they are moving towards point p or their
computed destination is p. Finally, a robot acts safely on p if there is no other
robot between itself and p.

The first lemma stipulates that if there is a time when the system contains a
unique dense point and all the robots are about to move or are moving towards
this point in such a way that none of the robots perceives other robots between
itself and the dense point, then Gathering will be achieved.

Lemma 1 ([7]). Let p be the only dense point at time t. If at that time all the
robots are either still or safely acting on p, then there exists a time t′ > t when
all robots gather at p.

Another important lemma proves that, if a biangular configuration is formed
at a time when all robots are still, the robots will reach the center of biangularity.

Lemma 2 ([7]). Let at time t the configuration be plain, still and biangular
(either regular or irregular) with center b. Then there exists a time t′ > t when
all robots gather at b.

The next lemma proves that any arbitrary configuration will reach, within
finite time one of the following: (a) a biangular configuration where all robots
are still; (b) a configuration with a unique dense point where all robots are still;
(c) a configuration with a unique dense point where all acting robots are acting
safely on the unique dense point.

Lemma 3 ([7]). From any initial configuration E, within a finite number of
cycles, the robots reach a configuration that is either biangular (regular or irreg-
ular) and still, or dense and still, or dense with all acting robots safely acting
on the dense point.

From Lemmas 1, 2, and 3, it follows:

Theorem 4 ([7]). In Async, with multiplicity detection, n ≥ 5 robots can solve
the Gathering problem within finite time.

Since the Weber point can be computed for n < 5, this fact as well as the
availability of multiplicity detection, can be exploited to solve Gathering in
Async also for n = 3 and n = 4 [8].
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Else

Fig. 6. [7]: The four cases of the algorithm when there is no dense point, and the
configuration is not biangular. In the figure, s is the number of start points in the string
of angles; s is the number of start points in the string of angles built not considering c
(such string of angles is denoted by SA in the figure); and NI is the number of robots
inside SEC. Note that the figure specifies only the kind of movement that is performed
in each case, and not which robot (or subset of robots) is performing it.

6 Gathering in ASYNC with Compasses

By Theorem 3, either multiplicity detection or some form of agreement on the
coordinate system is necessary for Gathering to be solvable in Ssync (and
thus in Async). We have seen that with multiplicity detection Gathering can
be solved. Much simpler is the case of axis agreement. If agreement on the
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coordinate system is full, the Gathering problem has a trivial solution that
works even in Async by having the robots agree on a unique position (e.g., the
one occupied by the rightmost and topmost robot) and move there (Algorithm
Go-to-Top). Simple is also the case of robots that agree on one axis only
(with orientation). In this case Gathering can be solved by identifying the
position of a unique topmost robot (either because it exists from the beginning
or because it can be easily created) and have the robots appropriately move
there; the perceived topmost robot might change several times, but eventually
there will be a single one. This setting has been studied also in presence of faulty
robots [3].

The problem is still open when the robots agree only on the axis, but not on
their orientations, or if they have only chirality.

7 Related Problems

For completeness, we now briefly focus on problems closely related to Gather-
ing, some of which are treated in detail in other Chapters.

7.1 Convergence

As stated in Theorem 3, when no additional assumptions are made in the model,
there is no deterministic solution to the Gathering problem in Ssync. How-
ever, as already mentioned, Convergence is possible even in Async.

A very general and intuitive approach for letting n robots converge to a
common location is to have each robot calculate some median position of all the
observed positions (also called target function) and to move towards it.

The Center-of-Gravity (CoG) (a.k.a. center of mass or baricenter) is proba-
bly the most natural target function. The center of gravity is not invariant to
the robots’ movement; in spite of that, a simple algorithm that uses it as a tar-
get function converges even in Async for any number of robots [9]; it actually
achieves Gathering in Fsync, as mentioned in Sect. 5.1. The protocol is quite
simple: a robot ri computes the Center of Gravity ci of the robots ci = 1

nΣjrj ,
where rj is the position of robot rj , and moves towards ci.

This strategy has several advantages: in fact, it uses simple calculation, and
it can be applied to any number of dimensions and to any number of robots.
The crucial property on which convergence is based is that, even if the centre
of gravity changes with the movements of the robots, there is still an invariant
measure that allows the robots to get closer and closer. Define the destination
point ψi(t) of robot ri to be the final point of the movement made by ri following
the last Look performed by ri before or at time t. Let H(t) denote the convex
hull of the points ri(t) and ψi(t). Then the convex hull H(t) cannot increase
in time. In other words, using protocol CoG, we have that Convergence is
solvable in Async in the standard OBLOT model.

The convergence time of the solution can be studied, based on the notion
of rounds. Starting at time t, a round is said to terminate at the earliest point
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in time t′ when all robots have performed at least one complete cycle (Look–
Compute–Move) during the time between t and t′. With this definition, the con-
vergence time is define as the number of rounds that are required to halve
the convex hull [9]. As expected, the convergence time depends on the syn-
chronicity level of the model; it also depends on the type of mobility, that is
whether the usual mobility model is assumed, where the robots move towards
the destination of at least a small amount δ, or the rigid model is assumed,
where the robots always reach their destination [9]. Other target functions have
been also investigated with the main goal of improving the convergence time in
Async [11].

Convergence has been studied also in presence of inaccurate measure-
ments deriving impossibility and possibility results depending on the level of
inaccuracy [10].

7.2 Rendezvous

When n = 2, i.e. the system contains only two robots, the Gathering problem
is very special, and it is called Rendezvous. As seen in Sect. 5.1, the Ren-
dezvous problem is unsolvable in Ssync (and thus Async) without a common
coordinate system, and easily solvable in Fsync. The Convergence problem
of two oblivious robots without a common coordinate system, on the other hand,
is easily solvable even in Async with he move-to-half strategy.

The existing gap between trivial possibility of rendezvous of two oblivi-
ous robots in presence of ConsistentCompass and impossibility in presence of
Disorientation has lead to the study of additional assumption required to
achieve rendezvous in presence of Disorientation. One natural direction is to
explore what level of consistency of the coordinate systems (i.e., accuracy of
their compasses) would allow the robots to solve rendezvous. This approach has
been followed in [23] to study the case of compasses with Chirality, but with
axis tilted up to a certain degree. It is shown that the level of inaccuracy (i.e.,
the amount of tilt) tolerable by the robots depends on the level of synchrony, as
well as on whether the tilt is permanent or may change from round to round.
Another research direction is the study of feasibility for robots when a little
memory is available in the form of visible (or not visible) lights trying to mini-
mize the number of lights employed [13,19,22]. This topic is studied in detail in
Chap. 11.

7.3 Gathering and Convergence with Limited Visibility

The problems of Gathering and Convergence have been investigated also
in the context of limited visibility. This setting, together with other forms of
restricted visibilities) is considered in detail in Chap. 7; for completeness, we
summarize the main results.

Gathering. Gathering can be achieved in Async, when there is agreement
on the coordinate systems, and the robots initially form a connected visibility
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graph [18]. Taking advantage of the common coordinate system, the algorithm
prescribes the robots to appropriately move only “down” and/or “right” guar-
anteeing that the initial visibility graph is preserved and eventually making the
robots gather in the bottom-less, right-most point of the initial rectangular space
containing all robots. It is not known whether it is possible to solve the problem
with weaker assumptions. Gathering has also been studied when the robots
do not initially form a connected visibility graph and do not even agree on a
common coordinate system. In this case, however, it is assumed the presence
in the system of a “leader”, which takes the form of a special configuration of
three robots (called Turing Mobile) that coordinates the activities leading to
Gathering [16].

Convergence. Convergence can be achieved in the standard OBLOT model
in Ssync [1] by having the robot appropriately move towards the center of their
visible smallest enclosing circle. This algorithm, designed to achieve Conver-
gence, actually solves the Gathering problem in Fsync; the reason is that
synchronicity makes the robots form a point when they all are within visibility.
The behavior of the robots following this algorithm in presence of faults has been
studied in a 1-dimensional setting in [5]. Convergence has been shown to be
possible also in Async, under special schedulers: partial Async [26] (where the
time spent in the Move operation is bounded), and 1-fair Async [24] (where
between two successive activations of the same robot, all the other robots have
been activated at most 1 time). Finally, Convergence has been studied also
in presence of perception inaccuracies (radial errors in locating a robot) and it
has been show how to reach convergence in Fsync for small inaccuracies [32].

Collision-less Convergence. The Collision-less Convergence problem (also
called, Near-Gathering) consists of achieving convergence without any collision
among the robots. Slight modifications can make the algorithm of [1] collision-
less, thus solving Near-Gathering in Ssync. Near-Gathering can be achieved also
in Async, with two additional assumptions [27]: the robots must partially agree
on a common coordinate system (one axis is sufficient) and the initial visibility
graph must be well-connected, that is, the subgraph of the visibility graph that
contains only the edges corresponding to robots at distance strictly smaller than
V must be connected.

Gathering as a Combination of Algorithms. To achieve gathering with
limited visibility in Ssync, it might be possible to combine a collision-less con-
vergence version of [1] in Ssync until all robots can see each other, with the
existing gathering algorithm for unlimited visibility [7]. Indeed, this can be done
only if the robots can be made aware that they are all within visibility so to be
able to start the unlimited visibility algorithm in a coherent way. It is not known
whether this can be done in the OBLOT model. In a stronger model it can be
achieved, for example, if the robots know n (the total number of robots), or if
they have lights (which can be used to signal when they are all within visibility).
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7.4 Gathering and Convergence in Other Settings

Gathering and Convergence in the OBLOT model in presence of faults have
been extensively studied (e.g., see [15]); fault-tolerant computing by oblivious
robots is treated in detail in Chap. 10. Gathering has also been investigated in
the context of robots with extent (e.g., see [4,12,21]); the results are described in
Chap. 7 in the context of restricted visibility. A variant of Gathering has been
proposed where the robots must gather only at some predetermined points in
the plane (the meeting-points) and solutions have been proposed with the goal
of minimizing objective functions based on the traveled distance performed by
the robots [6].

8 Summary

Tables 1 and 2 summarize the feasibility results for point formation and con-
vergence in the unlimited and in the limited visibility settings, starting from

Table 1. Feasibility results in the unlimited visibility setting.

Unlimited visibility Assumptions Fsync Ssync and Async

Convergence

(n = 2) No assumptions go-to-half go-to-half

(n > 2) No assumptions go-to-CoG go-to-CoG [9]

Point formation

Rendezvous No assumptions go-to-half Impossible [30]

(n = 2) Tilted compasses go-to-half [23]

Eventually consistent go-to-half [29]

With lights go-to-half [13,19,22]

Gathering No assumptions go-to-CoG Impossible [28]

(n > 2) Multiplicity only go-to-CoG [7]

1 axis (and orientation) go-to-CoG Go-to-Top [3]

Axis (and no orientation) go-to-CoG ?

Table 2. Feasibility results in the limited visibility setting.

Limited visibility Assumptions Fsync Ssync Async

Convergence No assumptions [1] [1] ?

Gathering No assumptions [1] Impossible [28] Impossible [28]

Axis [1,18] [18] [18]

Multiplicity and n [1] [1] + [7] ?

Multiplicity and lights [1] [1] + [7] ?

Multiplicity only [1] ? ?
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arbitrary configurations where robots occupy different positions, and where the
visibility graph is connected.

Summarizing: solving the point formation problem (and thus convergence)
with unlimited visibility is always trivial in Fsync: in the case of two robots,
each robot moves half-way towards the other (Algorithm go-to-half), in the
case of n > 2 robots, each robot moves toward the centre of gravity of the
visible robots (Algorithm go-to-CoG). Solutions become increasingly complex
in Ssync and Async, where some assumptions must be made as it is shown
that without multiplicity detection and some form of orientation the problem is
unsolvable. Whether Gathering could be achieved without multiplicity detection
and with a form of orientation weaker than agreement on the robots’ axis and
orientation is still an open problem.

Solving gathering and convergence with limited visibility is more challeng-
ing. It is still always doable in Fsync. Solutions become increasingly complex
in Ssync and Async, and several cases are still open. For example, it is not
known whether a convergence algorithm exists in Async without any additional
assumption, no solution has been proposed yet to solve the gathering problem in
Ssync (and Async) with multiplicity detection only. When multiplicity detec-
tion is complemented by knowledge of the number of robots n or by the presence
of a constant number of lights, the convergence algorithm in limited visibility
can be combined with the gathering algorithm in unlimited visibility to obtain a
solution in Ssync; it is still open whether a solution exists under these assump-
tions in Async.
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Abstract. We treat the second of the two patterns that are formable in
the OBLOT model from every initial configuration of n robots: Uniform
Circle, i.e., the pattern where the robots are located at the vertices of a
regular n-gon. The algorithm presented in this chapter solves the Uniform
Circle Formation Problem in the standard OBLOT model under the
Async scheduler.

Keyword: Uniform Circle Formation

1 Introduction

In this chapter we treat the second of the two patterns that are formable in
OBLOT from every initial configuration of n robots: Uniform Circle, i.e., the
pattern where the robots are located at the vertices of a regular n-gon. The
algorithm presented in this chapter asssumes that no two robots are initially in
the same location, and solves the Uniform Circle Formation Problem in the
standard OBLOT model under the Async scheduler, and has been published
in [12,15].

The main body of the algorithm is described in Sect. 2, and deals with the case
of n > 5 robots. The cases with fewer robots are solved with ad-hoc algorithms,
and are discussed in Sect. 3.

Several related papers have appeared, studying the Uniform Circle Forma-
tion Problem or its variants, and solving it in special cases or under different
assumptions [2,4–8,10,16]. One of the earliest results on the problem appeared
in [18], where it is shown that robots can form Uniform Circle under the Ssync
scheduler, provided that they can remember past observations. Another early
algorithm, given in [5], makes a swarm of oblivious robots converge towards
Uniform Circle (possibly without ever forming it) under the Ssync scheduler.
Other algorithms from the same period can be combined to prove that Uniform
Circle is actually formable under the Ssync scheduler: by concatenating the
algorithm in [14], for forming a biangular configuration, with the one in [7], for
forming Uniform Circle from a biangular starting configuration, it is possible to
form Uniform Circle from any initial configuration (the case with four robots
has been solved separately in [8]). Observe, however, that the two algorithms
can be concatenated only because the scheduler is Ssync: under the Async
scheduler, this technique would be ineffective.
c© Springer Nature Switzerland AG 2019

P. Flocchini et al. (Eds.): Distributed Computing by Mobile Entities, LNCS 11340, pp. 83–108, 2019.

https://doi.org/10.1007/978-3-030-11072-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11072-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-11072-7_5


84 G. Viglietta

Some results for the Async scheduler assume implicit agreements among all
the robots. As shown in [10], if the local coordinate systems of all the robots have
the same orientation (i.e., the system has chirality), there is a simple algorithm to
form Uniform Circle. This has later been improved by a general result of [13],
which only assumes that all local coordinate systems are right-handed. Then,
in [11], a Uniform Circle Formation algorithm was given for Async robots with
no assumptions on their local coordinate systems, but allowing them to move
along circular arcs, as well as straight line segments. A solution for n �= 4 robots
under the Async scheduler without extra assumptions (i.e., in the standard
OBLOT model) was finally given in [12], and the solution for the special case
n = 4 appeared in [15].

Related results about the formation of Uniform Circle include a study of
the problem of minimizing the maximum distance traveled by a robot, where
robots have one bit of internal memory [1], an algorithm for transparent robots
with extent that are Ssync, perform rigid movements, and agree on one axis [17],
and an algorithm for opaque LUMINOUS robots in Fsync [9].

2 General Algorithm for n > 5 Robots

If the swarm of robots is not too small, i.e., if n > 5, there is a general Uniform
Circle Formation algorithm that works in all cases [12]. Recall that the goal of
the robots is to position themselves on the vertices of a regular n-gon and stop
moving: we call this type of configuration Regular.

A fundamental geometric tool used in the algorithm is the concept of smallest
enclosing circle (SEC) of the swarm of robots: this is the circle of smallest radius
that contains all robots. It is well known that such a circle exists, is unique, and
its center and radius can be effectively computed by the robots.

The algorithm can be outlined as follows: the general strategy is to make the
robots move to the SEC, determine their final “target points”, and then move
to such points to form a Regular configuration. The robots always move in an
orderly fashion, and the ones that are allowed to move at each step are carefully
chosen in such a way that the SEC does not change during their movements. The
only exception to this protocol is when the robots form, either “intentionally”
or “accidentally”, a particular type of configuration called Pre-regular: in this
case, they follow a special procedure that ignores the SEC.

The details of the algorithm are given below.

2.1 Special Cases: Biangular and Pre-regular Configurations

We first consider the Biangular configurations, exemplified in Fig. 1(a). In such
a configuration, the number of robots n is even, and the set of their locations
has exactly n/2 axes of symmetry. Note that a Biangular configuration can be
partitioned into two Regular configurations of size n/2. This is a particularly
interesting situation, because the robots may all have the exact the same view,
provided that their axes are oriented symmetrically, as Fig. 1(a) shows. In this
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scenario, the scheduler may force all robots to perform the same computation
and move at the same time, which will make the configuration remain Biangular
at all times (or become Regular). So, any Uniform Circle Formation algorithm
must ensure that this type of synchronous behavior from a Biangular configura-
tion indeed results in the formation of a Regular configuration. Nonetheless, the
algorithm must also take into account that movements may be asynchronous and
non-rigid: while moving toward their destinations, the robots may also form dif-
ferent and possibly asymmetric intermediate configurations, and asynchronously
compute new destinations from those configurations. Therefore, it is clearly desir-
able that the robots preserve some geometric invariant as they move, so that any
such intermediate configuration is treated coherently with the Biangular case.

A solution to the problem of forming a regular polygon starting from a Bian-
gular configuration is given in [7], where the robots identify a “supporting reg-
ular polygon” (see Fig. 1(b)), and each robot moves toward the closest vertex
of such a polygon. Any intermediate configuration possibly formed while the
robots move asynchronously towards the vertices of the supporting polygon is
called Pre-regular (note that all Biangular configurations are also Pre-regular).
While executing this procedure from a Pre-regular configuration, the supporting
polygon remains invariant (e.g., see Fig. 1(c)). So, whenever the configuration is
perceived as Pre-regular by all the robots, moving toward the appropriate vertex
of the supporting polygon results in the formation of a Regular configuration.

Note that a robot can effectively determine whether the observed configu-
ration is Pre-regular. Moreover, thanks to the following lemma, all robots in a
Pre-regular configuration implicitly agree on the same supporting polygon and
behave coherently with one another.

Lemma 1 ([12]). The supporting polygon of a Pre-regular configuration is
unique.

2.2 General Strategy: SEC and Analogy Classes

Consider now a starting position of the robots that is not Pre-regular (and hence
not Biangular). Recall that the robots have no common reference frame, and
there are no “environmental” elements that can help them orient themselves.
This difficulty may prevent the robots from coordinating their movements and
act “consistently” from one cycle to another. To overcome this, the SEC of the
robots’ positions is identified (see Fig. 2(a)), and the algorithm ensures that the
robots move in such a way as to keep the SEC fixed. This will hold true so long as
the configuration is not Pre-regular. If the configuration happens to become Pre-
regular during the execution, then the procedure of Sect. 2.1 will be executed,
and the SEC will no longer be preserved.

As a preliminary step, the general algorithm attempts to make all robots
reach the perimeter of the SEC. So, let us consider a configuration that is not Pre-
regular and in which all robots lie on the perimeter of SEC. In this situation, we
identify pairs of robots r1 and r2 that are located in “symmetric” positions, i.e.,
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Fig. 1. (a) A Biangular configuration with local axes oriented in such a way that all
robots have the same view. (b) How the algorithm resolves a Biangular configuration.
(c) A generic Pre-regular configuration with its supporting polygon, which remains
invariant as the robots move along the arrows. (Source: [12])

such that there is an isometry of the plane that permutes the robots’ locations
switching the positions of r1 and r2. We call two such robots analogous, and the
swarm is thus partitioned into analogy classes of analogous robots (see Fig. 2(b)).
In general, an analogy class has either the shape of a Regular set or of a Biangular
set (with some degenerate cases, such as a single point or a pair of points).

Similarly to the Biangular case (cf. Sect. 2.1), the scheduler may force all the
robots in an analogy class to perform the same computation and move at the
same time, thus occupying symmetric positions again, and potentially forever. To
accommodate this, the algorithm incorporates this type of behavior and makes
all analogous robots always deliberately move together in the same fashion.
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Fig. 2. (a) A swarm of robots with its SEC and SEC/3. (b) The three highlighted
robots form an analogy class. If their axes are oriented as indicated, the three robots
have the same view. (c) The three dark-shaded robots are selected as walkers and move
according to the arrows. At the end, for each walker there is a non-walker at an angular
distance of π/3 from it (note that π/3 is a multiple of 2π/n = π/6). (Source: [12])

More specifically, the algorithm lets only one analogy class move at any given
time, while all the other robots wait on the SEC (see Fig. 2(c)). The robots in
the analogy class that is allowed to move are called walkers. When the walkers
have been chosen, they move radially to SEC/3, which is the circle whose radius
is 1/3 of the radius of the SEC and concentric with the SEC. Once they are all
on the perimeter of SEC/3, they move to their so-called finish set, while staying
within SEC/3 (or in its interior). When they are all in their finish set, they
move radially to the SEC again. After that, a new analogy class of walkers is
chosen, and so on. The walkers and the finish set are chosen in such a way that,
when the walkers are done moving, some kind of “progress” toward a Regular
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configuration is made. For instance, progress is made when two analogy classes
merge and become one (note that a Regular configuration has only one analogy
class), or when the angular distance between two robots on the SEC becomes a
multiple of 2π/n (note that in a Regular configuration all angular distances are
multiples of 2π/n).

Of course, as the walkers move, they need a strategy to “wait for each other”
and make sure to reach a configuration where they are once again analogous.
Also, different analogy classes should plan their movements “coherently”, in
such a way that their combined motion eventually results in the formation of
a Regular configuration. Note that this is complicated by the fact that, when a
class of walkers starts moving, some of the “reference points” the robots were
using to compute their destinations may be lost. Moreover, it may be impossible
to select a class of walkers in such a way that some “progress” is made when
they reach their destinations, and in such a way that the SEC remains fixed as
they move. In this case, the configuration is said to be locked, and some special
moves have to be made.

Finally, as the robots move according to the general algorithm that has
just been outlined, they may end up forming a Pre-regular configuration “by
accident”. So, the robots need a technique to stop immediately whenever this
happens, so that they can all recognize the Pre-regular configuration and start
executing the procedure of Sect. 2.1 (note that some robots may be in the mid-
dle of a movement when a Pre-regular configuration is formed accidentally, and
countermeasures have to be taken to prevent this, or else different robots may
end up executing different protocols, and the swarm will behave incoherently).

All the aforementioned aspects will be discussed in the rest of this section.
Next we will show how the robots can reach the SEC from any initial configu-
ration, as a preliminary step.

2.3 Preliminary Step: Reaching the SEC

A simple way to make all robots reach the SEC without colliding is to make
each of them move radially, away from the center, as in Fig. 3(a). This protocol
only works assuming that no two robots are co-radial, i.e., on the same half-line
extending from the center of the SEC. A special case is the Central configuration,
in which one robot lies at the center of the SEC. Central configurations are easily
resolved by simply making the central robot move to SEC/3, in such a way as
not to become co-radial with any other robot.

The Co-radial configurations that are not Central are handled as follows. First
of all, if there is any robot in the interior of SEC/3 that is not co-radial with
any other robot, it moves radially to SEC/3 (note how the evolution of a Central
configuration naturally blends with this protocol). Then, for each maximal set
of at least two mutually co-radial robots, the robot that is closest to the center
of the SEC moves radially toward the center until it is in SEC/3 (see Fig. 3(b)).
Finally, the most internal co-radial robots make a lateral move to become non-
co-radial, as in Fig. 3(c). The lateral move is within SEC/3 (or its interior) and
it is “sufficiently small”, in order to prevent collisions. A sufficiently small move



Uniform Circle Formation 89

(a) (b)

(c)

Fig. 3. (a) All robots move radially to reach the SEC. (b) The most internal co-radial
robots move radially to SEC/3. (c) When they are in SEC/3, they make a small lateral
move. (Source: [12])

is, for instance, a move that reduces the angular distance to any other robot by
no more than 1/3.

The reason why we make robots reach SEC/3 before performing lateral moves
is because we want to prevent the accidental formation of Pre-regular configu-
rations. We will discuss this aspect later, in Sect. 2.9.

It is easy to see how this strategy makes the robots coordinate themselves
and avoid collisions. Indeed, as soon as a robot r makes a lateral move and
stops being co-radial with other robots, it is seen by the other robots as a non-
co-radial robot lying in the interior of SEC/3. Hence, no other robot will take
initiatives, and will just wait until r has reached SEC/3 and has stopped there.
This guarantees that, when a robot decides to perform a lateral move, no other
robot is in the middle of a lateral move.
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Also, no matter how many robots lie on the same line through the center of
the SEC, the innermost will always move first, and then the others will follow in
order, after the first has stabilized on SEC/3. When this procedure is completed,
there are no more co-radial robots and no robots in the interior of SEC/3. At
this point, the robots can safely move toward the SEC radially.

Lemma 2 ([12]). If no Pre-regular configurations are ever formed, the algo-
rithm will make all robots eventually reach the perimeter of the SEC and stop
there.

After this phase of the algorithm has been completed, no two robots will
ever become co-radial again. We will achieve this through a careful selection of
walkers and target points, and by making walkers move appropriately.

2.4 Half-Disk Configurations

Another special initial case has to be resolved: the Half-disk case. In this con-
figuration, all the robots lie in one half-disk of the SEC, and the diameter of
such a half-disk is called principal diameter (see Fig. 4(a)). The reason why it is
convenient to resolve these configurations immediately and separately from all
others will be explained in the following, when discussing locked configurations.

Half-disk configurations are resolved by making some robots move from the
“occupied” half-disk of the SEC to the “non-occupied” one. Note that, while
doing so, some robots have to cross the principal diameter. Also, as a conse-
quence of the definition of SEC, the principal diameter must contain robots on
both endpoints. These two robots, r1 and r2, must stay in place in order to
maintain the SEC stable. Hence, exactly two other robots, which have smallest
angular distances from r1 and r2 respectively, move to the two points where
the principal diameter intersects SEC/3 (see Fig. 4(b)). Once they are both
there, they move into the non-occupied half-disk, remaining inside SEC/3, as
in Fig. 4(c). (More precisely, if the principal diameter already contains some
robots on or inside SEC/3, such robots do not preliminarily move to the perime-
ter of SEC/3, because it is unnecessary and it may even cause collisions; in this
case, they move into the unoccupied half-disk right away.)

A very special Half-disk case is the one where all robots lie on the same
line. This case is handled as a generic Half-disk, with two robots first moving on
SEC/3 (if they are not already on it or in its interior), and then moving away from
the principal diameter. If they move in opposite directions, the configuration is
no longer Half-disk. If they move in the same direction, they form a generic
Half-disk, which is then resolved normally.

When analyzing the possible evolutions of a Half-disk configuration, one has
to keep in mind that it transitions into a different configuration while one or two
robots are still moving. This turns out to be relatively easy, since the moving
robots are inside SEC/3 (like the robots that move laterally in the Co-radial
case) and move in a very predictable and controlled way. When the configuration
ceases to be Half-disk, the robots will move on SEC as described before, and they
will never form a Half-disk configuration again.
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Fig. 4. (a) A Half-disk configuration and the principal diameter. (b) Two robots move
to the intersection between the principal diameter and SEC/3. (c) The same two robots
move to the non-occupied half-disk. (Source: [12])

Lemma 3 ([12]). If no Pre-regular configurations are ever formed, the algo-
rithm will make all robots eventually reach the perimeter of the SEC and stop
there, in such a way that in every half-circle of the SEC there is at least one
robot.

2.5 Identifying Targets

Suppose now that all robots lie on the perimeter of the SEC, and the configura-
tion is not Pre-regular and not Half-disk. In this case we can define a target set,
which represents the final Regular configuration that the robots are attempt-
ing to form. Each element of the target set is called a target, and corresponds
to some robot’s intended destination. Hence the target set is a Regular set of n
points arranged on the SEC in such a way that it can be computed by all robots,
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regardless of their local coordinate system (i.e, regardless of the orientation of
their local axes, their handedness, and their unit of distance). Next we describe
how the target set is defined, depending on the configuration of the robots.

Assume that the configuration has an axis of symmetry �. Then � must nec-
essarily be an axis of symmetry of the target set. If one robot r lies on �, then
the target of r coincides by definition with r’s location, and the other targets are
defined accordingly (see Fig. 5(a)). If no robot lies on �, then no target is placed
on �, either. In this case, the correspondence between robots and targets is as in
Fig. 5(b). It is not hard to prove that this definition is independent of the choice
of an axis of symmetry �, and that therefore the same target set is computed by
all robots.

Lemma 4 ([12]). Even if the configuration has more than one axis of symme-
try, it has a unique target set, and the robot-target correspondence is uniquely
determined.

Assume now that the configuration has no axes of symmetry. In this case we
say that two robots are concordant if their angular distance is of the form 2kπ/n,
for some integer k, and between them there are exactly k − 1 robots. In other
terms, two concordant robots have the “correct” angular distance, and between
them there is the “correct” number of robots. This is an equivalence relation
that partitions the robots into concordance classes. The largest concordance
class determines the target set: by definition, each robot in this class coincides
with its own target. Even if the largest concordance class is not unique, it turns
out that there is always a way to choose one of them unambiguously, in such a
way that all robots implicitly agree on it. Once some targets have been fixed,
the other targets and correspondences are determined accordingly, as Fig. 5(c)
shows.

Lemma 5 ([12]). In every configuration with all robots on the perimeter of the
SEC, the target set and the robot-target correspondence are uniquely determined.

2.6 Identifying Walkers, Locked Configurations

When the target set has been identified, then the walkers can be defined. The
walkers are simply the analogy class of robots that are going to move next.

Typically, the algorithm will attempt to move an analogy class of robots to
their corresponding targets. The robots that currently lie on their targets are
called satisfied, and these robots should not move. Moreover, the walkers should
be chosen in such a way that, when they abandon the perimeter of the SEC and
move into its interior, they do not cause the SEC to change. An analogy class of
robots with this property is called movable. Finally, no two robots should become
co-radial as a result the walkers’ movements. This means that the walkers should
be chosen in such a way that, as they move toward their targets, they do not
become co-radial with other robots. The targets of such robots are said to be
reachable.
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Fig. 5. The outer arrows indicate targets, and the inner arrows indicate correspon-
dences between robots and targets. (a) The dark-shaded robot lies on an axis of sym-
metry. (b) There are some axes of symmetry, none of which contains a robot. (c) There
are no axes of symmetry, and the dark-shaded robots form the largest concordance
class. (Source: [12])

Therefore, the walkers are selected to be a movable analogy class of robots
that are not satisfied and can reach their targets without ever becoming co-
radial with other robots. If such a class is not unique, one can always be chosen
unambiguously.

There are special cases where no such analogy class or robots exists: these
configurations are said to be locked (see for instance Fig. 6(a)). In a locked con-
figuration, the walkers are chosen with a different criterion: they are an analogy
class that is movable and not satisfied, and that is adjacent to some non-movable
analogy class. Such an analogy class is called unlocking. The goal of these walkers
is not to reach their targets (if they could, the configuration would not be locked),
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but to move in such a way as to “unlock” the configuration (as in Fig. 6(b)), thus
allowing other robots, which were previously non-movable, to reach their targets
(as in Fig. 6(c)).

Lemma 6 ([12]). In a locked configuration, each analogy class consists of at
most two robots. Also, there are at most two robots that are non-movable, and
they are adjacent.

It follows that there are only one or two walkers in a locked configuration,
and each of them is adjacent to some non-movable robot.

Lemma 7 ([12]). In every configuration with all robots on the perimeter of the
SEC, the walkers and their destinations are well defined.

2.7 Identifying Valid Configurations

Next we describe the journey that the walkers have to take to reach their des-
tinations. First they move radially to the perimeter of SEC/3, and they wait
for each other there. Once they are all on SEC/3, they start moving laterally,
remaining within SEC/3 and its interior, until they reach their finish set, which
is simply the set their destinations on SEC/3. Once they are in their finish set,
they move back to the perimeter of the SEC, radially.

The reason why the walkers move all the way to SEC/3, instead of going
directly to their destinations, is two-fold. It makes it easier to foresee and pre-
vent the accidental formation of Pre-regular configurations (see Sect. 2.9), and it
clearly separates the robots that should move from the ones that should wait,
so that none gets confused as the configuration changes.

Note that it is easy to recognize a configuration in which the walkers are
moving radially to SEC/3 or back to the SEC, because the analogy classes (and
hence the walkers) are defined only based on angular distances between robots.
Thus, if all robots are on the SEC, except for a few analogous robots that are
between SEC and SEC/3, then the configuration is recognized as a “consistent”,
or Valid one, in which the walkers are either moving to SEC/3 or are moving
back to the perimeter of the SEC (see Fig. 7(a)).

If the walkers have already started moving laterally in SEC/3, then recog-
nizing the configuration as a Valid one is more difficult. This can be done by
“guessing” where the internal robots were located when they were still on the
SEC and they have been selected as walkers. If there is a way to re-position the
internal robots within their respective “sectors” of the SEC in such a way as
to make them become a full analogy class, then the configuration is considered
Valid, and the internal robots are considered walkers (see Fig. 7(b)). Otherwise,
it means that the execution is in one of the earlier stages, and the robots still
have to make their preliminary move to the SEC.
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Fig. 6. (a) A locked configuration: the topmost robots are satisfied, the bottommost
robots are non-movable, and all other robots would become co-radial in the process
of reaching their targets. (b) A preliminary move is made to unlock the configura-
tion. (c) When the configuration is unlocked, the bottommost robots become movable.
(Source: [12])

2.8 Identifying the Finish Set

Once the configuration has been recognized as Valid and all walkers are in SEC/3,
they compute their finish set. Recall that this is the set of their destinations on
SEC/3, which they want to reach before moving back to SEC.

In order to understand where they should be going, the walkers have to
recompute their targets. Indeed, note that the original targets have been com-
puted when the walkers were on the perimeter of SEC. As they are now in SEC/3,
in the process of moving laterally to their destinations, they need a robust way to
define targets. This means that different walkers should compute the same target
set, and the target set should not change as the walkers move within SEC/3.
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(a) (b)

Fig. 7. Two types of Valid configurations. (a) Some analogous robots lie between SEC
and SEC/3, and all other robots are on the SEC. (b) All robots are on the SEC or on
SEC/3, and the distribution of the internal robots is compatible with a possible initial
configuration in which they were all on the SEC, forming an analogy class. (Source:
citeFPSV17)

Of course it may not be possible to reconstruct the original walkers’ positions
on the SEC and recompute the original targets, and therefore once again the
walkers have to “take a guess”. The default guess is that, when they were still
on the perimeter of the SEC, each walker was equidistant from its two adjacent
robots, as in Fig. 8(a). This position of the walkers is referred to as the principal
relocation, and of course it can be computed unambiguously by all robots.

Now the robots compute the finish set as follows. First of all, if the prin-
cipal relocation is not a full analogy class, but just a subset of one, then the
walkers know that it could not possibly be their initial position on the SEC (see
Fig. 8(b)). In this case, the finish set is defined to be the principal relocation
itself. The reason is that, by moving to their principal relocation, the walkers
all join some bigger analogy class: this is not an “ineffective” move, because it
makes progress toward having a unique analogy class.

On the other hand, if the principal relocation forms in fact an analogy class,
then the walkers assume that to be their original position on the SEC. Hence they
compute the new targets based on that configuration, with the usual algorithm
(see Fig. 8(c)). Now, if the walkers can reach their respective targets from inside
SEC/3 (that is, without becoming co-radial with other robots), then the finish
set is the set of their targets. Otherwise, the walkers are confused, and by default
their finish set is the principal relocation again.

Now that the finish set has been defined, the robots move there, always
remaining within SEC/3, and without becoming co-radial with each other. There
is only one exception: suppose that the walkers reach their finish set and move
radially to the perimeter of the SEC: let R be the set of the final positions of
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Fig. 8. (a) The principal relocation of the internal robots. (b) If the principal relocation
is a proper subset of an analogy class, it cannot be the original position of the internal
robots, or else a larger set of walkers would have been selected. (c) If the principal
relocation forms an analogy class, it is used to determine the target set. Such targets
remain fixed as the internal robots move within their respective sectors. (Source: [12])

the walkers on the SEC. If the new configuration is locked, and the robots in R
happen to form an unlocking analogy class, then it was not a correct move for
the walkers to go to R. Indeed, this would cause them to become walkers again
(unless there are two unlocking analogy classes and the other one is chosen),
and the execution would enter an infinite loop. In this special case, the walkers
have to do something to unlock the configuration, instead of reaching R. The
strategy is as follows: if the walkers are two, they move to two antipodal points
(as in Fig. 6(b)); if there is a unique walker, it becomes antipodal with some non-
movable robot currently located on the SEC. Note that this type of move would
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not be possible in a Half-disk configuration: this is precisely why the algorithm
makes sure to resolve Half-disk configurations early on.

Lemma 8 ([12]). Suppose that an unlocking analogy class of walkers is chosen
in a locked configuration, and said walkers move to their destinations. Then, the
resulting configuration is not locked, and all its analogy classes are movable.

2.9 Accidental Formation of Pre-regular Configurations

The algorithm has still one unresolved issue. Recall that, every time a robot
computes a new destination, it first checks if the configuration is Pre-regular.
If it is, it executes the special protocol given in Sect. 2.1; otherwise it proceeds
normally. So, let us consider what happens if the swarm is executing the non-
Pre-regular protocol, and suddenly a Pre-regular configuration is formed “by
accident”. If a robot happens to perform an observation right at that time,
it is going to execute the Pre-regular protocol, while all the other robots are
still executing the other one, and maybe they are in the middle of a move (see
Fig. 9(a)). This leads to an incoherent behavior that will likely disrupt the “flow”
of the entire algorithm.

To resolve this issue, we have to avoid the unintended formation of Pre-regular
configurations whenever possible. If in some cases it is not easily avoidable, then
we have to make sure that the whole swarm stops moving, or freezes, whenever
a Pre-regular configuration is formed. This way, all robots will transition into
the new configuration, and all of them will coherently execute the Pre-regular
protocol in their next cycles.

Fortunately, certain configurations are safe:

Lemma 9 ([12]). No Central or Co-radial or Half-disk configuration can be
Pre-regular.

So, in these initial phases, no Pre-regular configuration can be formed acci-
dentally. Another important observation is the following:

Lemma 10 ([12]). In a Pre-regular configuration, no robot can be in SEC/3.

This explains why we make our walkers move radially to SEC/3 first, and we
allow them to move laterally only within SEC/3.

Hence, the only moves that have to be analyzed are the radial ones, which
are performed by the walkers between SEC and SEC/3 or by the robots that
are reaching the perimeter of the SEC during the preliminary step. We can
conveniently simplify the problem if we let only one analogy class of robots
move at a time. Note that this is already the case when the moving robots are
the walkers, and in the other cases there is always a way to totally order the
analogy classes unambiguously. If only one analogy class is moving radially, it is
then easier to keep the swarm’s behavior under control and analyze all possible
outcomes.

The general protocol that is used for radial moves is called cautious move,
and is described next.
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Fig. 9. (a) As the robot on the right moves to the SEC, a Pre-regular configuration
is accidentally formed. The robot on the left recognizes a Pre-regular configuration,
and starts executing the corresponding protocol, which is inconsistent with the other
robot’s move. (b) To prevent this behavior, enough critical points are added. Now the
swarm is guaranteed to stop as soon as a Pre-regular configuration is formed. (c) A
case in which infinitely many Pre-regular configurations are formable. Still, only the
innermost is relevant, because it can be reached before all the others. (Source: [12])

2.10 Cautious Moves

In a cautious move, there is an analogy class of robots that have to move radially,
either all from SEC/3 to SEC or all from SEC to SEC/3, while the other robots
wait. Each moving robot has a final destination and is given as input a finite
set of critical points along its path. Collectively, the moving robots execute a
protocol that makes them move in such a way as to freeze whenever they are all
located at a critical point (see for instance Fig. 9(b))1.
1 A similar concept has been used in [3], with some technical differences.
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The procedure first augments the set of input critical points with a finite set
of “auxiliary” critical points, and then lets a robot move toward the next critical
point (auxiliary or not) along its path, provided that some conditions are met.
The details are as follows.

– The endpoint of each robot’s path is added to the set of critical points.
– For every robot r and every critical point p lying on any other robot’s path,

a critical point is added on r’s path at the same distance from the center of
the SEC as p.

– Then, for each pair of consecutive critical points on each robot’s path, the
midpoint is added as a critical point.

– The robots that are not farthest from the endpoints of their respective paths
are not allowed to start moving.

– The robots that are farthest from the endpoints of their respective paths move
to the next critical point along their respective paths.

Lemma 11 ([12]). If the robots execute the cautious move protocol from a frozen
initial configuration, they either reach their final destinations or they freeze in a
configuration where all of them are in a critical point.

(Recall that a configuration is said to be frozen if no robot is moving.)
So, if the potentially formable Pre-regular configurations are used to generate

the critical points of a cautious move, it is indeed guaranteed that the robots
will freeze as soon as they form one. This is not always possible, because the
formable Pre-regular configurations may be infinitely many (as in Fig. 9(c)),
while the critical points must be finite. However, it can be shown that, in all
cases, either there is a finite number of Pre-regular configurations that will be
formed before all the others, or suitable critical points can be chosen in such a
way as to prevent the formation of Pre-regular configurations altogether. Hence,
it turns out that it is always possible to choose a finite set of critical points for all
cautious moves, and guarantee that the swam is frozen whenever it transitions
into a Pre-regular configuration.

Lemma 12 ([12]). Let an analogy class of robots perform a radial cautious move
from SEC to SEC/3 or vice versa, with suitable critical points. Then, either all
robots reach their destinations, or they freeze in a Pre-regular configuration.

2.11 Correctness of the Algorithm

All the elements of the Uniform Circle Formation algorithm have been pre-
sented. When a robot executes the algorithm, it determines the current con-
figuration type and executes the corresponding procedure to compute a desti-
nation point. Observe that some configurations fall in more than one category
(for instance, the Central configurations are also Co-radial), and so the order in
which such categories are tested matters. The order is the following:
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– Regular,
– Pre-regular,
– Central,
– Half-disk,
– Co-radial,
– Valid,
– Invalid.

All these classes have already been defined, except Invalid, which is the set of
configurations that do not fall in any other class. In an Invalid configuration, all
robots simply perform a cautious move toward the perimeter of the SEC.

The correctness of the Pre-regular case of the algorithm, as well as the Cen-
tral, Co-radial, and Half-disk cases is relatively straightforward to prove. Other
parts of the algorithm, however, need a more careful analysis: these include a
characterization of the locked configuration and the determination of critical
points in every configuration where a radial move is made, in order to avoid the
accidental formation of Pre-regular configuration.

These theoretical tools allow to finally tackle the Valid case, and so analyze
the main “loop” of the algorithm. It can be shown that the different phases of
the execution “hinge together” as intended: all the walkers reach SEC/3 and
freeze there (unless a Pre-regular configuration is formed in the process), then
they all move to their finish set, freeze again, and finally they move back to the
perimeter of the SEC. As the execution continues and more iterations of this
phase are made, it is necessary to study how the target set changes, in order to
make sure that a Pre-regular configuration is eventually formed.

To this end, it can be proven that, at each iteration, some “progress” is
made toward a Regular or Biangular configuration. This could mean that the
walkers join another analogy class (thus reducing the total number of analogy
classes), or that a new axis of symmetry is acquired, or that more robots become
satisfied. Of course the configuration may also be locked: in this case it can be
proved that, after one iteration, either the configuration is no longer locked, or
some analogy classes have merged, or a previously non-movable analogy class
has become movable.

Also, by design, the algorithm never allows an analogy class to split (because
the walkers constitute an analogy class when they are selected, and are again
all analogous when they reach their finish set), and it never causes a symmetric
configuration to become asymmetric from one iteration to the next. However,
it is true that the targets may change, and thus the number of satisfied robots
may actually decrease. However, this can happen only when some analogy classes
merge or when the configuration becomes symmetric, and thus it can happen
only finitely many times.

So, either a Pre-regular configuration is formed by accident (and this case
leads to a quick resolution), or eventually there will be only one analogy class
left, and hence the configuration will be Regular or Biangular. Figure 10 shows
the possible transitions between configuration types that the algorithm allows.
Observe that every possible flow ends in a Regular configuration.
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Fig. 10. Possible transitions between configurations in the Uniform Circle Formation
algorithm. (Source: [12])

Theorem 1 ([12]). The Uniform Circle Formation Problem is solvable by
n > 5 robots in the standard OBLOT model under the Async scheduler.

3 Special Algorithms for n ≤ 5 Robots

For small values of n, i.e., n ≤ 5, the Uniform Circle Formation algorithm of
Sect. 2 fails, and ad-hoc algorithms have been designed for these cases. If n ≤ 3
the problem is relatively simple, and the case n = 5 is obtained by modifying
the general algorithm of Sect. 2. The case n = 4, on the other hand, requires a
special treatment.

3.1 n �= 4 Robots

If n = 1 or n = 2, the pattern Uniform Circle is automatically formed, and
nothing has to be done. If n = 3, the algorithm is as follows:

– if the three distances between pairs of robots are all distinct and robots r1
and r2 are farthest apart, then robot r3 moves parallel to r1r2 toward the
axis of r1r2;

– otherwise, if r1r3 = r2r3, then r3 moves to the closest point that forms an
equilateral triangle with r1 and r2 (in case there are two such points, one is
chosen arbitrarily).

The analysis of this algorithm is straightforward.

Theorem 2 ([12]). The Uniform Circle Formation Problem is solvable by
n ≤ 3 robots in the standard OBLOT model under the Async scheduler.
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If n = 5, it turns out that the algorithm of Sect. 2 works as it is, except in
one situation: there are locked configurations where an unlocking analogy class
cannot be found in the usual way, because all the classes that are adjacent to
some unmovable class are satisfied. This cannot happen if n > 5, and in this
type of configuration the algorithm is undefined.

The algorithm can be modified to encompass these cases as follows. Suppose
that the configuration is Valid, with all robots on the perimeter of the SEC, and
without axes of symmetry. Two robots are said to be antipodal if they occupy
antipodal points of the SEC.

– If no two robots are antipodal, a movable robot is chosen unambiguously, it
becomes a walker, and moves to become antipodal with some other robot. It
can be shown that there exists one such robot that can complete its movement
without becoming co-radial with any other robot.

– If exactly two robots are antipodal, there is a unique robot that is adjacent to
both of them (recall that a Valid configuration cannot be Half-disk). Such a
robot is movable, and it becomes the walker and moves to become antipodal
with another robot.

– If two pairs of robots are antipodal, the non-antipodal robot is movable, it
becomes the walker, and moves to the midpoint of its adjacent robots, thus
creating an axis of symmetry.

When the configuration has an axis of symmetry �, since n = 5 is odd, there
must be a robot r on �. If � is not unique, the configuration is Regular; so, assume
that � is unique. If the two analogous robots s and s′ that are farthest from r are
not satisfied, the other two robots q and q′ make a preliminary move to become
antipodal (on the diameter of the SEC that is perpendicular to �), thus making
s and s′ able to move to their targets. When s and s′ are satisfied, q and q′ move
to their targets to form a Regular configuration.

Observe that, since n = 5 is an odd number, no Pre-regular configuration
can be formed, and thus the cautious moves require no ad-hoc critical points.

Theorem 3 ([12]). The Uniform Circle Formation Problem is solvable by
n = 5 robots in the standard OBLOT model under the Async scheduler.

3.2 n = 4 Robots

The case with n = 4 robots presents difficulties that make it unique, and has
been approached with radically different techniques. This case has been resolved
in [15].

When trying to apply the algorithm of Sect. 2 to n = 4 robots, it is immediate
to recognize that the Biangular configurations are now rectangular, and for such
configurations the supporting polygon defined in Sect. 2.1 is not a unique square,
but there are infinitely many of them. Even if the robots tried to implicitly agree
on one such square with a common criterion, the square would shift as the robots
move asynchronously to its vertices, yielding a convergence algorithm at best (as
opposed to a formation algorithm).
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The approach adopted in [15] is, roughly speaking, to “tilt” the supporting
square by 45◦. That is, a square is found such that each robot lies on a distinct
edge of it (or on the extension of an edge), and the target of each robot is the
midpoint of the edge on which it lies. Once again there is more than one such
square, but the construction in Fig. 11 unambiguously produces one.

1r

q

4r

3r

2r

3p3�

1�

4�

2�

Fig. 11. Construction of the supporting square. (Source: [15])

Let r1r2r3r4 be a strictly convex quadrilateral whose diagonals r1r3 and
r2r4 are not perpendicular. Let q be the unique point such that r1q = r2r4,
the lines r1q and r2r4 are perpendicular, and the ray emanating from r1 and
passing through q intersects the line r2r4. Let �3 be the line through r3 and q,
and let �1 be the line through r1 parallel to �3. (Since r1r3 and r2r4 are not
perpendicular, �3 is well defined and is distinct from �1.) Let �2 be the line
through r2 perpendicular to �1, and let �4 be the line through r4 parallel to �2.
By construction, these four lines intersect at four points that are vertices of a
square Q, the supporting square. In turn, the midpoints of the edges of Q form
a second square Q′, whose vertices are the target points of the robots. Referring
to Fig. 11, the target of r3 is p3, and the segment r3p3 is called r3’s pathway, etc.

Lemma 13 ([15]). All robots agree on the same supporting square, which
remains fixed as all robots move to their target points asynchronously. More-
over, no two robots’ pathways intersect.

As the above construction assumes that the robots form a convex quadri-
lateral with non-perpendicular diagonals, special protocols are needed in these
cases. If the quadrilateral is non-convex, there is a unique robot that is con-
tained in the triangle formed by the other three: this robot moves to the foot of
an altitude of such triangle, thus forming a loosely convex configuration with per-
pendicular diagonals. On the other hand, whenever the quadrilateral is (loosely)
convex and its diagonals are perpendicular, then the robots that are closest to
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the intersection point of the diagonals move away from it until the configuration
becomes a square.

The above protocol has yet one exception: it does not apply when all four
robots are on the same line. In this case, the two non-extremal robots move to
either side of the line by a small amount. As they move asynchronously in this
fashion, their supporting square changes wildly, and so a “safe region” has to be
defined in which the robots do not rely on their supporting square but follow a
different protocol. The safe region has the form of a thin hexagon, depicted in
Fig. 12. The proportions of the hexagon are carefully chosen for reasons that will
be clear later.

6h h5

4h

3h2h

1h ◦50 ◦50

Fig. 12. Thin hexagon: the angles at h1 and h4 are 50◦, and h1h4 = 4 · h1h2.
(Source: [15])

If there are robots in h1 and h4 and two internal robots on different sides of
the diagonal h1h4, then the internal robots move to the white dots of Fig. 12,
turning the configuration into one with perpendicular diagonals. If the internal
robots are on the same side of the diagonal h1h4, say above it in Fig. 12, then
they move to the vertices h2 and h3 respectively, and they wait for each other.
When they both arrive and stop, the supporting square can be computed without
ambiguity, and the protocol can safely switch to the normal one, which makes
all robots move to their target points on the supporting square.

Of course, if all robots asynchronously move toward their target points, they
may accidentally form configurations that are not strictly convex or have perpen-
dicular diagonals or are thin hexagons, much like they could accidentally form
Pre-regular configurations in the algorithm of Sect. 2. Again, the issue is resolved
by limiting the number of robots that move concurrently and by employing a
concept of critical point and cautious move similar to that of Sect. 2.10.

To define the critical points, some definitions are needed. Two robots are
concordant if they have to move around the center of the supporting square
in the same “direction” (i.e., clockwise or counterclockwise) as they go toward
their targets. They are discordant if they move in opposite directions, and a robot
is said to be finished when it is on its target point. Let the guidelines of two
discordant robots ri and rj intersect in a point g. If pi lies on the segment rig and
pj lies on the segment rjg, then ri and rj are said to be convergent ; otherwise,
they are divergent (if both ri and rj are finished, they are both convergent and
divergent). If the pathway of ri intersects the segment rjrk in v, then ri is said



106 G. Viglietta

1r

4r 3r

2r
4p

2p

Fig. 13. Robot r2 is blocked; robots r1 and r3 are hindered. (Source: [15])

to be blocked at v. If the pathway of ri intersects an extension of the segment
rjrk in v, then ri is said to be hindered at v (see Fig. 13).

Of course, the points v defined above, which make a robot blocked or hin-
dered, constitute natural critical points for the robots’ movements, as they deter-
mine transitions to special classes of configurations (i.e., not strictly convex or
with perpendicular diagonals).

Whenever possible, the algorithm makes only one robot move while the others
wait. In this case asynchrony is not an issue, and the robot will either move to its
target or to the first critical points on its pathway. An example of such a situation
is when one robot is discordant with the other three: then, the discordant one will
move before the other three. Another example is when all robots are concordant:
in this case, the two robots on opposite sides of the supporting square that are
closest to each other will move (as they move toward their targets, their distance
will keep being the shortest). It can be proven that these two robots cannot be
both blocked or both hindered. Thus, if one of them is blocked, it is chosen as
the only robot to move; if none of them is blocked but one is hindered, it is the
one to move. In all situations in which a single robot cannot be distinguished in
a robust way, it is always possible to choose two robots to move while the other
two robots wait. Suitable critical points also exist for these situations.

A notable fact is that, when looking for critical points, in almost all cases it is
unnecessary to take into account the accidental formation of thin hexagon con-
figurations. Indeed, in most of the relevant configurations, if the robots to move
are selected properly, no thin hexagon can ever be formed, as Fig. 14 exemplifies.
This is due to the proportions of the thin hexagon detailed in Fig. 12, which have
been chosen specifically for this purpose. For instance, suppose that robots r1
and r2 are divergent and robots r3 and r4 are divergent, as well. Further assume
that r1 is the only robot that does not lie on an edge of the supporting square,
but on the extension of it: in this configuration, r1 is chosen to move toward
its target. It is easy to verify that, if r2 is the robot closest to r1, then the two
angles ∠r1r3r4 and ∠r1r4r3 are both greater than 25◦. Hence, if r1 is on an acute
vertex of a thin hexagon and r3 (respectively, r4) is on the opposite vertex, then
r4 (respectively, r3) cannot be contained in the same thin hexagon.

As in Sect. 2, for the algorithm to work properly, it is necessary to identify
to which class the observed configuration belongs, by checking them one by one
in the correct order, because some classes have intersections. The order is the
following:
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Fig. 14. (a) If r1 and r3 are on their targets and r2 and r4 move, no thin hexagon is
formed. (b) As r3 and r4 move, no thin hexagon is formed. (Source: [15])

– Perpendicular diagonals,
– Thin hexagon,
– Non-convex,
– All robots concordant,
– Two robots convergent, two other robots divergent,
– Two robots divergent, two other robots divergent,
– Three robots concordant, one discordant.

To each class corresponds a different set of actions. The algorithm is designed in
such a way that, whenever a class transition occurs, no robot is moving: thus, all
robots will “witness” the transition and will coherently execute the instructions
for the new class. Also, when the configuration transitions from class A to class
B, the class B comes before A in the list above: this ensures that some progress
toward the solution is always made. The last rule has only one exception: when
all robots are on the same side of a thin hexagon, they will eventually be found
on four consecutive vertices of it. This configuration is then interpreted as one
with two pairs of divergent robots, which is resolved by the normal algorithm
without possibility of forming a thin hexagon again.

We conclude that Uniform Circle is formable by n = 4 robots, as well.

Theorem 4 ([15]). The Uniform Circle Formation Problem is solvable by
n = 4 robots in the standard OBLOT model under the Async scheduler.
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Abstract. Symmetry of anonymous mobile robots imposes many
impossibilities. We focus on the formation problem that requires the
robots to form a target pattern. We consider the robots moving in
the three-dimensional space and the two-dimensional space (3D and 2D
space, respectively) and introduce the notion of symmetricity of a set of
points that represents the set of rotation groups that the robots cannot
resolve. However, the symmetricity does not always match the rotational
symmetry of geometric positions of the robots. We demonstrate that the
robots are capable of breaking symmetry by their movement in some
cases. The goal of this chapter is to present the following characteriza-
tion of formable patterns; anonymous synchronous mobile robots in 3D
space or 2D space can form a target pattern from an initial configuration
if and only if the symmetricity of an initial configuration is a subset of
the symmetricity of the target pattern.

Keywords: Symmetry · Rotation group · Pattern formation problem
Plane formation problem · Symmetry breaking

1 Introduction

Symmetry is a source of impossibilities of agreement problems in anonymous
distributed systems, where computing entities are indistinguishable and exe-
cute a common deterministic algorithm. For example, consider a traditional dis-
tributed message-passing system consisting of two anonymous processes. There
is no deterministic algorithm to elect a leader because the two processes have
an identical local “view” of the system and they always demonstrate identical
behavior. This notion has been formalized as the symmetricity of a network of
anonymous processes [22].

In this chapter, we introduce the symmetricity of anonymous mobile robots
moving in the three-dimensional Euclidean space and the two-dimensional
Euclidean space (3D and 2D space, respectively). Each robot is a point and
repeats a Look-Compute-Move cycle with a common deterministic algorithm, i.e.,
we consider the OBLOT model introduced in Chap. 1. It cannot access the global
coordinate system and use any explicit communication medium. It observes the
positions of other robots in its local coordinate system, which is a right-handed
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orthogonal coordinate system in the specified space with an arbitrary unit dis-
tance and arbitrary directions and orientations of coordinate axes. Although
sensing is the only means of communication, the robots may not obtain a consis-
tent result (i.e., observation) due to their inconsistent local coordinate systems.
In such a distributed robot system, symmetry arises from the geometric positions
of the robots and their local coordinate systems. To show the effect of symmetry,
we consider fully-synchronous robots equipped with unlimited sensing range.

We focus on the formation problem that requires the robots to form a spec-
ified pattern and show that the initial symmetry determines the set of formable
patterns; thus, it determines the robots’ self-organization power. Previous studies
[16,19] have pointed out that the formation problem is related to the agreement
problem, and the problem is further classified as follows depending on the target
pattern.

– The point formation problem, which is also known as the gathering problem,
requires the robots to gather at a single point with no predefined gathering
point. The point formation problem is the simplest agreement problem.

– The circle formation problem requires the robots to form a circle (i.e., a
regular polygon on a plane). Circle formation implies that the robots agree
on the center and radius of a circle.

– The pattern formation problem requires the robots to form a target pattern
(shape), where each robot is given the target pattern as a multiset of point
coordinates. Since the robots do not know the global coordinate system, any
uniform scaling, translation, rotation, and their combination on the target
pattern are allowed.1 The robots can form an arbitrary pattern when they
agree on a common coordinate system consisting of the origin, unit distance,
and coordinate axes.

The formation problem was initially considered for the robots moving in 2D
space. The point formation problem and the pattern formation problem are
easily extended to 3D space. However, the circle formation problem is not directly
extended to 3D space because an agreement on a point and radius results in a
sphere in 3D space. To solve the circle formation problem, the robots must first
agree on a plane on which they form a circle. This problem itself is an important
formation problem in 3D space.

– The plane formation problem requires the robots in 3D space to land on a
common plane; however, multiple robots cannot land on a single point to avoid
multiplicity. Thus, point formation is not a solution for the plane formation
problem. Plane formation implies that the robots agree on a single direction
and a single point.

The equivalent in 2D space is the line formation problem, which requires the
robots to form a line. We consider the following two examples.

1 The pattern formation problem for the robots with chirality does not allow any
reflection of the target pattern by a mirror plane.
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Example 1. Consider an initial configuration of four robots placed at (1, 1),
(−1, 1), (−1,−1), and (1,−1) in the global coordinate system (Fig. 1). Here, the
robots’ local coordinate systems are symmetric with respect to the origin (0, 0).
In Fig. 1, the x and y axes of each local coordinate system are indicated by a
solid arrow and a broken arrow, respectively.

If the four robots observe their positions, they obtain identical observations
because their local coordinate systems are symmetric with respect to the origin
(0, 0), which is also the center of the rotational symmetry of their positions.
Note that the observation consists of the coordinates of the four points in the
robot’s local coordinate system. The next positions locally computed by each
robot using a common algorithm form another regular square, and the robots
never resolve their rotational symmetry. Furthermore, the final lines that they
propose are symmetric with respect to the origin, and they cannot form a line.

In 2D space, the symmetry among the robots is recognized by the rotational
symmetry. Consider a set P of points in 2D space. We consider a decomposition of
P into regular m-gons with a common center, where one point forms a regular 1-
gon with an arbitrary center, and two points form a regular 2-gon with the center
being the midpoint. Then, we consider the maximum value of m. For example,
m is four in Example 1. The value of m represents the rotational symmetry of P ,
and when m > 1, the common center is the center c(P ) of the smallest enclosing
circle of P . As demonstrated in Fig. 1, there exists a set of local coordinate
systems for P that is symmetric with respect to c(P ) and prevents the robots
from breaking the regular m-gons.

The crucial difference between the rotational symmetry of P and the value
of m arises when c(P ) is contained in P .

Example 2. Five robots are placed at (0, 0), (1, 1), (−1, 1), (−1,−1), and
(1,−1) in the global coordinate system (Fig. 2).

In this case, the value of m is one, and the robot on the origin can break the
symmetry by leaving its current position. The robot can propose a final line by
moving to a point on one of the diagonals of the regular square formed by the
other four robots. In [16,19,23], this value m is called the symmetricity of a set
P of points, denoted by ρ(P ).
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Fig. 3. Regular polyhedra

The two examples demonstrate that the robots cannot resolve the symme-
try of their initial geometric positions and local coordinate systems. The initial
symmetry prevents the robots from forming shapes with lower symmetry. Sym-
metric configurations are recognized as regular polygons in 2D space. Thus, we
consider the symmetry in 3D space in relation to the five regular polyhedra, i.e.,
the regular tetrahedron, the regular octahedron, the cube, the regular dodec-
ahedron, and the regular icosahedron (Fig. 3). In addition, there are thirteen
semi-regular polyhedra that are considered less symmetric than the five regular
polyhedra. The symmetry of such a polyhedron is recognized as a set of direct
congruent transformations, i.e., a set of symmetry operations that preserve the
center and maintain Euclidean distance and handedness. As in 2D space, such
operations consist of rotations around axes in 3D space that form the special
orthogonal group SO(3). Since we assume a finite number of robots, we consider
a set consisting of finite rotation operations. The subgroups of SO(3) with finite
order are classified into five types of rotation groups, i.e., the cyclic groups, the
dihedral groups, the regular tetrahedral group, the regular octahedral group, and
the regular icosahedral group. A cyclic group and a dihedral group are recognized
as a set of rotations on a pyramid with a regular polygon base and a set of rota-
tions on a prism with regular polygon bases, respectively. Each of the remaining
three rotation groups is recognized as a set of rotations on the corresponding
regular polyhedra. Other symmetry operations in 3D space consist of reflections
for mirror planes (bilateral symmetry), reflections for a point (central inversion),
and rotation-reflections [6]. However, these operations change handedness.2 In
this chapter, we consider rotation groups.

Let us begin with the plane formation problem. We say that the robots
form a regular polyhedron when they are placed on the vertices of the regular
polyhedron. The regular tetrahedron, the regular octahedron, and the regular
icosahedron have the corresponding rotational symmetry. The cube is the dual of
the regular octahedron, and the regular dodecahedron is the dual of the regular
icosahedron in the sense that the centers of the faces of one regular polyhedron
form its dual polyhedron. Thus, the cube and the regular dodecahedron have
the identical rotational symmetry as their duals. The robots seem to be unable
to form a plane when they form a regular polyhedron in an initial configuration.
However, the robots can form a plane from an initial configuration where they

2 In Sect. 6, we discuss generalization of these symmetry operations to the robots
without chirality, in which model the local coordinate system of a robot is either
right-handed or left-handed.
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form one of the regular polyhedra, except the regular icosahedron. In addition,
the robots can form a plane from an initial configuration where they form an
icosidodecahedron; however, they cannot form a plane from the remaining semi-
regular polyhedra. This counter-intuitive fact derives from the symmetry of local
coordinate systems. For example, if one arranges local coordinate systems whose
origins form a cube, these local coordinate systems will be asymmetric or agree
on one direction. The eight local coordinate systems are less symmetric than
the cube. Similarly, there is no set of local coordinate systems for the vertices
of the regular icosahedron that is symmetric regarding the regular icosahedral
group. However, there exists a set of local coordinate systems for these 12 vertices
that is symmetric regarding the regular tetrahedral group, which is a subgroup
of the regular icosahedral group. The 12 robots may be caught in the regular
tetrahedral group, which does not act on a set of points on a plane and they
cannot form a plane. Consequently, to investigate the rotational symmetry in
3D space, we must consider the structure of the rotation groups.

The goal of this chapter is to characterize the set of formable patterns by
synchronous mobile robots in 3D space. We first define the symmetricity in 3D
space that contains the symmetricity in 2D space as a subclass. For a given set
P of points in 3D space, its symmetricity, denoted by �(P ), consists of a set of
rotation groups that the robots cannot break when they are placed on P . Then,
we give the following characterization.

Theorem 1 [25]. Regardless of obliviousness, fully-synchronous robots can form
a target pattern F from an initial configuration P if and only if �(P ) ⊆ �(F ).

Intuitively, this necessary and sufficient condition means that the “symme-
try” of an initial configuration must be lower than that of a target pattern.
The symmetricity is defined such that the subset relation reflects the subgroup
relation in group theory.

The chapter begins with the definition of rotation groups and related notions.
The impossibility part first considers oblivious robots and then extends the nec-
essary condition to non-oblivious robots. After that, matching sufficient condi-
tion is given by a pattern formation algorithm for oblivious robots. Non-oblivious
robots can execute the algorithm by ignoring the content of local memory.

The reminder of this chapter is organized as follows. We describe the system
model and define the formation problem in Sect. 2. In Sect. 3, we define the
symmetricity of a set of points and demonstrate how the robots are caught
in their initial symmetricity. Section 4 presents initial configurations that allow
the robots to break their symmetry through movement, and Sect. 5 presents an
overview of a pattern formation algorithm for solvable instances wherein the
robots use their symmetry to coordinate themselves. As a corollary of the main
theorem, we give a necessary and sufficient condition for the robots to solve the
plane formation problem. Conclusions are presented in Sect. 6. In addition, we
extend the main results to weaker robot models.
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2 Robot Model and Formation Problem

Robot System. We consider a set R = {r1, r2, . . . , rn} of n (n ≥ 2) robots in a
specified space (i.e., 2D space or 3D space). Each robot is an anonymous point,
and we use the indices to facilitate description. The position of ri at time t in
the global coordinate system is denoted by pi(t). A configuration is a multiset of
robots’ positions denoted by P (t) = {p1(t), p2(t), . . . , pn(t)}. We assume pi(0) �=
pj(0) holds for all i �= j because there is no deterministic algorithm that can
separate more than one robots at the same point. All possible multisets of points
in 3D space and those in 2D space are denoted by P3

n ∈ (R3)n and P2
n ∈ (R2)n,

respectively.
Each robot ri repeats a Look-Compute-Move cycle. In the Look phase, ri

obtains the snapshot of other robots’ positions. Visibility is Unlimited; there-
fore, ri can observe all other robots. Robot ri uses its local coordinate system
when it observes the positions of other robots and when it moves to a next
position. Each local coordinate system is a right-handed orthogonal coordinate
system in the specified space. For example, in 3D space, it is a right-handed x-y-z
coordinate system. The origin of the local coordinate system of ri is its current
position and it changes as ri moves. On the other hand, the directions and orien-
tations of the axes and the unit distance do not change. Thus, a local coordinate
system is represented by a point and a set of vectors of its unit length. Note
that a local coordinate system is a uniform scaling, a transformation, a rotation,
or their combination of the global coordinate system. Each robot is equipped
with the (strong) multiplicity detection ability, and when more than one robot
is on a single position, each robot can count the number of such robots. In the
Compute phase, ri computes its next position using a common deterministic algo-
rithm. We say that the algorithm is oblivious when its input is the observation
obtained in the preceding Look phase and non-oblivious when its input contains
past observations and computations. The robots executing an oblivious algo-
rithm are called oblivious, and the robots executing a non-oblivious algorithm
are called non-oblivious. The output of the Compute phase is the coordinates of
the next position in ri’s local coordinate system. In the Move phase, ri moves
toward the next position. We say a movement is rigid when a robot reaches its
next position. Otherwise, a robot may stop en route, and we say the movement is
non-rigid. A non-rigid movement guarantees that a robot moves by an unknown
minimum moving distance δ; however, after moving δ, it may stop at any point
on its route. If the distance between the current position and the next position
is less than or equal to δ, the robot reaches the next position.

There are three models for the timing of Look-Compute-Move cycles, i.e., fully-
synchronous (Fsync), semi-synchronous (Ssync), and asynchronous (Async).
In the Fsync model, the Look, Compute, and Move phases are completely syn-
chronized. We consider that the tth Look-Compute-Move cycle starts at time
(t − 1) and ends by time t for t = 1, 2, . . .. In other words, in the tth Look-
Compute-Move cycle, each robot observes P (t− 1) in its local coordinate system,
computes its next position, and the Move phase ends before time t. In the Ssync
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model, like the Fsync model, Look-Compute-Move cycles start at a discrete time;
however, some robots may skip cycles. To guarantee fairness, we assume that
each robot executes a Look-Compute-Move cycle infinitely many times. In the
Async model, we only assume that the length of each Look-Compute-Move cycle
is finite and each robot executes a cycle infinitely many times. The main differ-
ence between the Async model and the other two models is that a robot may
be observed while it is moving. However, since a robot can observe the positions
of other robots, it cannot recognize which robot is moving. In other words, the
duration of each cycle is negligible in the Fsync model and the Ssync model;
however, it is not negligible in the Async model.

An execution of an algorithm starting from an initial configuration P (0) is a
sequence P (0), P (1), P (2), . . . of configurations for discrete time t = 0, 1, 2, . . . for
the Fsync model and the Ssync model. For the Async model, we consider the
time at which at least one robot takes a snapshot of the positions of the robots.
Let t0, t1, t2, . . . be the sequence of such time instants that satisfies ti < ti+1 for
each i = 0, 1, 2, . . .. Then, we consider ti as time i and we focus on the sequence
P (0), P (1), P (2), . . ..

Given an initial configuration P (0) and robots’ local coordinate systems, the
execution of algorithm ψ from P (0) is uniquely determined in the Fsync model
with rigid movement. On the other hand, there are many executions of ψ from
P (0) in the Ssync model and the Async model with rigid movement. However,
any execution of ψ in the Fsync model occurs in the Ssync model, and any
execution of ψ in the Ssync model occurs in the Async model. The relation
between the rigid movement and the non-rigid movement is the same. As a result,
if the robots cannot accomplish a given task in the Fsync model with rigid
movement, there exists an execution where the robots cannot accomplish the
task in the Ssync model and the Async model regardless of movement rigidity.
However, if there exists an algorithm ψ by which the robots can accomplish
a given task in the Async model with non-rigid movement, ψ also makes the
robots in the Ssync model and the Fsync model accomplish the task regardless
of movement rigidity.

In this chapter, we mainly consider Fsync robots with rigid movement. Gen-
eralization of the results to the Ssync model and the Async model is discussed
in Sect. 6.

Formation Problem. The pattern formation problem requires the robots to
form a target pattern from a given initial configuration. The target pattern is
given to each robot as a multiset F of points in the global coordinate system.
Thus, the pattern formation problem allows any uniform scaling, translation,
rotation, and their combination on the target pattern. We say a multiset of
points F ′ is similar to F when such a translation exists (denoted by F ′ ∼ F ). An
algorithm forms a target pattern F from a given initial configuration P if, regard-
less of the robots’ initial local coordinate systems and the initial local memory
content (of non-oblivious robots), for any execution P (0)(= P ), P (1), P (2), . . .
under the specified model, there exists a finite t such that (i) P (t) ∼ F and
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(ii) for any positive integer t′ ≥ t, P (t′) = P (t). A target pattern F is formable
from a given initial configuration P if there exists an algorithm that forms F
from P .

The plane formation problem requires the robots in 3D space to land on a
plane that is not predefined; however, multiple robots cannot land on a single
point to avoid multiplicity. Thus, point formation is not a solution for the plane
formation problem. We also assume that n is larger than three because fewer than
four robots are on one plane. An algorithm forms a plane from a given initial
configuration P if, regardless of the robots’ initial local coordinate systems and
the initial local memory content (of non-oblivious robots), for any execution
P (0)(= P ), P (1), P (2), . . . under the specified model, there exists finite t such
that (i) P (t) is contained in a plane, and (ii) for any positive integer t′ ≥ t,
P (t′) = P (t).

These formation problems require the robots to form a target pattern or a
plane regardless of their initial local coordinate systems, execution schedule of
cycles (in the Ssync model and the Async model), and movements (in the
non-rigid model). In other words, a formation algorithm must defeat the adver-
sary that controls the initial local coordinate systems, schedules, and movements.
Regarding non-oblivious robots, an algorithm must accomplish formation regard-
less of initial local memory content.

We say that a set of points form a polyhedron when the points are placed
on the vertices of the polyhedron. Thus, we sometimes use a polyhedron and its
vertices interchangeably.

Consider a ball B centered at point b in 3D space. The interior (exterior)
of B does not contain the sphere of B. The smallest enclosing ball of a set P of
points and its center are denoted by B(P ) and b(P ), respectively.

3 Symmetricity

To investigate the symmetry among the robots, we consider the rotation group
and the symmetricity of a set of points, and the rotation group of a set of local
coordinate systems. These notions represent the set of symmetry operations that
can be performed on a set of points and a set of local coordinate systems. As
described in Sect. 2, these symmetry operations are classified into five types of
rotation groups.

The rotation group γ(P ) of a set P of points represents the “maximal” rota-
tion group that acts on P . Here, the “maximality” addresses the subgroup rela-
tion in group theory. Clearly, γ(P ) does not depend on the coordinate system
to observe P .

Let C = {(pi, xi, yi, zi) | ri ∈ R} denote a set of local coordinate systems of
the robots, where pi is the coordinates of the current position of ri (i.e., the ori-
gin), and xi, yi, and zi are the coordinates of (1, 0, 0), (0, 1, 0), and (0, 0, 1) of ri’s
local coordinate system in the global coordinate system. We extract the origins of
local coordinate systems from C and P (C) denotes the set {pi | ri ∈ R}. The rota-
tion group σ(C) of a set of local coordinate systems C represents the “maximal”
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(a) C4 (b) D5 (c) T (d) O (e) I

Fig. 4. Rotation groups. A bold line indicates a rotation axis of each folding.

rotation group that acts on C. Intuitively, the robots cannot resolve σ(C) of initial
local coordinate systems C (Sect. 1). However, the robots observe only P (C) and
they do not know C and σ(C).

The symmetricity �(P ) of a set P of points is a set of all possible rotation
groups of local coordinate systems compatible with P . Because the robots can-
not observe their local coordinate systems, the set lists all possible symmetries
that the robots cannot resolve. Note that �(P ) does not depend on the local
coordinate system to observe P .

These three notions play a central role in characterizing formable target
patterns from a given initial configuration P . Especially, �(P ) shows possible
rotation groups that the robots are caught in, and γ(P ) enables coordination
among the robots by decomposing P into its orbits.

3.1 Rotation Group of a Set of Points

Consider a regular pyramid that has a regular k-gon as its base (Fig. 4). The
appearance of the pyramid does not change after the rotation by 2π/k around the
axis containing the apex and the center of the base. There are k such symmetry
operations around this axis, i.e., rotations by 2πi/k for i = 1, 2, . . . , k, which do
not change the appearance of the pyramid. We say the rotation axis is k-fold
because it admits k rotations around it. Let ai be the rotation by 2πi/k around
the k-fold axis with ak = e where e is the identity element. Then, a1, a2, . . . , ak

form the cyclic group Ck. The order of Ck is k. The set of all possible symmetry
operations by rotations in 2D space (i.e., SO(2)) consists of the cyclic groups.

The special orthogonal group SO(3) has five types of subgroups of finite
order [2,6], i.e., the cyclic groups Ck (k = 1, 2, . . .), the dihedral groups D�

(	 = 2, 3, . . .), the regular tetrahedral group T , the regular octahedral group O,
and the regular icosahedral group I. The groups are identified by the rotations
of a regular pyramid with a regular k-gon base, a regular prism with regular
	-gon bases, the regular tetrahedron, the regular octahedron, and the regular
icosahedron, respectively (Fig. 4). The latter three rotation groups, T , O, and I
are called polyhedral groups.

A regular prism (except a cube) has two parallel regular 	-gons as its top and
bottom bases and two types of rotation axes, i.e., the 	-fold axis containing the
centers of its top and bottom bases and 	 2-hold axes that exchange the top and
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Table 1. Polyhedral groups. The number of elements around k-fold axes excluding the
identity element is shown (k = 2, 3, 4, 5). Numbers in parentheses show the numbers of
rotation axes.

Polyhedral group 2-fold axes 3-fold axes 4-fold axes 5-fold axes Order

T 3(3) 8(4) - - 12

O 6(6) 8(4) 9(3) - 24

I 15(15) 20(10) - 24(6) 60

the bottom. We call this 	-fold axis the principal axis and the remaining 	 2-fold
axes the secondary axes. These rotation operations on a regular prism form the
dihedral group D�. The order of D� is 2	. For 	 = 2, we can define D2 in the
same manner; however, in group theory we do not distinguish the principal axis.

Table 1 shows the number of rotation axes and the number of elements around
each type of rotation axes of polyhedral groups. We call the cyclic groups and
the dihedral groups 2D rotation groups because they act on a set of points on a
plane, and we call T , O, and I 3D rotation groups because they do not act on a
set of points on a plane.

Let S = {Ck,D�, T,O, I | k = 1, 2, . . . and 	 = 2, 3, . . .} be the set of rotation
groups with finite order, where C1 is the rotation group with order 1 (its unique
element is the identity element). The order of G ∈ S is denoted by |G|.

If G′ is a subgroup of G (G,G′ ∈ S), we write G′ � G. If G′ is a proper
subgroup of G (i.e., G′ �= G), we write G ≺ G′. For example, we have T ≺ O,
T ≺ I; however, O �≺ I. If G ∈ S contains a k-fold axis, then Ck � G. Clearly,
Ck′ � Ck if k′ divides k (i.e., k′|k), which also holds for dihedral groups. Note
that the relation ≺ is asymmetric and transitive. Figure 5 shows the structure
of subgroups of 3D rotation groups.

Definition 1. Let P ∈ P3
n be a set of points. The rotation group γ(P ) of P is

the rotation group in S that acts on P and none of its proper supergroups in S

act on P .

By definition, we can uniquely determine γ(P ) regardless of a coordinate
system to observe P . For example, when P forms a cube, γ(P ) = O. When
γ(P ) = D2, we can recognize the principal axis because of the arrangement of P
around the three 2-fold axes. When γ(P ) 	 C1, all rotation axes of γ(P ) contain
b(P ), which is the single intersection of all rotation axes.

A rotation axis of G ∈ S is oriented if there are no 2-fold rotation axes
perpendicular to it, otherwise it is unoriented. For example, when γ(P ) = Ck,
the rotation axis of Ck is oriented. In fact, any set P of points with γ(P ) = Ck is
not symmetric relative to any plane perpendicular to the rotation axis of γ(P ).
The secondary axes of D� are oriented if and only if 	 is odd. The 3-fold rotation
axes of T are oriented while the 2-fold rotation axes of T are unoriented. All
rotation axes of O and I are unoriented.

Finally, we address the rotation group of a set of points contained in a plane.
When we consider a set P of points contained in a plane in 3D space, γ(P ) is
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Fig. 5. Subgroups of 3D rotation groups. For each edge, the upper rotation group is
a proper supergroup of the lower group. We omit some edges because the subgroup
relation is transitive.

either a cyclic group or a dihedral group. On the other hand, when we consider
a set P of points in 2D space (i.e., a plane), γ(P ) is a cyclic group. Since we
consider x-y coordinate systems in 2D space, we do not have an operation that
changes the top and bottom of the plane (Fig. 6).3

3.2 Symmetricity of a Set of Points

A set P of points is transitive regarding a rotation group G if it is an orbit of G
through some seed s ∈ P , i.e., P = Orb(s) = {g∗s | g ∈ G}, where ∗ denotes the
action of g on s. Consider the case where seed point s is on a k-fold axis (k > 1)
of G. Then, the rotation operations around this k-fold axis do not move s. We
call μ(s) = |{g ∈ G | g ∗ s = s}| the folding of s. For any transitive set P of
points regarding G ∈ S, μ(s) = μ(s′) holds for all s, s′ ∈ P , and |P | = |G|/μ(s)
holds for any s ∈ P .

By definition, any set P of points is decomposed into orbits of γ(P ).
Let {P1, P2, . . . , Pk} = {Orb(p) | p ∈ P} be the orbit space of γ(P ).
Clearly, Pi ∩ Pj = ∅ holds for any i, j ∈ {1, 2, . . . , k} and each Pi is transi-
tive regarding γ(P ). We call this decomposition the γ(P )-decomposition of P . It
is worth emphasizing that Pi’s may have different sizes (Fig. 7).

We define an embedding of a rotation group to an arrangement of its super-
group. For two groups G,H ∈ S, an embedding of G to H is an embedding of
each rotation axis of G to one of the rotation axes of H such that any k-fold axis

3 We can recognize the robots in 2D space as those that agree on the “top” direction
and move on a plane in 3D space.



120 Y. Yamauchi

(a) P1 (b) P2

Fig. 6. Points contained in a plane. When we consider points in 2D space (i.e., on a
plane), γ(P1) = γ(P2) = C4. When we consider points in 3D space, γ(P1) = D4 while
γ(P2) = C4.

Fig. 7. A γ(P )-decomposition with elements of different sizes. The set P of points
consists of 14 points and γ(P ) = O. The γ(P )-decomposition of P consists of two
elements: one forms a regular octahedron and the other forms a cube.

of G overlaps a k′-fold axis of H satisfying k|k′ while maintaining the arrange-
ment. If a rotation axis of G is oriented, it overlaps either an oriented rotation
axis of H with the same orientation or an unoriented rotation axis of H. Note
that there may be many embeddings of G to H. For example, there are three
embeddings of D4 to O depending on the choice of the principal axis of D4.
Observe that we can embed G to H if and only if G � H.

For a set P of points and an embedding of G � γ(P ) to γ(P ) (G ∈ S), we
define the decomposition of P into the orbit space of G in the same manner as
the γ(P )-decomposition of P . We call the decomposition the G-decomposition
of P relative to the embedding of G.

Definition 2. Let P ∈ P3
n be a set of points. The symmetricity �(P ) of P is

the set of rotation groups G ∈ S satisfying the following conditions:

1. G acts on P (thus, G � γ(P )), and
2. there is an embedding of G into γ(P ) such that every element of the

G-decomposition of P is a |G|-set.

By definition, if G ∈ �(P ), �(P ) contains any G′ ≺ G. We sometimes describe
�(P ) as a set of such maximal elements rather than listing all its elements.
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For example, when P forms a cube, �(P ) = {D4}. The above definition is
rephrased as follows for an initial configuration P without multiplicity; �(P )
consists of C1 and all rotation groups formed by the rotation axes of γ(P ) not
containing any point of P . Thus, any element G ∈ �(P ) satisfies G � γ(P ). We
say a rotation axis of γ(P ) is occupied when it contains a point of P ; otherwise
the axis is unoccupied.

To demonstrate the role of each element of �(P ), we first define the rotation
group of a set of local coordinate systems. Recall that a local coordinate system is
specified by its origin, the directions and orientations of its orthogonal axes, and
the unit distance. Let C = {(pi, xi, yi, zi) | ri ∈ R} be a set of local coordinate
systems of R. We consider symmetry operations that make each element of C
overlap another element of C.

Definition 3. Let C be a set of local coordinate systems of n robots. The rotation
group σ(C) of C is the rotation group in S that acts on C and none of its proper
supergroups in S act on C.

Intuitively, �(P ) of a set P of points lists all possible symmetries of the local
coordinate systems for P , i.e., σ(C) for all sets C of local coordinate systems
such that P (C) = P . Clearly, γ(P (C))  σ(C) holds.

Lemma 1. Let P be an initial configuration of the robots. For each G ∈ �(P ),
there is a set C of local coordinate system that satisfies

1. P (C) = P , and
2. σ(C) = G.

We demonstrate a construction of the set of local coordinate systems that
satisfy Lemma 1. For a set P of points and any G ∈ �(P ), we fix an arbitrary
embedding of G to the unoccupied rotation axes of γ(P ). Such an embedding
always exists by definition. Let {P1, P2, . . . , Pk′} be the G-decomposition of P ,
where elements are ordered arbitrarily. For each Pi (i = 1, 2, . . . , k′), we select
one point qi ∈ Pi and arbitrarily fix its local coordinate system (qi, xi, yi, zi).
Then we apply all elements of G to (qi, xi, yi, zi) and obtain the remaining points
of Pi and their local coordinate systems. With this construction, the resulting
local coordinate systems C are symmetric regarding G (i.e., σ(C) = G). Figure 8
shows an example with O.

When we consider the symmetricity of a set of points in 2D space, we check
only the cyclic groups in the same manner as the definition of the rotation group
of a set of points.4

The rotation group of a set of points, the rotation group of a set of local
coordinate systems, and the symmetricity of a set of points are easily extended
to a multiset of points and a multiset of local coordinate systems via symmetry
operations that conform to multiplicities. However, for the γ(F )-decomposition
{F1, F2, . . . , Fm} of a given multiset F of points, the robots cannot always agree
on the ordering of the elements. For example, the robots cannot agree on an
ordering of more than one point at a single position.
4 The definition of symmetricity in [16,19,23] considers the maximum order of the

cyclic groups in the symmetricity.
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Fig. 8. Symmetric local coordinate systems for 24 robots. The rotation group of the
local coordinate systems is O.

3.3 Impossibility Results

We demonstrate that regardless of obliviousness, Fsync robots cannot break
their symmetricity. We first consider an initial configuration P of oblivious
Fsync robots. Consider an execution P (0)(= P ), P (1), . . . where the initial
local coordinate systems C for P satisfy σ(C) = G 	 C1 for some G ∈ �(P ). Let
{P1, P2, . . . , Pm} be the G-decomposition of P (= P (C)) relative to an arbitrary
embedding of G to unoccupied rotation axes of γ(P ) and Ri (i = 1, 2, . . . ,m)
be the robots in Pi. For each Ri, the next positions the robots in Ri compute
in P (0) are symmetric relative to the embedding of G. After the robots move, a
new configuration P (1) is obtained, and P (1) is still symmetric relative to the
embedding of G. Since the axes of the local coordinate systems never change dur-
ing the execution, the local coordinate systems of the robots are still symmetric
relative to the embedding of G. Thus, we obtain

γ(P (1))  σ(P (1))  σ(P (0)) = G.

By repeating the above argument, for any t = 1, 2, . . . we obtain

γ(P (t))  σ(P (t))  σ(P (0)) = G.

Recall that �(F ) contains all subgroups of G′ if G′ ∈ �(F ). This means that
if G′′ �∈ �(F ), �(F ) contains none of its supergroups. Assume that there exists
G that satisfies G ∈ �(P ) and G �∈ �(F ). By Lemma 1, there exists a set C
of local coordinate systems for P that satisfies σ(C) = G. If the initial local
coordinate systems of the robots in P are identical to C, γ(P (t))  σ(P (t))  G
for any execution P (0)(= P ), P (1), . . .. Assume that there exists an algorithm
that enables the robots to form F from P . In a terminal configuration P (t),
σ(P (t)) ∈ �(F ) holds because P (t) ∼ F . Since G �∈ �(F ), its supergroup σ(P (t))
satisfies σ(P (t)) �∈ �(F ), which is a contradiction. Consequently, we obtain the
following necessary condition.
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Lemma 2. Oblivious Fsync robots can form a target pattern F from an initial
configuration P only if �(P ) ⊆ �(F ).

When the robots are equipped with local memory, the impossibility holds if
the content of local memory is identical in an initial configuration.

Theorem 2 [25]. Regardless of obliviousness, Fsync robots can form a target
pattern F from an initial configuration P only if �(P ) ⊆ �(F ).

As a corollary, we obtain a necessary condition for the plane formation prob-
lem.5 Recall that a 3D rotation group does not act on a set of points on a single
plane. Thus, any 3D rotation group does not act on any terminal configuration
of the plane formation problem.

Corollary 1. Regardless of obliviousness, Fsync robots can form a plane from
an initial configuration P only if �(P ) consists of 2D rotation groups.

Note that there are infinitely many sets P of points satisfying γ(P ) ∈ �(P ).
Here, we consider the construction of such P . When we fix an arrangement of
G ∈ S, there are infinitely many choices of a seed point to obtain an orbit of size
|G|. On the other hand, if we ignore uniform scaling, there is a finite number of
sets P of points that satisfy γ(P ) �∈ �(P ) because such P occupies (a subset of)
rotation axes of γ(P ).

4 Symmetry Breaking

Recall that the definition of the symmetricity ignores the occupied rotation axes
of γ(P ) of a set P of points. Example 2 demonstrated the validity of this def-
inition by showing a simple symmetry breaking algorithm in 2D space. The
algorithm can be extend to 3D space.

Table 2 shows the polyhedra formed by G ∈ {T,O, I} and a seed point on
a rotation axis of G. This is a complete list of polyhedra where some axes of
the 3D rotation groups are occupied. See also Figs. 9 and 10. When the robots
form one of these seven polyhedra in configuration P , γ(P ) coincides with the
corresponding rotation group; however, �(P ) does not contain γ(P ). For exam-
ple, when the robots form a cube, γ(P ) = O and �(P ) = {D4}. Thus, the local
coordinate systems of the robots agree on some direction (without orientation),
and the robots may be able to form, for example, a prism and a plane. However,
the robots cannot agree on their actual symmetry by simply observing P .

Algorithm 1 enables the robots to break their symmetry in the sense that
after the execution of the algorithm, the rotation group of robots’ positions is an
element of their initial symmetricity. The resulting symmetry is lower than the

5 Corollary 1 is a rephrasing of the characterization in [24], where the authors com-
pared the order of 3D rotation groups (i.e., 12, 24, and 60) with the size of each
element of the γ(P )-decomposition of an initial configuration P in order to check
the symmetricity of P .
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Table 2. Polyhedra with occupied rotation axes

Rotation group Folding of a seed Polyhedron

T 3 Regular tetrahedron

T 2 Regular octahedron

O 4 Regular octahedron

O 3 Cube

O 2 Cuboctahedron

I 5 Regular icosahedron

I 3 Regular dodecahedron

I 2 Icosidodecahedron

Fig. 9. Cuboctahedron Fig. 10. Icosidodecahedron

symmetry of their initial positions. The algorithm makes the robots forming one
of the seven polyhedra select an adjacent face and sends them toward the center
of the selected face. However, it stops the robots before they reach the center.
Thus, it is called the “go-to-center” algorithm. For example, consider a cube
consisting of eight vertices and six faces. Any set of selected faces is no more
symmetric regarding O, and the robots break the symmetry by their movements.
The go-to-center algorithm is based on the same strategy as Example 2. That
is, the robots on the rotation axes leave their current positions. We obtain the
following lemma.

Lemma 3 [25]. Let P be an initial configuration of oblivious Fsync robots
where the robots form one of the following polyhedra; a regular tetrahedron, a
regular octahedron, a cube, a cuboctahedron, a regular dodecahedron, a regular
icosahedron, and an icosidodecahedron. When the robots execute the go-to-center
algorithm in P , the resulting configuration P ′ satisfies γ(P ′) ∈ �(P ).

When P consists of more than one orbits of γ(P ) ∈ {T,O, I} and γ(P ) �∈
�(P ), at least one element of the γ(P )-decomposition of P forms one of the
seven polyhedra. Since the robots can agree on the ordering among the elements
of the γ(P )-decomposition of P , they can agree on one of such elements with
the smallest order, and the robots forming the element execute the go-to-center
algorithm. In this case also, Lemma 3 holds for any resulting configuration.

The “leave-rotation-axes” strategy works for 2D rotation groups. For exam-
ple, when the robots form a pyramid with a regular polygon base, the robot at
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Algorithm 1. Go-to-center algorithm for robot ri ∈ R [24]
Notation

P : The positions of the robots forming one of the seven polyhedra.
pi: Current position of ri.
ε: �/100 where � is the length of an edge of the polyhedron that P forms.

Algorithm
Switch (P ) do

Case cuboctahedron:
Select an adjacent triangle face.
Destination d is the point ε before the center of the selected face
and on the line from pi to the center.

Case icosidodecahedron:
Select an adjacent pentagon face.
Destination d is the point ε before the center of the selected face
and on the line from pi to the center.

Default:
Select an adjacent face.
Destination d is the point ε before the center of the selected face
and on the line from pi to the center.

Enddo

the apex can break the symmetry simply by leaving its current position. This
strategy also works for the principal axis of dihedral groups. Robots on the sec-
ondary axes of a dihedral group D� form a regular 	-gon. In this case, each of
these 	 robots selects a single direction parallel to the principal axis, and moves
slightly in that direction. Note that this procedure works when the robots form
at least two orbits of D�. Otherwise, the robots form a regular n-gon, and their
symmetricity in 3D space contains C�. In the worst case, the robots always select
the same direction and forever maintain a regular n-gon.

5 Formation Algorithms

The two necessary conditions, i.e., Theorem 2 and Corollary 1, are also sufficient
conditions for the pattern formation problem and the plane formation problem,
respectively. We first give an overview of a pattern formation algorithm for all
solvable instances. Note that we explain the algorithm in English because it is
difficult to understand its pseudo-code. Then, we will give an overview of a plane
formation algorithm. The difference between the pattern formation algorithm
and the plane formation algorithm is how the robots agree on the final plane
because after that the problem is reduced to formation of a regular n-gon, which
is always formable from a solvable instance of the plane formation algorithm.
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(a) (b) (c)

Fig. 11. Assignment of the final positions with multiple nearest target points. Black
circles represent the robots and white circles represent the points of ˜F . (a) An example.
(b) A right-hand screw rule around a 3-fold rotation axis. (c) Whole perfect matching.

5.1 Pattern Formation Algorithm

Assume that an initial configuration P satisfies γ(P ) ∈ �(P ) and �(P ) ⊆ �(F ),
i.e., γ(P ) = G ∈ �(F ). The robots can agree on G; thus, they can agree on the
G-decomposition {P1, P2, . . . , Pm} of P that consists of |G|-sets. In the same
manner, the robots can agree on an embedding of G to γ(F ) according to an
arbitrary rule; however, they cannot agree on the ordering among the elements of
the G-decomposition {F1, F2, . . . , Fm} of F . The robots first embed F to P such
that B(F ) overlaps B(P ) and the rotation axes of γ(F ) overlap γ(P ). When
γ(F ) 	 γ(P ), γ(F ) is fixed by embedding G into γ(F ). Let ˜F denotes this
embedding. The formation is completed by sending the robots to the nearest
unoccupied points of ˜F in the order of P1, P2, . . . , Pm. These nearest points
actually form an element of the G-decomposition of ˜F , say ˜Fj . When there is
more than one nearest points of ˜Fj for q ∈ Pi, all q′ ∈ Pi also have more than
one nearest points. These matchings form a circle around some rotation axis
(Fig. 11). Since the robots agree on the handedness, they can resolve collisions
using the right-hand screw rule and by selecting the direction from b(P ) as
the positive direction. Finally, the robots move to their final positions. These
procedures are performed in a single cycle by making each robot compute the
final positions of all other robots in the order of P1, P2, . . . , Pm.

When P satisfies γ(P ) �∈ �(P ), the robots can translate P into another
configuration P ′ satisfying γ(P ′) ∈ �(P ′) using the go-to-center algorithm and
“leave-the-axes” strategy presented in Sect. 4. The robots can agree on the ter-
mination of the algorithm by simply observing P ′. Then, the robots begin the
pattern formation algorithm.

Non-oblivious robots can execute this algorithm by ignoring its memory con-
tent. Consequently, we obtain Theorem 1.
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(a) (b)

Fig. 12. Assignment of final positions with multiple nearest target points on a final
plane. Black circles represent the robots and white circles represent the points of regular
octagon on the final plane. (a) Current configuration and the final plane. (b) Right-
hand screw rule around the principal axis.

5.2 Plane Formation Algorithm

The plane formation algorithm does not specify the positions of the robots in
a terminal configuration. However, we can assume the terminal configuration
requires a regular n-gon (i.e., a circle). In fact, a regular n-gon is formable from
all solvable instances of the plane formation problem; thus, we use the pattern
formation algorithm after the robots agree on the final plane.

Let us start with an easy case. Let P be an initial configuration of the robots
such that γ(P ) is a 2D rotation group. The robots can agree on the plane that
is perpendicular to the unique rotation axis (or the principal axis) and con-
tains the center b(P ) of the smallest enclosing ball of B(P ) regardless of the
coordinate system to observe P . After the robots on the rotation axis perform
“leave-rotation-axes” movements, the robots can form a regular n-gon in a single
cycle by embedding a regular n-gon on the agreed plane and using the pattern
formation algorithm.

Note that when P forms a regular prism with regular n/2-gon bases (except
a cube), the robots must use the right-hand screw rule around the principal axis.
Figure 12 shows an example for a square prism. Here, the final plane is the one
that contains all the secondary axes, and the final regular n-gon is embedded so
that it is symmetric with respect to the secondary axes. There are two nearest
vertices for each robot, and the right-hand screw rule resolves the collision.

When γ(P ) is a 3D rotation group, from Corollary 1, �(P ) consists of 2D
rotation groups, which means that there exists at least one element Pi in the
γ(P )-decomposition of P that forms a regular tetrahedron, a cube, a regular
octahedron, a regular dodecahedron, or an icosidodecahedron. The robots form-
ing one of such elements execute the “go-to-center” algorithm, and the rotation
group γ(P ′) of a resulting configuration P ′ is a 2D rotation group. In the same
manner as the previous case, the robots can agree on a target plane and land on
different points on the plane.
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We obtain the following necessary and sufficient condition for the plane for-
mation problem.

Corollary 2. Regardless of obliviousness, Fsync robots can form a plane from
an initial configuration P if and only if �(P ) consists of 2D rotation groups.

6 Summary

In this chapter, we have introduced the symmetricity of a set of points in 3D
space, and we investigated the pattern formation problem and the plane forma-
tion problem. We began with the effect of the symmetry of the local coordinate
systems of the robots. To formalize the degree of symmetry, we used the rotation
groups and defined the symmetricity of a set of points. We then gave the charac-
terization of formable patterns in terms of symmetricity. The necessary condition
is based on the impossibility of symmetry breaking while there is a finite number
of cases where the robots break the symmetry of their configuration by move-
ment. We have also presented an overview of the pattern formation algorithm
to demonstrate matching sufficient condition. We derived the characterization
of initial configurations from which the plane formation is accomplished from
the main theorem and we have presented the overview of the plane formation
algorithm.

In this section, we first present generalization of the symmetricity and the
characterization of formable patterns.

Robots in the ASYNC model. Impossibility results for a robot system with
stronger assumptions hold for other robot systems with weaker assumptions,
while algorithms for a robot system with weaker assumptions work correctly
for other robot systems with stronger assumptions. Recall that Theorem 1
assumes the Fsync model. Theorem 1 is generalized to the Async model
(thus, the Ssync model) with a pattern formation algorithm for oblivious
Async robots. The same generalization is possible for Corollary 2. Regarding
the pattern formation problem in 2D space, it has been shown that oblivi-
ous Async robots (thus oblivious Ssync robots) with non-rigid movement
have the same formation power as non-oblivious Fsync robots with rigid
movement except the rendezvous problem [16,19,23]. For the plane forma-
tion problem, it has been shown that oblivious Ssync robots with non-rigid
movement have the same formation power as non-oblivious Fsync robots
with rigid movement [21].

Robots without chirality. We can consider a weaker robot system by remov-
ing the chirality assumption. Thus, the local coordinate system of a robot
is either right-handed or left-handed. We must consider symmetry opera-
tions that change the handedness, thereby adopting the composite symme-
try of rotations around axes and reflections by mirror planes. In 3D space,
there are seventeen types of such symmetry, each of which forms a group [6].
A rotation group of a configuration is generalized to a symmetry group by
considering all these symmetry groups, and symmetricity is also generalized
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by considering unoccupied rotation axes and unoccupied mirror planes. The
formation power of the robots is reduced by the additional symmetry with
mirror planes [3,20]. For example, the robots cannot form a plane from an ini-
tial configuration where they form a cube because any final plane is a mirror
plane and the robots cannot avoid multiplicities.

Robots with LIMITED visibility. A robot with Limited visibility can
observe other robots in its visibility range. In this case, the robots may not
be aware of the symmetry of the entire configuration, and there are infinitely
many initial configurations of oblivious Fsync robots in 2D space where
slight movements of the robots increase the overall symmetry. Thus, oblivi-
ous Fsync robots with Limited visibility have weaker formation power in
both 2D space and 3D space [26].

We close this chapter by identifying open problems related to the formation
problem and the symmetry among the robots.

1. The formation problem in 3D space.
(a) Pattern formation algorithms for Ssync and Async robots.
(b) The effect of obliviousness.
(c) The effect of Limited visibility.
(d) The effect of randomization.

2. The formation problem in other space, such as higher-dimensional space, a
sphere, a torus, etc.

3. Limited or obstructed visibility in a considered space and its effect on sym-
metry and the formation problem.

4. New distributed coordination problems, such as the formation of a sequence
of patterns [8] and the team assembling problem [18].

7 Bibliography

Armstrong provides a good overview of the rotation groups [2], and the book
by Cromwell presents an algorithm to determine the rotation group of a given
polyhedron [6].

Yamashita and Kameda introduced the notion of symmetricity of a network
of anonymous processes [22]. They showed the impossibility of fundamental
agreement tasks in anonymous networks such as the leader election problem.
Suzuki and Yamashita introduced the notion of symmetricity among anony-
mous mobile robots in 2D space and showed that non-oblivious Ssync robots
can form the patterns that non-oblivious Fsync robots can form except the
point of multiplicity two (called the rendezvous problem) [19]. Their definition
of symmetricity is based on the decomposition of a set of points into concentric
congruent regular polygons addressed in Sect. 1. After that, a series of papers
discussed the effect of obliviousness and synchrony on the formation power of
mobile robots. Yamashita and Suzuki showed that obliviousness does not affect
the formation power of Fsync robots and Ssync robots [23]. Flocchini et al. first
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introduced the Async model [14] and showed that an agreement on the direc-
tions and orientations of x and y axes enables oblivious Async robots to form
any target pattern [14]. Dieudonné et al. showed that oblivious Async robots
can form an arbitrary pattern if and only if they can solve the leader election
problem [11]. Fujinaga et al. presented a pattern formation algorithm for obliv-
ious Async robots and showed that synchrony has no effect on the formation
power except the rendezvous problem [16]. Their algorithm is based on the tech-
niques for the embedded pattern formation problem, where the target pattern is
drawn on the plane as landmarks [15]. While the pattern formation problem is
not always solvable, the embedded pattern formation problem is always solvable
by oblivious Async robots by the “clockwise matching” strategy. In terms of
symmetricity, a point or a circle is formable from any initial configuration in
2D space. Cieliebak presented a point formation algorithm for oblivious Async
robots without chirality [4]. Flocchini et al. showed that oblivious Async robots
without chirality can from a circle from any initial configuration [12]. Das et al.
considered formation of a sequence of geometric patterns by oblivious Ssync
robots and characterized formable sequences in terms of symmetricity [8]. These
papers consider the robots in 2D space. Yamauchi et al. extended the notion
of symmetricity to 3D space using rotation groups and characterized the set of
formable patterns in 3D space [25].

Deterministic symmetry breaking in 2D space has been considered [19,23].
For example, non-oblivious Ssync robots can show their local coordinate sys-
tems by their movement [19]. Each robot first moves along its x axis and then
along its y axis. After that, it moves to show its unit distance. Other robots
remember these movements to obtain the local coordinate system of the robot.
In another study [23], an oblivious Ssync robot moves away from the center
of the smallest enclosing circle of the robots by some distance that encodes its
local coordinate system. The go-to-center algorithm in 3D space can be seen as
an equivalent of these symmetry breaking algorithms.

Randomization enables the robots to break symmetry; however, it is diffi-
cult to make oblivious Async robots show the result of their random choices.
Yamauchi et al. proposed a randomized pattern formation algorithm for oblivious
Async robots in 2D space that enables arbitrary pattern formation with prob-
ability 1 [27]. As mentioned previously, initial multiplicities cannot be resolved
because the robots at the same point with the same local coordinate systems
move in the same way. Dieudonné and Petit proposed the scattering problem,
which requires the robots to resolve initial multiplicity [10]. They proposed a
randomized scattering algorithm for oblivious Ssync robots with the weak mul-
tiplicity detection ability. Clement et al. showed the expected time of the algo-
rithm [5]. Izumi et al. proposed a randomized scattering algorithm for oblivious
Ssync robots with Limited visibility and the local-weak multiplicity detection
ability and showed that its execution time depends on the diameter of the initial
visibility graph [17].

Ando et al. proposed a convergence algorithm for oblivious Ssync robots
with Limited visibility in 2D space [1]. Flocchini et al. considered the con-
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vergence of oblivious Async robots with Limited visibility and a consistent
compass that assumes the robots agree on the direction and/or orientation of
the x and y axes of local coordinate systems [13].

Cicerone et al. considered the embedded pattern formation problem in 2D
space by oblivious Async robots without chirality [3]. The lack of chirality
results in unsolvable instances due to axes of symmetry, i.e., mirror planes per-
pendicular to the plane. Tomita et al. investigated the plane formation prob-
lem by oblivious Fsync robots without chirality [20]. The lack of chirality also
reduces the solvable instances. They presented a characterization in terms of
symmetricity considering symmetry operations by mirror planes, rotation axes,
and their combinations.

The notion of symmetricity is extended to other systems of anonymous mobile
computing entities by adopting the symmetry operations of the considered sys-
tem. Das et al. considered the formation of a sequence of patterns by the robots
with externally visible lights [7]. Each robot can change the color of its light
at the end of a Compute phase, and the color is persistent in the next cycle.
Symmetry operations are required to maintain the positions of the robots and
the colors of their lights, and the chromatic symmetricity is defined. Liu et al.
considered the team assembling problem by “colored” robots that requires the
robots to form teams specified by the number of robots for each color [18]. The
color of a robot does not change and the robots of the same color are indistin-
guishable. The requirement for the symmetry operations is the same as that for
the robots with lights. Liu et al. characterized formable teams and provided a
team assembling algorithm for oblivious Async colored robots. Di Luna et al.
considered the unbreakable symmetry in the amoebot model consisting of a set
of anonymous particles moving in a triangular grid [9]. Each particle can sense
other particles in neighboring grid vertices, communicate with them, and move
by repeating an expansion and a contraction. The particles do not agree on the
clockwise-direction. In a triangular grid, possible symmetry operations are C2,
C3, and a reflection by a mirror plane. Based on the unbreakable symmetry,
Di Luna et al. characterized formable shapes and proposed a shape formation
algorithm for sufficiently many particles.
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11. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern for-
mation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 267–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15763-9 26

12. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2017).
https://doi.org/10.1007/s00446-016-0291-x

13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005). https://
doi.org/10.1016/j.tcs.2005.01.001

14. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407, 412–447
(2008). https://doi.org/10.1016/j.tcs.2008.07.026

15. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through opti-
mum matching by oblivious CORDA robots. In: Lu, C., Masuzawa, T., Mosbah,
M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17653-1 1

16. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015).
https://doi.org/10.1137/140958682

17. Izumi, T., Potop-Butucaru, M.G., Tixeuil, S.: Connectivity-preserving scattering
of mobile robots with limited visibility. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 319–331. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16023-3 27

18. Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem
for asynchronous heterogeneous mobile robots. Theor. Comput. Sci. 721, 27–41
(2018). https://doi.org/10.1016/j.tcs.2018.01.009

https://doi.org/10.1137/100796534
https://doi.org/10.1137/100796534
https://doi.org/10.1016/j.ipl.2010.04.006
https://doi.org/10.1007/978-3-319-07890-8_10
https://doi.org/10.1007/978-3-319-07890-8_10
https://doi.org/10.1007/s00446-014-0220-9
https://doi.org/10.4230/LIPIcs.OPODIS.2017.31
https://doi.org/10.4230/LIPIcs.OPODIS.2017.31
https://doi.org/10.1007/978-3-540-72914-3_11
https://doi.org/10.1007/978-3-540-72914-3_11
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/s00446-016-0291-x
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1007/978-3-642-17653-1_1
https://doi.org/10.1137/140958682
https://doi.org/10.1007/978-3-642-16023-3_27
https://doi.org/10.1016/j.tcs.2018.01.009


Symmetry of Anonymous Robots 133

19. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/
10.1137/S009753979628292X

20. Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots without chirality. In: Proceedings of the 21st International
Conference on Principles of Distributed Systems (OPODIS 2017), pp. 13:1–13:17
(2017). https://doi.org/10.4230/LIPIcs.OPODIS.2017.13

21. Uehara, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by semi-
synchronous robots in the three dimensional Euclidean space. In: Bonakdarpour,
B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 383–398. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49259-9 30

22. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I-
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996). https://doi.org/10.1109/71.481599

23. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010). https://
doi.org/10.1016/j.tcs.2010.01.037

24. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three dimensional Euclidean space. J. ACM 64(3),
16:1–16:43 (2017). https://doi.org/10.1145/3060272

25. Yamauchi, Y., Uehara, T., Yamashita, M.: Brief announcement: pattern formation
problem for synchronous mobile robots in the three dimensional Euclidean space.
In: Proceedings of the 35th ACM Symposium on Principles of Distributed Com-
puting (PODC 2016), pp. 447–449. ACM (2016). https://doi.org/10.1145/2933057.
2933063

26. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited vis-
ibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-
9 17

27. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asyn-
chronous oblivious mobile robots. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol.
8784, pp. 137–151. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45174-8 10

https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.4230/LIPIcs.OPODIS.2017.13
https://doi.org/10.1007/978-3-319-49259-9_30
https://doi.org/10.1109/71.481599
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1145/3060272
https://doi.org/10.1145/2933057.2933063
https://doi.org/10.1145/2933057.2933063
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-662-45174-8_10
https://doi.org/10.1007/978-3-662-45174-8_10


Computation Under Restricted Visibility

Subhash Bhagat1(B), Krishnendu Mukhopadhyaya1,
and Srabani Mukhopadhyaya2

1 Indian Statistical Institute, Kolkata, Kolkata, India
subhash.bhagat.math@gmail.com, krishnendu@isical.ac.in

2 Birla Institute of Technology Mesra, Lalpur Extension Centre, Ranchi, India
srabanim@gmail.com

Abstract. In a swarm of robots, each robot has certain capabilities to
perform their computations to achieve a global objective. One such capa-
bility is the sensing capability, known as vision. This enables a robot to
sense the positions of the other robots in the system. The sensing capa-
bility may be restricted by two factors: (i) the sensing range and (ii)
the opacity of the robots. The sensing range may be limited or unlim-
ited and the robots may be transparent or opaque. When robots have
limited sensing range, a robot can sense all the robots within a fixed
radius around it. If three opaque robots are collinear, the middle robot
obstructs the vision of the two other robots. This chapter deals with
these two constraints on the vision of the robots. A model with such a
constraint is referred to as the restricted visibility model. This chapter
presents different geometric formation problems for swarm robots under
the restricted visibility model.

Keywords: Swarm robots · Limited visibility · Opaque robots

1 Introduction

A distributed system of swarm robots provides efficient solutions to many real
life problems. A major focus of research in this branch is to identify minimal
sets of capabilities which help robots to accomplish some predefined goal. Each
set of assumptions stands for a new model of computation for swarm of robots.
Restrictions on the vision of the robots yield one such computational model, the
restricted visibility model. Limited visibility range and opacity of the robots are
two such restrictions. These two restrictions impair the robots from obtaining
complete view of the robot positions in the system. This setting is more complex
than the traditional model in which robots are transparent and have unlimited
visibility range. Thus, computations with such restrictions are more involved and
challenging.

The assumptions of limited visibility range and opacity are natural and
make such system more suitable in large number of real life applications.
Researchers have considered different combinations of these two assumptions
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in the look-compute-move model and studied different geometric formation
problems therein. The robots with limited visibility range may be transparent
[2,15,17,18,21,22,25,26,28,30] and opaque robots may have unlimited visibil-
ity range [1,3–5,10,12,19]. Researchers have also considered opaque robots with
limited visibility range [6].

2 Chapter Organization

In Sect. 3, general model and notations used in this chapter are presented. The
rest of the chapter is divided into two basic blocks: the limited visibility model
in Sect. 4 and the obstructed visibility model in Sect. 5.

The organization of the works done under the limited visibility model is as
follows:

– Section 4.1 considers the convergence problem. First, in Sect. 4.1.1, the prob-
lem is considered under the Ssync model. In Sect. 4.1.2, the problem is con-
sidered for a set of robots which can not measure distances. Section 4.1.3
presents a solution to problem under the Async model with 1-fair schedule.

– In Sect. 4.2, the near gathering problem is considered which is closely related
to the convergence problem.

– The gathering problem is considered in Sect. 4.3. Section 4.3.1 considers the
gathering problem under the Async model when robots have agreement on
both coordinate axes. Section 4.3.2 presents a solution to the gathering prob-
lem under the Ssync model when robots have eventually consistent com-
passes. An optimal solution to the gathering problem in this setting is pro-
vided in Sect. 4.3.3.

– Section 4.4 contains a randomized distributed algorithm for the scattering
problem.

– A study on the pattern formation problem under limited visibility model is
presented in Sect. 4.5.

Following is the organization of the works done under obstructed visibility
model in Sect. 5.

– Section 5.1 contains the works done for the gathering problem for opaque
robots with no extent. Sections 5.1.1 and 5.1.2 describe the solutions to the
gathering problem in the Euclidean plane and three dimensional Euclidean
space respectively.

– Section 5.2 considers gathering of opaque robots with extent. First, in
Sect. 5.2.1, solutions to the problem with three and four opaque robots
with extent under the Async model are presented. Then, a gathering algo-
rithm of an arbitrary number of asynchronous robots is described. Finally, in
Sect. 5.2.2, a solution to the problem under the Fsync model is described,
which assumes that robot are opaque and have limited visibility range.

– In Sect. 5.3, two algorithms for the mutual visibility problems are described.

Section 6 concludes the chapter.
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3 General Model and Notations

Consider a set R = {r1, r2, . . . , rn} of n homogeneous, autonomous robots. The
robots repeatedly execute the computational cycle consisting of three phases
look-compute-move. This chapter presents works done under the OBLOT model.

– Robot configuration: A robot configuration, R(t) = {r1(t), . . . , rn(t)} is
the multi-set of positions occupied by the robots in R at time t. Let CH(t)
denote the convex hull of the points in R(t).

– Measurement of angles: If not stated otherwise, the angle between two
line segments refers to the angle which is less than or equal to π.

– Limited Visibility: If robots have limited visibility range, a robot can only
sense the other robots lying at a distance less than or equal to V (Fig. 1).
The value of V is assumed to be the same for all the robots and this value is
known to the robots. The model in which robots have limited visibility range
is known as limited visibility model.

Fig. 1. An illustration of limited visibility: (a) robot ri can see all robots within radius
V around it and (b) only robots ri, rj and rk are mutually visible

– Obstructed Visibility: If robots are non-transparent and three robots are
collinear, the middle robot obstructs the vision of the two other robots. Let
ri, rj and rk be three collinear robots such that rk lies between ri and rj .
In such a case, rk blocks the vision of ri and rj , i.e., ri and rj are mutually
invisible (Fig. 2). This visibility model is known as obstructed visibility.

ri rjrk

Fig. 2. An illustration of obstructed visibility: robot rk blocks the vision of ri and rj
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– Vision of a robot: The vision of a robot ri at time t is the set of robot
positions visible to ri (excluding ri). This set is denoted by Vi(t). Let Si(t)
denote the smallest enclosing circle of the points in Vi(t) ∪ {ri(t)}. Oi(t) is
the centre of Si(t). The convex hull of Vi(t) ∪ {ri(t)} is denoted by CHi(t).

– Visibility graph: Due to limited visibility, a robot may not have locations of
all the robots in the system. The visibility graph depicts the mutual visibility
status among the robots. The visibility graph is the graph G = (R, E) where
∀ri, rj ∈ R, (ri, rj) ∈ E iff dist(ri(t), rj(t)) ≤ V . If the visibility graph
is complete, then all the robots in the system are mutually visible. In this
chapter, all the works under the limited visibility model assume that the
initial visibility graph of a robot configuration is connected.

– The visibility polygon of ri at time t, denoted by VPi(t), is defined as follows:
sort the points in Vi(t) angularly in counter-clockwise direction w.r.t. ri(t),
starting from any robot position in Vi(t). Then connect them in that order
to generate the polygon VPi(t) (Fig. 3).

ri(t)

VPi(t))

Fig. 3. An example of visibility polygon

– Consider two points p and q. Let pq denote the closed line segment joining
two points p and q, including the end points p and q, and |pq| denote the
length of pq.

4 Limited Visibility Model

In this model, a robot takes decisions based on the robot positions lying within
its visibility range. During the execution of an algorithm, robots move in such a
way that the visibility graph remains connected. All the works described in this
section, assume transparent point robots in the Euclidean plane.

4.1 The Convergence Problem

The convergence problem is one of the fundamental geometric formation problem
for a swarm of robots. It requires the robots to become increasingly closer to each
other, without necessarily reaching the same point. More precisely, let dmax(t)
denote the maximum distance between the robots at time t. The robots are
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said to converge (to a point) if dmax(t) is monotonically non-increasing and, for
any ε > 0 and t > 0, there exists a time t′ ≥ t such that dmax(t′) < ε. The
convergence problem requires the swarm to converge. The converge point is not
known to the robots a priori. The problem has been studied for the robots with
limited visibility range under the Ssync and Async models [2,11,17,18,22].

4.1.1 Convergence in the Ssync Model
Ando et al. [2] presented a solution to the convergence problem for a set of semi-
synchronous robots with limited visibility, represented as points in the Euclidean
plane.

The outline of the convergence algorithm is as follows: an active robot ri

moves towards the centre Oi(t) of Si(t), in such a way that the following are
satisfied:

(i) the mutually visible robots remain visible after the movements and
(ii) the geometric span of the robot positions reduces within finite time.

To achieve these two sub-goals, robot ri computes its destination point pi(t)
on the line segment ri(t)Oi(t) as follows:

– If ri finds no other robots in Vi(t) i.e., Vi(t) = ∅, then it does not move.
– Otherwise, ∀rj ∈ Vi(t), robot ri computes the circle Dj(t) having centre at the

midpoint mj(t) of ri(t)rj(t) and radius V
2 (Fig. 4(a)). The point pi(t) lies in

the intersection of all such discs Dj(t). This ensures that the robots ri and rj

remain visible during the execution of the algorithm. The maximum distance
lj(t) that ri can move toward Oi(t), without leaving Dj(t), is depicted in
Fig. 4(b). A suitable choice for the point pi(t) is provided in the pseudo-code
CONVERGE -Ssync().

Correctness of the above algorithm is based on the following two lemmas.

Lemma 1. For two robots ri, rj ∈ R at time t ≥ t0, ri, rj ∈ E(t) implies ri, rj ∈
E(t + 1).

Lemma 2. For t ≥ t0, CH(t) ⊂ CH(t + 1).

Theorem 1 [2]. A set of n point robots with limited visibility can converge within
finite time under the Ssync model.

For fully synchronous robots, the convergence time of the above algorithm
was analyzed by Degener et al. [11] and they provided the following result.

Theorem 2 [11]. A set of n fully synchronous robots with limited visibility,
executing the algorithm CONVERGE-Ssync(), can converge in O(n2) rounds
and this bound is tight.
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Fig. 4. (a) ri and rj remain visible to each other even if both of them move simul-
taneously. (b) lj(t) is the maximum distance that ri can move without leaving Dj(t).

Algorithm 1. CONVERGE-Ssync()
Input: ri(t) ∈ R(t),Vi(t).
Output: A destination point for robot ri.

1 if |Vi(t)| == 0 then
2 pi(t) ← ri(t);
3 else
4 for ∀rj ∈ Vi(t) do
5 dj(t) ← dist(ri(t), rj(t));
6 θj(t) ← ∠Oi(t)ri(t)rj(t);

7 lj(t) ← dj

2 cos θj(t) +
√
(V
2 )

2 − ((dj

2 ) sin θj(t))2;

8 limit ← min{lj(t) : ∀rj ∈ Vi(t)\{ri};
9 goal ← dist(ri(t),Oi(t));

10 di(t) ← min{goal, limit};
11 pi(t) ← point on ri(t)Oi(t) at a distance di(t) from ri(t);

12 ri moves towards pi(t);

4.1.2 Convergence with Crude Distance Sensing
In the traditional model, it is assumed that robots can measure their mutual
distances accurately. However, the measurements by the robots may have some
non-negligible inaccuracies. The inaccuracies may occur both in distance and
angle measurements. Researchers have studied the gathering and the convergence
problem under the models in which robots may obtain inaccurate measurements
[7,17,18,24].

It was proved that the gathering of n = 2 robots with inaccurate dis-
tance measurements is impossible under the Fsync model even with consistent
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compasses and strong multiplicity detection [7]. This section presents two algo-
rithms for the convergence problem under the Ssync model when robots are
unable to measure their mutual distances [17,18]. However they can measure
angles. The problem is studied under two different settings. In one setting, robots
have knowledge of δ, the rigidity constant. In the other setting, a robot can detect
if a visible robot is at distance less or more than a fixed value l. The value of l
is called the near-visibility range and known to the robots.

– Algorithm CONVERGE-CRUDE-1()
The algorithm presented in [18] is described here. Let ξi(t) be the largest angle
made at ri(t) by two consecutive robots on the visibility polygon VPi(t) and
ψi(t) the complementary angle of ξi(t) (Fig. 5(a)). The angle ψi(t) defines the
of the smallest wedge containing all visible robots of ri at time t.

Fig. 5. (a) ξi(t) > π and ψi(t); the destination of robot ri should lie in the wedge
defined by ψi(t) to remain visible to the other robots in Vi(t) when it moves. (b)
ξi(t) < π and robot ri cannot move.

The basic idea of the algorithm is to move the robots on the vertices of the
local convex hull of the visible robot positions and gradually shrink it. A
robot does not move until it lies on some hull vertex (Fig. 5(b)). Robot ri

moves only when it finds ψi(t) < π and it moves along the bisector of ψi(t).
Robot ri moves a distance di(t) defined as follows:

di(t) = min{V

2
, V cos(

ψi(t)
2

), δ}.

By moving a distance di(t), robot ri maintains the connectivity of the visibil-
ity graph (Fig. 6). The pseudo-code of the algorithm is given in CONVERGE-
CRUDE-1().
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Fig. 6. Illustrations showing how to choose allowable movement distance for ri, when
δ > V

2
(a) the distance is V

2
when ψi(t) < 2π

3
(b) the distance is V cos(ψi(t)

2
) when

ψi(t) > 2π
3

. Dashed circles have radius V
2

and there common intersection is the allow-
able movement area for ri.

Algorithm 2. CONVERGE-CRUDE-1()
Input: ri(t) ∈ R(t), Vi(t), V .
Output: A destination for robot ri.

1 ψi(t) ← the angle of the smallest wedge containing all robot positions in
Vi(t);

2 Li(t) ← bisector of ψi(t);
3 if ψi(t) < π then
4 di(t) ← min{V

2 , V cos(ψi

2 ), δ};
5 pi(t) ← the point on Li(t) at a distance di(t) from ri(t);
6 else
7 pi(t) ← ri(t);

8 ri moves towards pi(t);

– Algorithm CONVERGE-CRUDE-2()
In algorithm CONVERGE-CRUDE-1(), the step length in each movement
is computed so that the visibility graph remains connected after the robots
move. This does not include the mutual distances among the robots. The
robots which are closer, move in more conservative ways than needed. The
work in [17] studied the convergence problem under the Ssync model when
robots have some crude knowledge of the distances that helps them to identify
whether a robot is far or near. The robots have some near visibility range l
and this value is known to them. Robot ri can identify whether a visible robot
rj is at a distance less than equal to l or more. For simplicity, it is assumed
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that δ = l. Let S∗
i (t) denote the circle centred at ri(t) and having radius l.

Let Bi(t) denote set of robots lying in the circular annular region between
the boundaries of Si(t) and S∗

i (t). Robot ri moves if ψi(t) < π and Bi(t) is
non-empty. It moves a distance l cos(ψi(t)

2 ) along the bisector of ψi(t). The
details are given in the pseudo-code CONVERGE-CRUDE-2().

Algorithm 3. CONVERGE-CRUDE-2()
Input: ri(t) ∈ R(t), Vi(t), V , l.
Output: A destination point for robot ri.

1 ψi(t) ← the angle of the smallest wedge containing all robot positions in
Vi(t);

2 Li(t) ← bisector of ψi(t);
3 Bi(t) ← {rj(t) ∈ Vi(t) : l ≤ dist(ri(t), rj(t)) ≤ V };
4 if ψi(t) < π ∧ Bi(t) �= ∅ then
5 di(t) ← lcos(ψi(t)

2 );
6 pi(t) ← the point on Li(t) at a distance di(t) from ri(t);
7 else
8 pi(t) ← ri(t);

9 ri moves towards pi(t);

The correctness of the above two algorithms is derived from the fact that
CH(t + 1) ⊂ CH(t).

Theorem 3 [17,18]. The convergence problem is solvable for a set of n point
robots with limited visibility under the Ssync model even if the robots can not
measure distances.

4.1.3 Convergence in the Async Model
Convergence is possible in the Async model under a 1-fair scheduler [22]. A
1-fair asynchronous scheduler is an asynchronous scheduler such that between
two consecutive activations of a robot ri, all other robots can become active at
most once. Thus, during a look-compute-move cycle of ri, other robots in the
system can perform at most one look-compute-move cycle.

The main focus of the convergence algorithm under limited visibility model is
to preserve the connectivity of the initial visibility graph, when robots make their
movements. To achieve this, robots need to compute their destination points
very carefully. Due to asynchrony, this becomes more difficult for the robots.
The assumption of the 1-fair scheduler makes it easier for the robots to deter-
ministically compute their destination points and to guarantee the finite time
convergence. To maintain the connectivity between two robots ri and rj , robots
preserve the following invariant: [I] if rj ∈ Vi(t), then pi(t) and pj(t) lie within
the circle Sij(t) with radius V

2 and centre at ri(t)+rj(t)
2 .
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There are allowable regions in which a robot can move by preserving [I]. Two
such regions are move towards and move around (Fig. 7). These two regions are
defined considering distances of the robot positions in Vi(t) from ri(t) in the
following way: consider a robot position rj(t) ∈ Vi(t).

Fig. 7. The regions move towards, move around and their combinations

– Let cij(t) = (ri(t) + rj(t))/2 and d = dist(ri(t), rj(t)).
– The region move towards contains all the points within the circle having

cij(t)ri(t) as diameter (Fig. 7(a)). A point p in this region satisfies the inequal-
ity | cij(t)+ri(t)

2 p| ≤ d
4 .

– The region move around is the set of all points which lie inside the circle
having centre at ri(t) and radius V −d

4 (Fig. 7(b)). A point p in this region
satisfies the inequality |ri(t)p| ≤ V −d

4 .
– Let Tj be the union of the two regions move towards and move around

(Fig. 7(c) and (d)).

The robots inside CH(t) should not move towards the boundary of CH(t).
For the convergence, the robots on the boundary of CH(t) should move inside
the convex hull.

This constraint gives another allowable region for the destination points of
the robots. It is denoted by T ∗

i (t) and contains all the points in Vi(t) that are
not further than halfway from the boundary of CHi(t); i.e., T ∗

i (t) = {p ∈ R
2 :

(ri(t) + 2(p − ri(t)) ∈ CHi(t)}.
The destination point of ri should lie inside Ti(t) =

⋂
rj(t)∈Vi(t)

Tj(t)∩T ∗
i (t).

Robot ri chooses the furthest point in Ti(t) from ri(t). The movements of the
robots according to these rules shrink CH(t), and within finite time all the
robots converge towards a point. The pseudo-code of the algorithm is given
in CONVERGE-1-FAIR().

Theorem 4 [22]. The convergence problem is solvable for a set of asynchronous
robots under a 1-fair scheduler.
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Algorithm 4. CONVERGE-1-FAIR()
Input: ri(t) ∈ R(t), Vi(t).
Output: A destination point for robot ri.

1 for ∀rj(t) ∈ Vi(t) do
2 cij(t) ← (ri(t) + rj(t))/2;

3 MTj(t) ← {p ∈ R
2 : | cij(t)+ri(t)

2 p| ≤ |ri(t)rj(t)|
4 };

4 MAj(t) ← {p ∈ R
2 : |ri(t)p| ≤ V −|ri(t)rj(t)|

4 };
5 Tj(t) ← MTj(t) ∪ MAj(t);

6 CHi(t) ← Convex hull of Vi(t) ∪ {ri(t)};
7 T ∗

i (t) ← {p ∈ R
2 : (ri(t) + 2(p − ri(t)) ∈ CHi(t))};

8 Ti(t) ←
⋂

rj(t)∈Vi(t)
Tj(t) ∩ T ∗

i (t);
9 pi(t) ← the point in Ti(t) which is furthest from ri(t);

10 ri moves towards pi(t);

4.2 The Near Gathering Problem

Pagli et al. [25] considered the near gathering problem which is very close to
the convergence problem. The near gathering problem requires all the robots to
coordinate their movements in such a way that within finite time all of them
hold positions in a disc of radius ε > 0 (known to the robots) and no two robots
share same position.

Let σ > 0 be an arbitrary small constant and D = V − σ.

Definition 1. (Initial Strong Distance Graph). The initial strong distance graph
I = (R, E) of the robot positions is the graph such that for any two distinct robot
ri and rj in R, (ri, rj) ∈ E if and only if dist(ri(t0), rj(t0)) ≤ D.

(A) Assumptions:
– Initially all robots are stationary and they occupy distinct positions.
– The initial Strong Distance Graph is connected.
– The value of D is the same for all robots and the value is known to the

robots.
– The value of ε (required for termination) is known to the robots.
– Robots operate under the Async model and their movements are non-

rigid.
– Robots agree on the directions and orientations of the both local coordi-

nate axes.
Under the above assumptions, a distributed algorithm for the near gathering
problem was presented for a set of asynchronous robots in [25]. It was proved
that the same algorithm also works when robots have agreement on the
direction and orientation of one local coordinate axis.
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(B) Notations: To describe the algorithm, the following notations and defini-
tions are used:
– Let D0

i (t), D1
i (t) and D2

i (t) be the closed discs having radii V , V − ρ
2 and

V − ρ respectively, where ρ = min{V
4 , V − D}. All of them have centres

at ri(t) (Fig. 8).
– The point a1

i (t) is the leftmost intersection point between D1
i (t) and the

horizontal line at a distance V −ρ from ri(t) and lying above it. The point
a2

i (t) is the bottommost intersection point between D1
i (t) and the vertical

line at a distance V − ρ from ri(t) and lying right side of it (Fig. 8).
– SQi(t) denotes the closed square circumscribed around D2

i (t) with sides
parallel to the X-axis and Y-axis and Ai(t) = D2

i (t) ∩ SQi(t).

Fig. 8. The elements computed by robot ri.

– Q1
i (t) is the set of all points in D0

i (t) having positive y-coordinate and
non-positive x-coordinate. Q2

i (t) is the set of all points in D0
i (t) having

positive x-coordinate and non-positive y-coordinate.
– H1

i (t) is the set of points in (Ai(t)\D2
i (t))∩Q1

i (t) which has x-coordinate
value less than p1.x, the x-coordinate value of p1. H2

i (t) is the set of points
in (Ai(t)\D2

i (t))∩ Q2
i (t) which has y-coordinate value less than p2.y, the

y-coordinate value of p1 (the area bounded by the dashed segments and
arcs in Fig. 8).

– NW(t) = {rj(t) ∈ Vi(t) : rj(t) ∈ Q1
i (t)} and SE(t) = {rk(t) ∈ Vi(t) :

rk(t) ∈ Q2
i (t)}.

Definition 2. Move Space: The move space of a robot ri at time t, denoted
by MSi(t), is the set {(x′, y′) ∈ R

2 : x′ ≥ ri(t).x ∧ y′ ≥ ri(t).y}.
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Algorithm 5. NEAR-GATHER()
Input: ri(t) ∈ R(t),Vi(t), V,D, ε.
Output: A destination point for robot ri.

1 ρ ← min{V
4 , V − D};

2 ε′ ← min{ε, ρ
2};

3 b ← 1 if ∀rj(t), rk(t) ∈ Vi(t) ∪ {ri(t)}, dist(rj(t), rk(t)) ≤ ε′, otherwise 0;
4 if b == 1 then
5 pi(t) ← ri(t)
6 else
7 pi(t).x ← min{min{rj(t).x|rj(t) ∈ SE(t)},max{rk(t).x|rk(t) ∈

Vi(t)}, ρ
2};

8 pi(t).y ← min{min{rj(t).y|rj(t) ∈ NW(t)},max{rk(t).y|rk(t) ∈
Vi(t)}, ρ

2};
9 for ∀rj(t) ∈ Vi(t) ∪ {ri(t)} do

10 if rj(t) ∈ H1
i (t) then

11 pi(t).x ← 0;
12 if rj(t) ∈ Ai(t) then
13 s2 ← bottommost intersection between Ai(t)\H2

i (t) and
the vertical line through rj(t);

14 pi(t).y ← min{pi(t).y, rj(t).y − s2.y};

15 if rj(t) ∈ H2
i (t) then

16 pi(t).y ← 0;
17 if rj(t) ∈ Ai(t) then
18 s1 ← leftmost intersection between Ai(t)\H1

i (t) and the
horizontal line through rj(t);

19 pi(t).x ← min{pi(t).x, rj(t).x − s1.x};

20 if pi(t).x > pi(t).y then
21 pi(t) ← (pi(t).x

2 , 0)
22 else
23 pi(t) ← (0, pi(t).y

2 )

24 ri moves towards pi(t);

(C) Computation of destination point: A robot ri computes it’s destination
point as follows:
– ri has only two possible directions of movements: rightward and upward.

It never moves diagonally. The distance traversed by ri in each move is
maximized subject to the following restrictions.

– ri never enters the move space of a robot in Vi(t), provided it already lies
in some other robot’s move space.

– ri never moves to the right of (respectively above) the rightmost (respec-
tively topmost) robot position in Vi(t).
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– If ri finds a robot in the left halt zone, i.e. in H1
i (t), it does not move

rightward. If ri finds a robot in the right halt zone i.e., in H2
i (t), it does

not move upward.
– If ri finds a robot rj in Ai(t)\H1

i (t) (respectively Ai(t)\H2
i (t)), it remains

inside Ai(t)\H1
i (t) (respectively Ai(t)\H1

i (t)).
– In each movement, the length of ri’s displacement must not be greater

than ρ
4 ≤ V

16 .

The pseudo-code of the algorithm is given in NEAR-GATHER(). By execut-
ing the above algorithm, robots aggregate in finite time, around the top-right
corner of the smallest box that contains all the robot positions. The above algo-
rithm is perfectly symmetric with respect to the X-axis and Y-axis. This implies
that above algorithm also works when robots have agreement in one coordinate
axis. Also, the algorithm can be modified to solve the near gathering problem in
the models that use any p-norm to measure distances.

Theorem 5 [25]. The near gathering problem is solvable for a set of asyn-
chronous robots with agreement in one coordinate axis if the initial strong dis-
tance graph is connected.

4.3 The Gathering Problem

The gathering problem requires a set of robots to meet at a point, not known a
priori. This basic formation problem has been studied extensively in the litera-
ture under different computational models [14].

4.3.1 Gathering in the Async Model with Consistent Compasses
The gathering of asynchronous robots with limited visibility becomes difficult
since robots may not have complete view of the system. The gathering problem
for a set of oblivious semi-synchronous robots (thus also for asynchronous robots)
is not solvable without multiplicity detection capability or agreements on the
local coordinate systems [27].

In this section, a solution to the gathering problem for a set of asynchronous
robots with limited visibility range is discussed [15]. It is assumed that the
robots have agreements in the directions and orientations of both local coordinate
axes (Consistent Compass model). The robots are assumed to be transparent.
The overall idea of the algorithm is to bring all the robots at the rightmost-
bottommost point. To achieve this, robots move from left to right and from
top to bottom directions. Since they have limited visibility range, during move-
ments, they need to preserve visibility with the current visible robots so that the
visibility graph remains connected throughout the execution. Consider a robot
ri ∈ R at time t ≥ t0. The destination point of ri depends on its position. Let
V Li(t) and HLi(t) denote the vertical and horizontal lines through ri(t). Let
Lefti(t) and Righti(t) be the sets of robot positions in Vi(t) lying on the left and
right open halves of V Li(t) respectively. Abovei(t) and Belowi(t) are the sets
of robot positions in Vi(t) lying on the upper and lower open halves of HLi(t)
respectively. None of these four sets contains ri(t).
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Fig. 9. An illustration of a vertical
movement

Fig. 10. An illustration of a horizontal
movement

– If there is at least one robot position in Lefti(t) or in Abovei(t), robot ri

does nothing.
– If all the robot positions in Vi(t) lie below on the line V Li(t), ri moves towards

the nearest visible robot (vertical move in Fig. 9).
– If all robot positions in Vi(t) lie on the right hand side of ri i.e., Vi(t) =

Righti(t), ri makes a Horizontal move (Fig. 10 and line no. 15–18 in the
pseudo-code Gathering-Async()).

– If there are robot positions both below on the line V Li(t) and in Righti(t), ri

makes a Diagonal move (Figs. 11 and 12 and line no. 20–32 in the pseudo-code
Gathering-Async()).

Fig. 11. Case β < 60◦, diagonal move,
in Gathering-Async()

Fig. 12. Case β = 60◦, diagonal move,
in Gathering-Async()
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Algorithm 6. Gathering-Async()
Input: ri(t) ∈ R(t),Vi(t), V .
Output: A destination point for robot ri.

1 V Li(t) ← vertical line through ri(t);
2 HLi(t) ← horizontal line through ri(t);
3 Lefti(t) ← set of all robots on the left of V Li(t) not lying on V Li(t);
4 Righti(t) ←set of all robots on the right of V Li(t) not lying on V Li(t);
5 Abovei(t) ←set of all robots on the above of HLi(t) not lying on HLi(t);
6 Belowi(t) ←set of all robots on the below of HLi(t) not lying on HLi(t);
7 V L+

i (t) ← set of all robots in Abovei(t) lying on V Li(t);
8 V L−

i (t) ← set of all robots in Belowi(t) lying on V Li(t);
9 if Lefti(t) ∪ V L+

i (t) �= ∅ then
10 pi(t) ← ri(t);
11 else
12 if Vi(t) == V L−

i (t) then
13 pi(t) ←, the nearest robot position in Vi(t) from ri(t);
14 else
15 if Vi(t) == Righti(t) then
16 Ai(t) ← projection of all points in Righti(t) on HLi(t);
17 pi(t) ← the nearest point in Ai(t) from ri(t);
18 else
19 Si(t) ← minimum enclosing circle of Vi(t) ∪ {ri(t)};
20 Ai(t) ← projection of all points in Vi(t) on HLi(t);
21 qi(t) ← the nearest point in Ai(t) from ri(t);
22 V qi(t) ← the vertical line through qi(t);
23 ui(t) ← the upper intersection point between Si(t) and V qi(t);
24 vi(t) ← the lower intersection point between Si(t) and V qi(t);
25 A ← the point on negative Y-axis of ri at a distance V from

ri(t);
26 2β ← ∠ui(t)ri(t)A;
27 if β < 60◦ then
28 ui(t) ← the point b on Si(t) such that ∠ui(t)ri(t)b is

minimum and ∠bri(t)A = 120◦ ;
29 V qi(t) ← the vertical line through ui(t);

30 Li(t) ← the ray from ri(t) and perpendicular to Aui(t);
31 pi(t) ← the intersection point between V qi(t) and Di(t);

32 ri moves towards pi(t);
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Theorem 6 [15]. The gathering problem is solvable for a set of robots with
limited visibility under Async model if they have Consistent Compasses.

4.3.2 Gathering in the Ssync Model with Eventually Consistent
Compasses

Consider a set of robots with eventually consistent compasses in the Ssync
model [28]. With eventually consistent compasses, robots agree on a fixed direc-
tion, say North direction, after some unknown finite time. An eventually consis-
tent compass has the following properties: (1) the north directions of the robots
may change over time; (2) two different robots may disagree on a common north
direction; and (3) there exists some time GST, unknown to the robots, after
which the robots agree on a common north direction for a sufficiently long period.
Algorithm Gathering-Async() does not solve the gathering problem for a set
of semi-synchronous robots with eventually consistent compasses. When robots
with eventually consistent compasses execute algorithm Gathering-Async(), the
initial visibility graph may get disconnected [28].

The solution in [28] assumes common chirality. While solving the gathering
problem, the movements of the robots are coordinated to satisfy three sub-goals
at every time instant t:

(i) All the mutually visible robots at time t remain visible at time t + 1.
(ii) The robots move close to each other until they become sufficiently close, as

defined below.
(iii) When robots become sufficiently close, they move from left to right to gather

at the rightmost-bottommost robot position and, after GST , they gather
at the rightmost-bottommost robot position within finite time.

An active robot ri at time t first checks whether the system has been suf-
ficiently converged or not. The convergence criteria is defined as follows. Let
Sij(t) be the circle with centre ri(t)+rj(t)

2 and radius V
2 , rj(t) ∈ Vi(t). If the

intersection ∩rj(t)∈Vi(t)Sij(t) contains all robot positions in Vi(t), then robot
ri concludes that the system has sufficiently converged. Once the system has
sufficiently converged, robots start moving from left side towards the rightmost-
bottommost robot position as follows. We use terms defined in pseudo-code
Gathering-Async():

– If there is a robot in Lefti(t) or in V L+
i (t), then ri does not move.

– If there are robots neither in Lefti(t) or V L+
i (t) and ri(t) is collinear with all

robot positions in Vi(t), then ri moves linearly to the nearest robot position.
In this case, if ri moves, it must be the topmost or leftmost robot on the line
of collinearity.

– If there are robots neither in Lefti(t) or V L+
i (t) and there are some robots in

Righti(t) or V L−
i (t), then ri moves to the closest robot position in V L−

i (t),
if any. Otherwise, ri moves to the closest robot position in Righti(t).

When ri finds that the convergence criteria is not satisfied, it computes its
destination point as follows.
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– If all the robot positions in Vi(t) are collinear and ri(t) does not lie between
two other robot positions, ri moves to the nearest robot position along the
line of collinearity.

– If there are robots neither in Lefti(t) or V L+
i (t) and there are some robot

positions in Righti(t) or V L−
i (t), then ri does the following. First, ri considers

the smallest sector SCi(t) of Si(t) containing all the robots in Vi(t) within or
on its boundary. Let rj(t) and rk(t) be the two farthest robot positions in two
different sides of the sector SCi(t). Let li(t) be the foot of a perpendicular from
ri(t) to rj(t)rk(t). If li(t) lies within the triangle ijk(t) formed by ri(t), rj(t)
and rk(t), robot ri moves to li(t). Otherwise, ri moves to the closest robot
position among rj(t) and rk(t).

Theorem 7 [28]. The gathering problem is solvable for a set of robots with
chirality and eventually consistent compasses under the Ssync model.

4.3.3 Optimal Gathering Algorithm
A new aspect of the classical gathering problem has been introduced by Poudel
et al. [26]. Most of the earlier papers on the classical gathering problem did not
discuss about the time complexity of their proposed algorithms, other than their
finite time termination. However, in the recent papers [9,11,13,23] runtime of the
algorithms has been given importance, while designing a solution. For example,
Degener et al. [11] proposed an algorithm for gathering, whose expected runtime
is O(n2) under fully synchronous model.

In some recent papers, the authors have also considered different viewing
and connectivity range. The work in [20] proposed a O(DG) time solution for
gathering on plane in Fsync model, where DG is the diameter of the initial
visibility graph. In this work, robots are assumed to have one-axis agreement.
The connectivity range is assumed to be 1√

2
, while visibility range is 1, higher

than the connectivity range.
A new aspect of the running time calculation has been brought into consid-

eration by Poudel et al. [26]. Let DE be the largest Euclidean distance between
any pair of nodes in the initial configuration. For the gathering problem, a natu-
ral lower bound for solutions is Ω(DE). For any initial configuration DE ≤ DG

and in the worst case DG = Θ(D2
E). In [26], an attempt was made to bridge the

gap between O(DG) and O(DE). For any initial configuration having viewing
range

√
10 and square connectivity range of

√
2, an algorithm for gathering on

a plane has been proposed under Async setting with full axis agreement.
Consider a robot ri ∈ R. A horizontal line Lx and a vertical line Ly are

assumed to pass through ri(t). Consider an axis-aligned square ABCD with each
side of length 2 units, centred at ri(t) (Fig. 13(a)). Robots having

√
2 square con-

nectivity implies that robot ri is connected to all other robots placed within the
square ABCD (including its boundary), though ri can see beyond this square. In
this solution, it is assumed that robots are oblivious and they take rigid motion
only. Throughout the algorithm the robots are allowed to take moves only in the
horizontal direction (left or right), vertically downward direction, and diagonally
south-east or south-west direction. All these movements are taken on the basis
of the positions of the neighbours in the connectivity graph.



152 S. Bhagat et al.

Fig. 13. An illustration of squares ABCD and PQRS

As shown in Fig. 13(b), let rj and rk be the topmost (if any) and the left-
most (if any) robot present within the square ABCD. While the robot takes its
decision about its move, it considers a square PQRS within the square ABCD
with its top boundary RT passing through rj(t) and left boundary RL passing
through rk(t) and each side having length 1. The decision of ri depends not only
the position of other robots present in ABCD, but also sometimes on the con-
nectivities of other robots present within PQRS and having neighbors outside
ABCD.

The three types of hops are taken by the robots until all the robots are
placed within 1 × 1 square (axis-aligned) area and finally a special termination
procedure is followed to gather at a single point. Under all the moves, it is
established that the visibility is retained. It is shown that the algorithm solves
gathering in O(DE) time, with time measured in terms of look-compute-move
(LCM) rounds, in the Fsync model. For the Ssync and Async models, O(DE)
epochs solve the gathering under full axis agreement with visibility range of√
10 and square connectivity range of

√
2. Under one-axis agreement, all other

constraints being identical, the robots can form a horizontal line of unit length
in O(DE) epochs in the Async system.

Theorem 8 [26]. The gathering problem is solvable in O(DE) epochs under the
Async model for a set of asynchronous robots with both axis agreement and rigid
movements when visibility range is

√
10 and square connectivity range is

√
2.

4.4 The Scattering Problem

The scattering problem is defined as follows: starting from an arbitrary initial
configuration, robots are required to obtain, within finite time, a configuration
in which no two distinct robots occupy the same location. This problem can be
considered as the dual of the gathering problem. To solve the pattern formation
problem, starting from an arbitrary initial configuration, the scattering prob-
lem can be used as a preprocessing protocol. Due to the hardness of symmetry
breaking problem, it is impossible to design deterministic scattering algorithms.
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This implies that there is no deterministic solution to separate two robots, occu-
pying the same location, when they work synchronously. Thus, randomization
techniques are used to study the problem.

When robots have limited visibility, a solution for the scattering problem also
requires to maintain the connectivity among the robots. The work in [21] pre-
sented a randomized scattering algorithm with connectivity-preserving property
for a set of semi-synchronous robots. The robots have local-weak multiplicity
detection capability, which enables them to identify multiple occurrences of the
robots at a single point. Robots have no knowledge of n. Movements of the robots
are rigid. It is assumed that scheduler is a fair scheduler, i.e. it activates each
robot infinitely often. The number of random bits used by the robots in a cycle
is one.

Definition 3. Let p be a point and S be a circle of unit radius centred at p. Let
B = {a1, a2, · · · , am} be a set of points on the circumference of S. The point p
is said to be blocked if no arc of S with a centre angle less than π contains all
the points in B (Fig. 14).

Fig. 14. An example of (a) a blocked robot ri, and of (b) a non-blocked robot rj

The outline of the algorithm is as follows [21]. To preserve the connectivity
property, a robot at a blocked position does not move. First, non-blocked robots
move in such a way that within finite number of rounds all the blocked robots
become non-blocked. Then robots at the multiplicity points move in probabilistic
way to achieve scattering. Now consider an active non-blocked robot ri at time
t. First, ri computes a point p which represents the direction and maximum
amount of movement for ri and computes two possible destination points on the
segment ri(t)p. Finally, by using the random bit, it chooses any one of these
destination points. Let S∗

i (t) be the circle of unit radius centred at ri(t). There
are two possibilities for the point p:

– Suppose the circumference of S∗
i (t) contains no robot position. The possible

travel length of ri is denoted by d. The value of d is bounded between two
quantities: (i) the minimum distance between the boundary of S∗

i (t) and the
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robot positions in Vi(t) which lies inside S∗
i (r), and (ii) the distance between

ri(t) and its nearest robot position. The value of d is used to compute the
destination of ri which preserves connectivity and avoids creating new point
of multiplicity. Robot ri sets p as the point at a distance d

3 from ri(t) in the
direction of the nearest robot from ri(t).

– Suppose the circumference of S∗
i (t) contains at least one robot position. Let

A be the arc of S∗
i (t) which contains all the robots on the boundary of S∗

i (t).
Let Lc be the chord of A and L be the half line bisecting the centre angle of
A. Let Lc and L intersect at x. Then p be the point on ri(t)x at a distance
d, where d is same as defined in the first case.

Robot ri takes two candidate destination points on the segment ri(t)p and
chooses one of them as its destination, by using the random bit. The robot
ri moves, even if ri(t) contains exactly one robot, to make a blocked robot a
non-blocked one. Details of the strategies are given in the pseudo-code SCAT-
TER().

Theorem 9 [21]. Algorithm SCATTER() achieves the connectivity-preserving
scattering within O(min{n,D2+logn}) expected rounds under the Ssync model,
where D is the diameter of the initial visibility graph.

To establish a lower bound on the round complexity for any connectivity-
preserving scattering algorithm, consider the following proposition.

Proposition 1. Let ψ be a connectivity-preserving scattering algorithm. Con-
sider three robots r1, r2, r3 located at (−1, 0), (0, 0) and (1, 0) respectively. If robot
r2 is activated, then it does not move. Similarly, consider a configuration of four
robots r1, r2, r3 and r4 located at (−1, 0), (0, 0), (0, 0) and (1, 0) respectively. On
activation, none of r2 and r3 move.

The above proposition holds as to maintain the connectivity property.

Theorem 10 [21]. Let R(t) be the configuration of 2n robots where rk(t) is
defined as follows:

rk =

{
(k − 1, 0) if 1 ≤ k ≤ n

(k, 0) if n + 1 ≤ k ≤ 2n

Then, any connectivity-preserving algorithms takes Ω(n) rounds if the initial
configuration is R(t) (Fig. 15).

The proof of the above theorem is done by using Proposition 1 and providing
a round-robin activation of the robots. From Proposition 1, robots rk+1 and
r2n−k+1 never move unless robots rk and r2n−k change their positions. Now
consider the round-robin activation schedule of the robots in the order

rn, rn−1, rn+1, rn−2, · · · , rn+j , rn−j−1, · · · , r2n, r1.

The robots which can change their positions in round k are rk and r2n−k.
This implies that Ω(n) rounds are needed to scatter rn and rn−1.
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Fig. 15. The configuration R(t) used in Theorem 10

Algorithm 7. SCATTER()
Input: ri(t) ∈ R(t),Vi(t), V .
Output: A destination point for ri.

1 S∗
i (t) ← the circle of unit radius centred at ri(t);

2 R∗
i (t) ← set of robot positions on the boundary of S∗

i (t);
3 mi(t) ← binary variable indicating multiplicity of ri(t);
4 Rand() ← random oracle;
5 bi(t) ← 1 if ri(t) is non-blocked, otherwise 0;
6 if bi(t) == 1 then
7 d ← min{min{1 − |ri(t)rj(t)|, |ri(t)rj(t)|} : rj(t) ∈

(Vi(t) − R∗(t)) ∪ {ri(t)}};
8 if R∗(t) == ∅ then
9 rj(t) ← nearest robot position from ri(t);

10 Lij(t) ← ray starting from ri(t) and passing through rj(t);
11 q ← the point on Lij(t) at a distance d

3 from ri(t);
12 else
13 A ← arc of S∗

i (t) containing all robots of R∗
i (t);

14 Lc ← chord of A;
15 L ← the half line bisecting the centre angle of A;
16 x ← intersection point of Lc and L;
17 q ← the point on ri(t)x at a distance d from ri(t);

18 l ← dist(ri(t), q);
19 if Rand() == 1 then
20 pi(t) ← the point on ri(t)q at a distance l

4 ;
21 else
22 pi(t) ← the point on ri(t)q at a distance l

2 ;

23 else
24 pi(t) ← ri(t);

25 ri moves towards pi(t);

4.5 The Pattern Formation Problem

The pattern formation problem is one of the most important coordination prob-
lem for a swarm of robots. Starting from an arbitrary initial configuration, robots
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are required to form a given pattern, within finite time. The pattern, given to
the robots as input, can be a set of points in plane or a geometric predicate
like circle, square etc. In general, the initial configuration does not contain any
multiplicity point. The number of robots and the number of points in the given
pattern are the same. The pattern formation problem is said to be solved when
each point of the pattern is occupied by a robot, within finite time or the robot
positions satisfy the predicate. The pattern formation problem is mostly investi-
gated for the robots with unlimited visibility range [14]. In this section, a study
on the pattern formation problem is discussed when robots have limited visibil-
ity range [30]. The study reveals the formation power of the robots with limited
visibility with respect to the robots with unlimited visibility range.

Consider a set P of distinct points. The symmetricity ρ(P) of P is defined
to be 1 if the center c(P) of the smallest enclosing circle of P contains a point
of P (Fig. 16(a)). Otherwise, ρ(P) is the number of angles θ ∈ (0, 2π] such that
rotation of P by angle θ yields P (Fig. 16(b)). For robots with unlimited visibility
range, a target pattern F is formable from an initial robot configuration I if and
only if ρ(I) divides ρ(F) [29]. Let Pn be the set of all patterns of n points.

Fig. 16. An illustration of symmetricity

Following lemma holds even for the robots with limited visibility.

Lemma 3 [29]. A pattern F ∈ Pn is not formable from an initial configuration
I ∈ Pn by oblivious Fsync robots with limited visibility, if ρ(I) > ρ(F), where
n ≥ 3.

Following theorem presents a negative result for the pattern formation prob-
lem under limited visibility model.

Theorem 11 [30]. Let ψ be an arbitrary pattern formation algorithm for obliv-
ious Fsync robots with limited visibility. Then there exist F , I ∈ Pn for n ≥ 3
such that F is not formable starting from I even when ρ(I) divides ρ(F).
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Fig. 17. A counter example of non-formable pattern: pattern F1 is not formable start-
ing from the initial configuration I1 even if ρ(I1) = ρ(F1).

The above theorem is proved by means of a counter example. Consider the
initial configuration I1 and the pattern F1 as shown in Fig. 17. Note that ρ(I1) =
ρ(F1) = 2. Let ψ be an arbitrary pattern formation algorithm for oblivious
Fsync robots with limited visibility. ψ forms any target pattern F from an
initial configuration I when ρ(I) divides ρ(F). It can be proved that there
exists an execution of ψ in which robots in I1 move symmetrically to increase
symmetricity to 4 and F1 is no more formable by Lemma 3.

Theorem 11 implies that limited visibility substantially weakens the forma-
tion power of oblivious robots. However, for non-oblivious robots things are
different. With limited visibility, non-oblivious Fsync robots with non-rigid
movements and non-oblivious Ssync robots with rigid movements have same
formation power as robots with unlimited visibility range. Thus, we have follow-
ing two theorems.

Theorem 12 [30]. Let F , I ∈ Pn for n ≥ 3. Pattern F is formable from the
initial configuration I by non-oblivious Ssync robots with limited visibility and
rigid moves if and only if ρ(I) divides ρ(F).

Theorem 13 [30]. Let F , I ∈ Pn for n ≥ 3. Pattern F is formable from the
initial configuration I by non-oblivious Fsync robots with limited visibility and
non-rigid moves if and only if ρ(I) divides ρ(F).

The pattern formation algorithms have two phases. In the first phase, the
robots use a convergence [2] algorithm to obtain mutual visibility among each
other. Robots can detect termination of this phase as they know |F | = n and V .
Once, mutual visibility is obtained, the second phase is started. In this phase,
robots use existing pattern formation algorithms for robots with unlimited vis-
ibility [16,29,30]. However, during any execution of the convergence algorithm,
the symmetricity of the configuration may be increased by the movements of the
robots (since robots do not have knowledge of the global configuration). There-
fore, one need to reduce the symmetricity below ρ(F). This can be done by sym-
metricity control algorithm which uses the local views and local outputs recorded
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by the non-oblivious robots. Once the symmetricity becomes smaller than ρ(F),
the robots execute the existing pattern formation algorithm to achieved the tar-
get pattern.

5 Obstructed Visibility Model

In the obstructed visibility model a robot may not have the complete visibility
across the system. In the limited visibility model robots may be transparent or
opaque. The combination of these two models provides a more difficult setting.
Few works have been reported in the obstructed visibility model for oblivious
robots [1,3–5,10,12,19]. Mainly the gathering problem and the mutual visibility
problem have been studied under this model.

5.1 The Gathering Problem for Opaque Robots with No Extent

In the obstructed visibility model, solutions to the gathering problem exist for the
point robots in the 2D plane and 3D space [3,5]. Both the solutions assume that
the robots have an agreement in the direction and orientation of one coordinate
axis. The solutions work even if initial configuration contains multiplicity points
(a point containing multiple robots).

5.1.1 In the Euclidean Plane
The work in [3] proposed a solution to the gathering problem for a set of asyn-
chronous opaque robots with no extent in the Euclidean plane. The proposed
algorithm can tolerate an arbitrary number of crash faults. In crash fault model,
a robot may stop working forever. However, the faulty robots remain in the sys-
tem without performing any further action. A robot can not distinguish between
a faulty robot and non-faulty robot. A model which permits at most f ≤ n faulty
robots among the total n robots is denoted by (n, f) fault model. To describe
the algorithm following notations are used:

– Without loss of generality, it is assumed that robots agree on the direction
and orientation of Y -axis. Let Lk(t) denote the kth horizontal line from the
north t o south direction through the robot positions in R(t). Robot positions
in Vi(t) are partitioned into following three sub sets,

• UPi(t) is the set of all points in Vi(t) having y-coordinate value greater
than that of ri(t) i.e., UPi(t) = {rj(t) ∈ Vi(t) : rj(t).y > 0}. Note that
UPi(t) is empty for the robots lying on the topmost horizontal line L1(t).
Let Lui

(t) be the horizontal line through the points in UPi(t) having
lowest y coordinate.

• SMi(t) is the set of all points in Vi(t) having y-coordinate values equal
to ri(t) i.e., SMi(t) = {rj(t) ∈ Vi(t) : rj(t).y = 0}. Let Lsi

(t) denote the
horizontal line through the points in SMi(t).
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• LWi(t) is the set of all points in Vi(t) having y-coordinate value less than
that of ri(t) i.e., LWi(t) = {rj(t) ∈ Vi(t) : rj(t).y < 0}. Note that LWi(t)
is empty for the robots lying on the bottommost horizontal line through
the points in R(t). Let Lwi

(t) be the horizontal line through the points
in UPi(t) having highest y coordinate (Fig. 18).

Fig. 18. An illustration showing Lui(t), Lsi(t) and Lwi(t), Mi(Lsi(t)) = {rk(t), rl(t)}
and M(Lsi(t)) = {rj(t), rl(t)}.

The main idea of the algorithm is as follows: robots try to obtain a unique
position in the north direction. If in the initial configuration, there is a unique
robot position on L1(t0), then this point serves as the gathering point. Otherwise,
robots coordinate their movements to create such a point within finite time. If
sets UPi(t) and LWi(t) are non-empty, then all the robot positions in these sets
are visible to ri. The computation of the destination point for ri depends on
its position. The different scenarios and the corresponding approaches are as
follows:

– UPi(t) = φ:
In this case, ri(t) lies on the topmost horizontal line in the north direction i.e.
on L1(t). If ri(t) is the only robot position on L1(t), robot ri does not move.
Otherwise, there are at least two robot positions on L1(t). The computation of
the destination point of ri depends on the number of distinct robot positions
on L1(t) and its position. Robot ri computes its destination point as follows:

• Suppose ri(t) is a corner point on L1(t) and rj(t) be the point on L1(t))
visible to ri. Robot ri computes the equilateral triangle ri(t)Ti(t)rj(t)
whose side length is |ri(t)rj(t)| and Ti(t) is the other vertex which lies in
the north of ri(t)rj(t). Robot ri moves towards Ti(t) along ri(t)Ti(t).

• Suppose ri(t) is not a corner point on L1(t)). In this case, ri lies in between
two other robots on L1(t). Robot ri computes the point mi(t) as follows:
(i) if LWi(t) �= ∅, the point mi(t) is the nearest to ri(t) and is equidistant
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from the lines L1(t) and Lwi
(t) (ii) otherwise, the point mi(t) is in the

south direction and is at distance |ri(t)rj(t)|, where rj(t) is the nearest
robot position on L1(t). The point mi(t) is the destination point of ri.

– UPi(t) �= φ:
All the robots on Lui

(t) are visible to ri. Robot ri moves towards the nearest
corner robot position on Lui

(t) i.e., in M(Lui
(t)).

The pseudo-code of the algorithm is given in GatheringObs2D(). The correctness
of the algorithm depends on the following facts.

Fact 1. Suppose ABC is an equilateral triangle. If D and E are two points
on side AB and AC such that |BD| = |CE|, then ADE is also equilateral
(Fig. 19(a)).

Fact 2. Suppose ABC is an equilateral triangle and D is a point on side BC.
We draw an equilateral triangle EBD with side length |BD|. Then E lies on
the side AB (Fig. 19(b)).

Fig. 19. Illustrations showing (a) Fact 1 and (b) Fact 2.

Algorithm GatheringObs2D() gathers the robots even if an arbitrary number
of robots crash during the execution.

Theorem 14 [3]. The gathering problem is solvable for a set of asynchronous
robots in (n, n − 1) crash fault model when robots have an agreement on one
coordinate axis.
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Algorithm 8. GatheringObs2D()
Input: ri(t),Vi(t).
Output: A destination point for ri.

1 UPi(t) ← {rj(t) ∈ Vi(t)|rj(t).y > 0};
2 SMi(t) ← {rj(t) ∈ Vi(t)|rj(t).y = 0};
3 LWi(t) ← {rj(t) ∈ Vi(t)|rj(t).y < 0};
4 if UPi(t) == ∅ then
5 if |SMi(t)| == 1 then
6 pi(t) ← ri(t);
7 else
8 C ← 1 if ri is a corner robot on Lsi

(t), otherwise 0;
9 if C == 1 then

10 ri(t)Ti(t)rj(t) ← equilateral triangle with side length
|ri(t)rj(t)| and Ti(t) lies in the north direction;

11 pi(t) ← Ti(t);
12 else
13 if LWi(t) �= ∅ then
14 Lwi

(t) ← the horizontal line through robot positions in
LWi(t) having highest y coordinate;

15 L∗ ← perpendicular line on Lwi
(t) from ri(t);

16 l ← perpendicular distance of Lwi
(t) from ri(t);

17 pi(t) ← the point on L∗ in the south direction and at a
distance l

2 from ri(t);
18 else
19 Lsi

(t) ← the horizontal line through robot positions in
SMi(t);

20 L∗ ← perpendicular line on Lsi
(t) at ri(t);

21 l ← the distance of the nearest robot on Lsi
(t) from ri(t);

22 pi(t) ← the point on L∗ in the south direction and at a
distance l

2 from ri(t);

23 else
24 Lui

(t) ← the horizontal line through robot positions in UPi(t) having
lowest y coordinate;

25 pi(t) ← the nearest corner robot position on Lui
(t);

26 robot ri moves towards pi(t);

5.1.2 In the Euclidean 3D Space
The extension of the problems studied in the Euclidean plane to the Euclidean
three dimension space is natural. In [5], the gathering problem was studied in
the three dimension space under obstructed visibility model. Two different algo-
rithms were proposed in the Async and Ssync model. The algorithm in the
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Ssync model can tolerate an arbitrary number of crash faults. The robots are
represented as points in the three dimension space. The work considers an agree-
ment in the direction and orientation of only one coordinate axis, namely Z-axis.
Following notations are used to describe the algorithms.

Z+

P 1(t)

P 2(t)

P 3(t)

Fig. 20. An example of P(t)

– Consider a robot ri ∈ R at time t. Let Z+ and Z− denote the positive and
negative directions of Z axis. Planes normal to Z axis are drawn through
each point in R(t). Let P k

i (t) and P k(t) denote the kth plane in the direction
from Z+ to Z−, containing the points in Vi(t) and R(t) respectively. Let
Ni(t) and N (t) denote the total number of distinct planes for Vi(t) and R(t)
respectively (Fig. 20).
Let Rk

i (t) ⊂ Vi(t) and Rm(t) ⊂ R(t) be the sets of distinct robot positions
on the planes P k

i (t) and P k(t) respectively.
– Consider P k

i (t) with |Rk
i (t)| ≥ 2. Let Sk

i (t) denote the smallest enclosing
circle of the robot positions in Rk

i (t) and Ok
i (t) denote the centre of this

circle. Let SEC(t) denote the smallest enclosing circle of the robot positions
on P 1(t). Let Wi(t) and W (t) denote the right circular cones with S1

i (t) and
SEC(t) as their bases respectively, axis of the both cones are parallel to Z
axis, semi-vertical angles are equal to 45◦, vertices Vi(t) and V (t) of the cones
respectively are on the upward direction.

– Let CH1
i (t) denote the convex hull of the robot positions in R1

i (t). A robot
ri lying on a vertex of CH1

i (t) is called an external robot. All other robots
are called internal robots. A robot on the plane P k

i (t) can see all the robot
positions on P k−1

i (t) and P k+1
i (t).

– In the Async model:
This section considers a set n asynchronous fault-free robots. When robots are
transparent and have one axis agreement, the gathering problem has a simple
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solution: robots compute the smallest enclosing cone of all the robot positions,
having semi-vertical angle 45◦, axis of the cone parallel to z-axis and vertex
in upward direction. All the robots in the system move straight towards the
vertex of the cone. The vertex remains invariant under the straight move-
ments of the robots towards it. Thus, gathering is achieved within finite time.
This approach can tolerate arbitrary number of crash faults. However, under
obstructed visibility model, this approach does not work.

Fig. 21. An example of p1
i (t) Fig. 22. An example of qm

i (t)

Algorithm GatherAsync3D() provides a solution to the gathering problem
under obstructed visibility model [5]. The overall idea of the algorithm is as
follows: if a unique invariant point is available and all robots can agree on
this point, then this point serves as the gathering point. Otherwise, robots
movements are coordinated to create such point within finite time. An active
robot ri ∈ R at time t ≥ t0 acts according to the following strategies.

• Case-1 Ni(t) > 1:
First robots form a vertical line. Then, they start moving in the upward
direction to the next visible robot position. The robots move along the
vertical line. A robot moves only when it finds no other robot below
it. To describe the strategies following notations are used. Let H2

i (t) be
the perpendicular line from the point w on the plane P 1

i (t), where w is
defined as follows: if |R1

i (t)| > 1, w = O2
i (t), otherwise w is the unique

robot position on P 2
i (t). Let H2

i (t) intersect P 1
i (t) at p1i (t) (Fig. 21). For a

plane Pm
i (t) �= P 1

i (t), if |Rm−1
i (t)| = 1, let Lm−1

i (t) be the perpendicular
line from rj(t) ∈ Rm−1

i (t) on the plane Pm
i (t). Let Lm−1

i (t) intersect
Pm(t) at qm

i (t) (Fig. 22). All the robots on P 1
i (t) and Pm

i (t) (including
all the robots not visible to ri but lie on these planes), can compute the
points p1i (t) and qm

i (t) respectively. For m > 1, we define the following
predicate:
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Dm
i (t) : |Rm−1

i (t)| = 1∧ all the robots on Pm
i (t) lie on Lm−1

i (t) i.e.,
at qm

i (t).
The robot ri acts according to the following:
∗ Case-1.1 ri(t) ∈ R1

i (t):
In this case ri lies on P 1(t). If |R1

i (t)| = 1, robot ri does nothing.
Otherwise, ri computes p1i (t) and moves straight towards it along
ri(t)p1i (t).

∗ Case-1.2 ri(t) /∈ R1
i (t):

First, suppose ri(t) ∈ R2
i (t). If |R1

i (t)| > 1, ri does nothing. Other-
wise, it computes q2i (t) and moves towards this point. Now, suppose
ri(t) ∈ Rm

i (t), m > 2. If Dk
i (t) is not true for some 1 < k ≤ m − 1,

robot ri does nothing. Else, it computes qm
i (t) and moves towards it. If

|Vi(t)| = 1 and D2
i (t) is satisfied (when all the robots lie on a vertical

line), robot ri moves straight towards the visible robot position.
• Case-2. Ni(t) = 1:

In this case, there is only one horizontal plane in the system which con-
tains all the robots. Here, our strategies try to generate scenarios in which
either there is unique robot position on the top most plane and all the
robots are aware of this or the system contains more than one plane,
containing robot positions. The different strategies for robot ri are as
follows:
∗ Case-2.1 |R1

i (t)| = 1:
Robot ri does nothing. In this case, gathering is achieved.

∗ Case-2.2 |R1
i (t)| ≥ 2:

• Case-2.2.1 ri is an internal robot:
Let qi(t) be a point below the plane P 1

i (t) at a distance l
2 from

ri(t) and lies on the vertical line through ri(t), where l is the
distance of the nearest robot position from ri(t). Robot ri moves
straight towards qi(t).

• Case-2.2.2 ri is an external robot:
If ri does not lie on the boundary of S1

i (t), it does not
move. Otherwise, ri computes cone Wi(t) and moves straight
towards Vi(t).

Theorem 15 [5]. The gathering problem for n ≥ 2 asynchronous robots in
three dimensional space is solvable under the obstructed visibility model when
robots have an agreement in exactly one coordinate axis and they never become
faulty.
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Algorithm 9. GatherAsync3D()
Input: ri(t) ∈ R(t), Vi(t).
Output: A destination point for robot ri.

1 Compute Pi(t) = (P 1
i (t), P

2
i (t), . . . , P

k
i (t)) ;

2 Ni(t) ← |Pi(t)|;
3 if Ni(t) > 1 then
4 if ri(t) ∈ R1

i (t) then
5 if |R1

i (t)| = 1 then
6 pi(t) ← ri(t);
7 else
8 if |R2

i (t)| > 1 then
9 S2

i (t) ← smallest enclosing circle of the points in R2
i (t);

10 w ← centre of S2
i (t);

11 else
12 w ← rj(t) ∈ R2

i (t);

13 H2
i ← the perpendicular line from w on P 1

i (t);
14 pi(t) ← intersection point between H2

i (t) and P 1
i (t);

15 else
16 if ri(t) ∈ R2

i (t) then
17 if |R1

i (t)| > 1 then
18 pi(t) ← ri(t) ;
19 else
20 u ← rj(t) ∈ R1

i (t);
21 L1

i ← the perpendicular line from u on P 2
i (t);

22 q2i (t) ← intersection point between L1
i (t) and P 2

i (t);
23 if |Vi(t)| == 2 ∧ ri(t) == q2i (t) then
24 pi(t) ← u ;
25 else
26 pi(t) ← q2i (t) ;

27 else
28 ri(t) ∈ Rm

i (t);
29 Dk

i (t) ← |Rk−1
i (t)| = 1∧ all the robots on Pk

i (t) lie at qk
i (t);

30 if Dk
i (t) == True ∀k < m then

31 v ← rl(t) ∈ Rm−1
i (t);

32 Lm−1
i ← the perpendicular line from v on Pm

i (t);
33 pi(t) ← intersection point between Lm−1

i (t) and Pm
i (t);

34 else
35 pi(t) ← ri(t) ;

36 else
37 if |Ri

1(t)| == 1 then
38 pi(t) ← ri(t);
39 else
40 if ri is internal then
41 pi(t) ← ri(t);
42 else
43 Wi(t) ← right circular cone with S1

i (t) as base, axis parallel to Z−axis,
semi-vertical angle 45◦, vertex on the upward direction;

44 pi(t) ← the vertex of Wi(t);

45 ri moves towards pi(t) along the line segment ri(t)pi(t);
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– In the Ssync model:
This section presents a gathering algorithm for a set of n opaque robots with
no extent in the 3D space. The algorithm can tolerate an arbitrary number of
crash faults. For an active robot ri at time t, the different solution strategies
are as follows:

Algorithm 10. GatherSsync3D()
Input: ri(t) ∈ R(t),Vi(t).
Output: A destination point for robot ri.

1 Compute Pi(t) = (P 1
i (t), P

2
i (t), . . . , P

k
i (t)) ;

2 Ni(t) ← |Pi(t)|;
3 if ri(t) ∈ R1

i (t) then
4 if |R1

i (t)| == 1 then
5 pi(t) ← ri(t);
6 else
7 if ri is internal then
8 L ← vertical line through ri(t);
9 if Ni(t) == 1 then

10 l ← min{dist(ri(t), rj(t)) : rj(t) ∈ Vi(t)};
11 pi(t) ← the point at a distance l

2 on L in downward
direction;

12 else
13 l ← distance between R1

i (t) and R2
i (t);

14 pi(t) ← the point at a distance l
2 on L in downward

direction;

15 else
16 Wi(t) ← right circular cone with S1

i (t) as base, axis parallel to
Z−axis, semi-vertical angle 45◦, vertex on the upward
direction;

17 pi(t) ← the vertex of Wi(t);

18 else
19 ri(t) ∈ Rk

i (t);
20 pi(t) ← nearest external robot on P k−1

i (t) from ri(t);

21 ri moves towards pi(t);

• Case 1: ri(t) ∈ R1
i (t): If |R1

i (t)| = 1, robot ri does not change its position.
Otherwise, (i) if ri is an external robot, it computes the cone Wi(t), marks
Vi(t) as its destination point and moves straight towards Vi(t) along the
surface of Wi(t). If ri is an internal robot, it computes a point qi(t) below the
plane P 1

i (t) such that the point qi(t) is at a distance l
2 from ri(t) and lies on

the vertical line through ri(t), where l is defined as follows: (a) if Ni(t) > 1,
l is the distance between the planes P 1

i (t) and P 2
i (t) or (b) if Ni(t) = 1, l is

the distance of the nearest robot position from ri(t).
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• Case 2: ri(t) /∈ R1
i (t): Let ri lie on the plane P k

i (t), k ≥ 2. Let rj(t) be an
external robot position on P k−1

i (t) nearest to ri(t) (if tie, broken arbitrarily).
Robot ri moves towards rj(t) along the line segment ri(t)rj(t).

Theorem 16 [5]. The gathering problem is solvable for a set of semi-
synchronous opaque robots with no extent in the 3D space under (n, n− 1) model,
when robots have one-axis agreement.

5.2 The Gathering Problem for Opaque Robots with Extent

For theoretical reasons, robots are represented as points. However, in reality,
even a small robot occupy some space. This has motivated the researchers to
study different coordination problems for a system of autonomous robots in
which each robot has some extent. Robots are represented as discs of unit radius
in the Euclidean plane. This restricts two robots to occupy the same position
simultaneously. Since robots have some extent they block the movements of the
other robots through them. They may obstruct the vision of other robots. This
setting is more realistic than point robots.

5.2.1 Gathering Under the Async Model
The gathering problem for a swarm of opaque robots with extent is a natural
extension of the problem for point robots. The gathering problem in this model
was first studied in [10]. Since robots have some dimension and they can not
share same position, the requirements of the gathering pattern is different from
point robots. Instead of gathering a point, robots require to form a connected
configuration in which robots touch each other on their boundaries. A connected
configuration of the robot positions is a configuration in which between any two
robot positions, there exists a polygonal line each of whose points belongs to
some robot [10]. Following works under Async model assume unlimited visibility
range for the robots.

Definition 4 (The Gathering Pattern). A set of autonomous opaque robots
with extent require to coordinate their movements in such a way that within
finite time they form a connected configuration and all of them are mutually
visible [10].

By the position of a robot, we mean the position of its centre and the distance
between two robots are measured as the distance between their centres. Following
describes two distinct gathering algorithms proposed in [10]. The first algorithm
is for a set of three robots and second one is for four robots.

– Gathering Three Opaque Robots with Extent:
Let R = {r1, r2, r3} be the set of three opaque robots with extent. The
gathering of these robots is based on the following fact.
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Fact 3. For every triangle ABC with all angles smaller than or equal to 120◦,
there exists a unique point X inside ABC such that all angles ∠AXB, ∠BXC
and ∠CXA are exactly 120◦.

Algorithm 11. Gathering3Fat()
Input: ri(t) ∈ R(t), Vi(t).
Output: A destination point for robot ri.

1 K ← 1 if r1(t), r2(t), r3(t) are non-collinear, otherwise 0;
2 if K == 1 then
3 D(t) ← 1 if all angles of 123(t) are less than equal to 120◦, otherwise

0;
4 if D(t) == True then
5 X ← the point X inside 123(t) such that

∠r1(t)Xr2(t) = ∠r2(t)Xr3(t) = ∠r3(t)Xr1(t) = 120◦;
6 di(t) ← dist(ri(t),X);
7 if di(t) ≤ 2

√
3

3 then
8 pi(t) ← ri(t);
9 else

10 pi(t) ← the point u on ri(t)X at a distance 2
√
3

3 from X;

11 else
12 B ← 1 if the angle made at ri(t) by two other robot positions is

greater than 120◦, otherwise 0;
13 if B == 1 then
14 pi(t) ← ri(t);
15 else
16 rj(t) ← the robot position at which the angle made by two

other robot positions is greater than 120◦;
17 pi(t) ← the point u on ri(t)rj(t) at a distance 2 from rj(t);

18 else
19 G ← 1 if all the robots are visible to ri, otherwise 0;
20 if G == 1 then
21 L(t) ← the line on which all robots lie;
22 L∗(t) ← the perpendicular line to L(t) at ri(t);
23 pi(t) ← the point u on L∗(t) at a distance 1 from ri(t) such that u

has non-negative local x coordinate;
24 else
25 pi(t) ← ri(t);

26 Move to pi(t) along the line segment ri(t)pi(t);

The robots act according to the following configurations:

• Robots are non-collinear: Consider the triangle 123(t) formed by
r1(t), r2(t) and r3(t). A robot ri ∈ R performs actions in following ways:
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∗ If robots form a triangle with all angles smaller than or equal to 120◦,
ri first computes the point X inside 123(t) such that ∠r1(t)Xr2(t) =
∠r2(t)Xr3(t) = ∠r3(t)Xr1(t) = 120◦. If ri is at a distance 2

√
3

3 from X,
it does not move. Otherwise, it moves towards the point pi(t) lying on
ri(t)X and at a distance 2

√
3

3 from X.
∗ Suppose the largest angle of 123(t) lies strictly between 120◦ and 180◦. If

the largest angle is created at ri(t), robot ri does not move. Otherwise,
suppose the largest angle is created at rj(t). Robot ri moves towards the
point pi(t) lying on ri(t)rj(t) and at a distance 2 from rj(t).

• Robots are collinear: Let all the robot positions are on the line L(t). If
ri does not see two other robots, it does not move. Otherwise, ri moves
towards the point pi(t) lying on the perpendicular line to L(t) at a distance 1
from ri(t).

– Gathering Four Opaque Robots with Extent: This section considers a
set of four asynchronous opaque robots with extent and describes a gathering
algorithm for them. Gathering in this case is more complex than the gath-
ering of three robots. Since robots obstruct both movements and visions of
the other robots and they work asynchronously, the gathering of four robots
is more involved. Instead of giving techniques to compute destination points
for the robots depending on the global configurations, nine different situa-
tions are identified depending on what they perceive about the configuration.
These nine situations are a complete partition of all possible positions of the
robots. For each situation, a target point is computed according to its local
view. Due to asynchrony, it may happen that two different robots treat two
different situations at the same time. Efforts are made to develop strategies
to synchronize the behavior of the robots. However, such synchronization is
not always possible and two robots may execute different procedures for two
different situations at the same time. Such cases are monitored very carefully
so that within finite time their movements are coordinated.
The idea of the algorithm is as follows. In general there are two different sit-
uations. In one situation, all the robot positions form a convex quadrilateral.
In this case, robots move along the diagonals of the quadrilateral. In other
situation, three robot positions form a triangle with the fourth one inside it.
Here, the robot inside the triangle does not move and rest of the robots move
towards the internal robot. While dealing with these two basic situations,
there are other possible situations which the system may encounter. These
situations are described in the following.
1. gathering: The robots form a connected configuration and they are

mutually visible to each other. In this situation gathering is achieved.
2. four aligned: The centres of all four robots are collinear i.e., they lie

on same line segment. The robots on the two end points of the segment
are external robots and the robots lying in between them are internal
robots. In this situation, the external robots do not move. The internal
robots move a small distance along the perpendicular directions to their
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line of collinearity. This situation is converted to quadrilateral or triangle
situation (described below).

3. partial visible: Robots form a convex quadrilateral and vision of
two robots are collectively obstructed by the two other robots lying
in between. The two external robots do not move. The two internal
robots move in such a way that this situation is converted to the locking
situation.

4. locking: Robots are mutually visible. They form a convex quadrilateral
whose one diagonal has length

√
8 (Fig. 23(b)). The robots corresponding

to the larger diagonal move towards the two other robots until they touch
the other robots. This brings to the gathering situation.

Fig. 23. Illustrations of different situations in the gathering of four opaque robots with
extent

5. leaving line: None of the above four situations holds. Suppose r2 and r3
(internal robots) lie in between r1 and r4 (external robots) such that (i) r2
and r3 intersects the smallest width rectangular annulus containing r1 and
r4 in more than one point (ii) the segments r1(t)r4(t) and r2(t)r3(t) are
not perpendicular to each other (Fig. 23(d)). Without loss of generality
suppose that the segment r1(t)r4(t) is horizontal. The distance between
each external robot from the vertical projection of each internal robots
on r1(t)r4(t) is at least 2. The external robots do not move. The internal
robots move without obstructing the other robots to reach one of the
following situations: quadrilateral, three aligned or locking.

6. three aligned: Exactly three robots are collinear and the robots are
not in leaving line situation (Fig. 23(c)). The robot which is not collinear
with the three other robots, moves to change this situation into locking
situation.
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7. sliding: Robots are mutual visible to each other. There is a common
tangent Ls to the bounding circles of the robots such that (i) there are two
pairs of robots and each pair of robots are separated by Ls and (ii) in each
pair, the distance of tangency points with Ls is at most 1

3 (Fig. 23(a)).
Each pair of robots moves towards the other pair by maintaining the
tangency with Ls. This situation is converted to the locking situation.

8. quadrilateral: None of the above situations holds. Robots form a quadri-
lateral in which all robots are mutually visible. The robots move along
the diagonals of the quadrilateral until they form a rectangle consisting
of two symmetric pairs of tangents to the same line L and tangent to the
other robot in the pair. Different actions are taken by the robots depend-
ing on the perpendicular and non-perpendicular diagonals. This situation
reaches any one of the following: sliding, locking or gathering situation.

9. triangle: Robots are not in living line situation. Three robots form a
triangle and the centre of the fourth robot lies inside this triangle. In this
situation robots move to gathering around the internal robot. The robots
at the vertices of the triangle move towards the internal robot until they
touch it. The internal robot does not move.

The correctness proof is quite involved. The basic idea of the correctness proof
is that the transition diagram of different situations, shown in Fig. 24, is acyclic
and has a unique sink at the gathering situation.

Fig. 24. Transition diagram between situations 1–9 and arrows show possible transi-
tions between them in the gathering of four opaque robots with extent

Theorem 17 [10]. The gathering of n ≤ 4 asynchronous opaque robots with
extent is possible without any extra assumption.

– Gathering with Slim Omni-directional Cameras: In the above algo-
rithm, it is assumed that two robots are visible to each other if there exists
a line segment which intersects both robots at more than one point and this
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line does not intersect any other robot in between. In practice, to imple-
ment this vision sensor model, robots must have sensors around their whole
perimeters. This is costly, heavy and computation intensive. One of the ways
to overcome this problem is to install a single camera (possibly with several
mirrors) inside the robots [19]. This is cost efficient and light weighted. This
vision sensor model is significantly less powerful. Each robot is represented
by a disc of radius l and each of them have a slim omni-directional camera
that is represented as a disc of radius lc < l (Fig. 25).

Fig. 25. An illustration showing visible and non-visible robots with slim omnidirec-
tional cameras

In this model, a robot ri is associated with the set {Bi, Ci} where Bi is the
base of the robot and Ci is the camera of the robot. The visual field of a
observing robot ri relative to another robot rj is determined by the shared
tangents to Bj and Ci. In this model, when rj is visible to ri, it may happen
that ri is not visible to rj and also robots can not detect whether their centers
are aligned or not. This distinction with the model considered above implies
a generalization of alignment situations.
The gathering problem was the studied in this model for four robots. The
techniques used for gathering in this setting is similar to the techniques used
in the above algorithm. However, due the distinction in the visibility model,
some more general situations are to be handled here. Following is the complete
list of different situations of robot configurations: (1) gathering (2) partial
visible (3) general partial visible (4) locking (5) leaving line (6) sliding (7)
quadrilateral and (8) triangle. The situations (1) and (4)–(8) are same as
defined in the above algorithm and slight variations of the corresponding
solutions work for these situation. Situations (2) and (3) are different here
and corresponding actions of the robots are as follows:
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Fig. 26. Transition diagram between situations 1–8 and arrows show possible transi-
tions between them

(2) partial visible: Robots form a convex quadrilateral and vision of two
robots are obstructed by at least one robot lying in between. The two external
robots does not move. The two internal robots move in such a way that this
situation is converted to the locking situation.
(3) general partial visible: Robots are not in partial visible situation. At
least one robot has partial visibility. In this situation, the two external robots
do not move. The two internal robots move to recover the full visibility. The
movements of the two internal robots convert this situation to any one of the
situations: leaving line or quadrilateral or partial visibility situation.

The transitions between different situations are shown in the Fig. 26.

Theorem 18 [19]. The gathering problem is solvable for n ≤ 4 asynchronous
opaque robots with extent when they have slim omnidirectional cameras.

– Gathering more than Four Opaque Robots with Extent: The work
in [1], the gathering of n ≥ 5 asynchronous opaque robots with extent was
studied. The robots have unlimited visibility range. The robots have common
chirality and non-rigid movements. Robots know the value of n. Following
distributed algorithm solves the gathering problem under this model.
The overall basic idea of the gathering algorithm is as follows. The algorithm
has two phases. In first phase, robots obtain mutual visibility among them-
selves. Since the robots are asynchronous and non-transparent, this task is
challenging. This challenge is overcome by bringing the robots at the vertices
of a convex hull. In order to do so, the robots that are on the convex hull
do not move inside and robots that are inside the convex hull move on the
convex hull. A robot ri ∈ R on the boundary of the convex hull moves in
two situations: (i) ri finds that it obstructs vision of the other robots on the
convex hull (ii) ri realizes that there is not “enough space” for robots that
are inside the convex hull to be placed on the boundary of the convex hull.



174 S. Bhagat et al.

In both occasions ri moves with direction outside of the convex hull. The
objective in case (i) is to move away from the line of sights of the robots on
convex hull. In case (ii), ri moves to make space for other robots. Achiev-
ing all these goals is very complicated due to asynchrony and opacity of the
robots. Robot ri computes its destination point according to its local view of
the configuration in such a way that within finite time it occupies a vertex
position on the convex hull. This leads to a configuration in which all robots
lie on the vertices of the convex hull and have full visibility.
In the second phase of the algorithm, robots try to form a gathering configu-
ration. Once all robots obtain full visibility, this phase starts. The knowledge
of n helps robots to identify that the mutual visibility has obtained and robots
are on the convex hull. While performing the second phase, robots move in
such a manner that full visibility is maintained. Robots exploit knowledge
of n and the common unit distance to maintain mutual visibility. However,
asynchrony again makes things complicated.
Performing above two phases, robots eventually form a connected configura-
tion and terminate. This provides a solution to the gathering problem. The
correctness of the above algorithm is proved using a state-machine represen-
tation of the model.

Theorem 19 [1]. The gathering problem is solvable for a set of n ≥ 2 opaque
robots with extent under Async model, when they have common chirality.

5.2.2 Gathering Under the Fsync Model
The work in [6] considered a combination of the limited and obstructed visibility
model. The work has presented strategies to gather a set of n oblivious, syn-
chronous opaque robots with extent. The robots are non-transparent and have
limited visibility range V . The robots do not have any global coordinate system.
Since robots have limited visibility range and n ≥ 2, it may not be possible to
obtain mutual visibility among the robots. Definition of a gathering configura-
tion is weaker than before: the robots are in gathering configuration if they form
a connected configuration (as defined in above section). It is not necessary that
robots are mutually visible to each other in the gathering configuration. The set
of robots are divided into two sub-groups in each round: perimeter robots and
inside robots. A robot ri is a perimeter robot if all robots in Vi(t) lie in a sector
centred at ri(t) with sector angle at most 120◦ (Fig. 27). The set of perimeter
robots at time t is denoted by RP(t). The other robots in R\RP(t) are inside
robots and the set of inside robots is denoted by RI(t).

The overall idea of the gathering algorithm is as follows. The perimeter robots
move towards the inside robots. However, this can lead to flocking of the robots
at the boundary of the visibility graph. To tackle this problem, inside robots
try to move towards furthest visible robot positions. In order to execute these
ideas, destination points of the robots are to be computed in such a way that the
mutually visible robots remain visible in each round and the initial configuration
reaches a gathering configuration within finite time. Consider a robot ri ∈ R.
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Fig. 27. An example of (a) perimeter robot (b) method Slip

Let rdi
(t) be one of the furthest robot positions in Vi(t). A point g(t) is defined

as follows:
g(t) = c

rdi
(t) − ri(t)

V
(rdi

(t) − ri(t)),

where c = 1 if ri ∈ RP(t), otherwise c = 1
2 .

The direction of movement of ri is along g(t)ri(t). To maintain connectivity
with the visible robots, ri uses same distance limitation strategy as use by Ando
et al. in [2], discussed in Sect. 4.1.1. Robot ri moves towards g(t) by a distance
m = min{|g(t)|, limit}, where limit is defined in the algorithm CONVERGE-
Ssync() in Sect. 4.1.1.

Since robots have extent, they block the movements of the other robots
through them. This may lead to deadlock situations. However, to overcome these
situations robots used a method called Slip as defined below. The blocked robot
modifies its original direction of movements so that the new direction is tangen-
tial to the blocker robot (Fig. 27). The new destination point is the projection of
the old destination point on the new direction of movement. So, the robot can
get closer to its original destination point. The method Slip is used only when
the number of blocker robot is one. If the number of blockers is zero or more
than one, then nothing is to be done with the original destination.

To demonstrate the correctness of the above algorithm, computer simulations
in MATLAB were done. The above algorithm is compared with the following two
algorithms: (i) the algorithm proposed by Ando et al. [2] for point like robots is
applied to the opaque robots with extent and (ii) the modified version of Ando
et al.’s algorithm with the method Slip to avoid the blocking effect. It was found
that in the test cases the algorithm described here performs better than the two
other algorithms.

The study in [8] also presented a distributed algorithm for the opaque robots
with extent under limited visibility and provided simulation based results to
verify the proposed algorithm. In this work, the gathering point is known to the
robots a priori.
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5.3 Mutual Visibility Problem

Opacity of the robots restricts the robots from having a complete view of the
configuration even when robots have unlimited visibility range. Therefore, tra-
ditional algorithms can not be applied for the opaque robots. One of the ways to
overcome this is to obtain the mutual visibility among the robots. Robots first
coordinate their movements to become visible to each other and then to apply
the existing algorithms. The mutual visibility problem requires a set of opaque
robots to coordinate their movements without collisions to reach a configuration
in which no three robots are collinear and this should be done within finite time.
A solution to the mutual visibility problem can be used as a preprocessing of
other formation problems.

5.3.1 Mutual Visibility Under the Ssync Model
The work in [12] was the first to address the mutual visibility problem for a
set of n opaque robots with no extent and unlimited visibility range under the
Ssync model. In the initial configuration robots occupy distinct locations in the
Euclidean plane. The robots know the value of n. The basic idea of the algorithm
is to move the robots in such a way that within finite time they occupy distinct
vertices of convex n-gone, without colliding with each other. When this is done
each robot is visible to the others and they terminate the algorithm (n is known
to the robots).

The description of the algorithm is as follows. Consider the convex hull CH(t)
of the robots locations at time t. The robots lying on the boundary of CH(t) are
called external robots and the robots lying in its interior are the internal robots.
A robot can identify whether it is an external or an internal robot. The basic
strategy of the algorithm is to move the external robots inside CH(t) to shrink
the convex hull. This process makes an internal robot external and it also moves
on activation. Continuing this process, within finite time, all the robots become
external. Once this situation is achieved, all the robots can see each other. The
knowledge of n helps the robots to identify this situation and they can terminate.
The destination points of the external robots are computed in the following
way. An external robot ri locates clockwise and counter-clockwise neighbors on
CH(t). Let these two robot positions be rc(t) and rcw(t). These two positions
are visible to ri. The destination point of ri lies in triangle rc(t)ri(t)rcw(t).
This movement shrinks CH(t) and may make some internal robots external.
The destination point of ri lies in a smaller triangle, shaded in grey in Fig. 28.
This helps the robots to avoid collisions with other moving robots and also
not to become an internal robot. MUTUAL-Ssync() is the pseudo-code of the
algorithm.
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Algorithm 12. MUTUAL-Ssync()
Input: ri(t) ∈ R(t),Vi(t), n
Output: A destination point for robot ri.

1 CHi(t) ← the convex hull of Vi(t);
2 H+

i (t) ← the set of all robot positions on CHi(t);
3 H∗

i (t) ← the set of non-degenerate vertices of CHi(t);
4 if |Hi(t)| = n then
5 pi(t) ← ri(t)
6 else
7 if |Vi(t)| = 1 then
8 a ← rj(t) ∈ Vi(t);
9 L ← a direction perpendicular to ri(t)a;

10 pi(t) ← a point on L at a distance 1
2 |ri(t)a|;

11 else
12 if ri(t) ∈ H+

i (t) then
13 rc(t) ← clockwise neighbor of ri(t) in H+

i (t);
14 rcw(t) ← counter-clockwise neighbor of ri(t) in H+

i (t);
15 γ ← 1

2 ;
16 if ri(t) /∈ rc(t)rcw(t) then
17 for each rj(t) ∈ Vi(t)\{ri(t)} do
18 Let α, β be such that rj(t) = α · rc(t) + β · rcw(t);
19 if α + β < γ then
20 γ ← α + β

21 u ← γ · (2rc(t)+rcw(t))
3 ;

22 v ← γ · (rc(t)+2rcw(t))
3 ;

23 w ← midpoint of uv;
24 if w /∈ R(t) then
25 pi(t) ← w
26 else
27 rk(t) ← nearest robot position from u on uv;
28 pi(t) ← midpoint of urk(t);

29 else
30 e ← nearest edge of CHi(t) from ri(t);
31 pi(t) ← midpoint of e;

32 ri moves towards pi(t);

The correctness of the above algorithm depends on the following invariant:
CH(t + 1) ⊂ CH(t), t ≥ t0. The above algorithm can tolerate a single crash
fault. Algorithm MUTUAL-Ssync() also provides solutions for the convex hull
formation problem and the near gathering problem under the obstructed visibility
model.
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Fig. 28. An example of movement of an external robot ri

Theorem 20 [12]. The mutual visibility problem is solvable under the Ssync
model when robots know n, the total number of robots in the system.

5.3.2 Mutual Visibility Under the Async Model
The mutual visibility problem is solvable in Async when robots have one-axis
agreement and they know the value of n [4]. It is also assumed that robots have
unlimited visibility range and initially no two robots occupy the same position.

Let C̃L denote the set of all robot configurations in which all robots lie on a
straight line and C̃NL the set of all robot configurations which contain at least
three non-collinear robot positions. Let C̃GP denote the set of all configurations
in which no three robots are collinear. A robot ri is called an non-terminal robot
if it lies between two other robot positions on a line of collinearity. Otherwise,
ri is called a terminal robot. The straight line joining ri(t) and rj(j) is denoted
by Lij(t). The perpendicular distance of the line Lij(t) from the point rk(t) is
denoted by dk

ij(t). Let Di(t) be minimum distance of any two robots in Vi(t).
Consider R(t0), the initial robot configuration. If R(t0) contains at least

three collinear robot positions, the movements of the robots are planned in such
a way that after a finite number of movements there are no three collinear robots
in the system. If R(t0) is in C̃L, it is converted into a configuration in C̃NL. The
different strategies are as follows.

(A) Eligible robots for movements: A terminal robot ri is eligible for move-
ment at time t only if it satisfies any one of the following three conditions:
– |Vi(t)| < n− 1 and Y -axis of ri does not contain any other robot position

on it.
– |Vi(t)| < n − 1, Y -axis of ri contains at least one robot position and ri(t)

has the highest y-coordinate value among all the robot positions on its
Y -axis.

– |Vi(t)| = n − 1, Y -axis of ri contains at least one robot position and ri(t)
has the highest y-coordinate value among all the robot positions on its
Y -axis. This is essential to avoid deadlocks in the system.

The non-terminal robots do not move.
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(B) Computing Destination Point: While computing destination point,
robot ri takes care of the followings: (i) its movement does not block the vis-
ibility of the other robots (ii) it does not collide with others. The destination
point of ri depends on whether R(t) is in C̃L or in C̃NL. To compute des-
tination point, two components are computed: (i) the amount of movement
and (ii) the direction of movement.
– Case-1: R(t) ∈ C̃NL. Three non-collinear robots become collinear if the

triangle, formed by their respective positions, collapses into a line due to
their movements. Thus, destination points of the robots are computed in
such a way that this never happens.
The direction of movement: Let θij(t) denote the angle made by Lij(t)
with Y +. Let αi(t) = minimum{θij(t) : rj ∈ Vi(t) and rj does not lie on
Y -axis of ri} (tie, if any, is broken arbitrarily). Let Biseci(t) denote the
1
n th bisector of αi(t) closest to Y +. It is a ray from ri(t) and the angle
made by it with Y + is strictly less than π

2 since n ≥ 3. Robot ri moves
along Biseci(t).
The amount of displacement: The maximum amount of displace-
ment of ri should be restricted in such a way that it does not create
any new collinearity during or after the execution of its movement. If
rj(t) and rk(t) are in Vi(t), the destination point of ri should lie far
enough from Ljk(t) so that even if all the three robots ri, rj and rk move,
they do not become collinear. Let di(t) = minimum{dk

ij(t), d
j
ik(t), d

i
jk(t) :

∀rj(t), rk(t) ∈ Vi(t)}. Let

σi(t) =
1
n4

minimum{di(t),Di(t)}

– Case-2: R(t) ∈ C̃L. In this case, all the robots lie on a straight line,
say L̂. There are n − 2 non-terminal robots. The movement of even one
terminal robot converts the present configuration into a configuration in
C̃NL. Suppose ri is one of the two terminal robots on L̂.
The direction of movement: If there is no other robot position on the
Y -axis of ri, robot ri moves along Y +. Otherwise, ri moves along X+.
The amount of displacement: In this case |Vi(t)| = 1. Let

σi(t) =
1
2
Di(t).

Let pi(t) be the point on the direction of movement of ri (i.e, on Y + or
Biseci(t) or X+) at distance σi(t) from ri(t). The destination point of ri(t)
is pi(t).



180 S. Bhagat et al.

Algorithm 13. ComputeDestination()
Input: ri(t) ∈ R(t) and Vi(t).
Output: A destination point of ri

1 Di(t) ← minimum{|rj(t)rk(t)| : ∀rj , rk ∈ {ri(t),Vi(t)}};
2 for ∀rj(t), rk(t) ∈ Vi(t) do
3 Lij(t) ← the straight line through ri(t) and rj(t);
4 dk

ij(t) ← perpendicular distance of Lij(t) from rk(t);

5 if |Vi(t)| ≥ 2 then
6 di(t) ← minimum{dk

ij(t), d
j
ik(t), d

i
jk(t) : ∀rj , rk ∈ Vi(t)};

7 U ← minimum{di(t),Di(t)};
8 σi(t) ← 1

n4 U ;
9 for ∀rj(t) ∈ Vi(t) do

10 θij(t) ← the angle between Lij(t) and Y +;

11 αi(t) ← minimum{θij(t) : rj ∈ Vi(t)};
12 Biseci(t) ← Bisector of αi(t);
13 pi(t) ← the point on Biseci(t) at a distance σi(t) from ri(t);
14 else
15 σi(t) ← 1

2Di(t);
16 L̂ ← the line containing all the robots in R(t);
17 if L̂ is coincident with Y axis then
18 DIRi(t) ← X+

19 else
20 DIRi(t) ← Y +

21 pi(t) ← the point on DIRi(t) at a distance σi(t) from ri(t);

22 return pi(t);

Algorithm 14. MUTUAL-Async()
Input: Vi(t).
Output: Robots in general position.

1 while |Vi(t)| < n − 1 ∨ Y -axis contains other robots do
2 if ri is non-terminal then
3 pi(t) ← ri(t);
4 else
5 if Y -axis contains no other robots then
6 p ← ComputeDestination(ri(t),Vi(t)) ;
7 else
8 if ri(t) is on the top of its own Y -axis then
9 pi(t) ← ComputeDestination(ri(t),Vi(t)) ;

10 else
11 pi(t) ← ri(t);

12 ri(t) moves towards pi(t);
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Theorem 21 [4]. The mutual visibility problem is solvable under Async model
when robots have agreement on one local coordinate axis and they know n, the
total number of robots in the system.

6 Conclusions

The restricted visibility model depicts more realistic setting. This chapter
presents a study on the existing results for different geometric formation prob-
lem under the restricted visibility model. The study reveals many open questions
which may be addressed in the future.

In all the existing works with limited visibility, it is assumed that robots never
develop faults at any stage of the execution. However, in real scenarios, faults
may occur during the execution. When robots have limited visibility range, it
will be interesting to define appropriate fault models and to extend the existing
results in the new model.

Recently, researchers have considered the three dimensional Euclidean space
as the deployment area of the robots. Very limited works have been done in this
model. The extensions of different formation problems to the 3D space is natural
and challenging research task.

The use of visible lights to overcome different setbacks, during the designs
of the algorithms, has recently got attention. The mutual visibility problem has
been extensively studied under this model when robots have unlimited visibility.
One possible direction of future research can be the study of different formation
problems for the robots with visible lights under limited visibility model. Using
visible lights, more efficient algorithms in terms of time and other parameters
can be designed.
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Abstract. Gathering a swarm of robots is one of the basic tasks in
distributed computing. Varying of the robots’ capabilities as well as on
the environments where robots move lead to very different approaches.
In general, the problem requires the design of a distributed algorithm
that brings all robots to meet at some common location, not known in
advance. We consider asynchronous robots subject to the well-established
Look-Compute-Move model. Each time a robot wakes up, it perceives the
current configuration in terms of robots’ positions (Look), it decides
whether and where to move (Compute), and makes the computed move
(Move), if any. Starting from the case of robots moving in the Euclidean
plane, we highlight pros and cons for robots moving along the edges
of a graph. We survey on the most recent results about robots moving
in general graphs and in specific topologies like trees, rings, grids, and
cliques. Further, we show how the design of an algorithm for general
graphs naturally leads to optimization issues. In particular, we survey
on optimal gathering algorithms in terms of total number of edges tra-
versed by robots in order to accomplish the gathering task. Also in this
case, results concern general graphs and specific topologies. In doing so,
we highlight how the problem and the resolution algorithms change when
optimal constraints are included.

Keywords: Asynchrony · Mobile robots · Gathering
Discrete environment

1 Robots’ Model

In this section we recall the main characteristics of the robots’ model, indepen-
dently from the environment in which robots move, typically the Euclidean plane
or a graph.
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The gathering problem asks for a distributed algorithm that brings all robots
to occupy a common location. Solving the gathering problem depends on the
capabilities one assumes for robots. A common approach in distributed com-
puting is to detect the minimal capabilities that are necessary so as robots can
perform simple basic tasks, e.g. gathering. The rationale behind this approach
is twofold: it is theoretically interesting to answer the minimality question; the
weaker is the model assumed to solve a task, the wider is its applicability, includ-
ing more powerful robots prone to faults. In this chapter robots are considered
to be:

– Anonymous: no unique identifiers;
– Autonomous: no centralized control;
– Dimensionless: no occupancy constraints, no volume, modeled as geometric

points;
– Oblivious: no memory of past events;
– Homogeneous: they all execute the same deterministic algorithm;
– Silent : no means of direct communication;
– Disoriented : no common coordinate system, no common left-right orientation;
– Asynchronous: no common clock, robots’ activities are independent.

Look-Compute-Move Model. At any point in time, a robot is either active
or inactive. All robots are initially inactive, i.e. they are all idle. When active, a
robot executes a Look-Compute-Move (LCM) cycle by performing the following
three operations in sequence, each of them associated with a different state:

– Look: The robot observes the environment. The result of this phase is a snap-
shot of the positions of all robots with respect to its own perception.

– Compute: The robot executes the designed algorithm, using the data sensed
in the Look phase as input. In the Euclidean plane, the result of this phase
is a target point along with a trajectory to reach it. If the environment is
modeled by a graph, the results of this phase is a vertex among the neighbors
of the vertex in which the robot currently resides (at most one edge per cycle
can be traversed by a robot).

– Move: The robot moves toward the computed target. If the target is the cur-
rent position, then the robot stays still, i.e. it performs what is called a null
movement.

The amount of time to complete a full LCM-cycle is assumed to be finite but
unpredictable. Moreover, the adversary determining the computational cycles
timing is assumed to be fair, that is, each robot performs its LCM-cycle within
finite time and infinitely often. Without such an assumption the gathering would
be unsolvable as the adversary could prevent some robots to ever move.

Multiplicity Detection. It is very common (as dictated by impossibility
results) that in combination with the LCM-model, robots are endowed with
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the so-called multiplicity detection capability (see e.g. [7,24]). This is a well-
studied capability associated to robots within the LCM model, it can be defined
in various forms and concerns robots moving both in the Euclidean plane and
in graphs.

Definition 1 (Multiplicity). When more than one robot resides on the same
point/vertex x, then x is said to be occupied by a multiplicity.

There exist four types of multiplicity detection investigated so far, with the
aim to reduce as much as possible the capabilities of the robots.

Definition 2 (Types of multiplicity detection). A robot is said to have the:

– global weak multiplicity detection ability when it is able to detect whether a
multiplicity exists at any given point/vertex;

– global strong multiplicity detection ability when it is able to compute the exact
number of robots composing a multiplicity at any given point/vertex;

– local-weak multiplicity detection ability when it is able to detect whether a
multiplicity exists, at a given point/vertex, only if the robot is part of the
multiplicity itself;

– local-strong multiplicity detection ability when it is able to compute the exact
number of robots composing a multiplicity, at a given point/vertex, only if the
robot is part of the multiplicity itself.

1.1 A Look to the Euclidean Plane

Before focusing on robots moving in graphs, it is worth to remark some basic
concepts arising in the setting of robots moving in the Euclidean plane.

Apart for the case of just two robots proved to be unsolvable, in [7] the gath-
ering problem has been completely solved when robots move in the Euclidean
plane in the very weak asynchronous setting, without any common orientation
and with global-weak multiplicity detection. One may wonder whether similar
approaches can be applied also in the context of robots moving in graphs.

The resolution strategy proposed in [7] exploits the concept of Smallest
Enclosing Circle (SEC) of the robots. This is the unique circle that encloses all
robots. Being unique, also its center is unique and hence if the strategy makes
robots move so as to create a multiplicity on the center of the SEC then the
gathering can be easily finalized. The main difficulty is to maintain the same
SEC as long as the multiplicity is not created. In fact, movements toward the
center of the SEC may modify the SEC itself, and hence its center. The SEC
and its center are then used in combination with another interesting point, the
so called Weber point. Let d(s, t) be the distance of the points s and t in the
Euclidean plane.

Definition 3 (Weber-point). Given a set of robots R, a point p is said to be
the Weber point if it minimizes the quantity

∑
r∈R d(p, r).
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It is proved that in the Euclidean plane the Weber point is unique (if the
robots are not collinear), and that movements of robots toward such a point do
not modify the Weber point. Unfortunately, the Weber point is not computable in
general [8]. However, in [7] it has been exploited for some specific configurations
and in combination with the SEC provide the main ingredients for the resolution
strategy.

One further point that has been sometimes exploited in similar contexts is
the so-called Center of Gravity.

Definition 4 (Center of Gravity). Given a set of robots R, let (rx, ry) be
the coordinates of robot r. The Center of Gravity is the point of coordinates
(x =

∑
r∈R rx
|R| , y =

∑
r∈R ry
|R| ).

The Center of Gravity is unique and easily computable, but unfortunately
changes as soon as robots move toward it. In fact, it is mainly used for solving
the Convergence problem [9] rather than the gathering, where robots have to
get closer and closer instead of occupying exactly the same point.

Rigid vs Non-rigid Movements. Concerning movements of robots, they can
be assumed to be rigid or not. A rigid movement implies that a robot always
reaches its target at the end of an LCM-cycle. A non-rigid movement instead
does not provide such a guarantee. However, the distance traveled within a move
is neither infinite nor infinitesimally small. More precisely, the adversary has the
power to stop a moving robot before it reaches its destination, but there exists
an unknown constant δ > 0 such that if the destination point is closer than
δ, the robot will reach it, otherwise the robot will be closer to it of at least δ.
Note that, without this assumption, an adversary would make impossible for
any robot to ever reach its destination.

Asynchrony. As robots are assumed asynchronous, all their actions might
happen in any moment, within finite time. This implies that while a robot is
acquiring its snapshot during a Look phase, other robots might be idle, looking,
computing or moving. In particular, if a robot is moving, it can be seen at any
position of its performed trajectory. As robots acquire only one snapshot along
a whole LCM-cycle, and they are assumed to be oblivious, there is no mean to
detect whether other robots are moving or not. More than that, it is not possible
even to decide whether other robots are performing or are intended to perform
a move. This is an information missing in the snapshot, so robots cannot know
the current status of any other robot.

1.2 Pros and Cons for Being in Graphs

One main assumption that can be done when robots move in graphs is that
moves always assume vertices as target, and they can be considered as instan-
taneous. This results in always perceiving robots on vertices and never on edges
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during Look phases. The rationale behind this assumption is that the graph may
model a communication network, whereas robots model software agents. In such
a context, with destinations always represented by vertices, instantaneous moves
also imply rigid movements, which is clearly a simplification for designing reso-
lution algorithms as outlined in the previous section. Moreover, differently from
the Euclidean case, robots on graphs cannot be seen while moving, but only at
the moment they may start moving or when they arrived.

In a graph a center is a vertex that minimizes the maximum distance (in
terms of hops/number of edges) from any other vertex. When the center of a
graph is unique, such a vertex can be found by all robots and the gathering can
be easily accomplished. Unfortunately, a graph may admit more than one center.

Another useful vertex where robots may agree to meet is the counter-part of
the Weber-point defined in the Euclidean plane. In graphs, a Weber point can be
defined as a vertex x that minimizes the sum of the shortest paths (in terms of
hops/number of edges) from each robot toward x. This can be easily computed
in graphs and if unique it can be found by all robots. Unfortunately, in graphs
the Weber point is not necessarily unique.

Being in graphs may help when the topology implies some special property.
For instance, in stars or rooted trees it is very easy for the robots to agree on
a specific vertex where to gather, that is the center of the star or the root of
the tree, respectively. Contrary, sometimes it might be a disadvantage to be
constrained in a graph as trajectories are forced by the topology whereas in
the Euclidean plane, robots may perform suitable trajectories in order to avoid
undesirable configurations.

As last remark, it is worth mentioning that in graphs, concepts like center of
gravity or SEC (and hence its center) are not defined, whereas they are largely
exploited in the Euclidean plane.

2 Problem Definition and General Impossibility Results

In this section we consider undirected graphs as the environment where robots
move. In such an environment, the classical gathering problem is called Gathering
on graph. We now provide a formal definition.

A simple undirected graph G = (V,E), with vertex set V and edge set E,
represents the topology where robots are placed on. A function μ : V −→ N,
represents the number of robots on each vertex of G, and we call (G,μ) a config-
uration whenever

∑
v∈V μ(v) is bounded and greater than zero. A configuration

is initial if each robot lies on a different vertex (i.e., μ(v) ≤ 1 ∀v ∈ V ). A con-
figuration is final if all the robots are on a single vertex (i.e., ∃u ∈ V : μ(u) > 0
and μ(v) = 0, ∀v ∈ V \ {u}). The Gathering on graph problem can be formally
defined as the problem of transforming an initial configuration into a final one.
A gathering algorithm for this problem is a deterministic distributed algorithm
that brings the robots in the system to a final configuration in a finite number
of LCM-cycles from any given initial configuration, regardless of the adversary.
We say that an initial configuration C = (G,μ) is ungatherable if there are no
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gathering algorithms with respect to C. We say that an algorithm assures the
gathering if it achieves the gathering regardless the adversary.

Before presenting the gathering algorithms defined in the literature, we recall
from [19] the notions of configuration automorphisms and symmetries to be
applied to general graphs, and accordingly we provide general impossibility
results.

2.1 Configuration Automorphisms and Symmetries

Two undirected graphs G = (VG, EG) and H = (VH , EH) are isomorphic if
there is a bijection ϕ from VG to VH such that {u, v} ∈ EG if and only if
{ϕ(u), ϕ(v)} ∈ EH . An automorphism on a graph G is an isomorphism from G
to itself, that is a permutation of the vertices of G that maps edges to edges and
non-edges to non-edges. The set of all automorphisms of G forms a group called
automorphism group of G and denoted by Aut(G).

The concept of isomorphism can be extended to configurations in a natu-
ral way: two configurations (G,μ) and (G′, μ′) are isomorphic if G and G′ are
isomorphic via a bijection ϕ and for each vertex v in G, μ(v) = μ′(ϕ(v)). An
automorphism on a configuration (G,μ) is an isomorphism from (G,μ) to itself
and the set of all automorphisms of (G,μ) forms a group that we call automor-
phism group of (G,μ), denoted by Aut((G,μ)).

Given an isomorphism ϕ ∈ Aut((G,μ)), the cyclic subgroup of order p gener-
ated by ϕ is given by {ϕ0, ϕ1 = ϕ,ϕ2 = ϕ◦ϕ, . . . , ϕp−1} where ϕ0 is the identity
isomorphism. If H is a subgroup of Aut((G,μ)), the orbit of a vertex v of G
is Hv = {γ(v) | γ ∈ H}. If |Aut(G)| = 1, that is G admits only the identity
automorphism, then G is said asymmetric, otherwise it is said symmetric. Anal-
ogously, if |Aut((G,μ))| = 1, we say that (G,μ) is asymmetric, otherwise it is
symmetric.

The next theorem provides a sufficient condition for a configuration to be
ungatherable, but we first need the following definition:

Definition 5. Let C = ((V,E), μ) be a configuration. An isomorphism ϕ ∈
Aut(C) is called partitive on V ′ ⊆ V if the cyclic subgroup H = {ϕ0, ϕ1 =
ϕ,ϕ2 = ϕ ◦ ϕ, . . . , ϕp−1} generated by ϕ has order p > 1 and is such that
|Hu| = p for each u ∈ V ′.

Note that, in the above definition, the orbits Hu, for each u ∈ V ′, form a
partition of V ′. The associated equivalence relation is defined by saying that u
and v are equivalent if and only if there exists a γ ∈ H with γ(u) = v. The
orbits are then the equivalence classes under this relation; two elements u and v
are equivalent if and only if their orbits are the same; i.e., Hu = Hv. Moreover,
note that μ(u) = μ(v) whenever u and v are equivalent.

The following two theorems from [19] provide general impossibility results
for the gathering problem on graphs.

Theorem 1. Let C = ((V,E), μ) be a non-final configuration. If there exists
ϕ ∈ Aut(C) partitive on V then C is ungatherable.
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Fig. 1. A gray vertex indicates the presence of one robot. (a) Configuration C1 admit-
ting a partitive isomorphism on V : the sets of the partition are the three central
vertices, the vertices with robots, and the three remaining vertices. (b) Configuration
C2 admitting a non-partitive isomorphism that maps v in u, u in w, w in v, x in y and
y in x. (c) Configuration C3 admitting a non-partitive isomorphism with two sets of
the partition of size two, and one of size one.

Remark 1. It is worth to remark that the above theorem requires the existence
of an automorphism ϕ, which in turn is based on the function μ defining the
exact number of robots on each vertex. Hence, Theorem 1 holds when the robots
are endowed with the global-strong multiplicity detection. Stating a negative
result, it follows that such a theorem holds even when considering weaker robots
(i.e., without global-strong multiplicity detection).

In Fig. 1a, it is shown a partitive configuration C1 where each vertex belongs
to an orbit of size three. By the above theorem we deduce that C1 is ungatherable,
since each move allowed by an algorithm can be executed synchronously by all
the three robots due to an adversary. This would always produce a new partitive
configuration.

Figure 1b, shows a configuration C2 admitting an isomorphism which is not
partitive. In this case the gathering is possible. In fact, moving robots among
the three occupied vertices may produce the same configuration if the three
robots move concurrently in the same direction. Hence, a gathering algorithm
can move the three robots towards the two empty vertices (which can be always
recognized as the vertices with minimum degree). Once all the three robots have
moved, a multiplicity is created. The multiplicity either contains all the robots
or just two. In the first case the gathering has been accomplished. In the second
case, the gathering is finalized by letting the single robot move towards the
multiplicity. Clearly, such a strategy would require robots endowed with some
form of multiplicity detection. Finally, Fig. 1c shows a configuration C3 admitting
a non-partitive isomorphism: it is shown in [23] that C3 is ungatherable. This
example shows there exists ungatherable configurations even if they do not admit
any partitive isomorphism.

The following theorem shows that some configurations can be gathered only
at some predetermined vertices. For instance, the only vertex where gathering
can be potentially finalized in configuration C3 (cf Fig. 1) is the empty one.

Theorem 2. Given a configuration C = ((V,E), μ), and a subset of vertices
V ′ ⊂ V , if there exists an automorphism ϕ ∈ Aut(C) that is partitive on V \ V ′,
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with μ(v) = 0 for any v ∈ V ′, then, any gathering algorithm can not assure the
gathering on a vertex in V \ V ′.

As final remark, when symmetries occur, it is possible that an algorithm
elect one single robot to move, but more than one can move concurrently. In
such a case there might occur a so called pending move. This happens when, due
to the asynchrony, one of the robots allowed to move performs its entire LCM-
cycle while one of the others does not perform the Move phase, i.e. its move
is pending. Clearly, all robots performing their cycle are not aware whether
there is a pending move, that is they cannot deduce the global status from their
view. The presence of pending moves greatly increases the difficulty of designing
gathering algorithms for symmetric configurations.

3 Gathering Algorithms for Specific Topologies

In this section we describe gathering algorithms for specific topologies, namely
complete graphs, trees, rings, and grids.

3.1 Complete Graphs

We provide an original result about complete graphs. In fact, apart for all con-
figurations caught by Theorem 1, the result shows that asynchronous robots can
never accomplish the gathering task if the underlying graph is a clique.

Theorem 3. Given an initial configuration C = (G,μ), if G is a clique then
the gathering problem is unsolvable.

Proof. By hypothesis both G and the robots are anonymous. When G = (V,E)
is a clique there exists an automorphism ϕ ∈ Aut(C) that makes robots pairwise
equivalent. In other words, if A is any gathering algorithm for C, then any move
planned by A can be performed by any robot. In particular, each move can only
specify whether the robot must move toward an empty vertex or toward a vertex
already occupied. If the move is toward an empty vertex, then the adversary
can decide to make only one robot move, hence obtaining a new configuration
C ′ isomorphic to C. From C ′, of course the same move will be applied but
the adversary can make another robot moving, hence respecting the fairness
constraint.

If the move is toward a vertex already occupied, then the adversary can
always make all robots move concurrently toward different destinations, in such
a way that the robots just exchange their positions on the same set of occupied
vertices. Then A will always produce a configuration isomorphic to C. 
�

3.2 Trees

In this section, results about gathering on trees are presented (cf [11]). Let T be
a tree and let C = (T, μ) be an initial configuration. Based on well-known results
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about the trees, within T there is either one center or there are two neighboring
centers [26]. In the former case, no matter the initial distribution of the robots,
each of them can move towards the center, concurrently. The gathering will be
eventually finalized, even without any multiplicity detection assumption.

In the latter case, some more specific arguments are required. Assume there
are two centers in T , namely c1 and c2, and let T1 and T2 be the two subtrees
rooted at c1 and c2, respectively, when the edge connecting c1 and c2 is removed.
In such a scenario we say that C is balanced when the sub-configurations (T1, μ)
and (T2, μ) are isomorphic. It is easy to observe that if C is balanced then there
exists a partitive automorphism of order two in C, and hence, by Theorem 1
configuration C is ungatherable.

If C has two centers c1 and c2 but is not balanced, the following gathering
algorithm can be applied. If the number of vertices occupied in T1 is smaller than
that in T2, then all robots in T1 are moved towards c2. Once T1 gets empty, all
robots in T2 should be moved towards c2 in order to finalize the gathering. If the
number of vertices occupied in T1 is equal to that in T2, it is always possible to
determine which subtree is less than the other with respect to a natural ordering
on labeled trees (see [1,4]). To define the smaller tree as the one with the robots
closer to the root, it is possible to associate label 1 to empty vertices, and label 0
to vertices occupied by robots. Then the algorithm would exploit this ordering in
order to detect the robots to move from one subtree towards the root of the other
one. If a robot moves over a vertex already occupied, the number of occupied
vertices in the original subtree decreases. As soon as one robot moves towards
the other subtree, the number of robots in the two subtrees is no longer equal
and the previous strategy can be applied.

The following theorem summarizes the above arguments.

Theorem 4 (Gathering on trees). Let T be a tree and C = (T, μ) be an
initial configuration. Then, C is gatherable if and only if C is not balanced.

3.3 Rings

In this section, results about gathering on rings are presented (cf [3,6,11,12,
14–17,20–25]). After providing some necessary definitions, impossibility results
are summarized when the global-strong multiplicity detection is assumed. Then,
differences between the case of global-weak and local-weak multiplicity detec-
tion assumptions are presented. In particular, when the global-weak multiplicity
detection is assumed, a full characterization of the gatherable configurations is
provided [12]. When the local-weak multiplicity detection is assumed, a very few
cases are left open [14]. However, the different techniques used to accomplish the
gathering task among the approached scenarios are very interesting for further
investigations in robot-based computing systems.

A ring is composed of vertices {v0, · · · , vn−1}, n ≥ 3, where vi is connected
to vi+1 mod n for any 0 ≤ i < n. The model assumes that k < n robots are
placed over the n vertices of a ring, and in the initial configurations each vertex
is occupied by at most one robot. Depending on the movements imposed by the
running algorithms, multiplicities may occur.
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Fig. 2. Symmetric and rotational initial configurations on a ring. White vertices are
empty while each black vertex is occupied by one robot.

For the purpose of characterizing symmetries is this topology, a ring of n
vertices can be intended as a regular polygon with n vertices embedded in the
Euclidean plane. Then, it follows that a ring has n axes of reflection and admits n
rotations. If n is even then half of these axes pass through two opposite vertices,
and the other half through the midpoint of opposite edges. If n is odd then all
axes pass through a vertex and the midpoint of the opposite edge. In particular,
the general notion of symmetric configuration provided in Sect. 2.1 can be spe-
cialized to rings as follows (cf Fig. 2): a symmetric configuration with exactly one
axis of reflection has an edge-edge symmetry if the axis goes through two edges
(Fig. 2a); it has a vertex-edge symmetry if the axis goes through one vertex and
one edge (Fig. 2b); it has a vertex-vertex symmetry if the axis goes through two
vertices (Fig. 2c); it has a robot-on-axis symmetry if there is at least one vertex
on the axis of symmetry occupied by a robot (both Figs. 2b and c). A configura-
tion is called rotational if it is invariable under non-trivial (i.e., non-complete)
rotations (Figs. 2d and e). Figure 2d admits a rotation of 180◦, without axes of
reflection, whereas Fig. 2e still admits a rotation of 180◦ but with two axes of
reflection.

It is worth to remark that different assumptions about multiplicity detection
may provide different information to robots. For instance, when the global-weak
multiplicity is considered, a configuration is said reflective if the ring admits a
geometrical axis of symmetry that reflects single robots into single robots, multi-
plicities into multiplicities, and empty vertices into empty vertices. In this case, a
configuration might be considered symmetric even though the two halves of the
ring cut by the axis do not contain the same number of robots. This can happen
if two symmetric multiplicities at the two halves are composed of a different
number of robots. However, symmetric peculiarities of initial configurations are
invariant with respect to the assumed multiplicity detection, as multiplicities are
not allowed at the beginning.

Impossibility Results. In [24], it is proved that the gathering is unsolvable
if the multiplicity detection capability is completely removed in either of its
forms. When the multiplicity detection is assumed, even in its strong and global
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form, still there are configurations for which it is impossible to accomplish the
gathering task. More precisely, initial configurations composed of only 2 robots,
rotational configurations, and those admitting an edge-edge axis of reflection
do not allow to finalize the gathering. Such impossibility results have been first
stated in [24], and then generalized by means of Theorem1 in [19].

In [23], the case of 4 robots on a ring of five vertices (as in Fig. 1c) is pointed
out as a case of symmetric initial configurations with an even number of robots
that does not allow any gathering algorithm. In general, a specific set of config-
urations with four robots has been defined and studied in the literature as the
SP4 configurations.

Definition 6. Let C be a reflective configuration with four robots on an odd
ring. If the odd interval of vertices cut by the axis is bigger than the even one,
then C is said to belong to the set of SP4 configurations.

The case of 4 robots on a five vertices ring belongs to SP4. Other configu-
rations in SP4 formally proved to be ungatherable can be found in [6,16,17].
Actually, some configurations in SP4 could be gatherable (see, e.g. [3]) but they
require strategies that are difficult to generalize or to integrate with the algo-
rithms designed for other types of configurations. According to such difficulties
and following the conjecture posed in [17], we consider the whole set SP4 as
formed by ungatherable configurations.

The set of all the ungatherable configurations for rings is denoted by UR, and
is described in Table 1. For all initial configurations not belonging to UR, various
gathering algorithms have been provided, depending also on the assumptions
concerning the multiplicity detection capability. Whenever clear by the context,
we refer to initial configurations simply as configurations.

Table 1. Resume of the known impossibility results about gathering in a ring under
the Look-Compute-Move model even assuming global-strong multiplicity detection. All
the mentioned configurations are initial and form the set UR. Symbols n and k refer to
the number of vertices and number of robots, respectively.

Configuration type n k Papers

Rotational or with edge-edge axis - - [19,24]

- - k = 2 [24]

SP4 Odd k = 4 [12,16,17,23]

Local-Weak Multiplicity Detection. In this section we consider the gath-
ering problem for k robots endowed with local-weak multiplicity detection in a
ring of n vertices. In this context, Table 2 provides an overview of all the results
obtained so far. In particular, an algorithm starting from initial configurations
where the number of robots k is strictly smaller than

⌊
n
2

⌋
was designed in [20].
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In [21], the case where k is odd and strictly smaller than n − 3 was solved.
In [22], the authors provide an algorithm for the case where n is odd, k is even,
and 10 ≤ k ≤ n − 5. Recently, the case of asymmetric configurations was solved
in [13].

Table 2. Resume of the known feasibility results about gathering in a ring under the
Look-Compute-Move model with the local-weak multiplicity detection. All the mentioned
configurations are initial and do not belong to UR. Symbols n and k refer to the number
of vertices and number of robots, respectively.

Configuration type n k Papers

Asymmetric - k < �n
2
� [20]

- - Odd, k < n − 3 [21]

- Odd Even, 10 ≤ k ≤ n − 5 [22]

Asymmetric - - [13]

- - k < n − 4, k �= 4 [14]

The most complete result is given in [14], where authors provide a full char-
acterization (except for few pathological cases) of the initial configurations for
which the gathering problem can be solved. In particular, for any k < n − 4
and k = 4, authors characterize the initial configurations from which the gath-
ering problem is solvable. In particular, they design an algorithm that solves the
problem starting from any initial configuration with k < n − 4, k = 4, robots
empowered by the local-weak multiplicity detection. Similarly to the case of
k = 4 in [12] and (n, k) = (7, 6) in [15], the cases left out from this character-
ization (k = 4 and k ≥ n − 4), if gatherable, would require specific algorithms
difficult to generalize.

The next theorem represents the main result provided in [14].

Theorem 5 (Gathering on rings, local-weak multiplicity detection).
Let R be any ring with n vertices and let (R,μ) be an initial configuration with k
robots, k < n−4 and k = 4. If robots are endowed with the local-weak multiplicity
detection then C is gatherable.

In the following we provide some basic ideas of the proposed algorithm lwm-
gathering [14].

Notation. A configuration C is defined by the k vertices occupied by robots. In
what follows, any configuration is seen as a binary sequences where “0” repre-
sents an occupied vertex while “1” stands for an empty vertex. More formally,
given a configuration C, and for any i ≤ n, let Si = (ri0, · · · , rin−1) ∈ {0, 1}n be
the sequence such that rij = 0 if vi+j mod n is occupied in C and rij = 1 other-
wise, 0 ≤ j < n. Intuitively, Si represents the positions of robots, starting at
vertex vi.
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A representation of C is any sequence in SC = {Si, (Si)}i<n, where (Si) is Si

reversed. The view from a vertex/robot vi is the minimum between Si and Si,
this also represents the snapshot of a configuration acquired by a robot during
the Look phase. A supermin of C is any representation of C that is minimum
in the lexicographical order. The supermin of C is denoted as Cmin. By Cmin

i

we denote the representation of the supermin starting from the i-th position,
that is rotating Cmin of i positions. In any supermin (r0, · · · , rn−1), if k < n
then rn−1 = 1. From their view, all robots can compute the supermin of a
configuration.

It is easy to see that each robot has all the information to compute whether it
has to move or not according to the acquired configuration during its Look phase
(i.e. its snapshot). For instance, suppose that from a given configuration C, with
supermin Cmin = (r0, r1, . . . , rn−1), an algorithm makes the robot at ri move
toward ri+1. Let C ′ = (r′

0, r
′
1, . . . , r

′
n−1) be the local view of a generic robot r.

Then, r computes the supermin and checks whether C ′ = Cmin
i or C ′ = (Cmin

i ).
If one of such cases occurs, then it deduces it is candidate to move toward r′

1 or
r′
n−1, respectively.

(b)(a) (c)

Fig. 3. Configurations achieved at the end of Algorithm Align. (a): Configuration Ca,
(b): Configuration Cb, (c): Configuration Cc.

Subroutine Align. Starting from any initial asymmetric configuration, a sub-
routine of the main algorithm called Asym allows to achieve a particular config-
uration called Ca = (0k−1, 1, 0, 1n−k−1) made of k − 1 consecutive robots, one
empty vertex and one robot (see Fig. 3a). Basically, Algorithm Asym ensures
that, from any initial asymmetric configuration, one robot can be uniquely
detected and is moved to an unoccupied neighbor by achieving another initial
configuration while strictly decreasing the supermin. Algorithm Align general-
izes Asym by handling all initial configurations (not only asymmetric).

In this generalization, several difficulties are overcome. First, in initial sym-
metric configurations, it is not possible to ensure that a unique robot will move.
In such a case, the algorithm may allow a robot r to move, while r is reflected
by the axis of symmetry to another robot r′. Since r and r′ are indistinguishable
and execute the same algorithm, then r′ should perform the same (symmetric)
move. However, due to asynchrony, r may move while the corresponding move
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of r′ is postponed (i.e. r′ has performed the Look phase but not yet the Move
phase). The configuration reached after the move of r has a potential pending
move (the one of r′ that will be executed eventually). To deal with this prob-
lem, the algorithm ensures that all the reached configurations that might have
a pending move can be always detected as asymmetric configurations with a
unique pending move. Therefore, in such a case, the algorithm forces to perform
the pending move. That is, contrary to [13] where Algorithm Asym ensures
to only go through asymmetric configurations, the subtlety consists in possibly
going from an asymmetric configuration to a symmetric one. To detect such
configurations, it is defined the notion of adjacent configurations. Consider an
algorithm A and a procedure M allowed by A, that is algorithm A performs M
for some configuration; possibly, procedure M moves two (symmetric) robots. An
asymmetric configuration C is adjacent to a symmetric configuration C ′ with
respect to procedure M if C can be obtained from C ′ by applying M to only one
of the robots that can move according to M and the algorithm performs M on
C. In other words, if C is adjacent to C ′ with respect to M, there might exist a
pending move permitted by M in C. Another difficulty is to ensure that all met
configurations are allowed for the gathering problem.

Algorithm Align allows to reach one of the configurations Ca, Cb, or Cc

having supermin (0k−1, 1, 0, 1n−k−1), (0k, 1n−k), or, (0
k
2 , 1j , 0

k
2 , 1n−k−j) for k

even and j < n−k
2 , respectively (see Fig. 3).

Description of the Gathering Algorithm. The algorithm makes use of pro-
cedure Align to reach one among the following configurations: Ca =
(0k−1, 1, 0, 1n−k−1) with k even, Cb = (0k, 1n−k), with k or n odd, Cc =
(0

k
2 , 1j , 0

k
2 , 1n−k−j), with k even and j or n odd.

Since to solve gathering it is necessary to create a multiplicity, configurations
containing multiplicities must be handled. According to the assumed local-weak
multiplicity detection, each robot perceives a multiplicity only if it is part of
it. So, it cannot deduce the actual total number of robots. The algorithm is
structured in a way that procedure Align is invoked only at the end, that is
once it is sure that the current configuration does not belong to those directly
managed for gathering.

There are various moves allowed according to the current configuration. From
Ca the gathering will be accomplished by compacting the sequence of consecutive
robots from the tail toward the head, the only robot without neighboring robots.
Once only two vertices are occupied, only one of them contains a multiplicity.
In order to finalize the gathering, the robot not composing the multiplicity (the
original head) moves toward the other occupied vertex. The finalization of the
gathering from Cb and Cc is accomplished in the middle vertex cut by the axis
of symmetry, closest to the robots. In these cases, symmetric moves must be
performed. The main difficulties then come from asynchrony.

Global-Weak Multiplicity Detection. Concerning the case of global-weak
multiplicity detection capability, Table 3 summarizes the progresses made within
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this context. Entries referring to solved cases must be intended as concerning
configurations not belonging to the ungatherable ones.

Table 3. Resume of the known feasibility results about gathering in a ring under the
Look-Compute-Move model with the global-weak multiplicity detection. All the men-
tioned configuration concern initial configurations not belonging to UR. Symbols n and
k refer to the number of vertices and number of robots, respectively.

Configuration type n k Papers

Asymmetric - - [24]

Symmetric - Odd [24]

Symmetric - k > 18 [23]

Symmetric - k = 4 [25]

Symmetric - k = 6 [15]

- - - [12]

As shown in the table, increasing the capability of the robots from local-
weak to global-weak multiplicity detection does not improve much on feasibility
results. In fact, the only difference between the general algorithm provided for
the local-weak multiplicity detection is restricted to the k < n − 4 and k = 4,
whereas the algorithm designed for the global-weak multiplicity detection works
for any configuration not in UR (see [12]).

Theorem 6 (Gathering on rings, global-weak multiplicity detection).
Let R be a ring and C = (R,μ) be an initial configuration composed by robots
endowed with the global-weak multiplicity detection. Then, C is gatherable if and
only if C ∈ UR.

3.4 Grids

In this section, results achieved in [10] are reported. The authors consider the
gathering problem on an anonymous and undirected grid of n×m vertices, with
m ≥ n. As for rings, the grid is intended as embedded in the Euclidean plane,
with all edges of the same size. The main assumption that distinguishes these
results from those obtained on rings is the lack of any multiplicity detection
capability : if a vertex is occupied by more than one robot, it is not perceived by
the robots, even if they reside on such a vertex. As usual, in initial configurations
each vertex is occupied by at most one robot. During a Look operation, a robot
perceives the relative locations on the grid of occupied vertices, regardless of the
number of robots at a vertex.

The current configuration of the system can be described in terms of the view
of a robot r which is performing the Look operation at the current moment. A
configuration seen by r is denoted as an n × m matrix M that has elements
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belonging to the set {0, 1}. Value 0 represents an empty vertex, and 1 represents
an occupied vertex. Since the grid is anonymous and undirected, each robot
can perceive the current configuration with respect to different rotations and
reflections leading to any view of the grid satisfying the n × m dimension. In
particular, when n = m each of the 4 rotations and 4 reflections provides a
feasible view.

Definition 7. A configuration is:

1. rotational if it is invariant with respect to rotations of 90◦ or 180◦, where the
rotation point coincides with the geometric center of the grid;

2. vertical-symmetric (horizontal-symmetric, diagonal-symmetric, resp.) if it is
invariant after a reflection with respect to a vertical (horizontal, diagonal - in
case of square grids, resp.) axis passing through the geometric center of the
grid.

Table 4. Resume of the known impossibility results about gathering in a grid under
the Look-Compute-Move model without any multiplicity detection capability. All the
mentioned configurations are initial and form the set UG.

Parity Dimension Symmetry type Paper

Odd × even - Rotational [10,19]

- Vertical-symmetric

Even × even - Rotational

- Vertical-symmetric

- Horizontal-symmetric

2 × 2 -

We simply say that a configuration is symmetric if any of the cases in the
second item of the previous definition applies. The set of all the ungatherable
configurations for grids is denoted by UG, and it is described in Table 4. Except
for the case of 2 × 2 grids, all configurations in UG can be detected by simply
applying Theorem1 as they are all partitive configurations. In [10] it is shown
that all the configurations not belonging to UG are gatherable; in the following,
we describe the gathering algorithms.

Odd×Odd Grids. This case is trivially solvable, in fact in odd× odd grids,
a robot can always detect, during its Look operation, the central vertex of the
grid M [

⌈
n
2

⌉
,
⌈
m
2

⌉
], regardless of its possible view. This means that all the robots

can move toward the center, concurrently.

Odd×Even Grids. When the initial configuration does not belong to UG, it
is always possible to devise an algorithm achieving the gathering without any
multiplicity detection.
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The idea is to distinguish between the two vertices that are the central ver-
tices of the odd borders of the grid. If m (n, respectively) is odd, then the two
mentioned vertices are given by positions M [1,

⌈
m
2

⌉
] and M [n,

⌈
m
2

⌉
] (M [

⌈
n
2

⌉
, 1]

and M [
⌈
n
2

⌉
,m], respectively). The line connecting those two vertices will be

denoted as the NS line. One of the two extreme vertices on the NS line will be the
place where the gathering is finalized. In order to select the gathering vertex, a
robot considers the line passing through the central edges of the even sides of
the grid (denoted as the EW line) dividing the grid into two halves. The idea is
to distinguish a north and a south part among the two halves and the gathering
vertex will be the one in the north half. The north is the half with more ver-
tices occupied by robots, if any. If the number of occupied vertices in the two
halves is the same, then some more computations are required. In both cases,
the robots move from the south to the north until all the robots will be in the
north part. Note that, during such a stage, if multiplicities are created in the
south, then the number of occupied vertices decreases with respect to the north
part. If multiplicities are created in the north, it means that at least a robot has
moved from the south to the north part, still preserving the required distinction.

Once all the robots belong to one half of the grid, then they are allowed to
move, during their Move operation, towards the gathering vertex. In fact, such a
vertex is well-defined and cannot change as the robots are not allowed to move
to the other half of the grid.

Even×Even Grids. For the even×even case, in [10] it is shown that all the
initial configurations not in UG are gatherable without any multiplicity detection,
except for the case of 2 × 2 grids. In order to achieve this result, it is first assumed
that at least one vertex on the border of the grid is occupied. Then, the gathering
vertex is identified among the eight sequences of distances (number of empty
vertices) between occupied vertices obtained by traversing the grid starting from
the four corners and proceeding towards the two possible directions (see, e.g.
Fig. 4).

c2c1

c4 c3

Fig. 4. Case of a 6 × 10 grid. The arrows indicate the horizontal direction of the read-
ing from corner c1, it gives (6, 8, 14, 10, 5, 12). The other seven sequences read by the
robots are: (3, 6, 20, 4, 9, 13) from c1 vertically, (3, 10, 24, 2, 5, 11) and (16, 1, 6, 26, 4, 2)
from c2 horizontally and vertically, respectively, (12, 5, 10, 14, 8, 6) and (13, 9, 4, 20, 6, 3)
from c3, (11, 5, 2, 24, 10, 3) and (2, 4, 26, 6, 1, 16) from c4. The minimal sequence is
(2, 4, 26, 6, 1, 16) and c = c4.
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The lexicographically smallest sequence between the two readings from any
corner is associated to the corner itself. In rectangular grids, these two sequences
can be equal but it is possible to distinguish one of them by assuming the
reading in the direction of the smallest side. The minimal sequence is defined
as follows. If the configuration is symmetric, it is the smallest sequence between
the two sequences associated to the two corners through which passes the axis
of symmetry, otherwise it is the smallest among the four sequences associated
to the four corners. In any case there exists a minimal sequence which identifies
either a single corner, of two symmetric corners. In the former case, the identified
corner will be the vertex where to finalize the gathering. In the latter case, the
middle vertex on the border between the two identified corners will be the vertex
where all robots gather. The main difficulties come from designing moves that
maintain the same detected gathering vertex during all movements.

The following statement summarizes the results for grids.

Theorem 7 (Gathering on grids). Let G be a grid and C = (G,μ) be an
initial configuration composed by robots endowed with no multiplicity detection
capability. Then, C is gatherable if and only if C ∈ UG.

According to Remark 1, the above result states that the gathering problem
on grids is fully characterized.

4 From General Algorithms to Optimality

In this section, we consider the gathering problem on graphs when a cost measure
is associated with the provided solution, and we ask for optimality. Depending
on the chosen cost measure, different strategies can be designed.

4.1 Optimization Problems for Robot-Based Computing Systems

In this section, we recall from [5] how the classical notion of optimization prob-
lems (cf. [2]) is extended to optimization problems solvable in the context of
robot-based computing systems. According to the new framework, we describe
how the gathering problem can be reformulated as an optimization problem.

Let Π be an optimization problem for robot-based computing systems. For
the sake of clarity, we address the minimization case only. The maximization
case can be derived analogously. Problem Π consists of a triple (I, sol ,mis),
where:

– I is the set of instances (i.e., all possible initial configurations);
– sol is a function that maps each initial configuration C ∈ I to the set sol(C)

of feasible solutions of C;
– given an instance C ∈ I and a solution s ∈ sol(C), then mis(C, s) denotes the

real positive measure of s, and the function mis is called objective function
for Π.
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The goal of Π with respect to an instance C is to find an optimal solution, that
is, a feasible solution s ∈ sol(C) such that mis(C, s) equals the value

min{mis(C, s′) : s′ ∈ sol(C)}.

In the following, opt will denote the function mapping an instance C to the
measure of an optimum solution in sol(C). Given an instance C and a solution
s ∈ sol(C), we define the performance ratio of s with respect to C as

R(C, s) =
mis(C, s)
opt(C)

.

The performance ratio is always a number greater than or equal to 1 and is
as close to 1 as the solution s is close to the optimal solution.

Now, let A be an algorithm for Π and C be an initial configuration. Even
though we are dealing with deterministic algorithms, different executions of A
starting from the same initial configuration C can lead to different solutions. In
fact, in the described asynchronous setting, an execution depends on the time
required by the scheduled activities, and this is implemented by the behavior
of the adversary. Then, there exists a set solA(C) ⊆ sol(C) of solutions, each
corresponding to a possible execution of A starting from C. If A(C) is a solution
s ∈ solA(C) which maximizes mis(C, s), that is

A(C) = arg max
s∈solA(C)

mis(C, s),

then:

– we say that A is an optimal algorithm for Π if R(C,A(C)) = 1 for each
instance C ∈ I;

– given a function f : N → (1,∞), we say that A is a f(n)-approximation for
Π if R(C,A(C)) ≤ f(|C|) for each instance C ∈ I. Here |C| denotes the size
of a configuration C.

Defining the Gathering as an Optimization Problem. We can now for-
malize the gathering problem as an optimization problem (I, sol ,mis), where
I is the set of all the possible initial configurations for the gathering problem.
Given an initial configuration C = (G,μ), an execution of a gathering algorithm
A for C can be seen as a set P containing paths in the graph G. Each path in P
models all the movements performed by a specific robot starting from its initial
position and ending on the final gathering vertex. A movement performed by a
robot during a computational cycle corresponds to a subpath made of just two
adjacent vertices. So, a gathering solution is a set of paths, each one starting
from a distinct vertex and ending on the same final gathering vertex. The set
of all the gathering solutions for a configuration C defines sol(C). Concerning
mis(C,P), different measures can be considered. In the remain of the section we
assume:
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– mis(C,P) corresponds to
∑

P∈P length(P ), where length(P ) is the length of
the path P expressed as the number of edges in the path.

Other cost measures can be certainly investigated. For instance, an interesting
case might be when mis(C,P) corresponds to maxP∈P length(P ). In other words,
the goal corresponds to minimize the maximum distance traversed by a single
robot.

Going back to the cost measure that will be considered in the next sections
concerning the minimization of the lengths of all the paths traversed by all
robots, this implies that robots must gather on a Weber point by moving along
shortest paths. A Weber point in a graph, in fact, assures the minimization of
the considered function mis. However, in order to correctly compute the Weber
points, robots must be aware of the exact number of robots occupying vertices,
that is they need the global-strong multiplicity detection. Consequently, for all
the results reported in this section we assume the global-strong multiplicity
detection.

4.2 Weber Points in Graphs

In this section, general results that allow to define optimal gathering algorithms
are recalled from [19]. Such results are based on the notion of Weber points on
graphs (cf Sect. 1.2).

Given a configuration (G,μ), with G = (V,E), the centrality of each v ∈ V , is

cG,µ(v) =
∑

u∈V

d(u, v) · μ(u).

A vertex v ∈ V is a Weber point of G if it has the minimal centrality, that is,
cG,µ(v) = min{cG,µ(u) | u ∈ V }. Whenever clear by the context, the centrality
of a vertex v is simply denoted by cµ(v), or simply c(v).

By definition, a Weber point is a vertex that has the overall minimal distance
from all the robots in the configuration. Then, an algorithm that gathers all the
robots on a Weber point via shortest paths is optimum with respect to the
total number of moves. More formally, a gathering algorithm must define the
sequence of moves for each robot, leading to a final configuration. A move is the
change of the position of a single robot from a vertex u to an adjacent vertex
v. This equals to change the configuration from, say (G,μ) to (G,μ′), where
μ(w) = μ′(w) ∀w ∈ V \ {u, v}, μ′(u) = μ(u) − 1 and μ′(v) = μ(v) + 1. A robot
perceives its position on the graph G if (G,μ) is asymmetric. Whereas, if (G,μ)
admits a non-identity isomorphism ϕ, a robot cannot distinguish its position at
u from ϕ(u). As a consequence, two robots (e.g., one on u and one on ϕ(u)) can
decide to move simultaneously, as any algorithm is unable to distinguish between
them. This fact greatly increases the difficulty to devise a gathering algorithm
for symmetric configurations.

We start by observing that the gathering problem can be characterized as
follows:
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Proposition 1. A configuration ((V,E), μ) is final (i.e., all robots have gath-
ered) if and only if there exists a vertex v ∈ V such that c(v) = 0.

Along the text, we say that a robot on a vertex u moves towards a vertex v
if it moves to a vertex adjacent to u along a shortest path between u and v.

Theorem 8. Given any configuration ((V,E), μ) with Weber points in X ⊆ V , a
move of a robot towards a Weber point x gives rise to a configuration ((V,E), μ′)
with Weber points in X ′ ⊆ V such that:

1. cµ′(v) = cµ(v) − 1 for each v ∈ X ′;
2. x ∈ X ′;
3. X ′ ⊆ X.

When the configuration admits a unique Weber point (or a Weber point
can be uniquely determined), the above theorem suggests an optimal gathering
algorithm that also exploits concurrency among robots. In fact, regardless other
robots, each one can move towards the only Weber point via the shortest path,
until finalizing the gathering.

Corollary 1. Let C = ((V,E), μ) be a configuration. Then:

– if C admits only one Weber point then the gathering can be achieved by an
optimal algorithm;

– if there exists a real function f : V −→ R
+ such that f admits only one

minimum on the set of Weber points, then gathering can be achieved by an
optimal algorithm.

We now provide optimal gathering algorithms for specific topologies, namely
trees, rings and infinite grids.

4.3 Optimal Gathering on Trees

In this section, we recall from [19] the characterization of optimal gathering on
trees. To this aim, a general algorithm that always achieves the optimal gather-
ing starting from configurations not falling into the hypothesis of Theorem1 is
described. This algorithm exploits interesting properties resulting from the tree
topology.

Let (T, μ) be a configuration for a tree T , and a and b two of its vertices.
We denote by Pab the path between a and b of length |Pab|. Tree T can be
decomposed into three subtrees, see Fig. 5: the one containing a when removing
from T the edge incident to a in Pab, and denoted by Ta; the one containing b
when removing the edge incident to b in Pab, and denoted by Tb; and the third
one obtained from T by removing both Ta and Tb, and denoted by Tab. Let
La =

∑
v∈Ta

μ(v) and Lb =
∑

v∈Tb
μ(v), that is the number of robots in Ta and

Tb, respectively.

Theorem 9. Let (T, μ) be a configuration for any tree T . Then, the following
properties hold:
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Ta Tab

Tb

a b

Fig. 5. Partitioning of a tree into three subtrees.

– given two distinct Weber points a and b, Tab does not contain any robots;
– given two distinct Weber points a and b, La = Lb;
– the Weber points form a path;
– if the number of robots is odd, then there exists only one Weber point.

The above properties imply the existence of a simple optimal gathering algo-
rithm when the number of robots is odd. A complete characterization about the
existence of optimal gathering algorithms on trees is given by the next theorem.
It shows that an optimal algorithm exists unless there is an automorphism that
maps each vertex to a different one.

Theorem 10 (Optimal gathering on trees). There exists an optimal gath-
ering algorithm for a configuration C = (T, μ) on a tree T if and only if C is
not balanced.

The algorithm exploits similar properties of that presented in Sect. 3.2 [11]
dealing with feasibility only. It is known, in fact, that a tree admits either one
or two centers. Then, for optimality purposes the algorithm selects opportunely
the Weber point closest to one center. Considering Fig. 6a, it is easy to provide
configurations where this algorithm performs the gathering in two moves, while
the algorithm in Sect. 3.2 requires n moves.

Before concluding this section, it is interesting to characterize the disposal
of Weber points on the degenerate case of paths. This is of practical interest in
the next section for characterizing Weber points on rings.

Lemma 1. Given a configuration (P, μ) where P is any path graph, the set of
Weber points is constituted either by one occupied vertex, or by one subpath
whose extremes are occupied.

4.4 Optimal Gathering on Rings

In this section, we summarize results from [19] that fully characterize optimal
gathering on rings. We start remarking that the gathering cannot be optimally
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solved in any of the configurations belonging to UR (cf Table 1). Moreover, from
Theorem 2, we have that some configurations can be gathered only at some pre-
determined vertices, regardless of whether they are Weber points or not. Hence,
in such cases optimal gathering can be accomplished only if the predetermined
vertex is a Weber point. On rings, Theorem2 applies on configurations admitting
one axis of reflection of type vertex-edge or vertex-vertex, and any vertex lying
on the axis is empty. It follows that from configurations satisfying the hypothe-
sis of Theorem 2, optimal gathering can be accomplished only if there is at least
a Weber point on the axis of reflection. According to this observation, in this
section we say that a symmetric configuration with exactly one axis of reflection
has a not-wp axis if there not exists a Weber point on the axis of reflection. The
set of all configurations where the gathering cannot be optimally solved in rings
is denoted by U∗

R, and it is described in Table 5.

Table 5. Resume of the impossibility results about optimal gathering in a ring under
the Look-Compute-Move model even assuming global-strong multiplicity detection. The
first three rows are derived from Table 1. All the mentioned configurations are initial
and form the set U∗

R. Symbols n and k refer to the number of vertices and number of
robots, respectively.

Configuration type n k Papers

Rotational or with edge-edge axis - - [19,24]

- - k = 2 [24]

SP4 Odd k = 4 [12,16,17,23]

With not-wp axis - - [18]

In [19], authors provided an algorithm able to assure optimal gathering in
each configuration not belonging to U∗

R. Before describing this algorithm, we
recall some useful properties concerning the disposal of Weber points on rings.

Lemma 2. Given a configuration (R,μ) on any ring R, if an empty vertex u is
a Weber point then also its neighbors are Weber points.

By the above lemma, as for the path case, if there exists a sequence of vertices
that are Weber points, then the extremes of such a sequence are Weber points
occupied by robots. It is worth noting that on rings there might occur more than
one of such sequences.

As first result on rings, the next lemma provides an algorithm that assures
optimal gathering from asymmetric configurations. Actually, such an algorithm
will be used later as part of the general algorithm for providing optimal gathering
in each configuration not belonging to U∗

R.
Let C = (μ(v0), μ(v1), . . . , μ(vn−1)) be one of the possible views com-

puted by a robot occupying vertex v0 during its Look phase according its
clockwise direction. We denote by C = (μ(v0), μ(vn−1), μ(vn−2), . . . , μ(v1)),



Asynchronous Robots on Graphs: Gathering 207

b)a)

Fig. 6. A gray vertex indicates the presence of one robot; Dashed circled vertices are
Weber points. Dashed line stands for an undefined sequence of empty vertices. Vertices
pointed by an arrow represent the gathering vertices with respect to algorithms in [11]
for a), and in [24] for b).

and by Ci the configuration obtained by reading C starting from vi, that is
Ci = (μ(vi), μ(v(i+1) mod n), . . . , μ(v(i+j) mod n)).

By referring to Fig. 6b, the robot pointed by the arrow has view C =
(1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1) if it reads in the clockwise direction.
Then, C = (1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0). Its lexicographical max-
imum view is C, while the absolute maximum view of the configuration is
C9 = (1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0).

Lemma 3. Given an asymmetric initial configuration (R,μ) on any ring R of
n vertices, it is always possible to assure optimal gathering.

The main difference of the optimal algorithm with that provided in [24]
dealing just with feasibility is in the choice of the vertex where a multiplicity
is created. Once this is done, the two algorithms finalize the gathering on the
created multiplicity by moving robots along the shortest paths towards it.

The algorithm proposed in [24] considers the longest interval I of empty
vertices. Among the two intervals of empty vertices neighboring to I, the shortest
one was reduced by moving the robot delimiting I. Ties were broken by the
asymmetry of the configuration. The described move was repeated until creating
a multiplicity.

Here [19], the algorithm suitably selects a Weber point (or an interval of
Weber points) hence moving robots towards it. By Theorem 8, the selected Weber
point remains as such, whereas other Weber points disappear move after move.
Moves are performed so as the configuration remains asymmetric, at least until
only one Weber point remains. From there on, the finalization becomes easy.

Figure 6b shows a configuration where the optimal algorithm requires 25
moves while the algorithm in [24] takes 35 moves. It is easy to provide worsen
instances where I is far apart from Weber points, hence resulting in a much
larger difference with our algorithm in terms of computed moves.

For a fair comparison, we remark that the algorithm in [24] deals with
the global-weak multiplicity detection while in [19] the global-strong version
is assumed.

We now summarize on the results for gathering algorithms dealing with all
configurations that allow optimal gathering, exploiting the algorithm designed
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for asymmetric configuration. Overall, a full characterization of optimal gather-
ing on rings is provided.

Some further definitions and useful properties about Weber points on rings
are still required.

Definition 8. Given a configuration (R,μ) on a ring R of n vertices, two ver-
tices are said antipodal if their distance is �n

2 �. Two robots are said antipodal
if they lie on two antipodal vertices.

Lemma 4. Given a configuration C = (R,μ) on any ring R with an even num-
ber of vertices, if vertex u is a Weber point then it is a Weber point also in the
configuration C ′ obtained from C by removing all the pairs of antipodal robots.

Corollary 2. Given a configuration C = (R,μ) on a ring R with an even num-
ber of vertices, if it contains only pairs of antipodal robots then C is rotational.

It is worth noting that when a configuration satisfies the hypothesis of Corol-
lary 2 then by Lemma 4 all its vertices are Weber points since all the vertices of
an empty ring have zero centrality.

Lemma 5. Let C = (R,μ) be a configuration on any ring R with an even
number of vertices, and not admitting rotations. If vertex v is a Weber point in
C then its antipodal vertex is not a Weber point.

Lemma 6. Given a configuration C on any ring R with an odd number of ver-
tices, if two adjacent vertices u and v are two Weber points, and at most one
of them is occupied, then vertex w whose antipodal vertices are u and v is not a
Weber point.

We are now ready to define another part of the main algorithm to deal with
symmetric configurations with an odd number of robots.

Lemma 7. Given a symmetric configuration C = (R,μ) on any ring R with an
odd number of robots, then optimal gathering can be accomplished.

The algorithm provided in the proof of Lemma7 works as follows. If C is
symmetric, there must be exactly one robot lying on the axis of symmetry since
the number of robots is odd. If there is only one Weber point, then optimal gath-
ering is achieved by exploiting Corollary 1. If there are at least two Weber points,
the algorithm then moves the robot on the axis towards one of the two possible
directions, indiscriminately. By Theorem8, all the Weber points contained in the
semi-ring where the robot moved are maintained, while all the Weber points in
the other semi-ring (that was originally symmetric) disappear. The only excep-
tion might be the antipodal vertex (if any) with respect to the original location
of the moved robot when the ring is composed of an even number of vertices.
Again, if after the move there is only one Weber point, then optimal gather-
ing is accomplished by exploiting Corollary 1. If there are at least two Weber
points, the obtained configuration can be symmetric or asymmetric (possibly
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containing a multiplicity). In the former case, the algorithm moves again the
new robot on the axis, and by [24] we are assured that this can happen a finite
number of times until reaching an asymmetric configuration. From asymmetric
configurations, Lemma 2 can be exploited to finalize the gathering.

For the case of even number of robots on symmetric configurations, we need
two more definitions.

Definition 9. Given a symmetric configuration on a ring R of n vertices, a
vertex v is called north if it lies on the axis and it is a Weber point. The edge
whose endpoints are the antipodal vertices (in case of vertex-edge symmetry) of
v or its antipodal vertex (in case of vertex-vertex symmetry) is called south.

It is worth nothing that we use the above definition only for symmetric con-
figurations with single axis of type vertex-vertex or vertex-edge, with a Weber
point on the axis. In particular, in case of vertex-vertex symmetry the definition
is not ambiguous. In fact, from Lemma 5 the two vertices on the axis cannot
be both Weber points. Contrary, if both are not Weber points and are empty,
by Theorem 2 optimal gathering cannot be accomplished, hence we do not need
such definitions. As we are going to see, if both are not Weber points but are
occupied, optimal gathering can be assured but the strategy does not require
to define north and south. Whereas, another definition required together with
north and south is the following.

Definition 10. Given a symmetric configuration on a ring R, the line orthogo-
nal to the axis of symmetry, cutting R on two edges into two subrings whose size
differ of at most one vertex in favor of the southern side is called the horizon.

We are now ready to describe the optimal gathering algorithm.

Theorem 11 (Optimal gathering on rings). There exists an optimal gath-
ering algorithm for a configuration C = (R,μ) on a ring R of n vertices if and
only if C ∈ U∗

R.

The algorithm provided in the proof of Theorem11 works as follows.
Configurations with an odd number of robots have been solved by Lemma7,

and robots can always recognize they are in such a case by computing k =∑n−1
i=0 μ(vi).
The asymmetric case has been already solved by Lemma 3. The proposed

technique must be slightly modified in order to integrate it with symmetric
cases, hence obtaining a unique optimal gathering algorithm characterizing all
possible configurations.

If configuration C admits a single axis of reflection passing through two
robots, by Lemma 5, the vertices where such robots lie cannot be both Weber
points. If one is a Weber point and it is the only one among all vertices, then
by Corollary 1 optimal gathering can be accomplished. If there is more than one
Weber point in C then the algorithm makes move one of the robots on the axis
(towards any direction) as follows.
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If there is an odd number of Weber points (the north is a Weber point, nec-
essarily), then the robot occupying the south is moved. In doing so, the number
of Weber points remains odd since those initially residing at one side of the
axis of symmetry have disappeared but not the one on the north. The obtained
configuration can be still reflective (of type robot-robot or vertex-vertex) with a
Weber point on the axis and less Weber points than the original one. The case of
vertex-vertex reflection will be discussed later, while for the case of robot-robot
reflection same arguments can be applied again.

If there is an even number of Weber points (the north is not a Weber point),
then the robot occupying the north is moved unless it creates a new axis of
symmetry. In such a case, the one on the south is moved and we are sure that
the configuration becomes asymmetric.

If C is reflective without robots on the axis, the algorithm allows only moves
towards north where the gathering will be accomplished, eventually. The north,
which is a Weber point, must exist as otherwise, by Theorem2, optimal gathering
is not possible.

In general, from Lemma 2, the set of Weber points in R is given by a set of
paths, and by hypothesis there is at least one path of Weber points (possibly
made of just one vertex) containing the north. Moreover, due to symmetry and
by Lemmas 5 and 6, the number of such paths is odd and the two adjacent
vertices at one side of R divided by the horizon cannot be both Weber points
unless they are both occupied.

Similarly to the algorithm proposed in [23], here the symmetry of the con-
figuration is maintained until a single multiplicity in the north is created. Due
to asynchrony, either one or two symmetric robots move. In the former case,
robots can detect whether the current asymmetric configuration may have been
obtained from a symmetric one, and hence they can recognize the unique robot
that can (re)-establish the original symmetry. Note that, the algorithm leads to
a symmetric configuration even though the initial configuration is asymmetric
but obtainable from a symmetric one. This is the only modification required to
the algorithm provided in the proof of Lemma3 for asymmetric configurations.

Moves are accomplished so that the north is maintained as a Weber point,
whereas other Weber points disappear move by move. Once a multiplicity is
created in the north, then the finalization is easy.

4.5 Optimal Gathering on Infinite Grids

In this section, we summarize results from [18] that fully characterize optimal
gathering on infinite grids. Let an infinite path be the graph P = (Z, E) with
E = {{i, i + 1} : i ∈ Z}. An infinite grid is defined as the Cartesian product
G∞ = P × P . A vertex of the grid is then an ordered pair of integers called
coordinates. Given G∞, then C = (G∞, μ) is a configuration on G∞.

Notice that on infinite grids the topology does not help in detecting a gather-
ing vertex. Nonetheless, the interest in infinite grids also arises from the fact that
they represent a natural discretization of the plane. We detect all the specific con-
figurations where gathering cannot be performed. For all other configurations,
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we describe the basis of a distributed algorithm that exploits the global-strong
multiplicity detection and, assures gathering on a Weber point by letting robots
move along the shortest paths toward such a vertex, i.e., the algorithm is optimal
in terms of moves.

Let C = (G∞, μ) be a configuration and SC be the minimal (finite) sub-grid
containing all the occupied vertices of the infinite grid G∞, and (SC , μ) be the
corresponding configuration. It is worth mentioning that SC may change while
robots move. As a consequence, even though SC is a finite grid, the approach
described in Sect. 3.4 [10] for finite grids cannot be applied (as it is strongly
dependent on the dimensions of the grid where robots reside).

During the Look phase, a robot perceives (SC , μ) and it is able to recognize
its position on SC if (G∞, μ) is asymmetric. Whereas, if (G∞, μ) admits an
isometry ϕ different from the identity, a robot cannot distinguish its position at
u from ϕ(u), unless u = ϕ(u).

In an infinite grid, the center of a rotation can be a vertex, or the center of an
edge, or the center of the area surrounded by four vertices, whereas the angle of
rotation can be of 90◦ or 180◦. Reflections axis can be horizontal (vertical), pass-
ing through vertices or through the middle of edges, or diagonal (45◦), passing
through vertices. If we assume the infinite grid embedded in a Cartesian plane,
it is not difficult to see that other than rotations and reflections it admits also
translations, that is a shifting of the vertices by applying the same displacement
to each vertex. Regarding translations, even if they are possible for infinite grids,
they do not belong to any automorphism group of configurations as these are
defined for a finite (not null) number of robots. Note that, an infinite number of
robots (or no robots at all) is required also when the configuration admits two
parallel axes of symmetry, one axis and one center of rotation not lying on the
axis, or two distinct centers of rotation. Moreover the automorphism group of a
configuration with a finite number of robots is finite.

In order to check whether the current configuration could have been obtained
from a symmetric one, we introduce the concept of previous position for a robot.
Sometimes, an algorithm simulates itself by considering a configuration C ′ which
is identical to the current configuration C but for the position of one robot r. If
an execution of the algorithm can lead from C ′ to C then the simulated position
of r in C ′ is called a previous position for r. This method will be used to detect
possible pending moves when C ′ is symmetric.

According to Corollary 1, in a configuration that admits only one Weber point
the gathering can be achieved by an optimal algorithm.

Impossibility Results. We have already observed that, in general, a partitive
configuration is ungatherable. In infinite grids, this result implies that all initial
configurations with an axis of symmetry not passing through vertices or admit-
ting a rotation with a center not coinciding with a vertex, are ungatherable. In
fact, all such configurations are partitive with orbits of size at least two, and only
those admitting rotations of 90◦ have orbits of size four. For the sake of conve-
nience, we introduce the following terminology: a configuration (G∞, μ) is (1)
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edge-symmetric if it has an axis of symmetry not passing through vertices, (2)
rotational if it admits a rotation with a center not coinciding with a vertex, (3)
two-robots if it contains only two robots (or equivalently, two multiplicities of the
same size), and (4) four-corners if it contains only four robots (or equivalently,
four multiplicities of the same size) disposed on the corners of SC .

The set of all the ungatherable configurations for infinite grids is denoted by
UG∞ , and it is described in Table 6.

Table 6. Resume of the impossibility results about gathering in an infinite grid under
the Look-Compute-Move model even assuming global-strong multiplicity detection. All
the mentioned configurations are initial and form the set UG∞ .

Configuration type Papers

Edge-symmetric Theorem 1

Rotational Theorem 1

Two-robots [18]

Four-corners [18]

It is worth noting (see [10]) that gathering on finite grids was possible with-
out any multiplicity detection due to the existence of special vertices like corners.
Here instead we assume the global-strong multiplicity detection in order to be
sure that robots can always compute the correct Weber points, even when mul-
tiplicities occur.

In the remaining of this section, we recall from [18] an algorithm which is able
to optimally solve the gathering problem in each configuration not belonging to
UG∞ . It is important to point out that in the case of infinite grids each time the
problem is solvable, then it can be done in an optimal way.

One-Dimensional Grids. We first consider infinite paths as grids with one
row and infinitely many columns.

Lemma 8. If the number of robots k is odd, then there exists only one Weber
point. If k is even, then all vertices of the subpath delimited by the two central
robots (including the vertices where such robots lie) are Weber points.

Theorem 12. Optimal gathering on one-dimensional grids is always achiev-
able except for configurations with only two robots or admitting partitive
automorphisms.

In the previous theorem, the ungatherable cases simply follow from the
first three rows of Table 6. When the number of robots is odd, from Lemma8
there exists only one Weber point and optimal gathering can be achieved by
Corollary 1.
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Let us observe how the optimal gathering is achievable when the number of
robots is even. In such a case, if the configuration is symmetric, then the subpath
of Weber points must be odd as otherwise the configuration is partitive. The
idea is then to move the robots delimiting the Weber points toward the central
vertex. If both move synchronously, the configuration remains symmetric but
the interval of Weber points is reduced until only the Weber point at the central
vertex remains. If only one moves, it is possible to recognize the robot that has
to move to (re)-establish the symmetry. In fact, considering the two intervals of
free vertices neighboring the robots delimiting the Weber points, the algorithm
allows to move the robot delimiting the shortest interval.

When the number of robots is even, but the configuration is asymmetric,
then either it is at one move from a possible symmetry which is allowed, or one
of the two robots delimiting the Weber points can be chosen to move toward the
other one without creating a symmetry until only one Weber point remains.

Finally, when there is only one Weber point, from Corollary 1, all robots can
move safely toward it. It is worth to notice that such an algorithm also works
when the input configuration admits multiplicities.

Two-Dimensional Grids. We now describe a general optimal algorithm to
solve the gathering problem for each configuration C = (G∞, μ) such that C ∈
UG∞ . From Corollary 1, if the configuration C admits only one Weber point, then
optimal gathering can be accomplished. Another characterization is provided
by considering SC , and in particular the projections of the robots to the two
generating paths P1 and P2 of G∞. Given a robot on a generic vertex (i, j) of
G∞, its projections on P1 and P2 are a robot on vertex i and a robot on vertex
j, respectively. This gives rise to two configurations (P1, μ1) and (P2, μ2) such
that μ1(v) =

∑
j μ((v, j)) and μ2(v) =

∑
i μ((i, v)). As the movements on a grid

are either vertical or horizontal, solving the gathering with respect to the two
dimensions separately, solves the general problem.

Theorem 13. Given any configuration C = (G∞, μ) with G∞ = P1 × P2,
if (P1, μ1) and (P2, μ2) are optimally gatherable, then also C is optimally
gatherable.

The optimal gathering considered in the previous theorem is obtained by simply
considering (P1, μ1) and (P2, μ2) separately. Each time a robot wakes-up, it can
move with respect to any of the two instances indiscriminately, as they are
independent to each other. Theorem 12 guarantees optimal gathering on both
the instances even though they might contain multiplicities.

Note that there are gatherable configurations that do not satisfy the assump-
tions of Theorem 13. Hence, a more general strategy must be designed in order
to cope with all the gatherable configurations.

Given a configuration C = (G∞, μ), let GWP(C) be the subgraph induced by
its Weber points. The next theorem provides a useful characterization about the
arrangement of Weber points in a configuration.
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Theorem 14. Given any configuration C = (G∞, μ) with G∞ = P1 × P2,
GWP(C) is a finite grid defined by the Cartesian product of the subpaths induced
by the Weber points belonging to (P1, μ1) and (P2, μ2).

2

2 (P1, �1)

(P2, �2)

SC

GWP(C)

Fig. 7. A sample configuration C which induces SC , GWP(C), and its projections to the
sides of SC .

By referring to Fig. 7, it is worth noting that GWP(C), for some configuration
C, is in general a finite grid where robots can occupy only the corners. Moreover,
all the vertices belonging to the strips from GWP(C) to the borders of SC cannot
be occupied, but for the ones sharing coordinates with the border of GWP(C).
These robots will be said to determine GWP(C). Note that, given a configura-
tion C with k robots, evaluating the set of Weber points has time complexity
O(|SC | × k).

Grids with an Odd Number of Robots. By Lemma 8, an odd number of
robots implies a single Weber point for each instance on the two paths generating
G∞. By Theorem 14, the Cartesian product of those two Weber points consti-
tutes the only Weber point of the configuration, hence by Corollary 1 optimal
gathering can be assured. Then, the following results follows.

Corollary 3. If the number of robots in a grid G∞ is odd, then optimal gath-
ering can be accomplished.

Grids with an Even Number of Robots. When the number of robots is
even, the proposed algorithm from [18] considers various cases.

As first distinction, it considers whether SC has all sides of odd length and its
center is a Weber point. If this is the case, then gathering can be accomplished
at the center of SC . The idea at the basis of the strategy is to move all the robots
not lying on the border of SC toward the center that becomes the only Weber
point of the current configuration. From there on, all the other robots can join
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the unique Weber point. This can be easily realized if the number of robots is
“sufficiently large”, while if it is too small, then specific strategies are required.

If SC has a side of even length or its center is not a Weber point, then a
different strategy is designed. In this case, the final gathering vertex will be
detected at the end of the process, as robots are moved so as to reduce the
number of Weber points in the configuration until one Weber point remains.
From there on Corollary 1 can be applied. Moves are performed according to the
number of corners of SC occupied by robots.

The next theorem summarizes the obtained results about infinite grids.

Theorem 15 (Optimal gathering on infinite grids). There exists an opti-
mal gathering algorithm for a configuration C = (G∞, μ) on an infinite grid G∞

if and only if C ∈ UG∞ .

5 Conclusion

The chapter surveys on the latest results concerning the gathering task for robots
moving on graphs. This poses interesting observations with respect to the case of
robots moving on the Euclidean plane. As first consequence, there are much more
cases where gathering cannot be solved, whereas in the Euclidean plane these
concern only the case of 2 robots. This is possibly due to the fact that the move-
ments of the robots are restricted to the edges of the input graph, hence limiting
the choice to a resolution algorithm. However, considering different topologies
led to completely different resolution strategies, and it seems rather unfeasible
to design an algorithm independent on the topology. An exception is given for
instance by those graphs admitting one center, or configurations admitting one
Weber point. In such cases, gathering can be easily performed regardless the
underlying topology.

We remark that the analysis of the problem performed so far should be
extended not only to other topologies, but also to graphs that share some
properties considered useful for algorithmic purposes (i.e., graphs with bounded
treewidth).

This survey on the graph environment also motivates to investigate on differ-
ent assumptions, as for instance varying on the scheduler. So far, in fact, as gath-
ering on the Euclidean plane has been characterized for asynchronous robots, it
has been considered the asynchronous case at the basis of the graph environ-
ment. This is wrongly motivated by considering graphs as an easier case with
respect to the Euclidean plane where also synchronous and semi-synchronous
schedulers have been investigated. It comes out that asynchronous robots can
always accomplish the gathering task on the Euclidean plane except for the case
of 2 robots that is solvable only when synchronous robots are considered. What
happens in graphs? How results are affected by switching to the synchronous
or the semi-synchronous cases? On complete graphs, for instance, being syn-
chronous may allow the resolution of some configurations as the case where only
one vertex is empty and all other vertices are occupied.
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Being on graphs has also permitted to deal with optimization issues when the
objective function concerns the total length (in terms of hops) of the trajectories
traversed by the robots. In the Euclidean plane, in fact, this was impossible as
the Weber-point is not computable, even though it is unique. Also in this case,
the investigation of different schedulers or different objective functions might
constitute interesting directions for future work. Another interesting problem
might be to find an algorithm achieving a best approximation ratio (as defined
in Sect. 4.1) for gathering. Then, it would be meaningful to talk about a best
solution even for gatherable configurations for which achieving ratio 1 is not
possible (for example when only global weak multiplicity detection is available).

As last remark, it is worth mentioning the hybrid environment introduced
in [5], where robots move on the Euclidean plane, but the gathering must be
accomplished on one of the so-called meeting points. These are a finite set of
vertices visible to the robots during their Look phase. Such a model allows robots
to freely move on the Euclidean plane, but limits robots to meet only at pre-
established places as happens on graphs.
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Abstract. This chapter focuses on the problem of exploring a graph by
a team of mobile robots endowed with vision. More precisely, we consider
here mobile robots operating under the Look-Compute-Move paradigm in
discrete environments modeled as graphs. The goal for these robots is to
explore the graph in which they are, that is to visit all vertices of the
graph.

Keywords: Oblivious robots · Graph exploration
Terminating exploration · Exclusive perpetual exploration

1 Introduction

In this chapter, we consider mobile entities, called robots, operating under
the Look-Compute-Move paradigm. An activated robot starts first by taking an
instantaneous snapshot of its environment (the Look phase), then it computes
whether and where it wants to move (the Compute phase), and finally it moves
to the decided new position (the Move phase). Robots operating under the Look-
Compute-Move paradigm are classically considered in continuous environments,
usually the plane. The studies on these robots were however recently extended
to the case of discrete environments, modeled as graphs (see [6] and [23] for
short surveys on the subject). This chapter focuses on these discrete environ-
ments. One motivation to consider discrete environments is to get rid of possibly
annoying geometric considerations in order to focus on issues directly related to
the weaknesses of the robots (anonymity, obliviousness, etc.), to the symmetries
of the environment, and to the asynchrony. Another motivation is more practical
and comes from the fact that vision sensors do not have an infinite precision.
Considering discrete environments thus acknowledges the fact that many vision
sensors output digital and thus discrete snapshots of the environment.

We consider in this chapter the graph exploration problem, in which the
robots have to visit every vertex. More precisely, two variants of the problem
were studied so far in the literature (in the considered model). The first variant
is called terminating exploration and requires that, first, each vertex is visited
by at least one robot, and second, that eventually all robots stop moving. The
second variant is called exclusive perpetual exploration and requires that, first,
each robot visits every vertex of the graph infinitely often, and second, that no
c© Springer Nature Switzerland AG 2019
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two robots traverse the same edge at the same time nor visit the same vertex
at the same time. Exploring a graph is a fundamental task in mobile robot
computing and can be used, for example, to search for a specific information,
or to discover and list all the services provided by the vertices. Exploration
(perpetual in particular) is also interesting for maintenance purposes, where the
robots can check forever whether the vertices are properly functioning. Finally,
the exclusivity property models the physical constraints that the robots may
have if, for example, they operate in environments with limited available space
that prevent them from crossing each other or being at the same place.

The chapter is structured as follows. Section 2 defines more precisely the
model and the problems, and gives a first simple preliminary result. Sections 3
and 4 respectively consider the terminating exploration and the exclusive per-
petual exploration problems. In both cases, known results from the literature are
presented, and then the usual tools and techniques used in these works are sum-
marized. Finally Sect. 5 discusses what concerns the correctness of the results,
while Sect. 6 concludes the chapter.

2 Model and Preliminaries

2.1 Model

The Environment. We model the environment as a simple undirected connected
graph G = (V,E). The number |V | of vertices is usually denoted n, while the
number |E| of edges is usually denoted m. The graph is assumed to be anony-
mous: neither vertices nor edges are labeled (or, equivalently, such labels cannot
be seen by the robots).

The Robots. On this graph operate mobile entities called robots. They can move
from vertex to vertex via the edges of the graph. The robots are all anonymous
and identical, i.e. they all execute the same algorithm. They have no direct means
of communication. Unless otherwise specified, the robots will be assumed to be
oblivious: they do not have persistent memory. When several robots occupy the
same vertex, we say that there is a tower on this vertex.

The Look-Compute-Move Cycle. The robots operate by repeatedly executing
Look-Compute-Move cycles. In the Look phase, a robot takes an instantaneous
egocentric snapshot of its environment. This includes the structure of the graph
around it, and the presence of robots on the seen vertices. The structure of the
snapshot will be detailed later. Note however that all robots are perceived on
vertices, not on edges. In the Compute phase, the robot decides whether to move
or not, and in the first case to which neighboring vertex. For oblivious robots,
this computation is solely based on the last snapshot. Finally, in the Move phase,
the robot moves to the chosen neighbor, or stays idle if it decided to do so. Moves
are considered instantaneous, which is consistent with the fact that robots are
seen on vertices in the snapshots. Note nevertheless that this model has been
shown equivalent to the model with continuous moves (but still considering that
robots are always seen on vertices), and this equivalence is certified using the
Coq proof assistant [1].
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Timing Assumptions. Different levels of asynchrony are classically considered in
the literature. In the fully synchronous model Fsync, all robots execute their
Look-Compute-Move cycles simultaneously. Differently speaking, at each round,
every robot executes its full Look-Compute-Move cycle. In the semi-synchronous
model Ssync, at each round, a non-empty subset of the robots, chosen by an
adversary, execute a full Look-Compute-Move cycle. Finally, in the asynchronous
model Async, the timing between the different phases of the Look-Compute-Move
cycles performed by the different robots is arbitrary, with the only constraint
that, for each robot, the time between two consecutive phases is finite (but
possibly unbounded). As a consequence, a move can be performed based on an
outdated snapshot in this model.

The Snapshot. During the Look phase, a robot perceives the structure of the
graph and the presence of robots around it within a visibility radius ρ given
by the model. More precisely, the snapshot taken by a robot consists of the
rooted subgraph induced by the vertices at distance at most ρ from the vertex
occupied by the robot and, for each seen vertex, of the perceived number of
robots on it. The accuracy of the perceived number of robots is given by another
model parameter called the multiplicity detection. If weak multiplicity detection
is assumed, a robot is only able to distinguish between the presence of “zero”,
“one”, or “more than one” robots on a seen vertex. On the contrary, strong
multiplicity detection assumes that a robot knows the exact number of robots
that are present on a seen vertex. Orthogonally, multiplicity detection can be
either local or global. In the case of local multiplicity detection, a robot only
knows the multiplicity of the vertex it occupies (whether in the weak or the
strong sense), while in the case of global multiplicity detection, a robot knows
the multiplicity of all vertices.

Configurations, Views, and Symmetries. The description of the graph, together
with the indication of the exact number of robots located on each vertex, con-
stitute a configuration. The view from vertex u is any rooted graph isomorphic
to the subgraph induced by the vertices at distance at most ρ (the visibility
radius) from u, and the corresponding perceived number of robots on these ver-
tices (depending on the multiplicity detection assumption). In the Look phase,
a robot is given a view from the vertex it is located on. Therefore, symmetries
of the graph are somehow still present in the snapshot. Indeed, for example in
a ring, if a robot lies on an axis of symmetry of the configuration, then it will
not be able to differentiate one direction from the other. Therefore, if it decides
to move to a neighboring vertex, the actual move will be to a neighbor chosen
by the adversary. More generally and more formally, we say that two vertices v
and v′ are similar with respect to u if there exists a view from vertex u such
that there exist two vertices w and w′ of the view and two isomorphisms φ and
φ′ such that φ(w) = φ′(w) = u, φ(w′) = v, and φ′(w′) = v′. Intuitively, v and v′

are similar with respect to u if v and v′ are indistinguishable for a robot located
in u (taking into account the visibility radius and the multiplicity detection). If
a robot decides in the Compute phase to move to a vertex v, then in the Move
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phase it will actually move to any vertex v′ similar to v with respect to the robot
current position, and the choice of v′ is made by the adversary.

Terminating Exploration. A team of robots solves the problem of terminating
exploration in a graph family G if, for any graph G ∈ G, for any behavior of
the adversary controlling the asynchrony and the choices between similar neigh-
bors, and starting from any initial configuration without towers, each vertex of
the graph is visited by at least one robot and the robots eventually reach a
configuration in which no robots ever move.

Exclusive Perpetual Exploration. A team of robots solves the problem of exclusive
perpetual exploration in a graph family G if, for any graph G ∈ G, for any behavior
of the adversary controlling the asynchrony and the choices between similar
neighbors, and starting from any initial configuration without towers, each vertex
of the graph is visited by every robot infinitely often and the exclusivity property
is satisfied. This property is satisfied if no two robots are ever located at the same
vertex at the same time, and no two robots ever cross the same edge at the same
time in opposite directions.

2.2 Preliminaries

Let us first start by giving some justifications about the choice of the set of initial
configurations, which is defined as the set of configurations without towers for
both problem variants. First, note that the exclusivity property of the exclusive
perpetual exploration problem is violated in any configuration with at least one
tower. The set of configurations without towers is thus the maximal set of ini-
tial configurations that is meaningful for this problem. Concerning terminating
exploration, note that its definition implies the existence of a configuration in
which all robots decide not to move. If not all vertices are occupied by a robot,
then this configuration must not be an initial configuration for the problem to
be solvable, if the robots are oblivious. Differently speaking, for terminating
exploration, the set of initial configurations must not contain all possible config-
urations when the robots are oblivious and are less than the number of vertices
(which is the case in all the papers of the literature considered here). Taking as
initial configurations the configurations without towers is thus also rather nat-
ural for this problem. Finally, one may also look for universal algorithms [22].
Given a number of robots in a specified model, a universal algorithm is an algo-
rithm solving the problem from any initial configuration which is solvable in the
considered setting.

Most papers in the literature on the subject concern specific families of
graphs. The most commonly studied family is the family of all rings. Other
studied graphs are the trees, the grids, the tori and some variations of these
graphs. Given such a family, the usual focus is then on the smallest and/or
largest exploring teams, that is on the numbers κ−(n) and κ+(n) defined as the
respectively smallest and largest numbers of robots that can explore any n-vertex



222 D. Ilcinkas

graph of the given family. In the following, the considered family and exploration
type will be clear from the context.

We now present a first simple technical result, inspired from Lemma 2.1
in [20], which allows nevertheless to already draw some conclusions on the value
κ−(n) in the case of the rings.

Lemma 1. Let n ≥ 3 and k < n/2 be two positive integers such that k divides n.
Then both terminating exploration and perpetual exclusive exploration of an
n-vertex ring are not deterministically solvable by a team of k (possibly non-
oblivious) robots, even with full visibility, global strong multiplicity detection,
and in the Fsync model.

Proof. Let us fix any algorithm for a team of k robots. Consider as initial con-
figuration a configuration in which the k robots are regularly scattered around
the ring. The configuration being perfectly periodic, all robots have the same
view. If a robot decides to move to a neighbor (both neighbors are similar with
respect to the robot’s current position), then all robots decide to move (they
have the same initial state), and the adversary makes them move in the same
direction. Therefore, the configuration stays periodic and all robots still have the
same state (which may be different from the initial state if the robots are non-
oblivious). We make the adversary continue to act that way. More specifically,
the adversary makes them move in some fixed direction for each odd round, and
in the other direction for each even round (forgetting about rounds in which
the robots decide to stay idle). In such an execution, and until they decide to
stay idle, each robot keeps going back and forth between its initial location and
one specific neighbor. Since n/k ≥ 3, there exist k vertices which are never vis-
ited by the robots. Thus exploration (whatever its type) is not solved by this
algorithm. ��

As a corollary, a ring of size n equal to three times the least common multiple
of 1, 2, · · · , k−1 cannot be deterministically explored by less than k robots. Some
calculations using the Prime Number Theorem show that k = Θ(log n) in that
case, see [20]. Therefore, there exists a positive constant c such that, for infinitely
many n, we have κ−(n) ≥ c log n for deterministic algorithms.

3 Exploration with Stop

In this section, we will almost only consider oblivious robots, that is robots using
in the Compute phase only the snapshot taken in the preceding Look phase.
In particular, the robots do not have access to time, and thus they do not
know whether this is the beginning of the execution or not when they see a
configuration without towers.
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3.1 Known Results

In the Rings
As already noted in Sect. 2.2, and already proven by Flocchini et al. in [20], there
exists a positive constant c such that, for infinitely many n, we have κ−(n) ≥
c log n for deterministic algorithms. This in fact remains true for probabilistic
algorithms [15], but only for the asynchronous model Async. Indeed, in the semi-
synchronous model Ssync, a constant number of robots, namely 4 probabilistic
robots, are necessary and sufficient to solve the terminating exploration problem
in any n-vertex ring with n > 4, see [15].

Let us now focus on deterministic algorithms. The lower bound 4 on κ−(n)
still holds in Ssync (in Fsync, only 3 is a clear lower bound for every n, in
particular when n is odd). When n is even, κ−(n) ≥ 5 in the Ssync model [21].
These values are somehow optimal. Indeed, 4 robots can explore the rings of odd
size in Ssync [21], and provided that n is not a multiple of 5, a team of 5 robots
can explore the n-vertex ring even in the Async model [21]. As pointed out,
κ−(n) may be logarithmic in n for infinitely many values of n, but this cannot
go worse in the sense that κ−(n) is always in O(log n). Indeed, for any k ≥ 17
that is co-prime with n, a team of k robots can explore the n-vertex ring [20].

Note that all the results presented here so far for the case of the rings are
strong with respect to multiplicity detection in the following sense. All lower
bounds (impossibility results) are valid even with global strong multiplicity
detection, while all upper bounds (algorithms) are assuming global weak multi-
plicity detection. Moreover, note that the results are valid for sufficiently large
values of n, and may vary for small values of n.

Limited visibility has also been considered, for deterministic algorithms, and
in the case of global (up to the visibility radius) strong multiplicity detection.
When the visibility radius ρ is 1, even a limited amount of asynchrony renders
the problem impossible to solve: there are no deterministic algorithms working
in the Ssync model, for any number k < n of robots [11]. In the same paper,
the authors show that 5 robots are necessary in the Fsync model, and they
present an algorithm for 5 robots working when all robots are on consecutive
vertices in the initial configuration. If robots however have 1 bit of persistent
memory which is visible/accessible by any robot within their visibility radius (the
LUMINOUS model), then three (in Fsync) or four (in Ssync and Async)
robots are necessary and sufficient to solve terminating exploration [22] (for spe-
cific initial configurations). These numbers are reduced by one for (non-exclusive)
perpetual exploration.

The cases ρ = 2 and ρ = 3 are considered by Datta et al. in [12]. For ρ = 2,
there exists an algorithm in the Async model for 7 robots when all robots are
on consecutive vertices in the initial configuration. The number of robots can be
reduced to 5 when ρ = 3. Finally, for ρ = 3, there exists an Async algorithm
for 7 robots that can handle more general initial configurations: the robots start
in a position such that they are “connected by vision” but need not to be on
consecutive vertices.
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In the Trees
The trees [18], and the sub-case of the lines [19], have only been considered in
the deterministic setting and assuming global weak multiplicity detection.

In trees, the absence of port numbers (the anonymous graph assumption)
makes empty leaves having the same parent indistinguishable (they are similar
with respect to the parent). Therefore, in order to explore sibling leaves despite
any choice of the adversary concerning similar vertices, at least one robot must
be sent to each leaf attached to a given parent. If a vertex has more than two
leaves attached to it and all of them are occupied by robots, then at least two
of them are similar, having both either a single robot or a tower. The adversary
can thus make these robots merge if the algorithm decides to move them. There-
fore, one can prove that Ω(n) robots are necessary in some trees (at least in
complete ternary trees) in the Ssync model. Note that this lower bound heavily
relies on the weak multiplicity assumption. For trees of maximum degree 3, less
robots may be used: O(log n/ log log n) robots are sufficient in such trees, even
in the Async model. This number is actually necessary for some trees because
Ω(log n/ log log n) robots are necessary to explore complete binary trees, even
with global strong multiplicity detection and in the Fsync model.

In lines, symmetries are much more limited, and the solvable cases are fully
characterized. A team of k < n robots can solve terminating exploration in the
n-vertex line if and only if k = 3, or k ≥ 5, or k = 4 and n is odd. The lower
bounds are proved in the Ssync model while the upper bounds hold even in the
Async model.

In the Grids and Tori
The situation for grids [13] and tori [14] resembles the situation for lines and
rings.

In grids, where symmetries are limited, we have κ−(i, j) = 3 for all (i, j)-
grids (except the (2, 2)-grid and the (3, 3)-grid for which we have κ−(2, 2) = 4
and κ−(3, 3) = 5). The lower bound holds even for probabilistic algorithms, in
the Ssync model, and assuming global strong multiplicity detection, while the
algorithm proving the upper bound is deterministic, works in the Async model,
and assumes global weak multiplicity detection.

Tori have much more symmetries and thus require more robots. Indeed,
κ−(i, j) ≥ 5 for deterministic algorithms solving the terminating exploration
problem in (i, j)-tori. Allowing probabilistic algorithms, we have κ−(i, j) = 4
(for sufficiently large tori). The lower bounds assume global strong multiplicity
detection while the upper bound assumes global weak multiplicity detection. All
results for tori are proved in the Ssync model.

In the General Graphs
The case of arbitrary graphs has been considered by Chalopin et al. in [10].
More precisely, the paper considers arbitrary graphs with port numbers, that is
graphs for which, at each vertex, the incident edges are distinguished by local
port numbers from 1 to the degree of the vertex. The class Hk is then defined
as the class of rigid configurations of k robots, i.e. the class of configurations
of k robots (the graphs with port numbers and the positions of the k robots)
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such that there is no non-trivial automorphism preserving the port numbers
and the robots locations. Chalopin, Flocchini, Mans, and Santoro studied the
terminating exploration problem in the Async model in these classes, assuming
global weak multiplicity detection. They proved that exploration is impossible
for k < 3 robots, they characterized the graphs that are explorable in H3, and
they show that all graphs are explorable in H4 and in every Hk with an odd
k > 3. The case of even k > 4 is left open but can be reduced to the existence
of a gathering algorithm for Hk.

3.2 Usual Tools and Techniques

Impossibility Results
The lower bounds on the number of robots that is necessary to solve terminating
exploration are of similar flavor for the different considered topologies, and use
the following arguments.

First of all, since the specification of the problem requires termination, there
must exist a configuration in which no robot decides to move. When k < n, and
because of obliviousness, this configuration cannot be an initial configuration,
and thus at least one tower must be formed. This already proves that a single
robot is never sufficient (if n > 1).

Then note that any suffix of a valid execution must remain valid as long as
the first configuration of the truncated execution has no towers. Indeed, such
a configuration can be an initial configuration, and, because of obliviousness,
these two executions (the initial one and the truncated one) both respect the
algorithm. Exploration must thus be performed after a tower is formed and
keeping at least one tower in each configuration.

The next observation is that towers are difficult to move in asynchronous
environments. Indeed, even in the semi-synchronous Ssync model, if the robots
in a tower decide to move, then only one may be activated and the tower may be
destroyed. As this is often the case (in particular for a small number of robots),
let us assume that it is impossible to move towers. Therefore exploration must be
performed by at least another robot and thus 2 robots are not sufficient either.

In order to obtain a larger lower bound, one generally needs a further obser-
vation about the suffix of the execution in which all configurations contain at
least one tower. This observation is the fact that any two configurations in this
suffix must be distinguishable from the point of view of the robots. Indeed, if this
is not the case, the adversary can make the execution periodic by repeating the
same choices, and the termination requirement is not fulfilled. Besides, at each
step of the execution, at most k new vertices are explored, and possibly even
less if some robots are blocked in a stationary tower. Therefore, there must exist
sufficiently many distinguishable configurations with a tower for the problem to
be solvable with k robots. Such a counting argument is generally sufficient to
obtain rather good lower bounds.
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Algorithmic Techniques
The algorithms presented in the different papers also have some similarities.
Indeed, as previously seen, exploration must be performed after a tower is
formed, and at least a tower must be kept until termination. Therefore, the
algorithms for terminating exploration by oblivious robots generally consist of
three phases: a set-up phase in which no tower is created but a special configu-
ration is reached, a tower-creation phase in which a tower is created, and finally
the exploration phase in which some of the robots explore the graph.

The first phase is usually the most complex one. Indeed, this phase starts
from an arbitrary initial configuration while the two other phases start from
specific configurations (or classes of configurations). The special configurations
that the robots try to reach in the set-up phase are generally configurations
without towers where robots are gathered next to each other. In the rings, a
special configuration is typically a configuration in which all robots form a block
by positioning themselves on consecutive vertices. In the trees, all robots go
toward the leaves. In the grids, the robots go towards one of the corners.

Reaching such a special configuration is generally highly non trivial, in par-
ticular because robots are oblivious. This constraint prevents the robots from
remembering what their plan was at the beginning of the execution. Intuitively,
if one constructs a directed graph whose vertices are the possible configurations
and in which there is an arc between two configurations if one can reach the
second configuration from the first one by applying one step of the algorithm,
then this directed graph must be acyclic. This may be not too hard to achieve
in graphs for which there are no non-trivial automorphisms, but it can be very
tricky in graphs with a lot of symmetries.

The issue with symmetries is that it may be hard, or even impossible, to
break them. Therefore, an algorithm may be forced to schedule several robots
having the same view of the environment to move in the current configuration.
Combined with the asynchrony, several different configurations can be obtained
depending on the choices made by the adversary. In the ring for example, it may
happen that from a symmetric configuration only one robot is scheduled to move
by the adversary and the obtained configuration is again symmetric but with a
different axis of symmetry. Even worse, in the asynchronous Async model, one
robot may decide to move but the adversary decides to delay this move while
the other robots are progressing. The delayed move is said to be pending in this
case. When this move is finally allowed by the adversary, it does not necessarily
correspond to the current situation and may create issues. It is thus often very
difficult to design an algorithm that avoids cycling among the configurations.

One can nevertheless express two guidelines that algorithm designers should
try to follow. The first one is to minimize the numbers of robots that decide to
move in a given configuration. Typically, in an asymmetric configuration, the
algorithm should designate a single robot to move. The second guideline could
be expressed as follows. In a given configuration, if a robot may have a pending
move (for example because the current configuration may come from a symmetric
configuration where several robots with the same view were designated to move),
then the algorithm should choose this robot to move. Indeed, this would force
the adversary to execute the pending move.
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Once a special configuration is reached, it is however rather easy to form a
tower, since robots are located on contiguous vertices. In rings for example, the
robot in the middle of an odd block of robots can simply move in an arbitrary
direction to form a tower with its neighbor.

In the exploration phase, usually just a few robots, 1 or 3, are actually explor-
ing the graph. The other robots are used to keep track of the process and to break
symmetries. In rings, grids and tori, a tower and a few stationary robots are suf-
ficient to break symmetries. The logarithmic number of robots that may be
needed in some rings, see Sect. 2.2, is only due to the fact that smallest numbers
of robots allow periodic configurations. On the contrary, the Θ(log n/ log log n)
robots used in the trees are really used by the algorithm. Indeed, in very regular
trees (typically the complete binary trees), there are many a priori indistinguish-
able leaves and the robots need a way to distinguish them. For this purpose, the
robots maintain a counter that stores the number of explored leaves. This allows
the exploration team (two robots forming a tower, and an isolated robot) to
know which leaf is the next one to explore. This counter is visually implemented
in the tree by locating the Θ(log n/ log log n) robots at carefully chosen positions.

4 Exclusive Perpetual Exploration

In this section, we will only consider deterministic algorithms. Recall that con-
trary to terminating exploration, exclusive perpetual exploration requires that
each vertex is visited by every robot, and so infinitely often. Moreover, the exclu-
sivity property forbids the robots to cross each other on an edge or to be on the
same vertex at the same time.

4.1 Known Results

With Memory
The exclusive perpetual exploration problem has first been investigated in the
case of robots having memory, in the fully synchronous Fsync model. In [3],
given any graph, a labeled mobility tree is defined and a parameter q is associated
to it. The authors then prove that κ+(n) ≤ n − q for any n-vertex graph of
associated parameter q, even with infinite visibility radius.

It turns out that this bound is tight for the partial grids with sense of direc-
tion. These are subgraphs of the grids such that edges are locally labeled by the
cardinal points N, S, E, W. More precisely, a graph can be explored if and only
if the number k of robots is less than or equal to this bound n− q, in the case of
an infinite visibility radius. For a null visibility radius, the problem is impossible
to solve. For visibility radius 1, the problem is solvable if and only if k ≤ n − q
except when q = 0, in which case the condition is k ≤ n − 1, see [4].

In the Rings
As already noted in Sect. 2.2, exclusive perpetual exploration cannot be solved
when the number k of robots divides the number n of vertices. Since towers are
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not permitted, the same reasoning can be applied to configurations in which
vertices without robots are regularly spaced. Therefore, the problem for k =
n − k′ robots cannot be solved as well when k′ divides n, see [5]. Because of
symmetries and of the exclusivity property, the problem cannot be solved either
when the number of robots is even. All these results hold even in the Fsync
model. Finally, in the same paper, the authors claim that for n and k co-prime,
in the Async model, κ−(n) = 3 if n ≥ 10 (and is larger otherwise), and κ+(n) =
n−5 (for k odd). The algorithm in [5] justifying κ−(n) = 3 is actually not correct
for n = 10, but a corrected version is given in [9], see Sect. 5.2 for details.

Focusing on rigid initial configurations, i.e. on initial configurations such
that there is no non-trivial automorphism preserving the robots locations, the
situation is a bit different. In [17], the authors present an algorithm for k robots
solving the exclusive perpetual exploration problem in n-vertex rings in the
Async model when n ≥ 10 and 5 ≤ k ≤ n − 3, except for k = 5 and n = 10.

This latter case has been investigated by Bonnet et al. in [7], where a generic
method is proposed, and implemented, to list all possible protocols using only
rigid configurations of a given number k of robots in a given graph, in the semi-
synchronous Ssync model. The authors used this method to prove that exclusive
perpetual exploration is impossible for k = 5 robots in a ring of n = 10 robots.
The proof uses the full specification of the problem in the sense that, if one
relaxes the definition of the problem by allowing vertices to be visited by only
some robots and not all of them, then the problem becomes solvable for this case
(still in the Ssync model).

In the Grids
Similarly as for terminating exploration, exclusive perpetual exploration has also
been considered in grids [8]. Contrary to the papers considering the partial grids
with sense of direction, this paper considers grids without holes and without
any edge labels or port numbers (and thus without sense of direction), focuses
on oblivious algorithms, and assumes the Async model. The main result of the
paper is a proof that κ−(n) = 3 in all n-vertex grids having at least two rows and
two columns, except for the (2, 2)- and (2, 3)-grids in which exclusive perpetual
exploration is impossible for any k.

4.2 Usual Tools and Techniques

The Labeled Mobility Tree and Its Associated Parameter q
We now describe in more details how the labeled mobility tree and its associ-
ated parameter q are defined from any graph. Recall that this parameter q is
used to bound the maximal number of robots that can solve exclusive perpetual
exploration in a graph.

Consider any graph G. The first step is to label the vertices with labels from
the set {0, 1, 2} as follows. Label a vertex with 0 when it is of degree 2 and
it does not belong to any non-singleton bridge-less subgraph of G (i.e. it does
not belong to any 2-edge-connected component of G of size at least 2). Label a
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vertex with 1 if it is a leaf of G or if it belongs to a non-singleton bridge-less
subgraph of G. Label a vertex with 2 in any remaining case.

The second step consists in compressing each maximal non-singleton bridge-
less subgraph of G (i.e. each non-singleton 2-edge-connected component of G)
into a single vertex with label 1. The obtained tree is called the labeled mobility
tree associated to G.

A mutual exclusion path in this labeled mobility tree is then a path whose
extremities have a label different from 0 but whose internal vertices (if they exist)
have label 0. The length of such a path is defined as the number of edges of the
path plus the number of extremities with label 2. The parameter q associated to
the labeled mobility tree, and thus to the graph G, is then simply the maximal
length of a mutual exclusion path.

Intuitively, a mutual exclusion path is a sequence of bridges of G acting as a
long bridge of the graph separating two parts of it. If a robot wants to move from
one part to the other (which it has to do infinitely often to solve the problem),
then it must traverse this long bridge without crossing or meeting any other
robot. This more or less explains why exclusive perpetual exploration cannot be
solved by more than n − q robots.

Algorithmic Techniques for Oblivious Robots in Rings and Grids
Similarly as for terminating exploration, an algorithm roughly defines a directed
graph of configurations. In the case of exclusive perpetual exploration, instead
of having a DAG (directed acyclic graph) pointing to a set of terminal config-
urations (configurations without outgoing edges), the DAG points toward some
(generally just one) cycles of configurations achieving exploration. Differently
speaking, the robots try to enter a cycle of configurations such that every vertex
is explored by every robot when this cycle of configurations is performed forever.

In general grids with three robots for example, the robots gather towards a
corner and then two robots become more or less stationary, mainly acting as
symmetry breakers, while the third robot explores a large part of the grid (at
least half of it). When the explorer terminates its part, the robots are in the
same position as before but near the opposite corner and with permuted roles.
After six such phases, every robot has explored the whole grid.

In rings with three robots, the exploration is performed simultaneously by
all the robots. The purpose of the algorithm is to make the robots form a small
asymmetric pattern that moves along the cycle forever like a worm. More pre-
cisely, the basic pattern consists of two robots on consecutive vertices and the
third robot, marking the tail of the worm, a little bit further (two vertices are
left empty between the head and the tail). Let us denote such a pattern by 11001
(1 denotes an occupied vertex while 0 denotes an empty vertex). The worm is
then moved by moving repeatedly each robot at a time in one direction from
the head to the tail. Hence, from a pattern 11001, the pattern 101001 is formed,
then the pattern 110001, and finally the tail moves forming back the pattern
11001, but all robots are now shifted by one vertex in the same direction.
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Obviously, as for terminating exploration, the difficult part is the initial phase
in which the robots have to deal with asynchrony and symmetries while forming
a predefined pattern of the exploration phase.

5 Correctness and Related Questions

As it is often the case in distributed computing, proving impossibility results
and the correctness of algorithms may be challenging. This section discusses the
related techniques used in the literature.

5.1 Hand-Written Proofs

Because of asynchrony and of the symmetries, many executions are possible given
an initial configuration and an algorithm. Proofs of correctness are thus often
based on a case-by-case analysis, usually rather tedious. This can also be the
case for impossibility proofs, where a wide variety of possible algorithms may be
explored. In both cases, this is especially true for small graphs, for which general
arguments may be more difficult to find.

The situation can sometimes be summarized by exhibiting a DAG (directed
acyclic graph) of configurations allowing to visualize the different cases and jus-
tifying the convergence to a specific configuration (or a class of configurations).
This may be convenient for small graphs but, again, may be intractable for
arbitrarily large graphs.

As a consequence, potential functions may also be used to prove convergence.
It is however not always simple to find such a potential function and one solution
consists in combining all these approaches. Typically, one can use a case-by-
case analysis to distinguish several classes of configurations, construct a directed
graph of accessibility among these classes and prove that this directed graph is
almost a DAG, except for few cycles for which a potential function allows to
prove that such a cycle is used a finite number of times.

Such a combined approach gives a proof in which one can have some confi-
dence, but even such proofs are prone to human errors. In particular, it is usually
very difficult to convince oneself that no tricky sub-cases have been forgotten.
This lack of confidence in human-written (and human-checked) proofs gave rise
in the recent years to papers using formal verification tools.

5.2 Formal Verification

The first use of automated tools for studying the graph exploration problem in
the Look-Compute-Move paradigm concerns the exclusive perpetual exploration of
small rings [7]. As already mentioned in Sect. 4.1, a generic method is proposed,
and implemented, to list all possible protocols of a given number k of robots
in a given graph, in the semi-synchronous Ssync model. The authors use this
method to prove that exclusive perpetual exploration is impossible for k = 5
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robots in a ring of n = 10 robots, and to list all algorithms solving the weaker
version of the problem for the same setting (k = 5 and n = 10).

A more general formal verification tool was introduced a few years later by
Bérard et al. [9]. This one is compatible with all three models of (a)synchrony,
and can handle both variants of the exploration problem. First, the terminat-
ing exploration algorithm for rings from [20] has been studied. The first and
most difficult phase of the algorithm, the set-up phase, is proved correct for
small values of k (at most 21), and small values of n (at most 22), and even for
some settings not covered by the hand-written proof in [20]. Second, the exclu-
sive perpetual exploration algorithm for rings from [5] has been studied. This
time, a counter-example is found, for the case of k = 3 robots in a ring of size
n = 10. This counter-example is a particular execution starting from a symmet-
ric configuration and using the asynchronous model Async to maintain pending
moves (i.e. moves that are already computed but not yet executed) even when
the symmetry has already been broken. Basically, the worm that we described
in Sect. 4.2 has been stretched in such a way that the two robots forming its
head do not agree on which direction the worm is moving. This eventually leads
to a collision between these two robots. Note that the existence of an ambiguity
on the moving direction of the worm heavily relies on the small size of the ring.
Besides, the same paper presents a corrected version of the algorithm, which is
formally proved correct for n up to 16 and manually proved correct for larger
values of n.

Finally, Doan et al. [16] also study the exclusive perpetual exploration algo-
rithm for 3 robots in rings from [5], and the same counter-example is found.
However, the model checker is different as well as the modeling details, allowing
for potentially different performance of the verification.

6 Conclusion and Perspectives

The two variants of the graph exploration problem have been well studied in
rings, and in some other topologies. Not surprisingly, the amount of asynchrony
and of symmetries influences the amount of robots needed to solve the problem,
especially for the terminating exploration problem. Probabilistic approaches may
also help, but further studies are needed on this aspect. Also, it would be inter-
esting to extend the investigation to larger families of graphs, typically to planar
graphs.

An interesting research axis concerns the limited visibility. Indeed, having a
limited vision sounds much more realistic, and the first results on this subject
seem to indicate that interesting performance can still be achieved despite this
limitation. Another direction of research concerning vision could be to consider
non-egocentric views, but with sense of direction. This corresponds to the sit-
uations in which a camera can see the whole theater of operation, for example
when it is attached to the ceiling in a room or embedded in a satellite.

Finally, some effort is required to further formalize and verify the results in
the domain. Recent papers showed that hand-written proofs could be flawed,
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because of the many cases to be considered due to asynchrony and symmetries.
Formal verification through model checking seems to also bear some limitations,
due to the combinatorial explosion of the problems. An interesting but chal-
lenging alternative would consist in using proof assistants like Coq in order
to formally prove the results for arbitrary values of the parameters, and not
just for small values like in model checking so far. Simple impossibility results
in the flavor of Lemma 1 have recently been certified using the Pactole Coq
framework [2].
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Abstract. This chapter surveys crash tolerance, self-stabilization,
Byzantine fault-tolereance, and resilience to inaccuracies for the main
building blocks in mobile robots networks: gathering, convergence, scat-
tering, leader election, and flocking.
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1 Introduction

Swarm Robotics envisions groups of mobile robots self-organizing and cooper-
ating toward the resolution of common objectives. In many cases, such groups
of robots are deployed in adverse environments (e.g. space, deep sea). Thus, a
group must be able to self-organize in the absence of any prior infrastructure
and ensure coordination in spite of the presence of faulty robots as well environ-
mental changes. A faulty robot can stop its execution (crash) or start to behave
in an arbitrary way either due to some external factors (e.g. electromagnetic
fields, attacks) or to some inaccurate information received transmitted by its
own sensors.

Fault-tolerance literature in robot networks addressed some of the main tasks
robots execute such as gathering, convergence, scattering, leader election, or
flocking.

The gathering problem, also known as the rendezvous problem when only
two robots are involved, is a fundamental coordination problem in cooperative
mobile robotics. In short, given a set of robots with arbitrary initial location
and no initial agreement on a global coordinate system, gathering requires that
all robots, following their algorithm, reach the very same location (which is not
initially predefined) within a finite number of steps, and remain there.

A relaxed version of this problem, convergence, does not impose the actual
reaching of the same location in finite time (instead, for any real number ε > 0,
robots must be within ε of one another in finite time). Gathering and convergence
can serve as basis for many other protocols, such as constructing a common coor-
dinate system or arranging robots in a specific geometrical pattern. Similar to
the Consensus problem in conventional distributed systems, gathering and con-
vergence have a simple definition but the existence of a solution greatly depends
c© Springer Nature Switzerland AG 2019
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on the synchrony of the system as well as the nature of the faults that may
possibly occur.

The dual problem of gathering is the scattering problem. Scattering requires
that, starting from an arbitrary configuration, eventually no two robots share
the same location. While most works about gathering assume that robots start
from distinct locations, scattering makes no such hypothesis: robots can start
from arbitrary locations.

Other agreement-related problem are leader election and flocking. Leader
election consists in reaching a configuration such that a unique robot can be
distinguished by every robot in the network. As robots are generally uniform
and execute the same code, the leader robot usually has a particular position in
the geometric shape that is formed by the robots, that prevents confusion with
any other robot.

Now, flocking denotes the ability for a group of robots to follow a leader
(also called a flock-head), often also maintaining a particular geometric shape
throughout the movement. Flocking is related to leader election as two variants of
the problem were studied: one with an existing leader that is known beforehand,
and one with no a priori leader (hence, leader election is generally the first step
to consider when solving the flocking problem).

2 Faults and Schedulers

2.1 Faults

A faulty robot is a robot whose behavior deviates from its specification. A correct
robot is one that never fails.

There are two classical classes of faults.

– A crash fault occurs when a faulty robot unexpectedly and permanently stops
performing any actions.

– A Byzantine fault occurs when a faulty robot can behave arbitrarily. This
includes omitting to move or moving to arbitrary locations with the deliberate
intent to prevent correct robots from solving the desired problem.

Notice that in models without explicit communication using either lights or
message passing, a Byzantine robot can only influence the other robots through
its movements.

Then, robots may experience less severe faults: transient faults that place
the network in an arbitrary configuration (more details are given in Sect. 5),
and inaccuracies (both for sensing devices and the actuating devices that are
embedded on robots, see Sect. 6).

2.2 Schedulers

A scheduler decides, for every configuration, which subset of the robots is active
(i.e., allowed to perform their actions). A correct robot is movable if it there is
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a possibility that it actually moves when it is activated by the scheduler (i.e. it
either moves in the case of a deterministic algorithm, or moves with probability
p > 0 in the case of a probabilistic algorithm). In the following we consider the
following schedulers [22]:

– unfair arbitrary : At each activation, a non-empty subset of robots is activated.
A non-triviality condition ensures that, in any infinite execution, infinitely
often, a movable correct robot becomes active.

– unfair centralized : The scheduler is unfair (as described above) with the addi-
tional restriction that at most one (i.e., exactly one) robot is activated at each
activation.

– fair arbitrary : At each activation, any non-empty subset of the robots is
activated, with the guarantee that every robot becomes active infinitely often
in an infinite execution.

– fair centralized : The scheduler is fair (see above) with the additional guarantee
that no more than one (i.e., exactly one) robot is activated at each activation.

– fair k-bounded : The scheduler is fair with the additional guarantee that there
exists some bound k > 0 such that, between any two consecutive activations
of any robot, no other robot is activated more than k times. The bound may
be known or unknown to the robots. In the sequel we assume that robots do
not know the scheduler bound.

– round-robin: The scheduler is fair 1-bounded and centralized. This implies
that the robots are activated always in the same sequence.

– fully synchronized : Every robot is active at every activation.

It should be noted that given two schedulers A and B, A is stronger than
B if the set of all possible executions allowed by scheduler A strictly contains
the set of all executions allowed by scheduler B. As a result, any algorithm that
is correct under scheduler A is also correct under scheduler B. Likewise, any
impossibility proven under scheduler B also holds under scheduler A. Défago
et al. [22] propose a hierarchy of schedulers depicted in Fig. 1.

3 Crash Faults

In the crash faults model the problems that have been extensively studied are:
gathering, convergence and flocking. In the following we recall the main results.

3.1 Gathering and Convergence Under Crash Faults

One of the first steps in the direction on studying gathering feasibility in the
context of crash faults is due to Agmon and Peleg [2]. They proved that gathering
of correct robots (referred as weak gathering) can be achieved in the SSYNC
model if at most one robot may crash. Their algorithm makes use of multiplicity
detection, and restricts the set of admissible initial configurations to the distinct
configurations (that is, the configurations where at most one robot occupies a
particular position).
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Fig. 1. Relationships between scheduler classes. Conventional models are highlighted:
SSYNC [49] and ASYNC [43] are fair, and the fully synchronous model FSYNC [49] is
its namesake.

Then, Défago et al. [22,23] studied the limits of gathering feasibility in both
fault-free and fault-prone environments, considering scheduler variants such as
the fair k-bounded centralized scheduler, for some parameter k, for the SSYNC
model. The main results obtained by Défago et al. [22,23] are as follows. First,
they consider the case of “strong” gathering, that is, having all robots (both
correct and crashing robots) gather at a particular location. Obviously, if two
robots are initially crashed at distinct locations, strong gathering is impossible.
Now, even when a single robot may crash, it is impossible [22,23] to strongly
gather a networks of n ≥ 3 robots deterministically, even with a round robin
scheduler and multiplicity detection. The same impossibility result holds with a
probabilistic algorithm [22,23] and a fair centralized scheduler. However, the
case of 2 robots is solvable probabilistically under an unfair scheduler and
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deterministically under an unfair centralized scheduler [22,23]. Also, assuming
a fair bounded scheduler enables probabilistic strong gathering solutions in the
case of at most a single crash [22,23]. Second, they handle the case of “weak”
gathering (only correct robots are required to gather). It turns out that when at
least two robots may crash, it is impossible [23] to solve weak gathering (deter-
ministically or probabilistically) even under a round robin scheduler in any net-
work of at least three robots, without additional assumptions (e.g. multiplicity
detection). Assuming strong multiplicity detection, Défago et al. [22,23] provide
a deterministic solution to weak gathering under a fair centralized scheduler.
Using randomization permits to obtain a probabilistic weak gathering algorithm
for a fair scheduler [23], also assuming strong multiplicity detection. Both the
deterministic (with fair centralized scheduler) and the probabilistic (with fair
scheduler) solutions to weak gathering by Défago et al. [22,23] handle the max-
imum possible number of crash faults (that is, n − 1, where n denotes the total
number of robots). In that sense, such algorithms are wait-free, so no correct
robot ever waits for the move of another robot before deciding to move itself.

The path to a deterministic solution for non-centralized schedulers in the
SSYNC model proved difficult. In principle, it would be sufficient for each correct
robot to compute the Weber point of the observed robot coordinates (that is, the
point that minimizes the sum of distance to all robots), and then move toward
this point unconditionally. Indeed, the Weber point is invariant when a robot
moves toward it, so correct robots need not wait for other robots, and eventually
gather at the Weber point. Unfortunately, the Weber point cannot be computed
by any finite algorithm for an arbitrary set of points. Yet, it can be computed for
some particular geometric shapes, so developed solutions [7,9,12,42] try to first
construct a configuration from which the Weber point can be computed, and
then move toward it. When a common chirality is available (that is, all robots
have the same notion of handedness), it becomes possible to deterministically
tolerate up to n − 1 crash faults [9] in the SSYNC model, also expanding the
set of initial configurations to those that are not bivalent (so, all feasible initial
configurations in a deterministic context are considered).

When the robots agree on a common direction (e.g., North) it becomes possi-
ble to solve weak gathering without common agreement on chirality and without
any restriction on the set of initial configurations [6]. However, the assumption
that a common direction is available trivializes the problem of weak gathering
as it also sufficient to solve gathering starting from a bivalent configuration, but
not necessary [38] (in that sense, agreeing on a common direction is a stronger
problem than weak gathering).

Bramas and Tixeuil [12] proved that neither of these extra assumptions is
necessary for deterministic weak gathering under a non-centralized scheduler.
They present a deterministic gathering protocol in SSYNC model that can start
from any non-bivalent configuration (the largest possible set in the classical
model), yet does not require to assume that all robots share a common direction
(as in [6]), nor a common chirality (as in [9]). The protocol retains the ability
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to tolerate up to n − 1 crash faults, that it, it is wait-free. Their protocol makes
use of strong multiplicity detection.

Recently, both Pattanayak et al. [42] and Bhagat and Mukhopadhyaya [7]
considered the problem of crash tolerant weak gathering when only weak mul-
tiplicity detection is available, still assuming the SSYNC model with no agree-
ment on chirality. However, none of those works retains the generality of the
initial configuration (the weakest condition in the deterministic case being the
non-bivalent configuration): Pattanayak et al. [42] assume that initial configura-
tions have at most one multiplicity point, while Bhagat and Mukhopadhyaya [7]
assume initial distinct configurations. With respect to the number of crashes
tolerated, Pattanayak et al. [42] can handle up to n−1 crashes (hence, it is wait
free), and Bhagat and Mukhopadhyaya [7] can go up to �n/2� crashes.

The problem of convergence in the presence of crash faults was addressed by
Cohen and Peleg [17,18], where algorithms based on the move of correct robots
to the center of gravity of the observed robots are presented. Those algorithms
execute in the ASYNC model and n robots can tolerate up to f crash faults
whenever n > f + 1.

Overall, positive results for crash-tolerant gathering only exist up to the
SSYNC model. The existence of solution in the ASYNC model is open.

3.2 Leader Election and Flocking Under Crash Faults

In robot networks, leader election has been studied in the SSYNC model by
Suzuki and Yamashita [48]. The authors propose a solution where robots share
the same coordinate space and start from distinct positions, so it is easy to
elect the robot with e.g. the topmost and leftmost coordinates as leader. This
approach does not require the robots to move, so it naturally tolerates up to
n − 1 crash faults, where n is the total number of robots. Another way to single
out a leader is due to Dieudonné and Petit [25] for robots organized on the same
circle (but not on a regular polygon); their approach does not require movement
(hence works with n−1 crashed robots) nor a common coordinate system, but the
set of initial admissible configurations is quite specific. A full characterization
of geometric patterns that enable leader election without moving (and hence
tolerating up to n − 1 crash faults) is due to Dieudonné et al. [24]. Interestingly,
their characterization can be concisely expressed using concepts from language
theory: Lyndon words.

The flocking problem, although largely discussed from an engineering point
of view [39,40,44], was first studied from a distributed algorithms point of view
mainly by Gervasi and Prencipe [32,33]. The authors propose non-uniform algo-
rithms where robots have basically two roles: one robot is the leader robot, and
all other robots are follower robots. It is furthermore assumed that all follower
robots know the leader robot. Obviously, when the leader robot crashes, the
flocking is compromised.

To tolerate the crash fault of any possible robots, one must design an algo-
rithm that executes correctly without a predefined leader (and is hence uniform).
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Canepa and Potop-Butucaru [15] proposed a uniform probabilistic flocking archi-
tecture that permits to leader to emerge from an algorithmic computation, in the
most general ASYNC model. However, their approach is based on the assumption
that the elected leader, and consequently the flock, do not change their direction
and trajectory. Also, the algorithm of Canepa and Potop-Butucaru [15] does not
tolerate crash failures.

Fault-tolerant (but not self-stabilizing) flocking was addressed by Souissi
et al. [47] and Yang et al. [51] in the SSYNC model. Souissi et al. [47] propose a
fault tolerant flocking algorithm in the SSYNC model using a leader oracle that
provides robots the current head, and a failure detector. A subsequent work by
Yang et al. [51] implements a failure detector in the SSYNC model assuming
a fair k-bounded scheduler (for a constant value k), persistent memory of the
robots (that is, the robots are not oblivious), agreement on one coordinate axis,
and a common chirality for all robots. Intuitively, having correct robots move
as often as possible permits to detect crashed robots if one can remember past
actions of other robots and is activated sufficiently often.

Canepa et al. [14] presented a uniform probabilistic flocking algorithm in
the SSYNC model. Their solution operates without assuming strong hypotheses
(robots are oblivious, the initial configuration is arbitrary and may include mul-
tiplicity points, robots do not share any coordinate system or chirality) and no
pre-existing leader is assumed (mandated by the uniform property). Also, the
flocking adjusts to changes of directions and velocity of the elected flock-head.
The algorithm of Canepa et al. [14] tolerates crash faults if crashed robots dis-
appear from the sensors of other robots, making it suitable for managing flocks
of UAVs: When the current flock-head disappears or is damaged and not recog-
nized as a correct robot, the remaining robots agree on a new head and the flock
can continue its task.

4 Byzantine Faults

To the best of our knowledge only two problems have been specifically addressed
in the Byzantine faults model: gathering and convergence.

4.1 Gathering Under Byzantine Faults

Agmon and Peleg [2] prove that no deterministic gathering algorithm that toler-
ates up to one Byzantine robot in a three robots system can exist in the SSYNC
model. However, the FSYNC model, deterministic gathering is solvable. More-
over, in the FSYNC model, they provide a deterministic algorithm that solves
gathering whenever n > 3f , where n denotes the total number of robots, and f
denotes the maximum number of Byzantine nodes. In small FSYNC systems of
three robots, with at most one Byzantine robot, deterministic gathering remains
solvable. Their impossibility result in the case of SSYNC makes use on the very
low capabilities of the robots and the high power of the environment: the sched-
uler is fair, the robots are oblivious and uniform, and there is no agreement on
the coordinate system.
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Défago et al. [22,23] improve the impossibility results of Agmon and Peleg [2]
by considering weakened forms of schedulers (hence lowering the power of the
adversary), that are fair k-bounded, for some k that depends on the impossi-
bility result. In more details, Défago et al. [22,23] show that if the scheduler
is round robin (a weaker form of fair 2-bounded scheduler), then no deter-
ministic nor probabilistic solution exits whenever n > f + 1 and f ≥ 1. For
small systems of three robots, Défago et al. [22,23] prove that no determinis-
tic gathering algorithm can exists, even with only a single Byzantine failure, a
fair k-bounded centralized scheduler (for some constant k ≥ 2, and multiplicity
detection. Interestingly, the number of Byzantine in the systems yields impossi-
bilities with respect to the bound k of the fair k-bounded centralized scheduler,
as Défago et al. [22,23] demonstrate that when n is even, a scheduler bound
k ≥

⌈
n−f

f

⌉
implies no deterministic gathering algorithm, while when n is odd,

a scheduler bound k ≥
⌈

n−f
f−1

⌉
implies a similar result.

Izumi et al. [35,36] further extends impossibility results to stronger robots in
the SSYNC model with a fair n-bounded centralized scheduler: robots may not
be uniform (so each may execute a different code), may use persistent memory (so
each may keep track of past configurations), may share a common orientation
on coordinate systems. Still, Izumi et al. [35,36] prove that if even only one
robot may be Byzantine, deterministic gathering is impossible in this setting.
Interestingly, their proof is based on the distributed BG-simulation proposed
by Borowsky et al. [8], and extends to other problems than gathering, namely
circle formation (having all correct robots reach a position such that they are
placed on different locations on the boundaries of a common cycle) and line
formation (having all correct robots reach a position such that they occupy
different positions on a common line), which are also proved impossible to solve
under the same hypotheses.

Overall, the only positive results so far with respect to deterministic gath-
ering in the presence on Byzantine robots are in the FSYNC model. The lower
bound on the number of Byzantine robots that can be tolerated is still open
(the upper bound of n > 3f in the general case [2] is not proved tight). In
the SSYNC and ASYNC models, the existence of gathering algorithms that can
tolerate at least one Byzantine robots is open. An extensive map of possibil-
ity/impossibility results and open research problems about Byzantine tolerant
gathering was presented by Défago et al. [23].

4.2 Convergence Under Byzantine Faults

The specification of convergence being less stringent than that of gathering, it is
worth investigating whether this leads to better Byzantine tolerance.The feasibil-
ity of convergence in Byzantine-prone robot networks was specifically addressed
by Bouzid et al. [10,11] and Auger et al. [3] in the case of uni-dimensional robot
networks, where robots evolve on one dimension only (that is, the continuous
space the robots evolve in is an infinite line). In more details, Bouzid et al. [11]
establish a connection between the convergence problem in robot networks, and
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the distributed approximate agreement problem (that requires correct processes
to decide, for some constant ε > 0, values that are a most ε apart and within the
range of initial values). However, the lower bounds and the possibility results
are different in the two cases, as robots need not decide termination, they just
go closer to one another forever. Interestingly, the positive results (a.k.a. the
algorithms) by Bouzid et al. use techniques that are similar to the ones by Dolev
et al. [30] and by Abraham et al. [1] for approximate agreement with Byzantine
failures. A key ingredient of the algorithm is the trimming of extremal values:
the robots look at all positions occupied by other robots, and remove the f
higher and the f lower of those coordinates (in their own coordinate system,
so the notion of higher and lower may vary from robot to robot), then, they
approach the set of robots whose positions are not extremal. So, if f Byzantine
robots are present, they cannot prevent the correct one from moving toward the
other correct ones by taking some extremal position. Then, if Byzantine robots
are present in the core, correct robots still get closer to other correct robots, and
convergence eventually holds.

In the FSYNC model, Bouzid et al. [11] show that deterministic convergence
is feasible when the number of robots n is strictly greater than 2f , f denoting
the maximum number of Byzantine robots in the network. So, in FSYNC, con-
vergence permits to handle more Byzantine robots than gathering (the gathering
algorithm by Agmon and Peleg [2] requires n > 3f).

In the SSYNC and ASYNC models, but assuming a fair k-bounded scheduler
(for some arbitrary constant k), Bouzid et al. propose an algorithm that solves
convergence whenever n > 3f . It turns out that the bounds are tight for the
considered schedulers [11]: if n = 2f , no deterministic convergence algorithm
exists in FSYNC, if n = 3f , no deterministic convergence algorithm exists in
SSYNC (and hence in ASYNC) even with a fair 2-bounded scheduler. Those
two lower bounds were formally certified in Coq by Auger et al. [3].The case of a
fair scheduler in the ASYNC model is more intricate. Bouzid et al. [10] provide
a deterministic convergence algorithm for mobile robots with a fair scheduler
assuming n > 5f . This algorithm is cautious in the sense that correct robots
always move inside the range (in the unidirectional space) of other correct robots.
Now, for the class of cautious algorithm, Bouzid et al. [10] show that n > 5f is
actually a necessary condition when the scheduler is only fair (and not fair k-
bounded) even in the SSYNC model. Overall, in the SSYNC and ASYNC models,
convergence with Byzantine robots is still solvable (albeit with restrictions as the
system becomes more asynchronous), while gathering is essentially impossible to
solve as soon as one Byzantine robot occurs.

5 Self-stabilization

Self-stabilization is a property of distributed systems that was introduced by
Dijkstra in 1974 [29]. It refers to the ability to recover from arbitrary transient
failures. In the context of mobile robot networks, self-stabilization may translate
to the following abilities:



Fault-Tolerant Mobile Robots 243

– For oblivious robots in the FSYNC or SSYNC models, self-stabilization refers
to the ability to start in an arbitrary initial position (including positions with
multiplicity points);

– For oblivious robots in the ASYNC model, self-stabilization refers to the
ability to start in an arbitrary initial position, with arbitrary pending moves;

– For luminous robots in the FSYNC or SSYNC models, self-stabilization refers
to the ability to start in an arbitrary initial position, with arbitrary colors for
each robot (in the color domain set);

– For luminous robots in the ASYNC model, self-stabilization refers to the
ability to start in an arbitrary initial position, with arbitrary colors for each
robot, with arbitrary pending moves.

5.1 Gathering and Convergence

A fundamental result of Suzuki and Yamashita [49] shows that in the SSYNC
models, no deterministic algorithm can solve gathering for two robots without
additional assumptions. In [22,23] the authors prove that the problem of self-
stabilizing gathering is impossible even under a round-robin scheduler. Then
they prove the same impossibility for distinct gathering with any algorithm of a
class called rapid algorithms. Secondly, still without multiplicity detection, they
prove that self-stabilizing gathering can be solved probabilistically under a fair
bounded scheduler (with an arbitrary but finite bound) when n ≥ 3 and under
an unfair scheduler when n = 2, by exhibiting a simple algorithm that solves the
problem.

The impossibility results in [49] were also extended using the Coq proof assis-
tant [20] to the bivalent case, that is when an even number of robots is initially
evenly split in exactly two locations. So, in the context of self-stabilization, no
deterministic solution to gathering can exists in SSYNC, hence in ASYNC.

The FSYNC model yields positive results. When strong multiplicity detection
is available, the algorithm that moves robots to their center of gravity by Cohen
and Peleg [18] can be used to obtain a self-stabilizing deterministic gathering
protocol. When there is no multiplicity detection, using the center of gravity
of inhabited locations as suggested by Balabonski et al. [5] yields deterministic
self-stabilizing gathering in FSYNC.

With the SSYNC model, a way to avoid initial bivalent configuration is
to assume an odd number of robots. Dieudonné and Petit [28], assuming
global strong multiplicity detection, provided a deterministic and self-stabilizing
solution for an odd number of robots to gathering. Alternatively, probabilis-
tic approaches in the SSYNC model allowed self-stabilizing gathering without
assumptions on the number of robots [16], and showed the trade-off between
the time complexity and the availability of global-weak multiplicity detection or
global-strong multiplicity detection (resp., local-weak multiplicity detection or
local-strong multiplicity detection). In the discrete space setting (in this case,
ring-shaped networks), Ooshita and Tixeuil [41] proved that no solution to gath-
ering may exist if it is either: (i) deterministic, (ii) operating in ASYNC, (iii)
using local-strong and global weak multiplicity detection only. As a result, they
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provide a SSYNC probabilistic algorithm that assumes global-strong multiplic-
ity detection. Another approach to circumvent the impossibility of gathering two
robots in SSYNC is to endow each robot with a light bulb [21], capable of emit-
ting a fixed number of colors visible to all other robots. In the SSYNC model,
Viglietta [50] proved that being able to emit lights of only two colors is sufficient
to solve the gathering problem for two robots.

In the ASYNC setting, for the restricted case of two robots gathering, the
ability to use lights proved invaluable. Viglietta [50] proved that an algorithm
that only makes use of observed colors to decide on its next move cannot gather
two robots in the ASYNC model using only two colors. In the same paper,
Viglietta showed [50] that three colors and the ability to detect null distances
is sufficient for gathering two robots in ASYNC. The general approach of Das
et al. [21] makes use of four colors per robot in ASYNC. Recently, Heriban
et al. [34] proved that two colors are sufficient to deterministically gather two
robots in ASYNC, starting from any possible initial color and pending move.

The case of self-stabilizing convergence in the ASYNC model is investigated
by Cohen and Peleg [18]. In more details, their algorithm that makes every robot
move toward the center of gravity of observed robot positions is self-stabilizing
in the sense that initial target points of robots may be arbitrary (Cohen and
Peleg [18] only requires that the initial set of target points is bounded, so a
robot cannot target a position that is infinitely far away) as well as the initial
position of the robots. However, the algorithm by Cohen and Peleg makes use
of multiplicity detection to compute the center of gravity of the robots (if two
robots share the same position, the weight of that position is twice as much as
if it were inhabited by a single robot).

5.2 Scattering

With oblivious robots, Scattering intrinsically mandates self-stabilizing solu-
tions, as arbitrary many robots may be located at a single location in the initial
configuration.

It turns out that neither deterministic gathering [49] nor scattering [27] is
possible without additional assumptions. Furthermore, while some extra assump-
tions allow deterministic gathering (e.g. coordinate system, multiplicity detec-
tion), oblivious deterministic scattering remains impossible unless the very spe-
cific setting where there are no clones [49]: Two robots are considered to be
clones of each other if they have the same local coordinate system and the same
initial position, and they always become active simultaneously. All other settings
mandate probabilistic approaches.

Probabilistic solutions to scattering were proposed in the FSYNC and
SSYNC settings. The first probabilistic algorithms to solve mobile robot scat-
tering without multiplicity detection were given by Dieudonné and Petit [26,27].
The algorithms are based on the following simple scheme: after the Look phase,
a robot computes the Voronoi diagram [4] of the observed positions, and then
tosses a coin ( 14 [26] or 1

2 [27]) to either remain in position, or move toward
an arbitrary position in its Voronoi cell. The fact that a robot may only move
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within its Voronoi cell preserves the fact that initially distinct robots (that is
robots occupying distinct positions) remain distinct thereafter. This invariant
and the positive probability that two robots on the same point separate implies
the eventual scattering of all robots. A later study [16] shows that the scatter-
ing algorithm [27] converges in expected O(log n log log n) rounds. In the same
paper, a new probabilistic algorithm was presented, with the assumption that
robots are aware of the total number of robots. This protocol is optimal in time
as it scatters any n-robots configuration in expected O(1) rounds. If the total
number of robots n is known, then robots are able to choose uniformly at ran-
dom a position within their Voronoi cell among 2n2 possibilities, inducing an
expected O(1) rounds scattering time. In the limited visibility setting [37] (the
visibility capability of each robot has a constant radius, and visual connectivity
has to be maintained throughout scattering), the time lower bound grows to
expected n rounds for scattering n robots. None of the aforementioned works
investigated the number of random bits used in the scattering process.

Bramas and Tixeuil [13] investigated the amount of randomness (that is, the
number of random bits used by the robots) that is necessary to achieve mobile
robots scattering. In more details, they first defined a canonical scattering algo-
rithm, that encompasses all previous solutions, and is tantamount to selecting
the number of possible locations that are selected uniformly at random by the
robots. Then, they proved that n log n random bits are necessary to scatter n
robots in any setting for all scattering algorithms (not only canonical algorithm).
Also, they give a sufficient condition for a canonical scattering algorithm to be
random bit optimal (namely, the number of possible locations must be polyno-
mial in the number of observed positions). As it turns out that previous solutions
for scattering [16,26,27] satisfy the condition of Bramas and Tixeuil [13], they
are hence proved random bit optimal for the scattering problem. Finally, they
investigate the time complexity of scattering algorithms, when strong multiplic-
ity detection is not available. They prove that such algorithms cannot converge
in constant time in the general case and in o(log log n) rounds in the case of ran-
dom bits optimal algorithms (in this last setting, the best known upper bound
was O(log n log log n) [26,27]). On the positive side, Bramas and Tixeuil [13]
provide a family of scattering algorithms that converge as fast (but not O(1)) as
needed, without using multiplicity detection. Also, they give a particular proto-
col among this family that is random bit optimal (O(n log n) random bits are
used) and time optimal (O(log log n) rounds are used). This improves the time
complexity of previous results in the same setting by an expected log n factor.
All the bounds concerning random bits complexity hold with high probability1.

To our knowledge, there are currently no published results about scatter-
ing with luminous robots. However, the following remarks can be made. First,
if the initial configuration may contain two robots whose lights are the same
color, deterministic scattering is impossible: simply place those two robots on the
same initial position, and assume they have the same coordinate system, always

1 An event occurs with high probability if it occurs with probability greater than
1− o(1/nε) with ε > 0.
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activate them simultaneously; as they are clones, they never separate, and scat-
tering is never achieved. Second, if the initial configuration only contains robots
with unique light colors, and colors can be ordered, then deterministic scattering
can be solved in SSYNC. At each multiplicity point, the robot whose light has
the smallest color moves arbitrarily in its Voronoi cell.

6 Unreliable Sensors and Actuators

Since all algorithms rely on sensors in a way or another, it is natural to question
the reliability of such sensors and what happens when they fail. The literature
considers two kinds of sensors, namely, sensors giving the position of the robots
during the Look phase, and sensors providing shared information such as a com-
mon direction, e.g., provided by a compass.

6.1 Gathering with Unreliable Compasses

Flocchini et al. [31] proposed a gathering algorithm for oblivious robots with
limited visibility in the ASYNC model, where robots share the knowledge of a
common direction as provided by a compass. A natural question that arises is
what happens when these compasses are unreliable.

Several authors [38,46] have defined classes and classified unreliable
compasses:

– Perfect compasses [31] all indicate the same global north direction.
– Eventually consistent compasses [46] initially indicate arbitrary directions and

may fluctuate arbitrarily but, after some finite (but unknown) global stabi-
lization time, all compasses indicate the same absolute direction.

– φ-inaccurate compasses [38] differ at most by an angle φ from some absolute
north direction (unknown to the robots). In other words, a pair of φ-inaccurate
compasses can differ by as much as 2φ at any time t. The special cases when
compasses are invariant and φ = 0 represents perfect compasses, and when
φ = π

2 the model brings no more information than having no compasses.

Eventually Consistent Compasses. Souissi et al. [46] first prove that the unmod-
ified gathering algorithm of Flocchini et al. [31] cannot tolerate unreliable com-
passes by exhibiting an execution that leads to a (non-recoverable) partition
of the visibility graph. They then propose an algorithm in ASYNC to achieve
gathering under limited visibility when the robots are equipped with eventually
consistent compasses. The difficulty is to avoid any combination of moves that
can lead two mutually visible robots from ever breaking their visibility bound.

Inaccurate Compasses. Izumi et al. [38] consider the problem of gathering two
robots (rendezvous problem) when robots are equipped with inaccurate com-
passes. Under unlimited visibility, rendezvous is known to be impossible without
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compasses but trivial with perfect compasses. With oblivious robots, the prob-
lem is also trivial with eventually consistent compasses. The question is about
compasses with bounded errors (i.e., inaccurate compasses).

The paper refines the models of inaccurate compasses by considering the
dynamicity of the compasses.

– Fully dynamic compasses may vary at any time during an execution. In par-
ticular, this means that the move operation may be affected by changes. In
this case, rendezvous is trivially impossible.

– Semi-dynamic compasses may vary only between the end of a cycle and the
beginning of the next one, but do not change during a cycle.

– Fixed compasses always indicate a constant direction. This corresponds to
the assumptions of the φ-inaccurate compasses described earlier.

The possibility/impossibility of gathering heavily depends on the model and
the value of bound φ. The results presented by Izumi et al. [38] are summed up
in Table 1.

Table 1. Summary of known results on rendezvous (gathering of two robots) with
φ-inaccurate compasses [38].

Synchrony Compasses φ = 0 φ < π
6

φ < π
5

φ < π
4

φ < π
3

φ < π
2

φ = π
2

SSYNC Fixed Possible Imposs.

Semi-dynamic Possible Impossible

ASYNC Fixed Possible Imposs.

Semi-dynamic Possible ?(open)? Impossible

Model Equivalence. Souissi [45] observes that eventually consistent compasses
are weaker or equal to perfect compasses, depending on visibility and oblivious-
ness. With oblivious robots and full visibility, eventually consistent compasses
are equivalent to a perfect compass. More generally speaking, any oblivious and
self-stabilizing algorithm that relies on perfect compasses also works under even-
tually consistent compasses.

Now, although this was not previously observed to our knowledge, it is possi-
ble to define eventually bounded-error compasses as a combination of eventually
consistent compasses and φ-inaccurate compasses by assuming that a bound on
directional errors holds only after some global stabilization time. For the same
reasons and under conditions similar to those stated above, eventually bounded-
error compasses have the same computational power as φ-inaccurate compasses.

6.2 Convergence with Inaccurate Sensors and Actuators

Cohen and Peleg [19] study the problem of convergence under inaccurate sensors
and movements. They consider that the values of the positions returned by
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the look-operation, computations, and movement control may all be subject to
inaccuracies.

In this context, they show that the classical approach that consists in going
toward the center of gravity of robot position does not work well: while it works
in FSYNC, it fails in ASYNC.

Instead, they propose a refined approach, based on calculating the center
of gravity of the group of robots, and also estimating the maximum possible
error in the center-of-gravity calculation. Then, in the new algorithm, a robot
makes no movement if it is within the maximum possible error from the center of
gravity. If it is outside the circle of error, it moves towards the center of gravity
but only up to the bounds of the circle of error. Cohen and Peleg [19] show that
the new approach permits to solve convergence in FSYNC and SSYNC when
robots move in bidimensional Euclidean space, and also solve in ASYNC when
robots operate in unidimensional Euclidean spaces (a.k.a, an infinite line).
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Abstract. The classic Look-Compute-Move model of oblivious robots has
many strengths: algorithms designed for this model are inherently resis-
tant to a large set of failures that can affect the memory of the robots
and their communication capabilities.

However, modern technologies allow for cheap and reliable means of
communication and memorization. This is especially true if relatively low
performances are needed, such as very limited communication bandwidth
or constant memory. A theoretical model that expands the classic Look-
Compute-Move by adding a minimal ability to communicate and remem-
ber is the model of robots with lights. In this model each robot carries a
luminous source that it can modify at every cycle. The robot decides the
color of its light during its Compute phase, and the light assumes such
a color at the beginning of the next Move phase. Other robots can see
the color of this light during their Look phases. The light will remain
unaltered until the robot that carries it decides to change its color.

Typically, the number of available colors is very limited, i.e., it is con-
stant with respect to the number of robots in the system.

In this chapter we will discuss the hierarchy of Fsync, Ssync, and
Async models when lights are present, we call this model LUMINOUS.
Moreover, we will see how lights are applied to solve classic problems such
as rendezvous and forming a sequence of patterns. Finally, we will see
how lights have been exploited in models where the visibility of robots
is limited by the presence of obstructions.

1 Introduction

In the classic Look-Compute-Move model of oblivious robots, the absence of per-
sistent memory and explicit communication ensures that any algorithm for such
weak model can be implemented in a wide range of harsh scenarios where com-
municating is not a reliable option, e.g., a hostile environment where commu-
nication jamming is a possibility. Moreover, algorithms designed for this model
are inherently resistant to a large set of failures that can affect the memory of
the robots and their communication capabilities.

Fortunately, modern technologies allow for cheap and reliable means of com-
munication and storage. This is especially true if relatively low performances are
needed, such as very limited communication bandwidth or constant memory.
c© Springer Nature Switzerland AG 2019
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A theoretical model that expands the classic Look-Compute-Move model by
adding a minimal ability to communicate and remember is the model of robots
with lights [7,8]. In this model each robot carries a luminous source that it can
modify at every cycle. The robot decides the color of its light during its Compute
phase, and the light assumes such a color at the beginning of the next Move
phase. Other robots can see the color of this light during their Look phases. The
light will remain unaltered until the robot that carries it decides to change its
color.

Typically, the number of available colors is very limited, i.e., it is constant
with respect to the number of robots in the system. Interestingly, using light to
communicate is something feasible in the real world, and it has been used to
implement real communication channels [19].

Essentially, lights allow robots to perform communication. Moreover, in case
an robot can see its own light, the light itself also serves as memory. The impact
of using lights with a constant number of colors is drastic, and greatly increases
the computational power of mobile robots.

In this chapter we will discuss the hierarchy of Fsync, Ssync, and Async
models when lights are present, that is when robots are LUMINOUS. More-
over, we will see how lights are applied to solve classic problems such as Ren-
dezvous and forming a sequence of patterns. Finally, we will see how lights have
been exploited in models where the visibility of robots is limited by the presence
of obstructions.

Chapter Outline. The outline of the Chapter is the following. We start with
Sect. 2; devoted to formalising the LUMINOUS model. Specifically, the section
describes how the Look-Compute-Move model is modified to incorporate colored
lights. This amounts to letting each robot decide the color of its own light at
each cycle, and stipulating that the snapshots taken by robots also contain light
information. After formalising the model in Sect. 3, we investigate the computa-
tional power of lights. We discuss the relationship between Fsync, Ssync, and
Async when robots are endowed with lights, focusing on robots on plane and
mentioning the difference for agents on graph. Section 4 studies the Rendezvous
problem with lights. Rendezvous is unsolvable without lights, but it becomes
solvable when lights are introduced. In Sect. 5 we discuss how LUMINOUS
robots can form a sequence of patterns. In Sect. 6 we study the problem of mak-
ing obstructive robots mutually visible, showing how lights can be used to solve
problems when the visibility is not unlimited. The Chapter terminates with the
conclusive Sect. 7.

2 Model

When lights are introduced, the usual model of oblivious robots of Chap. 1, is
extended in a natural way. Each robot carries a visible light, which at any time
has a color chosen from a palette set B. (The size of B will often be informally
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referred to as the “number of lights”.) In the basic model with lights, the palette
set is the same for all robots, and it contains a special color Off, which is the
color of every robot’s light when the execution starts. Each robot can then freely
alter the color of its own light, choosing it from B, at each Compute phase.

More specifically, the usual Look-Compute-Move phases are modified as
follows.

– Look: In the Look phase, a robot r receives an instant snapshot, which is a
multiset of pairs of the form (pi, ci), where pi is a point in the plane and
ci ∈ B is a color. The meaning of such a pair is that, at the time the snapshot
was taken, the robot r could see a robot s located in pi carrying a light with
color ci. As in the usual model, pi is the position of s as expressed in the local
coordinate system of r.
In the basic model with lights, robots have full visibility, and therefore snap-
shots always contain information about every robot in the system. When more
restrictive visibility models are considered, such as the obstructed visibility
model of Sect. 6 of this chapter, a snapshot may contain less information.

– Compute: In the Compute phase, a robot, using the snapshot obtained in the
most recent Look phase, chooses a destination point and a new color in B for
its own light.1

– Move: During the Move phase, a robot first changes the color of its light to the
color chosen in the most recent Compute phase (this action is atomic, i.e., it is
instantly executed), and then it proceeds to move to its destination according
to the classic Look-Compute-Move model.

With Modelm, we indicate the model Model where robots carry lights whose
colors are chosen from a palette set of size |B| = m. For example, with FsyncO(1)

we indicate the Fsync model with lights of a constant number of colors (constant
with respect to the number of robots in the system). When the set of problems
solvable in model Model is included in the set of problems solvable in Model′

we write Model⊆ Model′ (we use ⊂ to indicate the strict inclusion).

3 Computational Power of Lights

The presence of lights have an impact on the relative computational power of
the Fsync-Async-Ssync models2. When we refer to robots without lights we
have that, for OBLOT there are problems that are solvable in Fsync but not
in Ssync (e.g., the Gathering problem). However, between Ssync and Async
the only known result is the trivial Async⊆Ssync.

In this section we investigate what happens when a constant number of lights
is available.

1 Note that setting the light at the end of the compute phase is equivalent to set the
light at the beginning of the move phase.

2 We say Fsync model as shorthand for the model of OBLOT (or LUMINOUS)
robots with Fsync scheduler.
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3.1 The Relationship Between AsyncO(1) and Ssync

[8] shows that AsyncO(1) is more powerful than Ssync, that is Ssync ⊂
AsyncO(1). This is done in two steps, first it is shown how to simulate any
algorithm for Ssync in AsyncO(1) using a constant number of lights. Then it
is shown that there exists a problem solvable in AsyncO(1) but not in Ssync.

Simulating SSYNC in ASYNCO(1). The simulator of [8] uses five colors: Trying
(T), Waiting (W), Moving (M), Stopping (S), Finished (F), and five states, one
for each different color.

The idea is to synchronize robots in a simulated cycle, namely the Mega-Cycle.
During a Mega-Cycle, each robot executes one step of the simulated algorithm
A. A new Mega-Cycle starts only when all robots terminated the execution of
the previous Mega-Cycle. Each Mega-Cycle is structured as follows. Initially, all
robots have light T. A robot with light T once activated tries to simulate one
activation of A, in doing so it first checks if all other robots have color in T or
S. In such case, the robot sets its color to M and it executes A. Otherwise, if
there is an robot with color M, the robot from color T switches to color W and it
does nothing. Intuitively, this check avoid that a robot provides to A a snapshot
containing robots that are moving, this is consistent with Ssync model.

If a robot has color M and no robot in its snapshot has color T, then it goes
to color S and it does nothing. An robot with color W goes back to T only if
there is no robot with color M. A robot with color S goes to color F if all robots
have color in {S,F}. A robot with color F goes to color T if all robots have color
in {T,F}. The previous rules ensure that, in a Mega-Cycle, each robot executes
exactly one activation of A. It is also easy to see that all robots execute the
Mega-Cycle: until there is some robot in W or T, there will be at least one robots
that enters in M. A new Mega-Cycle starts when some robot goes from F to T.
The state diagram of the simulator is shown in Fig. 1.

T ∀T, S M S F

W

∃M M

T ∀S, F

∀T, F

Fig. 1. State diagram of the simulator for Ssync in AsyncO(1) of [8]. On each arrow
there is label specifying a property of the snapshot that has to be verified to do the
corresponding state transition. As example, the label between node T and node S is
∀T, S, that means: each robot in the snapshot is either in state T or S.
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This simulator gives the following theorem:

Theorem 1 ([8]). Ssync ⊆ AsyncO(1).

The Additional Power of ASYNCO(1). It is well known that Rendezvous of
two oblivious anonymous robots cannot be solved in Ssync, see [26]. However,
it is possible to create an algorithm that solves Rendezvous in AsyncO(1). The
first paper showing this has been [8], where Rendezvous is solved using 4 colors.
Other papers investigated the Rendezvous improving this first result in many
directions. The Rendezvous will be the core of Sect. 4, the interested reader can
refer to that Section.

The existence of several Rendezvous algorithms in AsyncO(1) and the The-
orem1, leads to:

Theorem 2 ([8]). Ssync ⊂ AsyncO(1).

3.2 The Relationship Between AsyncO(1) and Fsync

The relationship between AsyncO(1) and Fsync is still not clear. It has been
shown in [8] that there exist a problem solvable in AsyncO(1) and not in Fsync.
The problem is the Oscillating Points.

In the Oscillating Points problem two robots, initially starting in distinct
positions, have to move in such a way to alternate configurations in which their
relative distance decreases (near configuration), and configurations in which their
distance increases (far configuration). The intuitive reason why such problem is
unsolvable in Fsync is that the problem specification implicitly needs robots to
remember weather they are in near or far configuration. This is not a problem
when lights are present, being lights persistent a certain color can be associ-
ated with a specific configuration, in [8] 4 colors are used to solve Oscillating
Points.

Theorem 3 ([8]). The Oscillating Points problem is solvable in AsyncO(1),
and is unsolvable in Fsync.

However, it is still unknown if Fsync can be simulated or not by AsyncO(1).
Therefore, we do not know weather Fsync is included in AsyncO(1), or weather
the two models are orthogonal. Figure 2 shows the hierarchy of the models in
the light of the results of [8].

The Power of Remembering. The relationship between AsyncO(1) and Fsync
is completely clear when we allows robots to remember the snapshot of the
previous round (model AsyncO(1) + Snapshot). In this case, it is possible to
simulate any Fsync algorithm, see [8]. The interesting fact is to contrast this
with what happens when lights are not available. In [26] it has been shown that
Async is weaker than Fsync even when robots remember an unlimited amount
of snapshots.
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ASYNCO(1)

SSYNC

FSYNC

ASYNCO(1)+Snapshot

Fig. 2. Hiearchy of AsyncO(1), Fsync and Ssync. An arrow indicates that the source
model is included in the destination. A strikethrough arrow indicates that the source
model is not included in the destination.

Robots on Graph with Lights. In [10] is investigated the relationship between
AsyncO(1) and Fsync when robots move in a discrete environment, that is
modelled as a graph. Robots operate following the Look-Compute-Move cycle, and
the snapshot is the entire graph. Two new problems are introduced to show the
separation of Fsync and AsyncO(1): the Pattern Series Chasing (solvable in
Fsync and not in AsyncO(1)) and the Forth and Back (solvable in AsyncO(1)

but not in Fsync). This implies that, when robots on graph are considered,
AsyncO(1) and Fsync are orthogonal models.

4 Rendezvous

Rendezvous is the special case of Gathering (see Chap. 4, Sect. 2) where the
system consists of exactly two robots whose task is to move to the same point,
no matter where and when, and then stop forever. This special case is surprisingly
hard, due to the lack of “environmental landmarks” that may help the two robots
agree on a common rendezvous point. In contrast, when more than two robots are
present, it is relatively easy in most cases to implicitly agree on a small subset of
robots that should gather first, while the others provide a visible static reference
frame that helps circumvent limitations such as asynchrony and non-rigidity3.

As shown in [26], the Rendezvous problem is unsolvable in Ssync. Indeed,
suppose the local reference frames of the two robots are oriented symmetrically:
since they have symmetric views, they always compute symmetric destination
points. As long as the destination points they compute are different, the scheduler
activates them both and lets them move. Whenever they compute the same
destination point (which must be their midpoint, by symmetry), the scheduler
3 In a rigid model robots always reach the destination when performing the move. In

a non-rigid model robots may be stopped before reaching the destination, however
they travel of at least a fixed unknown δ > 0.
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activates only one of them. To guarantee fairness, every time this happens, the
scheduler activates a different robot, alternating.

Theorem 4 ([26]). Rendezvous is unsolvable in Ssync.

One way to cope with this impossibility is to use robots with lights: the first
solution to Rendezvous in this model is found in [8], and was later improved in
several directions. In the rest of this section, we will review some approaches to
the Rendezvous problem for robots with lights.

4.1 Rendezvous with Fewest Colors

The focus of [28] is solving the Rendezvous problem for robots with lights using
the minimum number of colors. The problem is solved in a variety of models,
which combine different schedulers (Fsync, Ssync, Async), rigidity, and self-
stabilization. The concept of rigidity is defined in Chap. 1, Sect. 2.4, while self-
stabilization (see [14]) is the additional requirement that the two robots solve
Rendezvous regardless of their initial colors (as opposed to stipulating that their
lights have a specific predefined color when the execution starts).

Figure 3 summarizes the results of [28]: there is a hierarchy of 12 models
obtained by combining the aforementioned parameters in all possible ways (an
asterisk indicates that the solution has to be self-stabilizing). The number in
parentheses after each model indicates that there is an algorithm that solves
Rendezvous under that model using that many colors.

Under a certain assumption, all the numbers in Fig. 3 are minimal. The
assumption is that the robots cannot use information about their distance to
compute their destination points, but can only compute it as a function of their
respective colors. More precisely, if a robot is located in p and performs a Look
when the other robot is in q, then the destination point it computes must be of
the form (1−λ)p+λq, where λ ∈ R is computed as a function of the two robots’
lights at the moment the Look was performed. All the algorithms presented
in [28] are of this kind, as well.

The left side of Fig. 3 is easy to obtain, because in non-rigid Fsync there is a
trivial algorithm that solves Rendezvous even in the basic model (i.e., with only
one color): the algorithm makes each robot move to the midpoint of their current
locations. Even if movements are non-rigid, the robots either meet or approach
each other by at least 2δ at every turn, hence meeting in a finite number of
turns.

For non-rigid Ssync and rigid Async there is an algorithm that uses only
two colors, namely A and B, shown in Fig. 4. In the case of non-rigid Ssync,
the algorithm is also self-stabilizing.

Labels on arrows indicate the color that is seen on the other robot and the
λ parameter of the resulting move, i.e., the destination of the next Move with
respect to the position of the other robot. So, “0” stands for “do not move”,
“1/2” means “move to the midpoint”, and “1” means “move to the other robot”.
Roughly speaking, the idea of this algorithm is to make the robots approach each
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FSynch
rigid

SSynch
rigid

FSynch
non-rigid

SSynch
non-rigid

ASynch
rigid

ASynch
non-rigid

FSynch
rigid

SSynch
rigid

FSynch
non-rigid

SSynch
non-rigid

ASynch
rigid

ASynch
non-rigid

(1) (2) (2)

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

∗ ∗ ∗

∗ ∗ ∗

Fig. 3. Summary of results of [28]. For each model in the hierarchy, there exists a
Rendezvous algorithm using the number of colors in parentheses. An asterisk indicates
that the algorithm is self-stabilizing. If robots cannot use distance information in their
computations, all these numbers are optimal.

A B

A,  / 

B, 1

B, 0

A, 0

1 2

Fig. 4. Rendezvous algorithm from [28] for non-rigid Ssync (self-stabilizing) and rigid
Async

other by moving toward the midpoint as long as their lights have the same color:
if the scheduler keeps them synchronous, they eventually meet. If, on the other
hand, the scheduler does not keep them synchronous, the two robots eventually
see each other in different colors. Therefore the A-colored robot moves to the
other robot’s location, while the B-colored robot waits.

For non-rigid Async, the above algorithm fails. To see why, let r and s be
the two robots, and let them both start with color A at distance greater than 2δ.
If the scheduler lets them both perform an entire cycle but stops them as soon as
they have moved by δ, they end up in color B a positive distance apart. Now, let
both robots perform a Look phase, implying that both of them will eventually
turn A. We let robot r finish the current cycle and perform a new Look, while
the other robot s waits, still in color B. Hence, r will stay A and move to s’s



260 G. A. Di Luna and G. Viglietta

A B

C

A,  / 

B, 0

B, 1 1 2

C, 0

C, 0

A, 0

C, 1

B, 0A, 1

Fig. 5. Self-stabilizing Rendezvous algorithm from [28] for non-rigid Async

position. Now we let s finish the current cycle and perform a new Look. So s
will turn B and move to the midpoint m. We let r finish the current cycle, thus
reaching s, and perform a whole new cycle, turning B. Finally, we let s finish
the current cycle, thus turning B and moving to m. As a result, both robots
are again set to B, they are in a Wait phase, both have executed at least one
cycle, and their distance has halved. If the scheduler repeats the same pattern
of activations, the robots will never gather.

Therefore, for non-rigid Async, the algorithm proposed in [28] uses three
colors, A, B, C, and is self-stabilizing: see Fig. 5. The algorithm is an extension
of that of Fig. 4, but its full analysis is somewhat technical.

Observe that the three algorithms outlined above are sufficient to establish all
the color numbers indicated in Fig. 3. Indeed, due to the hierarchical structure
of the models, if there is an arrow from model X to model Y in Fig. 3, then
any algorithm for model Y also works for model X. The matching lower-bound
proofs can be found in [28]. Summarizing, we have the following theorem.

Theorem 5 ([28]). The Rendezvous problem is solvable in each of the 12 models
of Fig. 3 using the number of lights indicated in parentheses under each model. If
robots are not allowed to use distance information in their computations, these
numbers are optimal.

Finally, [28] shows how to refine the algorithm of Fig. 5 to detect termination:
that is, to let the robots acknowledge that they have gathered, in order to turn
off or “switch gears” and start performing a new task. Although this is not
a requirement of the Rendezvous problem, it is a useful feature to add. The
new algorithm still uses only three colors, but it also uses distance information,
although robots only need distinguish between zero and non-zero distances.

Later improvements to [28] indicate that, if the robots are allowed to use
distance information in their computations, they only require 2 colors to solve
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A, 0 (d=0)

Fig. 6. Self-stabilizing Rendezvous algorithm from [18] for non-rigid Async using dis-
tance information
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Fig. 7. Rendezvous algorithm from [16] for rigid Ssync robots in F-state

Rendezvous, even under the non-rigid Async scheduler, and even in a self-
stabilizing way. First, [20] proposed an algorithm that assumes the robots to
know the value of the parameter δ related to non-rigid movements (see Chap. 1,
Sect. 2.4). Then, [18] managed to drop even this assumption. The Rendezvous
algorithm of [18] is shown in Fig. 6.
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Observe that this algorithm is a simple modification of that of Fig. 4: the
only difference is that, if a robot’s color is A, it changes its color to B only if
the other robot has color A and positive distance, d > 0 (i.e., if they have not
gathered); otherwise, its color remains A. Although this algorithm uses distance
information, it actually just needs to distinguish between zero and non-zero
distances.

Theorem 6 ([18]). The Rendezvous problem is solvable in a self-stabilizing way
with 2 colors under the non-rigid Async scheduler, provided that distance infor-
mation can be used in the computations.

4.2 Rendezvous Under Weaker Light Models

Observe that visible lights offer a twofold advantage to robots: on one hand, a
light serves as internal memory for the robot carrying it; on the other hand,
it can be used to communicate information to other robots. In [16], these two
aspects are decoupled, and two weaker light models are introduced: in the finite-
state model (F-state), each robot can see the color of its own light but not
the color of the other lights; in the finite-communication model (F-comm), each
robot can see the color of the other robots’ lights, but not the color of its own
light. In the case of a system with two robots, the latter model is equivalent
to letting robots send each other messages and remember only the last received
message (and be otherwise oblivious).

The Rendezvous problem is solved in [16] under these weaker light mod-
els. Specifically, if movements are rigid, the problem is solved with 6 colors in
F-state assuming the Ssync scheduler and with 12 colors in F-comm assum-
ing the Async scheduler (no assumptions are made on the units of distance of
the two robots, which may be different). If movements are non-rigid, the prob-
lem is solved in a self-stabilizing way with 3 colors in F-comm assuming the
Ssync scheduler. If movements are non-rigid and, in addition, the robots know
the value of δ, then the problem is solved with 3 colors in both F-state assum-
ing the Ssync scheduler and in F-comm assuming the Async scheduler (here,
knowing δ implicitly gives the robots a common unit of distance).

The algorithm for F-state robots in the rigid Ssync model is illustrated
in Fig. 7, where circles denote the internal states of the two robots, and Sstart

is the initial state. An arrow with a label of the form (d)I, λ denotes a state
transition that applies when the other robot is seen in direction d ∈ {left, right}
and its observed distance lies in the interval I ⊂ R. The parameter λ is as in
Sect. 4.1, and defines the destination point with respect to the other robot’s
position. For example, a robot in state Sstart perceiving the other at distance �1
on the right will move to the position of the other robot and will change state
to Sright

2 . Note that a robot can arbitrarily assign a left and a right side to the
line that connects it to the other robot, and this assignment does not change as
the execution progresses.

According to the algorithm, the robots try to reach a configuration where
they both observe each other at distance not smaller than 1 (i.e., their own unit
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of distance). From this configuration, they attempt to meet in the midpoint. If
they never meet because they are never activated in the same turn, eventually
one of them notices that its observed distance is lower than 1. This implies a
breakdown of symmetry that allows the robots to finally gather.

In order to reach the aforementioned desired configuration where they both
observe a distance not smaller than 1, the two robots first move away from each
other if they are too close. When they are far enough, they memorize the side
on which they see each other (left or right), and try to switch positions. If only
one of them is activated, they gather; otherwise they detect a side switch, and
they can finally apply the above protocol, which leads to gathering.

This is complicated by the fact that the robots may disagree on the dis-
tances they observe, because they have different units of distance. To overcome
this disagreement, they use their ability to detect a side switch to understand
which distance their partner observed. If the desired configuration is not reached
because of a disagreement, a breakdown of symmetry occurs, which is immedi-
ately exploited to gather anyway. As soon as the two robots are in the same
location at the end of a cycle, they never move again, and Rendezvous is solved.

Theorem 7 ([16]). The Rendezvous problem is solvable with 6 colors in
F-state under the rigid Ssync scheduler.

Observe that the above algorithm makes a fundamental use of the fact that
the scheduler is rigid and Ssync. For instance, the correct detection of a side
switch by a robot relies on the fact that the other robot is not currently in the
middle of a movement while it is observed (hence the scheduler is not Async),
or it could be seen on a side and then switch side by the end of the current move.
Similarly, the algorithm relies on the fact that the robots can reliably move away
from each other and reach a distance not smaller than 1. In a non-rigid setting,
they may be stopped too soon, in such a way that both end up in state S1 but
still detect a distance smaller than 1. From that point on, they will never move
again, because each of them will incorrectly assume that the other robot will
measure a distance greater than 1.

Now let us consider the F-comm model. The Rendezvous algorithm for
F-comm robots in the rigid Async model is shown in Fig. 8, where the ini-
tial state of both robots is called “Test”. The meaning of an arrow from state X
to state Y is that if a robot observes that the light of the other robot has color
X, then the first robot sets its own light to color Y . If an arrow has a label in
the form of a predicate on d, it means that the transition only happens if the
observed distance d between the two robots satisfies the predicate. Moreover, a
boldface label λ on an arrow has the same meaning as in Sect. 4.1. If such a λ is
followed by a predicate on the distance d in parentheses, the robot moves only if
the predicate is satisfied, and stays still otherwise. For example, if a robot located
in p sees the other robot located in q and in state “Both <1”, and their distance
d is positive, it assumes state “Moving Away”. If, in addition, the distance d is
less than 1, it also moves to the point (1/2 + 1/d) · p + (1/2 − 1/d) · q.
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Fig. 8. Rendezvous algorithm from [16] for rigid Async robots in F-comm

According to the algorithm, the two robots try to reach a configuration where
they both see each other at distance smaller than 1. To do so, they first commu-
nicate to each other whether or not the distance they observe is smaller than 1
(recall that they may disagree, because their units of distance may differ). If one
robot acknowledges that its partner has observed a distance not smaller than 1,
it reduces the distance by moving to the midpoint.

The process repeats until both robots observe a distance smaller than 1. At
this point, if they have not gathered yet, they try to compare their units of
distance in order to break symmetry. They move away from each other in such
a way that their final distance is the sum of their respective units of distance.
Before proceeding, they attempt to switch positions. If, due to asynchrony, they
failed to be in the same state at any time before this step, they end up gathering.
Instead, if their execution has been synchronous up to this point, they finally
switch positions. Now, if the robots have not gathered yet, they know that their
distance is actually the sum of their units. Because each robot knows its own
unit, they can tell if one of them is larger. If a robot has a smaller unit, it moves
toward its partner, which waits.

Otherwise, if their units are equal, they apply a straightforward protocol: as
soon as a robot wakes up, it moves toward the midpoint and tells its partner
to stay still. If both robots do so, they gather in the midpoint. If one robot is
delayed due to asynchrony, it acknowledges the order to stay still and tells the
other robot to come.

Theorem 8 ([16]). The Rendezvous problem is solvable with 12 colors in
F-comm under the rigid Async scheduler.

Once again, the above algorithm crucially uses rigidity, for instance when the
robots switch positions and assume that their current distance must be the sum
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Fig. 9. Rendezvous algorithm from [16] for rigid Ssync robots in F-comm

of their units. In a non-rigid setting, they could be stopped too soon, and both
detect a distance smaller than 2. From that point onward, if they are activated
synchronously and rigidly, they keep switching positions without ever gathering.

For F-comm robots under the non-rigid Ssync scheduler, there is a simple
self-stabilizing algorithm, shown in Fig. 9. The meaning of an arrow from state
X to state Y is that if a robot observes that the light of the other robot has
color X, then the first robot sets its own light to color Y . The label λ on each
arrow has the same meaning as in Sect. 4.1.

Let us analyze this algorithm. Assume first that both robots start in the
same state and both are activated at each turn. Then they always have equal
states, and they cycle through states A, B, and C forever. Every time they are
both in state A, they move toward the midpoint, and their distance reduces by
at least 2δ. Eventually, it becomes so small that they actually gather.

Otherwise, if at any point the two robots are in different states, they will
remain in different states forever. In this case their distance will never increase,
and they will periodically be found in states B and C, respectively. Whenever
this happens, the robot in state C retains its state and waits until the other
robot is activated and moves toward it by at least δ. As soon as their distance
becomes not greater than δ and they turn again B and C, they finally gather.

Theorem 9 ([16]). The Rendezvous problem is solvable in a self-stabilizing way
with 3 colors in F-comm under the non-rigid Ssync scheduler.

Finally, if the robots are non-rigid but know the value of δ, they can solve
Rendezvous with 3 colors both in F-state under the Ssync scheduler and in
F-comm under the Async scheduler. The two algorithms are relatively simple,
because not only do the robots know at what point they can assume that all
movements will be rigid (i.e., when their distance is at most δ), but knowing δ
in their respective reference frames also implicitly gives them a common unit of
distance. The details of the two algorithms are found in [16].

Theorem 10 ([16]). The Rendezvous problem is solvable with 3 colors in
F-state and under the non-rigid Ssync scheduler, provided that the robots know
the value of δ.
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Theorem 11 ([16]). The Rendezvous problem is solvable with 3 colors in
F-comm and under the non-rigid Async scheduler, provided that the robots
know the value of δ.

Whether Rendezvous can be solved at all in F-state under the rigid Async
scheduler is left in [16] as an open problem.

5 Sequence of Patterns

Forming a specific pattern has been a prototypical problem in the oblivious robot
model, see [15,17,29] and Chap. 3. The general version of this problem specifies
that a set of robot has to form a specific pattern (up to rotation or scaling).
In this section we use the concepts of symmetricity and of equivalence class of
robots, shortened in class, defined in Chap. 3.

5.1 Sequence of Patterns Without Light

A natural extension of the pattern formation is the one in which robots have
to form a sequence of patterns, see [9]. Let S = 〈S0, . . . , Sm−1〉 be a sequence
of distinct patterns. A set of robots forms S, starting from a configuration Γ , if
it forms the infinite periodic sequence S∞ = 〈S0, S2, . . . , Sm−1〉∞, obtained by
repeating forever the sequence S. It is not hard to see that in the oblivious model
there are several restrictions on S, depending on the configuration Γ . Clearly,
the relationship between the symmetricity of Γ and the one of any pattern in S
has to be the same of the classic pattern formation (see Chap. 3).

Moreover, the following conditions are necessary: the symmetricity of each
pattern in S is the same; the number of points in each pattern has to be the same.
It is not hard to see why the previous conditions are necessary: once two robots
share the same position, they could be bonded forever by always activating them
at the same time, thus it is not possible for the number of points in the patterns
to change; the condition on the symmetricity is also obvious and it comes from
similar considerations.

Interestingly, in Ssync with rigid robots the above conditions are also
sufficient, see [9].

5.2 Sequence of Patterns with Light

Forming a sequence of patterns in the Async model with non-rigid luminous
robots has been studied in [6]. Note that, in [6] a pattern in S is only a set of
robots positions, without any restriction on lights color, i.e. two patterns are the
same even if the colors of the robots in each pattern are completely different.

In the following we will refer to positional class to indicate a set of points
that share the same view when colors are not considered, and we will refer to
chromatic class to indicate a set of points that share the same view when colors
are considered. When lights are available, it is possible to form a sequence S even
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if: there are repeating pattern in S; the number of points in each pattern is not
the same; and, patterns have different symmetricity. The only constraint on S is
that the symmetricity of any pattern in S has to be divided by the symmetricity
of the initial configuration Γ . This in contrast with what happens when lights
are not available.

In the algorithm of [6] colors are used to synchronize the various phase of
the algorithm, and to keep the symmetry broken when robots from distinct
positional classes move in such a way to end up in the same positional class, e.g.
two robots go to the same point but have two different colors. Moreover, colors
are also used to encode information about the sequence. Specifically, if the same
pattern S appears in two different positions in S it will have a different coloring
allowing robots to distinguish which instance of S is.

More in details, the algorithm is divided in five phases:

– Leader Identification: In this phase the robots elect one class as leader class.
A light with color Gold is used to uniquely mark this class in the next phases
of the algorithm.

– Pattern Identification: During the pattern identification the leader class moves
in such a way to uniquely identify the specific pattern Sj of S that has to be
formed. In this phase colors are used for synchronization.

– Separation: In the separation step robots that are in the same positional class,
but in different chromatic classes, separate to form different positional class.
Colors are used to symmetry breaking purpose. At the of this phase each
chromatic class is on a different circle. All circles are concentric.

– Rotation and composition: Finally, in this two phases the robots dispose them-
selves to build pattern Sj .

Theorem 12 ([6]). A set of non-rigid luminous robots in Async starting from
an initial configuration Γ can form a sequence of pattern S if for any P ∈ S,
the symmetricity of P is divided by the symmetricity of Γ .

6 Mutual Visibility

In this Section we consider the setting where robots obstruct the visibility of each
other, and we focus on the Mutual Visibility problem. Such problem has been the
object of several recent papers [11–13,22–25,27], and a variety of solutions have
been proposed investigating trade-offs between time complexity and number of
lights. For this reason, it is interesting to study the Mutual Visibility problem to
understand how lights can be used in the design of sophisticated algorithms.

Problem Statement. In the Mutual Visibility problem a set of robots initially
positioned in an arbitrary configuration have a to reach a final configuration Cf ,
where for each pair of distinct robot positions pj , pi in Cf it does not exist any
robot rs on the segment connecting pi and pj . We say that robots are mutually
visible in configuration Cf . See Fig. 10.
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(a) Configuration where
robots are not mutually
visibile.

(b) Configuration where robots are
mutually visibile.

Fig. 10. Example of initial and final configuration for Mutual Visibility.

Preliminary Definitions. Given a configuration Ct, at time t, H(t) denotes the
convex hull of {p1(t), p2(t), · · · , pn(t)} at time t. The robots lying on its boundary
are the external robots, the ones lying in its interior are the internal robots. Note
that, a robot may not know where the convex hull’s vertices are located, because
its view may be obstructed by other robots. However, it can easily determine
whether it is an external or an internal robot, i.e. a robot r is external when
there are two robots in its snapshot such that the angle formed by r and them
is at least π and there is no other robot in that angle.

6.1 Main Strategies

Analysing the literature, it is possible to identify three main meta-strategies
Shrink, Contain and Local. Roughly, each of these techniques works as follow:

– Shrink: In this strategy the external robots shrink towards a single point. In
doing so internal robots progressively become external. The strategy termi-
nate when all robots are vertices of the convex hull.

– Contain: This strategy is based on two phases interior depletion and vertex
adjustment. In the first phase, the internal robots move towards the convex
hull. In the second phase the robots on the convex hull move to become
vertices.

– Local: In the Local strategy each robot does a constant number of steps,
sometimes a single step, based on its local view and moving of a small distance
from its initial position. Doing this it tries to decrease the number of collinear
robots.

These three strategy have been proposed in [11]. In the first two strategies the
final configuration does not only ensure Mutual Visibility but it also solves the
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Convex Formation problem, arranging the robots as vertices of a convex polygon.
The existing algorithms for Mutual Visibility use some variation of these strate-
gies, where the modifications are used to obtain special properties such as fast
solutions, optimal number of moves, or resilience to faulty robots.

In the following we will assume that the initial configuration is not a line. In
case the initial configuration is a line, it is easy recognizable by each robots, and
they can run a simple custom algorithm to move themselves in a configuration
where there is a proper convex hull.

Strategy Shrink. The main idea of strategy Shrink, first proposed in [11,13], is
to move the external robots on the vertices of the convex hull towards the inside
of the convex hull. The final purpose is to shrink the convex hull (see Fig. 11)
while not decreasing the number of external robots. The robots use two colors:
Off, Vertex. Initially all robots have a pre-defined color Off, the robots that are
also vertices become Vertex to signal their special positioning. By shrinking the
convex hull, internal robots become external, and, eventually, vertices of the
convex hull.

Fig. 11. Motion of vertices in Shrink.

Details of Shrink. We will explain the details of the strategy Shrink of [11]
designed for rigid Ssync. A vertex robot r in position p moves inside the triangle
formed by itself and its own two neighbors on the convex hull’s boundary4 (note
that such neighbors are necessarily visible). This triangle is �pab of Fig. 12. The
only robots moving are the ones on the vertices of the hull. The move is designed
in a careful way, and the robot r moves according to this three rules:

– (Rule 1) To avoid collision with other moving vertices r does not go outside
the triangle �puv, where u, v are the midpoints of edges pa and pb.

– (Rule 2) In order to keep being external, r does not cross any line passing
through a robot inside �puv and parallel to ab. In case there is a robot in
�puv, robot r moves on the closest of such lines. In this last case the number
of external robots is increased, see Fig. 12(a).

4 The neighbors are the adjacent robots on the convex hull boundary.
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p

u v

a b

(a) robot r in position p moves carefully
to increase external robots and to remain
external.

p

u v

a b

(b) Default move of robot r in position p
to shrink the convex hull.

Fig. 12. Movements of an external robot according to the presence or not of an internal
robot in the area of movement, �puv.

Fig. 13. Special case of unique internal robot.

– (Rule 3) When there are not robots inside �puv, then r moves on the line
uv remaining a vertex of the convex hull. This move allows [11] to prove
that the convex hull shrinks in a such a way to converge to a single point.
This convergence property is a key point to prove that all internal robots
eventually became external.

Notice that, if a vertex robot r moves using Rule 3 and one of its neighbor,
let it be a, is not a vertex then a becomes a vertex. With this observation it is
clear that once all robots are external, they eventually become vertices of the
convex hull.

There is only one special case: when there exists an unique internal robots.
In this case the robot has to move because it could be positioned in the converge
point of the shrinking procedure. Thus, it will be never reached by the others.

A custom move is needed in this case. When an internal robots sees that all
the other robots are vertices, then it knows that it is the unique internal robots,
and it moves to an edge of the convex hull, see Fig. 13.

Robots terminate when they reach a strictly convex configuration, that is
when they all see each other with color Vertex. Notice, that in this algorithm
lights are used for termination detection.

It has been shown that a protocol based on Shrink correctly terminates in
rigid Ssync using two colors. Moreover, it is possible to slightly modify it so
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to solve Mutual Visibility also in the model without lights, but when robots have
knowledge of n (the total number of robots in the system). Since lights are only
used for termination, without them and with knowledge of n a robots terminate
when it sees a strictly convex configuration, and n other robots. It is easy to see
that, when n is unknown, Shrink uses an optimal number of colors.

Theorem 13 ([11]). Protocol Shrink solves Mutual Visibility by rigid robots in
Ssync with 2 colors, or with no colors if the robots know n.

The strength of Shrink strategy is that it requires a minimal number of colors.
However, the convergence shown in Theorem 13 does not work in a non-rigid
or Async model.

Strategy Contain. The meta-strategy Contain, first presented in [11,12] for
non-rigid robots in Ssync, consists of two successive stages: interior depletion
and vertex adjustment. The algorithm uses three colors: Off, External, Adjusting.
In the interior depletion stage, the internal robots move towards the boundary
of the convex hull. At the end of this stages all robots are external. In the vertex
adjustment stage, the external robots make small adjustments to finally reach a
strictly convex configuration. Let H′(t) be the convex hull of the internal robots
at time t ∈ N, see Fig. 14(a).

Details of Contain. More precisely, strategy Contain works as follows.

– Interior depletion: Initially, all robots have lights Off. Once an external robot
is activated it switches light to External and it does nothing. The robots that
move are the one on the border H′. Eventually, a robot realizes to be on
the border of H′, this can be done locally once enough external robots have
been activated. A vertices r of H′ moves on the border of H. There are three
possible way for the robot to move:
1. When r is the only internal robots, it moves towards the midpoint of the

closest edge.
2. When r believes to be a vertex of a non degenerate H′, i.e. the robots in

H′ do not form a line, then r try to move to H. It does so, only when
it is able to identify correctly identify an edge of H where it can move
without colliding with other moving robots. As example, if r is a vertex
forming an acute internal angle of H′, then it moves to H by remaining
inside the zone delimited by the extension of the edges of H′ to which it
belongs, see Fig. 14(a).

3. When r is an extreme of the line H′, it moves towards H by using a direc-
tion that has a right angle away oriented away from H′, see Fig. 14(b).

– Vertex adjustment: When a robots r, vertex of H, with light External sees
only robots with light External, then it makes an adjustment move, the same
of strategy Shrink of Fig. 12(b). Before doing the move it sets its light to
Adjusting. After this adjustment, the neighbors of r on H will be vertices, if
they were not both vertices before the move. This Adjusting light is used by
r to remember it adjusted itself. A robot with light Adjusting, once activated
it switches to External and it terminates.
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(a) Case o non degenerate H′.
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(b) Case of a f a degenerate H′.

Fig. 14. Movements of a robot on the border of H′ in Contain.

Theorem 14 ([11]). Protocol Contain solves Mutual Visibility by non-rigid
robots in Ssync with 3 colors.

Note that Contain works even when the system is non-rigid, this is in con-
trast with shrink. However, it does have a greater number of lights and the
algorithm is more complex.

In [11] slight variations of protocol Contain are presented to solve the problem
under various conditions and knowledge. Let δ be the minimum distance travelled
by a robot.

Theorem 15 ([11]). Mutual Visibility can be solved in Ssync by non-rigid
robots with no colors, if they know δ and n; it can be solved with 2 colors, if
the robots know only δ. Mutual Visibility can be solved in Async by rigid robots
with 3 colors, and in Async by non-rigid robots, if they agree on the direction
of one coordinate axis.

Strategy Local. The meta-strategy Local has been proposed in [11]. Local is
the only one of the three meta-strategies in which the final solution does not
solve Convex Formation. In this strategy, the first time a robot is activated, it
makes a small move to a new position avoiding to stop on, or to trespass, any
line connecting two visible robots, see Fig. 15. Only two colors are used: Off,
Moved that is turned on before a robot move. This simple idea solves Mutual
Visibility using two colors for the sequential scheduler Sequential (a particular
case of Ssync where a single robot is activated at each step). Also notice that
using this strategy, any robot moves at most once, in the entire execution.

Theorem 16 ([11]). Protocol Local solves Mutual Visibility by non-rigid robots
in Sequential using 2 colors.

6.2 State of the Art for the Number of Lights

The solutions above have been improved, in number of colors employed and in
the model where Mutual Visibility is solvable. In [22] an Algorithm following the
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Fig. 15. Motion of a robot in Local: the robot with a bold circle moves in such a way
to never cross or reach a segment connecting two visible robots.

Contain meta-strategy has been proposed, which allows to solve the problem in
Async non-rigid with no colors but agreement on one axis, and in Ssync non-
rigid with only 2 colors.

Theorem 17 ([22]). Mutual Visibility can be solved in Ssync by non-rigid
robots, in Async by rigid robots, and in Async by non-rigid robots, if they
agree on the direction of one coordinate axis, using 2 colors.

Moreover, another solution has been proposed based on the Local strat-
egy [3]. This algorithm solves Mutual Visibility (but not Convex Formation) in
Async non-rigid with 7 colors. The main idea is to enforce an order between
the robots movements, by allowing only robots that are not collinear with other
robots (the terminal robots) to move; in this way a local move monotonically
increases the number of terminal robots.

Theorem 18 ([3]). Mutual Visibility can be solved in Async by non-rigid robots
using 7 colors.

6.3 Time Complexity and Fault Tolerance

Apart from minimising the number of colors in Mutual Visibility solutions, other
works have focused on designing time efficient solutions [23–25,27], or solution
for environments where the robots may fails [1], or when robots are fat [21].

Time Complexity. When we consider Fsync the time complexity of an algorithm
is measured by the maximum number of rounds needed to terminate. In case
of Ssync or Async the definition is not straightforward. [24,25] proposes the
concept of epoch. Each epoch is an interval of time. A new epoch starts when
the previous epoch ends, and an epoch ends as soon as all robots have been
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activated at least once since the start of the previous epoch (or time t = 0 for
the first epoch), see [4]. In the following, the complexity of an algorithm Ssync
or Async is measured as the maximum number of epochs needed to terminate.

Failures and Fat Robots. When a robot experiments a crash failure, it stops
moving and it remains in the same position forever. A fat robot is modelled as
circular entities with unit radius [5], this in contrast with the classical model
where robots are points. For fat robots a robot ri sees a robot rj if there exists
a not obstructed segment from any point of the circle modelling robot ri to any
point of the circle modelling robot rj [2,21].

Time Efficient Solutions. As we said, the Contain and Shrink strategies
solve the Convex Formation problem. The Local strategy solves only the Mutual
Visibility. The Local solution proposed in [3] solves Mutual Visibility in Async by
non-rigid robots in O(n) steps and a constant number of moves for each robot.

Efficient Solutions for Convex Formation. The first work proposing an efficient
solution for Convex Formation has been [27], an algorithm for Fsync rigid uses
the Contain meta-strategy to solve the problem in O(log n) rounds (the algo-
rithm, however, allows collisions). This runtime is done by proposing an interior
depletion phase where internal robots goes on the convex hull in O(log n) rounds.
The vertex adjustment also ends in O(log n) rounds, and in this case robots on
the edge of the H move to create a strictly convex configuration. This is in
contrast with the classic Contain where vertex move.

In [24] the authors propose an algorithm for Ssync rigid that follows the
Contain meta-strategy and solves Mutual Visibility in O(1) epochs. The algorithm
uses an initial step, corner moving, in which vertex of H does one adjustment
movement. After this adjustment, the vertex will be visible to all internal robots.
The movement is similar to the one used by Shrink, with the additional idea of
never cross, or reach, locations where a collinearity with internal robots can be
created. After the adjustment, the convex hull H will be detectable by inter-
nal robots, that can move on its border in a constant number of epochs. In
the last phase, the robots on the edges of H move to create a strictly convex
configuration.

A similar strategy, with some modifications, works in Async rigid with time
complexity O(log n) [25].

Finally, in Fsync rigid, when n is known, a linear time solution exists,
without using any light [23]. The current state of the art from a time complex-
ity perspective is summarized in Table 1, where only collision-less solutions are
considered.

Fault-Tolerance and Fat Robots. In [1] it is investigated how to solve Mutual
Visibility in Ssync rigid, with agreement on the axes, when a single robot may
experience a crash failure. The algorithm uses 3 colors, and it is based on a
variation of the Shrink strategy. Notice that, if there is a crashed robot placed
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Table 1. Collisions-less solutions for Convex Formation, for Fsync the time complexity
is measured using the number or rounds. For Ssync and Async, is the number of
epochs.

Paper Scheduler Time # Colors

[23] Fsync rigid O(n) 0
[24] Ssync rigid O(1) 12
[25] Async rigid O(log n) 25

exactly in the convergence point of the Shrink procedure, then the classic Shrink
strategy could fail. It could be possible for pairs of robots on the convex hull to
be collinear with the faulty robot, and to keep this collinearity by moving in a
symmetric way. This is solved in [1], by doing a special move once a configuration
with a single internal robot is reached.

Finally, Mutual Visibility has been solved, in Fsync rigid, when robots are
fat using 10 colors, in time O(n) [21].

7 Conclusions

We have seen that lights greatly enhance the capability of robots. They create
a new computational landscape where the relationships between Async, Ssync
and Fsync are different from the usual oblivious model. Besides this new rela-
tionship, a wide set problems can now be solved. A prototypical example is the
Rendezvous problem.

Another advantage is the possibility to solve old problems under weaker
assumptions, see the reduction of the restrictions needed on the sequences of
formable patterns by luminous robots.

Finally, the uses of lights allows the designing of fast and fault tolerant algo-
rithms in models where robots obstruct each other.

The model of luminous robot is still relatively new, and there are many open
problems.
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Abstract. Most existing work in the literature typically ensures the cor-
rectness of mobile robot protocols via ad hoc handwritten proofs, which
are both cumbersome and error-prone.

This paper surveys state-of-the-art results about applying formal
methods approaches (namely, model-checking, program synthesis, and
proof assistants) to the context of mobile robot networks. Those methods
already proved useful for bug-hunting in published literature, designing
correct-by-design optimal protocols, and certifying impossibility results
and protocols.
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1 Introduction to Formal Methods

This section reviews the main formal methods techniques that have been used
in the context of distributed computing, and autonomous mobile robots in
particular.

1.1 Model Cheking

Model-checking [9,32] is a technique that was developed for the verification of
various models: finite ones but also in some cases infinite, parameterised, or even
timed models. It has been successfully used for the verification of distributed sys-
tems from classical shared memory (consensus, transactional memory) to pop-
ulation protocols [26,27,33,53,57,59,63,76]. Unfortunately, it was proved in [6]
that parameterised model checking is undecidable, and this general result was
followed by several stronger ones for specific models, for instance in [46]. In such
cases, a classical line of work consisted in combining model-checking with other
techniques like abstraction, induction, etc., as first proposed in [64] or [31]. These
techniques were largely used since [7,17,24,41].
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1.2 Games and Protocols Synthesis

In the formal methods community, automatically synthesising programs that
would be correct by design is a problem that raised interest early [1,30,65,69].
Actually, this problem goes back to Church [29]. When the program to generate
is intended to work in an open system, maintaining an on-going interaction
with a (partially) unknown environment, it is known since [22] that seeing the
problem as a game between the system and the environment is a successful
approach. The system and its environment are considered as opposite players
that play a game on some graph, the winning condition being the specification
the system should fulfill however the environment behaves. Then, the classical
problem in game theory of determining winning strategies for the players is
equivalent to finding how the system should act in any situation, in order to
always satisfy its specification. The case of mobile autonomous robots that we
focus on in this paper falls in this category of problems: the robots may evolve
(possibly indefinitely) on a ring, making decisions based on some global state
of the system at each time instant. The vertices of graph on which the players
will play would then be some representation of the different global positions of
the robots on the ring. The presence of an opposite player (or environment) is
motivated by the absence of chirality of the robots: when a robot is on an axis
of symmetry, it is unable to distinguish its two sides one from another, hence
to choose exactly where it moves; this decision is supposed to be taken by the
opposite player.

1.3 Certification and Proof Assistants

Mechanical proof assistants are proof management systems in which a user can
express data, programs, theorems and proofs. In sharp contrast with automated
provers, they are mostly interactive, and thus require some kind of expertise
from their users. Sceptical proof assistants provide an additional guarantee by
checking mechanically the soundness of a proof after it has been interactively
developed.

Various proof assistants emerged since the 60’s, to name a few: Agda [3],
NqThm [21] and its relative ACL2 [2], PVS [70], Mizar [67], Coq [35],
Isabelle/HOL [68], etc.

In the context of program verification, Isabelle/HOL and Coq are amongst
the most widely used; both are based on type theory. They have been suc-
cessfully employed for various tasks such as the formalisation of programming
language semantics [61], certification of an OS kernel [55], verification of crypto-
graphic protocols [4], certification of RSA keys [75], mathematical developments
as involved as the 4-colours theorem [50], the Feit-Thompson theorem [51], or
the Kepler Conjecture [74].

During the last twenty years, the use of tool-assisted verification has extended
to the validation of distributed processes.

In the context of process algebras, which can be used to describe and
verify algorithms built from merge, sequential composition and encapsulation,
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Fokkink [48] and Bezem et al. [16] use a proof assistant to prove the equality
between two processes, one of them being a specification.

TLA/TLAPS [58,60] can enjoy an Isabelle back-end for its provers [40].
Gascard and Pierre [49] focus on interconnection networks that are symmetric:
rings, tori, hypercubes. Based on a compositional approach of certified compo-
nents, their work makes use of Nqthm.

Cansell and Méry’s contribution to the RIMEL project [23] addresses the
class of local computation (LC) algorithms. A catalogue of case studies like
election algorithms, spanning tree construction, and even Mazurkiewicz’s enu-
meration algorithm have been developed in Event-B. The code of these algo-
rithms is obtained by successive refinements starting from an abstract machine
that translates directly to a specification. This code is annotated with logical
formulas—mainly invariants on the state of the system—the proofs of which
generate verification conditions through a calculus of weakest preconditions.

Küfner et al. [56] propose a methodology to develop (using Isabelle) proofs of
properties of fault-tolerant distributed algorithms in an asynchronous message
passing style setting. They focus on correctness proofs only.

Chou’s methodology [28] is based on the HOL proof assistant. It aims at
proving properties of concrete distributed algorithms through simulation with
abstract ones. The methodology does not allow to prove impossibility results.

Castéran et al. [25] use Coq to state and prove invariants but also generic
results about sub-classes of LC systems, thanks to Castéran and Filou’s library
Loco [62]. Genericity is worth emphasising here as the approach is not limited
to particular instances of algorithms. Castéran et al. actually propose proofs of
negative results in Coq for some kinds of distributed algorithms in this graph
relabelling setting.

Deng and Monin [42] use Coq to prove the correctness of distributed self-
stabilising protocols in the population protocol model. This model permits to
describe interactions of an arbitrary large size of mobile entities, however the
considered entities lack movement control and geometric awareness that are
characteristic of robot networks.

As a matter of fact, surprisingly few works consider using mechanised assis-
tance for networks of mobile entities.

2 Formal Modelling

2.1 Robots on Graphs as Automaton Composition

In this section we describe the model proposed by Bérard et al. for the robots,
the demons, and the system resulting from their interactions. This model encom-
passes all three FSYNC, SSYNC, and ASYNC operating modes, but assumes
that individual robots can only operate in a discrete setting (that is, a graph).

Robot Modelling. All robots execute the same algorithm [47], hence the
behaviour of each of them can be described by the finite automaton of Fig. 1.
They operate in Look, Compute, and Move cycles.
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Ready
to look

Ready to
compute

Ready
to move

Look Compute

Move

Fig. 1. A generic automaton for the robot behaviour.

To start a cycle, a robot takes a snapshot of its environment, which is repre-
sented by the Look transition. Then, it computes its future location, represented
by the Compute transition. Finally, the robot moves along an edge of the graph
according to its previous computation; this effective movement is represented by
the Move transition.

The algorithm is implemented in the Compute transition, hence the “Ready
to move” state is divided into as many parts as there are possible movements
according to the protocol under study.

Note that the original model [73] abstracts the precise time constraints (like
the computational power or the locomotion speed of robots) and keeps only
sequences of instantaneous actions, assuming that each robot completes each
cycle in finite time. This model can be reduced by combining the Look and
Compute phases to obtain the LC phase. This is simply done by merging the
two states “Ready to look” and “Ready to compute” into a single state “Ready
to Look-Compute”.

Demon Modelling. Unlike robots that have the same behaviour regardless of
the model, the demon is parameterised by the execution model and by the num-
ber of robots. It is also modelled by a finite automaton, one for each variant of the
execution model. By synchronising one of these demons with robot automata,
we obtain an automaton that represents the global behaviour of robots in the
chosen model.

To describe these demon models, we consider a set Rob = {r1, . . . , rk} of
robots. We denote by LCi (resp. Movei), the LC (resp. Move) phase of robot ri.
Note that LCi and Movei are actually sets of possible actions in the correspond-
ing phases. For a subset Sched ⊆ Rob, we denote the synchronisation of all LCi

(resp. Movei) actions of all robots in Sched by
∏

ri∈Sched
LCi (resp.

∏

ri∈Sched
Movei).

In the SSYNC model, a non-empty subset of robots is scheduled for execution
at every phase, and operations are executed synchronously. In this case, the
automaton is a cycle, where a set Sched ⊆ Rob is first chosen. In this cycle the
LC and Move phases are synchronised for this set of robots. A generic automaton
for SSYNC is described in Fig. 2(a). Actually, the “Sched chosen” state has to
be divided into 2k states, where k is the number of robots, in order to represent
all possible sets Sched.

The FSYNC model is a particular instance of the SSYNC model, where all
robots are scheduled for execution at every phase, and operate synchronously
thereafter. In each global cycle, Sched = Rob, hence all global cycles are identical.
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Move
Done

Sched
chosen

LC
Done

Choose Sched

∏

i∈Sched

LCi

∏

i∈Sched

Movei

Act
Done

Sched
chosen

Choose Sched

∏

i∈Sched

Act i

Fig. 2. The demons automata.

The ASYNC model is totally asynchronous: any finite delay may elapse
between LC and Move phases. During each phase a set Sched is chosen, and all
robots in this set execute an action: the action Acti is either in LCi or in Movei

depending on the current state of robot ri. Hence, a robot can move according to
an outdated observation. The automaton for this demon is depicted in Fig. 2(b).

System Modelling. To describe the global model, we denote by

Pos = {0, . . . , n − 1} ⊆ N

the set of positions on the graph. A configuration of the system is a mapping
c : Rob → Pos associating with each robot r its position c(r) ∈ Pos. Hence, in a
graph of n nodes with k robots, there are nk possible configurations.

The model of the system is an automaton

M = (S, s0, A, T )

obtained by the synchronised product of k robot automata and all the possible
configurations, as defined above. The demon is used to define the synchronisation
function. The alphabet of actions is A =

∏
ri∈Rob Ai, with Ai = LCi ∪Movei for

each robot ri. In this product, states are of the form s = (s1, . . . , sk, c) where si

is the local state of robot ri, and c is the configuration. An initial state is of the
form s0 = (s1,0, . . . , sk,0, c) where si,0 is the initial local state of robot ri, and c
is an arbitrary configuration.

A transition of the system is labelled by a tuple

a = (a1, . . . , ak)

where ai ∈ Ai ∪ {ε,−} for all 1 ≤ i ≤ k and

(s1, . . . , sk, c) a−→ (s′
1, . . . , s

′
k, c′)
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if and only if for all i, si
ai−→ s′

i, and c′ is obtained from c by updating the
positions of each robot ri such that ai ∈ Movei. To represent the scheduling, we
denote by

∏
ri∈SchedActi the action (a1, . . . , ak) such that ai = − if ri /∈ Sched,

and ai ∈ LCi ∪ Movei ∪ {ε} otherwise.

2.2 Protocol Synthesis and Reachability Games

To enable robot protocol synthesis (that is, the automatic generation of robot
protocols for a given problem in a given setting), the approach of Millet et al. [66]
is to reuse the modelling presented in Sect. 2.1 for robots, schedulers, and their
interactions, in the framework of reacheability games.

We now present classical notions on this subject. If A is a set of symbols, A∗

is the set of finite sequences of elements of A (also called words), and Aω the set
of infinite such sequences, with ε the empty sequence. We note A+ = A∗ \ {ε},
and A∞ = A∗ ∪ Aω. For a sequence w ∈ A∞, we denote its length by |w|. If
w ∈ A∗, |w| is equal to its number of elements. If w ∈ Aω, |w| = ∞. For all words
w = a1 · · · ak ∈ A∗, w′ = a′

1 · · · ∈ A∞, we define the concatenation of w and w′

by the word noted w · w′ = a1 · · · aka′
1 · · · . We sometimes omit the symbol and

simply write ww′. If L ⊆ A∗ and L′ ⊆ A∞, we define L · L′ = {w · w′ | w ∈
L,w′ ∈ L′}.

A game is composed of an arena and winning conditions.

Arena. An arena is a (finite in our context) graph A = (V,E) in which the set
of vertices V = Vp � Vo is partitioned into Vp, the vertices of the protagonist,
and Vo the vertices of the opponent. The set of edges E ⊆ V ×V allows to define
the set of successors of some given vertex v, noted vE = {v′ ∈ V | (v, v′) ∈ E}.

Plays. To play on an arena, a token is positioned on an initial vertex. Then the
token is moved by the players from one vertex to one of its successors. Each player
can move the token only if it is on one of her own vertices. Formally, a play is a
path in the graph, i.e., a finite or infinite sequence of vertices π = v0v1 · · · ∈ V ∞,
where for all 0 < i < |π|, vi ∈ vi−1E. Moreover, a play is finite only if the token
has been taken to a position without any successor (where it is impossible to
continue the game): if π is finite with |π| = n, then vn−1E = ∅.

Strategies. A strategy for the protagonist determines where she brings the
token whenever it is her turn to play. To do so, the player takes into account
the history of the play, and the current vertex. Formally, a strategy for the
protagonist is a (partial) function σ : V ∗ · Vp → V such that, for all sequence
(representing the current history) w ∈ V ∗, all v ∈ Vp, σ(w · v) ∈ vE (i.e. the
move is possible with respect to the arena). A strategy σ is memoryless if it does
not depend on the history. Formally, it means that for all w,w′ ∈ V ∗, for all
v ∈ Vp, σ(w · v) = σ(w′ · v). In that case, we may simply see the strategy as a
function σ : Vp → V .
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Given a strategy σ for the protagonist, a play π = v0v1 · · · ∈ V ∞ is said to
be σ-consistent if for all 0 < i < |π|, if vi−1 ∈ Vp, then vi = σ(v0 · · · vi−1). Given
an initial vertex v0, the outcome of a strategy σ is the set of plays starting in v0
that are σ-consistent. Formally, given an arena A = (V,E), an initial vertex v0
and a strategy σ : V ∗Vp → V , we let

Outcome(A, v0, σ) = {v0π ∈ V ∞ | v0π is a σ -consistent play}

Winning Conditions, Winning Plays, and Winning Strategies. The
winning condition for the protagonist is defined as a subset of the plays Win ⊆
V ∞. Then, a play π is winning for the protagonist if π ∈ Win. In this work,
we focus on the simple case of reachability games: the winning condition is
then expressed according to a subset of vertices T ⊆ V by Reach(T ) = {π =
v0v1 · · · ∈ V ∞ | ∃0 ≤ i < |π| : vi ∈ T}. This means that the protagonist wins
a play whenever the token is brought on a vertex belonging to the set T . Once
it has happened, the play is winning, regardless of the following actions of the
players.

Given an arena A = (V,E), an initial vertex v0 ∈ V and a winning con-
dition Win, a winning strategy σ for the protagonist is a strategy such that
any σ-consistent play is winning. In other words, a strategy σ is winning if
Outcome(A, v0, σ) ⊆ Win. The protagonist wins the game (A, v0,Win) if she
has a winning strategy for (A, v0,Win). We say that σ is winning on a subset
U ⊆ V if it is winning starting from any vertex in U : if Outcome(A, v0, σ) ⊆ Win
for all v0 ∈ U . A subset U ⊆ V of the vertices is winning if there exists a strategy
σ that is winning on U .

Solving a Reachability Game. Given an arena A = (V,E) and a subset of
the vertices T ⊆ V , one wants to determine the set U ⊆ V of winning positions
for the protagonist, and a strategy σ : V ∗Vp → V for the protagonist, that is
winning on U for Reach(T ).

Figure 3 represents a reachability 2-player game. We recall now a well-known
result [52] on reachability games:

Theorem 1. The set of winning positions for the protagonist in a reachability
game can be computed in linear time in the size of the arena. Moreover, from
any position, the protagonist has a winning strategy if and only if she has a
memoryless winning strategy.

2.3 Parameterised Modelling with Presburger Formulae

Previous approaches (see Sects. 2.1 and 2.2) consider that size of the ring, n,
is fixed, as well as the number k, of robots. In this section, we develop the
parameterised model of Sangnier et al. [72] that makes use of Presburger formulae
to express systems where the ring size n is arbitrary (and a parameter of the
model).
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Fig. 3. A two-player game. In this figure protagonist vertices are represented by rect-
angles and antagonist vertices by circles. The winning condition is Reach({P3}). Any
path in the graph is a play. From P2 the protagonist has no winning strategy. From P1 a
(memoryless) winning strategy is to go to O2. Winning positions are {P1, P3, O2, O3}.

Preliminaries. For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set {c ∈
Z | a ≤ c ≤ b}. For a ∈ Z and b ∈ N, a � b denotes the natural d ∈ [0, (b − 1)]
such that there exists j ∈ Z and a = b.j + d (for instance −1 � 3 = 2).

We recall the definition of Existential Presburger (EP) formulae. Let Y be a
countable set of variables. First we define the grammar for terms t ::=x | t+
t | a·t | t mod a, where a ∈ N and x ∈ Y and then the grammar for formulae
is given by φ ::=t �� b | φ∧φ | φ∨φ | ∃x.φ where �� ∈ {=,≤,≥, <,>}, x ∈ Y
and b ∈ N. We sometimes write a formula φ as φ(x1, . . . , xk) to underline that
x1, . . . , xk are the free variables of φ. The set of Quantifier Free Presburger (QFP)
formulae is obtained by the same grammar deleting the elements ∃x.φ. Note that
when dealing with QFP formulae, we allow as well negations of formulae.

We say that a vector V = 〈d1, . . . , dk〉 satisfies an EP formula φ(x1, . . . , xk),
denoted by V |= φ, if the formula obtained by replacing each xi by di holds.
Given a formula φ with free variables x1, . . . , xk, we write φ(d1, . . . , dk) the
formula where each xi is replaced by di. We let [[φ(x1, . . . , xk)]] = {〈d1, . . . , dk〉 ∈
N

k | φ(d1, . . . , dk) |= φ} be the set of models of the formula.

Configurations and Robot Views. We consider a fixed number k > 0
of robots and, except when stated otherwise, we assume the identities of the
robots are R = {R1, . . . , Rk}. We sometimes identify R with the set of indices
{1, . . . , k}. On a ring of size n ≥ k, a (k,n)-configuration of the robots (or sim-
ply a configuration if n and k are clear from the context) is given by a vector
p ∈ [0, n − 1]k associating to each robot Ri its position p(i) on the ring. We
assume w.l.o.g. that positions are numbered in the clockwise direction.

A view of a robot on this configuration gives the distances between the robots,
starting from its neighbour, i.e. the robot positioned on the next occupied node
(a distance equals to 0 meaning that two robots are on the same node). A view
V = 〈d1, . . . , dk〉 ∈ [0, n]k is a k-tuple such that

∑k
i=1 di = n and d1 �= 0. We let
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Vn,k be the set of possible views for k robots on a ring of size n. Notice that all
the robots sharing the same position should have the same view.

We as well suppose that in a view, the first distance is not 0 (this is
possible by putting 0 at the ‘end’ of the view instead). Formally, for a view
V = 〈d1, . . . , dk〉 ∈ [0, n]k, we note

←−
V = 〈dj , . . . , d1, dk, . . . , dj+1〉 the corre-

sponding view when looking at the ring in the opposite direction, where j is the
greatest index such that dj �= 0.

Given a configuration p ∈ [0, n−1]k and a robot Ri ∈ R, the view of robot Ri

when looking in the clockwise direction, is given by Vp[i →] = 〈di(i1), di(i2) −
di(i1), . . . , n − di(ik−1)〉, where, for all j �= i, di(j) ∈ [1, n] is such that (p(i) +
di(j)) � n = p(j) and i1, . . . , ik are indexes pairwise different such that 0 <
di(i1) ≤ di(i2) ≤ · · · ≤ di(ik−1). When robot Ri looks in the opposite direction,
its view according to the configuration p is Vp[← i] =

←−−−−−
Vp[i →].

Protocols. In our context, a protocol for networks of k robots is given by a
QFP formula satisfying some specific constraints.

Definition 1 (Protocol). A protocol is a QFP formula φ(x1, . . . , xk) such that
for all views V the following holds: if V |= φ and V �= ←−

V then
←−
V �|= φ

A robot uses the protocol to know in which direction it should move according
to the following rules. As we have already stressed, all the robots that share the
same position have the same view of the ring. Given a configuration p and a robot
Ri ∈ R, if Vp[i →] |= φ, then the robot Ri moves in the clockwise direction, if
Vp[← i] |= φ then it moves in the opposite direction, if none of Vp[i →] and
Vp[← i] satisfies φ then the robot should not move. The conditions expressed
in Definition 1 imposes hence a direction when Vp[i →] �= Vp[← i]. In case
Vp[i →] = Vp[← i], the robot is disoriented and it can hence move in one
direction or the other. Note that such a semantics enforces that the behaviour
of a robot is not influenced by its direction. In fact consider two symmetrical
configurations p and p′ such that Vp[i →] =

←−−−−−−
Vp′ [i →] for each robot Ri. If

Vp[i →] |= φ (resp. Vp[← i] |= φ), then necessarily Vp′ [← i] |= φ (resp.
Vp′ [i →] |= φ), and the robot in p′ moves in the opposite direction than in p
(and the symmetry of the two configurations is maintained).

We now formalise the way movement is decided. Given a protocol φ and a
view V, the moves of any robot whose clockwise direction view is V are given
by:

move(φ, V ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{+1} if V |= φ and V �= ←−
V

{−1} if
←−
V |= φ and V �= ←−

V
{−1,+1} if V |= φ and V =

←−
V

{0} otherwise

Here +1 (resp. −1) stands for a movement of the robot in the clockwise (resp.
anticlockwise) direction.
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Different Possible Semantics. We now describe different transition relations
between configurations. Robots have a two-phase behaviour: (1) look at the
ring, and (2) according to their view, compute and perform a movement. In this
context, we consider three different modes. In the semi-synchronous mode, in one
step, some of the robots look at the ring and move. In the synchronous mode, in
one step, all the robots look at the ring and move. In the asynchronous mode,
in one step a single robot can either choose to look at the ring, if the last thing
it did was a movement, or to move, if the last thing it did was to look at the
ring. As a consequence, its movement decision is a consequence of the view of
the ring it has in its memory. In the remainder of the paper, we fix a protocol φ
and we consider a set R of k robots.

Semi-synchronous Mode. We begin by providing the semantics in the semi-
synchronous case.

For this matter we define the transition relation ↪→φ⊆ [0, n− 1]k × [0, n− 1]k

(simply noted ↪→ when φ is clear from the context) between configurations. We
have p ↪→ p′ if there exists a subset I ⊆ R of robots such that, for all i ∈ I,
p′(i) = (p(i) + m) � n, where m ∈ move(φ,Vp[i →]), and for all i ∈ R \ I,
p′(i) = p(i).

Synchronous Mode. The transition relation ⇒φ⊆ [0, n− 1]k × [0, n− 1]k (simply
noted ⇒ when φ is clear from the context) describing synchronous movements
is very similar to the semi-synchronous case, except that all the robots have to
move. Then p ⇒ p′ if p′(i) = (p(i) +m)� n with m ∈ move(φ,Vp[i →]) for all
i ∈ R.

Asynchronous Mode. The definition of transition relation for the asynchronous
mode is a bit more involved, for two reasons: first, the move of each robot does
not depend on the current configuration, but on the last view of the robot.

As a consequence, an asynchronous configuration is a tuple (p, s,V) where
p ∈ [0, n−1]k gives the current configuration, s ∈ {L,M}k gives, for each robot,
its internal state (L stands for ready to look and M stands for compute and
move) and V ∈ Vk

n,k stores, for each robot, the view (in the clockwise direction)
it had the last time it looked at the ring.

The transition relation for asynchronous mode is hence defined by a binary
relation �φ (or simply �) working on [0, n − 1]k × {L,M}k × Vk

n,k and defined
as follows: 〈p, s,V〉 � 〈p′, s′,V ′〉 if and only if there exist Ri ∈ R such that the
following conditions are satisfied:

– for all Rj ∈ R such that j �= i, p′(j) = p(j), s′(j) = s(j) and V ′(j) = V(j),
– if s(i) = L then s′(i) = M, V ′(i) = Vp[i →] and p′(i) = p(i), i.e. if the

robot that has been scheduled was about to look, then the configuration of
the robots won’t change, and this robot updates its view of the ring according
to the current configuration and change its internal state,

– if s(i) = M then s′(i) = L, V ′(i) = V(i) and p′(i) = (p(i) + m) � n, with
m ∈ move(φ,V(i)), i.e. if the robot was about to move, then it changes its
internal state and moves according to the protocol, and its last view of the ring.
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Runs. A semi-synchronous (resp. synchronous) φ-run (or a run according to a
protocol φ) is a (finite or infinite) sequence of configurations ρ = p0p1 . . . where,
for all 0 ≤ i < |ρ|, pi ↪→φ pi+1 (resp. pi ⇒φ pi+1). Moreover, if ρ = p0 · · ·pn is
finite, then there is no p such that pn ↪→φ p (respectively pn ⇒φ p).

An asynchronous φ-run is a (finite or infinite) sequence of asynchronous
configurations ρ = 〈p0, s0,V0〉〈p1, s1,V1〉 · · · where, for all 0 ≤ i < |ρ|,
〈pi, si,Vi〉 �φ 〈pi+1, si+1,Vi+1〉 and such that s0(i) = L for all i ∈ [1, k].
Observe that the value of V0 has no influence on the actual asynchronous run,
since any robot starts its computation by a look, hence changing the value of V0.

We let Postss(φ,p) = {p′ | p ↪→φ p′}, Posts(φ,p) = {p′ | p ⇒φ p′} and
Postas(φ,p) = {p′ | there exist V, s′,V ′ s.t. 〈p, s0,V〉 �φ 〈p′, s′,V ′〉}, with
s0(i) = L for all i ∈ [1, k]. Note that in the asynchronous case we impose all the
robots to be ready to look.

We respectively write ↪→∗
φ, ⇒∗

φ and �∗
φ for the reflexive and transitive clo-

sure of the relations ↪→φ, ⇒φ and �φ and we define Post∗
ss(φ,p), Post∗

s (φ,p)
and Post∗

as(φ,p) by replacing in the definition Postss(φ,p),Posts(φ,p) and
Postas(φ,p) the relations ↪→φ, ⇒φ and �φ by their reflexive and transitive
closure accordingly.

Definition 2. A protocol φ is said to be uniquely-sequentializable if, for all
configuration p, there is at most one robot Ri ∈ R such that

move(φ,Vp[i →]) �= {0}.

When φ is uniquely-sequentializable at any moment at most one robot moves.
Consequently, in that specific case, the three semantics are equivalent.

Problems Under Study. In this section, we aim at verifying properties on
protocols where we assume that the number of robots is fixed (equals to k > 0)
but the size of the rings is parameterised and satisfies a given property. Note that
when executing a protocol the size of the ring never changes. For our problems,
we consider a ring property that is given by a QFP formula Ring(y), a set of
bad configurations given by a QFP formula Bad(x1, . . . , xk) and a set of good
configurations given by a QFP formula Goal(x1, . . . , xk).

We then define two general problems to address the verification of such algo-
rithms: the SAFEm problem, and the REACHm problem, with m ∈ {ss, s, as}.

The SAFEm problem is to decide, given a protocol φ and two formulae Ring
and Bad whether there exists a size n ∈ N with n ∈ [[Ring]], and a (k, n)-
configuration p with p /∈ [[Bad]], such that Post∗

m(φ,p) ∩ [[Bad]] �= ∅.
The REACHm problem is to decide given a protocol φ and two formulae

Ring and Goal whether there exists a size n ∈ N with n ∈ [[Ring]] and a
(k, n)-configuration p, such that Post∗

m(φ,p) ∩ [[Goal]] = ∅. Note that the two
problems are not dual due to the quantifiers.
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2.4 A Generic Framework for Formal Proofs

Previous approaches only tackle the case of discrete spaces (and even a specific
such discrete space, the ring shaped graph), and are thus unsuitable for estab-
lishing formal results in the continuous space. This section describes a generic
framework that can be used for both the continuous and the discrete space. Also,
the framework allows to get results for an arbitrary number of robots.

Mechanical Formal Proof. A formal proof approach to obtain mechanically
certified protocols/properties faces two main and separate phases in a verified
development.

The first one is the specification phase, where all objects, definitions, algo-
rithms, statements and expected properties are expressed without any ambiguity,
in a higher order type theoretic functional environment. The lack of ambiguity is
a key feature to enable the early detection of inconsistencies between the prob-
lem specification, the algorithmic proposal, and the execution model. Ideally,
there should be no need to be an expert with the proof assistant to use a formal
framework in this phase.

The second one is the proof phase, where properties are shown to hold for the
relevant executions. This phase is, of course, more demanding on the expertise
side, and one goal when devising a such a formal framework is to provide useful
libraries, and proof techniques, that can be reused in other contexts. This allows
for more automation for the protocol designer, and useful assets for reusability.
Developing a protocol may amount to modifying its code several times, either
to fix a newly discovered bug, or to ease the writeup of the proofs. In such a
setting, a correction in the algorithm leads to a modification in the algorithm
definition, and to a replay of the proofs certification process after adapting the
proof scripts written previously. The mechanised verification of the proofs makes
this process fast and trustworthy, compared to a purely handcrafted approach.

Note that most of the formal definitions about a problem under study shall be
common to all results: on the one hand it ensures that the very same problem is
considered in the various settings, on the other hand it brings formal guaranties
on the absence of any goal gap between impossibility results, and protocol that
are designed.

All of this calls for a strong genericity of the formal development. The use of
modules, for example, allows one to achieve a reasonable level of parametricity.

Pactole and the Coq Proof Assistant. The Pactole1 framework enabled
the use of high-order logic to certify impossibility results, as well as soundness
of protocol, for swarms of autonomous mobile robots.

To certify results and to guarantee the soundness of theorems, it uses Coq,
a Curry-Howard-based interactive proof assistant enjoying a trustworthy kernel.
Coq is based on type theory. Its (functional) language Gallina is a very expressive

1 http://pactole.lri.fr.

http://pactole.lri.fr
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λ-calculus: the Calculus of Inductive Constructions (CIC) [36]. In this context,
datatypes, objects, algorithms, theorems and proofs can be expressed in a unified
way, as terms.

λ-abstraction is denoted fun x:T ⇒t, and the application of t to u is
denoted by the juxtaposition t u. A proof development with Coq consists in
trying to build, interactively and using tactics, a λ-term the type of which cor-
responds to the proven theorem (Curry-Howard style).

The kernel of Coq is a proof checker that checks the validity of proofs written
as CIC-terms. Indeed, in this framework, a term is a proof of its type, and
checking a proof consists in typing a term. Roughly speaking, the small kernel
of Coq simply type-checks λ-terms to ensure soundness.

A theorem or a lemma can only be saved/defined in the system if it comes
with its type-checked proof.

Very powerful features of Coq include the ability to define inductive types
to express inductive data types and inductive properties.

Coinductive types are also invaluable to express and to reason about infinite
data types, and properties on them, like for instance on the infinite behaviour
of robot swarms. Streams are a paradigmatic example of coinductive objects.

Coq enjoys a module system with signatures (called Module Type) that can
be implemented by modules. A signature Σ may contain declarations for objects
that the modules implementing Σ will define. The declaration Parameter x : A

will, for example, introduce a parameter x of type A.
Signatures or modules can contain definitions of objects, giving them a value:

Definition x := a defines the object x with the value a. A module M that
implements a signature Σ can define any parameter x : A of Σ by providing a
value of type A. Similarly, a signature can state a property that has to be satisfied
by its parameters (that is, an Axiom), and this statement will be properly defined
in a module that provides an actual proof for it (that is, by turning the axiom
into a Lemma).

These language, assets, and a well designed formal framework allow the user
to characterise properties, context, and protocols without too cumbersome ver-
bosity or intricacy.

All the results hereafter mentioned, and the relevant Coq scripts and devel-
opment are available from http://pactole.lri.fr for Coq 8.6.

Formalising the Model. The description of the system consists of three parts:
space and its topology, capabilities of robots and of movement, and, of course, the
computation model itself with its synchrony properties. The first two parts shall
define the configuration of the system (space and intrinsic robot capabilities),
the last two (movement capabilities, and computation) shall define the evolution
process.

Space and Topology. The fundamental operations needed on the space the
robots move into are usually not hardwired to a certain type of space. For the
sake of generality the space (of locations) is a parameter of the formal model.

http://pactole.lri.fr
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It is kept abstract and is encapsulated into a module Location that provides a
core type Location.t denoting the positions in the actual space, together with
useful functions and operations (a decidable equality, an origin, a distance, etc.).

Pactole adresses in its development mainly two kinds of spaces: Continuous
spaces, most notably the Euclidean plane R×R, and Discrete spaces, in particular
graphs. Depending on the use-case, the location module may be instantiated with
R if one considers the real line [8,38], or R × R with the relevant arithmetics
for the real plane [13,39], etc. Regarding graphs, and so as to allow for their
comfortable use, Pactole provides a general template that the user can instantiate
with the kind of graphs needed [14]. Though rather lightweight and restricted
compared to, for instance, the library Loco for local computation on graphs [25],
this template connects naturally with the main signature for the spaces where
robots evolve, which provides simple means of specifying discrete spaces and
reasoning about them. The library provides in particular a specialised version
for rings.

Robots and Sensor Capabilities

Robots, Conformations. A set of robots of size N = nB + nG consists of the
disjoint union of two sets of identifiers: a set of Byzantine robots, of size nB,
and a set of Good robots, of size nG. Both are isomorphic to segments of N.

The conformation of a robot describes its state. It may simply consist in its
location in space; under certain assumptions it may also include some internal
state (as we shall see for ASYNC).

Record Info : Type := (* some state description *) .
Record RobotConf := { loc :> Location ; robot_info: Info } .

Configuration and Spectrum. The configuration represents the conformation of
any robot designated by its identifier. In other words, it is simply a function that
maps robots’ identifiers to their respective conformation.

Definition configuration := identifier → RobotConf.

Note that as the whole formal model in Coq is functional, such a representation
shall prove comfortable to work with.

The conformation of robots may include some internal states, and thus may
contain information that should not be observed by other robots. Indeed, in
some cases, assumptions may require that local sensors cannot tell robots apart
(anonymity), or detect wether they are correct or Byzantine, or are endorsed
with the detection of multiplicity (that is the knowledge of the exact number of
robots inhabiting a location in space), etc.

These restrictions of the model can be ensured by the notion of spectrum,
described below, which characterises what a robot’s sensors can perceive of the
global system. The forbidden information is pruned from the configuration, using
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a function from_config that returns a spectrum, which is the only input of a
robot’s function computing its destination.

Spectra form an arbitrary type that is part of the description of the model,
and contributes to its genericity. To this goal, Pactole defines a module type
Spect, parameterised in particular by the type of location, the number of
robots, etc. This module type gathers the datatype Spect.t of the spectrum,
and required or usefull properties and functions: the definition of (a decidable)
equality on spectra, a conversion function (Spect.from_config) turning a con-
figuration into a spectrum, a formula (Spect.is_ok) expressing the relation
between a configuration and its spectrum, and the fact that the conversion func-
tion satisfies it:

∀ config, Spect.is_ok (Spect.from_config config) config

More precisely, Spect.is_ok ensures the adequacy between the configuration
and the information in the spectrum. It may for example ascertain that the
locations in a spectrum correspond to actual locations of robots in the relevant
configuration.

Module Type Spect(Location : DecidableType)(N : Size). (* ... *)
(* Spectra are abstract decidable types. *)
Parameter t : Type.
(* They are equipped with an equality relation *)
Parameter eq : t → t → Prop.
(* which is an equivalence relation *)
Parameter eq_equiv : Equivalence eq.
(* and which is decidable. *)
Parameter eq_dec : ∀ x y : t, {eq x y} + {¬ eq x y}.

(* Turning a configuration into a spectrum
i.e. erasing information. *)

Parameter from_config : Config.t → t.
(* Equal configurations give equal spectra. *)
Declare Instance from_config_compat :

Proper (Config.eq � eq) from_config.

(* An abstract predicate validating spectra
for a configuration. *)

Parameter is_ok : t → Config.t → Prop.
(* from_config gives a correct spectrum. *)
Parameter from_config_spec :

∀ config, is_ok (from_config config) config.
End Spectrum.

When needed, those abstract properties may be instantiated in accordance
to the requirements and assumptions.

Example 1. When robots are anonymous, can see the whole space, and can
detect multiplicity, a convenient datatype for a spectrum may be a multiset
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of the inhabited locations, the multiplicities of an elements, that is of a place,
being the number of robots at this very place.

If, however, the anonymous robots are not endorsed with multiplicity detec-
tion, then one may choose instead for spectrum the set of inhabited locations.

In the case where the considered space is a discrete graph, without shared
vertex naming or origin, a relevant spectrum may be a multiset (or set depending
of multiplicity detection) of locations (vertices), with a vertex marked as being
the current location of the robot perceiving that spectrum.

Robogram. The protocol together with relevant properties define a robogram. It
consists of:

– an algorithm pgm that represents the protocol itself, taking a spectrum as its
input and returning a destination location, and

– properties stating relevant constraints, for example compatibility statements,
range and validity constraints for the computed destination, etc.

Protocol Function. Robograms may be naturally defined in a completely abstract
manner, without any concrete code, in the Coq model.

Record robogram := {
pgm :> Spect.t → Location.t;
...(logical properties and constraints)...}.

This and the higher order calculus of Coq allow for quantification over robo-
grams, and thus for proofs of impossibility.

Robograms can be instantiated with a concrete version of the protocol. It
suffices to provide the actual code for pgm, and of course prove the relevant
properties. For example, Cohen and Peleg [34] propose a protocol asking anony-
mous and oblivious robots enjoying multiplicity detection to gather towards their
barycentre. A suitable spectrum in that context is a multiset of inhabited loca-
tions, and the destination is the weighted barycentre of elements in that multiset.
This translates simply2 in Gallina into:

Definition CP_protocol_pgm (s : Spect.t) : R2.t :=
wbarycenter (Spect.M.elements s).

Properties and Constraints. The second part of the robogram record consists
of properties on the pgm function. The basic one is the compatibility statement
ensuring that destination locations resulting from pgm when its provided spectra
are equivalent (for the equivalence relation on spectra Spect.eq) are the same
(for the equality on locations Location.eq).

pgm_compat : Proper (Spect.eq � Location.eq) pgm

2 The translation of integral multiplicities into real weights is omitted in this example.



294 M. Potop-Butucaru et al.

In addition to the compatibility property, and depending on the context, most
notably on space, range and validity constraints for the computed destination
may be expressed here. When dealing, for example, with graphs in a discrete
setting, one has to ensure that the computed destination vertex lpost is actually
a neighbour of the current location. That is: one can find an edge e linking the
current location (pointed in the used spectrum for graphs) to lpost, which
translates into (Eeq being the equality on edge, lifted to options with opt_eq):

pgm_range :
∀ (spect: Spect.t), ∃ lpost e,

(pgm spect = lpost)
∧ (Graph.Eeq

(Graph.find_edge (Spect.get_current spect) lpost)
(Some e))

Formalising the Model, Movements and Synchronicity. Beside the capa-
bilities of robots, there are many variants in Suzuki & Yamashita’s model, and
thus many results all of which having to be candidate to the certification process.

For instance, movements may be assumed to be rigid, robots always reaching
the destination they computed. But one may instead suppose that robots’ move-
ments are flexible, meaning the demon can stop a robot before it has completed
its journey to the computed destination.

Different assumptions may also address the synchronicity of executions,
allowing the demon to be either FSYNC, SSYNC, or even ASYNC, and enjoying
various properties like, for example, fairness.

The formal model must then allow for the expression of such diversity. It is
based on a function, named round, at the core of the development, and which
describes the evolution of the system according to the computation model.

Core of the Model: Demons, and rounds. A demonic action characterises the
selection of robots that will undergo model dependant changes, and associates
them to some choices from the (Maxwell’s) demon, which can be a new local
frame of reference, a movement ratio, etc. Demonic actions consist of:

– A function relocate_byz of relocation for Byzantine robots, i.e. a function
mapping Byzantine identifiers to their new conformation;

– A function step mapping identifiers to relevant demonic choices (model
dependant);

– Properties of compatibility and coherence of the aforementioned choices.

SSYNC Rigid Demonic Action. In an SSYNC setting where movements are
rigid, robots are oblivious, and no global frame of reference is shared, step

will simply associate to each robot an option: None if it is not activated, or
Some f if it is activated, in which case f is a function computing the change
of frame of reference from the global demonic one into the robot’s new local
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one.3 Compatibility properties will ensure that equivalence in names leads to
the same choices, that the zoom factor of the new referential is non-zero, and
that the location of the robot is the origin of its new frame of reference.

Record demonic_action := {
relocate_byz : Names.B → Config.RobotConf;
step : Names.ident → option (Location.t → Sim.t);
step_compat :

Proper (eq � opt_eq (Location.eq � Sim.eq)) step;
step_zoom :

∀ id sim c,
step id = Some sim → (sim c).(Sim.zoom) �= 0R;

step_center :
∀ id sim c,

step id = Some sim → Location.eq (sim c).(Sim.center) c}.

Note that the result of step is a function returning a transformation (similarity)
from a given “point of view” location.

SSYNC Flexible Demonic Action. A flexible model allows the demon to interrupt
robots before they actually reach their target. It is nevertheless assumed that if
the goal is unmet, a minimum (absolute) distance δ is travelled. Of course, the
value of δ is unknown to the robots, as they are just aware that some δ exists.

If movements are flexible, information about the distance travelled has to
be provided somehow, the remainder of the model staying the same. A ratio
is hence also given by step, denoting the part of the complete journey to the
computed destination that will be actually travelled. This ratio is integrated to
the compatibility property. An additional constraint ensures that it lies between
0 and 1.

Record demonic_action := {
relocate_byz : ...
step :

Names.ident → option ((Location.t → Sim.t)(* frame change *)

* R); (* travel ratio *)
step_flexibility :

∀ id sim, step id = Some sim → (0 ≤ snd sim ≤ 1)R

step_compat : ...
step_zoom : ...
step_center : ...}.

Demons, Rounds, and Executions. A demon (or scheduler) is simply an infinite
sequence, that is a stream, of demonic actions.

One obtains successive configurations by running the robogram according
the current demonic action and configuration. This is done by a function round

that computes new conformations in a configuration, for each robot identifier r,
according to a demonic action da. For the SSYNC flexible case:
3 Since the robot is oblivious, it has no mean to remember its past frame of reference.
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– If the robot is not activated (the demonic action step returns None), its asso-
ciated conformation remains unchanged,

– If the demonic action step returns a change of frame and a travel ratio,
• If r is Byzantine, its conformation is given directly by relocate_byz,
• If r is a good robot, the robogram applies:

1. The provided local frame of reference is used to convert the configu-
ration according to the relevant local point of view,

2. The resulting (local) configuration is transformed into a spectrum
using from_config,

3. The robogram receives the obtained spectrum as a parameter, and
returns a target location (in the local frame),

4. The chosen destination is obtained, from the target location, using
the travel ratio provided by the action,

5. Depending on the flexibility parameter δ, the actual destination is
either the chosen destination or the target one, it is converted from
the local frame to the global one, and the conformation is updated
accordingly.

Taking the robot identifier as a parameter, one obtains this way a function
that maps conformations to identifiers, that is a new configuration.

The fundamental function round for the SSYNC flexible model is thus:

Definition round (δ: R) (r: robogram) (da: demonic_action)
(config: Config.t) : Config.t :=
(** for a given robot, we compute the new configuration *)
fun id ⇒

let c := config id in (** c: id’s conformation
as seen by demon *)

match da.(step) id with (** Is the robot activated? *)
| None ⇒ c (** not activated, do nothing *)
| Some (sim, mv_ratio) ⇒ (** activated with *)

(** similarity [sim (conf g)] *)
(** and move ratio [mv_ratio] *)

match id with
| Byz b ⇒ da.(relocate_byz) b

(* Byzantine robots are relocated by the demon *)
| Good g ⇒

(* configuration expressed in the frame of g *)
let frame_change := sim (config (Good g)) in
let local_config := Config.map

(Config.app frame_change) config in
(* apply r on spectrum *)

let local_target :=
r (Spect.from_config local_config) in

(* the demon chooses a point on the line to the
target by [mv_ratio] *)

let chosen_target :=
Location.mul mv_ratio local_target in

(* and back to the demon’s frame of ref... *)
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{| Config.loc :=
frame_change-1

(if δ ≤ (Location.dist (frame_change-1

chosen_target) c.(Config.loc))
then chosen_target
else local_target);

Config.robot_info := c.(Config.robot_info) |}
(* irrelevant here *)

end
end.

The infinite sequence of consecutive configurations following a demon’s
demonic actions defines an execution. To define a full execution, the function
execute rbg d config iterates round, starting from configuration config,
using robogram rbg and demon d.

Note that a flexible model is more general than a rigid one. However, so as
to keep development as simple as possible, Pactole provides theorems stating
the equivalence between the rigid model and the flexible model when the ratio
is always 1. That is, in that context: any rigid demon can be simulated with a
flexible demon, and any flexible demon that does not interrupt movements can
be simulated with a rigid demon.

The Case of ASYNC. Balabonski et al. [10,11] proposed an extension of Pactole
to asynchronous execution schemes. They use it to establish and prove formally
an equivalence between a model of discrete graphs where robots can only be at
vertices and the more realistic model of continuous moves along the graph’s edge
but with discrete observation.

For the sake of simplicity, the remainder of this section is limited to rigid
movements.

In ASYNC, the formal model must be enriched to reflect the lack of syn-
chronisation and of uniformity of robots’ actions [10,11]. In this context, the
conformations of robots (RobotConf) gather the current location, and informa-
tion about, at least, movement. We shall consider here that this information
consists of source and target locations. The field robot_info in a conformation
may thus be considered as a record of two locations: source, and target. This
allows for some robots to move while others are looking or computing.

A robot is considered to be moving whenever its current and target locations
differ. It becomes idle when it reaches its target location.

When a robot is idle, it can start a new cycle with a simple Look/Compute
action performing the usual Look and Compute phases.4

A change of state of the robot is the result of a demonic action.

ASYNC Demonic Actions. A demonic action can request a moving robot to
pursue its movement towards its designated target, or an idle robot to initiate a
4 As the computation is based on a snapshot taken during the Look phase only, any

event taking place after Look cannot have any impact on its result, and one may
thus merge the two phases Look and Compute into a Look/Compute one.
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new move, that is a Look/Compute phase. These action cases replace the option
in the SSYNC model: either the distance travelled along an ongoing Move, or a
frame of reference for a robot for a Look/Compute.

Inductive action {A} :=
| Move (dist: A) (* moving distance *)
| LookCompute (Location.t → Sim.t). (* change ref frame *)

The definition of a demonic action is hence as follows:

– relocate_byz: as for the SSYNC case, and when relevant, demonic actions
also relocate Byzantine robots in an arbitrary way,

– step now returns the choice Move or LookCompute, that is, an action,
– step_compat is similar to the SSYNC case, the equivalence for options being

replaced by the equivalence for actions,
– a new constraint step_LookCompute is added to ensure that only idle robots

(that is, robots that are at their target location) may receive an order to look
and compute.

ASYNC Round. In the case of ASYNC, rounds are not defined by Look-
Compute-Move cycles but by changes of conformations.

Note that Byzantine robots are relocated directly on LookCompute actions,
and ignore Move ones. Depending on what the demonic action step returns for
a robot r:

– Move action: r carries further its ongoing move, its current location is updated
to the location it reached during this move (the way this reached location is
computed may depend on the underlying space).

• If r reaches its target location, it is now idle,
• If r does not reach its target location, it stays moving,
• If r was already at its target location, it stays idle.

– LookCompute action: a new target location is defined as follows:
1. The local frame of reference provided by the action is used to compute

the configuration according to the relevant local point of view,
2. The resulting local configuration is transformed into a spectrum using

from_config,
3. The obtained spectrum is passed as a parameter to the robogram, which

returns the target location (in the local frame),
4. The target location is converted from the local frame to the global one.

The robot’s conformation is updated with the obtained location as new target,
and with the current location as new source.

• If r’s current and target locations differ, the robot switch from idle to
moving,

• If r’s current and target location are equal, the robot stays idle.

Executions are defined as usual. Note that a step in an ASYNC execution
does not always imply a change in the multiset of inhabited locations, as some
robots may undergo a change of state only.
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Reasoning About Demons. Demons are just streams, and being thus defined as a
coinductive construct they allow for a relatively easy specification of their proper-
ties. Pactole defines the usual temporal operators ♦, ◦, and � to help expressing
temporal properties about executions, written respectively Stream.eventually,
Stream.next, and Stream.forever in our formalisation. However, the logic of
Coq being much more expressive, one can define new temporal operators or new
properties directly on an execution.

When for example the Look-Compute-Move cycle is atomic, FSYNC demons
have all robots activated in each demonic action, SSYNC demons only have a
subset of robots activated in each action, etc. Additional properties like fairness-
related constraints (fair, unfair, k-fair, etc.) are expressed as logical propositions
on demons.

Fairness is for instance defined as follows in the libraries: a demon d is fair
to robot r if either

– r is activated by the current demonic action (that is the head hd of the
demon), or

– r is not activated but will be for a demonic action in the remainder (that is
the tail tl) of the demon.5

The translation into Gallina is almost straightforward.

Inductive LocallyFairForOne r (d : demon) : Prop :=
| NowFair : step (Stream.hd d) r �= None

→ LocallyFairForOne r d
| LaterFair : step (Stream.hd d) r = None

→ LocallyFairForOne r (Stream.tl d)
→ LocallyFairForOne r d.

A demon is thus fair if at any point it is fair for every robot.

Definition Fair : demon → Prop :=
Stream.forever (fun d ⇒ ∀ r, LocallyFairForOne r d).

This high level modelling allows for the encoding of many types of demons,
and for their theoretical formal study. The relevant library includes inclusions
and equivalence theorems about demons, for example that a fully-synchronous
demon is semi-synchronous, or that a k-fair demon is also (k + 1)-fair, etc.

3 A Summary of Obtained Results

3.1 Early Result Obtained by Ad Hoc Tools

In the context of mobile robots operating in discrete space, two early attempts,
by Devismes et al. [43] and by Bonnet et al. [18,19], investigate the possibil-
ity of automated verification of mobile robots protocols. The first paper uses
5 Note that this demonic action is accessible, i.e. finitely reachable, since the property

is defined as inductive.
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LUSTRE [54] to describe and verify the problem of exploration with stop of a
3 × 3 grid by 3 robots in the SSYNC model, and to show by exhaustive search-
ing that no such protocol can exist. The second paper considers the perpetual
exclusive exploration by k robots of n-sized rings, and generates mechanically all
unambiguous protocols for k and n in the SSYNC model (that is, all protocols
that do not have symmetrical configurations). Those two works are restricted
to the simpler SSYNC model rather than the more general and more complex
ASYNC model. Second, they are either specific to a hard-coded topology (e.g.,
a 3 × 3 grid [43]) that prevents easy reuse in more generic situations, or make
additional assumptions about configurations and protocols to be verified (e.g.
unambiguous protocols [18,19]) that prevent combinatorial explosion but forbid
reuse for proof-challenging protocols, which would most benefit from automatic
verification.

3.2 Generic Results Obtained by Model Checking and Synthesis

In the discrete setting of ring-shaped networks, model-checking proved useful
to find bugs in existing literature [15,44,45] and assess formally published algo-
rithms [5,15,43] for some particular instances.

Automatic program synthesis (for the problem of perpetual exclusive explo-
ration in a ring-shaped discrete space) is due to Bonnet et al. [19], and can be
used to obtain automatically algorithms that are “correct-by-design”. The app-
roach was refined by Millet et al. [66] for the problem of gathering in a discrete
ring network. As all aforementioned approaches are designed for a bounded set-
ting where both the number of locations and the number of robots are known,
they cannot permit to establish results that are valid for any number of locations.

Recently, Aminof et al. [5] presented a general framework for verifying prop-
erties about mobile robots evolving on graphs, where the graphs are a parameter
of the problem. While the model of Suzuki and Yamashita could be encoded in
their framework, their undecidability proof relies on persistent memory used by
the robots, hence is not applicable to the case of oblivious robots we consider
here. Also, they obtain decidability in a sub-case that is not relevant for robot
protocols like those we consider. Moreover, their decision procedure relies on
MSO satisfiability, which does not enjoy good complexity properties and cannot
be implemented efficiently for the time being.

Sangnier et al. [72] tackled the more general problem of verifying protocols
for swarms of robots for any number of locations. Their formal definition of the
problem (presented in Sect. 2.3) permits to describe the protocol as a quantifier
free Presburger formula. This logic, weak enough to be decidable, is however
powerful enough to express existing algorithms in the literature. Objectives of
the robots are also described by Presburger formulae and they consider two
problems: when the objective of the robots is a safety objective – robots have
to avoid the configurations described by the formula (SAFE), and when it is
a reachability objective (REACH). It turns out that REACH is undecidable in
any semantics, but SAFE is decidable in FSYNC and SSYNC. Now, when the
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protocol is uniquely-sequentializable, safety properties become decidable even in
the asynchronous case.

3.3 Generic Results Obtained by Proof Assistants

Putting things into practice amounts to instantiating the model and the envi-
ronment, to providing a formal definition of the problem, and finally to stating
the main result/theorem. This is it for the specification job, but of course one
has to prove formally the theorem in order to define it into the framework.

This way of proceeding is detailed in a few examples below.

Convergence. Auger et al. [8] proposed the first formal certification that
Byzantine-resilient convergence on the real line R of oblivious robots that enjoy
strong global multiplicity was impossible to achieve in a rigid SSYNC setting,
when the ratio of Byzantine robots over their total number was above a certain
bound. Several theorems of this kind have been first stated and pen-and-paper
proved in [20].

Note that this is a result of impossibility, i.e. a quantification over all proto-
cols, and that there is no bound over the number of robots. Further note that
the space is unbounded and continuous.

The Problem. Given any initial configuration of robots, the problem of conver-
gence requires the robots that are correct to approach asymptotically the same,
but unknown beforehand, location. That is, in an SSYNC setting, an execution
is said to be convergent when for any ε > 0 there exists a number of rounds
Nε ∈ N and a location lε (in the particular context of [20], lε ∈ R) such that for
all n > Nε, all correct robots at round n are no further than ε from lε.

In other words, Convergence expresses that all correct robots will eventually
be imprisoned forever in a disc of centre c and of radius ε...

The translation into the framework is as follows: imprisoned expresses that
at each point in an execution exe, the conformation of any robot locates it within
ε of a centre c.

Definition imprisoned (c: Location.t) (ε: R) (exe: execution):
Prop :=
Stream.forever

(Stream.instant
(fun config ⇒ ∀ g, Location.dist c
(config (Good g)).(Config.loc) ≤ ε))

exe.

The fact that this situation has to happen eventually is described by attracted:

Definition attracted (c: Location.t) (ε: R) (exe: execution):
Prop :=
Stream.eventually (imprisoned c ε) exe.
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A robogram is a fair solution to the problem of Convergence for any fair
demon if, for all positive ε, one can find a point c to which robots are attracted

in any execution induced by the demon.

Definition FairSolConvergence (r : robogram) : Prop :=
∀ (config : Config.t) (d : demon), Fair d
→ ∀ (ε : R), 0 < ε
→ ∃ (c : Location.t), attracted c ε (execute r d config).

Auger et al. formally proved in [8] the following result from Bouzid et al. [20]
for rigid movements:

[20] (Theorem 4.3): It is impossible to achieve convergence if n ≤ 2f in the
FSYNC uni-dimensional model, where n denotes the number of robots and f
denotes the number of Byzantine robots.

However, for the sake of simplicity, We consider here the case where Byzantine
robots are exactly one third of the total number of robots. This situation suffices
to illustrate a proof of impossibility, with bounds neither on space, nor on the
number of robots, and with Byzantine failures.

The Model. The set of locations is R and we define Location.t as the type of
Coq’s axiomatic reals. The module of locations is completed accordingly, with
the relevant arithmetic and properties.

The set of robots consists of a non zero number nB of Byzantine robots, and
a number nG of correct (Good) robots that is twice the number of Byzantine
ones.

Parameter nB: nat.
Hypothesis nB_non_0 : nB �= 0N.
Definition nG := (2 * nB)N.
Definition nB := nB.

Conformations of robots are limited to their current location.
As robots can detect multiplicity over the whole universe, an adequate spec-

trum is the multiset of inhabited locations.
Configuration evolve according to the SSYNC rigid version of round. Robots

are oblivious, the demonic actions thus select activated robots and provide their
change-of-frame function. Byzantine robots are simply relocated, that is, associ-
ated to a possibly new location in the configuration.

The Main Theorem. With the assumptions stated in the previous paragraph,
the theorem stating the impossibility to achieve convergence is simply that any
robogram is not a fair solution to Convergence.

Theorem noConvergence : ∀ r, ¬(FairSolConvergence r).

The proof of this theorem alone is about 30 lines of Coq; it just sets the
counter-example in action. The whole file that defines Convergence, the main
theorem and the counter-example set-up (demon, intermediate lemmas, etc.) is
about 190 lines of specification for 315 lines of proof tactics.
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Gathering. When robots have to meet actually on the exact same spot, one
addresses the problem of Gathering. A comprehensive survey on the formalisation
of Gathering has been given in [12].

The Problem. A configuration config in which all robots inhabit the very same
position pt is characterised by gathered_at:

Definition gathered_at (pt : Location.t) (config : Config.t) :=
∀ g : Names.G, Location.eq (config (Good g)) pt.

After a successful gathering along a given execution e, the robots stay forever
at the same position pt. This is characterised with property Gather:

Definition Gather (pt: Location.t) (e : execution) : Prop :=
Stream.forever (Streams.instant (gathered_at pt)) e.

Finally, robots all have to reach the same position pt in finite time, and stay
there forever. In other words, property Gather will hold eventually:

Definition WillGather (pt : Location.t) (e : execution) :
Prop := Stream.eventually (Gather pt) e.

Without any additional initial condition, a robogram achieving Gathering
under a demon d fulfils FullSolGathering.

Definition FullSolGathering (r : robogram) (d : demon) :=
∀ config, ∃ pt: Location.t,

WillGather pt (execute r d config).

If conditions on the initial configuration are required, basically if the ini-
tial configuration is authorised, that requirement is added in the expression of
FullSolGathering to obtain ValidSolGathering.

Definition ValidSolGathering (r : robogram) (d : demon) :=
∀ config,

¬invalid config
→ ∃ pt : Location.t, WillGather pt (execute r d config).

Impossibility: Gathering of an Even Number. Courtieu et al. [38] first provided a
formal specification of Gathering in Pactole, using three properties that exactly
reflect the mathematical description of the problem.

Impossibility of Gathering for two oblivious robots in rigid SSYNC was estab-
lished by Suzuki and Yamashita in their seminal paper [73]. It was slightly
extended in [38] to the case where initial configurations may not have all their
robots at distinct positions, and for any positive even number of robots.

The environment is instantiated as in the previous example, though without
any Byzantine robot, and with the addition that the number of robots N.nG is
even. So as to keep the statement of the main theorem short, the last constraint
is stated as a hypothesis.
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Parameter N.nG : nat. (* number of robots *)
Hypothesis even_nG : Nat.Even N.nG. (* assumed to be even *)

N.nG is supposed non-null, hence there are at least two robots.
We stress that the remainder of the model (the definition of rounds, and

capabilities/spectra), is exactly the same as before, hence theorems are stated
and proved with the same model assumptions.

For all robograms r, all integers k ≥ 1, r does not solve Gathering against
all k-fair demons d.

Theorem noGathering :
∀ r k, (1≤k) → ¬(∀ d, kFair k d → FullSolGathering r d).

The file dedicated to the main theorem itself is about 200 lines of specifica-
tions for 440 lines of proof scripts.

The proof of the aforementioned theorem relies on the fact that, no matter
what the algorithm does, one can always build a demon such that from an invalid
position, that is a certain kind of configuration that is not a successful one, the
execution resulting from the algorithm and the demon always stays invalid, hence
the algorithm fails. In this case, the failing initial configuration is a bivalent one:
a configuration where robots are equally distributed over two distinct locations
only.

Correctness: Gathering with Initial Conditions. It turns out that, when such
invalid initial configurations (i.e. bivalent) are forbidden, one may achieve Gath-
ering, as Courtieu et al. proved formally, both in R [37] and R

2 [39]. As the former
can be seen as a particular case of the latter case, we focus our presentation on
R

2.
The module of locations is now instantiated by a real metric space with base

type R×R, and with the usual notions of distance, and vector operations. Note
that a library of results and properties over R2 is provided in the framework, as
well as some geometry folklore, namely properties about barycenters, triangles,
enclosing circles, etc.

There are at least three robots, none of which is Byzantine.
Further note that since capabilities and synchronicity are still those of pre-

vious examples, rounds and spectra stay the same.
Courtieu et al. provide a protocol that realises Gathering provided that the

initial configuration is not bivalent [39]. The full algorithm is as follows:

Protocol gatherR2 (s:Spect.t) returns (dest:R2) :=
if max(s) = {p} then dest := p (∗ one max tower ∗)
else begin
(∗ Compute target ∗)

if support(s) ∩ sec(s) = {p1,p2,p3} then (∗ triangle cases ∗)
if equilateral(p1,p2,p3) then target := barycenter(p1,p2,p3)

else if isosceles(p1,p2,p3) then target := opposite of base(p1,p2,p3)
else target := opposite of longest(p1,p2,p3)
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else target := center(sec(s)); (∗ other cases ∗)
(∗ only dirty robots move to target, if any, otherwise clean robots can move ∗)

if ∀p ∈ s, p ∈ sec(s) or p = target then dest := target
else if (0,0)∈ sec(s) or (0,0) = target then dest := (0,0)

end

where dest is the target position computed by the protocol. support(s) and
max(s) denote respectively the support set and set of maximal multiplicity ele-
ments of s. sec(s) denotes the smallest enclosing circle of positions in s.

The protocol relies on a notion of “cleanliness”, clean robots being those
on the smallest enclosing circle (sec). A target is computed depending on clean
robots only. Unclean robots shall move and gather first as they cannot change the
target. Clean robots may then move, possibly changing the sec and modifying
the target.

Target is defined as follows. In the critical situations where exactly three
inhabited positions are on the sec, it depends on the shape of the triangle (here
isosceles excludes equilateral):

Function target_triangle (pt1 pt2 pt3 : R2.t) : R2.t :=
match classify_triangle pt1 pt2 pt3 with(* Kind of triangle? *)
| Equilateral ⇒ barycenter3_pts pt1 pt2 pt3 (* To barycenter *)
| Isosceles p ⇒ p
| Scalene ⇒ opposite_of_max_side pt1 pt2 pt3
end.

Function target (s : Spect.t) : R2.t :=
match on_SEC (Spect.support s) with (* inhabited loc. on SEC?*)
| nil ⇒ (0, 0) (* None? *)
| pt :: nil ⇒ pt (* Unique loc. on SEC? ⇒ gathered! *)
| pt1 :: pt2 :: pt3 :: nil ⇒ target_triangle pt1 pt2 pt3
| _ ⇒ center (SEC l) (* Gen. case: center of SEC *)
end.

The translation of the algorithm into Gallina is simply:

Definition gatherR2_pgm (s : Spect.t) : R2.t :=
match Spect.support (Spect.max s) with (* max height towers?*)
| nil ⇒ (0, 0) (* None? only happens when no robot *)
| pt :: nil ⇒ pt (* Unique highest tower? go there *)
| _ :: _ :: _ ⇒ (* Otherwise *)

if is_clean s then target s else (* All on SEC/target ? *)
if (0, 0) ∈ (SECT s) then (0, 0) else target s

end.

Note that this is almost exactly an actual robot code.
One of main difficulties in the design of the algorithm is to avoid the invalid

configuration in any execution. This is done by testing the existence of a unique
tower of maximal height and moving towards it if it exists. One can then prove
that starting from a non invalid configuration, an invalid one can never appear.
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Theorem never_invalid :
∀ da config, ¬invalid config

→ ¬invalid (round gatherR2 da config).

It is interesting to notice that the proof of this theorem in R
2 has been reused

from the R case as it is exactly the same.
Robogram gatherR2 achieves Gathering provided that the initial configura-

tion is valid (not bivalent), the expression of soundness shall thus use property
ValidSolGathering, bivalent configurations being the invalid ones.

The main theorem [39] states that for any fair demon, gatherR2 realises
Gathering from any non-bivalent (i.e. non-invalid) configuration.

Theorem Gathering_in_R2 :
∀ d, Fair d → ValidSolGathering gatherR2 d.

The proof is led by well-founded induction on a well-founded measure decreas-
ing for each execution round. If all robots are gathered, then it is done. If not,
by fairness some robots will have to move, thus a robot will be amongst the first
to move. (Formally, this is an induction using fairness.) One concludes by using
the induction hypothesis (of the well-founded induction) as this round decreases
the measure on configurations. This proof of the main theorem is interestingly
small as it is only 20 lines long. The whole file dedicated to specification and
certification of the algorithm consists of 480 lines of definitions, specification and
intermediate lemmas, and 2750 lines of actual proof.

Correctness, Weaker Robots, Flexible Movements. Movements have however not
to be always rigid. One may also assume different capabilities for robot sensors,
for example denying them the ability to detect the exact number of robots at a
location, only knowing if it inhabited or not.

FSYNC Gathering admits a solution in that setting, as shown and formally
proved by Balabonski et al. [13]. Assuming different capabilities for the robots
or for the way they move amounts to modifying parts of the instantiation.

There are at least two robots, none of which is Byzantine.
As there is no detection of multiplicity, the number information cannot be

provided as an entry to the algorithm. Instead of a multiset of robots’ locations
as before, one can now take as a relevant spectrum the set of inhabited locations.

In this flexible FSYNC setting, demonic actions provide for each of the oblivi-
ous robots both its new self-centred frame of reference, and the ratio of its actual
movement over (the distance to) its computed destination. The new conforma-
tion of any robot is thus determined in function of this ratio, and the parameter δ.

The specification of space is, though, left untouched.
The algorithm by Balabonski et al. [13] simply brings robots to the barycenter

of inhabited locations, that is to the barycenter of the elements in the spectrum.

Definition ffgatherR2_pgm (s : Spect.t) : R2.t :=
barycenter (Spect.M.elements s).
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Here again the proof of the main theorem is based on a well-founded induction
over a measure (well-founded, and decreasing for each round). It is about 20 lines
long. The whole file dedicated to the theorem, thus including the definition of
that measure, and a proof of its properties, consists of 170 lines of specifications
for 1015 lines of actual proofs script.

Exploration in Graphs. Problems on graphs, and on some of their particular
instances, like rings, have also been investigated using a formal framework, in
particular Exploration with Stop (or Terminating Exploration).

Achieving Exploration with stop (or Terminating Exploration) consists in:

1. having all vertices to be inhabited at some point during the execution (namely,
exploration), and

2. ensuring that robots eventually stop moving once the exploration is complete.

This specification is formalised using, for the exploration part, a predicate
Will_be_visited such that, if v is a vertex and exc is an execution, then
Will_be_visited v e holds if and only if there is a robot inhabiting the vertex
v in at least one configuration of exc:

Definition Will_be_visited v exc :=
Stream.eventually (Stream.instant (is_visited v)) exc.

where is_visited v c holds for any configuration c (in this case, the head of
exc) that has a robot on the vertex v. In a successful exploration, all of the
vertices will be visited.

An execution is said to be terminating if it contains a configuration identical
to all of its successive following ones. In other terms, the execution has a point
from which it stalls forever. This property is formalised by combining the usual
temporal operators:

Definition Stall (exc : execution) :=
Config.eq (Stream.hd exc) (Stream.hd (Stream.tl exc)).

Definition Stopped (exc : execution) :=
Stream.forever Stall exc.

Definition Will_stop (exc : execution) :=
Stream.eventually Stopped exc.

A full solution to the problem of terminating exploration must then be a
robogram the execution of which, for any demon, and from any configuration,
satisfies the previous properties: exploration and termination.

Definition FullSolExplorationStop (r : robogram) :=
∀ d config, (∀ l, Will_be_visited l (execute r d config))

∧ Will_stop (execute r d config).

Exploration may not be possible to achieve depending on the parameters
of the model, and Balabonski et al. [14] prove formally the impossibility for
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oblivious robots with multiplicity detection to explore a ring, starting from a
configuration without tower, in an fair SSYNC setting, when the number of
robots divides the number of vertices, i.e. the size of the ring.

The module of location is instantiated with the provided Ring module, built
from the graph interface implemented with a ring Z/nZ.

There are k robots, at least two, and none of which is Byzantine.
A suitable spectrum in this context is a multiset of inhabited locations, one of

which being highlighted as being the robot’s position. The spectrum is extracted
up to isomorphism so as to get rid of any vertex name information. This isomor-
phism is the one provided by the demonic action.

Expressing that starting for a valid configuration (that is a configuration
without any tower) a protocol can achieve Exploration with Stop for all fair
demons is straightforward as it suffices, akin to the Gathering case where bivalent
configurations are forbidden, to add the initial conditions to the characterisation
of a terminating exploration.

Definition ValidSolExplorationStop (r : robogram) :=
∀ (c : configuration) (d : demon), Valid_starting_conf c

→ Fair d
→ (∀ l, Will_be_visited l (execute r d c))

∧ Will_stop (execute r d c).

where the predicate Valid_starting_conf has been here defined to hold for
configurations without towers.

The main theorem states that no robogram fulfils
ValidSolExplorationStop when the number k of robots divides the size n
of the ring.

Theorem no_exploration_k_divides_n :
(n mod k) = 0 → ∀ (r : robogram),

¬(ValidSolExplorationStop r).

The relevant file consists of around 220 lines of specifications for 2200 lines
of actual proof scripts.

4 Conclusion

A significant amount of recent research effort focused on using formal methods
for the purpose of building correct mobile robot protocols.

On the one hand, Model-checking and its derivatives is easy to use but the
current (intuitive) model it is based upon has reach its limits (only discrete
space is modelled, small fixed set of robots, parametrization hinders the set of
specification that can be verified). To use those tools in other settings (such as
continuous space, or arbitrary number of robots, etc.), a different (more abstract)
model is required. A key difficulty when doing so is to ensure that the initial
properties about mobile robots one wants to verify are still relevant using the
new modelling.
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On the other hand, Proof assistant and the Pactole framework proved mod-
ular enough to accommodate all settings seen in the mobile robots literature,
prove both impossibilities and algorithms, for an arbitrary number of robots. The
downside of the methodology is its relative difficulty in writing actual proofs that
permit to define the theorems that have been specified. However, thanks to recent
libraries developed in Pactole, specifying models, problems, and properties has
become much easier.
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Abstract. We consider simple models of swarms of identical, anony-
mous robots: they are points in the plane and “see” only their neighbors
(robots within distance one). We will deal with distributed local protocols
of such swarms that result in formations like “gathering at one point”. The
focus will be on protocols assuming a continuous time model. We present
upper and lower bounds on their run time and energy consumption, and
compare different protocols both theoretically and experimentally.

Keywords: Robots · Continuous · Gathering

1 Introduction

Envision a scenario where n mobile robots, each having a limited viewing range,
are placed in the Euclidean plane and are supposed to establish a certain forma-
tion. To reach this formation, each robot has to plan and perform its movement
based solely on the positions of the other robots within its viewing range, which
we normalize to 1. In particular, the robots are not provided with global view,
communication, or long term memory.

This chapter considers one of the most basic formation problems: the
Gathering problem. Here, the n robots must move such that, eventually, they
gather at a single, not predetermined point. While performing their protocols,
it is crucial that the visibility graph spanned by the robots stays connected; if
a robot loses sight of all other robots, no deterministic, local protocol can be
guaranteed to reconnect the lost robot to the remaining formation.

Most protocols for such formation problems are based on some kind of dis-
crete round model. For example, Ando et al. [1] and Degener et al. [4] show
that gathering can be achieved with a simple protocol by robots with a limited
visibility in a synchronous, discrete time model in O

(
n2

)
rounds. For the same

problem with an unlimited viewing range, Cohen and Peleg [3] analyze a simple
algorithm in several asynchronous time models. Further publications consider the
Gathering problem in similar time models, see for example [2,6,9–11,16,17].

All of the above models have in common that they are based on the so-called
Look-Compute-Move (LCM) model. That is, the robots act in rounds, where each

c© Springer Nature Switzerland AG 2019
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round consists of a Look operation, a Compute operation, and a Move opera-
tion. During the Look operation, a robot determines the positions of all visible
robots in its vicinity. During the Compute operation, the observed information is
used to determine a target point. Finally, during the Move operation, the robot
moves towards the previously computed target point. The specific models differ
in whether these operations are executed synchronously or asynchronously (or
something in between).

A different approach is to use a continuous time model. This was first done by
Gordon et al. [8] for the Gathering problem. In such a continuous time model,
all robots perpetually and at the same time measure and adjust their movement
paths. This causes the trajectories of the robots, who are assumed to have some
constant maximum moving speed, to become (continuous) curves. While this
continuous motion model is somewhat idealized and might seem unrealistic –
given that we assume there is no delay between the robots’ sensors and actors –
it is comparatively close to real applications [14].

This chapter presents some of the more recent results that introduced general
techniques to analyze the time required by such distributed robot formation
protocols in the continuous time model to reach their goal and discusses other
aspects specific to this model.

Chapter Outline. We continue with a formal model description and with the
introduction of continuous robot formation protocols in Sect. 2. Afterward, we
collect some auxiliary results in Sect. 3 that will be used throughout the chapter.
In Sect. 4 we introduce a general class of (not necessarily distributed) robot
formation protocols, so-called contracting protocols, and study their gathering
time. Section 5 introduces a specific protocol of this class and sketches the proof
that this protocol solves the gathering problem in asymptotical optimal time.
We conclude this chapter in Sect. 6, where we discuss the issue of collisions and
how to avoid them.

2 Model Description and Continuous Protocols

Consider a set of n autonomous, mobile robots in the Euclidean plane R
2. The

robots have no spatial dimension and each of them has its own, local coordinate
system. In particular, there is no common “origin” notion and no common direc-
tional notions like “left” or “right”. All robots have a visual range of 1, allowing
them to perceive other robots that are within this distance and to determine the
relative position of such robots. However, neither can robots distinguish other
robots from one another nor is there any form of multiplicity detection: a robot
can only distinguish whether there is either no robot or at least one robot at a
given position. There is a continuous notion of time and we assume robots move
with a maximum speed of 1. We assume an idealized sensor-actor mechanism,
allowing a robot to act instantly on any data perceived from within its visual
range.
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In order to convey the basics and characteristics of continuous robot forma-
tion problems (in contrast to their more standard discrete time pendants), we
concentrate on the probably most basic formation problem: gathering.

Definition 1 (Gathering Problem). Consider n autonomous, mobile
robots in the Euclidean plane. In the Gathering problem, we seek to gather
all robots at a single point.

A (gathering) protocol is an algorithmic description that takes the current robot
positions and determines how each robot moves. We are mostly interested in
distributed protocols, where each robot determines its movement by the same
algorithm that uses only information available to the respective robot (basically
the relative positions of other robots within its visual range). The quality of a
protocol is measured by its gathering time, the worst-case time (over the set of
all possible initial robot positions) required by the protocol to gather all robots.

General Notation. Before we dive deeper into the specifics of continuous robot
formation protocols, we introduce some general notation. For an integer m ∈ N

define [m] := { 1, 2, . . . ,m }. For x ∈ R
2 we use ‖x‖2 to denote the Euclidean

norm (vector length) of x. For S1, S2 ⊆ R and c1, c2 ∈ R define c1 ·S1 + c2 ·S2 :=
{ c1 · s1 + c2 · s2 | s1 ∈ S1, s2 ∈ S2 }. For x, y ∈ R

2 let � (x, y) ∈ [−π, π] denote
the signed1 angle formed by the vectors x and y.

Fix an arbitrary ordering of the n robots. A configuration c = (ci)
n
i=1 is a

vector whose i-th element ci ∈ R
2 specifies the positions of the i-th robot. Define

the polygon CHc ⊆ R
2 as the convex hull of all robot positions in configuration c.

Furthermore, let Bordc := { i | ci ∈ ∂CHc } be the set of robots that are at the
boundary of the configuration’s convex hull. Similarly, let Cornc ⊆ Bordc be the
set of robots that are at a vertex of the polygon CHc. A robot from Bordc is
called border robot and a robot from Cornc is called corner robot. The diameter
Δc := max { ‖ci − cj‖2 | i, j ∈ [n] } of configuration c is the maximum distance
between any two robots.

The visibility graph Gc = (Vc, Ec) of configuration c is the Euclidean graph
whose vertices are the robots’ positions and in which two vertices are con-
nected by an edge if and only if the two corresponding robots are within
viewing range of each other. More formally, Vc := { ci | i ∈ [n] } and Ec :=
{ {u, v } | u, v ∈ Vc, u �= v, ‖u − v‖2 ≤ 1 }. A configuration is called connected if
Gc is connected. We use Cn to denote the set of all connected configurations of
n robots.

Continuous Protocols. A continuous robot formation protocol P specifies
how, at any time t ≥ 0, each robot calculates its velocity vector, which dictates
the robot’s current speed and its movement direction. Given a continuous robot
formation protocol P, let c(t) = (ci(t))

n
i=1 be the configuration at time t, such

that the function ci:R≥0 → R
2 is the trajectory of the i-th robot. For i ∈

[n] and t ≥ 0 let vi(t) denote the velocity vector of the i-th robot at time t.
1 Without loss of generality, we say an angle is positive if it is measured counterclock-

wise and negative if it is measured clockwise.
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That is, at time t robot i moves with speed ‖vi(t)‖2 in direction vi(t). We use
si(t) := ‖vi(t)‖2 as a shorthand for the speed of robot i at time t.

The trajectories ci are continuous but not necessarily differentiable. Indeed,
robots can change their speed and movement direction non-continuously, result-
ing in a non-differentiable trajectory. However, natural protocols have right-
differentiable trajectories, and we restrict our study to such protocols. In partic-
ular, this allows us to see robot i’s velocity vector vi:R≥0 → R

2 as the (right)
derivative of ci and we can write vi = ċi, where the differentiation is understood
to be a right derivative whenever necessary.

It will be useful to consider how robots move relative to each other. For this
purpose, we define the angles βi,j(t) := � (vi(t), cj(t) − ci(t)). That is, βi,j(t) is
the signed angle between the velocity vector of robot i and the line segment
connecting robot i and robot j.

Figure 1 illustrates the notions introduced above.

(a) (b)

Fig. 1. (a) An example configuration c for n = 13 robots with the corresponding
visibility graph Gc and the convex hull CHc. The convex hull has 7 border robots, 6 of
which are also corner robots. (b) The current movement vector vi(t) of a robot i, its
current relative positional angle βi,j(t) with respect to robot j and example trajectories
(in blue). (Color figure online)

3 Auxiliary Results

This section collects some basic results that turn out to be useful in the analysis of
continuous robot formation protocols. We start with some simple trigonometric
inequalities.

Lemma 2

(a) For α ∈ [0, π/2] we have cos α ≥ 1 − 2α/π.
(b) For α ≥ 0 we have cos α ≥ 1 − α2/2.
(c) For φ ∈ [0, 1] and α ∈ [0, π] we have cos(φ·α)+cos((1−φ)·α) ≥ 2·(1 − α/π)2.
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Proof

(a) The statement follows from basic calculus by realizing that the graph of
f(x) = 1 − 2x/π is a secant line that intersects the graph of cos(x) at x = 0
and x = π/2.

(b) The statement follows by realizing that cos α and 1 − α2/2 are equal for
α = 0 and that the first term’s derivative (− sin α) is as least as large as the
second term’s derivative (−α) for any α ≥ 0.

(c) For x, y ∈ R we have the trigonometric identity cos x + cos y = 2 · cos((x +
y)/2)·cos((x−y)/2) (see [15, Identity 4.21.8]). We apply this to the left-hand
side of the desired inequality and calculate

cos(φ · α) + cos((1 − φ) · α) = 2 · cos
(α

2

)
· cos

(
2φ − 1

2
· α

)

≥ 2 ·
(
cos

(α

2

))2

≥ 2 ·
(
1 − α

π

)2

.

(1)

The first inequality uses (2φ − 1)/2 · α ∈ [−α/2, α/2] ⊆ [−π/2, π/2]. Thus,
the cosine in the expression is minimized when (2φ − 1)/2 · α = α/2. The
second inequality uses the lemma’s first statement. 	

The next lemma is central for analyzing the gathering time of protocols. Our

general progress measure is based on how the robots’ convex hull changes over
time. We quantify this change by studying how the distance between neighboring
corner robots changes. To this end, the following lemma expresses the change in
the distance between two robots i and j in terms of their current speeds si(t) and
sj(t) and their direction of movement relative to each other (the angles βi,j(t)
and βj,i(t) between their velocity vectors and their connecting line). See Fig. 2
for an illustration.

Lemma 3. Consider a robot formation protocol P and fix two robots i and j.
The distance d(t) := ‖ci(t) − cj(t)‖2 between i and j at time t changes with speed

ḋ(t) = −si(t) · cos βi,j(t) − sj(t) · cos βj,i(t). (2)

Proof. Define D:R≥0 → R
2, t �→ cj(t) − ci(t), such that d(t) = ‖D(t)‖2. We use

Dx(t) to refer to the x-component of D(t) and, similarly, Dy(t) to refer to the
y-component of D(t). Fix a time t ≥ 0. Without loss of generality, we can
translate and rotate the coordinate system such that D(t) = (d(t), 0). This
immediately yields

ḋ(t) =
(

Dx(t)
d(t)

,
Dy(t)
d(t)

)
·
(

Ḋx(t)
Ḋy(t)

)
= Ḋx(t). (3)

Note that Ḋx(t) is the x-component of Ḋ(t), which can be written as

Ḋ(t) = ċj(t) − ċi(t) = vj(t) − vi(t)
= sj(t) · (− cos βj,i(t), sin βj,i(t)) − si(t) · (cos βi,j(t), sin βi,j(t)).

(4)

Together, Eqs. (3) and (4) imply the lemma’s statement. 	
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1

d(t)

vj(t)

vi(t)

βi,j(t)

βj,i(t)

Fig. 2. Illustration of Lemma 3

4 Contracting Robot Formation Protocols

A natural property of protocols that solve the Gathering problem is that robots
move “towards each other”, causing the convex hull of all robot positions to
contract over time. In the following we define the class of contracting robot
formation protocols – which formalizes this intuitive property – and prove general
upper and lower bounds for this class.

Define p(t) := |{ ci(t) | i ∈ Cornc(t) }| as the number of vertices of the poly-
gon CHc(t). Let m1(t),m2(t), . . . , mp(t)(t) denote the vertices ordered counter-
clockwise along the boundary of CHc(t) (starting at an arbitrary vertex). For
convenience, define m0(t) := mp(t)(t) and mp(t)+1(t) := m1(t).

Definition 4 (Length). The length l(t) of the configuration at time t is

l(t) :=
p(t)∑

ι=1

‖mι(t) − mι−1(t)‖2. (5)

We use the shorthand l := l(0) to denote the length of the initial configuration.

Note that the robots have solved the Gathering problem at time t if and
only if l(t) = 0. This property (and the fact that most reasonable protocols do
not increase a configuration’s length) make the length a good way to measure
the progress of a gathering protocol. Next we define a quite general class of
(not necessarily distributed) robot formation protocols. The definition, which
is originally from [13], simply requires that corner robots move with maximum
speed in some direction within the robots’ convex hull.

Definition 5 (Contracting [13]). Consider a continuous robot formation pro-
tocol P. We say P is contracting if for any time t ≥ 0 with l(t) > 0 each
corner robot i ∈ Cornc(t) moves with speed si(t) = 1 along the velocity vector
vi(t) ∈ (mι−1(t) − mι(t)) · R≥0 + (mι+1(t) − mι(t)) · R≥0.

See Fig. 3 for an illustration.
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m1(t)

m2(t)

m3(t)
m4(t)

m5(t)

m6(t)

Fig. 3. Possible movement vectors for a contracting protocol. Note that the velocity
vectors of corner robots have all the same length (1), while the border robot may
move at a slower speed. The movement of robots within the convex hull is completely
unrestricted.

Even though Definition 5 does not specify the movement of general border
robots, it has an interesting implication for their movement. Consider a border
robot j ∈ Bordc(t) \ Cornc(t) between two corner robots i1, i2 ∈ Cornc(t) at time
t of a contracting robot formation protocol P. Assume that j “falls behind” at
time t, such that for any small enough ε > 0 j is a corner robot (at a position
different from i1 and i2) in configuration c(t + ε). Definition 5 requires that j
moves with speed 1 towards the line connecting i1 and i2 for any such ε. In the
worst case this line moves with a speed of at most 1 away from j (if both i1 and
i2 move accordingly). Thus, the distance between j and the line connecting i1
and i2 cannot increase at time t + ε. But if that holds for any ε > 0, j cannot
leave the line in the first place. In other words, contracting protocols will not
create new corners along the robots’ convex hull.

The above phenomenon illustrates an important aspect of continuous strate-
gies and is also known as Zenoness (see [8]). The continuous nature of the
system – which allows for an instant and continuous course correction – makes it
possible that collinear robots (like corner robots and any border robots between
them) remain collinear.

4.1 Gathering Time of Contracting Protocols

With the above notions we can formulate a general result that bounds the gath-
ering time of any contracting robot formation protocol.

Theorem 6 ([13]). Consider a continuous robot formation protocol P started
in a configuration of n robots and of diameter Δ. If P is contracting, then it has
gathering time at most π · n · Δ/8.

Proof. Fix a time t and consider the convex hull CHc(t) formed by the robots’
positions at time t. The robots have gathered at time t if and only if the length
l(t) of the robots’ convex hull equals zero. We show that at any time t with
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l(t) > 0, the configuration’s length decreases with a speed of at least 8/n. Since
the initial length is at most 2π · Δ/2, this implies the theorem’s statement.

So fix a time t ≥ 0 with l(t) > 0. Recall the definition of the vertices
m1(t),m2(t), . . . ,mp(t)(t) of the robots’ convex hull and of the configuration’s
length l(t) =

∑p(t)
ι=1 ‖mι(t)−mι−1(t)‖2. To avoid double indices, we make a slight

abuse of notation and identify ι with one of the robots positioned on mι(t). In
particular, we write vι(t) for the velocity vector of the robots positioned at mι(t).
Similarly we write βι,ι−1(t) and βι−1,ι(t) for the corresponding angles between
robots positioned at mι(t) and mι−1(t). Note that, since the robot formation
protocol P is contracting, these vertices move with speed sι(t) = 1. Define
dι(t) := ‖mι(t) − mι−1(t)‖2 as the distance between the corner robots at mι(t)
and mι−1(t). By Lemma3

ḋι(t) = − cos βι,ι−1(t) − cos βι−1,ι(t). (6)

For ι ∈ [p(t)] let αι(t) ∈ [0, π] denote the inner angle of the polygon CHc(t) at
vertex mι(t). Since the robot formation protocol P is contracting, the velocity
vector vι(t) points towards the inside of the robots’ convex hull, such that αι(t) =
βι,ι−1(t) + βι,ι+1(t). Since l(t) =

∑p(t)
ι=1 dι(t), we can take the derivative of l(t)

and apply Eq. (6) to get

l̇(t) =
p(t)∑

ι=1

(− cos βι,ι−1(t) − cos βι−1,ι(t))

= −
p(t)∑

ι=1

(cos βι,ι−1(t) + cos βι,ι+1(t)).

(7)

Applying Lemma2(c) to the last expression yields

l̇(t) ≤ −2 ·
p(t)∑

ι=1

(
1 − αι(t)

π

)2

= − 2
π2

·
p(t)∑

ι=1

(π − αι(t))
2
. (8)

Now we first use the Cauchy-Schwarz inequality and then that the sum of internal
angles of a polygon with p vertices equals (p − 2) · π to get

l̇(t) ≤ − 2
p(t) · π2

·
⎛

⎝
p(t)∑

ι=1

(π − αι(t))

⎞

⎠

2

= − 2
p(t) · π2

· (p(t) · π − (p(t) − 2) · π)2

≤ − 8
p(t)

≤ − 8
n

.

(9)

As argued at the beginning of the proof, this yields the desired statement. 	
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In Theorem 6 we did not restrict the configuration to be connected. As long
as the protocol (which could be executed by an omniscient observer that knows
where to move the robots) is contracting, the stated bound holds. If we start in a
connected configuration, as required for any truly distributed protocol restricted
by the robots’ visual range, we see that the initial diameter is at most n−1, yield-
ing a bound of π/8 · n2. In fact, if instead of bounding the initial configuration’s
length by 2π · Δ/2 in the proof of Theorem 6 we use the bound l(0) ≤ 2(n − 1)
(which can easily be shown, see [12]), we get the following corollary:

Corollary 7 ([13]). Consider a continuous robot formation protocol P started
in a connected configuration of n robots. If P is contracting, then it has gathering
time at most n2/4.

4.2 Worst-Case Contracting Protocols

It is not difficult to see, that the upper bound of O
(
n2

)
from Corollary 7 is

tight in the sense that there are contracting protocols and corresponding initial
configurations for which the gathering time is at least Ω

(
n2

)
. In fact, if we assume

that all robots are positioned at corners of a regular polygon and move towards
their counterclockwise neighbor, we get a situation that resembles the so-called
n-bugs problem [18], which is known to have a quadratic convergence speed. The
next lemma provides this result and a simple proof using our terminology.

Lemma 8. There is a contracting robot formation protocol P and a connected
initial configuration c ∈ Cn such that the gathering time is at least n2/(2π2).

Proof. Assume the initial configuration is such that the robots’ convex hull is an
n-sided regular polygon with edge length 1 (the robots’ visual range) and assume
that each robot moves with speed 1 towards its counterclockwise neighbor. Since
all robots move symmetrically, the configuration will stay an n-sided regular
polygon (which eventually degenerates to a point) at any time t ≥ 0. Now fix a
time t ≥ 0 with l(t) > 0. Consider Eq. (7) from the proof of Theorem 6, which
gives the speed at which the configuration’s length changes. Since the current
convex hull is an n-sided regular polygon, we have for each ι ∈ { 1, 2, . . . , p(t) }
that βι,ι+1 = 0 and βι,ι−1 = (n−2)·π/n = π−2π/n. With this, Eq. (7) simplifies
to

l̇(t) =
n∑

ι=1

−(cos(π − 2π/n) + cos 0)

= −n · (1 − cos(2π/n))

≥ −n · 2π2/n2 = −2π2/n,

(10)

where the inequality uses Lemma 2(b). Since the initial configuration has length
n, this yields the lemma’s claim. 	


See Fig. 4 for an illustration of Lemma8. When introducing the Move-on-
Bisector protocol in the next section, we will also encounter a “best-case” con-
tracting protocol (global Move-on-Bisector).
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Fig. 4. Configuration, velocity vectors, and trajectories of the n-bug problem from
Lemma 8.

5 Near-Optimal Continuous Protocols for Gathering

Section 4 showed that any contracting robot formation protocol has at most
quadratic gathering time and that this bound is tight in the sense that there
are contracting protocols (and corresponding initial configurations) that have at
least quadratic gathering time. However, there is still hope that a specific con-
tracting protocol can have a much better – maybe even linear – gathering time.
This is indeed true and has been proved for the so-called Move-on-Bisector
protocol in [5]. This section provides a sketch of this result; see [5] for the full
proof (and further related results).

5.1 The Move-on-Bisector Protocol

At each time t, each robot i observes all positions of its neighbors (i.e., other
robots within its visual range). It then computes the local convex hull CHi(t) of
its own and any observed positions. Given this local convex hull, robot i performs
the following actions:

(a) If i is on a vertex of CHi(t), it moves with speed 1 along the angle bisector
of this vertex.

(b) If i is not on a vertex but on the boundary ∂CHi(t) of the local convex hull,
it moves with the corresponding line such that it stays on it and maintains
the ratio of distances between its two neighbors on the boundary.

(c) If i is strictly inside CHi(t), it does not move.

This protocol was originally suggested by Gordon et al. [8] (using a slightly
different description and not under this name). See Fig. 5a for an illustration.
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Fig. 5. (Local) Move-on-Bisector vs. global Move-on-Bisector. Note that the
lengths of the velocity vectors is not accurate. (Color figure online)

Global Move-on-Bisector – A Best-Case Contracting Protocol.
Before we analyze the Move-on-Bisector protocol, let us give an intuition why
it should be fast. Remember that our definition of contracting robot formation
protocols is not restricted to distributed protocols. So, consider a global variant
of Move-on-Bisector, where the only difference in the protocol description
is that robots use the global convex hull CHc(t) instead of their respective local
convex hull CHi(t). This is obviously not a distributed protocol, as robots do not
have, in general, knowledge of the global convex hull. However, it is a contracting
protocol (see also Fig. 5b). In fact, in a sense this is an “optimal” contracting
gathering protocol: Using an analysis similar to Sect. 4.1, one can see that, as
long as the robots have not yet gathered, the length of the configuration at time
t decreases at a constant rate, yielding a gathering time that is linear in the
diameter Δ of the initial configuration. Since robots move at unit speed, this is
asymptotically optimal.

Unfortunately, we cannot analyze the actual Move-on-Bisector protocol
in the same way as its global counterpart. Since robots move not along the ver-
tices of the global convex hull, the length of the configuration does not necessarily
decrease at a constant speed. However, the next section introduces a “local” vari-
ant of a configuration’s length, which we call stretch. With some additional work,
we can show (Sect. 5.3) that not only does this stretch decrease at a constant
rate but it is also linear in the configuration’s diameter. This yields the same
asymptotical optimal guarantee as the global Move-on-Bisector protocol.

5.2 Preliminaries

Instead of using the robots’ convex hull and its circumference as a progress
measure, our progress measure for the Move-on-Bisector protocol is based
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on the simple polygon spanned by the robots (the configuration polygon) and its
circumference (its stretch).

Definition 9 (Configuration Polygon). Consider a configuration c with its
visibility graph Gc. This graph defines a simple polygon Polc. We call this polygon
the configuration polygon of configuration c.

Note that the configuration polygon or parts of it might be degenerated (e.g., to
a line), as can be seen in the example from Fig. 6.

Define q(t) as the number of vertices of the configuration polygon Polc(t).
Let w1(t), w2(t), . . . , wq(t)(t) denote the vertices ordered counterclockwise long
the boundary of Polc(t) (starting at an arbitrary vertex). For convenience, define
w0(t) := wq(t)(t) and wq(t)+1(t) := w1(t). Similar to the length of the configura-
tion we can define the stretch of a configuration as follows:

Definition 10 (Stretch). The stretch s(t) of the configuration at time t is

s(t) :=
q(t)∑

ι=1

‖wι(t) − wι−1(t)‖2 (11)

We use the shorthand s := s(t) to denote the stretch of the initial configuration.

For a vertex wι(t) of the configuration polygon at time t we define αι(t) ∈
[0, 2π) as the inner angle of the configuration polygon at that vertex. We use
W(t) := { ι ∈ [q(t)] | αι(t) < π } to characterize the set of all convex angles of
the polygon and W(t) := [q(t)] \ W(t) for the remaining (concave) angles. See
Fig. 6 for an illustration of the notions defined above.

An important observation is, that a robot at the vertex wι of the configuration
polygon at time t is not necessarily on the vertex of its local convex hull. Indeed,
if the inner angle at that vertex is concave (>π), it may be inside its local convex
hull and may, thus, not move. However, any robot at a vertex that forms a convex
inner angle is guaranteed to move, as they must be on a vertex of their local
convex hull. These are exactly the vertices wι with ι ∈ W.

Note that while the trajectory of the robots is continuous, the direction in
which a robot moves may change in a non-continuous way. This may happen
if the visibility graph changes. Moreover, a change in the visibility graph may
also influence the length of the current configuration in a non-continuous way.
However, it is not hard to see (and it has been proved in [8]) that once two robots
are within visual range, they will not lose visibility. Thus, there can be only a
finite amount of these discontinuities. Moreover, by the definition of the visibility
graph, the number of the configuration polygon’s vertices cannot increase at such
a discontinuity. This leads to the following observation.

Observation 11. A change in the visibility graph cannot increase the current
configuration’s stretch.
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Fig. 6. The configuration polygon and its vertices of a configuration c and two examples
for the inner angles αι(t) (the image omits the time parameter to improve readability).
Note that it is degenerated at several places, causing a single robot position to represent
possibly multiple vertices (at most 6 by Lemma 14). The stretch is the length of the
red boundary (where degenerated parts are counted twice).

5.3 Analysis of the Move-on-Bisector Protocol

We are now ready to sketch the analysis of the Move-on-Bisector protocol.
The interested reader will find the full analysis in [5]. First we show, similar to
the proof of Theorem 6 a lower bound on the rate at which the current configura-
tion’s stretch decreases as long as the robots have not yet gathered (Lemmas 12
and 13). Afterward, we argue that a configuration’s stretch is linear in its diam-
eter. Combining these easily yields the desired bound on the gathering time of
Move-on-Bisector (Theorem 15).

Lemma 12. The stretch of a configuration at time t changes at a rate of

ṡ(t) ≤ −2
∑

ι∈W(t)

cos(αι(t)/2). (12)

Proof. Fix a time t ≥ 0 and ι ∈ [q(t)]. We consider how the distance d(t) :=
‖wι(t) − wι(t)‖2 changes. Let sι(t) denote the speeds of vertex ι at time t.2 Set
βι(t) := αι(t) if ι ∈ W(t) and βι(t) := 2π − αι if ι �∈ W(t). By Lemma3, the
distance changes at a rate of

ḋ(t) = −sι(t) · cos(βι(t)/2) − sι−1(t) · cos(βι−1(t)/2). (13)

Note that the speed of any vertex wι(t) with ι ∈ W(t) equals 1. Summing over
all ι ∈ { 1, 2, . . . , q(t) } we get that the current configuration’s stretch changes
2 As in the proof of Theorem 6, we identify vertices with the robots positioned on

them.
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at a rate of ṡ(t) = −2
∑

ι∈[q(t)] sι(t) · cos(βι(t)/2) ≤ −2
∑

ι∈W cos(βι(t)/2) =
−2

∑
ι∈W cos(αι(t)/2). 	


Lemma 13. The stretch of a configuration at time t decreases at a rate of at
least 4.

Proof. Since the configuration polygon is a (possibly degenerated) simple poly-
gon, the sum of its inner angles αι(t) is exactly (q(t) − 2) · π. Define the angles
βι(t) := αι(t) if ι ∈ W(t) and βι(t) := 2π − αι(t) if i �∈ W(t). Together with
Lemmas 12 and 2(a) we get that the current configuration’s stretch decreases at
a rate of at least

2
∑

ι∈W(t)

cos(αι(t)/2) ≥ 2
∑

ι∈W(t)

(
1 − αι(t)

π

)
= 2

∑

ι∈W(t)

(
1 − αι(t)

π

)

+ 2
∑

ι �∈W(t)

(
1 − π

π

)
≥ 2

∑

ι∈[q(t)]

(
1 − αι(t)

π

)
= 2q(t) − 2(q(t) − 2) = 4,

(14)

finishing the proof. 	

Together, Observation 11 and Lemma 13 yield a bound of O(s) on the gath-

ering time. To get our desired bound of O(n), we use a result from [5] showing
that s ≤ 6n. This might seem trivial at first glance: After all, the stretch s cor-
responds to the length of a chain of actual robots that forms the configuration
polygon. However, note that while the configuration polygon is simple, it might
be degenerated, such that, for example, parts of it may form a line. Thus, the
robots along the above-mentioned chain are not necessarily unique. However,
using the basic geometry of the underlying visibility graph, one can show that
no node appears more than 6 times in this chain.

Lemma 14 ([5, Lemma 5.7]). For any configuration of n robots and stretch s,
we have s ≤ 6n.

Combining Observation 11 and Lemmas 13 and 14, we immediately get the
following result.

Theorem 15. Consider an initial configuration of n robots and stretch s. In the
worst-case, the Move-on-Bisector protocol gathers the robots in time at most
s/4 ≤ 3n/2. This is asymptotically optimal for the gathering problem.

6 Avoiding Collisions

The final section of this chapter gives a brief outlook of how one can avoid (early)
collisions when gathering multiple point robots. Here, by collision we mean situ-
ations where two or more robots share the same position in the Euclidean plane.
A configuration is called collision-free if no two robots share the same position.
When the robots are gathered, we have a collision between all robots. We call
this the final collision, which is not avoidable if we want to gather. Any collision
between two or more robots before all robots are gathered is called an early
collision. The question we study in this section is:
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Are there continuous gathering protocols that, if started in a collision-free
configuration, guarantee that no early collisions happen?

Such a gathering protocol is called collision-free.
Many natural gathering protocols, including the Move-on-Bisector pro-

tocol, are prone to early collisions. In fact, in the analysis of both discrete and
continuous setting, collisions are often seen as a success, as robots that collided
behave identical (in synchronous and deterministic robot formation protocols).
Thus, there can be at most n−1 collisions, allowing us to use the number of colli-
sions as a progress measure. However, from a practical standpoint and, collisions
should be avoided as much as possible.

The rest of this section surveys recent results [12,13] that made progress
towards answering the above question.

6.1 A Candidate for an Almost Collision-Free Gathering Protocol

The Go-to-the-Center protocol is another simple and natural gathering pro-
tocol. Here, each robot moves with speed 1 towards the center of the minimum
enclosing circle of all robot positions it currently sees.

In the discrete setting, this algorithm was introduced by Ando et al. [1] who
showed that it indeed gathers all robots, but the authors provided no bound on
the gathering time. A quadratic upper bound in this discrete setting was later
shown by Degener et al. [4]. In the continuous setting, we can simply use our
framework from Sect. 4: Indeed, it is easy to verify that Go-to-the-Center is
a contracting protocol [13]. This allows us to apply Corollary 7 to get a quadratic
bound on its gathering time.

Unfortunately, Go-to-the-Center is also prone to collisions. In fact, the
analysis of its discrete variant [4] is partly based on collisions. However, as noted
by Li et al. [12], one can slightly change the definition of Go-to-the-Center
to get a promising candidate for an collision-free, continuous gathering protocol
(or almost collision-free; see below).

Go-to-the-Gabriel-Center. We can rephrase Go-to-the-Center as
follows: each robot moves with speed 1 towards the center of the minimum
enclosing circle of its (inclusive) neighborhood in the visibility graph. A variant
of Go-to-the-Center – called Go-to-the-Gabriel-Center and due to Li
et al. [12] – is defined using the same phrasing but uses the so-called Gabriel
graph [7] instead of the visibility graph:

Definition 16 (Gabriel Graph). The Gabriel graph GGc = (V Gc, EGc) of
configuration c is a subgraph of the visibility graph. It has the same vertex set
V Gc = Vc = { ci | i ∈ [n] }. The edge set EGc ⊆ Ec consists of all edges {u, v } ∈
Ec such that the interior of the smallest enclosing circle of u and v does not
contain another robot’s position.

See Fig. 7 for an example of how the Gabriel graph differs from the visibility
graph.
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Fig. 7. Visibility graph vs. Gabriel graph.

With this definition, we can now formally define the Go-to-the-Gabriel-
Center protocol. Here, at each time t each robot i performs the following
actions:

(a) Robot i computes the minimum enclosing circle Ci(t) of all robots in its neigh-
borhood (including i itself) of the Gabriel graph GGc(t). Let Ti(t) denote
the center of Ci(t) (robot i’ s target point).

(b) If ci(t) equals Ti(t), robot i moves with Ti(t).
(c) If ci(t) is different from Ti(t), robot i moves with speed 1 towards Ti(t).

As with the Go-to-the-Center protocol, it is easy to see (and has been
proved in [13]) that the Go-to-the-Gabriel-Center protocol is contracting
and, thus, gathers in quadratic time.

6.2 Collisions in the Go-to-the-Gabriel-Center Protocol

Experimental results indicate that for “typical” initial configurations, the Go-
to-the-Gabriel-Center protocol causes no early collisions. In fact, in the one
dimensional case (where all robots start on a line) this can be easily proved [12].
However, in the two dimensional case there are, in fact, some (quite symmetric)
situations that exhibit early collisions. See Fig. 8 for an example. One of the
central open questions left in [12] is whether the following conjecture is true.

Conjecture 17. The set of initial configurations that lead to early collisions of
the Go-to-the-Gabriel-Center has Lebesgue measure 0.

A less formal variant of this conjecture states that independent small random
perturbations of the robots’ initial positions ensure that, with probability 1, there
will be no early collisions. Note that even for the special case of n = 4 robots, a
proof of Conjecture 17 seems challenging.

Even if Conjecture 17 is true, it remains open whether a distributed continu-
ous gathering protocol can achieve truly collisionless gathering. There is currently
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Fig. 8. Early collisions in the Go-to-the-Gabriel-Center protocol.

only one continuous gathering protocol [13] that completely avoids early colli-
sions, but it requires a considerably more complex robot model. Namely, robots
must be non-oblivious (they have one memory bit), chiral (they share a common
left/right orientation), and luminous (the contents of a robot’s memory bit is
visible to other robots). Additionally, this protocol requires quadratic time to
gather all robots, so it is much slower than the Move-on-Bisector protocol
from Sect. 5. So even using a more complex robot model like the one above, it
would be interesting to find a collision-free continuous gathering protocol that
has linear gathering time.
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Abstract. Group search and evacuation are fundamental tasks per-
formed by a set of co-operating, autonomous mobile agents. The two
tasks are similar in that they both aim to search a given domain so as
to locate a target which has been placed at an unknown location in the
domain. However they also differ in that the former terminates when the
first searcher in the group reaches the target while the latter when the
last searcher in the group reaches the target. Variations where termina-
tion is determined by some designated agent have also been considered.
Depending on the domain being explored we distinguish linear search
when the target is placed on the infinite line and circular search when
the target is placed on the perimeter of a disk. The agents move with
their own maximum speed, and the goal is to design algorithms that
minimize the worst case termination time. Two communication models
between the robots are being considered: in the non-wireless (or face-
to-face) communication model, robots exchange information only when
simultaneously located at the same point, and wireless communication in
which robots can communicate with one another anywhere at any time.
In this paper we survey some of the most interesting recent algorith-
mic results on search and evacuation concerning mobile agents with and
without faults.

Keywords: Autonomous agents · Cycle · Evacuation · Exit · Line
Search

1 Introduction

Search in theoretical computer science is primarily concerned with the algorith-
mic probing of a well-defined (data-) domain in order to find a stored target
object. The main focus of this survey, is on presenting recent algorithmic devel-
opments on search performed by a group of collaborating autonomous agents.
During the search, the mobile agents are pursuing their own trajectories and are
required to locate a target and conclude the task in the minimum amount of
time. To begin we introduce some basic concepts and ideas that will be used in
later sections.
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Searchers

Throughout this paper the terms mobile agent, searcher and robot will be iden-
tical. We assume that n robots are initially placed at a start position on a
geometric domain. The robots can move on a continuous trajectory with a pre-
defined maximum speed (usually one) along a geometric domain (which is either
an infinite line or a cycle in the plane).

Search and Evacuation

We distinguish between search and evacuation. The former succeeds when the
first searcher in the group reaches the target and the latter when the last searcher
in the group reaches the target. Variations where only distinguished searchers
need to reach the target are also considered. In all cases, the target can be
identified only by robots that reach its location.

Linear and Circular Search

The search domain may be either on an infinite line or on a closed curve, like
disk. In the first case it is called linear search and was first proposed by Bell-
man [9] and independently by Beck [8] in a stochastic setting and by [6,7]) in a
deterministic setting. In the linear search model the environment is an infinite
line and the robots start at a given point, called the origin, on this line. An
hidden object/target (exit) is placed on the line at a location which is unknown
to the robots. In the second case it is sometimes called circular search and the
model was first studied in [17]. In the unit disk search model the environment
is a disk, usually of unit radius; the robots start their movement either at the
center of the disk (and they can move anywhere on the plance) or on the disk
(and they can move only on the perimeter). The only information robots have
is that the target has been placed at an unknown location on the perimeter.

Communication

Two models of communication between the robots are being considered: in the
non-wireless (or face-to-face) communication model, robots exchange informa-
tion only when they are simultaneously located at the same point, and wireless
communication in which robots can communicate with one another anywhere at
any time.

Performance Metrics

When operating in geometric environments, performance is measured by the
geometric distance traveled, while in discrete settings the number of hops in
a trajectory. By default, algorithmic performance is measured with respect to
worst case analysis. The competitive ratio of an algorithm is the worst case ratio
between the performance of the algorithm and the performance of the best offline



Group Search and Evacuation 337

algorithm, i.e., an algorithm that knows in advance the location of the “hidden”
object. In traditional search the task ends when the first agent finds the object.
This is different for evacuation since we are interested in the search makespan
which refers to the max (or even, total) length of the search strategy when all the
agents (or sometimes a specific number of the agents) have finished processing
their respective tasks.

Some Related Literature

There is a vast literature investigating all aspects of search. Several papers are
cited throughout the survey but here we mention only a few books. It is worth
cittng the classical book on optimal search [36], the compendium of search prob-
lems in [1] and the game theoretic approach in the treatise [5]. Applications of
search to foraging and evolution can be found in [30,35]. Further, [33] provides
an introduction to the analysis and design of dynamic multiagent networks, and
[14] an introduction to the distributed control of robotic networks with a blend
of computer science and control theory. Additional specialized monographs are
[10,11] as well as the pleasant monograph [34] which provides a different per-
spective with chases and escapes.

2 Linear Search

In this section we focus on linear search on an infinite line and discuss search
for robots which may suffer from crash and/or byzantine faults. In the last part
of the section we also explore search on linear terrains (a generalization of the
infinite line).

2.1 Crash Faults

In this section we present the linear search by a collection of robots, some of
which may turn out to be faulty [24].

Model Specifics and Problem Definition

By A(n, f) we denote a linear search problem using n mobile robots where at
most f robots may turn out to be faulty. The robots are placed at the origin of
an infinite line. Robots may walk along the line with the same unit speed. At
some point on the line, at distance d from the origin, is placed a stationary target
that needs to be found by the collection of robots. A robot finds the target when
it visits the position of the line where the target is located. A sub-collection of
up to f robots may experience crash faults. A faulty robot cannot identify the
target despite visiting its location. The search is completed when at least one
non-faulty robot finds the target.

The bound f on the number of faulty robots is known to the search algo-
rithm. However, the identities of the faulty robots are unknown to the algorithm.
Consequently, the set of the faulty robots is controlled by the adversary, which
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knows the search algorithm in advance. The distance d to the target position is
also unknown to the algorithm, but the performance of the algorithm is mea-
sured as a function of d. More exactly, the algorithm efficiency is defined by a
competitive ratio, which is the worst case ratio of the arrival of the first reliable
robot to the target, and the distance d from the source to the target.

For any potential target position, the best adversarial strategy is to choose
the first f robots incoming to such position to be faulty. It is clear that, when
n ≥ 2f + 2, there exists a simple algorithm with competitive ratio 1 that sends
two groups of f+1 robots in each direction of the line. Below we focus on efficient
search strategies when f < n < 2f + 2.

Zig-Zag Strategies

For n < 2f + 2, the trajectories of all robots considered are using zig-zag strate-
gies, i.e. solutions in which each robot walks alternately in both directions, where
its turning points for each direction are more and more distant from the origin. It
is useful to illustrate the zig-zag movements using the Cartesian plane in which
x-axis corresponds to the line of robots’ movement and t-axis represent time.
The trajectory of a robot is represented by a function of time t whose absolute
slope is bounded by 1 (as robots move using maximal unit speed). By a turning
point (xi, ti) we mean that at time ti the robot is at point xi of the line and it
changes the direction of its movement.

The strategies used are such that the turning points (xi, ti) belong to some
geometric cone of the Cartesian plane. Let Cβ denote the cone starting at the
origin and extending in the positive direction of t-axis such that it is bounded
by two semi-lines, each having angle β with the t-axis. We have

Definition 1. Suppose that at time aβ a robot visits point a of the line. We say
that the robot follows a zig-zag movement defined by cone Cβ and point (a, aβ)
if the robot walks with unit speed inside the cone Cβ starting at point (a, aβ) and
that it reverses its direction whenever it arrives at the boundary of Cβ.

Figure 1 illustrates movements of robots defined by the cone Cβ .
It is possible to prove the following lemma.

Lemma 1 ([24]). Let x0 be the initial position of a robot on the line at time
t0. Consider the zig-zag movement of this robot defined by point (x0, t0) and the
cone Cβ, where β > 1. The turning points of the robot are given by the formula

xi = x0

(
β + 1
β − 1

)i

(−1)i (1)

Proportional Schedules

When several robots participate in the search, they all move according to zig-zag
strategies using the same cone Cβ , but the choice of the parameter β depends
on the ratio of assumed bound of the faulty robots. Moreover, the most efficient
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Fig. 1. Proportional schedule for n robots a0, a1, . . . , an−1, in the cone Cβ .

search is achieved when the robots’ trajectories are forming so-called propor-
tional schedules (see Fig. 1). Roughly speaking, for a proportional schedule, the
infinite sequence of the consecutive positive x-coordinates of the turning points
of all robots form a geometric progression. The same is true for the consecutive
negative x-coordinates of all turning points. More precisely, we give the following
definition.

Definition 2. Suppose that a collection of robots performs zig-zag movements
defined by the same cone Cβ. Consider the infinite sequence of the consecutive
positive turning points 0 < τ0 < τ1 < · · · obtained from the zig-zag movements
of all the robots of the collection. We say that the schedule is proportional if
for some real value r, the ratio τi+1−τi

τi−τi−1
= r, for i = 1, 2, . . .. We call r the

proportionality ratio of the schedule.

We have the following lemma.
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Lemma 2 ([24]). Consider any constant β > 1 and n robots performing zig-zag
movements defined by the cone Cβ. Suppose that the movements of the robots
constitute the proportional schedule Sβ(n). The proportionality ratio of schedule
Sβ(n) equals

r =
(

β + 1
β − 1

)2/n

. (2)

Moreover, suppose that τi, τi+1 are two consecutive, positive turning points of
some two robots a, b, such that robot a visited τi at time ti and robot b visited
τi+1 at time ti+1. Then we have ti+1 = ti + τiβ(r − 1) and τi+1 = rτi. Note that
by symmetry a similar result applies to negative turning points.

Suppose that n robots, which may include at most f faulty ones execute a
proportional schedule Sβ(n) using cone Cβ . Let CRn,f

β denote the competitive
ratio of schedule Sβ(n). The following lemma proves the upper bound on the
competitive ratio of the proportional schedule Sβ(n).

Lemma 3 ([24]). Let Sβ(n) be a proportional schedule executed by n robots,
which may include at most f faulty ones, where f < n < 2f + 2. Then we have
the following bound on the competitive ratio of this proportional schedule:

CRn,f
β = (β + 1)

2f+2
n (β − 1)1− 2f+2

n + 1. (3)

For any configuration of parameters n, f it is possible to find the value of
β which minimizes the function F (β) := (β + 1)

2f+2
n (β − 1)1− 2f+2

n + 1, where
β > 1. This can be done by taking the derivative of F with respect to β and
setting it equal to 0. Such optimal vale of β turns out to be β = 4f+4

n − 1.
Consequently, we conclude with the following theorem.

Theorem 1 ([24]). Consider a collection of n robots up to f of which are faulty.
Then there exists an algorithm A(n, f) performing search on infinite line, whose
competitive ratio is at most equal to

(
4f + 4

n

) 2f+2
n

(
4f + 4

n
− 2

)1− 2f+2
n

+ 1 (4)

Figure 2 illustrates the search algorithm for three robots containing one that
may turn out to be faulty. Inside the cone Cβ may be identified the region R
bound by bold polygonal lines (that reminds the Sacrada Familia Barcelonian
church). Each point (x, t) inside region R has the property that before time t
point x of the line has been visited by at least two robots, hence it is considered
successfully searched. If point (x, t) is outside region R, that means that only one
robot visited x before time t (as that robot may be faulty, x cannot be declared
as successfully searched). The competitive ratio of the algorithm is determined
by the two lines that pass through the origin, belong to R and have maximal and
minimal slopes (thin grey lines OA and OB on Fig. 2). Indeed, the competitive
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ratio equals the smaller of the absolute values of both slopes. An interested
reader may verify that if we perturb slightly the movement of any robot by
changing slightly the positions where its trajectory touches the cone Cβ (i.e. the
zig-zag strategy becomes not proportional) the competitive ratio becomes larger.
This suggest that the proportional strategies are optimal. Indeed, the optimality
of the proportional strategies has been formally proven in the recent work of
Kupavskii and Welzl [31].

Cβ

L

V

t

x

R
A B

O

Fig. 2. Searching by three robots one of which is faulty.

2.2 Byzantine Faults

The section presents linear search when a collection of searchers contains Byzan-
tine robots (cf. [23]). A Byzantine robot may fail to see the target or it may
communicate to other robots a position of the target that is not the real one.

Model Specifics and Problem Definition

A collection of n robots is initially placed at the origin of an infinite line. Each
robot can move left or right along the line with a speed that does not exceed
its maximum speed (which is the same for all robots). Robots have a distinct
identity and they may communicate wirelessly, so a message sent by any robot
is instantaneously heard by all other robots. As the trajectories of all robots are
determined in advance, the only possible message that a robot may communicate
is that it found the target. Some robots may turn out to experience Byzantine
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faults and they may fail to communicate a position of the target they find or they
may communicate a position of the target which is wrong. Each communicated
message is associated with the identity of the robot sending it and it is assumed
that a Byzantine robot cannot lie on its identity. There are at most f robots
which may behave in Byzantine way.

The search algorithm is designed by a central authority, which knows the
bound f on the number of faulty robots, but is unaware which subset of robots
is faulty, neither is their behavior predictable (i.e. faulty robots may misreport
their findings). The search algorithm does not have a knowledge of the distance d
to the target from the origin. The trajectory of each robot is designed so it may
be possibly altered when robot hears about a potential position of the target
announced by some other, clearly identified robot.

We suppose that the adversary knows our algorithm and may choose the
subset of (at most) f Byzantine robots and their malicious actions in order to
delay the moment when the target position is known. By Sd(n, f) we denote the
search time, i.e. the time it takes for a search algorithm using a collection of n
robots at most f of which are faulty, to find the location of a target placed at
an a priori unknown distance d from the origin of the line. The corresponding
competitive ratio is defined as S(n, f) = supd Sd(n, f)/d, which is the worst case
ratio of the algorithm’s search time and the lower bound d on the time taken by
any algorithm for the problem.

Observe that if n ≥ 4f +2 it is possible to obtain an optimal algorithm (with
competitive ratio 1). Indeed, we can partition the set into two groups of 2f + 1
robots and make one group to walk together in the left direction and the other
group in the right direction. When the target is found, it is announced by all
non-faulty robots arriving at its location at time d. As that group contains at
least f + 1 non-faulty robots, by the majority vote the target position is clearly
identified. On the other hand, if n ≤ 2f , there does not exist any algorithm
that may decide the position of the target, as no majority voting is possible.
Consequently, the non-trivial solutions are interesting only when 2f < n <
4f + 2.

Algorithms for Single Byzantine Robot

Following the last observation, and when f = 1, it is interesting to consider only
the cases of n = 3, 4 or 5. The simplest case concerns the collection of n = 4
robots.

Case 1: n = 4. The algorithm instructs two groups of 2 robots to walk together
in opposite directions. As each group contains at least one reliable robot, at
some point a target position is announced, say at some position at distance x
from the origin. If two robots announce (i.e. report that the target is found),
then the algorithm finishes in time d = x. Otherwise, i.e. when only one robot
announces, the groups are instructed to swap their positions and then continue
in the opposite directions. If the target is confirmed by the robots arriving at
the position being announced, the algorithm finishes in time 3d. Otherwise, a
Byzantine robot is identified and the remaining robots continue, not reacting on
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any further announcements of the identified Byzantine robot. An announcement
by any other robot (at time 2x+d) finishes the algorithm. As x < d, we conclude
that

S(4, 1) ≤ 3.

Case 2: n = 5. Two groups of 2 robots continue in opposite directions as in
Case 1, and the fifth robot waits, stationary at the origin. Again an announce-
ment must be made at some time x and in case when two robots make the
announcement the algorithm finishes at time d = x. Suppose then that a single
robot makes that announcement. Then the robot which was stationary walks
to the announcement point (for simplicity suppose that all other robots wait
motionless for time x, until the fifth robot reaches the announced position). If
this robot may confirm the announcement, then in time 2x = 2d the target is
found. Otherwise the Byzantine robot is identified, the robots restart walking in
the same direction and a further announcement by any other robot concludes
the algorithm. The search time equals x + d, and as x < d we have

S(5, 1) ≤ 2.

Case 3: n = 3. In this case, [23] conjectured that the best search algorithm was
for all three robots to walk together performing a standard cow-path trajectory,
that finishes in time Sd(5, 1) < 9d. However only a lower bound S(5, 1) > 3.93
was proven in [23]. This lower bound was later improved in [31] to

S(3, 1) >
8
3

3
√

4 ≈ 5.23.

Algorithms for Large Collections of Robots

The proposed upper bounds of the algorithms for large number of robots are
usually a function of ratio r = f/n. As previously observed, we are interested
in the interval 2f + 1 ≤ n < 4f + 2, so we are interested in the case when
1/2 ≥ r ≥ 1/4. Observe first, that already for n = 2f + 1, the problem is
feasible, i.e. there exists an algorithm, which finds the target in finite time. More
exactly, for any f ≥ 0 we have

S(2f + 1, f) ≤ 9.

Indeed, we can instruct the robots to walk together along the path and the
majority vote before time 9d concludes the algorithm.

Asymptotically, for 1/2 < r < 1/4 we have the competitive ratio

1 ≤ S(f/r + c, f) ≤ 9,

where c denotes some constant value. More formally, we can define

Ŝ(r) = min {q | ∃ constant cr such that ∀f > 0, S (f/r + cr, f) ≤ q} (5)

Clearly, the larger is the proportion 1− r of the non-faulty robots, the better
is the competitive ratio that may be expected from an efficient search. Below is
the example of an upper bound for some particular density of Byzantine robots.
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Proposition 1 ([23]). S
(

14f+4
5 , f

)
≤ 3 provided f ≡ 4 mod 5.

The idea of the algorithm providing the bound claimed in Proposition 1 is the
following. Two groups of robots, L and R, each containing 7f+2

5 participants,
walk in left and right directions, respectively. Suppose that an announcement is
made at time x. If less than 2f+2

5 robots vote that target is at x or they vote that
the target is not at x, then this subgroup is eliminated from consideration (as
identified Byzantine robots) and both groups continue walking in their respective
directions. So we can assume that the vote is such that each group voting on point
x contains at least 2f+2

5 robots. By symmetry, suppose that the announcement
has been made by a sub-collection of group R (i.e. when visiting point x > 0).
At this point, we send 3f+3

5 robots belonging to group L to move from their
current position at −x to point x. At the same time the sub-collections of 2f+2

5

robots that voted YES and 2f+2
5 that voted NO are sent from x to −x. Once the

groups sent swap their positions from −x to x and from x to −x, two cases are
possible. If the exit is confirmed at x (note that altogether 7f+2

5 + 3f+3
5 = 2f +1

robots visited x so the state of point x is decided), then the algorithm terminates
in time 3x = 3d. Otherwise we can eliminate from the consideration a set of at
least 2f+2

5 Byzantine robots (present now at point −x), so there exist still at
most f ′ = f − 2f+2

5 = 3f−2
5 undisclosed Byzantine robots. At that point the

number of robots l′ present at −x whose state is unknown equals at least

l′ ≥ 7f + 2
5

− 3f + 3
5

+
2f + 2

5
=

6f + 1
5

.

At point x we have then r′ robots and

r′ ≥ 7f + 2
5

− 2
(

2f + 2
5

)
+

3f + 3
5

=
6f + 1

5
.

As l′ = r′ ≥ 2f ′ + 1 we have at both points −x and x the sub-collections
of robots, each containing more reliable than Byzantine robots. Both groups
continue searching away from the origin until a majority vote is present, which
concludes the search. The cost of the algorithm is the sum of the search time d
and the swap time 2x. As x ≤ d the claim of Proposition 1 is true.

The algorithms for larger values of the ratio r of Byzantine robots may include
more than one swap between the groups L and R during the search. The results
for these cases are summarized in Table 1.

Table 1. Upper bounds on the asymptotic competitive search ratio Ŝ(r) for various
ranges of r. Recall that for r > 1

2
the search problem is infeasible.

r ≤ 1
4 ( 1

4 , 3
10 ] ( 3

10 , 1
3 ] ( 1

3 , 5
14 ] ( 5

14 , 13
34 ] ( 13

34 , 19
46 ] ( 19

46 , 47
110 ] ( 47

110 , 65
146 ] ( 65

146 , 157
396 ] ( 157

396 , 1
2 ]

UB 1 2 3 3 4 5 6 7 8 9
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2.3 Linear Terrains

We now explore a setting (first considered in [26]) which generalizes the infinite
straight line setting first considered in [6,7] and [8,9], in which the search domain
is no longer a straight line but rather a linear terrain with “hills” and valleys. By
this we mean that the search is along a curve which is formed by a continuous
function (depicted in Fig. 3 whose representation y = f(x) may be known to
the robot. As an example, f(x) may be a monotone polygon consisting of n
straight-line segments, for some integer n ≥ 1.

Fig. 3. Search in an infinite one-dimensional terrain y = f(x). The robot may move in
either direction along the terrain, the point O is the origin (considered as the starting
position of the robot) and the exit is located on the terrain at a position unknown to
the robot.

Model Specifics and Problem Definition

The objective is to design search algorithms that achieve good competitive ratios
for the time spent by the robot to complete its search divided by the time spent
by an omniscient robot that knows the location of the target. Searching for the
exit, could involve variants of the well-known zig-zag, doubling search strategies
along the linear terrain. However, the traditional doubling strategy leading to an
optimal competitive ratio of 9 for linear search may no longer be adequate and
one is required to investigate different approaches and more elaborate strategies
for searching that take the shape of the linear terrain y = f(x) into account.

The canonical zig-zag search algorithm (or strategy) is parametrized by an
infinite sequence of positive distances X = {xk}k≥1 from the origin O that spec-
ifies the turning points of the robot. Obviously, to ensure progress in searching,
each trip of the robot away from the origin must cover more distance than the
previous trip in the same direction. A natural measure of the efficacy of the
zig-zag search strategy X, is how well it performs in competition with an omni-
scient adversary that knows the exact location of the target. If d is the unknown
distance of the target from the origin, let σX(d) be the ratio between the time
taken by the robot using the zig-zag strategy X to reach an unknown target
divided by the time taken by the adversary to proceed directly to the target
(placed at distance d from the origin). In addition, σX � supd>1 σX(d) denotes
the competitive ratio of the strategy X. We denote the optimal competitive ratio
by σ∗.

In general, and unlike traditional linear search, the speed of the robot may
depend on the physical properties of the terrain. Further, the robot’s speed may
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depend on the direction of travel along the terrain, or on the profile of the terrain,
e.g. when the line is inclined the robot may accelerate or decelerate depending
on whether it is moving uphill or downhill, respectively. For example, on uphill
segments the robot moves with speed 1 while on the i-th downhill segment it
moves with speed si, where si = 1+ g sinαi ≥ 1, g is the well-known gravitation
constant (which is approximately equal to 9.8 m/s2), and αi is the angle of
inclination of the i-th (downhill) segment, for i = 1, 2, . . . , n.

Search Strategies

The first class of models considered is depicted in Fig. 4 and concerns two-speed
models of linear search: tailwind (unit speed going left and tailwind speed s > 1
going right), beacon (unit speed moving away from the origin and speed s moving
towards it), and exploration history (the robot explores unknown regions slowly
and deliberately with unit speed, but is able to search faster–with speed s–when
it encounters a region already seen earlier in its search). Here are some of the
results obtained in [26] (Note that Theorem 3 was independently proved also
by [12]).

Fig. 4. Two-speed models based on (a) absolute direction and (b) direction relative to
origin

Theorem 2 (Tailwind Model, [26]). Assume the robot has speed s ≥ 1 when
moving left to right and speed 1 otherwise. For α, r such that α = (1 − s +√

(s − 1)2 + 4r2s)/(2r), r =
√

2 + (s + 1)/
√

s, and X = {s, αr, r2s, αr3, . . .}
we have that

2 + 1/s ≤ σ∗ ≤ σX ,

σX ≤ 1 +
s + 2

√
s + 1

s +
√

s + 1
· s + 1

2s
·
(

s + 1 +
√

(s − 1)2 + 8s + 4
√

s(s + 1)
)

(6)

Theorem 3 (Beacon Model, [26]). The doubling strategy D is optimal for
the beacon model, i.e.

σ∗ = σD = 5 +
4
s
. (7)
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Theorem 4 (Exploration History Model, [26]). Let r = 1 +
√

2/(s + 1),
and X = (r0, r1, r2, . . .) be an expansion strategy. Then, with this strategy, the
zig-zag algorithm’s competitive ratio satisfies

2 + 1/s ≤ σ∗ ≤ σX = 2 +
1
s

(
3 + 2

√
2s + 2

)
. (8)

Fig. 5. Constant acceleration models: (a) Line (b) Inclined line (c) Hill (d) Valley

The second class of models is depicted in Fig. 5 and concerns constant accel-
eration models of linear terrain search. In inclined linear terrains (the robot can
operate in two modes where it is moving with unit speed when moving uphill and
with constant acceleration when moving downhill. The different terrains include
an inclined line, a symmetric hill with the hill-top at the origin, or a symmet-
ric valley with the valley-bottom at the origin). Here are some of the results
obtained in [26].

Theorem 5 (Constant acceleration in both directions, [26]). Assume the
robot is searching with constant acceleration c in either direction, starting from
rest initially, as well as at turning points. Then:

3(
√

2 + 1/
√

2) ≤ σ∗ ≤ σD ≤ 2
√

3√
2 − 1

+
√

3 + 1 (9)

Theorem 6 (Moving on an inclined line, [26]). Assume the robot moves
with acceleration c in the positive direction, and constant speed 1 in the negative
direction using the doubling strategy D. Then for any d ≥ 1,

√
2c

√
d < σD(d) ≤

√
8c ·

√
d + O(1). (10)

Furthermore, σ∗ ≥ supd>1 min{2 +
√

2/(cd),
√

2 +
√

cd/2}.
Theorem 7 (Starting at the top of a hill, [26]). Assume that the robot
travels with constant acceleration c away from the origin, and with unit speed
towards the origin. Then σD(d) = Θ(

√
d) and this is optimal.

Theorem 8 (Starting at the bottom of a valley, [26]). Assume that the
robot travels with constant acceleration c towards the origin, and with unit speed
away from the origin. Then for any d ≥ 1:

σD(d) ≤ 5 + O(d−1/2)

Furthermore, σ∗ ≥ 5.
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3 Evacuation

In this section we discuss search and evacuation which takes place on the perime-
ter of a closed domain, like circle, triangle or square. We also consider the case
of faulty robots.

3.1 Evacuating from a Disk

Consider k mobile robots inside a circular disk of unit radius. The robots are
required to evacuate the disk through an unknown exit point situated on its
perimeter. We assume all robots have the same (unit) maximal speed and start
at the centre of the disk. The robots may communicate in order to inform them-
selves about the presence (and its position) or the absence of an exit. The goal
is for all the robots to evacuate through the exit in minimum time.

A single (k = 1) robot can find the exit by going to the perimeter and
traversing in the clockwise, say, direction. This takes time 1 + 2π to reach the
exit, in the worst case. It is clear that for any ε > 0 the robot can cover at
most a length 2π − ε of the perimeter (because its maximum speed is one and
the adversary can place the exit in the unvisited portion of the perimeter).
Therefore 1+2π−ε is a lower bound for evacuation, for any ε > 0. Hence, 1+2π
is also a tight bound for evacuation of one robot.

Model Specifics and Problem Definition

In general, if the k robots are placed in arbitrary initial positions in the interior
of the disk then the resulting optimization problem is very difficult and very
few (if any) non-trivial evacuation algorithms are known. For this reason in the
sequel, the robots are placed at the start at the center of the disk.

An exit is represented as a point on the perimeter of the disk and the robot
may locate the exit only if it is colocated with it. Further, two communication
models are being considered. F2F (Face-to-Face) which requires that the two
robots may communicate only if they are colocated at the same time, and Wire-
less in which the robots can communicate regardless of their distance. The more
general case where the robots have limited communication range r > 0 has never
been discussed in the scientific literature.

Evacuation for Two Robots

In the sequel we analyze in somewhat detail the evacuation problem for two
robots.

Figure 6 depicts two evacuation algorithms which were originally published in
[17]: Left-hand-side figure depicts the F2F model and the right-hand-side figure
depicts the wireless communication model. There are two robots that need to
evacuate from an unknown exit. One robot is represented by the bold arrow and
the other by the blank arrow. In both communication models the robots start at
the same time at the center K of the disk. In the first part, the two algorithms
are identical. The robots move together to the perimeter, say to point A, and
from there they move in opposite direction along the perimeter. This is where
the similarities end.
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Fig. 6. Evacuating two robots from a disk. The robots start at the center K of the
disk and the (unknown) exit is located at B. Left picture depicts the algorithm in the
F2F, while the right picture in the wireless communication model.

1. In the F2F model (see left picture of Fig. 6) when the robot represented by
the bold arrow, say, finds the exit at B it makes a cross-cut along the interior
of the disk and travels to meet the robot represented by the bold arrow at
D. From this point on the two robots move together along the interior of the
disk to the exit B.

2. In the Wireless model (see right picture of Fig. 6) when the robot represented
by the blank arrow, say, finds the exit at B it communicates to the robot
represented by the bold arrow that it has found the exit and the latter robot
moves to the exit B along the interior of the disk.

We can summarize the performance of the two algorithms in the following
theorem.

Theorem 9 (Upper Bounds for 2 Robots, [17]). Consider two robots start-
ing at the same time from the center of a unit disk.

1. (Wireless Model) There is an algorithm for evacuating two robots from an
unknown exit located on the perimeter of the disk which takes time at most
1 + 2π

3 +
√

3 ≈ 4.826.
2. (F2F Model) There is an algorithm for evacuating the robots from an

unknown exit located on the perimeter of the disk which takes time 1 + α/2 +
3 sin(α/2) where the angle α satisfies the equation cos(α/2) = −1/3. It follows
that the evacuation algorithm takes time ∼5.74.

Proof. For the proof below, we refer to the two pictures in Fig. 6 (left for the
F2F and right for wireless model).

First we consider the F2F model. We calculate the time required until both
robots reach the exit. Denote x = BA = AC , y = BD = CD and α = BD .
The total time required is g(α) = 1 + x + 2y. Observe that α = 2x + y, and y =
2 sin(α/2), because y is a chord of the angle α. Substituting x and y in the
function f we can express the evacuation time as a function of the angle α as
follows
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g(α) = 1 +
α − y

2
+ 2y = 1 +

α

2
+

3y

2
= 1 +

α

2
+ 3 sin(α/2).

Now we differentiate with respect to α and we obtain: dg(α)
dα = 1

2 + 3
2 cos(α/2). Set

the derivative equal to 0 to find the maximum of the function g(α), which yields
as value for α the solution of cos(α/2) = −1/3. This completes the analysis for
the F2F communication model.

Second we consider the Wireless model. We refer to Fig. 6. If the angular
distance between A and B equals x, then the length of the chord taken by the
robot r2 equals to c(x) = 2 sin(π − x). Thus the evacuation time T satisfies

T ≤ max
0≤x≤π

{1 + x + 2 sin(π − x)} = max
0≤x≤π

{1 + x + 2 sin x}.

The function h(x) = 1 + x + 2 sin x in the interval [0, π] is maximized at the
point x∗ = 2π/3 and h(x∗) = 1+2π/3+

√
3. This completes the analysis for the

Wireless communication model. 
�
We also mention the lower bounds for two robots, but the proof is more

technical and we refer the reader to [17] for additional details.

Theorem 10 (Lower Bounds for 2 Robots, [17]). Consider two robots
starting at the same time from the center of a unit disk.

1. (Wireless Model) For any algorithm it takes at least 1+ 2π
3 +

√
3 (≈ 4.826)

time in the worst case for two robots to evacuate from an unknown exit located
in the perimeter of the disk.

2. (F2F Model) It takes at least 3+ π
4 +

√
2 (≈ 5.199) time units for two robots

to evacuate from an unknown exit located in the perimeter of the disk.

Note that the bounds for the F2F communication model are not tight. Table 2
summarizes what is known and indicates the existing gap.

Table 2. Upper and lower bounds for the evacuation of 2 robots in the F2F commu-
nication model.

Paper Upper bound Lower bound

[17] 5.74 5.199

[20] 5.628 5.255

[13] 5.625

Evacuation for k ≥ 3 Robots

It is apparent that the evacuation time improves by the collaboration of the
robots. This is because a robot can share the search results of its exploration
with the other robots in the group (using either F2F or Wireless communication).
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Therefore it is not surprising that the evacuation time should improve as the
number of robots increases. This is in fact confirmed by the results as listed in
Table 3.

Table 3. Upper and Lower bounds for k ≥ 3 robots as proved in [17].

Model Bound k = 3 k ≥ 4

F2F Upper ∼5.09 3 + 2π
k

< 4.58

Lower ∼4.519 3 + 2π
k

− O(k−2)

Wireless Upper ∼4.22 3 + π
k

+ O(k−4/3)

Lower ∼4.159 3 + π
k

> 3.785

Nevertheless, it is much harder to obtain good bounds for the evacuation
of any small number of robots, say three. For example, for three robots [17]
gives upper and lower bounds for both the F2F and the wireless communication
models, but they are not tight (see Table 3). The interested reader can find
additional details for the case of k = 3 robots in [17].

Fortunately, it is possible to obtain asymptotically tight bounds for evacua-
tion as the number k of robots tends to infinity. The basic idea is for the robots
to explore different parts of the perimeter and share with each other their search
results. However the main difficulty is to ensure that when a robot finds (respec-
tively, announces) the exit the rest of the robots are as close to it as possible.
An outline of the algorithms are given below.

1. (F2F Model) The k robots “spread” at equal angles 2π/k and upon reaching
the perimeter, they all move clockwise (along the perimeter) for 2π/k time
units. In one additional time unit, all robots move to the center of the disk.
Since at least one robot has found the exit it can inform the remaining robots
and in one additional time unit all robots move to the exit.

2. (Wireless Model) The k robots are divided into two groups: Group Gα of
size kα = �k2/3, and Group Gβ of size kβ = k − kα. The robots in group
Gα are assigned to “spread” and search a continuos arc AB of length of
length π − 2

√
πk−1/3, while the robots in group Gβ are assigned to “spread”

and search the complement BA of arc AB . The robots explore specifically
assigned subarcs of the arcs AB, BA of length AB /kα BA , respectively,
and upon receiving a notification about the position of the discovered exit
they all cut across a chord to the exit.

We can prove that the two algorithms above are asymptotically optimal in their
respective communication model (see [17] for additional details).

Theorem 11 (F2F Model, [17]). It is possible to evacuate k robots from an
unknown exit located on the perimeter of the disk in time 3 + 2π

k . It takes time
at least 3+ 2π

k −O(k−2) in the worst case to evacuate k robots from an unknown
exit located on the perimeter of the disk.
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Theorem 12 (Wireless Model, [17]). If k ≥ 100 then it is possible to evac-
uate k robots from an unknown exit located in the perimeter of the disk in time
3 + π

k + O(k−4/3). Moreover, it takes at least 3 + π
k time in the worst case to

evacuate k ≥ 2 robots from an unknown exit located on the perimeter of the disk.

3.2 Evacuating from Triangles and Squares

Two of the main requirements of the algorithms designed for evacuating robots
from a disk were that the robots agree in advance on the search strategy they
will follow and also have knowledge of the “shape” of the perimeter on which
they need to search for the exit. The former was important so that robots can
estimate each other’s position at any given time and the latter for traversing
the perimeter. Further, any robot that finds the exit can take a “straight-line”
short-cut through the interior of the disk so as to either meet another robots
or go to the exit. These assumptions can be easily satisfied by any “convex”
closed curve (e.g., triangles and squares as depicted in Fig. 7) though this will
not necessarily make the optimization problem any simpler regardless of the
communication model.

Fig. 7. General setting of robot evacuation from equilateral triangles and squares.
Robots start in general positions at the interior (or perimeter) and the exit is located
on the perimeter of the triangle or square.

Model Specifics and Problem Definition

Throughout this section we assume the wireless communication model. Consider
an equilateral triangle or square with sides of length 1. A number of robots
starting at the same location on the perimeter or in the interior of the triangle
or square are required to evacuate from an exit which is located at an unknown
location on its perimeter. At any time the robots can move at identical speed
equal to 1, and they can cooperate by communicating with each other wirelessly.
Thus, if a robot finds the exit it can broadcast “exit found” to the remaining
robots which then move in a straight line segment towards the exit to evacuate.
Our task is to design robot trajectories that minimize the evacuation time of
the robots, i.e., the time the last robot evacuates from the exit. Designing such
optimal algorithms turns out to be a very intricate problem and even the case
of equilateral triangles turns out to be challenging.
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Evacuation Algorithm

Consider the case where the robots start at a point P on the perimeter of tri-
angle ABC and at distance x from the midpoint of edge BC (see Fig. 8). Now
consider the following algorithm. From the midpoint the robots move in opposite
directions along the perimeter, i.e. Robot 1 towards vertex A via vertex B, and
the other Robot 2 towards vertex A via vertex C. When a robot finds the exit it
broadcasts “Exit found” to the other robot which immediately goes in a straight
line segment to the exit. A similar approach is required when the two robots
start together at an interior point of the triangle.

These algorithms are not difficult to analyze and we can prove the following
theorems (details can be found in [25]).
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Fig. 8. Evacuating from an equilateral triangle. Left: the two robots start at a point
P at distance x from the midpoint of edge BC. Right: the starting position of the two
robots is in �AFD. N, M, D are the midpoints of the corresponding sides.

Theorem 13 (Robots starting on the perimeter, [25]). Assume that two
robots are initially located on the perimeter of an equilateral triangle at distance
x from the closest midpoint of an edge of the triangle. Then x + 3

2 is a tight
bound for evacuating these two robots.

Theorem 14 (Robots start in the interior, [25]). Assume that two robots
are initially located at point s inside the equilateral triangle, and let x =
min{d(s,m) | m is a mid point of an edge}. Then x + 3

2 is a tight bound for
evacuating these two robots.

Similar techniques can be used to analyze evacuation in unit squares. To sum
up the results obtained in [25] include the following.

1. Equilateral Triangle. Optimal evacuation trajectories (algorithms) for 2
robots and for any (same) starting position. 3 or more robots starting on the
perimeter cannot achieve better evacuation time than two robots.
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2. Square. Optimal evacuation trajectories (algorithms) for 2 robots for starting
positions on the perimeter. 3 or more robots starting at one of the corners
cannot achieve better evacuation time than 2 robots.

Additional results for more robots and more generally for regular polygons
can be found in [25]. For evacuation from an equilaterla triangle in the F2F
model see [16]. An interesting problem concerns evacuation on an ellipse or an
arbitrary convex polygon.

3.3 Evacuation with Faulty Agents

Evacuating robots from the disk is a well studied problem, first introduced and
studied in [17]. In particular when the communication model between robots is
wireless, i.e. information can be shared between them instantaneously, nearly
tight upper and lower bounds are known. Of course, in such a model what
becomes particularly relevant is that information shared among agents is reliable.
In contrast, operational algorithmic solutions need to be, in practice, robust
against malfunctions. This translates to robots that either fail to report their
findings, or even to misreports. The fundamental question that arises then is
how is evacuation time affected in the presence of faulty robots. Note that the
minimum number n of robots for which the problem is non degenerate is n = 3,
out of which 1 robot is faulty. This is the subject of study in [22].

Model Specifics and Problem Definition

FE is an evacuation problem whose search domain is the disk of radius 1. In this
problem, 3 non-distinguishable robots (searchers) of maximum speed 1 start from
the center of the disk, and they can communicate with each other their findings
instantaneously, i.e. they operate under the wireless model. Somewhere on the
perimeter of the disk lies a hidden object (exit) that can be identified only if a
robot goes over it. Among the searchers there is distinct robot, thereafter referred
as faulty. An evacuation algorithm is a search trajectory for all three robots, in
which eventually all robots reach the hidden object. Given a placement of the
hidden object, the cost of the search algorithm is the time till the last non-faulty
robot reaches the hidden item. The evacuation time of the algorithm is defined
as the worst case cost of the algorithm.

Clearly, given a search algorithm, and in the spirit of worst case analysis, the
adversary controls not only where the hidden object is placed, but also which
of the searchers is faulty. In the same direction, the adversary also controls the
actions of the faulty robot, and therefore one needs to determine the limitations
of such adversarial choices. In the crash-faulty model, the faulty robot may only
fail to report that the hidden object is found, whereas in the byzantine-faulty
model, the faulty robot may misreport at any moment its findings. We denote
the two evacuation problems in the corresponding faulty models as FEc and
FEb, respectively.
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Disk Evacuation Against Crash Faults

The advantage of trying to evacuate 3 robots in the crash-fault model is that
once the location of the hidden object is reported, the remaining non-faulty
robot may abandon searching and move toward the exit along a shortest (line
segment) path. Maybe the simplest family of algorithms one may consider first is
a symmetric-type, in which robots partition the circle in three contiguous arcs.
The robots deploy to the endpoints of these arcs, and start searching in the same
direction, each of them its own contiguous arc till the exit is found (reported). It
is not hard to prove that the best algorithm of this family deploys the searchers
in equidistant points, i.e. the three arcs are of length 2π/3 each, and the induced
evacuation time is 1 + 4π/3 +

√
3.

One of the main contributions of [22] is to show how a non-symmetric algo-
rithm can evacuate the two non-faulty robots efficiently. Practically, one may
again define a family of, non-symmetric evacuation trajectories this time, as fol-
lows. Fix parameter β. Two robots deploy to an arbitrary point of the disk, with
the intension to explore in opposite directions. The third robot is deployed to a
point of the disk at arc distance β from the deployment point of the other robots,
with the intention to explore toward the closest robot (and hence in opposite
direction than that robot), see Fig. 9.

Fig. 9. The deployment of the three robots, and their initial direction of movements
for the algorithm the shows the upper bound of Theorem 15

Consider now the following two adversarial choices. First, the two non-fault
robots are those at arc distance β moving toward each other. Assuming that β ≤
4π/3 one can show that the worst placement of the exit is at time 2π/3, after they
search their in-between arc segment (this is because the maximizer of function
x+2 sin (x/2) is attained at x = 2π/3) inducing cost 1+β/2+2π/3+

√
3. Second,

assume that the non-faulty robots are those moving in the same direction. It is
easy to see that the worst placement of the exit makes the non-faulty robots
search the perimeter for 2π − β, which maintain throughout the exploration arc
distance β (hence the last robot needs additional time 2 sin (β/2) to reach the
exit). Overall, this second case induces worst evacuation time 1+2π−β+2 sin (β).
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The best algorithm known for FEc is exactly the one above that uses as β the
value that equates the evacuation costs in the aforementioned adversarial inputs.

Theorem 15 ([17]). Let β0 be the solution to equation 3β0/2 − 2 sin (β0/2) =
4π/3 − √

3, where β0 ≈ 2.966. Then FEc admits solution with evacuation time
at most 1 + β0/2 + 2π/3 +

√
3 ≈ 6.309.

Disk Evacuation Against Byzantine Faults

The best performance achieved for FEc with symmetric algorithms turns out to
be the best performance known for FEb, but remarkably with a different type
of algorithm. The inherent difference in the byzantine-fault model is that once
the exit is reported, it firsts needs to be confirmed as a reliable message before
the non faulty robot attempts to reach it, as otherwise performance would be
suboptimal. Indeed, evacuating in the presence of a byzantine faulty robot who
may misreport her findings, all robots are asked to first explore, in the same
direction, a contiguous arc segment of length 2π/3. Depending on the report(s)
that have been circulated, robots have information to either go to the exit or
continue searching the circle for additional time 2π

3 . The fact that each point is
searched twice, allows them to resolve any conflicts and deduce the real location
of the exit. This idea gives rise to the following upper bound.

Theorem 16 ([17]). FEb admits solution with evacuation time at most 1 +
4π/3 +

√
3 ≈ 6.92.

A Unified Lower Bound Argument

As it is common in lower bounds arguments, in order to show negative results
for FE, one has to identify special time moments in which, independently of
the algorithm considered, certain points in the search domain have not all been
explored by non-faulty robots. Specifically for FE, the following predicate P (·),
given any evacuation algorithm, plays a crucial role in the lower bound argument.

P (T ): At time T , there are two critical points on the circle at arc distance
2π/3, and none of them is visited more than once by any of the three searchers.

One of the main technical contributions in [22] was to prove that
P

(
1 + 13

7

√
3
)

is true. Now in FEb, there must be a robot that has visited none
of the two critical points. The adversary can chose that robot to be non-faulty,
and clearly that robot requires extra at least

√
3/2 to reach any of them. For

FEb, the adversary has more power to mislead non-faulty robots, and in fact can
call a potentially misreport of the exit. Independently of the performance of the
evacuation algorithm, it is shown that the non-faulty robot must be at least 2π/3
away from the true location of the exit, inducing extra cost 2 sin (2π/3) =

√
3.

Overall, the results of the lower bound arguments are summarized below.

Theorem 17 ([17]). Let T0 = 1 + 13
7

√
3. Then no algorithm can solve FEc

with evacuation time less than T0 +
√

3/2 ≈ 5.082. Also, no algorithm can solve
FEb with evacuation time less than T0 +

√
3 ≈ 5.948.
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4 Multiple Targets on a Circle

Evacuation type problems emerged by requiring collections of robots to identify
the location of a hidden item, and to reach it as fast as possible. It is natural to
also assume variations in which there may be more than one objects hidden in
the domain, and search termination to be defined as the latest time in which the
last robot reaches any of the hidden objects. From a practical perspective, the
hidden objects can be thought as available exits that are placed in the underlying
domain in which searchers collectively try to reach any of them (and evacuate)
efficiently, possibly using as partial information the relative distance of the exits,
but not their locations. The main reference work for this model with multiple
exits described above is [21].

Model Specifics and Problem Definition

FEk is an evacuation problem whose search domain is the circle of perimeter 1
(i.e. of radius 1/2π). In this problem, k hidden and identical (non distinuishable)
objects (exits) are located on the circle. The relative distance between the hidden
items is known, thereafter referred as the map, but not their locations. Two
identical robots are placed at arc distance L on the circle, they can move at
speed 1, and they can see each other. They can see any of the hidden object only
if they are collocated with the object, and they can communicate wirelessly and
instantaneously their findings. Their goal is that each of them reaches any of the
hidden objects (exits). The evacuation time is defined as the worst case time of
the last robot to reach an(y) exit.

There are two variations of the problem, where the initial placement (relative
distance) L of the robots is either part of the input, or is the subject of an
algorithmic choice based on the provided map. In both variations, the goal is
to design trajectories for the two searchers on the circle so as to minimize their
evacuation time.

Multiple Exit Evacuation with Given Robot Placement

Maybe the simplest case of all is the one when the map contains only one exit.
The two robots start at known arc distance L, and they try to minimize the time
that the last robot reaches the exit. It is convenient for the moment to think that
the two robots are co-located. Very naturally the robots should start exploring
in opposite directions till the exits is found, say at time x ≤ 1

2 . Then, the other
robot is notified, and can evacuate choosing the shortest route (along the circle)
of length min{2x, 1 − 2x}. Given that the adversary controls the location of the
exit, that would induce worst case performance

max
x∈[0,1/2]

{x + min{2x, 1 − 2x}} = 3/4.

If on the other hand the robots are at distance L, then it is natural to first
have them explore the arc between them, taking time L/2, and then running the
previous algorithm of extra cost 3/4. It turns out that this simple idea is also
optimal.
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Theorem 18 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two robots
is part of the input, EME1 can be solved with evacuation time 3

4 + 1
2L. Moreover

this is optimal.

EMEk becomes more interesting for k ≥ 2. Since exits are not distinguish-
able, one needs to identify the critical information that can be deduced from
every map. Given an instance of EMEk, e.g. a map for the placement of k exits,
the critical parameter that can be utilized algorithmically turns out to be longest
arc length of the circle that does not strictly contain any exit. This can be also
thought as a pessimistic estimation for the distance of a hidden item from the
location of an exit currently found (and reported). A map in which the longest
arc not strictly containing an exit has length D will be called a map with critical
value D, see also Fig. 10 for an example of an EMEk instance. Note that by
definition, any map of EMEk has critical value D ∈ [1/k, 1].

E

R

R

E
E

Fig. 10. An instance of EME3. Robots placements are depicted with circles R, and
exit placements are depicted by squares E.

Theorem 19 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two robots
is part of the input, a map of EMEk with critical distance D can be evacuated
in time

3
4
D +

1
2
L.

Moreover no algorithm can have evacuation time better than 3
4D − 1

2L.

The upper bound for Theorem19 is due to an algorithm similar to the optimal
algorithm for EME1. Indeed, when there is only 1 exit, the critical value of the
map is D = 1, whereas for general critical value D ∈ [1/k, 1], each of the two
robots performs, in the worst case, within an arc of length D, which is similar
to performing on a circle of perimeter D. Nevertheless this argument is not
strong enough to derive a matching upper and lower bound. In contrast, when
all consecutive exits are equidistant, we do know the best possible evacuation
time.
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Theorem 20 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two
robots is part of the input, a map of EMEk with critical distance D = 1/k can
be evacuated it time 3

4D + 1
2λ, where

λ =

{
L mod 1

k , if L mod 1
k ≤ 1

2k

1
k − L mod 1

k , if L mod 1
k > 1

2k

Moreover this performance is optimal.

The heart of the argument for proving Theorem20 relies on the idea of reduc-
ing EMEk on the circle of perimeter 1 to EME1 on a circle of perimeter 1/k
(which is possible due to that all consecutive exits are equispaced). The fact
that evacuation performance is non-monotonic has to do with the initial dis-
tance of the robots. When the circle is partitioned in arcs of length 1/k, their
original distance L evaluated mod1/k can be either larger or smaller than 1/2k.
If λ0 = L mod 1/k ≤ 1/2k, then the problem is equivalent to EME1 on the
circle of perimeter 1/k, with initial robots distance λ0. Otherwise, the distance
of the two robots in the new instance is 1/k − λ0.

Multiple Exit Evacuation with Chosen Robot Placement

Evacuation problem EMEk, when the initial relative distance L of the robots
can be chosen as a function of the given map of critical value D, i.e. when we
allow L = L(D), requires a more elaborate analysis. At a high level, given
initial distance L of the robots, optimal, or near-optimal evacuation trajec-
tories are known. For these trajectories, an adversary can choose when the
first exit is found, say at time x ≤ 1

2 − 1
2L. If the induced evacuation cost

is denoted by g(D,L, x), then the evacuation cost of the algorithm is given
by maxx∈[0, 12− 1

2L] {g(D,L, x)}. If in addition we allow the algorithm to pick
L = L(D), then one has to solve optimization problem

min
L∈[0,1/2]

max
x∈[0, 12− 1

2L]
{g(D,L, x)}

in order to determine the best possible evacuation algorithm. This is exactly
what the next theorem describes.

Theorem 21 ([21]). When the initial arc distance L ∈ [0, 1/2] of the two robots
can be chosen algorithmically based on a map of EMEk with critical distance
D ∈ [1/k, 1], there is an evacuation algorithm with cost at most⎧⎨

⎩
3
4D, if D ∈ [1/k, 4/5), achieved for L = 0
1 − 1

2D, if D ∈ [4/5, 6/7) achieved for L = 5
2D − 2

5
4D − 1

2 , if D ∈ [6/7, 1], achieved for L = 1 − D.

5 Search and Fetch

Search and Fetch type problems are common in search-and-rescue operations
where a hidden object (a victim) not only has to be located, but also has to be
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carried (fetched) to a designated spot. From a theoretical perspective, which is
the focus of the current work, such problems fall under the generic evacuation
type problems, where evacuation has to be accomplished only by a subset of the
involved objects/mobile agents, hence delivering a combinatorial flavor to the
problem. An attempt to model and study such search and fetch problems on the
plane with 1 and 2 mobile agents appeared first in [28] and [27], respectively.

Model Specifics and Problem Definition

TEn
α is an evacuation-type problem whose domain is the unit disk. In this prob-

lem, n ∈ {1, 2} mobile agents start from the center of the disk and can move
at maximum speed 1 anywhere on the plane. Two hidden objects, a treasure T
and an exit E, reside on the perimeter of the disk at known arc distance α. E is
immobile, while T can be moved by any mobile agent. Any of the hidden objects
can be located only by a robot that walks over it.

An evacuation algorithm for TEn
α is composed by the trajectory for each of

the n robots which guarantees that T reaches E in a finite amount of time. For
any placement of the objects (at known arc distance α), the completion time
is defined as the time it takes T to reach E, i.e. the time to evacuate T . The
completion (evacuation) time for an evacuation algorithm for TEn

α is the worst
case evacuation time over all placements of hidden objects T,E. Finally, the
evacuation time of TEn

α is the minimum completion time over all evacuation
algorithms.

Relevant Literature

TE1
α is closely related to search-type problems that involve a searcher and a

hider in numerous variants for which the literature is vast [3,4]. Evacuation-type
problems similar to TE2

α in which the model of computation between the robots
becomes relevant but without the fetching/combinatorial component, have been
studied is a series of papers [13,17,20,21,25,32]. From a practical perspective,
search-and-rescue problems have been studied since the late 90’s by the robotics
community, e.g. see [29], and extensively by the operations research community,
e.g., see [15]. Maybe the most similar problem to TEn

α studied before is the one
introduced by Alpern in [2], where the domain was discrete (a tree), and the
goal of the rescuer was to fetch a treasure hidden in a leaf back to the root of
the tree.

Model Motivation

The underlying model of TEn
α is admittedly simplistic, yet its’ importance is

fivefold.
First, as it will be clear in the remaining of the section, solving optimally

either TE1
α, TE2

α seems a particularly challenging task. Moreover any upper or
lower bounds for TE1

α, TE2
α require non-trivial and sometimes technical argu-

ments. Together with the fact the known upper and lower bounds are far from
being matched, solving TEn

α qualifies as a challenging mathematical puzzle.
Second, TEn

α is by definition an online problem where an algorithm is asked to
perform well against an unknown input (here the position of the hidden objects).
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A fundamental subject of theoretical computer science is exactly to study the
boundaries of computational capabilities given limited resources, and for TEn

α

that would be the knowledge of the input. In that direction, TEn
α proposes a

compromise between no information and full information about the input. From
an algorithmic perspective, TEn

α asks the fascinating question of utilizing the
partial information available about the input (the distance between the two
hidden objects) in order to improve upon an algorithm with no information
about the input.

Third, TEn
α is maybe the first attempt to inject a combinatorial flavour to

evacuation type problems. This far, evacuation problems treated robots equiv-
alently, meaning that completion time was oblivious to robot’s identities. In
contrast, TEn

α requires a specific immobile robot, the treasure, to be fetched to
a hidden exit, and specifically it poses no constraints to the facilitators (other
robots) which try to expedite the evacuation of the treasure. Only very recently,
two more papers studied evacuation problems with similar combinatorial-type
requirements [18,19].

Fourth, and when n ≥ 2, TEn
α emphasizes the relevance of the communication

protocol between robots in search-and-rescue operations. Indeed, when access
to information is overall restricted in online problems, i.e. no information about
hidden objects is available, search protocols where robots are allowed to commu-
nicate wirelessly are expected to outperform search protocols where robots can
exchange information only by meeting (face-to-face model). In contrast, when
partial information becomes available, in our case the distance between the hid-
den objects, a face-to-face algorithm is better equipped against the uncertainty
that even wireless algorithms face, allowing possibly for solutions whose costs
do not differ by much in the two communication models.

Fifth, the domain of TEn
α as well as robots specifications follow closely model

specifications of fundamental problems in search theory and rendezvous, and as
such TEn

α proposes a natural extension of them. Since all of these problems
intend to introduce fundamental search/algorithmic techniques with applicabil-
ity to real life search-and-rescue operations, TEn

α in particular becomes relevant
when rescuers performance is quantified not by their evacuation time, rather by
the evacuation time of the victim they are trying to save.

5.1 Searching with One Robot

Search and fetch with one robot, i.e. TE1
α, has been studied in two variations

depending on the precise knowledge regarding the location of the two hidden
objects. In one of them, a bound α is known for the exact distance of the objects,
while in the other, α is guaranteed to be the distance of the objects. Clearly, the
first variation gives rise to an optimal completion time which at least as costly
than the one of the second variation. However, somehow surprisingly, providing
an optimal algorithm for the first variation is a relatively easy task, compared
to the other variation where a similar result is still eluding.
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Knowledge of a Bound of the Critical Distance

Consider the variation of TE1
α where the online algorithm has access to a lower

bound α of the actual distance 
 of the two hidden objects, i.e. 
 ≥ α. In other
words, one tries to minimize the worst case completion time of fetching the
treasure T to the exit E, assuming that the arc-distance between T,E is at least
α. We denote this variant as TE1

≥α.

Theorem 22 ([28]). An instance of TE1
≥α where T,E are at arc distance 
 ≥ α

can be solved with worst case completion time 1+2π−α+2 sin (α/2)+2 sin (
/2),
and this is optimal.

Notice that the description of a treasure evacuation algorithm concerns only
the part of the execution till the locations of both objects are identified. Then,
robot(s) may fetch the treasure to the exit in an optimal way, given objects’ and
robot’s locations. The algorithm that proves the upper bound of Theorem22
utilizes nicely the key component to all evacuation protocols for all TEn

α, and
concerns an “arc-avoidance” step during the exploration phase of the algorithm.
Indeed, assume that a robot explores the perimeter of the disk, searching still
for the first hidden object, and assume that already an arc of length at least α
has been explored. Once the first hidden item is located, the other has to be arc-
distance at least α away. Therefore cross-cutting along the corresponding chord
of length 2 sin (α/2) induces total savings of α − 2 sin (α/2). Note that such a
move is beneficial independently of whether the first item found is the treasure
or the exit. From an adversarial perspective, the first item to be found has to
be the exit, so that an extra 2 sin (
/2) is required for the fetching phase, as well
as the two hidden items are to be located (in the worst case) as late in the time
horizon as possible. Overall, this explains why the worst case evacuation time of
the following algorithm is indeed 1 + 2π − α + 2 sin (α/2) + 2 sin (
/2).

Algorithm 1. Arc Avoidance Evacuation Algorithm for TE1
≥α

Step 1: Starting from an arbitrary point on the disk, start searching cw till the first
hidden object I is found.

Step 2: Move along the chord connecting I to point at cw arc-distance α.
Step 3. Continue exploring cw till the second hidden object is found.

The lower bound of Theorem22 is based on a simple observation regard-
ing any evacuation algorithm. If a robot has explored less than 2π − α of the
perimeter of the disk, then there is a chord of length at least 2 sin(α/2) (say of
corresponding arc length 
) neither of whose endpoints has been visited by the
robot. Therefore, any adversary could let any algorithm run for 1 + 2π − α − ε,
before she fixes the locations of the two hidden points, and she can do that by
making the first explored point to be the exit.
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Knowledge of the Exact Critical Distance

Now we turn our attention to the variant of TE1
α, denoted as TE1

=α, in which
the two hidden items are exactly at arc distance α, and α is known. Notably,
Algorithm 1 is still applicable, and it is no surprise that Theorem22 predicts
its worst case performance to be equal to 1 + 2π − α + 4 sin (α/2). With some
technical work, one can improve upon the previous upper bound.

The main idea behind the best algorithm known for TE1
=α relies on the

partition of the search space, i.e. the perimeter of the disk, into contiguous
segments that will be searched, and others that can be “skipped”. Indeed, fix
some α, and consider a robot having searched an arc of length a1 ≥ α. If any
of the hidden items lies within b1 ≤ α arc distance from the robot, then the
location of the other hidden item can be deduced. Hence, the robot has an
incentive to move along the chord of length 2 sin (b1) (without ever missing both
hidden items), and continue searching a new arc. If the latter has length b2 ≥ α,
then the previous argument applies again.

Consider now a partition of the disk into arc of length a1, b1, . . . , an, bn, an+1,
such that bi ≤ α ≤ ai. A robot can search each of the arcs of length ai, following
a “jump” along the chords of length 2 sin (bi), till one of the hidden items is
found. Call the search strategy associated with such a partition greedy. If the
first hidden item is found by the greedy algorithm while searching arc ai, i ≤ n,
then the robot may have to check two locations for the second hidden object.
However, any jump saves locally time bi − 2 sin (bi/2) > 0, as long as bi > 0.
Moreover, bi −2 sin (bi/2) is monotone in bi, hence it is intuitive that one should
choose a partition of the disk that induces as much savings as possible. In that
direction, it is natural to pack as many maximal jumps as possible of length
bi = α, making sure that if a hidden object is found in the last arc to be
searched, then the other object location is deduced from the searched space.
Omitting several technicalities, one can show that the number nα of such jumps
must be equal to

nα :=
⌊

2π − 3α − 2 sin (α)
2α

⌋

giving rise to the following positive result.

Theorem 23 ([28]). For an instance of TE1
=α, consider a greedy search algo-

rithm using disk partition a1, b1, a2, b2, . . . , anα
, bnα

, anα+1. If nα < π−sin(α)
α −2,

then the worst evacuation time of the algorithm is

2π − (nα + 2)α + 2(nα + 3) sin (α/2)

and otherwise, the worst evacuation time is

(nα + 2)α + 2(nα + 2) sin (α/2) + 2 sin
(

2nα + 3
2

α + sin α

)
+ 2 sin α

Moreover the analysis it tight.
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Although it is conjectured that the above upper bound is the best possible,
a tight lower bound is still eluding. At the same time, a non trivial lower bound
can be obtained by consider a “weaker” adversary that is restricted to choose
the locations of the two hidden items after a search algorithm has left only
one contiguous unexplored arc of length α. Given such a restricted adversary,
it is not difficult to show that the most efficient algorithms must be greedy,
hence, their trajectories must be determined by a sequence of non-negative reals
a1, b1, a2, b2, . . . , al−1, bl−1, al for some integer l ≥ 1, with bi ≤ α. Placing the
two hidden objects at the very end of the search (where the first item found is
the exit) induces cost 1 +

∑l
i=1 ai +

∑l−1
i=1 2 sin(bi/2) + 4 sin(α/2). Hence, the

values of the following family of Non-Linear Programs gives a lower bound for
the best evacuation time for TE1

=α

minimize 1 +
l∑

i=1

ai +
l−1∑
i=1

2 sin(bi/2) + 4 sin(α/2)

subject to
l∑

i=1

ai +
l∑

i=1

bi = 2π

bi ≤ α for i = 1, 2, . . . , l

ai, bi ≥ 0 for i = 1, 2, . . . , l

Some technical work is required to obtain the maximum value of the optimization
problems above (over all intefers l ≥ 1), resulting in the following theorem.

Theorem 24 ([28]). No algorithm for TE1
=α has evacuation time better than

1 + π + min

{
4 sin α

2 + 2
(⌈

π
α

⌉ − 1
)
sin π−α

2(� π
α−1) ,

π − α
⌊

π
α

⌋
+ 2

(⌊
π
α

⌋
+ 1

)
sin α

2

}

5.2 Searching with Two Robots

Known results for TE1
α indicate that optimal trajectories for TE2

α must employ
complicated trajectories for the two robots using alternating arcs of the disk that
are to be searched and skipped. Such complications seem unnecessary, given that
efficient algorithms for TE2

α are far from being plain-vanilla type, especially
in the face-to-face model. Indeed, the work in [27] indicates that even if one
considers a special family of search algorithms in which robots do not abandon
searching before at least one hidden item is found, efficient search trajectories
do require ingenuity.

Upper Bound in the Wireless Model

It is worthwhile investigating a simple-minded algorithm for TE2
α, demonstrating

the need for algorithms that are adaptive in α, especially given that in the
wireless model, robots share information instantaneously.

Indeed, consider an algorithm, thereafter referred as Aw
1 , that deploys two

robots in an arbitrary point on the disk, and robots start searching in opposite
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directions till the first hidden object is found, after time, say, x. Due to the
communication model, robots can coordinate in order to explore all possible
locations of the second hidden object, fetching the treasure to the exit in an
optimal way (from the time that both objects have been found).

It turns out that Aw
1 performs well when α is not too big, and indeed, one

can show that the worst case evacuation time is at most 1 + π − α + 4 sin (α/2),
as long as α ≤ 2π/3. Performance analysis is based on case analysis as to where
the hidden objects are placed. It is not difficult to see that one of the worst
input configurations occur when the first object found is the exit, say after time
x, see Fig. 11. If 2x ≤ α, there is still uncertainty as to where the treasure is,
even though it must be at distance 2 sin (α/2) from the found object. The two
robots can search independently the two candidate locations, and as long as x
is not too big, the exit founder reaches the actual location of the treasure after
the other robot, overall inducing cost at least

1 + α/2 − arcsin (sin (α/2) − sin (α)) + 4 sin (α/2) ,

which provably exceeds the bound of 1 + π − α + 4 sin (α/2) for large enough α.

E

T

?

Fig. 11. An example of robots’ trajectories in which the first interesting point found is
the exit, depicted with the square E. At distance δ = 2 sin (α/2) is the other interesting
point. The actual location of the treasure is depicted with the square T and it’s other
possible location by the square?

To circumvent the poor behavior of Aw
1 , we employ another search strategy,

that we call Aw
2 . In this algorithm, robots deploy in two antipodal points of the

disk, and search the perimeter in the same direction till the first hidden item is
found, say at time x. In this case, uncertainty about the location of the second
item occurs when x ≤ α and when π − x ≤ α, and hence the algorithm can
deduce the location of both items in more cases, when α is large enough. In fact,
one can show that if α ≥ 2π/3, then the worst evacuation time of Aw

2 is at most
1 + π − α + 4 sin (α/2). Overall, we have algorithms Aw

1 ,Aw
2 , each achieving the

same upper bound (as a function of α) for complementary values of α concluding
the following theorem.

Theorem 25 ([27]). TE2
α admits a solution in the wireless model with evacu-

ation time 1 + π − α + 4 sin (α/2).
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Upper Bound in the Face-to-Face Model

The optimal strategy known in the wireless model for TE2
α indicates that strate-

gies adaptive to the value of α are necessary in order to achieve efficient evacua-
tion times. Such strategies become more relevant in the face-to-face model where
information cannot be shared by the searchers from distance.

In order to circumvent the lack of communication, it is no surprise that effi-
cient algorithms for TE2

α in the face-to-face model need to adapt not only with
α, but as well as with the timing of certain findings. For example, it is natu-
ral to aim for search strategies that change behavior as a function of when the
first hidden object is found, and of the type of the hidden object. Especially
challenging seems that task of having the robots coordinate their trajectories
from distance, given that any findings cannot be shared unless the searchers
meet. Nevertheless, robots may be able to indirectly exchange information from
distance given that they have agreed in advance to meet in predetermined loca-
tions assuming certain configurations have been encountered by the robots. If
the meeting is realized, then clearly robots exchange information regarding their
findings. Similarly, if the meeting is not realized, robots may preclude certain
configurations, hence deducing information about the topology of hidden objects
indirectly. Of course the challenge with such an approach is (a) to coordinate
the robots properly and independently of the encountered configurations, and
(b) to achieve the same upper bound for all possible placements of the hidden
objects.

In this direction, [27] invented various search strategies in the face-to-face
model, each of them performing well for different values of α, achieving the
following result.

Theorem 26 ([27]). TE2
α admits a solution in the face-to-face model with

evacuation time 1 + π − α/2 + 3 sin (α/2).

There are three different search algorithms Af
1 ,Af

2 ,Af
3 , that need to be

employed in order to achieve the bound of Theorem26, which we briefly out-
line next. All of them, deploy both robots to an arbitrary point of the disk, and
have them start exploring in opposite directions till the first hidden object is
found, and the algorithms are distinguished with respect to what happens next.
Figure 12 depicts possible executions of the three algorithms.

In Af
1 , each robot greedily tries to find locations of the hidden items, and the

treasure founder fetches the treasure to the exit without attempting coordination
(or any exchange of information via a coordinated meeting) as if there was only
one searcher. Some technical analysis shows that this algorithm works well (see
Theorem 26) as long as α is not large enough.

Af
2 is employed either when α is between two critical values, and the treasure

is found within a carefully predetermined time window. In this case, the treasure
founder goes to the center of the disk, and waits for as long as it would take the
other robot to find the exit in a candidate location and come to notify the trea-
sure holder. No matter whether the meeting is realized or not, the treasure holder
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Fig. 12. Possible executions of algorithms Af
1 , Af

2 , Af
3 . On the left, the first robot that

finds an interesting point, depicted with square I, tries one of the possible locations
of the other interesting point. In the middle, the founder of the first interesting point
which is the treasure, goes to the center of the circle, and waits till it collects enough
information as to where the exit is (possible trajectories depicted with dotted arrows).
On the right, the founder of the treasure follows a special chord specified by points
A, B, C, D (described in the definition of Af

3 below) only up to a total length y. There-
after, there are two possibilities of movements depicted with the dotted arrows, and
that depend on the information the robot will have collected about the location of the
exit.

deduces the location of the exit, and fetches it inducing worst case evacuation time
equal to the one promised by Theorem26.

Finally, Af
3 is employed in all other cases and utilizes the most involved

trajectories and is based, at a high level, on the following idea. Suppose a hidden
object is located at point A, and that object is the treasure. If there is uncertainty
about the location of the exit, then this must be at arc distance α either cw or
ccw, forming an imaginary triangle ABC. What would induce a bad performance
is the treasure holder to check points B,C alone. Instead, the treasure founder
can utilize her knowledge that her peer robot is searching one of the arcs AB or
AC, and the length of these arcs is known since robots started exploring the disk
from the same point. So say that arc is AB. Had the other robot found the exit
at point B, that would induce for her another triangle ABD with the possible
locations of the second hidden object. In fact, Af

3 instructs such a robot to check
point D for the object, and if failed to start moving toward point A to notify
the treasure founder. Hence, the treasure founder has an incentive, instead of
checking her candidate points B,C to first start moving toward point D, just in
case the other robot has already encountered the other hidden object. No matter
whether the meeting is realized, the treasure holder would be able to deduce the
location of the exit, fetching to it the treasure efficiently.

Lower Bounds for TE2
α

The only lower bound known for TE2
α is for the face-to-face model and relies

on an adversary that waits for the two robots to explore the disk until there are
three points A,B,C on the disk, where arcs AB,BC are both of length α and
at most one of the points A,B,C has been visited. One can argue that this has
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to take every algorithm time at least 1 + π/3. Now depending on the value of
α, an adversary can fix the locations of the two hidden items in the other two
locations, inducing different worst case evacuation times that are summarized in
the next theorem.

Theorem 27 ([27]). No face-to-face search algorithm can solve TE2
α with evac-

uation time less than

1 + π/3 + 2 sin (α/2) +
{

2 sin (α/2) , if 0 ≤ α ≤ 2π/3
2 sin (α) , o.w.

6 Conclusion

Search has always been an inexhaustible source of challenging mathematical opti-
mization problems. In this paper a brief survey has been provided of recent devel-
opments in group search and evacuation in linear and circular search domains.
The paper is no doubt biased in favor of recent work by the authors and their
collaborators. Also note that the survey is not meant to be exhaustive but rather
provide the reader with the flavor of some of the recent, challenging and exciting
questions on this topic.
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Abstract. Patrolling is concerned with the design of continuous trajec-
tories which specify robots perpetual movements along a curve so that
the time between any two consecutive visits to any point of the curve is
minimized. In this paper we survey recent rigorous results on patrolling
by various number of robots and robots’ specifications (e.g., speed), and
for various types of curves. We discuss efficient patrolling strategies for
mobile agents with various capabilities and behaviors acting on a variety
of geometric graph domains.

Keywords: Agents · Faulty · Graphs · Patrolling · Speeds
Strategies · Trees · Visibility

1 Introduction

Patrolling is defined as the act of perpetual surveillance of either an area or the
perimeter of an area by mobile agents in order to monitor, protect or supervise
it. It has been a theme of extensive investigation in robotics [2,6,15–17,20,22].
It can be useful in order to detect whether intruders may penetrate an area
through its perimeter or even monitor an area itself so as to determine objects
or humans that need to be rescued from a disaster environment. For example,
network administrators may use mobile agent patrols to detect network failures
or to discover web pages which need to be indexed by search engines [20].

Patrolling involves a perpetual movement of the robots that is performed in
a static or in a dynamically changing environment. Motivated from Artificial
Intelligence studies, patrolling has given rise to beautiful optimization prob-
lems [19] and has provided numerous applications in Computer Science, includ-
ing Infrastructure Security, Computer Games, perpetual domain-surveying, and
monitoring in 1D and 2D geometric domains.

The present article is concerned with deterministic patrolling algorithms
describing the movement of the autonomous robots so as to patrol a given under-
lying geometric domain.
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Roadmap

A road map of the present survey is as follows. In the remainder of the current
section we introduce the basic definitions, preliminary and essential concepts
pertaining to the autonomous robots, their movement and underlying domain
to be patrolled. The main characteristic of the results described in the following
four Sects. (2, 3, 4, and 5) is that the initial positions and movements of the
robots are specified by a scheduler. The specific topics discussed in the respec-
tive sections include robot capabilities, fault tolerance, patrolling fragmented
boundaries, and optimal patrolling on trees, Non-centralized algorithms turn
out to be more complex than centralized and in the next Sect. 6 we outline rotor
based patrolling in which the robots make use of a specific labeling (the rotor)
of the vertices and edges of the underlying graph. Finally, in Sect. 7 we provide
decentralized strategies in which the robots’ trajectories are based on distributed
online algorithms.

Underlying Domain

In a general setting, we are given a domain which is a connected geometric graph
G = (V,E), where V is its set of vertices and E its set of edges.

Fig. 1. Portion of a connected geometric graph.

Each edge e ∈ E of the graph G = (V,E) is modelled as a smooth continuous
and rectifiable (with continuous derivative) curve of arbitrary positive length
represented by its edge weight w(e). By |E| we denote the sum of the lengths of
the edges of G. At any time a robot may occupy any point belonging to an edge
e (this may include interior and endpoints). We denote by DG the domain (the
union of the edges) along which the robots walk.

Robots and Movement

Assume that k mobile robots are deployed on such a graph. The robots move
perpetually along edges of the domain without exceeding their maximum speed.
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The robots patrol the graph by regularly and perpetually visiting all points of
the domain in well-defined trajectories.

In a later section we will also consider patrolling with faulty robots. In this
case, we will consider a team of k robots (patrolmen), at most f , where f < k, of
which may be unreliable in that they fail to comply with their patrolling duties,
e.g., they do not follow their trajectories because either of reduced or failing
capabilities.

We assume a continuous traversal model, whereby the movement of the i-th
robot within DG follows a continuous function of time

t → πi(t) : πi : [0,∞) → DG, for each i = 1, 2, . . . , k,

and πi(t) denotes the position in DG of the i-th robot at time t. Each robot
may move in any direction along an edge not exceeding its maximum speed
specifications. If the maximum speed is one then within time interval [t1, t2]
each robot may travel a distance of at most t2 − t1; we also assume that when
walking at maximum speed, a robot travels the unit distance in unit time, so
that time and distance travelled are commensurable. In the sequel we will also
consider robots moving with different maximum speeds (sometimes dependent
on the task they perform, i.e. patrolling or just walking).

Patrolling Strategies

By patrolling strategy we understand the set P = {π1, π2, . . . , πk} of infinite
trajectories of k robots in DG, where πi(t) is the point of DG occupied by the
i-th robot at time t.

Boundary and area patrolling has been studied in several papers includ-
ing [1,15,16,21]. It has usually been dealt with using an ad-hoc approach which
emphasizes experimental results. Following [6], two basic patrolling strategies
are considered: partition-based (when the environment is partitioned into parts
monitored by individual agents) and cyclic-based (when all agents patrol the
environment walking in the same direction along some cycle).

For example, Fig. 2 depicts the possible trajectories of four robots in the graph
of Fig. 1. The left picture depicts a cyclic strategy in which the four robots are
patrolling along the same cycle. The right picture depicts a partition of the graph
into two cycles each of which is patrolled by a given subset of the four robots.

Idleness

Patrolling strategies are evaluated by using the idleness, a measure widely used
in robotics literature. Consider a patrolling strategy P for k robots moving along
a geometric graph G. Then the idleness of strategy P for graph G (or its idle
time), denoted by �f

k(G,P) is the supremum of the lengths of time intervals
between two consecutive visits to the same point of DG (supremum taken over
time and over all points of DG): when up to f robots may be faulty, the adversary,
knowing our strategy, may choose a set F of f faulty robots, a point p of the
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Fig. 2. A graph and two possible patrolling strategies. 1. Left figure: a cyclic strategy,
and 2. Right figure: a partition strategy with two different cycles.

domain and a time moment t ≥ 0. The idleness of the strategy is the supremum
(taken over all such adversarial choices) of time intervals T such that point p
is not visited during the time interval [t, t + T ] by any reliable robot. Finally,
the idleness of a graph G for k robots, at most f of which may be faulty, is
denoted by

�f
k(G) := inf

P
�f

k(G,P).

Hence �f
k(G) is the lower bound of idleness over all possible patrolling

strategies. When there are no faulty robots (i.e., f = 0) we use the notation
�k(G,P) := �0

k(G,P). In the sequel, mention of G and P will be omitted when
easily understood from the context.

2 Agent Capabilities

In this section we discuss how speeds and visibility may affect patrolling of a
domain by mobile agents.

2.1 Agents with Possibly Distinct Maximal Speeds

The patrolling problem is perhaps the most challenging for agents whose maxi-
mal speeds are not necessarily the same. In [9] the authors address the patrolling
problem for mobile agents with distinct maximal speeds placed in the line
and ring environments. The question asked was whether the solutions used in
robotics, where the strategy used are either partition-based or cycle-based, are
optimal. The results of this paper and the works which followed show that this
is the case only for very small collections of agents.

Model Specifics and Problem Definition
The set of k agents may be placed at arbitrary positions of the environment and
move at velocities not exceeding their respective maximal speeds. We suppose
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that the agents are numbered according to their decreasing maximal speeds i.e.
v1 ≥ v2 ≥ . . . ≥ vk > 0. The studied environments are a segment of a given finite
length and a ring of a given size. We assume that the positive speed of an agent
corresponds to the counterclockwise traversal of the ring and its left-to-right
movement from on the segment. Using a scaling argument we suppose that the
time and length are commensurable. In other words, we assume that the length
of the ring is equal to 1 (one unit of length), and that an agent using constant
speed 1 (one unit of speed) in one unit of time exactly traverses once the entire
ring.

Fence Patrolling
By fence patrolling the robotics community considers perpetual monitoring of
the set of points homeomorphic with a segment of finite length. We denote
by S = [0, 1] the unit length interval. [9] proposes the following proportional
algorithm.

1. Let v1, v2, . . . , vk > 0 be the set of agents speeds and V =
∑k

i=1 vi.
2. Partition S into sub-segments S1, S2, . . . , Sk of length |Si| = vi

V .
3. Agent ai walks at its full speed back and forth between the endpoints of Si.

It is easy to show that the idle time of this algorithm equals 2/V , i.e. it is
independent of the number of mobile agents, but it is dependent on the summa-
tion of their speeds. Indeed, it may be observed that replacing any subset S′ ⊂ S
of agents by a single agent having a maximal speed v, such that v =

∑
i∈S′ vi

results in the proportional algorithm producing the same idle time.
The proposed algorithm is a typical partition-based solution. The authors

of [9] proved that the above proportional algorithm results in the optimal idle
time for two agents and they asked whether the same algorithm works for any
number of agents.

This question has been addressed by Kawamura and Kobayashi in [18] where
the authors prove that the proportional algorithm results in the optimal idle
time for k ≤ 3 agents. However, they prove that the algorithm is not optimal
in general. The authors of [18] produce a counterexample by giving a set A of
six agents. Four agents of set A have maximal speed 1 while the remaining two
agents have maximal speeds 1/2 and 7/3. The example given by Kawamura and
Kobayashi arranges the movements of the agents of A so that the obtained idle
time equals 41/42 of the idle time of the proportional algorithm.

Patrolling a Unidirectional Boundary
In this section we suggest an algorithm generating the schedule for the ring
patrolling, where all agents are walking in the same, say counterclockwise, direc-
tion of the ring. It is easy to show that, having two agents, one of the following
two solutions will be optimal:

1. The slower agent is not taken into consideration (it stays immobile) and the
idle time is obtained from the faster agent walking at full speed.

2. The faster agent slows down to use the speed of the slower agent. Both agents
walk at speed v2 remaining continuously antipodal on the ring.
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The idle time obtained from the first schedule above equals 1/v1, while the
second schedule produces the idle time 1/2v2. Therefore the first schedule may
be chosen when v1 ≥ 2v2, otherwise the second schedule is preferred.

The idea used for two agents might be extended to the larger collections of
agents. The authors of [9] propose the following algorithm.

1. Let r be such that for all i = 1, 2, . . . , k we have ivi ≤ rvr

2. All agents ar+1, ar+2 . . . ak are not used by the algorithm
3. Place the agents a1, a2 . . . ar at equal distances around the circle
4. For each i = 1, . . . , r agent ai moves counterclockwise around the circle at

speed vr.

The above algorithm is a typical cycle-based solution. This algorithm has
been shown in [9] to produce the optimal idle time for any collection of k ≤ 4
agents and any configuration of their speeds. It was left open in [9] whether
the solution produced is optimal for collections of k agents for arbitrary value
of k and arbitrary configuration of their speeds. However the authors of [14]
have shown that this is not true. The example of [14] contains 32 agents having
harmonic maximal speeds vi = 1/i for i = 1, 2, . . . , 32. The idle time of such a
collection of agents on the unidirectional ring equals 1. The example proposes
the original arrangement of the 32 agents around the unidirectional ring and
their walks that never exceed the respective maximal speeds, resulting in the
idle time strictly smaller than 1.

Patrolling a Boundary with Movements in Both Directions
In the original paper [9] using agents of distinct speeds, the algorithms proposed
for fence patrolling generated partition-based schedules, in which the agents
always use their maximal speeds. In the case of unidirectional ring some optimal
solutions involve agents that need to use speeds that are not maximal. However
the velocities used there are uniform during the entire schedule and the generated
schedules are cycle-based. An example was given in [9], that already for 3 agents
on the bidirectional ring neither the partition-based, nor the cycle-based strategy
achieves the best idle time.

Consider an example of 3 agents with harmonic speeds v1 = 1, v2 = 1/2, v3 =
1/3. The proportional schedule would partition the ring into three segments of
sizes 2/11, 3/11 and 6/11. Each agent moving back and forth inside its assigned
segment would result in the idle time of 12/11. Any construction of the cycle-
based strategy results in idle time of 1. As ivi = 1, for each i = 1, 2, 3, such
solution may use one, two or all three agents. Figure 3 illustrates the movements
of the three agents having harmonic maximal speeds, which results in a better
idle time that both standard partition-based and cycle-based solutions.

The perpetual movements of the three agents in Fig. 3 repeat in the cycles,
each one taking 3 units of time. During such cycle the agent a3 walks counter-
clockwise at its maximal speed of 1/3 exactly traversing the entire ring. Agent a2

walks counterclockwise for time 5/8 then clockwise for time 1/8, repeating the
same procedure four times during an interval of 3 units of time. Finally agent a1

walks counterclockwise for time 1/2 then clockwise for time 1/4, again repeating
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the same procedure four times during an interval of 3 units of time. The cycle of
3 units of time starts at the same time moment for all three agents. The start-
ing positions of the three agents are chosen so that the worst-case waiting time
between the visits of agents a3 and a2, visits of agents a2 and a1 as well as visits
of agents a1 and a3 is made equal. This time, represented by interval τ on Fig. 3
equals 35/36 and it is the idle time of the schedule produced by the algorithm.

Fig. 3. An example of a schedule for three agents having harmonic maximal speeds
v1 = 1, v2 = 1/2, v3 = 1/3

The solution represented on Fig. 3 is not proven to be optimal, but it is
proven to be better than standard partition-based and cycle-based strategies. It
seems that in the case of the ring, for no configuration of agents speeds the pro-
portional, partition-based strategy is optimal. For some configuration of speeds
(e.g. speeds which are relatively “uniform”) the cycle-based strategy would be
optimal. However, as shown by the example from Fig. 3, for many speed config-
urations the optimal solution might involve the movements of agents that are
quite particular and difficult to find.

2.2 Agents with Distinct Visibility Ranges

The patrolling problem for collections of agents having possibly distinct radii
of visibility has been studied in [13]. The agents may walk not exceeding their
maximal speed. The paper considers the case when the maximal speed is the
same for all agents, as well as the case when the maximal speeds are distinct.
Each agent ai, for i = 1, 2, . . . , k, has the radius of visibility ri, which may be
possibly distinct for different agents. Therefore, when agent ai visits point x of
the environment all points at distance at most ri from x are being patrolled at
the same time. The environments considered are the open boundary (i.e. unit
length segment) as well the closed boundary (unit length ring). The patrolling
problem for other graphs is also briefly considered.

Boundary Patrolling
Similarly to the case of the previous section, by using the scaling argument, it
is assumed that the segment that needs to be patrolled has unit length. Denote
by V the sum of all agents’ speeds

V =
k∑

i=1

vi.
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The known lower bound for the problem is stated in the following theorem.

Theorem 1 ([13]). Consider the patrolling problem using k robots having max-
imal speeds v1, . . . , vk and radii of visibility r1, . . . rk, respectively. Any algorithm
patrolling the unit ring must achieve the idle time � such that

� ≥ 1 − ∑k
i=1 2ri

V
.

The idea of the proof of the theorem is the following. Let R denote the
maximal subset of the ring that may be observed by all the robots at the same
time, i.e., R =

∑k
i=1 2ri. In a time interval of size t all robots may view a new

portion of the ring of total size V t. Consequently, it takes time at least 1−R
V to

explore the ring. This is the lower bound on the idle time.
In the case of robots having the same unit maximal speed we can design an

optimal patrolling algorithm:

1. Place the agents in such positions around the ring that no two agents see the
same point of the ring. Moreover let the placement be such that each of k
ring segments containing the points, which are not seen by any agent are of
the same length.

2. Each agent moves in the counterclockwise direction of the ring with maximal
speed.

At their assigned initial positions the agents see the portion of the ring of
size R. Hence each of the k regions, unseen by any agent, is of the size (1−R)/k.
As all agents go in the same direction with unit speed, (1−R)/k is the maximal
time interval during which a point of the ring remains unseen by a robot. As we
have V = k we can conclude the following Corollary.

Corollary 1 ([13]). When the collection of robots have the same maximal speed
the proportional algorithm achieves the optimal idle time.

Fence Patrolling
Consider a unit length segment (fence) and k agents with possibly distinct visi-
bility ranges and maximal speeds. There exists a natural proportional algorithm
for the fence patrolling:

1. Partition the portion 1 − R of the fence proportionally to agents’ speeds, i.e.
let si = (1 − R)vi/V for i = 1, 2 . . . , k.

2. Assign to agent ai a sub-segment of the fence of size si + 2ri. Denote by
Si = [bi, bi + vi + 2ri] the sub-segment of the fence assigned to agent ai.

3. Each agent ai for i = 1, 2 . . . , k walks at its maximal speed inside the assigned
sub-segment Si, back and forth between the two points bi +ri and bi +vi +ri.
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Observe that the segments Si assigned to the agents cover the entire fence.
Note that, thanks to its visibility range, during its back and forth movement
each agent sees all points inside the assigned sub-segment. Because of the pro-
portionality of the assignment, each agent revisits the left (or right) endpoint
of the segment assigned to it after the same amount of time I. This amount of
time equals

I =
2si

vi
=

2(1 − R)vi/V

vi
= 2

1 − ∑k
i=1 2ri

V
.

The value I is the idle time of the proposed algorithm.
It may be proved that, when the agents maximal speeds are the same, the

above algorithm is optimal.

Theorem 2 ([13]). Consider a collection of k agents having unit maximal speed
and possibly different radii of visibility r1, r2, . . . , rk. The proportional algorithm
for the unit length fence achieves the optimal idle time of

2
1 − ∑k

i=1 2ri

k
.

When the agents maximal speeds are distinct, the proportional algorithm is
not optimal in general. Indeed, the result of [18] shows that the proportional algo-
rithm is suboptimal even with a point visibility range of every agent. However,
it is shown in [13] that the proportional algorithm is optimal if the collection
contains only two agents. More exactly, the authors of [13] prove the following
Theorem.

Theorem 3 ([13]). Consider 2 agents a1, a2 having possibly different maximal
speeds v1, v2 and different radii of visibility r1, r2. The proportional algorithm
using agents a1, a2 for the unit length fence achieves optimal idle time

� = 2
1 − 2(r1 + r2)

v1 + v2
.

Hardness Results
In the previous sections it has been shown that in the case of equal-speed agents
with possibly different visibility radii the fence patrolling and the boundary
patrolling problems may be solved in linear time. It is interesting to know
whether the patrolling problem may be also easily solved for other environments.
Section 5 shows that for a tree environment there exists a linear-time algorithm
for equal-speed agents with point-visibility (i.e. ri = 0 for i = 1, 2, . . . , k). How-
ever, the situation is quite different when radii of visibility are allowed to be
different. It is possible to prove that the decision problem whether there exists a
patrolling algorithm whose idle time is not larger than a given constant is NP-
hard for trees. We use a reduction to the PARTITION problem that we recall
below.

Instance: Finite set D = {d1, d2, . . . , dn} of integers summing up to an even
number S.
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Question: Is it possible to partition set D into two subsets each of whose
elements sum up to S/2?

The PARTITION problem is known to be NP-complete. We have the follow-
ing Theorem.

Theorem 4 ([13]). There exists a tree T and a configuration of agents’ visibility
radii for which the problem of finding the optimal idle time using equal-speed
agents is NP-hard.

S

S

S/2 S/2SS
A

B

C

D

O

A′ C ′

T

Fig. 4. For the proof of Theorem 4

From the above instance of the PARTITION problem we construct the follow-
ing instance of the patrolling problem. The environment is the tree T illustrated
at Fig. 4. T is a star formed by four segments OA,OB,OC,OD. The length
of each segment OA and OC equals 3S/2 and the length of segments OB and
OD equals S. The collection contains n + 1 agents A = {a0, a1, . . . , an} with
radii of visibility r0, r1, . . . , rn, respectively. We set r0 = S and ri = di/2 for
i = 1, 2, . . . , n. Is it possible to design a patrolling algorithm with idle time
equal to 0? In other words, is it possible to place the (immobile) agents in the
tree T so that each point of T is visible by some agent? Observe that if the
agent a0 is not placed at point O of the tree T the entire tree T cannot be made
visible by the set of immobile agents A. Suppose then that agent a0 is placed at
point O, covering by its visibility range segments OA′, OB,OC ′ and OD. The
remaining agents need to cover segments AA′ and CC ′, each one of length S/2.
By construction, this is possible only if there is a partition of set D into two
subsets of equal sum S/2.

A more complicated construction is possible in order to prove a more general
Theorem.

Theorem 5 ([13]). For any fixed real value I there exists a graph G and a
configuration of visibilities r1, r2, . . . , rk of equal-speed agents, so that the decision
problem whether the agents can patrol G with idle time at most I, is NP-hard.
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3 Constraints and Agent Behavior

In this section we survey patrolling under faulty behavior of the robots and
discuss what competitive ratio on idle time can be attained when the robots are
required to obey certain time constraints.

3.1 Patrolling with Unreliable Mobile Agents

The authors of [10] study the patrolling problem when some agents may turn
out to be unreliable, i.e. they experience faults during their work. We denote
by A = {a1, a2 . . . , ak} the set of agents and by F ⊂ A the set of agents that
turn out to be faulty. The cardinality of subset F is bounded by some constant
f < k. The algorithm does not have the knowledge of the set F , but it knows
the constant f .

We can suppose that the patrolmen need to report some events that may
happen to the points of the network (some sort of failures, presence of intruders,
etc.) while visiting such points. A reliable agent walks according to the assigned
schedule, perceives an event incoming to a visited point and reports it instan-
taneously. A faulty agent may deviate from the assigned route, fail to perceive
an event, fail to report it or report an inexistent event. Minimization of the idle
time means that we want to report a real event by a reliable agent in the shortest
possible time after its occurrence. In this sense, since the agents do not commu-
nicate, it is irrelevant whether we say that such faults are of crash or Byzantine
nature.

It is assumed that an omnipotent adversary knows the patrolling algorithm.
As a function of this knowledge, and aiming for a worst case analysis, the adver-
sary may choose:

1. a point P ∗ of the environment which needs to be patrolled,
2. a time moment t∗ after which an event at point P ∗ starts to occur,
3. a subset F of up to f mobile agents which turn up to be faulty.

Consequently, the idle time � of the proposed algorithm is such that at time
t∗ a robot ai ∈ A \ F visits point P ∗, at time t∗ + � a robot aj ∈ A \ F visits
point P ∗ and during the time interval [t∗, t∗ +�] all f robots of set F visit point
P ∗.

Fence Patrolling
The environment to be patrolled is a unit length segment I = [0, 1]. It is assumed
that most robots of the collection A are reliable, more precisely that f < k−2

2 .
The main algorithm for fence patrolling is proposed in [10]. Its idea is to partition
the collection A of agents into three groups. Each group is instructed to make an
Eulerian tour (i.e., back and forth movement) of some sub-segment of I. By an
Eulerian tour we mean to place the agents equally spaced around the subsegment
and walk in the counterclockwise direction (in the resulting Eulerian cycle) with
maximal speed. Hence each agent makes back and forth movements between the
endpoints of the subsegment. Each point of the segment, except its extremities,
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is visited by the stream of agents traversing it in the left-to-right direction as well
as the stream of agents walking over it in the right-to-left direction. The three
subsegments are the left subsegment IL (including point 0 - the left endpoint of
I), the right subsegment IR (including point 1) and the entire segment I. The
lengths of segments IL, IR as well as the distribution of the agents among the
three groups is a function of parameters k and f . More precisely we have the
following algorithm.
Algorithm AI

1. Consider three segments:

IL =
[

0,
	f/2


k − 2 	f/2

]

,

IM =
[ 	f/2

k − 2 	f/2
 , 1 − 	f/2


k − 2 	f/2

]

I = [0, 1]

2. Assign 	f/2
 agents to each segment IL, IR.
3. Assign the remaining k − 2 	f/2
 agents to segment I.
4. Each of the three groups of agents perform an Eulerian tour around the

assigned segment.

Theorem 6 ([10]). The strategy executed by algorithm AI results in patrolling
of segment I with idle time

�f
k(I,AI) ≤ 2 �f/2� + 2

k − 2 	f/2
 .

The rough idea of the proof of Theorem6 is the following. The distance d
between two consecutive agents of each Eulerian tour equals d = 2

k−2�f/2� .
We bound first the idle time of a point p belonging to an extremal segment

IL (or, by symmetry to IR). The most vulnerable point is the endpoint, say
point 0 (as other points are visited twice more often). If some agent assigned to
subsegment IL is non-faulty then this agent visits point 0 every 2 �f/2�

k−2�f/2� time,

which is not greater than the time 2�f/2�+2
k−2�f/2� claimed in the Theorem. Otherwise,

	f/2
 agents assigned to IL are faulty and the idle time at point 0 is assured
by the agents assigned to segment I. As there are at most f − �f/2� remaining
faulty agents, the distance between the non-faulty agents in the Eulerian cycle
of I is at most d(f − �f/2� + 1) and we have

�f
k(I,P) ≤ d(f − 	f/2
 + 1) = d(�f/2� + 1) =

2(�f/2� + 1)
k − 2 	f/2
 . (1)

The idle time of a point p outside the extremal segments IL and IR is assured
by the agents assigned to segment I. There are two streams of agents traversing
p in both directions. The worst case arises when the two streams contain long
sequences f1, f2 of faulty agents. It may be shown that when f1 = f2 or f1 = f2
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the time between two visits of non-faulty agents is also bound by the value from
Eq. (1).

It may be proven that our algorithm is optimal for odd values of f and almost
optimal for even f . More exactly we have the following Theorem.

Theorem 7 ([10]). Consider patrolling of a segment with k robots. Suppose
that up to f robots of the collection, such that f < k/2 − 1, may turn out to be
faulty. For any patrolling strategy A its idle time is lower-bounded by

�f
k(I,A) ≥ f + 1

k − f − 1
.

To sketch the proof of Theorem 7 we observe first that, in order to get a
better lower bound, at all times there must be at least f + 1 agents inside the
segment

[
0, f+1

2(k−f−1)

]
. By symmetry there must be also at least f + 1 agents

inside the subsegment of I of the same length that contains point 1. We can then
use the following Lemma.

Lemma 1 ([10]). Consider a graph G and its patrolling strategy P. Let E′ be
some subset of portions of edges of G and let |E′| denote the sum of their lengths.
Suppose that starting from some time moment of the strategy, E′ contains at
most r robots. Then

�f
k(G,P) ≥ (f + 1)|E′|

r
.

We then show that if the idle time is smaller than f+1
k−f−1 , having only the

remaining k−2(f +1) agents in the middle part of I would contradict Lemma 1.

Idle Time of Arbitrary Graphs
For the general graphs, the lower and upper bounds on the idle time is given by
the following Theorem.

Theorem 8 ([10]). Consider a connected graph G that needs to be patrolled by
k ≥ 2 robots, at most f of which are faulty. Then

(f + 1)|E|
k

≤ �f
k(G) ≤ (f + 1)CPT (G)

k
.

where CPT (G) denotes the length of the Chinese Postman Tour of G.

To get the upper bound (f+1)CPT (G)
k it is sufficient to patrol the graph G by

k agents placed equidistant around the Chinese Postman Tour CPT (G). The
lower bound (f+1)E(G)

k follows from Lemma 1 applied to E(G).
As for any Eulerian graph G we have E(G) = CPT (G), using Theorem 8 we

obtain the following Corollary.

Corollary 2 ([10]). For any connected Eulerian graph G, there exist an optimal
patrolling strategy P using k ≥ 2 agents that may contain at most f faulty ones
and

�f
k(G,P) =

(f + 1)E(G)
k

.
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We conclude with the following theorem, which states that the problem of
computing the optimal idle time for collections of agents including some faulty
ones is NP-hard.

Theorem 9 ([10]). Consider a collection of 3 robots, such that one of them, a
priori unknown, may turn out to be faulty. There exist graphs for which comput-
ing the idle time for such collection of robots of the optimal patrolling strategy
is NP-hard.

The reader might be interested in the following observation. Note that in
the solution of the fence patrolling problem, the larger the number f of faulty
robots, the longer the idle time of the proposed algorithm. Hence knowledge of
the bound f , allows us to obtain the best idle time for that bound. Similarly, if
we know the time bound t during which an event that is occurring at a point of
the network, may remain unreported, we may design an algorithm producing a
patrolling schedule whose idle time is at most t while at the same time tolerating
the largest possible number of faults. However, it is the knowledge of f in the
former case and the knowledge of t in the latter one which is essential.

3.2 Patrolling with Time Constraints

The notion of the idle time of a patrolling schedule, and hence the objective
of traditional patrolling, assumes that points in the domain to be patrolled
are indistinguishable with respect to visitation demands. Even more, one could
restate the patrolling problem of a domain, consisting of a collection of points
N to be patrolled, as follows; associate each point in N with τ , and request a
patrolling schedule so that the time between any two visitations of any point
is no more than τ . Clearly, even when τ is as low as the optimal idle time of
patrolling the domain, the problem admits a feasible solution, even though such
a solution might be difficult to find. In a more interesting setting, the points of
the domain are each associated with different visitation requirements. This is
the subject of [7].

The Model of Patrolling Points with Visitation Requirements
In the Path Patrolling Problem with Visitation Requirements (PPVR), two
robots of maximum speed 1 patrol n points 0 = y1 < y2 < . . . < yn = 1
placed on a unit interval. Each point yi is associated with its visitation frequency
requirement I(yi) ∈ R+. The idle time in PPVR is defined only with respect to
points yi, even though the movement of the robots take place in the contiguous
unit interval. In that direction, and for a patrolling schedule P, we denote by
wP(yi) the idle time of point i (and we drop subscript P, when it is clear from
the context). A patrolling schedule P is called c-feasible if wP(yi)/I(yi) ≤ c, for
each i = 1, . . . , n. Thus a feasible patrolling schedule is also 1-feasible, and an
instance that admits such a schedule will also be called feasible. The objective of
PPVR is to design patrolling schedules that minimize the worst normalized vio-
lation of the idleness times for feasible instances, i.e. c-feasible schedules where
c ≥ 1 is as small as possible.
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Structural Properties of Feasible Instances
Deciding whether a PPVR instance is feasible, is not known to be in P , neither
NP − hard. At the same time, finding c-feasible schedules for feasible instances
has proved to be a challenging task, and the best result known, due to [7], is the
following.

Theorem 10 ([7]). Feasible instances to PPVR admit
√

3-feasible schedules.

The main challenge behind designing effective patrolling schedules is imposed
by the visitation requirements of points yi. Indeed, small values of I(yi) require
that at least one robot is always in good proximity of point yi. We are therefore
motivated to introduce notation for the ball

R(yi) :=
[

max
{

0, yi − I(yi)
2

}

,min
{

1, i +
I(yi)

2

}]

around point i, i.e. the range within which a robot can be located introducing no
violation to the visitation frequency requirement of point i. Since also at least
one of the extreme points of the unit interval can be assumed to be patrolled
only by one robot, we are motivated to group points yi with respect to whether
the extreme points fall within their range:

S00 := {yi ∈ S : 0, 1 ∈ R(yi)} ,

S01 := {yi ∈ S : 0 ∈ R(yi), 1 ∈ R(yi)} ,

S01 := {yi ∈ S : 0 ∈ R(yi), 1 ∈ R(yi)} ,

S11 := {yi ∈ S : 0, 1 ∈ R(yi)} .

Note that S00 contains points that cannot be patrolled just by one robot, and
hence require their coordination. For that reason, instances for which S00 is
empty are considered easy.

Theorem 11 ([7]). Feasible instances of PPVR with S00 = ∅ admit a partition
based 1-feasible patrolling schedule.

The proof of Theorem11 relies on a characterization of feasible instances of
PPVR with S00 = ∅, according to which those instances are exactly those for
which

– S10 ⊂ ⋂
x∈S10

R(x) =: X10, and 0 ∈ X10.
– S01 ⊂ ⋂

x∈S01
R(x) =: X01, and 1 ∈ X01.

– S ⊂ [
⋂

x∈S10
R(x)] ∪ ⋂

x∈S01
R(x)] = X10 ∪ X01

As a result, a robot may search X10 \ X01 and the other X01, and it is easy to
see that the schedule is indeed 1-feasible.

On the other hand, feasible instances for which S00 = ∅ admit no known
characterization, and as a result they admit solutions that only approximate
feasibility. Nevertheless, known algorithms are based on a necessary condi-
tion that is known for all such instances, partially revealing their structural
properties.
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Lemma 2 ([7]). S00 ⊂ ⋂
x∈S R(x), for all feasible instances of PPVR.

Finding c-Feasible Patrolling Schedules
Equipped with Lemma2, one can easily devise a 4-feasible patrolling schedule
for any feasible PPVR instance. The patrolling schedule with such a guarantee
involves nested traversals. For this, define i0 = argminiI(yi). Then the nested
traversal has one robot perpetually going back and forth between the endpoints
of the unit interval, and the other going back and forth between the endpoints
of R(yi0). The advantage of this strategy is that only one of the robots needs to
remember the endpoints of R(yi0).

Improving the feasibility violation to
√

3 as suggested by Theorem 10 requires
a much more elaborate algorithm which in particular assumes coordination
between the robots. The structural component that one has to utilize in order
to efficiently patrol PPVR instances is related to the span of points in S00. In
particular, define x1, x4 be such that

⋂

x∈S00

R(x) = [x1, x4].

We call an instance to PPVR α-expanding if x1 = α
1+αx4. This measure quanti-

fies how close x1, x4 are to the endpoints of the domain of the patrolling instance
(and note that α

1+α is monotone in α). Different algorithms need to be employed
for different ranges of α, and the crux of the proof of Theorem10 is the design
of two algorithms that are (1 + 2α) and 2+α

1+α feasible. Since one can always run
the more efficient one, the worst performance one can get is when both violate
the visitation requirement by the same factor, i.e.

√
3, and this happens for√

3−1
2 -expanding instances.
In order to present these algorithms, one has to relate not only x1, x2 but

also the leftmost and rightmost points in S00, call them x2, x3, respectively. By
definition of the xi’s, it is not difficult to see that x1 ≤ x2 < x4 and that x1 <
x3 ≤ x4, while by breaking symmetry we may always assume that x1 ≤ 1 − x4.
Now specific to feasible instances is that x4−x3 ≤ x3−x1 and x2−x1 ≤ x4−x1,
a claim that can be shown as a corollary of Lemma 2. These conditions are
enough to derive that the idle time of the points that have to be patrolled
satisfy inequalities

I(x) ≥
⎧
⎨

⎩

max{2x, 2(1 − x − x4 + x1), x4 − x1}, x ∈ [0, x1)
2max{x4 − x, x − x1}, x ∈ [x1, x4]
max{2(1 − x), 2(x − x4 + x1), x4 − x1}, x ∈ (x4, 1]

It follows then that one needs patrolling schedules whose worst point visitation
frequencies are not too large, as a function of x1, . . . , x4.

The algorithm that performs well for small expansion factors α is a simple
partitioned based patrolling schedule (requiring no coordination), in which the
two robots zig-zag between intervals [0, x3] and [x3, 1]. The induced visitation
waiting times w(x) for each point x can be shown to satisfy w(x) ≤ 2max{x, x3−
x}. Some exhaustive analysis then can show that w(x)/I(x) ≤ 1 + 2α.
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For large values of expansion factor α, one has to be more creative, and
robots do need to coordinate their movements throughout the execution of the
algorithm. In particular, robots need to always maintain distance at least d (to be
determined shortly), while they take turns in zig-zaging within interval [x1, x4].
While moving within [x1, x4], if the other robot approaches closer than d, then
the first robot abandons the zig-zaging, and heads toward one of the endpoints.
The process then is repeated, with the next robot to abandon the zig-zaging
having to visit the other endpoint. Some technical details require also a special
initial placement of the robots, so as to guarantee that the induced visitation
waiting times satisfy

w(x)

⎧
⎨

⎩

= 2max{x, 1 − x − d}, x ∈ [0, x1)
≤ 2max{x − x1, x4 − x} + d, x ∈ [x1, x4]
= 2max{1 − x, x − d}, x ∈ (x4, 1]

The performance of the algorithm then is determined by finding

min
d

max
x

w(x)
I(x)

and some technical analysis is required to show that the best option is to choose

d =
1

1 + α
min{x1, x4 − x1},

inducing visitation violation 2+α
1+α .

4 Patrolling Fragmented Boundaries

The problem studied in [8] concerns patrolling a boundary such that only some
portions of it need to be monitored. These portions are called vital intervals.
The remaining parts of the boundary (that we call neutral intervals) may be
traversed by agents, but the idle time of the patrolling strategy relates only to
maximal revisitation time of points from vital regions. More exactly we have the
following.

Definition 1. The boundary I = [0, 1] contains n disjoint vital regions repre-
sented by intervals V1, V2, . . . , Vn, where Vi = [bi, ei] and bi ≤ ei < bi+1 for
1 ≤ i ≤ n − 1, b1 = 0 and en ≤ 1. We call

V =
n⋃

i=1

Vi

the vital part of the boundary B.

We consider first the case of an open curve I, where it is represented by a
unit segment called also a fence in the literature. Then we consider the closed
curve I, which represents a unit ring, with points 0 and 1 identified. This case
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is most often referred to as being a boundary, i.e. a simple curve bounding some
planar region.

Recall that in the robotics literature the typical strategies applied for
patrolling were partition-based, where each agents perform a back and forth
movement inside a region assigned to it, and cycle-based, where agents per-
petually walk around a cycle inside the environment. We show that, optimal
patrolling of a fragmented fence is always partition-based and optimal patrolling
of a fragmented boundary is sometimes partition-based and sometimes cycle-
based.

4.1 Patrolling a Fragmented Fence

In order to describe the region patrolled by a single robot in the partition-based
strategy we refer to the concept of a lid.

Definition 2. A d-lid is a closed interval of segment I = [0, 1] of length d. For
a vital part V ⊆ I we say that it has a (d, k)-lid cover if there exists a set Ld of
k (not necessarily disjoint) d-lids such that every point p ∈ V belongs to some
d-lid of Ld.

The patrolling algorithm of a fragmented fence needs to find the smallest
possible real value d such the set V has a (d, k)-lid cover. We make the following
Observation.

Observation: Consider a vital set V = {V1, V2, . . . , Vn}. For any d-lid and any
k it is possible to decide in O(n + k) time whether V has a (d, k)-lid cover.

Indeed we can place lids one by one making them adjacent whenever the end
of the previous lid falls inside a vital interval. If the previous lid ends in the
neutral region, the next lid starts at a beginning of the subsequent vital interval.
This way, a single constant-time step permits to remove one element of a lid
set or advance in the list V . The complexity of process corresponds to that of
merging two ordered lists.

Assume w.l.o.g. that the vital intervals are arranged from left to right as
Vi = [bi, ei], for i = 1, 2, . . . , n where b1 = 0, bi ≤ ei < bi+1. To find the size
of optimal lid we observe that, the optimal (d, k)-lid cover has a property that
some sequence of adjacent lids starts at the beginning of some vital interval and
it ends at some (perhaps not the same) vital interval. More exactly, we have the
following Lemma.

Lemma 3 ([8]). Suppose that L is the minimal size of lid such that V admits
(d, k)-lid cover. Then there exists three integers x, y, z, such that 1 ≤ x ≤ y ≤ n,
1 ≤ z ≤ k and L = ey−bx

z .

Consequently, we have the following.

Corollary 3 ([8]). The optimal lid size may be found in O(kn2 log n).
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Indeed, using Lemma 3, we can sort in O(kn2 log n) time at most O(kn2)
candidate values for the size of optimal lid and then perform binary search to
determine the right value.

The authors of [8], using a more involved procedure, propose an algorithm
with an improved complexity of O(kn log n).

Theorem 12 ([8]). Consider patrolling a fragmented fence with vital part V by
a collection of k agents. The idle time of the optimal patrolling strategy equals
2L, where L is the smallest value such that V admits a (L, k)-lid cover.

4.2 Patrolling a Fragmented Boundary

In the case of closed curve, the strategy patrolling the vital regions may be either
partition-based or cycle-based. Consider first the case of a single vital interval
V = {V1} in a unit-length ring. It is easy to see that, if the length of |V1| > 1/2
the cycle-based strategy is better than the partition-based one, independently
on the number k of agents used. For other configurations of vital intervals it
may be not clear, which type of strategy, the partition-based or the cycle-based
produces a better idle time. Clearly it depends on the value of k.

The optimal partition-based strategy may be obtained by the following app-
roach, which uses the algorithm from the previous section.

Algorithm PB

1. For each vital interval Vi cut the boundary at bi - the starting point of Vi,
obtaining this way a unit-length segment Si.

2. For each segment Si find the smallest lid size Li such that Si admits (Li, k)-lid
cover.

3. L = max
1≤i≤n

Li.

4. Optimal idle time for partition-based strategies = 2L.

The cycle-based patrolling strategy of a fragmented boundary is independent
on the configuration of vital regions and it implies the idle time 1/k. To find the
best patrolling strategy it is then sufficient to compare the value of 1/k with the
best idle time for the partition-based strategy computed by Algorithm PB. The
following Theorem states that there is not any better patrolling strategy than
the one discussed above.

Theorem 13 ([8]). The idle time �k(P) of any traversal strategy P in a unit-
size fragmented ring satisfies

�k(P) ≥ min{1/k, 2L},

where L is the minimum possible lid size which permits a (L, k)-lid cover of the
ring.

The proof of this Theorem is quite involved but details can be found in [8].
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5 Optimal Idle Time for Trees

Throughout this section we use the term tree to refer to an acyclic geometric
graph drawn in the plane so that its edges may only cross at vertices. This section
provides an off-line schedule placing the k robots at specific initial positions on
a tree T such that if the robots move perpetually at speed 1 it will achieve the
optimal idle time 2|T |/k, where |T | denotes the sum of lengths of the edges of
T . Note that this is well known in the special case when T is a line segment (see
[9]).

The main theorem of the present section concerns patrolling on a single type
of underlying topology, namely the tree, and is the following.

Theorem 14 ([12]). For any tree T and any number k of robots,

�k(T ) =
2|T |
k

. (2)

Note that the idle time above is attained when the k robots traverse the tree
at their maximum speed 1 along an Eulerian cycle of the tree, while at the same
time ensuring that during the traversal consecutive robots remain equidistant
on this cycle.

Throughout the proof it is assumed that during their traversal the robots
may change direction anywhere on vertices as well as in the interior of edges of
the tree. In order to make the Eulerian tour of the tree, every edge is replaced
by two anti-parallel edges (of total length 2|T |).

To prove the lower bound, first we define the following useful concepts of
cumulative idle time and caterpillar trees (Fig. 5).

Definition 3. The cumulative idle time on a tree T is defined as FT (k) :=
k�k(T ), where �k(T ) is the optimal idle time for k robots on the tree T .

Definition 4. A d-caterpillar is a tree in which all edges adjacent to leaves have
Euclidean distance at most d, where d ≥ 1.

Fig. 5. A caterpillar.

The main idea for the proof of the lower bound �k(T ) ≥ 2|T |
k is based on

proving the following two properties:

1. Monotonicity of the cumulative idle time with respect to doubling the number
of robots (see Inequality (3) and Lemma 4), and
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2. Validity of the lower bound on caterpillar trees for a sufficiently large number
k of robots (see Lemma 6).

First we consider the monotonicity of the cumulative idle time.

Lemma 4 ([12]). For any number of robots k,

FT (2k) ≤ FT (k). (3)

Proof. Consider a patrolling algorithm A attaining the optimal idle time �k(T ).
Let r be a given robot. For any real number t ≥ 0, observe a trajectory traversed
by robot r according to algorithm A during the time interval [t, t + �k(T )] (of
duration �k(T )). Since during the patrolling the robot moves with speed at most
1, the positions of the robot at times t and t+�k(T ) cannot be at distance bigger
than �k(T ), where the distance is measured along the edges of the tree.

Consider the k original robots as they are moving according to an optimal
algorithm A patrolling the tree with idle time �k(T ). We now double the original
number k of robots by inserting k additional robots patrolling the tree. The
insertion procedure is as follows. Let the original robots be r1, r2, . . . , rk. For
the current discussion lets use the notation I := �k(T ). Take a snapshot of the
robots at some time, say t. Look at the robots at time t+I/2 as the robots move
to new positions. Take k new robots r′

1, r
′
2, . . . , r

′
k and place them in the positions

previously occupied by robots r1, r2, . . . , rk, respectively, at time t. Call robot
r′
i the follower of robot ri, and similarly robot ri the master of robot r′

i. The k
new robots r′

1, r
′
2, . . . , r

′
k are given the following trajectory:

– from that time on, have each robot r′
i copy faithfully the trajectory of its

master, for i = 1, 2, . . . , k.

It is clear that if an arbitrary point p is visited by a robot r at any time t it will be
visited again by its follower at time t+I/2. Therefore the idle time �2k(T ) for 2k
robots is at most half the idle time �k(T ) for k robots, i.e., �2k(T ) ≤ �k(T )/2.
After multiplying both sides by 2k, this implies Inequality (3). �

The following lemma provides an interesting property that will be useful for
the proof of the main theorem.

Lemma 5 ([12]). If T is a d-caterpillar with d ≥ 2 then there is a (d − 1)-
caterpillar T ′ which is subtree of T and such that all the leaves of T are within
distance 1 of a leaf of T ′.

Proof. The subtree T ′ is easily obtained from T by cutting edges of T which are
adjacent to leaves. �

Lemma 6 ([12]). For any caterpillar tree T , and for any real number ε > 0
there is a sufficiently large integer k0 such that

�k(T ) ≥ 2|T |
k

− 2ε

k
,

for all k ≥ k0.
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Proof. First observe that when two robots meet they can exchange their
patrolling roles. Therefore without loss of generality we may assume that no
two robots ever cross each other at any point on the tree when coming from
opposite directions. Using this, it follows that for any leaf node of the tree whose
distance from its parent is more than �k(T )/2 a robot always has to stay within
distance at most �k(T )/2 from this leaf node so as to maintain idle time �k(T, ).
Thus a robot must be dedicated to patrolling each such leaf; this allows us to
chop a segment of length �k(T )/2 from each leaf whose adjacent edge length
is at least �k(T )/2 without affecting the idle time of the tree. By chopping
such segments of length �k(T )/2 recursively we are left with star graphs (hav-
ing as centers internal nodes of the tree) and respective edges of lengths at
most �k(T )/2. Further, since the upper bound �k(T ) ≤ 2|T |

k holds, the quantity
�k(T )/2 (which is an upper bound on the lengths of the edges of the stars) can
be made as small as we wish by making k sufficiently large.

Let P be the central path of the caterpillar tree. The graph resulting from the
procedure above consists of P together with “stars of small weight”. Consider
the sum, say Δ, of all the degrees of all the stars in the tree. Clearly, Δ depends
only on the given tree T and is otherwise independent of the number k of robots.
In addition, the sum of the lengths of the edges of all the stars is at most
Δ�k(T )

2 ≤ Δ |T |
k . Therefore for any ε > 0 we can select k0 sufficiently large so

that the sum of the lengths of all the edges of all the stars is at most Δ |T |
k0

≤ ε.
It is clear from the above discussion that

|P | + ε ≥ |T | ≥ |P |,
for all k ≥ k0. However �k(P ) = 2|P |

k , for any k. Thus, it is obvious that for all
ε > 0 there is an integer k0 such that for all k ≥ k0 we have that

�k(T ) ≥ I(P, k) =
2|P |
k

≥ 2|T |
k

− 2ε

k
.

This proves Lemma 6. �

Now we are ready to prove the lower bound for caterpillars. We prove the
following.

Lemma 7 ([12]). For any caterpillar tree T and any number k of robots,

�k(T ) =
2|T |
k

.

Proof. The upper bound follows from [9]. We now concentrate on the lower
bound. Indeed, by Lemma 6 the lower bound

�k(T ) ≥ 2|T |
k

− 2ε

k
,

is valid for any k ≥ k0, where ε, k0 are selected as specified in Lemma 6. So assume
that k ≤ k0. Choose an integer i sufficiently large such that k ≤ k0 ≤ 2ik. Now
observe that the following inequalities are valid
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�k(T ) =
FT (k)

k
(by definition)

≥ FT (2ik)
k

(by Lemma 4)

=
FT (2ik)

2ik
· 2ik

k

= �2ik(T ) · 2ik

k
(by definition)

≥
(

2|T |
2ik

− 2ε

2ik

)

· 2ik

k
(by Lemma 6)

=
2|T |
k

− 2ε

k
.

The last inequality is valid for any integer k and any real number ε > 0. By
letting ε → 0 the proof of the lemma is complete. �

We are now in a position to prove the main theorem which was given at the
beginning of the paper.

Proof (Theorem 14). Without loss of generality we may assume that the tree is
a d-caterpillar, for some d ≥ 2 (in fact, every tree is a d-caterpillar, for some
d ≥ 2, provided d is sufficiently large). Now the proof of Identity (2) proceeds by
induction on d. Recall that Lemma 7 is precisely the base case d = 1. Suppose the
identity in the theorem is valid for d − 1. By Lemma 5, the subtree T ′ obtained
from T by removing all its leaves is a (d − 1)-caterpillar. Clearly, Identity (2)
is valid for |T ′|, namely �k(T ′) = 2|T ′|

k . Therefore by repeating the proof of
Lemma 6 we can show that for any real number ε > 0 there is a sufficiently large
integer k0 such that �k(T ) ≥ 2|T |

k − 2ε
k , for all k ≥ k0. In turn, using this last

statement we repeat the proof of Lemma 7 to prove the desired identity. This
completes the proof of Theorem 14. �

6 Decentralized Strategies

There is a lack of distributed and/or decentralized patrolling algorithms. This
may be due not only to the lack of knowledge of the underlying topology but
also to the difficulty of incorporating a suitable communication model which will
potentially relay information about the geographic location and local patrolling
strategy among participating robots. For this reason most of the patrolling
strategies proposed so far are centralized algorithms in that the robots receive
instructions from a central controller.

In the sequel we describe the rotor which provides a labeling of the underlying
graph which may be used to design a patrolling strategy that the robots can use
to traverse the graph.
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6.1 Rotors

We now describe a mechanism, so-called rotor-router, which has been extensively
studied in the literature as a deterministic alternative to the random walk in
undirected graphs. The basic idea of rotor-router is to set locally shared memories
at the vertices of the underlying graph. Subsequently, the robots will be updating
these shared memories as they visit the vertices of the graph. Thus, in the rotor
model, a set of k identical robots is deployed; they start from a selected subset of
nodes of the underlying graph, and move around in parallel in synchronous steps.
Each node maintains a cyclic ordering of its outgoing edges, and successively
propagates visiting robots along its outgoing edges in a round-robin manner,
according to a fixed ordering. Therefore, besides being distributed, the rotor-
router also provides an on-line algorithm in that the environment to be patrolled
is unknown, which also makes it a practical tool for patrolling an unknown
environment as well.

For example, the rotor-router algorithm described in [22] works as follows. Let
u be a vertex of the graph. Denote by d(u) degree of u. Label the edges adjacent
to u with numbers 1, . . . , d(u) (called ports pointers at u). At each vertex u
there is a pointer (called exit port at u), indicating the next (adjacent) edge to
be traversed by a robot. Further, a departing robot also updates (increments)
the exit port.

Independently from the initial configuration, which is defined by an initial
placement of the robots, port pointers and initial exit ports at the nodes, after
some transient time steps, the system reaches a stable state, in which the place-
ment of the robots within the graph and the state of the exit ports (at all
the nodes) repeats periodically (this is called periodic behavior of rotor-router).
Interestingly, it has been proven (see [22]) that for a single robot such periodic-
ity is only 2mΔ steps, where m is the number of edges, and Δ is the diameter
of the network. More generally, [22] also show that for k robots, after at most
2(1+1/k)mΔ steps the numbers of edge visits in the network are balanced up to
a factor of two.

Thus when viewed as random walk, a single walk achieves a cover time of
exactly Θ(mΔ) on any connected n-node graph with m edges and diameter Δ,
and that the robot eventually stabilizes to a traversal of an Eulerian circuit on
the set of all directed edges of the graph (see also [3]). Also noted is additional
research in [4,5] which show that this cover time is at most Θ(mΔ/ log k) and
at least Θ(mΔ/k) for any graph. This corresponds to a speedup of between
Θ(log k) and Θ(k) with respect to the cover time of a single walk. Both of these
extremal values of speedup are achieved for some graph classes. Their results are
valid for up to a polynomially large number of walks, k = O(poly(n)).

7 Dynamic Patrolling with Primitive Agents

Specifying agents’ perpetual movements (patrolling strategies) so as to mini-
mize the idle time is a particularly challenging task in a distributed environ-
ment. The difficulty of this problem touches first, on the invention of efficient
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strategies/trajectories, and second on their theoretical analysis which can be
technical. Patrolling in a distributed environment becomes particularly interest-
ing when agents demonstrate only primitive computation power, i.e. they have
limited (or no) memory and they can perform only primitive (or no) computa-
tions. In this section we outline a thorough investigation of such a problem due
to [11], indicating that optimal idle times may be obtained by natural trajectory-
inducing processes that converge to efficient, and occasionally optimal, patrolling
strategies.

The Model of One-Way Patrolling
n mobile agents R = {r1, . . . , rn} are each associated with some patrolling speed
pi and some walking speed wi, where pi < wj for i, j = 1, . . . , n. Robots per-
petually move along the unit segment [0, 1] (an open curve) in both directions.
Agent ri can be either in walking state moving at speed wi or in patrolling state
moving at speed pi. Each robot may walk in both directions but its patrolling is
always done in the same direction.

In a centralized environment with “intelligent” agents, robots may be cen-
trally coordinated, placed on the unit interval, and associated with walking-
patrolling directions and with appropriate turning points so as to minimize the
idle time (note that the idleness is defined over all points, uncountably many,
of the contiguous unit interval, and a point is visited by a robot only if the
latter is in patrolling state). In the decentralized and distributed environment,
robots have only primitive capabilities. In particular, agents are oblivious and
silent. Besides their two-speed mobility sates, they perceive the environment by
recognizing obstacles (i.e., endpoints or other robots), allowing them to change
states and schedules accordingly.

The Optimal Patrolling Strategy
Solving the problem of patrolling the unit interval in the one-way patrolling
model optimally requires special coordination between the agents. Indeed, sup-
pose a centralized algorithm has control over where the agents will be placed and
what their turning points will be for a partitioned based strategy. Each robot
will be assigned a subinterval, and will patrol in one direction, moving at speed
si, and walk back to it’s initial starting point, moving at speed wi, before it
repeats the process. The time needed to execute one iteration of the process is
proportional to the length of the assigned subinterval, and to quantity 1

pi
+ 1

wi

which we refer to as the time cycle τi of robot ri. A condition inducing optimal
idleness would require that the idle times of points in the unit interval, except
from those jointly patrolled by two robots, to be all equal. As a result, in an
optimal partition based patrolling schedule of the unit interval, each robot ri

will be associated with a subinterval proportional to τi, giving rise to following
theorem.

Theorem 15 ([11]). The optimal patrolling strategy of a unit interval in the
one-way patrolling model is partition based. Each robot ri is associated with a
subinterval of length τi/

∑n
j=1 τj, and the induced idle time becomes
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⎛

⎝
n∑

j=1

τ−1
j

⎞

⎠

−1

.

The role of a centralized algorithm then would be to instruct each of the
robots to move within its assigned subintervals, and to turn direction and mov-
ing state, each time the endpoint of the interval is reached. Moreover, under
some extra conditions concerning the relative order of the patrolling and walk-
ing speeds, the induced dynamical system would look perfectly synchronized.
Indeed, suppose that all robots are initially placed at the same-side endpoints of
their intervals and they all start patrolling in the same direction simultaneously.
Since in the optimal patrolling schedule all but a few points have the same idle
time, all robots will return to their initial configuration after time equal to the
optimal idle time, before all of them repeat the same process. The only fun-
damental assumption here is that each robot remembers the endpoints of it’s
interval, and is aware of it’s location so as to be able to change direction and
state when the endpoint of the interval is reached. A fundamental question then
is whether the same solution can be achieved in a decentralized environment
with memoryless agents.

Optimal Patrolling with 2 Primitive Agents
The optimal schedule of Theorem 15 can be simulated by primitive agents, at
least in the restricted case of two robots. In that direction, consider the following
dynamical system that can be executed by robots that have no memory, and
their only allowed computation is to switch moving state and direction when
an obstacle is found. The two robots r1 = (p1, w1), r2 = (p2, w2) are placed at
the two endpoints of the unit interval, and they start patrolling toward each
other till they collide, say at point x1, when they bounce by changing directions
and moving state. Each of the robots will reach their corresponding endpoint
of the interval, when they bounce again, by changing directions and returning
to the patrolling state, before they collide again, say at point x2. Clearly, this
dynamical process induces an infinite sequence of meeting points x1, x2, x3, . . ..
It is not difficult to establish a recurrence relation for the xi’s, according to
which xi = −axi−1 + b, where

a :=
1

w1
+ 1

w2
1
p1

+ 1
p2

, and b :=
1
p2

+ 1
w2

1
p1

+ 1
p2

,

and hence

xi = (−a)ix0 + b
1 − (−a)i

1 + a
.

Since wi > pi, we see that a < 1, and hence the sequence of the meeting
points converges to

lim
i→∞

xi =
b

1 + a
=

τ2
τ1 + τ2

.
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We conclude that the primitive dynamical system of two robots converges to the
partitioned-based solution of Theorem15, and hence eventually the patrolling
strategy is optimal.

Patrolling with n Primitive Agents
The collision dynamics of a primitive system of n agents patrolling a unit interval
in the one-way patrolling model are much more involved. For uniformity reasons
it is natural to have all robots start from the same endpoint of the unit interval,
as well as in the same moving state toward the same direction. Assuming that
all robots speeds are distinct, robots’ speed will induce a permutation of the
robots, starting with the slowest. Since robots will bounce (change direction
and moving state) whenever an obstacle is found, the permutation of the robots
will be preserved indefinitely. In particular, collisions will occur only between
consecutive agents i, i + 1. We denote the collision-locations of these agents for
the t’th time by xi

t. As in the case of two agents our goal is to derive a recurrence
relation for the sequence of vectors

Xt =
(
x1

t , x
2
t , . . . , x

n−1
t

)T
.

The difficulty in establishing a recurrence for Xt is due to the fact that collisions
may involve consecutive agents that are moving in the same direction. There-
fore, we are motivated to restrict ourselves to regular dynamical systems where
collisions take place only between robots in different movement states, and hence
moving toward each other. For such systems it can be shown that

AXt+1 + BXt = c,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/p2 + 1/w1 0 0 . . . 0 0
−1/p2 − 1/w2

1/p3 + 1/w2 0 . . . 0 0
0 −1/p3 − 1/w3

1/p4 + 1/w3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1/pn−1 + 1/wn−2 0
0 0 0 . . . −1/pn−1 − 1/wn−1

1/pn + 1/wn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/p1 + 1/w2 −1/p2 − 1/w2 0 . . . 0 0
0 1/p2 + 1/w1 −1/p3 − 1/w3 . . . 0 0
0 0 1/p3 + 1/w4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1/pn−2 + 1/wn−1 −1/pn−1 − 1/wn−1

0 0 0 . . . 0 1/pn−1 + 1/wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

cT =
(
0 0 . . . 0 1/pn + 1/wn

)
.

and hence, observing that A is non-singular, we obtain that

Xt = (−1)t
(
A−1B

)t
+

(
I + A−1B

)−1
(
I − (−1)−1

(
A−1B

)t
)

A−1c.
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The convergence of vectors Xt is determined now by the convergence of
(
A−1B

)t,
as t goes to infinity, and consequently by the moduli of the eigenvalues of A−1B.
In particular, if the norms of all eigenvalues of A−1B are at most 1, then
limt→∞ Xt exists and the limit vector gives rise to a partition-based patrolling
strategy which coincides with the one of Theorem 15 and hence it is optimal.

A natural question that arises then pertains to a characterization of robots
ri = (pi, wi) that guarantee that the moduli of the eigenvalues of A−1B are at
most 1. In that direction, only sufficient conditions are known, and only for a
limited number of robots with special specifications. Indeed, [11] introduces a
special family of n-robots, called monotone, for which

wn > . . . > w1 > p1 > . . . > wn.

For monotone collection of n ≤ 3 robots, which provably are regular as well, it
can be shown that all eigenvalues of A−1B lie within the unit disk, and hence
the dynamical system induces an optimal partitioned based patrolling strategy.
The result can also be extended to n = 4 robots by introducing a refinement of
monotonicity.

Interestingly, for the general case with n robots, very little is known. The key
difficulty lies in the analysis of the eigenvalues of the (n − 1) × (n − 1) matrix
A−1B. Notably, some technical work can derive the characteristic polynomial of
the latter matrix, and then algorithmic results can be used to decide whether the
roots of the polynomial fall within the unit disk without finding them (see [11]
for additional details). Hence, deciding whether a set of robots ri = (pi, wi)
induces a dynamic system with convergent collision points, and hence inducing
optimal partition based patrolling strategies, can be answered efficiently.

8 Conclusion

In this paper we provided a brief survey of recent developments on patrolling in a
variety of geometric graph domains. There are interesting open problems every-
where in this research area from designing deterministic centralized algorithms
to decentralized distributed and dynamic algorithms. Interestingly enough no
probabilistic results are known on patrolling though there is no reason why they
could not be forthcoming depending on the interest of the research community.
Inventing patrolling algorithms, proving their correctness and analyzing their
performance has proved to be quite challenging.

It should be noted that the current survey paper cannot but be somewhat
biased in favour of recent work by the authors and their collaborators. Moreover,
this survey is not meant to be exhaustive but rather provide the reader with
possible research directions and the distinctive flavour of some of the recent
algorithmic results on this topic.
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Abstract. The basic primitive for a mobile agent is the ability to visit
all the nodes of the graph in a systematic manner. This chapter con-
siders the exploration of unknown graphs in full detail, for the specific
mobile agent model considered in this book. The graph is considered
to be finite, undirected and connected. Other than this fact, no prior
knowledge of the graph is assumed. Several exploration techniques are
introduced and explained for either a single agent, or multiple agents,
exploring either labelled or unlabelled graphs. We focus on the efficiency
of exploration and consider three different complexity measures, the time
taken, the amount of memory used by the agents and the storage needed
at each node of the graph. For exploration by multiple agents, we con-
sider collaborative exploration by a team of colocated agents as well as
distributed exploration by agents scattered in a graph. The concluding
section presents some brief ideas and references on more advanced topics
on graph exploration that are not covered in this chapter.

Keywords: Mobile agents · Graph exploration · Undirected graph
Deterministic · Anonymous

1 Introduction

Most tasks for mobile agents require them to navigate in a graph, visiting all
the nodes in a systematic manner. We call the task of visiting all the nodes
of an unknown graph as the Exploration problem. We will only consider finite
and connected graphs in this chapter. Consider a single mobile agent located in
one of the nodes of such a graph. The agent can move only along the edges of
the graph. The task of Exploration requires the agent to visit each node of the
graph at least once. Depending on the objective, further requirements for the
agent may be to terminate after visiting all nodes, or to return to the starting
node. The former is called “Exploration with stop” while the latter is referred to
as “Exploration with return”. As an example, if the agent is required to search
for some resource (or information) among the nodes of a graph, it must be able to
determine whether the target resource is actually present in the graph and if not
return back to the starting node and report failure. In such case, termination of
the exploration is important. On the hand, if the agent is required to monitor the
nodes of the graph to prevent intruders (e.g. guards patrolling an art gallery),
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in such cases, we do not require the agent to terminate the exploration but
rather continue visiting all nodes repeatedly. Such an exploration where each
node needs to be visited infinitely often is called “Perpetual Exploration” of the
graph.

Throughout this chapter we assume that the graph to be explored is initially
unknown to the mobile agent. Further an agent has only local visibility restricted
to the current node where it is located. So, the agent starting at a node v sees
only the node v and the incident edges to it; the agent can not even see the
neighboring nodes at the other end of these edges. As the agent visits more
nodes, it may store in its memory the history of what it has explored so far. The
problem of reconstructing the graph from this information obtained in course of
the exploration, is called the Map Construction problem.

We distinguish the mobile agent exploration problem from the graph traversal
problem in the context of the graph data structures (as in [38]). Graph traversal
in that context does not need to be continuous as it is possible to return to
any previously visited vertex in the data-structure. However, in the context of
mobile agent exploration, the agent must always follow a path of consecutive
edges in the graphs (i.e. jumps are not allowed). Another important difference is
that the agent may not always be able to distinguish between the nodes of the
graph during the exploration. We will study both exploration of both unlabelled
graphs (where the nodes are anonymous) and labelled graphs (where each node
is assigned a unique identifier that is visible to the agent visiting that node).
Even for labelled graphs, the ability of the agent to recognize previously visited
nodes depends on its capabilities, e.g. the size of its memory.

The Model: We assume the usual mobile agent model, with an undirected
connected graph G where the edges of the graph are labelled with port numbering
λ so that an agent at any node v can deterministically choose to traverse one of
the adjacent edges, e, by selecting the port number λe of that edge. In particular
we assume that a proper port numbering which assigns the labels 0, 1, 2, . . . d − 1
to the edges incident to a node of degree d. For any such edge-labelled graph
G, we define the corresponding digraph Ĝ by replacing each edge e = (u, v) by
two directed arcs - one from u to v and the other from v to u, marked with the
port labels (λu(e), λv(e)) and (λu(e), λv(e)) respectively. The nodes of the graph
G may be labelled or unlabelled. Throughout this chapter, we will use n, m, D
and Δ to denote respectively, the number of nodes, the number of edges, the
diameter, and the maximum degree of any node, of G.

We consider different models for communication and interaction of the agent
with the environment, including the whiteboard model, the token model and the
face-to-face model. The graph is assumed to be static and does not change during
the execution of the algorithm (in particular, there are no failures of any kind).
Exploration of dynamic graphs is fully investigated in Chap. 20. This chapter
considers only deterministic algorithm for exploration of static graphs.

Complexity: We are interested in efficient algorithms for exploration. We mea-
sure the efficiency of an algorithm using three different criteria.
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– [Moves] or [Time]: The moves complexity of an algorithm is the total num-
ber of edge traversals performed by all agents, where any single edge traversed
by a single agent counts as one move. For exploration by only one agent, the
moves complexity is same as the time complexity, assuming each edge traver-
sal takes one unit of time (we assume that the graph is unweighted and all
edges are similar). When there are multiple agents, we may be interested in
the total energy consumption (for exploration by physical robots) or the band-
width consumption (for software agents exploring communication networks);
the moves complexity captures these notions.

– [Storage]: The maximum amount of information stored at any node of the
graph during the course of the exploration, is called the storage complexity
of the algorithm. Under the whiteboard model of communication, storage
is counted as the minimum size (in bits) of the whiteboard needed at each
node of the graph. Under the token model, we count storage as the maximum
number of tokens at any node. When the agents do not have the ability to
mark the nodes of the graph, we say that the algorithm is a zero-storage
algorithm.

– [Memory]: The memory complexity of an exploration algorithm is the max-
imum size of persistent memory needed by any agent during the exploration.
Here persistent memory refers to the size of the information carried by the
agent when moving from one node to another; usually this does not include
the working memory used by the agent while performing computations at
any node. If S is the set of states of the agents, then the memory complexity
is equal to log (|S|) bits. If the cardinality of S is a constant, independent
of the size of the graph or any other parameters, then the agents are called
finite state automata and we say that the algorithm is a constant-memory
algorithm. If the algorithm can be executed by agents having no persistent
memory then we say that the algorithm is a zero-memory algorithm and that
the agents are oblivious.

Bibliographical Notes

The problem of exploring an unknown graph started with the study of mazes,
labyrinths and caves, and the need for devising algorithmic strategies to traverse
such environments. An early as 1951, Shannon [37] studied exploration by a
finite state automaton (a mechanical mouse) moving in a two dimensional maze.
Later Budach [8] performed a more rigorous study showing that no automata
can explore all mazes. Blum and Kozen [6] showed that either one automaton
with just 2 pebbles, or a team of two automata can explore all mazes. These
results strongly utilize the orientation information for exploring mazes, thus the
results do not hold for arbitrary graphs where it is not possible to use a compass
to orientate. Graphs are indeed more difficult to explore than mazes as it was
shown by Rollik [36] that any finite team of finite state automata cannot explore
all graphs. A tight lower bound of Ω(log n) on the memory complexity of graph
exploration was given by Fraigniaud et al. [30], while a matching upper bound
was provided by the result of Reingold [35] who gave a log-space exploration
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algorithm for all graphs. The space complexity of exploration can be reduced
to O(log log n), when the agent is provided with O(log log n) distinct tokens;
such an algorithm was provided recently by Disser et al. [24] whose idea was
to use a sequence of explored nodes as a tape of the Turing machine and store
information by writing on the tape using the tokens.

In terms of time complexity of exploration, the fastest exploration for arbi-
trary labelled graphs was given by Panaite and Pelc [34] which makes m + O(n)
moves thus having only a linear penalty with respect to any optimal traversal
algorithm which knows the graph in advance. There has been a lot of interest
on achieving fast exploration of graphs using a zero-memory agent, by assigning
specific port numbering to the edges of the graph, in order to guide the memory-
less agent. This is known as label-guided exploration. The fastest such exploration
makes 4n − 2 moves [31], while a lower bound of 2.8n − 2 has been proved [13].
For a constant memory agent, [13] provided a faster exploration with 3.5n steps
while only a trivial lower bound 2n−2 is known for this case. There are schemes
for labelling the nodes of a graph for guiding the exploration by a O(1) memory
agent. The most storage efficient scheme, given by Cohen et al. [11] provides
one bit labels to nodes (i.e. the nodes are colored in black or white) in such a
way that an agent with constant memory can explore the graph in O(m) time.
When no preprocessing of the graph is allowed, the same article provided a 2 bit
labelling scheme such that the exploring agent can itself assign the labels during
the exploration, while still achieving an exploration time linear in the number
of edges.

There has been some studies on exploration of specific families of graphs,
including trees [23], unoriented grids and tori [4], edge-labelled hypercubes [28]
and other interconnection graphs [25]. Exploration of graphs with sense of direc-
tion labelling has been investigated by Barrière et al. [3].

Exploring directed graphs (digraphs) is more difficult than exploring undi-
rected graphs due to the impossibility of backtracking. For labelled directed
graphs that are strongly connected, Deng et al. [20] showed that the time com-
plexity of exploration depends on the so-called deficiency of the graph which is
the number of edges that need to be added to make the graph Eulerian. The
exploration of unlabelled directed graphs was studied by Bender et al. [5] and
the best known algorithm for mapping a digraph using a single pebble has a
time cost of O(n8Δ2), when the agent knows the size of the graph (or an upper
bound). When the agent does not know any upper bound on the size of the
graph, at least Ω(log log n) pebbles are necessary, as shown in the above paper.

Outline of this Chapter

We first look at some basic techniques for exploration of unknown graphs. We
then consider algorithms for single agent exploration based on the optimiza-
tion criteria: time efficiency, moves efficiency, storage efficiency and memory
efficiency. We then consider the problem of map construction when exploring
unlabelled graphs. Finally we investigate multi-agent algorithms for exploration
as well as map construction and show how the latter is related to problems
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of gathering and leader election. We conclude with some observations concern-
ing more advanced topics on exploration that have not been considered in this
chapter.

2 Basic Techniques

Depth-First-Search (DFS) : The most standard technique for exploration, called
depth-first search, is based on a simple rule: At each node v, an agent chooses a
unexplored edge (if any) and traverses it; if the agent reaches an already visited
node, the agent returns back to node v. If there are no unexplored edges at v
then the agent backtracks to the node visited prior to arriving at v for the first
time. The pseudo-code for this algorithm is given in Algorithm 1.

Algorithm 1. Algorithm DFS (Depth-First Search)
if current node v has unexplored edges then

Traverse the unexplored edge with lowest port number;
if reached node is already visited then

Return to previous node v;

else
if current node v is not the starting node then

Traverse the edge used to reach v for first time;

Some properties of DFS exploration:

– The agent needs to distinguish nodes visited for the first time from nodes
previously visited during the exploration.

– For each visited node v, the agent needs to know (1) which incident edges at
v are still unexplored, and (2) which incident edge was used to enter v for the
first time.

– The exploration makes exactly 2m moves for graphs with m edges. Thus, this
is an asymptotically time optimal algorithm.

Right-Hand-on-the-Wall (RHW) : The RHW algorithm is a technique used by
explorers lost in dark caves, where the idea is to follow the boundary of the cave
by feeling it with one hand (assuming the cave is too dark to see anything).
A similar strategy can be used for exploring certain port-labelled graphs; the
exploration starts at a node v by taking the edge with lowest port number (i.e.
port number 0) and at each subsequent step, the agent arriving at a node u
through port number x, leaves that node by the next port number (either port
x + 1 or port 0, if x equals the degree of u). The algorithm is shown below
(Algorithm 2).
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Algorithm 2. Algorithm RHW (Right Hand on the Wall)
p := port number of arrival to current node (initially 0);
d := degree of current node;
Traverse the edge with port number (p + 1) mod d;

Some properties of RHW exploration:

– The algorithm RHW performs perpetual exploration on any tree starting from
any vertex. This is a zero memory and zero storage algorithm.

– The exploration on the tree can be terminated on reaching the starting vertex
from the port number d(v). Thus, exploration with stop can be performed if
the agent has the capability to recognize the starting vertex (e.g. by marking
with a pebble).

– The exploration with stop makes exactly 2m moves for a tree with m edges
(m = n − 1).

– On cyclic graphs having nodes of degree ≥ 3, labelled with arbitrary port
numbering, the algorithm may not visit all nodes.

One way of exploring arbitrary connected graphs using the above technique
is to perform a preprocessing on the graph G to assign specific port numbering
to the edges, that allows an agent performing RHW to explore all nodes of this
edge-labelled graph. Consider any spanning tree of the graph G. For each node
v of G, we assign port numbers greater than deg(v) to the non-tree edges and
assign port numbers 0, 1, 2, . . . d − 1 to the tree edges adjacent to v, where d is
the degree of node v in the spanning tree. An execution of Algorithm RHW on
this graph1 would visit all edges of the spanning tree and thus visit all nodes of
G. A more elegant scheme for assigning a proper port numbering to the edges of
any graph to allow the RHW algorithm to explore the graph, was provided in [13].
However, note that the preprocessing step of assigning port-numbers requires
the intervention of some central authority having prior knowledge of the graph
G or at least of a spanning tree of G.

Universal Exploration Sequences (UXS) : The idea of RHW exploration can be
adapted to arbitrary graphs with arbitrary port numbering using the concept of
universal exploration sequences which is defined below. Given any node u ∈ G,
we define the ith successor of u, denoted by succ(u, i) as the node v reached by
taking port number i from node u (where 0 ≤ i < d(u)). Let (a1, a2, . . . , at) be a
sequence of integers. An application of this sequence to a graph G at node u is the
sequence of nodes (u0, . . . , ut+1) obtained as follows: u0 = u, u1 = succ(u0, 0);
for any 1 ≤ i ≤ t, ui+1 = succ(ui, (p + ai) mod d(ui)), where p is the port-
number at ui corresponding to the edge {ui−1, ui}. A sequence (a1, a2, . . . , at)
whose application to a graph G at any node u contains all nodes of this graph
1 Note that since this is not a proper port labelling, the algorithm should have a default

action of traversing port number 0 whenever there is no edge with the required port
number.



Graph Explorations with Mobile Agents 409

is called a universal exploration sequence (UXS) for this graph. A UXS for a
family of graphs is a UXS for all graphs in this family. The following result on
the existence of UXS is important for us.

Property 1. For any positive integers n, there exists a UXS of length Poly(n) for
the family of all connected graphs with at most n nodes. Further such a sequence
can be computed in polynomial time using a deterministic algorithm.

The above result implies an algorithm for exploration of unlabelled graphs,
without the need for any storage at the nodes, provided that the size of the
graph is known. The construction for the UXS of polynomial size was given by
Reingold [35]. We will call the algorithm that applies the Reingold’s UXS for
exploration as RUXS algorithm. This algorithm has the following properties:

– This is a zero storage algorithm for exploration of unlabelled graphs.
– The exploration requires knowledge of the size of the graph, n, or at least an

upper bound on n.
– The algorithm performs exploration in polynomial time using O(log n) bits

of agent memory.

Rotor-Router (RR) : Another technique for exploration by a memoryless agent
uses a pointer saved in each node of the graph, which points to the next incident
edge to be explored. The agent arriving at a node v simply leaves node v by
the edge pointed to by the pointer and at that point the pointer is incremented
(modulo the degree) to point to the next incident edge. Such a system is called
Rotor router (also sometime called Propp machine). Given any connected graph
G and some port numbering λ on G, if all pointer values are properly initialized
(in a preprocessing step), then the rotor-router process moves the agent on an
Eulerian tour of the corresponding digraph Ĝ obtained from G by replacing each
edge with two directed arcs; thus the agent periodically explores all edges of the
graph with a period of at most 2m moves. On the other hand, if the pointer
values have arbitrary initial values, the process takes some time to stabilize and
after this stabilization time, the agent follows an Euler tour of the digraph Ĝ
as before. It was shown by Yanovski et al. [40] that the stabilization time is no
more than 2mD for any graph of diameter D. Thus the rotor-router can perform
an exploration of the graph in O(m · D) moves, using zero agent memory and
O(log Δ) storage space per node. This algorithm is self stabilizing as both the
agent and the nodes of the graph may be in arbitrary states at the start of the
algorithm (no initialization is required).

Algorithm 3. Algorithm RRA (Rotor Router Agent)
Let p be the pointer at current node and e be the edge pointed to by p
d := degree of current node;
Set pointer p := (p + 1) mod d;
Traverse the edge e;
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Some properties of the rotor router algorithm:

– Algorithm RRA is a zero memory algorithm for unlabelled graphs.
– The algorithm performs perpetual exploration visiting each node with a

period of at most 2m, after stabilization.
– The algorithm requires O(log Δ) bits of storage space per node and it is a

self stabilizing algorithm.

3 Single Agent Explorations

3.1 Time Efficient Explorations

Any algorithm for exploring an unknown graph must visit all edges of the graph.
Thus the time complexity or move complexity of exploration is at least m. The
algorithm DFS makes 2m moves in total for exploring graphs of m edges. Thus
algorithm DFS is asymptotically optimal. There has been attempts at reducing
further the exploration time for unknown graphs. Panaite et al. [34] gave an
exploration algorithm that takes m + O(n) steps in the worst case for arbitrary
undirected graphs, using a modified version of DFS that reduces the number of
times the agent backtracks.

Although the DFS algorithm and its variants are asymptotically optimal in
time and moves, the algorithm may not be optimal in terms of agent memory
and storage, depending on the implementation. Note that the algorithm requires
the agent to distinguish the visited nodes from unvisited ones. In labelled graphs,
each node has a unique identifier and the agent simply needs to memorize the
identifiers of all visited nodes, in order to recognize them. Thus the agent requires
O(n log n) memory but no storage is required. On the other hand if the graph is
unlabelled, the agent needs to mark each node that it visits (by writing on the
whiteboard, or placing a token) to recognize it as a visited node; this requires
O(1) bits of storage per node. In both cases, however, the agent still needs
memory to remember the paths already visited to allow it to backtrack; In
particular the algorithm remembers a spanning tree of the visited subgraph
constructed during the exploration (this is often called the DFS tree). So, the
algorithm requires O(n log n) bits of agent memory. We state the following result
based on the standard DFS algorithm [38].

Theorem 1. There is an optimal time algorithm for exploration with stop in
unlabelled graphs, that requires O(1) bits of storage per node and O(n log n) bits
of agent memory.

3.2 Storage Efficient Explorations

When the nodes of the graph G are labelled with unique identifiers and these
are visible to the exploring agent, it is possible to explore the graph using the
DFS algorithm using zero storage. This is optimal in terms of storage complexity.
However, when the graph is unlabelled, the DFS algorithm requires O(1) bits or
1 pebble per node, and thus n pebbles in total. So, the question is whether it is
possible to explore unlabelled graphs without marking the nodes. The following
result (from folklore) gives a negative answer.
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Theorem 2. There is no zero storage algorithm for exploration with stop of
unlabelled graphs irrespective of the agent memory.

Proof. Consider two unlabelled graphs: Let G1 be a simple ring of n1 = 3 nodes
and let G2 be a line of n2 nodes. Suppose each edge of the line is labelled with
port numbers (1, 2) in a consistent manner (e.g. from left to right) and each edge
of the ring is labelled with port numbers (1, 2) in the clockwise direction. With
this port numbering, all nodes of G2, except the end-points, look exactly like the
nodes of G1 to any exploring agent. If there was an algorithm for exploration
with stop, consider the execution of this algorithm on G1; the execution must
terminates after a finite number of steps t. Now if we take n2 = 2t + 2 and
we place an agent at the mid-point of the line G2, then the execution of the
same algorithm for t steps could visit only nodes at distance at most t from
the starting node, thus the agent would never reach either end-point of the line
during this time, thus visiting only the nodes which look identical to the nodes
of the ring. Thus the algorithm would terminate without visiting all nodes of
G2—a contradiction to the correctness of the algorithm.

Note that the above impossibility is due to the fact that the agent has no
prior knowledge of the graph. If the agent knows the size of the graph (either n or
D, or some upper bound) then it is always possible to perform exploration with
stop, without the need to mark the nodes. For example, if the agent known the
diameter D of the graph G, then an agent starting at node v could systematically
traverse all paths of length D starting at node v, thus visiting every node of G.
This is equivalent to traversing the view of node v in G to a depth of D. When
the agent does not know the diameter, the value of n could be used as an upper
bound on D and the same procedure would perform an exploration with stop.
The time or moves complexity of such an algorithm would be O(Δn) in the worst
case, thus this algorithm is exponential in terms of moves/time. It is possible
to have a polynomial time exploration with stop using the RUXS algorithm as
discussed before. The following result follows from the properties of the RUXS
algorithm.

Theorem 3 [35]. There is a polynomial time, zero storage algorithm for explo-
ration with stop for all graphs when the value of n is known a priori.

Exploration with No Knowledge: In general, we assume that the agent has no
information about the graph that is exploring. When the value of n is not known,
or can not be determined, then the agent can repetitively execute the above
algorithm, with increasing values of n̂ = 2, 4, 8, . . . , where n̂ is a guessed value
for n; when n̂ > n all the nodes of the graph would have been visited (without
the agent having the knowledge of this fact). This is gives an algorithm for
exploration without termination.

We now consider storage efficient algorithms for exploration with stop in
unlabelled graphs when no prior information about the graph is available. Due
to the impossibility result from Theorem 2 we know that that the agent needs
to store some information on the nodes. In fact, an agent with a single pebble
is capable of performing exploration with stop.
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Theorem 4. There is an O(m ·n) time and O(nlogn) memory algorithm, using
one pebble, for exploration with stop in unknown graphs.

The algorithm that achieves the above result is a modified version of the DFS
algorithm. Since the agent has only one pebble, the pebble needs to be reused for
marking each new node that is visited. As before, the agent stores in its memory
the DFS-tree T which is a spanning tree of the subgraph already explored by
the agent. Whenever the agent explores any unexplored edge to reach some node
v, it places the token on v and performs a full traversal of T - if the token is
encountered during the traversal then node v already belongs to T (so, it’s not a
new node); otherwise v must be a new node. Now, the agent can return to node
v, recover the token, and continue the exploration. Thus, the agent makes an
additional O(n) moves for each edge of G, which gives a complexity of O(m · n)
moves.

The above result is tight with respect the storage complexity, so we know
that zero storage algorithms are possible only for labelled graphs and impossible
for unlabelled graphs, while 1 bit of storage (or one pebble) in total suffices to
explore unlabelled graphs. Surprisingly, it is possible to perform zero storage
exploration, even if at least one of the nodes of the graph is uniquely labelled
(and the rest of the nodes are unlabelled). We say that the unique node v is a
landmark, any agent arriving at v can recognize it immediately as the landmark
node. We now present an algorithm for zero-storage exploration when the agent
starts at the landmark node and explores the whole graph.

Exploration with a Landmark : The algorithm is based on the fact that each node
w can be uniquely identified using an edge-label sequence P (v, w) corresponding
to a path from the landmark v to node w. On reaching any node u the agent
can detect whether or not the node u is distinct from node w by applying the
sequence P (v, w) at node u and checking if it leads to the landmark. Thus,
the algorithm maintains a set of so-called Root-paths, one for each new node
discovered during the algorithm. For each edge explored by the algorithm, the
agent needs to detect if the node reached has been already visited - this requires
performing the checking procedure mentioned before for each path in the set of
stored Root-paths. Thus the agent makes at most O(n2) moves for each new
edge explored by the agent. The exploration proceeds in a breadth-first manner,
visiting all nodes at depth h from the landmark, before visiting any node at
depth h + 1. The algorithm requires O(n log n) bits of agent memory to store
the tree containing all the Root-paths (See [9] for more details).

Theorem 5. There is an algorithm taking O(m · n2) time and using O(n log n)
bits of agent memory, for exploration with stop in unlabelled graphs containing
one landmark node.

Note that the above algorithm can be implemented using one unmovable
token (i.e. a one-time use token) that can be placed on the starting node to
create the landmark. This requires storage facility at only the starting node of
G. In contrast, the previous algorithm uses one moveable (i.e. reusable) token
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which requires some storage at each node of the graph at some point during the
algorithm.

3.3 Memory Efficient Explorations

The optimal algorithm for exploration in terms of memory is a zero-memory
algorithm, for example, the RRA algorithm presented before. The algorithm RRA
can be used to perform exploration with stop, by adding O(1) bits of the storage
at the starting node to distinguish this node and by initializing the pointers at
each node to zero on the first visit to the node. The agent can terminate the
algorithm when it returns to the starting node and finds that the pointer value
is zero. This algorithm requires O(log Δ) storage at each node and a single bit of
agent memory (to distinguish the starting state). However, if termination is not
required then it is possible to have a zero-memory algorithm taking O(m · D)
moves in the worst case. Zero-memory agents are like tokens that are moved
around by the system and such systems corresponding to many natural physical
system (e.g. chip firing games). Thus, there has been a lot of investigations on
the properties of such systems. The following result shows the optimality of the
RRA algorithm in terms of storage and moves.

Theorem 6 [32]. Any zero memory algorithm for exploration requires Ω(log Δ)
bits of storage per node and makes Ω(n3) moves.

There has been a lot of interest on the minimal memory required to explore
unlabelled graphs without any storage. In particular there have been several
studies on exploration of unlabelled graphs by constant memory agents (i.e.
agents with O(1) bits memory, sometime called finite automata). Whether such
agents can explore graphs of arbitrary size (possibly without termination) was
an open question for the long time, until the question was answered negatively
in [36]. The following result by Fraigniaud et al. [30] gives an exact lower bound
for the memory requirement of a single agent exploring unknown graphs without
marking.

Theorem 7 [30]. Any zero storage algorithm for exploration requires Ω(log n)
bits of memory for exploration of all graphs of size n, even for constant degree
graphs.

The proof of this theorem is based on exploration of regular graphs of degree
Δ = 3. Note that in such a graph every node look the same to a visiting agent,
thus the action taken by the agent is only a function of its current state. Any
agent having log k bits of memory can be in k distinct states. If such an agent
is exploring a graph of n > k nodes then it must enter two distinct nodes of G
in the same state, and thus it must exit the node by the same port number in
both cases. Based on this fact, it is possible to construct a regular graph G of
degree 3 and k + 1 nodes where the agent forever moves in a cycle of size less
than k, thus never visiting the rest of the nodes of G.
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The lower bound from the above theorem is matched by the algorithm RUXS
which can explore unlabelled graphs using O(log n) bits of memory and zero
storage. The algorithm requires the knowledge of n or an upper bound, which is
necessary in unlabelled graphs due to the impossibility result from Theorem 2.
However if the nodes of the graph are labelled with unique identifiers, then the
knowledge of n is no longer necessary and the algorithm can be adapted to
work without any prior knowledge of the graph, while still using O(log n) bits
of memory.

The only remaining question at this stage, is what is the memory complexity
of exploration, when the storage space per node is a small constant. Recall that
for storage space of Ω(log Δ), it is already possible to have a zero memory
algorithm. So, it is natural to ask if there are algorithms using both constant
memory and constant storage per node. If fact, it was shown that having only 2
bits of storage per node is sufficient to circumvent the lower bound of Theorem 6
and explore all graphs using constant memory agents.

Theorem 8 [11]. There is a polynomial time algorithm for exploring all graphs
using O(1) bits of agent memory and only 2 bits of storage per node, without
any prior knowledge of the graph.

The idea of the algorithm is to preprocess the graph assigning labels from a
set of three colors to all the nodes of the graph, such that nodes that are at the
same depth from the root (i.e. the starting node) are assigned the same color,
which is distinct from the color assigned to nodes one level below and one level
above. This coloring of the nodes enables the agent to determine after each move
whether it moved closer or further, or remained at the same distance from the
starting node. The algorithm enables the agent to traverse a spanning tree of the
graph in a depth first search manner, with some additional edge traversals at
each node, thus having an overall time complexity of O(m) steps. The labelling
of the nodes can be done by the agent during the exploration, provided that
each node is initialized (i.e. uncolored) at the beginning. This is the only known
algorithm that uses both constant memory and constant storage for exploring
unknown graphs.

4 Map Construction While Exploration

The problem of Map construction requires the agent to output a copy of the
graph including all port labels, at the end of the exploration. This immediately
implies that: (i) The exploration must terminate, and (ii) the agent must have
enough memory to store a copy of the graph (i.e. Ω(m log n) bits of memory).

When the nodes of the graph have unique labels, exploration is equivalent to
map construction; if the agent can remember a full history of all edges traversed
by it, this information is sufficient to reconstruct a map of the graph. This is
because each node (and each edge) can be uniquely identified on each visit. How-
ever when the graph is unlabelled, this is not always the case. For unlabelled
graphs, the algorithm Exploration-with-a-landmark from Sect. 3.2, can be used
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to build a map of the graph, since each node can be uniquely identified using
its root-path. Thus if the agent is able to mark its hombase with a token, it is
possible to solve the problem of map construction. However when marking of
nodes is not allowed (i.e. in the Face-to-Face model), it is not always possible
to construct a map of the graph, even though it is always possible to perform
exploration with stop. In other words, there exists graphs which are not recog-
nizable by an agent even after traversing every edge of the graph and even if the
agent has an unbounded amount of memory allowing it to remember everything
that it has seen during the exploration.

Theorem 9 [39]. There is no zero-storage algorithm for Map-construction in
unlabelled graphs, even if the agent has unlimited memory and knows the exact
size n of the graph.

First, consider an agent in a ring of size n where each edge is consistently
labelled with port numbers (0, 1) in the clockwise direction. An agent moving
in such ring networks cannot distinguish a ring of size n = 3 from a ring of size
n = 4. Thus, clearly map construction is not solvable with only the knowledge
of an upper bound on the size of the graph, although this knowledge suffices
for exploration as we saw in Sect. 3.2. Even when the agent knows the exact
size n, there exists graphs of same size that are indistinguishable. This can be
explained using the concept of graph coverings. We say that a graph G covers a
graph H if there is a homomorphism ϕ mapping nodes and edges of G to nodes
and edges of H such that for any edge e between adjacent vertices u, v ∈ G, there
is an edge connecting ϕ(u) to ϕ(v) in H (H could potentially be a multi-graph).
The quotient graph of any graph G is the smallest multi-graph B such that G
covers B, under an edge-label preserving graph homomorphism (c.f. Chap. 2).
If graphs G1 and G2 cover the same quotient graph B then G1 and G2 are
indistinguishable to any mobile agent, as all the information that the agent can
gather can be represented by the quotient graph B. For example, the Fig. 1 below
show two graphs of size n = 16 which are non-isomorphic, but have the same
quotient graph B.

Fig. 1. (i) Graphs G1 and G2 that are indistinguishable to a mobile agent (ii) Graph
B that is the quotient graph

It is always possible to construct the quotient graph of any graph, given the
knowledge of an upper bound n̂ on the size of the graph. For example, an agent
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can apply the algorithm for view construction from Sect. 3.2 and collapse the
view into the quotient graph by merging all ‘similar’ vertices (i.e. vertices that
have the same view up to a depth of n̂). Whenever the graph G is identical to its
quotient graph then it is possible to construct a map of the graph. Such graphs
are said to be covering minimal.

Theorem 10. There exists a zero-storage algorithm for Map-construction of
any graph G with port-labelling λ if (i) the graph (G,λ) is covering minimal,
and (ii) the agent knows an upper bound on the size n of the graph.

There exists a more exact characterization of the class of graphs which allow
map construction without marking, provided in [39]. We also remark here that
it is possible to have a more efficient algorithm for map construction of covering
minimal graphs, using the concept of signatures, introduced in [14], to identify
the nodes. Each node v in such graphs, can be uniquely identified by a sequence
of edge-labels encountered by performing by following a UXS path of sufficient
length on the graph starting from node v. Thus, it is possible to perform DFS
type exploration with a check procedure for each visited node that computes its
signature, and compares it with the signatures of the previously visited vertices.

5 Multi-agent Explorations

When there are multiple agents available, they can together explore the graph
to reduce the time taken for exploration. However this requires coordination and
communication between the agents, making the task more difficult than single
agent exploration. On the positive side, multi-agent exploration can be robust
against failures of some agents.

We consider explorations with either colocated agents, or, with agents ini-
tially dispersed in the graph. We denote by k the number of agents present in
the graph.

5.1 Collective Exploration

Collective exploration requires a team of k agents that start from the same loca-
tion, to explore together all the nodes of the graph, such that each node is visited
by at least one of the agents. The agents are assumed to have distinct identifiers
such that each agent can be assigned a distinct path to explore. Assuming that
all agents move with the same speed (i.e. they are synchronized), the main objec-
tive is to minimize the time needed for exploration. When the graph is known in
advance, it is possible to devise a strategy to divide the task among the agents
such that each agent travels on a distinct tour and they together span the nodes
of the graph. We call this an offline strategy for exploration; finding the optimal
offline strategy that minimizes the maximum tour length of any agent for a given
graph G and team size k is known to be an NP-hard problem even for trees [29].
However, we consider the graph to be a priori unknown and the agents need to



Graph Explorations with Mobile Agents 417

design and adapt their strategy in an online fashion as they discover new parts
of the graph.

Any optimal exploration algorithm using k agent for exploring a graph of
diameter D must take at least O(D + n/k) time. When G is tree, Fraigniaud
et al. [29] provided a collective algorithm for exploration in O(D+n/log k) time.
The algorithm has a simple strategy, at each node v, the available agents are
distributed in a round robin manner among the unexplored edges; whenever a
subtree has been explored completely all agents in that subtree move to the par-
ent node. The algorithm uses the whiteboard model for communication, thus any
agent arriving at a node v can obtain knowledge about the current distribution
of agents in the subtree rooted at v. The algorithm achieves a competitive ratio
of k/log k over any optimal offline exploration strategy. The best known lower
bound for the competitive ratio of any collective exploration algorithm using
k <

√
n agents, is Ω(log k/log log k), even with global communication between

the agents [27].
For graphs of small diameter, fast exploration by small teams of agents can be

achieved by a DFS based algorithm presented in [7] which has a time complexity
of O(n/k + Dk−1). On the other hand, for large teams of agents, there exists
an optimal algorithm for exploring general graphs in O(D) time [21], when the
number of agents k is at least D · n1+ε for any ε > 0. This algorithm does
not require whiteboards for communication and works even in the face-to-face
model. The basic strategy is to deploy a fixed number of agents from root at
each time step. Exploration of the special class of grid graphs with rectangular
holes was studied in [33], which presented a collective exploration algorithm with
competitive ratio of O(log2D) for such graphs.

5.2 Distributed Exploration

When multiple mobile agents start from distinct nodes of the graph, coordination
among the agents is more difficult. The task of exploration starting from dis-
persed locations of the graph is called Distributed Exploration. Since the agents
do not have a common reference point, direct communication is inutile in this
situation. Instead we assume that the agents communicate by writing on the
nodes (i.e. the whiteboard model of communication). Notice that if the agents
have distinct identities, each agent can individually explore the complete graph
(e.g. using the DFS algorithm) while marking each visited node with its identifier.

On the other hand if the agents are identical then the marks left on a node
by an agent would not be distinguishable from those of another agent. In this
case some cooperation between the agents seems necessary. A simple strategy is
to use a distributed version of the DFS algorithm which we call the distributed
depth-first search (DDFS) [17].

Distributed Depth-First Search : Each agent a performs DFS algorithm marking
the nodes that it visits (unless they are already marked) and labelling them with
a counter that it increments. Each node marked by the agent and the edge used
to reach it are added to DFS-tree stored in the memory of the agent. Note that
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the agent treat nodes marked by any agent as visited nodes. Thus, whenever the
agent reaches an already marked node, it backtracks to the previous node, as
in the original algorithm. The tree obtained at the end of the traversal is called
the territory Ta of the agent a. It was shown in [17] that when all agents have
completed the algorithm, the territories obtained by the agents in the above
process, forms a spanning forest of the graph G. Thus, each node of the agent
is visited by some agent and the agents together have explored all nodes of the
graph. The exploration requires O(m) moves in total (instead of O(m) moves
per agent if the agents individually explored the graph).

5.3 Collision Free Exploration

When each node of the graph can host at most one agent at any time, then any
multi-agent exploration algorithm must prevent collisions (i.e. two agents mov-
ing to the same node at the same time). The problem of exploring every node by
every agent while ensuring that no node is occupied by more than one agent at
any time, is called Collision-free exploration. [12] provides such an exploration
strategy in labelled graphs for k mobile agents when the mobile agents have
1-hop visibility. The algorithm uses the concept of universal exploration
sequences and thus the time complexity is proportional to the length of the
UXS. For trees, the paper provides a faster exploration taking O(n2) time. The
algorithms require the agents to start at the same time and always move syn-
chronously so that agents on neighboring nodes swap places without collision.

5.4 Map Construction and Leader Election

In Sect. 4 we saw that Map Construction is possible by a single agent that is
allowed to mark the nodes of the graph during exploration. However when there
are multiple agents dispersed in the graph, then Map Construction is not always
possible, since multiple agents mark several distinct node simultaneously, making
it difficult to uniquely identify the nodes. In this case, the possibility of map
construction depends on the presence of symmetries in the graph as well as the
initial location of the agents. We denote by b : V → {0, 1} a bi-coloring of the
graph G(V,E) such b(v) = 1 if node v is the homebase of an agent and b(v) = 0
otherwise.

Theorem 11. It is possible to solve Map-construction in any graph G with k
dispersed agents if (G,λ, b) is covering minimal with respect to label preserving
and color preserving coverings.

We now briefly describe an algorithm for map construction by multiple agents
in graphs where the above condition is satisfied (see [18] for more details). The
map construction algorithm proceeds in two phases. In the first phase, each
agent performs the distributed depth-first search (DDFS) algorithm discussed
previously. At the end of this phase the graph is partitioned into a spanning forest
and each agent a has a map of its DFS-tree Ta. The agent obtains its territory by
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adding to this tree, all outgoing edges that are incident to any node of Ta. The
territory of an agent (including all edge labels) is encoded as an integer la that is
used by the agent in the subsequent part of the algorithm. The second phase of
the algorithm is a competition between neighboring agents, by comparison of the
encoded territories. Each losing agent merges its territory with the corresponding
winning agent and terminates the algorithm, while each winning agent updates
its territory and the same process is repeated with only the winner agents. If the
conditions of Theorem 11 hold then there would eventually be a single winner –
the leader and the territory of this agent would be a spanning tree of the graph.
As a final step, nodes of this spanning tree are assigned unique labels (based on
the unique path from the root) and thus all non-tree edges can be identified and
added to the map. The main complication in this algorithm is the process of
synchronizing the agents during each round of the competition phase. There can
be at most O(log k) such rounds in any successful execution of the algorithm and
the overall complexity of the algorithm O(m log k) moves in total. The algorithm
fails to construct a map only if the conditions of Theorem 11 do not hold and
in those cases, the agent can detect failure after at most k − 1 rounds of the
competition phase.

The above algorithm also elects a leader among the agents, which is another
fundamental task in distributed computing with agents. In fact the problems of
the leader election, gathering and map construction in a distributed setting are
almost equivalent, with the only exception in the case of symmetric trees where
leader election may be impossible but map construction is still possible.

6 Ongoing Research and Future Directions

This chapter surveyed the main techniques and algorithms for exploration by
one or more agents when the agents are deterministic, fault-free and have no
constraints on their movements. Similarly, we also assumed that the environment
explored is stable and failure-free, allowing any agent to move in any direction
on every edge of the graph. This situation is idealistic although in reality several
of these assumptions may not hold. In such cases, the task of exploration may
become more difficult. We present some directions for further research on the
exploration problem, which have been partially investigated.

6.1 Constrained Explorations

When mobile agents have constraints on their movements they may not be able
to complete the task of exploration in a single attempt. One typical constraint
is the budget constraint (i.e. having limited energy for movement) allowing any
mobile agent to traverse at most B edges. The problem of piece-meal exploration
requires an agent to return to its homebase after at most every B edge-traversals,
in order to refuel and continue again. In this case, we need to assume that no
nodes are at a distance larger than B from the starting location of the agent.
Even with this assumption, the usual techniques for exploration cannot explore
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the graph efficiently. An algorithm for piecemeal exploration was provided in [1]
based on the idea of exploring strips of increasing depths from the starting
node, and performing a depth-first search in each strip. This algorithm was later
improved upon in [26], achieving an optimal time complexity of O(m) moves
in total. However, both these algorithms explore the graph to a depth of r < B
and the time complexity increases drastically as r approaches B. For piecemeal
exploration of graphs of depth r ≤ B, no efficient algorithm are known. For the
family of tree, a piecemeal version of DFS algorithm was presented in [16], and
shown to be constant competitive (i.e. the algorithm is at most 10 times worse
than any optimal offline piecemeal exploration of the same tree).

When the agents are not able to refuel, it is possible to perform constrained
exploration using many agents each having a budget of B edge traversals. For
any fixed k, the best online algorithm for tree exploration using k agents [27]
achieves a competitive ratio of 4−2/k on the value of B required for exploration.
On the other hand, given any fixed B, exploration of all trees of depth at most
B can be achieved with a competitive ratio of O(logB) for the value of k, and
this was shown to be asymptotically optimal, at least in the case of local (face-
to-face) communication between agents [15]. When both k and B are fixed, it
is not possible to completely explore an unknown tree; in this case the problem
of maximal exploration, which maximizes the number of nodes visited, has been
studied [2]. The algorithm in [2] has a competitive ratio of 3, while a lower bound
of 2.17 on the competitive ratio was shown in the same paper.

6.2 Fault-Tolerant Explorations

While most of the known results are for exploration in fault-free environments,
there have been some preliminary investigations on fault tolerant algorithms for
exploration. Exploration with faulty tokens that disappear, have been studied
in the context of the gathering problem for many agents where each agent uses
one token to mark its homebase [19]. Single agent exploration with Byzantine
tokens has also been recently studied in [22]. Here, the tokens are unmovable but
may sometime be invisible to the agent. If at least one token is fault-free and the
agent knows the total number of tokens, there is an exploration algorithm for any
unknown and unlabelled graph. Exploration and map construction of dangerous
graphs containing black holes and black links, can be performed when there are
sufficiently many agents [10] using an extended version of the distributed DFS
based algorithm discussed previously. Under the assumption that the faults do
not disconnect the graph, the algorithm builds a map of the fault-free part of
the graph whenever it is theoretically possible. Other techniques for exploration
of dangerous graphs are covered in Chap. 18.
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Abstract. The task of rendezvous (also called gathering) calls for a
meeting of two or more mobile entities, starting from different positions
in some environment. Those entities are called mobile agents or robots,
and the environment can be a network modeled as a graph or a terrain
in the plane, possibly with obstacles. The rendezvous problem has been
studied in many different scenarios. Two among many adopted assump-
tions particularly influence the methodology to be used to accomplish
rendezvous. One of the assumptions specifies whether the agents in their
navigation can see something apart from parts of the environment itself,
for example other agents or marks left by them. The other assumption
concerns the way in which the entities move: it can be either determin-
istic or randomized. In this paper we survey results on deterministic
rendezvous of agents that cannot see the other agents prior to meeting
them, and cannot leave any marks.

Keywords: Mobile agent · Rendezvous · Deterministic · Network
Graph · Terrain · Plane

1 Introduction

How to meet in an unknown environment? This question has to be answered
in many applications. The most obvious and commonly encountered are those
where the entities that have to meet are part of the natural world: they are
humans or animals. One of the examples cited in [2] is the Astronaut Problem, in
which two astronauts land in distant places on a planet, without any orientation,
and have to minimize the expected time of getting together. More common
examples of situations when humans have to meet is the task of finding a lost
hiker in the mountains by rescuers, or meeting guests at the airport by their
host. Schelling [39] studied issues related to rendezvous problems: two players
want to meet in an unknown town and have only one attempt to make. Schelling
emphasized the need of finding “focal points” (such as the main station, or the
central square of the town) that are likely to be chosen by both players (without
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previous agreement), due to their common cultural background. However, in
algorithmic rendezvous problems, focal points often do not exist, when agents
have to meet in the empty plane or in a highly symmetric network. Rendezvous
tasks are also frequent in the animal world, such as gathering of migratory birds
or undersea animals, or penguin parents finding their offspring when they come
back with food.

In computer science applications, the most interesting cases concern human-
made agents. The first example of such mobile agents are autonomous mobile
robots that start in different locations of a planar terrain or a labyrinth, and have
to meet. The reason of meeting can be to exchange samples of the ground previ-
ously collected by the robots, or exchange information obtained when exploring
different parts of the terrain. The second example is that of software agents,
i.e., mobile pieces of software that navigate in a computer network in order to
perform maintenance of its components or to collect data distributed in nodes
of the network. Periodic meeting of software agents is necessary to exchange
collected data and plan further actions, possibly depending on those data.

Since rendezvous algorithms do not depend on the physical nature of the
mobile entities executing them, but only on their perception capabilities, memory
size, mobility characteristics and on the structure of the environment, we will not
distinguish between natural and artificial agents, and among the latter between
mobile robots and software agents, and we will use the generic name of agents
regardless of whether the algorithm is to be applied to people, animals, mobile
robots, or software agents. In the case of more than two agents, the rendezvous
problem is sometimes called gathering. For the sake of uniformity, we will call it
rendezvous also in this case, using the term gathering as a synonym.

Since rendezvous problems usually have to be solved without the help of
any central monitor coordinating the actions of agents, these problems belong
naturally to the domain of distributed computing. There are, however, many
scenarios and models under which rendezvous has been studied. Two among
many adopted assumptions particularly influence the methodology to be used
to accomplish rendezvous.

One of the assumptions specifies whether the agents in their navigation can
see something apart from the underlying environment itself, for example other
agents or marks left by them. Needless to say, such a capability significantly
facilitates the task of rendezvous: for example, two agents seeing each other in
the plane may meet approaching each other along the line joining them. The
other assumption concerns the way in which the entities move: it can be either
deterministic or randomized. In a deterministic scenario, the initial positions of
the agents are chosen by an adversary which models the worst-case situation, and
each move of the agent is determined only by its current history that may include
the identity of the agent (if any), and the part of the environment that the agent
has seen to date. By contrast, in a randomized scenario, initial positions of the
agents are often chosen at random and their moves may also involve coin tosses.
Randomized rendezvous algorithms in networks often use random walks in the
underlying graph. The cost of rendezvous is also different in both scenarios: while
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in deterministic rendezvous the worst-case cost is usually considered (cost being
defined as the time or the length of the agents’ trajectories until rendezvous),
in the randomized scenario it is the expected value of this quantity. In both
cases the problem is often to minimize the worst case (resp. expected) cost.
Deterministic rendezvous problems usually require combinatorial tools, while
randomized rendezvous often calls for analytic methods.

In this chapter we consider the task of rendezvous under the weaker variant
of each of the above two assumptions. First we assume that the navigating
agents do not see other agents prior to their meeting and cannot leave any
marks, and second, we consider only deterministic rendezvous algorithms. The
decision of carving out this particular subdomain of the domain of rendezvous
algorithms has two reasons. The first and the most obvious of them is the space
limitation: the realm of rendezvous algorithms is very large and covering all of it
would require a large book rather than a chapter. The second reason is to avoid
duplication of information contained in previous surveys and in other chapters
of this book.

There are six main previous surveys concerning rendezvous. Chronologically
the first of them is [1], almost entirely contained in the second part of the excel-
lent book [2]. Both [1] and [2] concern randomized rendezvous, viewed from the
operations research point of view. The third survey is [32]. While its scope is
large, the authors concentrate mainly on presenting rendezvous models and com-
pare their underlying assumptions. The book [31] deals mostly with rendezvous
problems on the ring, only briefly mentioning other network topologies in this
context. The survey [36] is the closest to the present chapter but it covers only
deterministic rendezvous in networks. Finally, Chap. 4 of this book covers the
rich domain of gathering agents in the plane, under a scenario where agents
have contrasting capabilities: they have no memory but enjoy very strong per-
ception capabilities – they can periodically make snapshots in which they see
other agents.

The existence of the book [2] is the main reason of our restriction to deter-
ministic rendezvous algorithms, and Chap. 4 of this book is the main reason of
our restriction to rendezvous under the scenario where navigating agents cannot
see much.

The present chapter differs from [1] and [2] by concentrating on determin-
istic rather than on randomized scenarios; it differs from [32] by the level of
details in treating the rendezvous problem: besides presenting various models
under which deterministic rendezvous is studied, we want to report precisely
the results obtained under each of them, discussing how varying assumptions
influence feasibility and complexity of rendezvous under various settings. This
chapter differs from [31] by discussing many different topologies, mostly arbi-
trary, even unknown graphs, rather than concentrating on a particular type of
networks. As mentioned above, this chapter is the closest to [36]: the identity
of the author may be a reason. What are the differences with respect to [36]?
The survey [36] was published in 2012, reporting results until 2011. During these
7 years many new results concerning deterministic rendezvous appeared in the
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literature. Since many of them concerned the scenario where agents cannot leave
any marks, and the scenario allowing marking of the nodes was considered in [36],
we decided to exclude this scenario from the present chapter, and add instead
issues concerning rendezvous in the plane, as they often use rendezvous in a
specific graph, the infinite grid, as a methodological tool. There is some overlap
of this chapter with [36] but we tried to discuss the older results covered there
only in a cursory manner, concentrating on the new developments.

A remark is in order concerning the chronology of the reported results. In
each case when a journal paper is available, we refer to it, as to the most definitive
version. However, the journal version is sometimes published much later than
the conference version in which a given result first appeared. This may scramble
the precedence relations of results. In such cases we tried to mention the correct
order of discoveries.

The rest of the chapter is organized as follows. In Sect. 2 we discuss vari-
ous scenarios resulting from alternative assumptions adopted for the rendezvous
problem, and mention methodological differences of the solutions in different
models. The main dividing line in the entire body of research surveyed in
this chapter is between the two types of environment in which rendezvous
has to take place: one type are networks modeled as undirected graphs, the
other is the plane or parts of it, with possible obstacles obstructing moves of
the agents. Consequently, Sect. 3 covers rendezvous in networks and Sect. 4 is
devoted to rendezvous in the plane. Finally, Sect. 5 contains conclusions and open
problems.

2 Discussion of Assumptions, Models and Methodology

As announced in the introduction, we will consider the rendezvous problem in
two different environments: in networks modeled as undirected graphs and in the
plane or its parts. Among many alternative pairs of assumptions adopted for the
study of rendezvous, this one is arguably the most basic, as it influences even
the precise definition of rendezvous. In both cases, agents are modeled as points.
In the first case they navigate in the graph, traversing its edges and visiting its
nodes, and in the second case they move freely in the plane, possibly avoiding
obstacles. In the case of rendezvous in networks, meeting of the agents is defined
as being at the same node in the same time or as being in the same point of an
edge at the same time. (We will further discuss submodels in which one or the
other of these definitions is applied). In the case when agents move in the plane,
they are also modeled as points. However, in particular where rendezvous has to
take place in the empty plane, we cannot require the agents to get to the same
point of the plane at the same time. To see this, consider an easier problem,
when one of the agents is inert and the other one has to find it. (Rendezvous can
always be reduced to this case, if the adversary decides to delay the start of one of
the agents sufficiently long). Since the walking agent cannot see the inert agent
prior to meeting, a correct algorithm would require to construct a trajectory,
which is a curve in the plane passing through each given point after walking a
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finite distance. Such a curve does not exist. Hence, in the case of meeting in
the plane, rendezvous is defined more loosely as approach: agents have to get
at distance 1 of each other. This can be motivated by assuming that the agents
have visibility permitting to see at distance 1, and rendezvous is accomplished
when agents are inside one another’s visibility regions. Hence in the case of the
plane we will concentrate on the task of approach.

There is one exception to this change of definition. When agents are in a
bounded part of the plane, possibly with “holes”, i.e., impenetrable obstacles,
then rendezvous defined as getting to the same point at the same time can be
required, because in this case agents can meet in a boundary point of the terrain
or of one of the obstacles. We will see such a situation in [14].

We will now review the common assumptions used in the literature to con-
sider rendezvous in each of the above scenarios. We first consider the network
scenario. The first common assumption is modeling the network as a simple undi-
rected connected graph, whose nodes represent processors, computers or stations
of a communication network, or crossings of corridors of a labyrinth, depending
on the application, and links represent communication channels in a communica-
tion network, or corridors in a labyrinth. Modeling the network as an undirected
graph captures the ability of the agents to move in both directions along each
link. The assumption that the graph is simple (no self-loops or multiple edges)
is motivated by most of the realistic applications, and connectivity of the graph
is a necessary condition on feasibility of rendezvous when starting from any ini-
tial positions: agents starting in different connected components could not meet.
Throughout the chapter, we use the term graph to mean a simple undirected
connected graph.

The second common assumption is the anonymity of the underlying network:
the absence of distinct names of nodes that can be perceived by the navigating
agents. There are two reasons for seeking rendezvous algorithms that do not
assume knowledge of node identities. The first one is practical: while nodes may
indeed have different labels, they may refrain from informing the agents about
them, e.g., for privacy or security reasons, or limited sensory capabilities of
agents may prevent them from perceiving these names. The latter restriction
is mostly applicable to mobile robots whose sensing device may be too weak
to read such labels. The other reason for assuming anonymity of the network
is methodological. If distinct names of nodes can be perceived by the agents,
they can follow an algorithm which guides each of them to the node with the
smallest label and stop. Thus the rendezvous problem becomes reducible to graph
exploration, which has been well studied.

The last common assumption concerns port numbers at each node. It is
assumed that a node of degree d has ports 0, 1, . . . , d − 1 corresponding to the
incident edges. Ports at each node can be perceived by an agent visiting this
node, but there is no coherence assumed between port labelings at different
nodes. (In the case when such a coherence is assumed, for example in the case of
an oriented grid, it will be explicitly mentioned). When an agent enters a node,
it learns its degree and the port of entry. The reason for assuming the existence
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of port labelings accessible to agents is the following. If an agent is unable to
locally distinguish ports at a node, it may even be unable to visit all neighbors
of a node of degree at least 3. Indeed, after visiting the second neighbor, the
agent cannot distinguish the port leading to the first visited neighbor from the
port leading to the unvisited one. Thus an adversary may always force an agent
to avoid all but two edges incident to such a node. Consequently, agents initially
located at two nodes of degree at least 3 might never be able to meet. From
the practical point of view, assuming the existence of port numbers legible by
the agents is a much less problematic assumption than assuming labels of nodes.
First, the privacy and security reasons for not divulging node labels do not apply
to port numbers. Second, the sensory capabilities of agents required to read port
numbers are much smaller than those for reading node labels. For example, one
port at a node can be marked by a “red dot” and then consecutive ports can
have a pointer next from the preceding port. Reading this type of information
requires minimal sensory capabilities.

We will now review the common assumptions concerning rendezvous (i.e.,
approach) in the plane. These assumptions permit an agent to navigate in the
plane in the absence of any visual information. It is assumed that the agent has
a compass indicating North and that it has a measure of distance. These two fea-
tures permit to establish a system of orthogonal coordinates and permit to trace
arbitrary angles. Consequently, the agent can execute instructions such as “go
at distance x in direction dir”, where dir is expressed as an angle from direction
North. Notice that the compasses and the measures of length of different agents
are not necessarily the same. If they are, this will be explicitly mentioned.

We proceed to the overview of various alternative assumptions yielding dif-
ferent scenarios under which the rendezvous problem is usually considered, both
in the network environment and in the plane. There are two such main pairs of
assumptions. The first concerns the possibility to distinguish the agents: they can
be either anonymous (i.e., identical), or each agent may have a distinct integer
label that it knows and can use as a parameter in the executed rendezvous algo-
rithm which is common to all agents. The second pair of alternative assumptions
concerns time: agents may move either in a synchronous or in an asynchronous
way. We will give the precise definitions later but, roughly speaking, synchronous
movement in graphs means that clocks of the agents tick at the same rate, one
tick per round, and in each round an agent can either stay in the current node, or
move to a neighbor. In the plane, synchronous movement means that the speed
of agents is the same. In the asynchronous scenario, the speed of the agents may
vary adversarially. (We will see that there is also a semi-synchronous scenario,
where speeds of agents are constant but possibly different).

The above possible scenarios imply different methodological approach to ren-
dezvous in each case. The main problem that has to be solved in order to make
deterministic rendezvous possible, both in networks and in the plane, is breaking
symmetry. To see why this is necessary, consider an oriented ring (i.e., a ring in
which ports at all nodes are labeled as follows: 0 the clockwise port and 1 the
counterclockwise port) or consider the infinite plane without obstacles. Consider
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two identical agents starting at distinct nodes of the ring or at any two points in
the plane, and running the same deterministic algorithm. It is easy to see that if
they start simultaneously and move synchronously, they will never meet. In the
ring, at all times they will use the port (at their respective current nodes) having
the same label (as their history is the same and the algorithm is deterministic),
and hence the distance between them will be always the same. Likewise, in the
plane, if the agents start simultaneously, have the same compass, the same mea-
sure of length and the same speed, they will traverse parallel trajectories and
remain at the same distance at all times.

In the deterministic scenario there are two ways of breaking symmetry. The
first is by distinguishing the agents: each of them has a label and the labels
are different. Each agent knows its label, but we do not need to assume that it
knows the label of the other agent. (If it does, then the solution is the well-known
algorithm Wait For Mommy: the agent with the smaller label stays idle, while
the other one explores the graph or the plane in order to find it.) Both agents use
the same parametrized algorithm with the agent’s label as the parameter. To see
how this can help, consider two agents that have to meet in an oriented ring of
known size n. As mentioned above, if agents are anonymous (and marking nodes
is disallowed), rendezvous is impossible. Now assume that agents have distinct
labels L1 and L2. A simple (although inefficient) rendezvous algorithm is: Make
L tours of the ring, where L is your label, and stop. Then the agent with larger
label will make at least one full tour of the ring while the other one is already
inert, thus guaranteeing rendezvous.

The second way of breaking symmetry, available even when agents are anony-
mous, is by exploiting either non-symmetries of the network itself, or the differ-
ences of the initial positions of the agents, even in a symmetric network. This
method is impossible to use in the plane without obstacles, and in the network
environment it is usable only for some classes of networks, as either the network
must have distinguishable nodes that play the role of “focal points” or the ini-
tial positions of agents have to be “non-symmetric” (the precise meaning of this
condition will be defined later). As a simple example of the application of this
method, consider a n-node line with two identical agents. If n is odd, then the
line contains a central node that both agents can identify and meet at this node.
If n is even, (and even when the port labelings are symmetric with respect to the
axis of symmetry of the line) but the initial positions of the agents have differ-
ent distances from their closest extremity, then the following algorithm works:
Compute your distance d from the closest extremity of the line, then traverse the
line d times and stop. For the same reasons as before, this algorithm guarantees
rendezvous, whenever the initial positions of the agents are not symmetrically
situated. On the other hand, if they are symmetric (and port labelings are sym-
metric as well), then it is easy to see that rendezvous is impossible if agents have
to meet at a node and do not realize crossings on an edge.

We now discuss methodological implications of the distinction between the
second pair of alternative assumptions, yielding the synchronous and asyn-
chronous scenarios. The discussion is for agents with distinct labels. In the first



430 A. Pelc

case, the ability of the agents to exploit time, and more precisely, to vary between
carefully measured periods of activity, when the agent explores parts of the net-
work or of the plane, and of passivity, when it stays idle, is a powerful tool in
the solution of the rendezvous problem. Indeed, agents may exploit differences
in their labels to schedule these activity and passivity periods in such a way
that at some point the active agent must visit the position of the agent that is
currently passive, and thus accomplish rendezvous. No such possibility is avail-
able in the asynchronous scenario. In this case, the main methodological tool is
constructing trajectories of the agents, again exploiting the differences of their
labels, in such a way that parts of these trajectories coincide, and the agents are
forced, regardless of their speed, to traverse a common segment of the trajectory
at approximately the same time, implying rendezvous. It should be mentioned
that, in the asynchronous scenario applied to networks, it may be impossible to
meet at a node, and thus the requirement is relaxed to that of meeting at a node
or inside an edge.

In order to make the statement of a rendezvous problem precise, we have to
point out what exactly is being sought, apart from meeting. The most general
question is that of feasibility: for what classes of networks and what initial posi-
tions is rendezvous possible under a particular scenario, and when is it possible
in the plane? Here a complete solution would be to prove that for some classes
of networks and some initial configurations of agents rendezvous is impossible,
and to provide a rendezvous algorithm for all other situations. In the case of the
plane, the question is whether approach starting from arbitrary unknown posi-
tions is always possible under a given scenario. More specific questions concern
the amount of resources needed for rendezvous. These are usually of two types.
The first is rendezvous cost: the maximum number of steps made by an agent
until rendezvous, or the maximum time used by the agents to meet. Algorithms
minimizing the cost (or its order of magnitude) are sought in this context. The
other important resource is memory: what is the minimum memory with which
agents have to be equipped in order to solve the rendezvous problem in a given
class of networks. When only cost optimization is sought, memory of the agents
is often assumed to be unbounded and they are modeled as Turing machines.
In problems seeking memory minimization (or tradeoffs between memory and
time), the model of input/output automata (finite state machines) is usually
used. As usual in optimization tasks, a complete solution calls for an algorithm
with given cost or memory and for an accompanying lower bound showing that
this cost or amount of memory is optimal.

As mentioned before, in Sect. 3 we present results concerning rendezvous in
networks, while in Sect. 4 we study the problem of approach in the plane. The
study is further subdivided by considering the synchronous and asynchronous
scenarios. Further assumptions are added when presenting a particular model.
In each case, we first give a precise description of the model, state the problem
to be solved, then present the results and often give a high-level description of
methods and algorithms used to obtain them.
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3 Rendezvous in Networks

In this section we survey results on deterministic rendezvous in networks, divid-
ing our considerations into two major scenarios: synchronous and asynchronous.

3.1 Synchronous Rendezvous

Agents move in synchronous rounds. In every round, an agent may either remain
at the same node or move to an adjacent node. Rendezvous means that all
agents are at the same node in the same round. Agents that cross each other
when moving along the same edge, do not notice this fact. Two subscenarios are
considered: simultaneous startup, when both agents start executing the algorithm
in the same round, and arbitrary delay, when starting rounds are arbitrarily
decided by an adversary. In the former case, agents know that starting rounds
are the same, while in the latter case, they are not aware of the difference between
starting rounds, and each of them starts executing the rendezvous algorithm and
counting steps in the round of its own startup.

We will discuss separately the sub scenario of labeled agents, where agents
have distinct integer labels that they can use as a parameter in the common
deterministic algorithm, and that of anonymous agents, where agents do not
have any labels and thus are identical.

Labeled Agents. In [18] (whose journal version was published in 2006, but
which is based on two earlier conference papers published in 2003 and 2004),
rendezvous of two agents is considered and it is indicated that all results can
be generalized to an arbitrary number of agents. It is assumed that agents have
different positive integer labels, and each agent knows its own label (which is a
parameter of the common deterministic algorithm that they use), but is unaware
of the label of the other agent. In general, agents do not know the topology
of the graph in which they have to meet. It is assumed that the agents have
unlimited memory (they are modeled as Turing machines) and the authors aim at
optimizing the cost of rendezvous. This cost is defined as the worst-case number
of rounds since the startup of the later agent until rendezvous is achieved, where
the worst case is taken over all graphs in the considered class, all initial positions
of the agents and all possible startup times (decided by an adversary), in the
case of the arbitrary delay scenario.

The following notation is used. The labels of the agents are L1 and L2. The
smaller of the two labels is denoted by l. The delay (the difference between
startup times of the agents) is denoted by τ , n denotes the number of nodes in
the graph, and D – the distance between initial positions of agents.

The authors introduce the problem in the relatively simple case of trees.
They show that rendezvous can be completed at cost O(n + log l) on any n-
node tree, even with arbitrary delay. They also show that for some trees this
complexity cannot be improved, even with simultaneous startup. Rendezvous
in trees is relatively easy for two reasons. First, a tree can be explored with



432 A. Pelc

termination and a map of it can be constructed by a single agent, using the
basic walk which consists in leaving every node by the next port with respect
to the entry port at this node (modulo the degree). The second reason is the
existence of the central node or the central edge in any tree. Once each agent
locates this object independently, the central node plays the role of the “focal
point” and rendezvous can be accomplished at linear cost. If there exists a central
edge, rendezvous is slightly more complicated and, after identifying this edge, it
reduces to rendezvous in the two-node graph. It is this case that is responsible
for the O(log l) additive term in the cost complexity.

As soon as the graph contains cycles, another technique has to be applied.
The authors continue the study by concentrating on the simplest class of such
graphs, i.e., rings. They prove that, with simultaneous startup, the optimal cost
of rendezvous on any ring is Θ(D log l). They construct an algorithm achieving
rendezvous with this complexity and show that, for any distance D, it cannot
be improved.

The lower bound Ω(D log l) relies on the following idea. The (oriented) ring is
partitioned into pieces of equal size Θ(D) and time is partitioned into segments
of the same length. It is observed that at the end of a segment the agent can be
either in the same piece as in the beginning of it, or in one of the neighboring
pieces. This permits to code the behavior of an agent by a ternary sequence
corresponding to its position at the end of each time segment. It is argued that
if two agents have the same behavior code, then they cannot meet. Moreover,
if the time of rendezvous were o(D log l), then behavior codes would have to be
short, and thus for some two different labels of agents they would have to be the
same, as the behavior of an agent before the meeting depends only on its label.
Assigning these labels to the agents would preclude rendezvous.

With an arbitrary delay, Ω(n+D log l) is a lower bound on the cost required
for rendezvous in a n-node ring. Under this scenario, two rendezvous algorithms
for the ring are presented in [18]: an algorithm with cost O(n log l), for known n,
and an algorithm with cost O(lτ + ln2), if n is unknown. In the latter case, the
cost was later improved to O(n log l) in [30]. In view of the above lower bound,
this cannot be improved in general.

For arbitrary connected graphs, the main contribution of [18] is the first
deterministic rendezvous algorithm with cost polynomial in n, τ and log l. More
precisely, the authors present an algorithm that solves the rendezvous problem
for any n-node graph G, for any labels L1 > L2 = l of agents and for any delay
τ between startup times, in cost O(n5

√
τ log l log n + n10 log2 n log l). The algo-

rithm contains a non-constructive ingredient: agents use combinatorial objects
whose existence is proved by the probabilistic method. Nevertheless the algo-
rithm is indeed deterministic. Both agents can find separately the same combi-
natorial object with the desired properties (which is then used in the rendezvous
algorithm). This can be done using brute force exhaustive search which may be
quite complex but in the adopted model only moves of the agents are counted
and local computation time of the agents does not contribute to cost. Finally,
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the authors prove a lower bound Ω(n2) on the cost of rendezvous in some family
of graphs.

The paper is concluded by an open problem concerning the dependence of
rendezvous cost on the delay τ . The dependence on the other parameters follows
from the results cited above. Indeed, a lower bound Ω(n2) on rendezvous cost
has been shown in some graphs. The authors also showed that cost Ω(log l) is
required even for the two-node graph. On the other hand, for agents starting
at distance Ω(n) in a ring, cost Ω(n log l) is required, even for τ = 0. However,
since the complexity of their algorithm contains a factor

√
τ , the authors state

the following problem:
Does there exist a deterministic rendezvous algorithm for arbitrary connected

graphs with cost polynomial in n and l (or even in n and log l) but independent
of τ?

A positive answer to this problem was given in [30] (whose conference version
was published in 2006). The authors present a rendezvous algorithm for two
agents, working in arbitrary connected graphs for an arbitrary delay τ , whose
complexity is O(log3 l + n15 log12 n), i.e., is independent of τ and polynomial in
n and log l. As before, the algorithm contains a non-constructive ingredient, but
is deterministic.

The rendezvous algorithms from [18,30], working for arbitrary connected
graphs, yield an intriguing question, stated in [18]. While both of them have
polynomial cost (the one from [18] depending on τ , and the one from [30] inde-
pendent of τ), they both use a non-constructive ingredient, i.e., a combinatorial
object whose existence is proved using the probabilistic method. As mentioned
above, each of the agents can deterministically find such an object by exhaus-
tive search, and then use it in the execution of its algorithm, which keeps the
algorithm deterministic, but may significantly increase the time of local compu-
tations. In the described model the time of these local computations does not
contribute to cost which is measured by the number of steps, regardless of the
time taken to compute each step. Nevertheless, it is interesting if there exists a
rendezvous algorithm for which both the cost and the time of local computations
are polynomial in n and log l. Such an algorithm would have to eliminate any
non-constructive ingredients.

This problem was solved in [41] (whose conference version appeared in 2007),
using the important notion of a Universal Exploration Sequence (UXS) [29]. Let
(a1, a2, . . . , ak) be a sequence of integers. An application of this sequence to a
graph G at node u is the sequence of nodes (u0, . . . , uk+1) obtained as follows:
u0 = u, u1 is the node joined to u by the edge corresponding to port 0 at u;
for any 1 ≤ i ≤ k, ui+1 is the node joined to ui by the edge corresponding (at
ui) to port (p + ai) mod d(ui), where p is the port number at ui corresponding
to the edge {ui, ui−1} and d(ui) denotes the degree of node ui. (Informally, an
application of (a1, a2, . . . , ak) corresponds to a walk in the graph in which the
current exit port is computed by adding ai to the current entry port.) A sequence
(a1, a2, . . . , ak) whose application to a graph G at any node u contains all nodes
of this graph is called a UXS for this graph. A UXS for a class G of graphs is a
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UXS for all graphs in this class. The solution from [41] uses a result following
from [38] that a UXS for the class of all connected graphs with at most n nodes
can be computed in time polynomial in n. Moreover, the authors propose a
rendezvous algorithm working in O(n5 log l) rounds (up to factors logarithmic in
n and log l). This complexity beats those from [18,30] and makes the algorithm
from [41] the currently most efficient rendezvous algorithm working in arbitrary
connected graphs.

The paper [22] started the investigation of gathering of a team of labeled
agents, some of which can be Byzantine. The size of the team is unknown to the
agents. Agents can exchange all currently held information when they meet at
a node of the graph. Up to f of the agents are Byzantine. The authors define
two levels of Byzantine behavior. A strongly Byzantine agent can choose an
arbitrary port when it moves and it can transmit arbitrary information to other
agents, while a weakly Byzantine agent can do the same, except changing its
label. The main problem investigated in the paper is what is the minimum
number of good agents that guarantees deterministic gathering of all of them,
with termination. (Of course, Byzantine agents cannot be forced to gather.) The
authors solve exactly this Byzantine gathering problem in arbitrary networks for
weakly Byzantine agents, and give approximate solutions for strongly Byzantine
agents, both when the size of the network is known and when it is unknown.
They show that both the strength versus weakness of Byzantine behavior and
the knowledge of network size have an important influence on the results.

For weakly Byzantine agents it is shown that any number of good agents per-
mit to solve the problem for networks of known size. If the size is unknown, then
this minimum number is f + 2. More precisely, the authors design a determinis-
tic polynomial algorithm that gathers all good agents in an arbitrary network,
provided that there are at least f +2 of them. They also prove a matching lower
bound showing that if the number of good agents is at most f + 1, then they
are not able to gather deterministically with termination in some networks.

For strongly Byzantine agents the authors give a lower bound of f + 1, even
when the graph is known: they show that f good agents cannot gather deter-
ministically in the presence of f Byzantine agents even in a ring of known size.
In order to establish upper bounds, they propose deterministic gathering algo-
rithms for at least 2f +1 good agents when the size of the network is known, and
for at least 4f + 2 good agents when it is unknown. These upper bounds were
subsequently improved in [5] to f +1 when the size of the network is known and
to f + 2 when it is unknown. Together with the lower bounds from [22], both
these upper bounds are tight.

As the authors of [5] point out, the above results show an interesting differ-
ence between the scenarios of known vs. unknown size of the network. While for
known size, the gap between the number of good agents permitting gathering
with weakly and with strongly Byzantine agents is very significant (1 vs. f + 1)
this gap completely disappears for the scenario of unknown size: the minimum
number of good agents is then f + 2, regardless of whether the bad agents are
weakly or strongly Byzantine.
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In the above papers, gathering algorithms are very inefficient: their time
complexity is exponential in the size n of the graph and in the largest label L
of a good agent. In [7], the authors make a concession on the proportion of the
Byzantine agents within the team, but they significantly improve the efficiency
of gathering. Assuming that the agents are in a strong team, which is defined as
having at least 5f2 +6f +2 good agents, they design a gathering algorithm that
works in the presence of at most f Byzantine agents in time polynomial in n and
in the length of the smallest label of a good agent. Moreover, they show how to
achieve this gathering using global knowledge of size O(log log log n), and they
prove that this size of knowledge is optimal for this task.

Gathering of agents in the presence of a more benign type of faults is con-
sidered in [37]. In this paper it is assumed that some agents are subject to crash
faults which can occur at any time. Two fault scenarios are considered. A motion
fault immobilizes the agent at a node or inside an edge but leaves intact its mem-
ory at the time when the fault occurred. A more severe total fault immobilizes
the agent as well, but also erases its entire memory. As before, we cannot require
faulty agents to gather. Thus the gathering problem for fault prone agents calls
for all fault-free agents to gather at a single node, and terminate.

It is observed that when agents move completely asynchronously, gather-
ing with crash faults of any type is impossible. Hence the author considers a
restricted version of asynchrony, where each agent is assigned by the adversary
a fixed speed, possibly different for each agent. Agents have clocks ticking at the
same rate. Each agent can wait for a time of its choice at any node, or decide
to traverse an edge but then it moves at constant speed assigned to it. It is
appropriate to discuss this model in the section devoted to synchronous algo-
rithms, as methodologically the two scenarios are similar: it is still possible to
wait at a node for a prescribed amount of time, and this capability significantly
influences algorithm design. When two or more agents are at the same node or
in the same point of an edge in the same time, they can see the memory content
of other agents at this node or at this point of an edge, except for memory of
faulty agents in the case of total faults.

The main results of the paper are a gathering algorithm working for any team
of at least two agents in the scenario of motion faults, and a gathering algorithm
working in the presence of total faults, provided that at least two agents are
fault free all the time. If only one agent is fault free, the task of gathering with
total faults is sometimes impossible (recall that termination is required). This
shows that in the case of crash faults more faulty agents can be tolerated for
gathering than when faults are Byzantine. Both algorithms from [37] work in
time polynomial in the size of the graph, in the logarithm of the largest label, in
the inverse of the smallest speed, and in the ratio between the largest and the
smallest speed.

Rendezvous of two agents subject to transient faults is considered in [9].
Agents do not know the topology of the network or any bound on its size. In
each round an agent decides if it remains idle or if it wants to move to one of the
adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a
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given round, it remains in the current node, regardless of its decision. If it planned
to move and the fault happened, the agent is aware of it. The authors consider
three scenarios of fault distribution: random (delay faults occur independently in
each round and for each agent with constant probability 0 < p < 1), unbounded
adversarial (the adversary can delay an agent for an arbitrary finite number of
consecutive rounds) and bounded adversarial (the adversary can delay an agent
for at most c consecutive rounds, where c is unknown to the agents). The quality
measure of a rendezvous algorithm is its cost, which is the total number of edge
traversals.

For random faults, the authors design an algorithm with cost polynomial
in the size n of the network and polylogarithmic in the larger label L, which
achieves rendezvous with probability at least 1 − 1/n in arbitrary networks. By
contrast, for unbounded adversarial faults they prove that rendezvous is not
feasible, even in the class of rings. Under this scenario, the authors design a
rendezvous algorithm with cost O(n�), where � is the smaller label, working in
arbitrary trees, and they show that Ω(�) is the lower bound on rendezvous cost,
even for the two-node tree. For bounded adversarial faults, the authors construct
a rendezvous algorithm working for arbitrary networks, with cost polynomial in
n, and logarithmic in the bound c and in the larger label L.

In [35], the authors use a different approach to counter transient faults. They
propose a self-stabilizing rendezvous algorithm for two agents navigating in an
arbitrary network. A self-stabilizing algorithm has the property that if the agents
start from any two nodes with arbitrary memory states, then eventually they will
get to the same node in the same round. Thus, even if the agents incur a transient
fault of any kind that corrupts their memory, they can meet in finite time after
the fault disappears. The authors design a self-stabilizing rendezvous algorithm
for arbitrary graphs, without any time guarantees, and construct polynomial-
time self-stabilizing rendezvous algorithms for trees and rings. More precisely,
the algorithm for trees is polynomial in the size of the tree and in the logarithm
of the smaller label, and the algorithm for rings is polynomial in the size of the
ring and in both labels.

In [33], the authors consider two main efficiency measures of rendezvous: its
time, i.e., the number of rounds until the meeting, and its cost, i.e., the total
number of edge traversals. They investigate tradeoffs between these two mea-
sures. A natural benchmark for both time and cost of rendezvous in a network is
the number of edge traversals needed for visiting all nodes of the network, called
the exploration time. The authors express the time and cost of rendezvous as
functions of an upper bound E on the time of exploration (where an explo-
ration procedure is known to both agents) and of the size L of the label space.
They design two rendezvous algorithms: algorithm Cheap has cost O(E) and
time O(EL), and algorithm Fast has both time and cost O(E log L). The main
contribution of the paper are lower bounds showing that these two algorithms
capture the tradeoffs between time and cost of rendezvous almost tightly. They
show that any deterministic rendezvous algorithm of cost asymptotically E (i.e.,
of cost E + o(E)) must have time Ω(EL). On the other hand, they prove that
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any deterministic rendezvous algorithm with time complexity O(E log L) must
have cost Ω(E log L).

In [34], the problem of rendezvous is studied in the framework of advice,
which is a popular paradigm permitting to measure the amount of information
that agents need in order to perform some task in networks. If D is the distance
between the initial positions of the agents, then Ω(D) is a lower bound on the
time of rendezvous. However, in the absence of any knowledge about the network,
agents usually cannot meet in time O(D). Thus the authors study the minimum
amount of information that has to be available a priori to the agents in order
to achieve rendezvous in optimal time Θ(D). Following the advice paradigm,
this information is provided to the agents at the start by an oracle knowing the
entire instance of the problem, i.e., the network, the starting positions of the
agents, their wake-up rounds, and both of their labels. The oracle provides the
agents with the same binary string called advice, which can be used by the agents
during their rendezvous algorithm. The length of this string is called the size of
advice. The goal of the paper is to find the smallest size of advice which enables
the agents to meet in time Θ(D). The authors solve this problem completely by
showing that this optimal size of advice is Θ(D log(n/D) + log log L), where n
is the size of the graph, D is the initial distance between the agents, and L is
the size of the label space. The upper bound is proved by constructing an advice
string of this size, and providing a rendezvous algorithm using this advice that
works in time Θ(D) for all networks. The matching lower bound, which is the
most difficult and interesting part of the paper, is proved by constructing classes
of networks for which it is impossible to achieve rendezvous in time Θ(D) with
smaller advice.

The authors of [16] investigate the rendezvous problem in graphs under the
scenario where during navigation each agent gets some restricted feedback about
the position of the other agent. More precisely, they consider distance-aware
agents that, in every round, are informed of the distance between them. The
authors show that such agents can meet in time O(Δ(D + log l)), where D
is the initial distance between the two agents, l is the smaller label and Δ is
the maximum degree of the graph. Thus, even in a very large graph, distance-
aware agents can meet in time polynomial in local parameters of the instance of
the rendezvous problem. Moreover, the authors show an almost matching lower
bound Ω(Δ(D + log l/ log Δ)) on the time of rendezvous in their scenario.

In most formulations of the synchronous rendezvous problem, meeting is
accomplished when the agents get to the same node in the same round. In [24],
the authors consider a more demanding task, called rendezvous with detection:
agents must become aware that the meeting is accomplished, simultaneously
declare this and stop. It is clear that in order to signal to the other agent the
presence at a given node, agents must communicate, and the awareness of the
meeting depends on ways of communication between the agents. The authors
study two variations of a very weak model of communication, called the beeping
model, introduced in [11]. In each round an agent can either listen or beep. In
the local beeping model, an agent hears a beep in a round if it listens in this
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round and if the other agent is at the same node and beeps. In the global beeping
model, an agent hears a loud beep in a round if it listens in this round and if the
other agent is at the same node and beeps, and it hears a soft beep in a round if
it listens in this round and if the other agent is at some other node and beeps.

The authors propose a deterministic algorithm of rendezvous with detection
working, even for the weaker local beeping model, in an arbitrary unknown
network in time polynomial in the size of the network and in the logarithm of the
smaller label. However, this algorithm is highly energy consuming: the number
of moves that an agent must make, is proportional to the time of rendezvous.
Hence the authors ask if bounded-energy agents, i.e., agents that can make at
most c moves, for some integer c, can always achieve rendezvous with detection as
well. They observe that this is impossible for some networks of unbounded size.
Hence they rephrase the question as follows. Can bounded-energy agents always
achieve rendezvous with detection in bounded-size networks? The authors prove
that the answer to this question is positive, even in the local beeping model but
this ability comes at a steep price of time: the meeting time of bounded-energy
agents is exponentially larger than that of unrestricted agents. By contrast, the
authors propose an algorithm for rendezvous with detection in the global beeping
model that works for bounded-energy agents (in bounded-size networks) as fast
as for unrestricted agents.

We conclude this section by discussing rendezvous of agents that have fixed
but possibly different speeds. The meeting must be at a node, which precludes
the fully asynchronous scenario. Hence, the authors of [8] consider a scenario of
agents with restricted asynchrony: agents have the same measure of time but
the adversary can arbitrarily impose the speed of traversing each edge by each
of the agents. They construct a rendezvous algorithm for such agents, working
in time polynomial in the size of the graph, in the length of the smaller label,
and in the largest edge traversal time.

Anonymous Agents. One of the first papers on synchronous rendezvous of
two anonymous agents was [26] where the authors compare the time of deter-
ministic and of randomized rendezvous in trees. For deterministic rendezvous
they propose an algorithm working in time linear in the size of the tree, for
every initial configuration for which rendezvous is possible, and they show that
this time cannot be improved in general, even when agents start at distance 1
in bounded degree trees.

In the case of anonymous agents, rendezvous may be impossible for some
initial configurations, in some networks, as witnessed by the example of two
agents in the oriented ring, mentioned before. This yields an important feasibility
problem, which is to characterize those initial configurations of an arbitrary
number of anonymous agents for which rendezvous (gathering) is feasible, and to
provide a gathering algorithm working for all such configurations. This problem
was attacked and completely solved in [19].

At least two agents start from different nodes of the graph. The adversary
wakes up some of the agents at possibly different times. A dormant agent, not
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woken up by the adversary, is woken up by the first agent that visits its starting
node, if such an agent exists. Agents do not know the topology of the graph
or the size of the team. The authors considered two scenarios: one when agents
know a polynomial upper bound on the size of the graph and another when no
bound is known. When several agents are at the same node in the same round,
they can exchange all information they currently have. The authors assume that
the memory of the agents is unlimited.

An initial configuration of agents, i.e., their placement at some distinct nodes
of the graph, is called gatherable if there exists a deterministic algorithm (even
only dedicated to this particular configuration) that achieves meeting of all
agents in one node, regardless of the times at which some of the agents are
woken up by the adversary. The authors study the problem of which initial con-
figurations are gatherable and how to gather all of them deterministically by the
same algorithm. The problem calls for deciding which initial configurations are
possible to gather, even by an algorithm specifically designed for this particu-
lar configuration, and for finding a universal gathering algorithm that gathers
all such configurations. The authors restrict attention only to terminating algo-
rithms, in which every agent eventually stops forever.

The main result of the paper is a complete solution of the above gathering
problem in arbitrary graphs. The authors characterize all gatherable configura-
tions and give two universal deterministic gathering algorithms, i.e., algorithms
that gather all gatherable configurations. The first algorithm works under the
assumption that an upper bound n on the size of the network is known. In this
case their algorithm guarantees gathering with detection, i.e., the existence of a
round in which, for any gatherable configuration, all agents are at the same node
and all declare that gathering is accomplished. If no upper bound on the size of
the network is known, the authors show that a universal algorithm for gathering
with detection does not exist. Hence, for this harder scenario, they construct a
second universal gathering algorithm, which guarantees that, for any gatherable
configuration, all agents eventually get to one node and stop, although they can-
not tell if gathering is over. The time of the first algorithm is polynomial in the
upper bound n on the size of the network, and the time of the second algorithm
is polynomial in the (unknown) size of the network itself.

As pointed out by the authors of [19], the problem of gathering an unknown
team of anonymous agents in an arbitrary network presents the following major
difficulty. The asymmetry of the initial configuration because of which gathering
is feasible, may be caused not only by non-symmetric locations of the agents
with respect to the structure of the graph, but by their different situation with
respect to other agents. Hence the authors had to come up with a new algorithmic
idea: in order to gather, agents that were initially identical, must make decisions
based on the memories of other agents met to date, in order to make their future
behavior different and break symmetry in this way. In the beginning the memory
of each agent is empty and in the execution of the algorithm it records what the
agent has seen in previous steps of the navigation and what it heard from other
agents that it met. Even small differences occurring in a remote part of the
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graph must eventually influence the behavior of initially distant agents. Agents
in different initial situations may be unaware of this difference in early meetings,
as the difference may depend on their location with respect to remote agents and
thus be revealed only later on. Hence an agent may mistakenly consider that two
different agents that it met in different stages of the algorithm execution, are the
same agent. Confusions due to this possibility are a significant challenge in the
algorithm design, that occurs neither in gathering two (even anonymous) agents
nor in gathering many labeled agents.

Rendezvous of two anonymous agents was considered in [12,27]. As men-
tioned before, in this case rendezvous is not possible for arbitrary networks and
arbitrary initial positions of the agents. In order to describe initial positions of
the agents for which rendezvous is possible, we need the notion of a view from
a node of a graph, introduced in [42]. Let G be a graph and v a node of G.
The view from v is the infinite tree V(v) rooted at v with labeled ports, whose
branches are infinite paths in G starting at v, coded as sequences of ports. A pair
(u, v) of distinct nodes is called symmetric, if V(u) = V(v). Notice that if there
exists a port-preserving automorphism of the graph carrying node u to node v
then (u, v) is a symmetric pair but the converse is not always true (cf. Fig. 1).
However, this equivalence is true for the particular case of the class of trees.
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Fig. 1. (u, v) is a symmetric pair

Initial positions forming a symmetric pair of nodes are crucial when consid-
ering the feasibility of rendezvous in arbitrary graphs. Indeed, it is proved in [12]
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that rendezvous is feasible, if and only if the initial positions of the agents are
not a symmetric pair.

The aim of [12,27] was optimizing the memory size of the agents that seek
rendezvous. In order to model agents with bounded memory, the formalism of
input/output automata is used. An agent is an abstract state machine A =
(S, π, λ, s0), where S is a set of states among which there is a specified state s0
called the initial state, π : S × Z

2 → S, and λ : S → Z. Initially the agent is at
some node u0, called its initial position, in the initial state s0 ∈ S. The agent
performs an action in each step. Each action can be either a move to an adjacent
node or a null move resulting in remaining in the currently occupied node. State
s0 determines an integer number λ(s0). If λ(s0) = −1, then the agent makes a
null move (i.e., remains at u0). If λ(s0) ≥ 0 then the agent leaves u0 by port
λ(s0) mod d(u0), where d(u0) is the degree of u0. When incoming to a node v
in state s ∈ S, the behavior of the agent is as follows. It reads the number i of
the port through which it entered v and the degree d of v. The pair (i, d) ∈ Z

2 is
an input symbol that causes the transition from state s to state s′ = π(s, (i, d)).
If the previous move of the agent was null, (i.e., the agent stayed at node v in
state s), then the pair (−1, d) ∈ Z

2 is the input symbol read by the agent, that
causes the transition from state s to state s′ = π(s, (−1, d)). In both cases s′

determines an integer λ(s′), which is either −1, in which case the agent makes
a null move, or a non negative integer indicating the port number by which the
agent leaves v. This port number is λ(s′) mod d(v), where d(v) is the degree of
v. The agent continues moving in this way, possibly infinitely.

In order to grasp the assumption that agents are identical, it is assumed that
agents are copies A and A′ of the same abstract state machine A, starting at
two distinct nodes vA and vA′ . We will refer to such identical machines as a pair
of agents. A pair of agents is said to solve the rendezvous problem with delay τ
in a class C of graphs, if, for any graph in the class C and for any initial positions
that are not symmetric, both agents are eventually in the same node of the
graph in the same round, provided that they start with delay τ . The memory of
an agent is measured by the number of states of the corresponding automaton,
or equivalently by the number of bits on which these states are encoded. An
automaton with K states requires Θ(log K) bits of memory.

In [27] (based on conference papers published by the same authors in DISC
2008 and SPAA 2010) the authors focus attention on optimizing memory size
of identical agents that permits them meeting in trees. They assume that the
port labeling is decided by an adversary aiming at preventing two agents from
meeting, or at allowing the agents to meet only after having consumed a lot
of resources, e.g., memory space. This yields the following definition. A pair of
agents initially placed at nodes u and v of a tree T solves the rendezvous problem
if, for any port labeling of T , both agents are eventually in the same node of the
tree in the same round.

Nodes u and v of a tree T = (V,E) are perfectly symmetrizable if there
exists a port labeling μ of T and an automorphism of the tree preserving μ that
carries one node on the other. According to the above definition, the condition
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on feasibility of rendezvous can be reformulated as follows: a pair of agents can
solve the rendezvous problem in a tree, if and only if their initial positions are
not perfectly symmetrizable. Consequently, throughout [27], the authors consider
only non perfectly symmetrizable initial positions of the agents.

It is first shown that the minimum size of memory of the agents that can solve
the rendezvous problem in the class of trees with at most n nodes is Θ(log n). A
rendezvous algorithm for arbitrary delay τ , that uses only a logarithmic number
of memory bits follows, e.g., from [12]. It is observed in [27] that Ω(log n) is also
a lower bound on the number of bits of memory that permit the agents to meet
in all trees of size linear in n. Due to this lower bound, a universal pair of finite
agents achieving rendezvous in the class of all trees cannot exist. However, the
lower bound uses a counterexample of a tree with maximum degree linear in the
size of the tree. Hence, it is natural to ask if there exists a pair of finite agents
solving the rendezvous problem in all trees of bounded degree. The authors give a
negative answer to this question. In fact they show that, for any pair of identical
finite agents, there is a line for which these agents cannot solve the rendezvous
problem, even with simultaneous start. As a function of the size of the trees, this
impossibility result indicates a lower bound Ω(log log n) bits on the memory size
for rendezvous in bounded degree trees of at most n nodes.

The main topic of [27] is the impact of the delay between startup times of
agents on the minimum size of memory permitting rendezvous. The authors show
that if this delay is arbitrary, then the lower bound on memory required for ren-
dezvous is Ω(log n) bits, even for the line of length n. This lower bound matches
the upper bound from [12], which shows that the minimum size of memory of the
agents that can solve the rendezvous problem in the class of bounded degree trees
with at most n nodes is Θ(log n). By contrast, for simultaneous start, they show
that the amount of memory needed for rendezvous depends on two parameters
of the tree: the number n of nodes and the number � of leaves. Indeed, they
construct two identical agents with O(log �+log log n) bits of memory that solve
the rendezvous problem in all trees with n nodes and � leaves. For the class of
trees with O(log n) leaves, this proves an exponential gap in minimum memory
size of the agents permitting them to meet, between the scenario with arbitrary
delay and with delay zero.

Moreover, it is shown in [27] that the size Θ(log �+log log n) of memory used
to solve the rendezvous problem with simultaneous start in trees with at most
n nodes and at most � leaves is optimal, even in the class of trees with degrees
bounded by 3. More precisely, for infinitely many integers �, the authors show
a class of arbitrarily large trees with maximum degree 3 and with � leaves, for
which rendezvous with simultaneous start requires Ω(log �) bits of memory. This
lower bound, together with the previously mentioned lower bound Ω(log log n)
on the number of bits of memory required to meet with simultaneous start in
the line of length n, implies that the upper bound O(log � + log log n) cannot be
improved even for trees with maximum degree at most 3.

Trade-offs between the size of memory and the time of rendezvous in trees by
identical agents are investigated in [13]. The authors consider trees with a given
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port labeling and assume that there is no port-preserving automorphism of the
tree that carries the initial position of one agent to that of the other (otherwise
rendezvous with simultaneous start is impossible). The main result of the paper
is a tight trade-off between optimal time of rendezvous and the size of memory of
the agents. For agents with k memory bits, it is shown that optimal rendezvous
time is Θ(n + n2/k) in n-node trees. More precisely, if k ≥ c log n, for some
constant c, the authors construct agents accomplishing rendezvous in arbitrary
trees of unknown size n in time O(n+n2/k), starting with arbitrary delay. They
also show that no pair of agents can accomplish rendezvous in time o(n+n2/k),
even in the class of lines and even with simultaneous start.

Trade-offs between the size of memory of the agents and the time of ren-
dezvous in trees are investigated in [3] in a slightly different scenario: the dif-
ference is in the definition of rendezvous. The authors consider the rendezvous
problem of any number of anonymous agents. To handle the case of symmetric
trees they weaken the rendezvous requirements: agents have to meet at one node
if the tree is not symmetric, and at two neighboring nodes otherwise. In this lat-
ter case, some of the agents may finish the algorithm in one of the two nodes and
other agents in the other node. The authors observe that Ω(n) is a lower bound
on the time of rendezvous in the class of n-node trees and show that any algo-
rithm achieving rendezvous in optimal (i.e., O(n)) time must use Ω(n) bits of
memory for each agent. Then they show a rendezvous algorithm that uses O(n)
time and O(n) bits of memory per agent. Finally they design a polynomial time
algorithm using O(log n) bits of memory per agent. An additional feature of the
algorithms from [3] is that they can also work in an asynchronous setting: each
agent independently identifies the node or one of the two nodes where meeting
should occur, it reaches this node and stops.

While [27] solves the problem of minimum memory size needed for rendezvous
in trees, the same problem for the class of arbitrary graphs is solved in [12]. The
authors establish the minimum size of the memory of agents that guarantees
deterministic rendezvous when it is feasible. They show that this minimum size
is Θ(log n), where n is the size of the graph, regardless of the delay between
the startup rounds of the agents. More precisely, the authors construct identical
agents equipped with Θ(log n) memory bits that solve the rendezvous problem
in all graphs with at most n nodes, when starting with any delay, and they
prove a matching lower bound Ω(log n) on the number of memory bits needed
to achieve rendezvous, even for simultaneous start. In fact, this lower bound is
valid already on the class of rings.

The positive result from [12] is based on a result from [38] which implies
that a (usually non-simple) path traversing all nodes can be computed (node
by node) in memory O(log n), for any graph with at most n nodes. Moreover,
logarithmic memory suffices to walk back and forth on this path. More precisely
the result from [38] states that, for any positive integer n, there exists a UXS
Y (n) = (a1, a2, . . . , aM ) for the class Gn of all graphs with at most n nodes, such
that M is polynomial in n, and for any i ≤ M , the integer ai can be constructed
using O(log n) bits of memory.
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At a high level, the idea of the algorithm from [12] is the following. The
authors introduce the notion of the signature S(u) of node u corresponding to a
given UXS. This is the sequence of entry and exit ports which are traversed by
an application of the UXS at u. They show that if Y is a UXS for the class Gn2+n

of all graphs with at most n2 +n nodes, and S(u) denotes the signature of u in a
n-node graph G, corresponding to the UXS Y , then for any nodes v, w of G,
V(v) �= V(w) is equivalent to S(v) �= S(w). Thus, the sequence S(u) can be
treated as a compact representation of the view V(u). Then the authors show
that, using logarithmic memory, it is possible to further compress S(u) to a
positive integer value of at most n in such a way that different signatures corre-
spond to different values. This numerical value is then used as the label of the
agent. Hence agents starting from non-symmetric initial positions get different
labels. Once the agents’ anonymity is broken, the rest of the meeting procedure
is performed in the usual way, by dividing time into segments corresponding to
activity/passivity phases. Time segments are long enough to perform a complete
exploration of G (using a UXS that can be computed in logarithmic memory).
An agent explores G in a single phase allowed for its label and waits in the
remaining phases. Hence an agent performing its exploration phase must meet
any agent of different label which is inert during this phase.

3.2 Asynchronous Rendezvous

In the asynchronous scenario agents no longer perform their moves in synchro-
nized steps. While the agent chooses the adjacent node to which it wants to
go, the time at which this move is executed and a possibly varying speed are
chosen by an adversary, which considerably complicates rendezvous. It is easy to
see that, even in the two-node graph, meeting at a node cannot be guaranteed
under this scenario, hence the rendezvous requirement is relaxed by demanding
only that meeting occur either at a node or inside an edge. Since meetings inside
an edge are allowed, unwanted crossings of edges have to be avoided. Thus, for
the asynchronous scenario, an embedding of the underlying graph in the three-
dimensional Euclidean space is considered, with nodes of the graph being points
of the space and edges being pairwise disjoint line segments joining them. For
any graph such an embedding exists. Agents are modeled as points moving inside
this embedding.

At any currently visited node, an agent executing a rendezvous algorithm
chooses a port number at this node, corresponding to the edge that the agent
wants to traverse. However, the way of traversing this edge is decided by the
adversary, capturing the asynchronous characteristics of the rendezvous process.
When the agent, situated at a node v at time t0, has to traverse an edge modeled
as a segment [v, w], the adversary performs the following choice. It selects a time
point t1 > t0 and any continuous function f : [t0, t1] −→ [v, w], with f(t0) = v
and f(t1) = w. This function models the actual movement of the agent inside
the line segment [v, w] in the time period [t0, t1]. Hence this movement can be at
arbitrary speed, the agent may be even forced by the adversary to go back and
forth, as long as it does not leave the segment and the movement is continuous.
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We say that at time t ∈ [t0, t1] the agent is in point f(t) ∈ [v, w]. Moreover, the
adversary chooses the starting time of the agent. Hence an agent’s trajectory is
represented by the concatenation of the functions chosen by the adversary for
consecutive edges that the agent traverses. Recall that the choice of the edge
incident to a current node is determined by the choice of the port number,
belonging to the agent.

For a given algorithm, given starting nodes of agents and a given sequence of
adversarial decisions in an embedding of a graph G, a rendezvous occurs, if both
agents are at the same point of the embedding at the same time. Rendezvous is
feasible in a given graph, if there exists an algorithm for agents such that for any
embedding of the graph, any (adversarial) choice of two distinct labels of agents,
any starting nodes and any sequences of adversarial decisions, the rendezvous
does occur. The cost of rendezvous is defined as the worst-case number of edge
traversals by both agents (the last partial traversal counted as a complete one
for both agents), where the worst case is taken over all decisions of the adversary.

Labeled Agents. The above asynchronous model was introduced in [17] where
the authors consider labeled agents. They study asynchronous rendezvous in the
infinite line, in the ring and in arbitrary connected graphs, both in the case when
the initial instance D between the agents is known, and when it is unknown. In
the first two cases they propose several algorithms and analyze their cost. In
one situation, for rendezvous in a ring of known size n (but unknown D) they
propose an algorithm of cost O(nl), where l is the logarithm of the smaller label.
This cost is optimal. The cost of their rendezvous algorithms in the infinite line
has been subsequently improved in [40]. The rendezvous algorithms from [17] for
the infinite line and for the ring are based on the following idea: first transform
the label L of the agent in an appropriate way, and then execute the transformed
label by making some prescribed moves, if the current bit of it is 0 and making
symmetric moves otherwise.

However, from the hindsight, the most influential part of [17] was that con-
cerning rendezvous in arbitrary graphs. Here the authors tackle the question
of feasibility. They prove that rendezvous is feasible, if an upper bound on the
size of the graph is known. As an open problem, the authors state the ques-
tion if asynchronous deterministic rendezvous is feasible in arbitrary graphs of
unknown size. The solution from [17] heavily uses the knowledge of the upper
bound on the size.

The general problem of feasibility of asynchronous rendezvous for arbitrary
graphs is solved in [15]. The authors propose an algorithm that accomplishes
asynchronous rendezvous in any connected countable (finite or infinite) graph,
for arbitrary starting nodes. A consequence of this result is a strong positive
answer to the above mentioned open problem from [17]: not only is rendezvous
always possible, without the knowledge of any upper bound on the size of a
finite (connected) graph, but it is also possible for all infinite (countable and
connected) graphs.
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Fig. 2. Routes R1 and R2 form a tunnel

The rendezvous algorithm from [15] is based on the notion of a tunnel. Con-
sider any graph G and two routes R1 and R2 starting at nodes v and w, respec-
tively. (These are sequences of edges, such that consecutive edges in the sequence
are incident.) We say that these routes form a tunnel (cf. Fig. 2), if there exists
a prefix [e1, e2, . . . , en] of route R1 and a prefix [en, en−1, . . . , e1] of route R2,
for some edges ei in the graph, such that ei = {vi, vi+1}, where v1 = v and
vn+1 = w. Intuitively, the route R1 has a prefix P ending at w and the route
R2 has a prefix which is the reverse of P , ending at v. It is proved in [15] that
if routes R1 and R2 form a tunnel, then rendezvous is guaranteed, regardless of
the decisions of the adversary.

A high-level idea of the algorithm from [15] is to force the routes of any two
agents with different labels to form a tunnel, for every possible combination of
starting nodes and (distinct) labels of the two agents. This is done by enumerat-
ing all quadruples (i, j, s′, s′′), where i and j are different positive integers and s′,
s′′ are finite sequences of natural numbers, and arranging them in one countably
infinite sequence. This enumeration is part of the algorithm and is the same for
all agents. Then each agent processes quadruples (i, j, s′, s′′) in the order of their
enumeration. Any starting configuration of agent with label i placed at node
v and of agent with label j placed at node w by the adversary corresponds to
a quadruple (i, j, s′, s′′), where s′ is a sequence of port numbers coding a path
from v to w and s′′ is a sequence of port numbers coding the reverse path from
w to v. During the processing of a quadruple (i, j, s′, s′′), a suffix is added to
the already constructed initial segment of the route of agents with label i or
j, in such a way that if labels and initial positions of agents correspond to this
quadruple, then the routes of the agents form a tunnel. Since for some quadruple
this condition must hold, arbitrary agents placed at arbitrary initial positions in
the graph must eventually meet.

The cost of the algorithm depends on the enumeration of the quadruples,
and more precisely on the position (in this enumeration) of the quadruple cor-
responding to the initial configuration of the agents. During each phase of the
algorithm, the length of the routes of the two agents corresponding to the cur-
rently processed quadruple, is at least doubled. Hence, the complexity of the
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algorithm is at least exponential in terms of the number of quadruples with the
same labels as those of the two agents, that are before the quadruple corre-
sponding to the initial configuration of the agents in the enumeration. Thus the
authors conclude their paper with the following natural question:

Does there exist a deterministic asynchronous rendezvous algorithm, working
for all unknown connected finite graphs, with complexity polynomial in the labels
of the agents and in the size of the graph?

This question is answered in [23] where the authors propose a deterministic
asynchronous rendezvous algorithm, working for all unknown connected finite
graphs, with cost polynomial in the size of the graph and in the logarithm of the
smaller label.

The high-level idea of the algorithm from [23] is based on the following obser-
vation. If one agent follows a trajectory traversing all edges of the graph during
some time segment, then it must either meet the other agent or this other agent
must perform at least one complete edge traversal during this time segment, i.e.,
it must make progress. A naive use of this observation leads to the following
simple algorithm (which is similar to that from [17]). Let R(n, v) be a trajec-
tory starting at v and traversing all edges of the graph of size at most n, and
let R(n, v) be the reverse trajectory. R(n, v) can be, e.g., based on Reingold’s
[38] exploration. An agent with label L starting at node v of a graph of size n

follows the trajectory (R(n, v)R(n, v))(2P (n)+1)L , where P (n) is an upper bound
on the length of R(n, v), and stops. Indeed, in this case the number of trajecto-
ries R(n, v)R(n, v) (that traverse all edges of the graph) performed by the larger
agent (i.e., the agent with the larger label) is larger than the number of edge
traversals by the smaller agent and consequently, if they have not met before, the
larger agent must meet the smaller one after the smaller agent stops, because the
larger agent will still perform at least one entire trajectory afterwards. However,
this simple algorithm has two major drawbacks. First, it requires knowledge of n
(or of an upper bound on it) and second, it is exponential in L, while the goal is
an algorithm polylogarithmic in L. Hence the above observation has to be used in
a much more subtle way. As the authors of [23] say, their algorithm “constructs
a trajectory for each agent, polynomial in the size of the graph and polylogarith-
mic in the shorter label, i.e., polynomial in its length, which has the following
synchronization property that holds in a graph of arbitrary unknown size. When
one of the agents has already followed some part of its trajectory, it has either
met the other agent, or this other agent must have completed some other related
part of its trajectory. (In a way, if the meeting has not yet occurred, the other
agent has been “pushed” to execute some part of its route.) The trajectories are
designed in such a way that, unless a meeting has already occurred, the agents
are forced to follow in the same time interval such parts of their trajectories
that meeting is inevitable. A design satisfying this synchronization property is
difficult due to the arbitrary behavior of the adversary and is the main technical
challenge of the paper.”

The aim of [21] is to investigate the difference of cost between the synchronous
and asynchronous versions of a task executed by mobile agents. The authors
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show that for some natural task executed by mobile agents in a network, the
optimal cost of its deterministic solution in the asynchronous setting has higher
order of magnitude than that in the synchronous scenario. The task for which
this difference is proved is rendezvous of two agents in an infinite oriented grid.
They consider two agents starting at a known distance D in the infinite oriented
grid. Agents do not have any global system of coordinates. They have to meet
in a node or inside an edge of the grid, and the cost of a rendezvous algorithm
is the number of edge traversals by both agents until the meeting. It is proved
that in the synchronous scenario rendezvous can be performed at cost O(D�),
where � is the length of the binary representation of the smaller label, while
cost Ω(D2 + D�) is needed for asynchronous completion of rendezvous. Hence,
for instances with � = o(D), the optimal cost of asynchronous rendezvous is
asymptotically larger than that of synchronous rendezvous.

Anonymous Agents. The papers [4,10] were among the first to consider asyn-
chronous rendezvous of anonymous agents in graphs. The authors concentrate
on particular graphs and use strong additional assumptions. They consider ren-
dezvous in an infinite two-dimensional grid, where ports are consistently labeled
N,E, S,W , and agents know their initial coordinates in the grid, with respect to
a common system of coordinates. Hence, it is even problematic if such agents can
be called anonymous (identical), as they are right away differentiated by their
different initial coordinates. It is proved in [10] that under these assumptions
asynchronous rendezvous can be accomplished at cost O(d2+ε), where d is the
initial distance between the agents in the grid, and ε is an arbitrary positive
real. This result has been generalized and strengthened in [4], under the same
assumptions. The authors show an asynchronous rendezvous algorithm working
for δ-dimensional infinite grids with cost O(dδpolylog(d)). This complexity is
close to optimal, as Ω(dδ) is a lower bound on the cost of any asynchronous
rendezvous algorithm in this setting.

The problem of feasibility of asynchronous rendezvous of anonymous agents
in arbitrary graphs is solved in [28]. The authors show that rendezvous is possi-
ble if and only if the views from the initial positions of the agents are different,
or these positions are connected by a path whose corresponding sequence of port
numbers is a palindrome. The authors provide an algorithm guaranteeing deter-
ministic asynchronous rendezvous from all such initial positions in an arbitrary
connected graph that is either finite of arbitrary unknown size, or (countably)
infinite.

The algorithm is based on the idea of creating a tunnel, similarly as in [15].
However, the main difficulty in designing the algorithm in the present setting
is that, as opposed to [15], agents do not have distinct labels allowing them to
break symmetry. Hence symmetry can be broken only by inspecting the views
of the agents, if these views are different. Even when they are different, the
agents cannot know how deeply their views have to be explored to find the first
difference. Thus the algorithm proceeds in epochs: in each consecutive epoch
each agent explores its view more deeply, and creates a code of this truncated
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view, subsequently treating it as its temporary label and applying the procedure
from [15] to a restricted list of quadruples. If views are different, a tunnel will
be eventually created after an epoch with sufficiently high index because in
this epoch the truncated views serving as temporary labels of the agents will
be different, and the argument from [15] will work. The algorithm in [28] has
an additional feature permitting the creation of a tunnel when views of the
agents are the same but their initial positions are joined by a path which is
a palindrome. The simplest example of such a situation is the two-node graph
with agents starting at extremities of the single edge. Views of the agents are
the same and the code of the unique simple path joining the initial positions of
the agents is the palindrome (00).

4 Approach in the Plane

In this section we study the problem of approach in the plane or in terrains that
are subsets of the plane: agents modeled as points moving in the terrain and
starting at distinct points of it have to get at distance at most 1 of each other.
Throughout the section we assume that agents have labels that are different
positive integers. Each agent is equipped with a compass and a unit of length.

The problem of approach in the plane of agents that have coherent compasses
and the same unit of length can be reduced to the problem of rendezvous in
an infinite oriented grid, where rendezvous is defined as getting at the same
time to the same node or the same point of some edge of the grid. This means
that if rendezvous in the infinite oriented grid can be solved under some set of
assumptions about the agents, then the problem of approach in the empty plane
can be solved under analogous assumptions.

The problem of feasibility of asynchronous rendezvous in the plane or ter-
rains is solved in [15]. Consider any terrain (bounded or unbounded) that is
a (topologically) closed subset of the plane with path-connected interior. (The
latter means that for any two interior points of the terrain there exists a path,
all of whose points are interior points of the terrain, connecting them). Agents
start at arbitrary interior points of the terrain and their trajectories can be any
polygonal lines. The authors propose an algorithm that accomplishes approach
of any such agents in the terrain in finite time. Compasses and units of length
of the agents may even be different.

While the algorithm from [15] works in a very general setting, its drawback
is the complexity: similarly as for the rendezvous algorithm for graphs proposed
in this paper, the cost of the algorithm for terrains cannot be controlled. In
order to find a more efficient algorithm, the authors of [20] consider a scenario of
restricted asynchrony. Agents have coherent compasses and the same measure of
length and of time, but they are assigned arbitrary, possibly different velocities
by an adversary. An agent can stay inert for a chosen amount of time, or it
can move in a chosen direction and distance at its assigned speed. Under these
restrictions the authors propose an algorithm accomplishing approach in the
plane in time polynomial in the unknown initial distance between the agents,
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in the logarithm of the smaller label and in the inverse of the larger speed. The
distance travelled by each agent until approach is polynomial in the first two
parameters and does not depend on the third.

The problem of tractable approach in the plane under full asynchrony has
been finally solved in [6]. The authors propose an algorithm accomplishing app-
roach in the plane for agents whose speed may vary adversarially. The cost of
the algorithm is polynomial in the initial distance between the agents and in the
logarithm of the smaller label.

It should be mentioned that the result from [4] concerning asynchronous
rendezvous in the infinite oriented two dimensional grid, accomplished at cost
O(d2polylog(d)), where d is the initial distance between the agents in the grid,
carries over to the task of approach in the plane under similar strong assumptions
as in [4]: agents have coherent compasses and the same unit of length and they
know their initial coordinates in the plane, with respect to a common system of
coordinates. Similarly as for the grid, this complexity is close to optimal, due to
the lower bound Ω(d2).

In [25], the authors consider the problem of approach in the plane under the
synchronous model. Agents are equipped with coherent compasses and the same
unit of length, and have synchronized clocks. They make a series of moves. Each
move specifies the direction and the duration of moving. In a null move an agent
stays inert for some time, or forever. In a non-null move agents travel at the
same constant speed, normalized to 1.

The twist of the model in this paper is restricted feedback that the agents get
after each move, that is similar in spirit to the model of distance-aware agents
from [16], but weaker. It is assumed that agents have sensors enabling them to
estimate the distance from the other agent, but not the direction towards it.
The authors consider two models of estimation. In both models an agent reads
its sensor at the moment of its appearance in the plane and then at the end
of each move. This reading (together with the previous ones) determines the
decision concerning the next move. In both models the reading of the sensor
tells the agent if the other agent is already present. Moreover, in the monotone
model, each agent can determine, for any two readings in moments t1 and t2,
whether the distance from the other agent at time t1 was smaller, equal or
larger than at time t2. It does not, however, get the value of this distance. In
the weaker binary model, each agent can find out, at any reading, whether it is
at distance less than ρ or at distance at least ρ from the other agent, for some
real ρ > 1 unknown to them. To motivate their model, the authors mention that
such distance estimation can be implemented, e.g., using chemical sensors. Each
agent emits some chemical substance (scent), and the sensor of the other agent
detects it, i.e., the other agent sniffs. The intensity of the scent decreases with
the distance. In the monotone model it is assumed that the sensors of the agents
are very precise and can measure any change of intensity. In the binary model
it is only assumed that the sensors can detect the scent below some distance
(without being able to measure intensity or its changes) above which the density
of the chemical is too weak to be detected.
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The authors investigate how the two ways of sensing influence the cost of
meeting, defined as the total distance travelled by both agents until the meeting.
For the monotone model they present an algorithm achieving meeting in time
O(D), where D is the initial distance between the agents. This complexity is of
course optimal. For the binary model they show that, if agents start at a distance
smaller than ρ (i.e., when they can sense each other initially) then meeting can
be guaranteed at cost O(ρ log λ), where λ is the larger label, and that this cost
cannot be improved in general. It is also observed that, if agents start at distance
αρ, for some constant α > 1 in the binary model, then sniffing does not help,
i.e., the worst-case optimal meeting cost is of the same order of magnitude as
without any sniffing ability.

In [14], the authors consider both the task of approach and that of (exact)
rendezvous of two agents in a terrain. Exact rendezvous (getting to the same
point of the terrain at the same time) is possible because the terrain is a polygon
with polygonal holes, and hence exact meeting can take place at the boundary
of the terrain or of a hole. Movements of the agents are asynchronous and agents
have bounded memory: they are modeled as finite automata. The authors com-
pare the feasibility of the task of rendezvous to that of approach for anonymous
and for labeled agents. This gives rise to four scenarios, and the authors show
classes of polygonal terrains which distinguish all pairs of them from the point of
view of feasibility of rendezvous. The characteristics of the terrain that influence
the feasibility of rendezvous and of approach include symmetries of the terrain,
boundedness of its diameter, and the total number of vertices of polygons in the
terrain.

5 Conclusion

In this chapter we surveyed algorithmic results concerning deterministic ren-
dezvous in networks and deterministic approach in terrains of the plane. The
appearance of many new results in the last few years is an indication of how
vibrant is this domain of distributed computing. On the other hand, hopefully
we managed to show that our understanding of rendezvous problems is still very
incomplete, and a lot remains to be done. We would like to conclude the chapter
by pointing out several avenues of research that this author finds promising. This
choice of the open problems is very subjective and reflects the personal taste of
the author, rather than their importance on some hypothetical objective scale.

It seems reasonable to classify possible open problems into two categories.
The first category is strengthening of the existing results without changing the
model under which they were originally obtained. Here the most interesting
problems seem those aiming at improving the efficiency of existing algorithms
and ultimately finding an algorithm of optimal complexity. In this category we
would put forward the problem of finding:

– an optimal-time synchronous rendezvous algorithm in arbitrary graphs
– an optimal-cost asynchronous rendezvous algorithm in arbitrary graphs
– an optimal-cost asynchronous approach algorithm in the plane.
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All these problems are formulated for labeled agents. The third problem is
for agents with coherent compasses and the same unit of length. As we know, for
all these problems polynomial algorithms are known, but, especially in the case
of problems 2 and 3, the exponents of the polynomials are very large. Finding
algorithms of optimal complexity for any of these scenarios seems to be very chal-
lenging. We think that even a significant improvement of the existing algorithms
would be a big step forward.

The second category concerns investigating rendezvous under new models. It
seems that the interplay between efficiency of rendezvous or approach and the
communication capabilities of agents is still poorly understood. This problem has
been “touched” in papers [16,24,25] but a more complete analysis of tradeoffs
between communication of agents and efficiency of rendezvous under various
scenarios is badly needed. A realistic type of communication, especially for agents
in the terrains, seems to be wireless. This can be challenging, especially for
large teams of agents, as usual problems of wireless communication concerning
collisions would have to be tackled.

Another interesting issue are trade-offs between memory of the agents
and their sensory capabilities. In this chapter we assumed that agents can-
not see other agents prior to meeting but usually they have significant or
even unbounded memory. By contrast, in Chap. 4, it is usually assumed that
agents cannot remember any information from the previous Look-Compute-Move
cycles, but they can take a snapshot of the entire network (or a large part of
it) during the Look action. Most applications are probably in between those
two extremes: agents have some memory of past events (for example of constant
size), but their sensory capabilities are more limited, e.g., they can only perceive
the part of the configuration at a given radius from their current position, they
cannot see “through” other agents, etc. Studying feasibility of rendezvous under
such more balanced scenarios could involve characterizing initial configurations
for which rendezvous (or approach in the plane) is possible, and trying to opti-
mize the cost of meeting, which, under very small memory of the agents, is often
still unknown.
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Abstract. Anomalies and faults are inevitable in computer networks,
today more than ever before. This is due to the large scale and dynamic
nature of the networks used to process big data and to the ever-increasing
number of ad-hoc devices. Beyond natural faults and anomalies occur-
ring in a network, threats proceeding from attacks conducted by mali-
cious intruders must be considered. Consequently, there is often a need
to quickly isolate and even repair a fault in a network when it appears.
Furthermore, despite the presence in a network of faults stemming from
malicious entities, we need to identify the latter and their behaviours,
and develop protocols resilient to their attacks. Thus, defining models to
capture the dangers inherent to various faults, anomalies and threats in
a network and studying such threats, has become increasingly important
and popular.

Threats in networks can be of two kinds: either mobile or station-
ary. A malicious mobile process can move along the network, whereas
a stationary harmful process resides in a host. One of the most stud-
ied models for stationary harmful processes is the black hole, which was
introduced by Dobrev, Flocchini, Prencipe and Santoro in 2001. A black
hole models a network node in which a destructive process deletes any
visiting agent or incoming data upon arrival, without leaving any observ-
able trace. Conversely, a network may face one or more malicious mobile
processes infecting one or more nodes. Given both kinds of threats, a first
crucial task consists in searching for and reporting as quickly as possible
the location all faulty nodes while using a minimum number of mobile
agents. In general, the main issue is to identify the minimal hypotheses
under which faulty nodes can be found. This problem has been investi-
gated in both asynchronous and synchronous networks. A corollary task
is to make sure that the protocols designed for solving problems such as
gathering and transferring data still work despite the presence of one or
more faulty nodes.

In this chapter, we review the state-of-the-art of research pertaining
to the presence of faulty nodes in a network. We discuss different models
in synchronous and asynchronous networks and for different communica-
tion and computation capabilities of the agents. We also address relevant
computational issues and present algorithmic techniques and impossibil-
ity results.
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1 Introduction

Over the past few decades, as network-based services have become prevalent, so
has the need for effective diagnosis of all-too-frequent network anomalies and
faults. Among these, a black hole is a severe and pervasive problem. A black
hole models a computer that is accidentally off-line or a network site in which a
resident process (e.g., an unknowingly-installed virus) deletes any visiting agents
or incoming data upon their arrival without leaving any observable trace [43].
For example, in a cloud, a node that causes loss of essential data (for the system
and/or its users) constitutes a black hole and de facto compromises the quality
of any service in this cloud. Similarly, any undetectable crash failure of a site in
a network transforms that site into a black hole.

In this chapter we study the Black Hole Search problem. We present and
discuss a number of models for which the problem has been studied. We start
by describing some basic ingredients of most of the models. Then we discuss
the problem in synchronous networks. We chose to present some algorithms
and impossibility results for the problem in tree topologies (since this was the
first topology studied for synchronous networks) as well as arbitrary graphs.
We also discuss some algorithmic techniques for scattered finite automata (since
there are only few results for agents with limited memory and lots of open
questions) on ring and torus topologies. Then we move to asynchronous networks.
After overviewing the state of the art for black hole search problem in various
asynchronous networks, we present algorithms for the problem in ring topology.
Finally we briefly mention other problems in networks with black holes as well as
other types of malicious behaviour and conclude with interesting open questions
and future directions in the area.

1.1 Mobile Agents

In distributed computing, the research focus is on the computational and com-
plexity issues of systems composed of autonomous computational entities inter-
acting with each other to solve a problem or to perform a task. While tradition-
ally these autonomous computational entities have been assumed to be static,
recent advances in a variety of fields, ranging from robotics to networking, have
motivated the community to address the situation of mobile entities.

A mobile agent is an abstract and autonomous software entity. As such,
agents are versatile and robust in changing environments, and can be pro-
grammed to work in cooperative teams. Members of such teams may have differ-
ent complementary specialties, or be duplicates of one another [76]. These agents
usually have limited computing capabilities and bounded storage. They all obey
an identical set of behavioural rules (referred to as the “protocol”) and can move



Dangerous Graphs 457

from a node to a neighbouring one. Also, these agents are usually anonymous
(i.e., do not have distinct identifiers) and autonomous (i.e., each does its own
computing and uses its own memory).

Using such agents offers several potential advantages: they can reduce net-
work load, overcome network latency, encapsulate protocols, execute asyn-
chronously and autonomously, and even adapt dynamically [88]. For example,
black hole search may instead rely on the use of a central controller. In this case,
the latter must constantly send Ping messages to nodes or, alternatively, require
that each node send it periodically a message confirming this node’s activity.
Both of these strategies lead to heavy network traffic that can be avoided when
using mobile agents for such a search.

Recently, an increasing number of investigations are being carried out on the
computational and complexity issues arising in systems of mobile entities that
can move in a spatial universe. Depending on the nature of the spatial universe,
there are two basic settings in which mobile entities are being investigated. The
first setting, called sometimes continuous, is when the universe is a region of
the 2D (or 3D) space. This is for example the case of robotic swarms, mobile
sensor networks, mobile robotic sensors, etc. (as in, e.g., [1,37,110]). The second
setting, sometimes called graph world or discrete universe, is when the universe
is a simple graph; this is for example the case of mobile agents in communication
networks (as in, e.g., [32,72]). In both settings, the research concern is on deter-
mining what tasks can be performed by such entities, under what conditions,
and at what cost. In particular, a central question is to determine what minimal
hypotheses allow a given problem to be solved.

Mobile agents in networks can be thought of as autonomous, goal-oriented
software entities that can transport their state from one computational envi-
ronment to the next and resume their execution in the new environment, thus
remaining active as they migrate between computers. This makes them a pow-
erful tool for implementing distributed applications in computer networks. The
agents are generally modeled as automata that move on a network modeled as
a graph. The first known algorithm designed for graph exploration by a mobile
agent, modeled as a finite automaton, was introduced by Shannon [104] in 1951.
Since then, several papers have been dedicated to the feasibility of graph explo-
ration by one or more agents. Important properties that have been considered
by researchers are as follows:

1. Whether or not the agents are distinguishable, i.e., if they have distinct identi-
ties. Anonymous agents are limited to executing precisely the same algorithm,
while agents with distinct identities have the potential to execute different
algorithms.

2. The size of memory an agent has (e.g., a function of the size of the network
or constant memory) and the knowledge an agent has about the network it
is on (e.g., a map or the size of the network) and about the other agents.

3. The method through which the agents communicate. For example they may
have the ability to read the state of other agents residing at the same node.
Or they can communicate via a shared memory space provided at each node



458 E. Markou and W. Shi

(usually called whiteboard), or via message passing, or by leaving indistin-
guishable markers at nodes or edges (often called tokens or pebbles).

4. Whether the nodes and/or edges of the network are distinguishable by an
agent (as in, e.g., [54,95]) or not (as in, e.g., [14]). The outgoing edges of a
node are usually thought of as distinguishable but an important distinction is
made between a globally consistent edge-labeling (thus giving the agents the
ability to navigate) versus a locally independent edge-labeling (in that case,
even in restricted topologies like a torus, the agents cannot navigate based
only on the edge labeling). If the labeling satisfies certain coding properties
it is called a sense of direction [67].

5. How networks deal with time. In a synchronous network there exists a global
clock available to all nodes. This global clock is inherited by the agents. In
particular it is usually assumed that in a single step an agent arrives at a
node, performs some calculation, and exits the node and that all agents are
performing these tasks ‘in sync’. In an asynchronous network such a global
clock is not available; the speed with which an agent computes or moves
between nodes, while guaranteed to be finite, is not a priori determined (as
in, e.g., [98]).

6. Whether networks and/or agents may be faulty or not. For example crash or
omission failures, faulty edges, Byzantine failures (where a faulty agent and/or
node behaves arbitrarily and potentially maliciously) have been considered.

All the above properties have turned out to greatly effect the solvability and
efficiency of solution of a number of problems in distributed computing and
have been shown to be important for the study of mobile agents as well.

For a given choice of agent plus network model there are a number of impor-
tant resources for which one can define a complexity measure. Measures that
reflect the time and bandwidth efficiency of a given algorithm are of paramount
concern. The total bandwidth consumed by an agent depends upon its size (mem-
ory) as well as the number of moves it makes during an execution of its algorithm.
Generally the size (memory) of an agent is identified with the number of bits
required to encode its states, i.e., it is proportional to the log base two of the
number of possible states (as in, e.g., [38,73]). Depending on its memory, an
agent may be able to make and/or store a map of the network, store the net-
work size, count the number of nodes visited, etc. If the agent sends messages
then the size and number of these messages must also count towards any mea-
sure of its bandwidth. Other complexity measurements of interest include the
size of shared memory required at each node assuming the agents communicate
via shared memory, the number of random bits used by a randomized agent and
the number and kind of faults an algorithm can successfully deal with.

1.2 Exploration in Unsafe Networks

One of the main concerns in distributed mobile computing has to do with the
security of both agents and hosts [16,24,76,79,94,102]. The case of harmful
mobile agents (representing mobile viruses that infect any visited network site)
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has been considered in the literature. A crucial task is to decontaminate the
infected network; this task is to be carried out by a team of system agents
(the cleaners), able to decontaminate visited sites, preventing any reinfection of
cleaned areas. This problem is equivalent to the one of capturing an intruder
moving in the network. Results on this and related problems have appeared in
[5,12,56,57,71,89,108].

Various methods of protecting mobile agents against malicious hosts have
been discussed (as in, e.g., [77,78,93,101,102,111]). In [70] results for both
harmful nodes (especially for asynchronous networks) and harmful agents are
surveyed.

The exploration problem has been studied in unsafe networks which contain
malicious hosts of a highly harmful nature, called black holes. A black hole is a
node which contains a stationary process destroying all mobile agents visiting
this node, without leaving any trace. In the Black Hole Search problem the goal
for the agents is to locate the black hole within finite time. In particular, at least
one agent has to survive knowing all edges leading to the black hole. The problem
has been introduced by Dobrev, Flocchini, Prencipe and Santoro in 2001 [43].
The only way of locating a black hole is to have at least one agent visiting it.
However, since any agent visiting a black hole is vanished without leaving any
trace, the location of the black hole must be deducted by some communication
mechanism employed by the agents.

In 2006, Flocchini et al. [69] scrutinized the black hole search problem for both
asynchronous and synchronous networks. That survey also introduced the black
hole search problem as a special case of exploring and mapping an unknown
environment. While there exists a large body of literature on unknown graph
exploration problems, it generally assumes that the underlying network graph
does not contain any type of malicious entities [4]. Conversely, work on dangerous
graph search (e.g., [23]) does address the detection and localization of malicious
hosts (such as black holes), malicious agents, and faulty links. In particular, in
their 2012 survey [90], Markou et al. discussed previous research on identify-
ing hostile nodes. They mainly focused on synchronous special trees, arbitrary
trees and arbitrary graphs, with a brief mention of asynchronous rings. More
recently, Zarrad et al. [112] briefly discuss solutions for black hole search in syn-
chronous and asynchronous networks, however without analyzing the underlying
assumptions of these solutions. Results on the black hole search problem have
also appeared in surveys [90,97].

1.3 Common Models

The Black Hole Search problem has been studied on a number of models. We
present here the common assumptions of those models. A list of the common
assumptions of those models is provided in Table 1. We will now provide a
detailed explanation of each of these assumptions.
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Table 1. Models and assumptions frequently used for black hole search

Network syn-
chronization

Communication
model

Agent
starting
location

Knowledge of
network

Synchronous
network

Pure token Co-located No knowledge (e.g.,
unknown)

Enhanced token Edge-labelled (e.g.,
sense of direction)

Asynchronous
network

Whiteboard Dispersed Network topology
(e.g., ring)

Face-to-face Complete knowledge
(e.g., map)

1.3.1 Network Synchronization

Synchronous Network. A synchronous network is a network in which all
agents initially wake up at the same time and where it takes a quantum amount
of time (called a time unit) for an agent to traverse a link or explore a node:
All agents are thus synchronized with respect to a global clock. By the end of
each time unit, an agent must decide whether to move to a neighbouring node,
or stay at its current node, or terminate the algorithm. As such, the complexity
of the agent’s algorithm in synchronous networks can be measured in terms of
the number of time units.

In synchronous networks, a time-out mechanism is available to enforce the
time synchronization [22,29–31,83]. Such a mechanism allows us to easily identify
which agents vanished in the black hole(s). Suppose a team of agents should meet
at a node u after m time units, after this time-out, all other agents know that
those that do not show up in node u perished in the black hole(s).

Using such a time-out mechanism, the black hole can be located using only
2 agents in any network that has only one black hole present when a network
map is available for every agent. In this case the network size is not required
to guarantee a solution. For example, let 2 agents, a and b, be at a safe node
u. Assume agent a moves to the neighbouring node v and is expected to return
to u while agent b waits at node u. As each move takes 1 time unit, if agent a
does not come back to node u after 2 units, then agent b knows that agent a is
lost and that node v is the black hole. Once agent b knows the location of the
black hole, the algorithm can terminate immediately even if there are remaining
unexplored nodes in the network.

Furthermore, with this mechanism, it is also possible to know whether or not
a black hole exists. More specifically, if all n nodes of the network have been
explored by the end of a predefined time-out, we can conclude that there is no
black hole in this network, provided that n be known a priori. In this case,
Klasing et al. [84] and Czyzowicz et al. [29] solve the black hole search problem
under the assumption that there is one or no black holes in the network.
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Asynchronous Network. Unlike for synchronous networks, there is no global
clock mechanism in asynchronous networks. Thus, the agents could initially wake
up at different times. Also, the time that an agent takes for every action (sleep or
transit) is finite but unpredictable [69]. Therefore, it is impossible to distinguish
whether an agent vanished in a black hole or is stuck in a slow link/node of the
network since the latter possibility takes an unpredictable amount of time [106].
It follows that the only way to locate a black hole in an asynchronous network
is to explore the entire network [69]. Consequently, the network size n and the
number of black holes b must be known a priori in order to count the total
number of explored nodes (whether for single or multiple black hole search):
only when at least n − b nodes are explored may the algorithm terminate.

While knowing network size n is not required for solving black hole search in
synchronous networks, generally it is for asynchronous ones. Also, a network may
be disconnected due to the presence of a black hole. In the context of an asyn-
chronous network, this makes it is impossible for an agent to finish exploring the
entire network and terminate the algorithm. In order to bypass this roadblock,
research papers that study the single black hole search problem in asynchronous
networks assume that the network is bi-connected or at least that the network
remains connected after removing the black hole node. In contrast, synchronous
networks need not be bi-connected for single black hole search. For example,
Czyzowicz et al. [31] study this problem in tree networks. Finally, we remark
that this issue is far more complex when considering multiple black hole search.

1.3.2 Communication Models
Given the location of the black hole is initially unknown, regardless of network
synchronization, an agent may vanish at any time while it explores. As previously
mentioned, in order to systematically identify a black hole, a team of agents is
used to locate the black hole. Collaboration between agents is not only necessary;
it is essential. To this end, the agents are usually assumed to communicate with
each other using one of the four communication models: the pure token model,
the enhanced token model, the whiteboard model, and the face-to-face model. In
the first three of these models, agents have no means for direct communication
between themselves.

Before discussing each of these models, we remark that a crucial goal of agent
communication is to minimize the number of agents that vanish in a black hole.
To this end, it is assumed that at most one agent should be allowed to enter
the same node at the same time via the same link. More specifically, when a
port is explored for the first time, this initial exploration must involve only one
agent that, before entering this port, must somehow indicate to other exploring
agents that the node to which this port leads is currently under exploration and
thus is to be considered dangerous until proven otherwise. Such a strategy, called
Cautious Walk, is commonly used in black hole search algorithms for it prevents
other agents from entering a node under exploration via the same link. It was
first introduced by Dobrev et al. [43] to minimize the number of agents that
vanish in the black hole. It typically requires that a node be conceptualized as
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having ports. A port can be classified as (a) unexplored - no agent has ever passed
through this port, or (b) dangerous - an agent left via this port but no agent
has returned through it, or (c) safe - an agent has left and returned through
this port. How the status of a port is captured differs between communication
models. Regardless, Cautious Walk guarantees that no agent leave a node via
a dangerous port. Consequently, if node v is a black hole and can be accessed
from port p of a neighbour of v, then at most one agent will vanish via p.

Whiteboard Model. The most powerful inter-agent communication mecha-
nism is having whiteboards at all nodes. Since access to a whiteboard is pro-
vided in mutual exclusion, this model could also provide the agents a breaking
symmetry mechanism: If the agents start at the same node, they can get distinct
identities and then the distinct agents can assign different labels to all nodes.
Hence in this model, if the agents are initially co-located, both the agents and
the nodes can be assumed to be non-anonymous without any loss of generality.

In the whiteboard model introduced by Dobrev et al. [43], each node has
a bounded amount of storage where information can be written and read by
agents. All incoming agents can access the whiteboard of a node in a fair mutual
exclusion way and communicate with each other via reading/writing on such
whiteboards.

When executing the cautious walk, an agent leaves from a node u to a neigh-
bouring node v via an unexplored port p. It marks port p as dangerous by
writing on the whiteboard of node u. After visiting node v, this agent immedi-
ately returns to node u in order to update its whiteboard so that the status of
p is changed from dangerous to safe.

Pure Token Model. In the pure token model, each agent has a limited number
of tokens that can be placed on or picked up at a node in the course of searching.
An agent places one or more tokens at its current node u to indicate that the
‘next’ node it visits is dangerous. (More precisely, each node has a single location,
referred to as its ‘center’, where to place tokens.) Mutiple tokens may be required
in order to capture which of the neighbouring nodes of u is this ‘next’ node visited
by the agent at hand.

The pure token model can be considered as a special whiteboard model with
O(1)-bit memory on each node. Tokens that can be picked up from a node and
placed on another are called movable tokens. In contrast, Chalopin et al. [21]
define unmovable tokens as those that cannot be picked up once placed on a
node. Usually all tokens are identical (that is, they cannot be distinguished one
from the other).

Enhanced Token Model. Clearly, the pure token model has strong limita-
tions, in particular with respect to the limited number of messages that can
be expressed using a constant number of tokens. In light of such constraints,
many researchers (e.g., [41,50,52]) enhance the pure token model in order to
increase the information that can be expressed via tokens. More specifically, in
the enhanced token model, the tokens can be left not only at the ‘center’ of a
node, but also on the ports of a node. But as the number of locations to hold the
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tokens increases at each node, so does the memory cost of each node. Typically,
the memory cost is set to O(log n) bits in the whiteboard model, O(log Δ) in
the enhanced token model, and O(1) in the pure token model, where n is the
network size and Δ is the maximum node degree in the network graph [22].

When executing cautious walk under this model, an agent marks a port as
dangerous by placing a token at this port before moving to the next node. (As
for the whiteboard model, no agent will leave via a dangerous port, that is,
in this model, a port at which a token is present [50].) Upon its return, this
agent will pick up this token to show that this port is not dangerous. Reusing
movable tokens in several different nodes helps minimizing the overall number of
tokens used, a challenge not faced in the whiteboard model (since, once written
to a whiteboard, a message may be repeatedly accessed by agents over a long
period of time, and even be modified). However, the use of movable tokens results
in a significantly more complex communication model than (a) one with only
unmovable tokens and (b) a whiteboard model (in which messages written to a
whiteboard are far easier to use than tokens).

Face-to-Face Model. In the face-to-face model, agents move through the net-
work in synchronous steps and communicate with each other only when they
meet at a node [25]; no other communication method (e.g., whiteboard or tokens)
is available. In contrast to the three communication models mentioned above,
face-to-face communication does not require that nodes have memory. Finally,
clearly, face-to-face communication only applies to synchronous networks: the
unpredictability of wake up times and of time required to move and/or compute
in asynchronous networks entails agents may never meet.

1.3.3 Agent Starting Location
The starting location of an agent is another factor that significantly affects black
hole search. Since at least 2 agents are necessary to locate the black hole, the
agents could start at the same node or different nodes. More generally, with
respect to starting locations, agents may be:

1. Co-located: all the agents initially wake up at the same node, and this node
is referred to as homebase;

2. Dispersed: the agents wake up at different nodes. The node in which an agent
wakes up is its homebase. Dispersed agents are also occasionally referred to
as scattered agents.

In both cases, all homebases are assumed to be safe. Moreover, each dispersed
agent only knows its own homebase and, upon waking up, there is no commu-
nication between the dispersed agents. In contrast, upon waking up, co-located
agents can communicate, which can lead to guaranteed coordination [106].

For synchronous networks, if the face-to-face model is adopted, then only
co-located agents must be used: should agents be dispersed, there is a possibility
that all will die in the black hole before they ever meet. That is, only co-location
guarantees face-to-face communication.



464 E. Markou and W. Shi

1.3.4 Network Knowledge
What agents know about the network considerably affects both the design and
complexity of a solution to black hole search. This knowledge includes some of
the following: network size, network topology, network direction, edge-labelling
and sense of direction.

Network Size. Network size refers to the total number of nodes in the network.
As mentioned before, if the agents do not know the number of nodes nor the
number of edges in the network, then the black hole search problem is unsolvable
in an asynchronous network. In addition, the problem is also unsolvable in the
asynchronous network if the number of black holes is not known a priori.

Network Topology. Network topology refers to the topological structure of
the network abstracted as a graph (e.g., a ring, a torus, etc.). Many algorithms
are specifically designed for certain network topologies. For example, in [51,53],
Dobrev et al. provide a protocol called shadow check that only works on ring
networks. A ring is a fundamental network topology in the context of black hole
search for it is the basis for more complex topologies (e.g., torus and hypercube).

In synchronous networks, when the agents have no knowledge of network
size nor possess a network map, the black hole search problem can still be solved
with only 2 agents if the network topology is known. For example, such solutions
exist for rings [22] and tori [20] networks.

In both synchronous and asynchronous networks, when the agents have no
topological knowledge, at least Δ + 1 agents are needed in any generic solution,
even if the agents are given n and Δ [69]. If the black hole is a node with degree
Δ, then there are Δ ports leading to the black hole that have to be marked as
dangerous. Since one agent vanishes for each dangerous port to mark, and given
at least one agent has to survive to eventually report the black hole location, it
follows that at least Δ + 1 agents are necessary.

Network Direction. Network direction refers to whether a graph is directed or
undirected (e.g. bi-directional). Most importantly, we remark that most com-
monly used techniques for black hole search (e.g., the previously mentioned
Cautious Walk) can only be used in undirected graphs. Although results for
the exploration of directed graphs have appeared since the mid-1990s (e.g.
[13,14,73]), the first study dealing with black hole search in directed graphs
was published by Czyzowicz et al. [28] only in 2010. In [28] it was proved that in
directed asynchronous graphs with whiteboards there is an exponential gap on
the number of agents needed in order to solve the Black Hole Search problem:
2Δ agents are needed in the worst case (where Δ + 1 agents without a map
are sufficient in undirected graphs), where Δ is the in-degree of the black hole.
This is a consequence of the fact that in directed graphs the Cautious-Walk tech-
nique cannot be applied. This lower bound holds even in the case of synchronous
graphs. However in planar directed graphs with a planar embedding known to the
agents, 2Δ agents are needed and 2Δ + 1 agents are sufficient. In synchronous
directed graphs with whiteboards it was shown in [85] that O(Δ · 2Δ) agents
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are sufficient to solve the problem. Additional research on black hole search in
directed graphs can be found in [28,85,86].

Edge-Labelling and Sense of Direction. An edge-labelled graph is one where
at each node x, there is a distinct label associated with each one of its ports and
the incident link of each port. Let λx(x, z) denote the label associated at x with
the link (x, z) ∈ E, and λx denote the overall injective mapping at x. The set
λ = {λx|x ∈ V } of those mappings is called a labelling and we shall denote by
(G,λ) the resulting edge-labelled graph. The nodes of G can be anonymous (e.g.,
without unique names) [48]. When visiting a node in an edge-labelled network,
an agent can distinguish the ports of this node, whereas this is not possible in
an edge-unlabelled network.

Sense of direction occurs in an edge-labelled undirected graph if, from any
given node u, it is possible to determine whether or not different paths from
node u will end in the same node. More precisely, in order to obtain a sense of
direction, a consistent coding function and a consistent decoding function must
be defined [68].

For example, in a ring network, if each port is labeled as A or B and such
labeling is consistent, we say this ring has a sense of direction. Such a labeling
is consistent if starting from some specific port and following a specific conven-
tion for traversal (e.g., ‘A-B-A-B-. . .-A-B-A’ or ‘A-A-B-B-. . .A-A-B-B-A-A’), an
agent can traverse the ring of n nodes and return to its starting port. A ring with
a consistent labeling (e.g., all ports going in the clockwise direction are labelled
Right) is commonly referred to as an oriented ring. Otherwise a ring is referred
to as an unoriented one.

We further clarify the relationships between the network direction and the
sense of direction in Table 2.

Table 2. Relationships between network direction and sense of direction

Directed
graph

Undirected graph

Edge
unlabelled

Edge-labelled

Arbitrarily labelled Consistently labelled

Un-oriented: no
sense of direction

Oriented Un-oriented

Sense of
direction

No sense of
direction

Complete Knowledge. Complete knowledge refers to the case where the agents
know the size, topology and sense of direction (e.g., torus with consistent and
systematic “N-S-E-W” labelling) of the network. Sometimes, agents are equipped
with a network map that holds all this knowledge and can also be used to mark
the explored nodes during a black hole search [40]. In this model, the black hole
search problem becomes much less complex.
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1.4 Cost Analysis Metrics

Complexity analysis is generally used to compare different solutions to black
hole search with respect to specific costs. The most frequently measured costs
are:

– Number of agents: the minimal number of agents used to solve the black hole
search problem.

– Number of agent moves: the total number of moves performed by all agents
from the first agent waking up until the black hole has been located.

– Number of tokens: the minimal number of tokens used by each agent (or by
the entire agent team) in order to locate the black hole.

– Memory footprint of agents: the memory overhead of agents. Usually, in mod-
els relying on tokens, the agents are designed with a small memory footprint
(e.g., an agent can only carry a constant number of tokens at any point in
time [20,21]). In other types of models, agents may have a very large memory
footprint (e.g., agents carrying a network map [59,83]).

– Memory footprint of nodes: the memory overhead of each node in the network.
For example, a O(log n)-bits whiteboard is sufficient for all the algorithms
proposed in [8,39]. Recall that the pure token model can be viewed as a
whiteboard model with O(1)-bit memory on each node when assuming that
only a constant number of tokens can be placed at a node [21]. However,
in practice, memory overhead is considered mostly for whiteboard models.
Instead, not surprisingly, in token models, the number of tokens is taken to
be much more relevant.

– Time cost: In synchronous networks, this metric is computed as total number
of time units used from when algorithm starts until the black hole is found.
Given that, in an asynchronous network, a move of an agent costs finite
but unpredictable time, generally time cost is not measured. However, some
research [7,8,43] assumes a unitary time delay for each move, which enables
the calculation of time complexity. Such a measure is referred to as ideal time.
Under this assumption, time cost is almost the same as the number of agent
moves.

Beyond measures of complexity, evaluations of correctness are also a com-
monly presented in black hole search work. Most papers in this area use mathe-
matical proofs (e.g., [8,20,29,41,60,63,84]), while only a few researchers conduct
simulations and use the results of such experiments to demonstrate correct-
ness [35,106]. For example, Shi et al. [106] present their simulation results for
three proposed algorithms in addition to providing theoretical proofs. Similarly,
D’Emidio et al. [35] simulate and compare their own algorithms before further
analysis is used to decide which one performs better.

As in many cases that deal with the analysis of algorithms for certain prob-
lems, an approach in proving correctness of an algorithm for the Black Hole
Search problem, showing upper bounds on time needed for discovering the black
hole or proving infeasibility of the problem under a certain model, often uses the
notion of an adversary. The analysis of the Black Hole Search problem under a
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model can then be considered as a game between a proposed algorithm and an
adversary who uses its power to make the algorithm fail. The weakest the model
is, the more powerful the adversary is. The adversary can choose all the param-
eters of the instance of the problem for which the algorithm has no knowledge.
For example, the adversary can decide for the initial positions of the agents,
the location of the black hole and, depending on the model, the topology or
the size of the network, the number of the agents, the ports’ labeling, and (in
asynchronous networks) the time that an agent needs to cross an edge. A correct
algorithm should work of course for any options of the adversary. The problem
is infeasible when the adversary has an option to make any algorithm fail.

2 Search in Synchronous Dangerous Networks

In this section, we overview solutions for black hole search in synchronous net-
works. Given no existing research has used the enhanced token or the whiteboard
models in synchronous networks, our presentation will follow the different pos-
sibilities given in Fig. 1.

Fig. 1. Different variants for black hole search in synchronous networks

2.1 Solutions Under Different Communication Models

2.1.1 Face-to-Face Model
Recall the face-to-face model is only possible in synchronous networks. According
to this model, agents simultaneously present in the same node can communicate
with each other using an unlimited number of messages.
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Czyzowicz et al. [29–31] and Klasing et al. [82–84] consider the problem of
finding the most efficient solution (in terms of time cost) for the black hole search
under the same assumption: 2 co-located agents with maps searching for a black
hole in an edge-labelled undirected synchronous network. Instead, Chalopin et al.
[21] study the problem using a hybrid communication model: agents can carry
and place a bounded number of pure tokens and can communicate with each
other when they meet on a node. Since that work focuses more on the impact
of the tokens, we discuss it in the section on the pure token model (Sect. 2.1.2).

Under the assumptions they make, Czyzowicz et al. [30] show that the opti-
mal black hole search problem is NP-hard, and propose a 9.3-approximation
algorithm for it. Additionally, Klasing et al. [84] prove that this problem can-
not be approximated in polynomial-time using a constant factor less than 389

388
(unless P = NP), and give a 6-approximation algorithm. In both [84] and [30],
each agent carries a network map and starts from the same node. But whereas
the algorithm proposed by [30] can solve the problem when there is one and only
one black hole in the network, the solution in [84] can first detect whether there
is a black hole and then locate this black hole if present. (Recall, as previously
mentioned, that such detection is only possible in a synchronous network.)

In [29,31], Czyzowicz et al. present a 5
3 -approximation algorithm in an arbi-

trary tree without a map. This result exemplifies the impact of network knowl-
edge: knowing the topology at hand reduces not only the time complexity but
also the memory footprint of each agent. The authors introduce algorithms for
two specific classes of trees namely: (a) lines and (b) trees in which all internal
nodes have at least 2 children. The algorithm in [83] follows an intuitive approach
of exploring the network graph via a spanning tree. Then, Klasing et al. [83] prove
that this approach cannot lead to an approximation ratio bound better than 3

2 .
Furthermore, they provide a 33

8 -approximation algorithm for an arbitrary net-
work with the help of a network map. This result is a direct improvement from
the 7

2 -approximation algorithm presented in [82].

2.1.2 Pure Token Model
Chalopin et al. [20–22] and Markou et al. [91] focus on locating the black hole
using a minimum number of agents and tokens, while the agents have O(1)
memory size and carry O(1) pure tokens. Most importantly, in these solutions,
agents do not know n or k, where n is the number of nodes in the network and
k is the number of agents. The authors consider both movable and unmovable
tokens in rings [21] and tori [20,91] respectively.

As previously mentioned, in [21], Chalopin et al. consider the black hole
search problem with agents that have hybrid communication capabilities: they
can communicate with each other face-to-face when they are in the same node
and they can also carry either movable or unmovable tokens. When using mov-
able tokens, 3 agents, each of which carrying only 1 token, are necessary and
sufficient for both oriented and un-oriented rings. In contrast, using unmovable
tokens, 4 agents are required, each with 2 tokens, for oriented rings and 5 agents,
each with 2 tokens, when exploring un-oriented rings. Expressing messages using
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unmovable tokens is equivalent to writing messages on whiteboards with limited
memory. Given this observation, one might expect the use of unmovable tokens
to be more ‘powerful’ than that of movable ones. Interestingly, the results show
that using unmovable tokens is more costly than that using movable one with
respect to number of agents used. Furthermore, results show that more agents
are necessary for un-oriented rings than for oriented rings.

In addition to rings, Chalopin et al. [20] also study the oriented torus under
the same assumptions: dispersed agents, pure token model and face-to-face com-
munication. They prove that the black hole search problem is unsolvable in
synchronous oriented torus in three scenarios: (1) when the number of agents is
constant and tokens are unmovable; (2) when using 2 dispersed agents, even if
the tokens are movable and the agents have unlimited memory; (3) when using 3
agents with constant memory and 1 movable token each. Ultimately, they show
that at least 3 agents, each with 2 movable tokens, are necessary and sufficient
to solve the problem in any oriented torus.

In [91], Markou et al. study the black hole search problem under the same
assumptions as [20] but in an un-oriented torus. The authors discuss four cases
of un-oriented tori: from totally un-oriented to semi-oriented (i.e., without an
agreement on the orientation in the horizontal or vertical axis, as explained
shortly). The authors prove that the black hole search problem cannot be solved
in an un-oriented torus using a constant number of agents and tokens if these
tokens are unmovable. The authors then consider the use of movable tokens. They
prove that the problem is also unsolvable when using any constant number of
dispersed agents with 1 movable token each. The authors provide algorithms,
each using 5 agents and 3 tokens, for any semi-oriented torus. Finally, they
conjecture that at least 5 scattered agents with constant memory, equipped with
at least 2 movable tokens, would be able to locate the black hole in a totally
un-oriented torus.

2.2 Solutions Under Different Agent Starting Locations

Some researchers [29–31,82–84] choose to study the black hole search using co-
located agents, others with dispersed ones [20–22,91]. When all agents wake up
in the same node, coordination and communication are guaranteed for these
co-located agents. This greatly simplifies graph exploration.

2.2.1 Co-located Agents
As previously mentioned, adopting face-to-face communication entails using co-
located agents (since dispersed agents may all vanish in the black hole before
ever meeting.) Given it was shown early that, with complete knowledge of the
network, 2 co-located synchronous agents are sufficient to locate the black hole,
subsequent work [29–31,82–84] has focused on finding solutions that improve the
time cost (as reported in Sect. 2.1.1). Finally, we remark that when using only 2
co-located agents, whether the agents are anonymous or not is irrelevant since
an agent can definitely distinguish itself from the other when they meet.
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2.2.2 Dispersed Agents
In order to extend the results obtained for 2 co-located synchronous agents,
Chalopin et al. [20–22] and Markou et al. [91] consider using dispersed agents
under the pure token model (as discussed in Sect. 2.1.2). In these contributions,
in contrast to work on co-located agents, the focus is not on time complexity and
agent moves but rather on the minimal number of dispersed agents and tokens
being used. It is assumed that network size is unknown a priori and that agents
are restricted to using pure tokens. Thus, given tokens can be placed only at a
node, not its ports, coordination between dispersed agents becomes significantly
more complex. For example, in a torus, even when an agent sees a token at a
node, it still cannot know from which port the previous agent left.

2.3 Solutions Under Different Network Knowledge

As previously hinted, network topology may significantly impact on solutions for
black hole search. For example, the above-mentioned work on rings [21,22] and
tori [20,91] clearly shows that, under the same assumptions, more agents and
tokens are needed for a torus than a ring. That is, it appears network topology
not only affects the complexity of the network, but also the number of agents
and the number of tokens necessary and sufficient to solve the black hole search
problem. Furthermore we notice that, with a map of an arbitrary network, [83]
offers a 3 3

8 -approximation algorithm, whereas [31] presents a 5
3 -approximation

algorithm that does not use a map but does know the topology is a tree. This
strongly suggests that, even without a map, a solution that relies on knowledge
of topology may have better time cost than a solution designed for an arbitrary
network (i.e.,, without knowledge of topology), even with the help of a map.

Sense of direction is another important consideration. It offers not only con-
sistent edge-labelling, but also a guaranteed method of systematic exploration of
the entire graph. (In contrast, without edge-labelling, an agent may not be able
to distinguish the edges incident to a node, and thus a whole part of the graph
may not be considered during exploration.) Its importance is clearly demon-
strated in the results obtained for oriented rings and tori [20–22] that, under the
same assumptions, improve on those for un-oriented rings and tori [21,22,91].

Similarly, in [91], Markou et al. discuss four levels of network knowledge in
a torus, namely: (1) the agents have no agreement on anything regarding the
orientation; (2) the agents perceive orthogonal links but they do not agree on
which link is horizontal and which is vertical (3) the agents agree on which link
is horizontal and which is vertical, but there is no consensus on the orientation
of each link; and (4) the agents agree on which link is horizontal and which
is vertical and they also agree on the orientation in one of the links. The three
latter are called semi-oriented. Their results (reported in Sect. 2.1.2) demonstrate
solutions for oriented tori are less costly than those for semi-oriented tori, thus
emphasizing again the importance of orientation.
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2.4 Black Hole Search in a Synchronous Tree

The first results on the Black-Hole Search (BHS) problem in synchronous net-
works appeared for two agents operating in tree topologies in [29] (see also the
full version of the paper in [31]). We present here the model which was used,
give lower bounds on BHS schemes in synchronous trees and describe a fastest
algorithm for the problem in some special tree topologies.

2.4.1 Model and Basic Lower Bounds and Tools
We consider a labeled tree T rooted at node s which is the starting node of two
agents, and is assumed to be safe (s is not a black hole). Agents are synchronous,
have memory, a map of the tree and distinct labels. They can communicate (i.e.,
reading each-other’s states) only when they meet at a node (and not, e.g., by
leaving messages at nodes). We assume that there is at most one black hole in the
network. The goal is to design an algorithm for the agents which produces a black
hole search scheme (BHS-scheme) for the input (T, s) (i.e., a pair of sequences
of edge traversals (moves) of each of the two agents). Upon completion of the
BHS-scheme there should be at least one surviving agent which either knows
the exact location of the black hole or knows that there is no black hole in the
tree. The surviving agents must return back to s to report this information. An
agent can move along the edges of the tree (each move takes one time unit) or
can wait at a node.

The time of a black hole search scheme is the number of time units until the
completion of the scheme, assuming the worst-case location of the black hole
(or its absence, whichever is worse). It is easy to see that the worst case for a
given scheme occurs when there is no black hole in the tree or when the black
hole is the last unvisited node, both cases yielding the same time. A scheme is
called fastest for a given input if its time is the shortest possible for this input.
We emphasize here that the time of a black hole search scheme should not be
confused with the time complexity of an algorithm producing such a scheme.

Since there is at most one black hole in the tree, in any BHS-scheme all nodes
of the tree should be eventually visited in the worst case (e.g., when there is no
black hole). Hence all edges of the tree should be traversed (explored).

When a meeting occurs the agents exchange information about the explored
territory (i.e., the set of explored edges). The sequence of steps of a BHS-scheme
between two consecutive meetings is called a phase. Since an unexplored edge
could be incident to a black hole we have:

Lemma 1 ([31]). In a BHS-scheme, an unexplored edge cannot be traversed by
both agents.

If one of the agents a attempts to traverse more than one unexplored edges
before meeting with the other agent b then a may vanish in the black hole (placed
by an adversary somewhere in a’s path) and b does not have enough information
to decide for the correct location of the black hole. Thus:
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Lemma 2 ([31]). During a phase of a BHS-scheme an agent can traverse at
most one unexplored edge.

Hence in a BHS-scheme, an edge can be explored only in the following way:
an agent traverses this edge and then a meeting is scheduled (somewhere within
the previously known explored territory) where the agents exchange information
about the explored territory. Whether the meeting occurs or not (in the latter
case the agent vanished in the black hole) the edge becomes explored. Therefore
an unexplored edge could be explored in the next phase only if it is adjacent to
the explored territory (which stays connected).

Lemma 3 ([31]). At the end of each phase, the explored territory is increased
by one or two edges, or the black hole is found.

We define a 1-phase to be a phase in which exactly one edge is explored.
Similarly, we define a 2-phase to be a phase in which exactly two edges are
explored. In view of Lemma3, every phase is either a 1-phase or a 2-phase.

Let (u, v) be an unexplored edge with node u being incident to a previously
explored edge (or u ≡ s). Suppose that the two agents are at u at time t. A way
of exploring exactly one edge in a phase is the following:

Procedure Probe(v): One agent traverses edge (u, v) and returns to node u to
meet the other agent who waits. If they do not meet at step t+2 then the black
hole is at v.

We also define a procedure that the two agents could follow to explore two
new edges in a phase. Let (u1, v1), (u2, v2) be two unexplored edges with nodes
u1, u2 being incident to previously explored edges (or u1 ≡ u2 ≡ s). Suppose that
one of the agents is at u1 and the other agent is at u2 at time t. The definition
of the procedure is the following:

Procedure Split(v1, v2): One of the agents traverses edge (u1, v1) and then
returns to u1 while the other one traverses edge (u2, v2) and then returns to u2.
Then both agents traverse the path <u1, u2> (which should be totally within the
explored territory since the explored territory is always connected) from different
directions until they meet at a node as soon as possible. Let dist(u1, u2) denote
the number of edges in the path from node u1 to node u2. If the agents do not
meet at step t + �dist(u1,u2)

2 � + 2 then the black hole has been found.
Both above procedures resemble the Cautious-Walk procedure in the sense

that in both procedures the agents explore at most one edge each and then
they return to give a message to each-other. Two agents with a map can easily
discover the exact location of the black hole (or decide that there is no black hole)
in any tree within finite time (e.g., exploring the tree in a Depth First Search
traversal using Procedure Probe). In fact this simple algorithm guarantees a 4
approximation ratio on the fastest BHS scheme for any arbitrary tree (see at
the end of the section for details). The authors [31] give an algorithm which
uses both procedures Probe and Split and solves the BHS problem for a special
family of trees in the fastest possible time. Before describing this algorithm we
give a general lower bound on the time needed by any algorithm to solve the
problem on any tree.
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Fig. 2. In (a) e is a red edge. In (b) e is a green edge. In (c) all solid edges are blue.

2.4.2 A Lower Bound on the Time Needed in Any Tree
Let T be a tree rooted at the starting node s and e = (u, v) be an edge of T (with
v being a child of u). Consider the following coloring which creates a partition
of the edges of the tree.

– assign red color to edge e if node v has at least two descendants,
– assign green color to edge e if v is a leaf and exactly one of the following

holds: u = s or the edge (w, u) is a red edge (where w is the parent of u),
– assign blue color to edge e if it has none of the above properties.

Red, green and blue edges are shown in Fig. 2.
Let e = (u, v) and e′ = (v, z) be two blue edges as shown in Fig. 2c, i.e., v

is a child of u and z is a leaf and the unique child of v. We call the set of these
two edges a branch. The set of all branches of blue edges with upper node u is
called a block. In view of Lemmas 1 and 2 it can be easily proved that:

Lemma 4 ([31]). In any BHS-scheme, the following holds: a green edge has to
be traversed by the agents at least 2 times, a red edge has to be traversed at least
6 times and a branch of blue edges requires a total of at least 6 traversals.

Since in any BHS-scheme, each of the two agents can do at most one traversal
in every time unit, the following lemma holds:

Lemma 5 ([31]). Any BHS-scheme requires at least 3, 1 and 3r time units for
the traversals of a red edge, a green edge and a block of r branches of blue edges,
respectively.
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2.4.3 A Time Optimal Algorithm for a Family of Trees
Consider the family T of rooted trees with the following property: any internal
node of a tree in T (including the root) has at least 2 children. Trees in T will
be called bushy trees. For these trees, searching for a black hole can be efficiently
parallelized by an appropriate use of the Procedure Split. This enables us to
get an optimal algorithm (Algorithm 1) for this class of trees.

Let T be a bushy tree with root s and let u be an internal node of T . The
heaviest child v = H(u) (resp. lightest child v = L(u)) of u is defined as a child
v of u such that the subtree T (v) rooted at v (which is also a bushy tree) has
a maximum (resp. minimum) height among all subtrees rooted at children of u
with ties broken arbitrarily. Notice that H(u) and L(u) can be computed by the
agents for each node u in linear time.

The high-level description of Algorithm 1 is the following. Let m be the meet-
ing point of the two agents after a phase (initially m ≡ s).

– Explore any pair of unexplored edges (m,x), (m, y) with upper node m by
executing Procedure Split(x,y), leaving edge (m,L(m)) last.

– If there is one unexplored edge with upper node m (which must be (m,L(m)))
then one of the agents explores this edge while the other one explores another
‘close by’ unexplored edge (if any) again using Split. If edge (m,L(m)) is
the last unexplored edge in the tree, explore it by executing Probe(L(m)).

– If all edges with upper node m are explored, explore similarly as before any
unexplored edges incident to the children of m and to ancestors of m.

Algorithm 1. (2 agents with memory and a map in a synchronous ‘bushy’ tree)
1: next := s;
2: repeat
3: v := next;
4: for every pair of unexplored edges (v, x), (v, y) with upper node v do
5: Split(x, y), so that edge (v, L(v)) is explored last;
6: end for
7: if there are still unexplored edges in the tree then
8: case 1: every edge incident to v has been explored:
9: case 1.1: there is an unexplored edge incident to a child w of v:

10: next := w;
11: case 1.2: every edge incident to any child of v is explored:
12: let t be the parent of v;
13: next := t;
14: walk to node next;
15: case 2: there is an unexplored edge (v, z) incident to v:
16: (* must be z = L(v) *)
17: next := Explore-only-child(v);
18: end if
19: until every edge has been explored
20: walk to node s and report the location of the black hole;
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Function Explore-only-child(v) takes as input the current node v where
both agents reside and returns the new meeting point after the exploration of
edge (v, L(v)). The description of the procedure is the following:

– If there is an unexplored edge incident to a child w of v, w �= L(v), then the
agents explore edge (w,H(w)) together with edge (v, L(v)) calling Procedure
Split(H(w),L(v)). The new meeting point is w.

– If every edge incident to any child w of v, different from L(v), is explored
and edge (v, L(v)) is not the last unexplored edge in the tree, then find the
deepest ancestor a of v having a descendant incident to an unexplored edge
(excluding L(v)); the agents explore edge (D(a),H(D(a))) (where D(a) is the
closest descendant of a with incident unexplored edges), together with edge
(v, L(v)), by Split(H(D(a)),L(v)); the new meeting point is D(a).

– If edge (v, L(v)) is the last unexplored edge in the tree then explore it by
calling Probe(L(v)); the new meeting point is v.

Notice that all edges of the tree (except possibly the last one if the number
of edges is odd) are explored by calling Procedure Split. Observe that in any
bushy tree, there are only red and green edges.

It is proved that the BHS scheme produced by Algorithm1 traverses any red
edge 6 times and any green edge 2 times. Moreover every phase is a 2-phase (i.e.
the two agents traverse edges in parallel), except possibly the last phase, and no
agent waits in any 2-phase. Hence, in view of Lemma 5 the following theorem
holds:

Theorem 1 ([31]). Algorithm1 produces a fastest BHS-scheme for any bushy
tree.

2.4.4 The Case of Arbitrary Trees
For arbitrary trees there is a simple algorithm which guarantees an approxima-
tion ratio strictly less than 4, i.e., an algorithm which produces a BHS-scheme
whose time is less than 4 times the cost of the fastest BHS scheme for any arbi-
trary tree and starting node. The algorithm is the following: both agents traverse
the tree together in depth first search order and explore each new node with a
probe phase. This BHS scheme explores a n-node tree within 4(n− 1)− 2l steps,
where l is the number of leafs in the tree. In any BHS scheme of an n-node tree,
each edge has to be traversed at least twice by an agent which gives a total of
2(n−1) traversals. Hence at least n−1 steps are required which implies a strictly
less than 4 approximation factor for the above algorithm.

A better (and still simple) approximation algorithm for arbitrary trees was
also proposed in [31] achieving a ratio of 5

3 . The high-level description of the
algorithm is the following. Let v be the meeting point of the two agents after
a phase (initially v ≡ s); the edges with upper node v are explored by calling
Procedure Split until either all such edges are explored or there is at most one
remaining unexplored edge incident to v, which is explored by calling Procedure
Probe; this is repeated for any child of v.
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The question of whether it is possible to produce a fastest BHS-scheme for
any arbitrary tree is open until now. The conjecture is that it is possible but
such an algorithm would probably need to take care of many special cases that
could occur in an arbitrary tree.

2.5 Black-Hole Search in Synchronous Graphs

Producing a fastest Black Hole Search (BHS) scheme for arbitrary graphs was
proved to be NP-hard in [82,83]. This result extended in some way a reduction
which showed the NP-hardness of finding fastest schemes for a more general
version of the Black Hole Search problem in which a set of safe nodes is given
(instead of just the starting node) and appeared in [30]. Later, in [84], APX-
hardness for both versions in arbitrary graphs was proved. In this section we
first describe the (less complicated) reduction that shows the NP-hardness of
the general BHS problem and later we discuss the original BHS problem. We
also discuss the APX-hardness results and approximation algorithms for both
versions.

2.5.1 The General Black Hole Search Problem
In [30] the authors studied the BHS problem in synchronous arbitrary graphs
adopting a more general scenario in which initially a subset of nodes of the
network (instead of just the starting node), containing the starting node, is safe,
and the black hole can be located in one of the remaining nodes. Let us call this
version of the problem general Black Hole Search (gBHS). It was shown that the
problem of finding the fastest possible black hole search scheme by two agents
in an arbitrary graph is NP-hard, and a 9.3-approximation algorithm was given
for this problem, i.e., a polynomial time algorithm which, given a graph with a
subset of safe nodes and a starting node as input, produces, in polynomial time,
a black hole search scheme whose time is at most 9.3 times larger than the time
of the fastest scheme for this input.

Model and Terminology. The model which was used was the same as before
with the following differences. Given are:

– a graph G with node s which is the starting node of both agents, and
– a subset S of safe nodes containing s (S cannot contain a black hole).

It was again assumed that there is at most one black hole in the network and
the goal is to find a gBHS-scheme for the input (G,S, s).

NP-Hardness of the General Black Hole Search Problem. To prove
NP-hardness of the gBHS problem, the authors presented a reduction from the
(NP-complete) Hamiltonian Cycle Problem (HC problem) to the decision version
of the gBHS problem (called dgBHS).
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The HC Problem:

Instance: A Graph G.
Question: Does G contain a Hamiltonian cycle?

The dgBHS Problem:

Instance: A graph G′ with a subset S of safe nodes, starting node s ∈ S,
positive integer X.
Question: Does there exist a gBHS scheme for the input (G′, S, s), with time
at most X?

Construction. Let a graph G with n nodes and e edges be an instance of the
HC problem. We construct a new graph G′ as follows. Call the nodes of graph G
old nodes. In each edge of G we add 2 new unsafe nodes adjacent to endpoints
of this edge and M = 4e+5n− 1 new safe nodes between them, as in Fig. 3. Let
s be any node of the old n nodes. All old nodes except s are considered unsafe.
Hence the set of unsafe nodes consists of all old nodes except s and all nodes
adjacent to old nodes.

: old node

: new unsafe node island
island

island center

M new safe nodes of a bridge

Fig. 3. Construction of a dgBHS problem instance

The instance of the dgBHS problem is the graph G′ with n′ = n + (M + 2)e
nodes, the set S of Me+1 safe nodes, node s as a starting node, and the integer
X = M(n + 1) − 1.

The construction of this instance from the graph G can be clearly done in
polynomial time. If there is a Hamilton Cycle C in the old graph G then the two
agents can follow this cycle starting at node s and identify the black hole (or
discover that there is no black hole) in the new graph G′ (constructed as above)
in at most M(n + 1) − 1 time units as follows:

They explore by probing (one agent goes to an adjacent node while the other
agent waits) the nodes which are adjacent to the center of an island (see Fig. 3)
except the two nodes which are on C and they return to the center of the island.
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Then they explore by probing the unsafe node of the bridge on C in the chosen
direction and they walk along the bridge, till they get to the last safe node of
it. Subsequently, they explore the adjacent unsafe node v (in the next island)
by probing, walk to it, explore the center of this island by probing and walk to
it. They repeat the above procedure in every island on C until they reach again
node s.

In the absence of a Hamiltonian Cycle in graph G the agents need at least
M(n+1) time units to identify the black hole (or discover that there is no black
hole) in G′ (see [30] for more details).

Theorem 2 ([30]). Producing a fastest BHS scheme for the gBHS problem in
arbitrary graphs is NP-hard.

An Approximation Algorithm for the gBHS Problem. An approximation
algorithm (Algorithm 2) for the gBHS problem in arbitrary graphs also appeared
in [30]. The algorithm is based on the construction of a Steiner Tree of the input
graph G, where the unsafe nodes of G along with the starting node s are the
required nodes. Recall that a Steiner Tree for a graph G = (V,E) with the set
R ⊆ V of required nodes is any subtree of G containing R. We can construct
such a Steiner Tree T in polynomial time with approximation ratio α, where
α = 1 + ln 3

2 < 1.55 [80,99]. More specifically, if x is the number of unsafe nodes
in G plus one for node s, and y is the number of safe nodes in T (excluding node
s), while y∗ is a minimum number of safe nodes (excluding node s) needed for
the optimal Steiner Tree, then (x + y) ≤ 1.55(x + y∗).

Algorithm 2. (An approximation algorithm for the gBHS problem in graphs)
1: construct a minimum Steiner Tree T containing all unsafe nodes and node s;
2: next := s;
3: repeat
4: v := next;
5: for every unexplored node z adjacent to v do
6: probe(z);
7: end for
8: if there are still unexplored nodes then
9: case 1: there is an unexplored node adjacent to a child w of v:

10: next := w;
11: case 2: every node adjacent to any child of v is explored:
12: let t be the parent of v;
13: next := t;
14: walk to node next;
15: end if
16: until every node is explored
17: walk to node s and report the location of the black hole;

The high-level description of Algorithm 2 is the following. First a Steiner
Tree is constructed as described above. Let v be the meeting point of the two
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agents after a phase (initially v ≡ s); the unexplored children of v are explored
by calling procedure probe; if there is an unexplored node adjacent to a child of
v then the agents go to that child and repeat. Otherwise the two agents go to
the parent of v and repeat.

The time-complexity of Algorithm 2 is polynomial on the size of G and is
dominated by the time of constructing the Steiner Tree. Algorithm2 is in fact a
Depth First Search type algorithm with the only difference that any unsafe node
is visited using a cautious way (probing). The time spent on traversals of any
edge (u, v) (v is a child of u) of the tree T is at most 4 units: the worst case is
when edge (u, v) leads to an unexplored node v which is not a leaf in T , therefore
the agents spend 2 time units for probing v, 1 time unit to walk to v and another
time unit to return to node u - after the exploration of the descendants of v.
The total time needed by the gBHS-scheme produced by Algorithm2 is less than
4(x + y).

Lemma 6 ([30]). Any gBHS scheme for the graph G requires at least 4
3 (x+y∗)

traversals of edges.

The lower bound of Lemma 6 together with the upper bound achieved by
Algorithm 2 and the approximation factor α (<1.55) of the Minimum Steiner
Tree lead to the following theorem:

Theorem 3 ([30]). Algorithm2 is an approximation algorithm for the gBHS
problem with ratio α < 9.3.

The approximation ratio of the gBHS problem was improved in [84] where a
6-approximation algorithm was given for the problem, using again the approach
of minimum spanning trees.

2.5.2 The BHS Problem in Arbitrary Graphs
In [82] (see also the full version in [83]) it was proved that the problem of
constructing a time optimal Black Hole Search scheme for two agents under the
restricted scenario of one safe node, the starting node (i.e., the original BHS
problem) is NP-hard even on planar graphs.

NP-Hardness of Black Hole Search in Planar Graphs. The NP-hardness
of the BHS problem in planar graphs (BHSp problem) was shown by providing a
reduction from a particular version of the Hamiltonian Cycle problem (Hamil-
tonian Cycle on cubic planar graphs (cpHC problem)) to the decision version of
the BHSp problem.

Here is the formalization of the two problems:

The cpHC Problem

Instance: a cubic planar 2-connected graph G = (V,E), and an edge
(x, y) ∈ E;
Question: does G contain a Hamiltonian cycle that includes edge (x, y)?
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The dBHSp Problem

Instance: a planar graph G′ = (V ′, E′), with a starting node s ∈ V ′, and a
positive integer X;
Question: does there exist a BHS scheme for G′ starting from s with time at
most X?

The cpHC problem above is proved to be NP-complete in [83] by a simple
reduction from the Hamilton Cycle problem in cubic planar graphs without the
extra requirement that the Hamiltonian cycle passes through a given edge (which
was proven NP-complete in [74]). Then with a more technical construction than
the one in the previous section the authors reduce the cpHC problem to the
dBHSp problem proving that the dBHSp problem is NP-complete:

Theorem 4 ([83]). A graph G with n nodes has a Hamiltonian Cycle passing
through an edge (x, y) if and only if there is a BHS scheme for a graph G′ and
a starting node s (constructed from G in polynomial time) with time at most
5n + 2 units.

An Approximation Algorithm for the BHS Problem. For an approxima-
tion algorithm for the BHS problem in an arbitrary graph G, a natural approach
is the following: First select a spanning tree in G and then explore the graph
by traversing the tree edges. Since any BHS scheme of a n-node graph requires
at least n − 1 steps, this approach together with the simple algorithm described
at the end of Sect. 2.4 guarantees an approximation ratio of 4 for any arbi-
trary graph. To follow this spanning-tree approach more effectively we need an
algorithm for constructing “good” BHS schemes for trees and an algorithm for
computing spanning trees which are “good” for those schemes. A linear-time
algorithm which extends the construction of the optimal BHS scheme for bushy
trees (which has been presented in Sect. 2.4) to the general rooted trees is pro-
posed in [83]. This algorithm still does not guarantee optimality of computed
exploration schemes for trees other than bushy trees: the question of computing
in polynomial time optimal exploration schemes for general trees remains open.
The cost of the exploration scheme computed by this extended algorithm for an
arbitrary tree T is given as a function of the number of nodes of different types
in tree T . Then a heuristic algorithm is presented for the problem of computing
a rooted spanning tree T of graph G which gives a relatively small value of that
formula. This approach guarantees an approximation ratio of at most 33

8 .

2.5.3 APX-Hardness of the BHS Problem in Arbitrary Graphs
Finally in [84] both versions of the black hole problem discussed in this section
were proved to be APX-hard. It was shown that a fastest BHS scheme for the gen-
eral Black Hole Search problem is not approximable in polynomial time within a
1+ε factor for any ε < 1

388 , unless P = NP . It was also proved that the original
BHS problem (in which only the starting node is initially known to be safe) is
also APX-hard.
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The authors provide an explicit lower bound on the approximability of the
General Black Hole Search problem by showing an approximation-preserving
reduction from a particular subcase of the Traveling Salesman Problem (TSP),
presented in [55]. In this subcase of TSP, distances between nodes are symmetric
and satisfy the triangle inequality and between integers 1 and M , while the
maximum distance M is a constant.

Lemma 7 ([55]). It is NP-hard to approximate TSP(1,M) within 1 + ε for any
ε < 1

388 .

The authors’ approach to prove the APX-hardness of the gBHS problem is
the following. They first provide a reduction from instances (G, d) of TSP to
instances (G′, S, s) of the gBHS problem and then they show that if the optimal
solution of the gBHS, constructed by the given reduction from an instance of
TSP, can be approximated within a (1 + ε) factor, then the optimal solution of
the corresponding instance of TSP can be approximated within the same factor.

Theorem 5 ([84]). The gBHS problem is not approximable in polynomial time
within a factor of 1 + ε for any ε < 1

388 , unless P = NP .

They also provide a reduction from the TSP problem where the distances
between the nodes are either 1 or 2 to the original version of the BHS problem
(in which only the starting node is known to be safe) and show that:

Theorem 6 ([84]). It is NP-hard to approximate the BHS problem within a
factor 1 + ε for any ε < 1

2258 .

2.6 Black Hole Search with Scattered Finite Automata

The Black Hole Search (BHS) problem has been extensively studied for co-
located agents with memory.

The memory is a critical capability that allows the agents to store (or make)
a map of the network, to keep information about (or count) the number of nodes
of the graph and generally helps them decisively to explore the network.

In asynchronous networks the co-location of the agents in the whiteboard
model gave them the ability to assign different identities to themselves and
different labels at nodes while in synchronous networks the co-location gave the
agents the ability to probe the network in a cautious way and discover the black
hole.

The question of whether even more weak models allow the solution of the
black hole search problem has been also raised. Although there are results for
scattered agents (not initially starting at the same node) using tokens (instead of
whiteboards) and even not having a map of the graph for asynchronous networks,
the memory capability cannot be dropped since in such networks the agents need
to know (and store) the number of nodes (or at least an upper bound). However
in synchronous networks no knowledge of such bound is generally needed so an
interesting question is whether deterministic finite automata (DFAs) (i.e., with
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only a constant memory), initially scattered in the network, without a map and
having only a constant number of ‘pure’ tokens (which can leave only at nodes)
can still solve the black hole search problem.

We notice here that Rollik [100] has proved that no finite set of finite
automata can cooperatively perform exploration of all cubic planar graphs. Since
a finite automaton is more powerful than a token, it means that no finite set
of finite automata using any constant number of tokens can explore all cubic
planar graphs even when the agents start at the same node and can exchange
information when they meet at nodes. It is clear that if the agents cannot even
explore the graph (i.e., visiting all nodes) they cannot solve the BHS problem.
Hence a challenging question is whether there are synchronous network topolo-
gies for which the agents can solve this problem in such a weak model. Even
when the agents can communicate when they meet at a node, since they are
initially scattered they need to solve the rendezvous problem which is far from
trivial for identical, anonymous DFAs carrying only indistinguishable tokens.

The BHS problem in this model (initially scattered anonymous agents with
constant memory, carrying only a constant number of pure indistinguishable
tokens and having the ability to communicate only when they meet at the same
node) has been investigated for ring [21] and torus [20] topologies.

2.6.1 The Model
The model consists of an anonymous, synchronous network with k ≥ 2 identical
mobile agents that are initially located at distinct nodes called homebases. Each
mobile agent owns a constant number t of identical tokens which can be placed
at any node visited by the agent. The tokens are indistinguishable. Any token or
agent at a given node is visible to all agents on the same node, but not visible to
agents on other nodes. The agents follow the same deterministic algorithm and
begin execution at the same time and being in the same initial state.

A token is called movable if it can be put on a node and picked up later by
any mobile agent visiting the node. Otherwise the token is called unmovable in
the sense that, once released, it can occupy only the node where it was released.

Formally a mobile agent was considered as a finite Moore automaton.
All computations by the agents are independent (the agents have no knowl-

edge) of the size of the network. The algorithms for the ring topology work even
without knowledge of the number of the agents. There is exactly one black hole
in the network. An agent can start from any node other than the black hole
and no two agents are initially co-located. Once an agent detects a link to the
black hole, it marks the link permanently as dangerous. The goal is that at the
end of a black hole search scheme, all links incident to the black hole (and only
those links) are marked dangerous and that there is at least one surviving agent.
Note that this definition of a successful BHS scheme is slightly different from
the original definition. Indeed, in the original definition, it is required that there
is at least one surviving agent, and this agent knows the location of all edges
incident to the black hole. However, this is impossible in this model since the
agents have only constant memory.
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2.6.2 The Ring Topology
For the ring topology four different scenarios were considered in [21] depending
on whether the tokens are movable or not, and whether the agents agree on a
common orientation. Surprisingly, the agreement on the ring orientation does
not influence the number of agents needed in the case of movable tokens but is
important in the case of unmovable tokens.

The lower bounds presented in [21] are very strong in the sense that they do
not allow any trade-off between the number of agents and the number of tokens
for solving the BHS problem. In particular it was shown that:

– Any constant number of agents, even having unlimited memory, cannot solve
the BHS problem with less tokens than depicted in all cases of Table 3.

– Any number of agents less than that depicted in all cases of Table 3 cannot
solve the BHS problem even if the agents are equipped with any constant
number of tokens and they have unlimited memory.

Meanwhile the algorithms match the lower bounds on the number of tokens,
are asymptotically time-optimal and since they do not require any knowledge
of the size of the ring or the number of agents, they work in any anonymous
synchronous ring, for any number of anonymous identical agents (respecting the
minimal requirements of Table 3).

Table 3. Results for BHS with DFAs and tokens in synchronous rings

Tokens are Ring is Resources necessary and sufficient

# agents # tokens

Movable Oriented 3 1

Unoriented

Unmovable Oriented 4 2

Unoriented 5 2

Impossibility Results

Oriented Rings. Consider that the agents agree on the orientation of the ring
(i.e., the ports of the edges are consistently labeled as ‘left’, ‘right’). When the
tokens are unmovable, a team of any constant number of agents needs at least
two tokens per agent to solve the BHS problem. This is due to the fact that with
only one unmovable token the agents are forced to always take the same actions
including marking (incorrectly in different sized rings) links as dangerous.

Theorem 7 ([21]). For any constant k, there exists no algorithm that solves
BHS in all oriented rings containing one black hole and k or more scattered
agents, when each agent is provided with only one unmovable token. The result
holds even if the agents have unlimited memory.
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To solve the BHS problem in a ring, both links leading to the black hole need
to be marked as dangerous. Thus, we immediately arrive at the following result.

Theorem 8 ([21]). Two mobile agents carrying any number of movable (or
unmovable) tokens each, cannot solve the BHS problem in an oriented ring, even
if the agents have unlimited memory.

When the tokens are unmovable, even three agents are not sufficient to solve
BHS as shown below. This is due to the following facts: (a) because of the
constant number of unmovable tokens the agents cannot guarantee to leave a
token at a node which is adjacent to the black hole, and (b) after one of them
vanishes in the black hole, the remaining two agents could possibly meet (by
exploiting the asymmetry left by the vanished agent) but they cannot discover
both incident links to the black hole.

Theorem 9 ([21]). Three mobile agents carrying a constant number of unmov-
able tokens each, cannot solve the BHS problem in an oriented ring, even if
agents have unlimited memory.

Unoriented Rings. In an unoriented ring (i.e., the clockwise direction perceived
by an agent is handled by an adversary), even four agents do not suffice to solve
the BHS problem with unmovable tokens, since two of them can be forced by
the adversary to vanish in the black hole at the same time leaving their tokens
more than a constant distance away from the black hole and the remaining two
agents cannot correctly mark both links incident to the black hole.

Theorem 10 ([21]). In an unoriented ring, four agents carrying any constant
number of unmovable tokens each, cannot correctly mark any link incident to the
black hole, even when the agents have unlimited memory.

A BHS Scheme with Movable Tokens
If each agent has a movable token it can perform a cautious walk type movement
using its token. The Cautious-Walk procedure consists of the following actions:
Put the token at the current node, move one step in the specified direction,
return to pick up the token, and again move one step in the specified direction
(carrying the token).

We show that only three agents are sufficient to solve BHS, when they have
one movable token each. Algorithm 3 achieves this, both for oriented and unori-
ented rings.

Theorem 11 ([21]). Algorithm3 solves the BHS problem in an unoriented ring
with k ≥ 3 agents having constant memory and one movable token each.

BHS Schemes with Unmovable Tokens
For agents having only unmovable tokens, we use the probing technique (as
discussed in previous sections) for exploring new nodes. Now in order to use
this technique, we need to gather two agents at the same node and break the
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Algorithm 3. (Three DFAs with one movable token in synchronous rings)
1: repeat
2: CautiousWalk(Left)
3: until you see a token and no agent OR next link is marked Dangerous
4: MarkLink(Left)
5: repeat
6: CautiousWalk(Right)
7: until you see a token and no agent OR next link is marked Dangerous
8: MarkLink(Right)

symmetry between them, so that distinct roles can be assigned to each of them.
This is the main difficulty that has been taken care by the algorithms. The basic
idea of our algorithms is the following. We first identify the two homebases that
are closest to the black hole (one on each side). These homebases are called
gates. The gates divide the ring into two segments: one segment contains the
black hole (thus, is dangerous); the other segment contains all other homebases
(and is safe). Initially all agents are in the safe part and an agent can move to
the dangerous part only when it passes through the gate node. We ensure that
any agent reaching a gate node, waits for a partner agent in order to perform
the probing procedure. We now present two BHS algorithms, one for oriented
rings and the other for unoriented rings.

Oriented Rings. In this section, we describe an algorithm (Algorithm
BHS-Ring-2) using at least four agents with two unmovable tokens.

Description of Algorithm BHS-Ring-2: During the first phase of the algorithm
each agent places a token on its homebase, moves left until the next homebase
(i.e., next node with a token) and then returns to its homebase to put down the
second token. During this phase one agent will fall into the black hole and there
will be a unique homebase with a single token (we call this node the gate node)
and all the other homebases will eventually contain exactly two tokens each.
However, the agents may not complete this phase of the algorithm at the same
time. Thus during the algorithm, there may be multiple homebases that contain
a single token. Whenever an agent reaches any node containing a single token,
it waits for a partner agent and then they perform probing in the left direction.
One of the agents of a pair eventually falls into the black hole and the other
agent marks the edge leading to the black hole and returns to the gate node,
waiting for another partner. When another agent arrives at this node, these two
agents perform probing in the opposite direction to find the other incident link
to the black hole. �

Theorem 12 ([21]). Algorithm BHS-Ring-2 correctly solves the black hole
search problem in any oriented ring with 4 or more agents having constant mem-
ory and carrying two unmovable tokens each.

Unoriented Rings. For unoriented rings, we need at least 5 agents with two
unmovable tokens each. The Algorithm BHS-Ring-3 for unoriented rings using
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five agents with two unmovable tokens is similar to the one for oriented rings,
except that each agent chooses an orientation. When two agents meet they can
agree on the orientation and assign different roles to themselves.

Description of Algorithm BHS-Ring-3: Each agent puts one token on its
homebase, goes on its left until it sees another token and then returns to its
homebase. Now the agent goes on its right until it sees a token and then returns
again to the homebase. The agent now puts its second token on its homebase.
During this operation exactly two agents will fall into the black hole. Each sur-
viving agent walks to its left until it sees a node u with a single token. At this
point the agent has to wait, since either there is a black hole ahead, or u is the
homebase of an agent b that has not yet returned to put its second token. Since
we assume there are at least five agents, at least two of them will meet at a gate.
They identify one of the links incident to the black hole and then the remaining
agent can join the other agent who waits and identify together the other link
incident to the black hole. �

Theorem 13 ([21]). Algorithm BHS-Ring-3 correctly solves the black hole
search problem in an unoriented ring with 5 or more agents having constant
memory and carrying two unmovable tokens each.

2.6.3 The Torus Topology
While in ring topologies the exploration of a safe (even unoriented) ring is feasible
by one DFA with one unmovable token, in torus topologies the exploration of a
(safe) torus is not always possible by a DFA using tokens.

Impossibility Results in an Oriented Torus

Agents with Unmovable Tokens

Theorem 14 ([20]). For any constant numbers k, t, there exists no algorithm
that solves BHS in all oriented tori containing one black hole and k scattered
agents, where each agent has a constant memory and t unmovable tokens.

The idea of the proof of Theorem14 is the following: It is shown that an
adversary (by looking at the transition function of an agent) can always select a
big enough torus and initially place the agents so that no agent visits nodes which
contain tokens left by another agent, or meets with another agent. Moreover
there are nodes on the torus never visited by any agent. Hence the adversary
may place the black hole at a node not visited by any of the agents to make any
algorithm fail.

Agents with Movable Tokens. The situation with movable tokens is quite
different than with unmovable ones since now any oriented (safe) torus can be
eventually explored even by one DFA carrying one movable token (exploration
without stop, also known as perpetual exploration). Hence any lower bound using
movable tokens can not be based on impossibility of exploration (visiting all
nodes of the torus).
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A fairly easy observation is that two agents carrying any number of movable
tokens cannot solve the BHS problem in an oriented torus even if the agents have
unlimited memory due to the fact that the adversary can always place the agents
and the black hole in such a way that one of the agents vanishes while changing
vertical rings and the other one while changing horizontal rings. Additionally
the following lower bound is shown:

Lemma 8 ([20]). There exists no algorithm that could solve the BHS problem
in all oriented tori using three agents with constant memory and one movable
token each.

The idea of the proof is that at least two of the three agents are forced to
leave their tokens more than a constant number of nodes away (otherwise they
are not able to explore the torus) from the black hole before they vanish and
then the third agent cannot decide for the correct location of the black hole.

Hence the following theorem holds:

Theorem 15 ([20]). At least three agents are necessary to solve the BHS prob-
lem in an oriented torus of arbitrary size. Any algorithm solving this problem
using three agents requires at least two movable tokens per agent.

BHS Schemes in Oriented Tori Using Movable Tokens

Due to the impossibility result from the previous section, any algorithm for
the BHS problem by DFAs should use movable tokens. We describe below an
algorithm which leads three agents carrying three tokens each to locate the black
hole.

Algorithm BHS-torus-33. An agent explores one horizontal ring at a time and
then moves one step South to the next horizontal ring and so on. When exploring
a horizontal ring, the agent leaves one token on the starting node. This node is
called the homebase of the agent and the token left (called homebase token)
will be used by the agent to decide when to proceed to the next horizontal
ring. The agent uses the two remaining tokens to repeat Cautious-Walk in the
East direction until it has seen twice a node containing one token. Any node
containing one token is a homebase either of this agent or of another agent.
The agent moves to the next horizontal ring below (using again Cautious-Walk
with three tokens) after encountering two homebases. It then repeats the same
exploration process for this new ring leaving one token at its new homebase.
Whenever the agent sees two or three tokens at the end of a cautious-walk, the
agent has detected the location of the black hole: If there are two (resp. three)
tokens at the current node, the black hole is the neighboring node w to the
East (resp. South). In this case, the agent stops its normal execution and then
traverses a cycle around node w, visiting all neighbors of w and marking all the
links leading to w as dangerous. �

Theorem 16 ([20]). Algorithm BHS-torus-33 correctly solves the BHS problem
using 3 or more agents with three tokens each.
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Using a similar technique, the authors present an algorithm that solves the
problem using four agents and two tokens. Finally they give a more involved
algorithm (using a technique which makes the agents meet when they are ‘close’
enough) that meets the lower bound, i.e., solves the BHS problem using three
agents with two tokens each.

Theorem 17 ([20]). The BHS problem can be solved in any oriented torus with
exactly three agents carrying two tokens each.

The Case of an Unoriented Torus
The situation in an unoriented torus is quite different than in an oriented one.
As new results in [91] show, any constant number of DFAs with one movable
token each cannot explore all (safe) unoriented tori and thus the BHS problem
cannot be solved. However, surprisingly enough1, it is shown in [91] that one
agent with two movable tokens can explore any totally unoriented (safe) torus
which gives a hope that even in a totally unoriented torus the BHS problem
can be solved by a small number of agents with movable tokens. In a partially
unoriented torus the BHS problem can be solved using five agents with constant
memory and three movable tokens [91].

3 Search in Asynchronous Dangerous Networks

In the following section, we overview the state of the art for black hole search in
various asynchronous networks focusing on the ring topology. Our presentation
will follow the different variants given in Fig. 4.

3.1 Solutions Under Different Communication Models

In asynchronous networks, agents may wake up at different times. Agents may
also never meet each other regardless whether they vanish in the black hole or
not. Therefore, face-to-face communication is not of great use to solve the black
hole search problem. We will therefore focus on solutions that use a whiteboard
or tokens.

3.1.1 Pure Token Model
Flocchini et al. [59] first prove that the pure token model is as powerful as the
whiteboard model and that, in an arbitrary network, its complexity is the same
as that of the whiteboard model if each of the co-located agents carries a map.
They also show that 2 co-located agents, each with 1 token, can locate the black
hole in a ring topology using a technique called ping-pong. In this specific case,
when the network topology is known, the agents can achieve this goal without
using a map. They further demonstrate that this ping-pong technique can also
1 Given the old result of Rollik in [100] (discussed in the beginning of the section) which

proved that no finite set of finite automata can cooperatively perform exploration
of all cubic planar graphs.
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Fig. 4. Different variants for black hole search in asynchronous networks

be applied to an arbitrary network if a corresponding network map is available
to each agent. In the latter case, it costs Θ(n log n) moves to locate the black
hole. (Additional details are given in [60].)

It is known that Δ + 1 (Recall that Δ is the maximum node degree in the
network graph.) agents are necessary to locate the black hole when the topology
of an asynchronous network is unknown, regardless of the number of tokens used
[69]. With the same number of agents and O(1) tokens in total, it is possible
to locate the black hole if each agent has a network map available. Balamohan
et al. study whether Δ + 1 agents, each with O(1) tokens, can still locate the
black hole in an unknown network in [6]. They prove that in order to keep the
total number of tokens used to O(1), Δ + 1 agents are not sufficient. They then
present a protocol that uses Δ + 2 agents, each carrying 3 tokens, to locate a
black in an unknown network.

Finally, we remark that, when using the pure token model for black hole
search in an asynchronous network, researchers have exclusively considered co-
located agents.

3.1.2 Enhanced Token Model
Due to the limitations of the pure token model, Dobrev et al. [41,50,52,53] and
Shi et al. [105] use the enhanced token model to further improve the move and
agent costs. In all these studies, each agent can carry and most importantly can
place in the same node more than 1 token at any time. Given these character-
istics, Dobrev et al. [51,53] introduce an algorithm to locate the black hole in
an un-oriented ring network with dispersed agents. Same as in synchronous net-
works, coordinating dispersed agents is significantly more complex than using co-
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located agents. The proposed algorithm demonstrates that using O(1) enhanced
tokens is sufficient for successful black hole search in asynchronous networks
using dispersed agents. In [50], Dobrev et al. demonstrate that the move cost
of O(kn + n log n) of [51,53] can be reduced to O(n log n) by using 2 co-located
agents with O(1) tokens per agent, when the orientation of the ring is known.

Apart from the ring networks, Shi et al. [105] prove that 2 co-located agents,
each with O(1) tokens, can locate the black hole in Θ(n) moves for hypercube,
torus and complete networks. (Details are available in [106].) Using dispersed
agents, 3 agents and 7 tokens in total are required to locate a black hole within
Θ(n) moves in an oriented torus. When the number of agents increases to k
(k > 3) with 1 token per agent, the move cost becomes O(k2n2). This result is
interesting. It shows that if the number of dispersed agents in a torus increases,
the communication between these agents becomes significantly more compli-
cated. This is reflected in the increase of the move cost.

Moreover, for an arbitrary unknown network graph with known n, Dobrev
et al. [41] present an algorithm using Δ + 1 agents and one token per agent
and O(Δ2M2n7) moves to locate the black hole. Here M is the total number of
edges of the graph. This result has been improved by the same authors in [42] to
O(Δ2M2n5) moves. In contrast, under the same assumption in the whiteboard
model, the cost of the algorithm is Δ+1 agents and Θ(n2) moves. For arbitrary
unknown network graphs, the costs of the enhanced token model are significantly
greater than those of the whiteboard model [41]. However, when a network map
is available to the agents, the costs of the enhanced token model can be reduced
to the same as those for the whiteboard model [50].

3.1.3 Whiteboard Model
In both types of token models, agents can only express very limited messages.
This is why the whiteboard model is still the most popular agent communication
model and has been studied by many (e.g., [7,8,28,39,40,43–45,47–49,75]).

In addition to presenting solutions to black hole search in asynchronous arbi-
trary networks [44,48,49], Dobrev et al. [45] solve a multiple agents rendezvous
problem in a ring network that contains a black hole. In their paper, the final goal
of the agents is not only to locate the black hole but also to collect all survived
dispersed agents in one node. The authors offer a protocol that can rendezvous k
agents in Θ(n) time units. They claim that when k is unknown, this protocol is
also a solution to the black hole search problem. In terms of the time complexity
in rings, Dobrev et al. [43,47] show that at least 2n − 4 time units are needed in
the worst case and give an algorithm, achieving it using n− 1 co-located agents.
(Here movement and exploration are assumed to consume one time unit.) Apart
from time complexity, the authors also prove that 2 agents are necessary and
sufficient and present an algorithm to locate the black hole in O(n log n) moves,
regardless whether the agents are co-located or dispersed, provided the orienta-
tion of the ring is known a priori. If the ring is un-oriented, 3 dispersed agents
are necessary and sufficient. Apart from rings, Dobrev et al. [39] (with additional
details in [40]) also present a general strategy to locate the black hole in O(n)
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moves by using 2 co-located agents for some other common interconnected net-
works, such as cube-connected cycles, wrapped butterflies, star graphs, chordal
rings, hypercubes, tori of restricted diameter, and in multidimensional meshes.

Based on Dobrev’s work, Balamohan et al. [7] prove that 3n log3 n − O(n)
moves are necessary in an asynchronous ring when 2 co-located agents are used.
As for time complexity, Balamohan et al. [8] improve the algorithm of [43] to
solve the problem in an average of 7

4n − O(1) time units when n − 1 agents
are used (with 2 extra time units required in the worst case). The authors also
propose another algorithm to locate the black hole in 3

2n − O(1) time units on
average, using 2(n − 1) agents without increasing the time complexity in the
worst case.

While all the above studies only consider the case of undirected graphs,
Czyzowicz et al. [28] study the black hole search in directed graphs. They show
that at least 2Δ agents are necessary in the worst case, where Δ is the in-degree
of the black hole. If a planar graph with a planar embedding is known to the
agents, 2Δ agents are needed, and 2Δ + 1 agents are sufficient.

3.2 Solutions Under Different Agent Starting Locations

As discussed for the synchronous networks, when the homebases of the agents
are dispersed, black hole search is more complex than if all agents wake up in
the same node. This is even more so for an asynchronous network: given agents
may wake up at different times, coordinating them to locate the black hole with
minimal resource cost is a challenge. For example, 2 co-located agents suffice to
solve the problem in a complete network in Θ(n) moves in [106]; while using
dispersed agents costs O(n2) moves.

3.2.1 Co-located Agents
The co-located agent model is frequently used in the literature. Many white-
board based studies adopt this model (e.g., [7,8,28,40,43,44,48,49,75]). Sim-
ilarly, in token-based research, many choose to solve the problem under this
model (e.g., [6,41,42,50,59,60,105,106]). Among these papers, [7,8,43,50,59,60]
specifically consider ring networks, while [7,8,43] instead study time complex-
ity. In particular, [8] offers an algorithm that improves the average time from
[43]. Moreover, [50,59,60] only use 2 agents, and [50] studies the enhanced token
model, while [59,60] investigate the pure token model.

As previously suggested, when the agents are initially co-located, they can
easily establish agreements before any exploration. This can greatly help coordi-
nating agents and eventually reducing the resource costs. For example, in a ring
network, when the agents are co-located, the orientation is no longer important.
This is because when there are only two directions, the agents can certainly
make an agreement at the beginning of the exploration on what direction to
take. Furthermore, solving the problem using co-located agents in a ring with n
nodes is the same as having each agent carry a network map in asynchronous
networks. The situation is different when using dispersed agents. That is, unless
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the orientation of the ring is known, having a map or not leads to different
solutions.

The following example (described in [59,60]) illustrates how a pair of co-
located agents can locate the black hole using such an ‘agreement’: 2 agents each
with one token start to explore the ring using cautious walk; one going right and
the other going left. However, only one agent at a time is allowed to explore. To
ensure this, one agent must first ‘steal’ the token from the other before its start
its exploration. Stealing is possible because, during cautious walk, an agent has
to leave a token before going to the next node. After such a theft, the agent
without a token cannot continue exploration and has to go ‘back’ to look for a
token. This is repeated until one agent vanishes. For example, suppose the right
agent goes first. Before the left agent starts, it must first go right and steal the
token of the right agent, and then it goes left for exploring. Once the right agent
finds its token has gone, it goes left and steals a token from the left agent, and
then goes right again. Repeating this process can ensure that only one agent
vanishes in the black hole and that the surviving one knows the location of the
lost agent.

3.2.2 Dispersed Agents
Dispersed agents have been adopted by the research based either on the white-
board model [43,45,47,61,75] or on the enhanced token model [52,53,105,106].
Furthermore, no one has yet offered solutions to black hole search in asyn-
chronous networks that use dispersed agents carrying pure tokens. The reason
for this might be that such a solution is likely to use more pure tokens than one
that relies on enhanced tokens.

Both Shi et al. [105] and Dobrev et al. [43] consider the use co-located agents
and the use of dispersed ones. More specifically, in [105] authors focus on agent
moves in hypercube, torus, and complete networks, whereas in [43], they measure
agent moves and time complexity in ring networks.

Finally, in [52], Dobrev et al. solve the black hole search problem using an
algorithm called Pair Elimination in oriented ring networks. The agents are
initially dispersed in the ring and each endowed with O(1) enhanced tokens.
This algorithm consists in letting all the agents try to form pairs as soon as
they wake up. All paired agents eliminate all the single agents they meet. Each
pair has a level. A pair increases its level each time it eliminates another agent.
When two pairs meet, the higher level pair always eliminates the lower level pair.
Between pairs of the same level, the right pair eliminates the left pair. Eventually
only one pair will survive, and one of the two agents forming that pair will locate
the black hole. In contrast to the co-located case (for which each agent carries
only 1 pure token), pair elimination requires 4 tokens for each agent even when
they use the enhanced token model in the dispersed case. (This stems from the
fact that communication/coordination among dispersed agents is significantly
more complex than the co-located case.)
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3.3 Solutions Under Different Network Knowledge

Most existing work on black hole search in asynchronous networks (e.g., [8,50,
52,59,60]) assumes agents have knowledge of incoming links, which means that
when an agent enters a node, it is ‘told’ which port it used to do so. In turn, this
enables this agent to possibly ‘go back’ to its previous node. Conversely, Glaus
et al. [75] study arbitrary, unknown distributed systems without knowledge of
incoming links. They present a lower bound on the size of the optimal solution,
showing that at least d2+d

2 + 1 co-located agents are necessary and sufficient to
locate the black hole. Here d denotes the number of links leading into the black
hole (i.e., the node degree of the black hole).

In an un-oriented network, all ports that lead to a black hole should be
marked as dangerous, hence Δ+1 agents are necessary. However, in an oriented
network, the number of agents that die in the black hole can be reduced by
forcing agents to only enter a node from certain directions. For example, given a
torus whose nodes have their ports labelled as north, south, east, and west, Shi
et al. [106] assume an agent can only enter a node from the west and come out
from the east, or enter from the north and come out from the south. With this
assumption, only 3 agents are necessary. In contrast, when agents are allowed to
enter a node from all four directions, at least 5 agents are necessary.

Dobrev et al. [46] prove that without any knowledge, Δ+1 agents are needed
and the cost is Θ(n2). However, with a sense of direction but lack of information
of the network topology, only 2 agents are required to achieve the same cost.
The main idea of that algorithm is as follows: (a) the two agents start from
the homebase hb and construct at hb a spanning tree of explored nodes (i.e.,
those visited by one agent); (b) an agent searches this tree and if there is a node
with unexplored ports, that agent goes to explore that node in order to make
all its ports explored using cautious walk; (c) after each such exploration, the
agent comes back to hb and adds that node to the tree as an explored node.
The algorithm depends on a agent leaving navigation instructions (i.e., where
it is going) to the other agent, each time the former leaves the homebase. The
algorithm terminates when the number of explored nodes reaches n − 1.

Again we observe that the knowledge of the network topology (e.g., ring,
hypercube, torus, complete, tree and arbitrary networks) has great impact on
results for black hole search. For example, Balamohan et al. [7,8], Chalopin
et al. [21] and Dobrev et al. [43,47,50,52] propose algorithms based on ring
networks. In the same vein, Shi et al. [106] design algorithms for hypercube
and torus networks with co-located agents, and for torus and complete networks
with dispersed agents. Also, Dobrev et al. [39,40] present a general strategy
that allows 2 agents to locate the black hole with O(n) moves in some common
interconnected networks. In contrast, [6,39,40,44,46,49,59,60] search the black
hole in arbitrary networks.

As just mentioned, for an arbitrary network, Dobrev et al. [44,46] prove that
using the whiteboard model, the black hole search problem can be solved with
Δ + 1 agents in Θ(n2) moves without network maps. Also, recall this result
(pertaining to move complexity) can be achieved using only 2 agents provided



494 E. Markou and W. Shi

there is a sense of direction. With complete knowledge of the network, 2 agents
are sufficient and the cost can be reduced to Θ(n log n). In another paper [48],
Dobrev et al. present a universal protocol that locates the black hole using at
most O(n + d log d) moves with 2 agents each carrying a network map. Here
d is the diameter of the network. Still using 2 agents, the same authors [49]
present a strategy that can locate the black hole in O(Σ

k

i=1|Ci| log |Ci|) moves,
here C = C1, C2, ..., Ci..., Ck is an open vertex cover by cycles of a 2-connected
graph2.

The point to be grasped is that these results show that having a network
map or a sense of direction can significantly reduce the cost complexity in asyn-
chronous networks.

3.4 Black-Hole Search in an Asynchronous Ring

The Black-Hole Search (BHS) problem has been introduced in [43] (see also
the full version of the paper in [47]) where it was studied for asynchronous
ring topologies. We present here some results from this seminal paper. We first
discuss the model used and give lower bounds on the number of agents and
time-complexity. We then give two algorithms that solve the problem using two
or more co-located mobile agents with memory using whiteboards.

3.4.1 Model and Basic Lower Bounds
We consider two anonymous co-located agents with memory. The ring is anony-
mous, asynchronous and consists of n nodes. On each node there is a whiteboard
where the agents can leave messages. The access on a whiteboard is done using
mutual exclusion and hence the agents can acquire distinct identities by the
order in which they access the whiteboard (e.g., the first agent accessing the
whiteboard creates a counter on it, initializes it to 1 and gets this identity, while
the next agent increases the counter and take its value as its identity). Although
the ring is anonymous, the distinct identities assigned to agents, allow them to
agree on the clockwise direction. The goal is that after a finite time at least one
agent should report back to the starting node the exact location of the black
hole.

It is trivial to see that, if there is only one agent, the BHS problem is unsolv-
able since the only agent would necessarily vanish into the black hole. Hence at
least two agents are needed to locate the black hole.

Due to network asynchrony, it is impossible to distinguish between a ‘slow’
link and a link leading to a black hole. This observation gives us the following
two lemmas.

Lemma 9 ([47]). The problem of whether there exists or not a black hole in an
asynchronous network is unsolvable.
2 An open vertex cover by cycles (C) is defined as a set of simple cycles such that (a)

each vertex of G is covered by a cycle from C and (b) the connectivity graph of these
cycles (where each cycle is represented by a vertex, and 2 vertices are connected if
the corresponding cycles share an edge) is connected.
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Lemma 10 ([47]). It is impossible to locate the black hole if the size of the
network is unknown.

The following theorem gives us a lower bound on the number of steps the
agents need to locate the black hole in a ring.

Theorem 18 ([47]). Any algorithm needs at least 2n−4 moves to find the black
hole in a ring regardless of the number of agents available.

Proof. In order to report the position of the black hole back to the starting node
h, the agents need to receive information from any other node apart from the
node B containing the black hole. This means that every node apart from B has to
be visited by at least one agent. Suppose that the black hole resides at a distance
n−1 clockwise. Any agents traveling in counter-clockwise direction would vanish
in the black hole but (due to the asynchronous network) the remaining agents
cannot decide whether the black hole is at B or the link to node B is ‘slow’.
Hence an agent must travel clockwise to node n − 2 and then an agent must
report back to h. Therefore a total number of 2n − 4 steps must be taken.

3.4.2 A Protocol for Two Agents
We denote with U and E the unexplored and explored area respectively. We
also denote with UL and UR the continuous unexplored area adjacent counter-
clockwise and clockwise respectively from the explored area. A basic tool which
is used in the algorithm is the Cautious Walk (introduced in [43,47]):

Consider an agent situated at a node v0 adjacent to an unexplored node v1.
The agent explores a previously unexplored area Uk =<v1, v2, ..., vk> in the
following way:

Cautious Walk:

– before leaving a node vi going to a node vi+1, the agent marks the port leading
from vi to vi+1 as active,

– immediately after visiting vi+1, the agent returns to vi, and marks the port
leading from vi to vi+1 as safe,

– the agent checks for messages at vi and (if such a message exists) re-assigns
to itself an unexplored area U ′

k which has to discover and repeats from the
start.

The agents know the size n of the ring. They follow Algorithm4. A high level
description of the algorithm is the following:

Suppose the agents start at node h. Using mutual exclusion they write at the
whiteboard of node h and get distinct identities as described in the beginning of
the section. They also agree on the clockwise orientation. Then they divide the
unexplored area U with |U | = n − 1 into two disjoint paths UL and UR with
|UL| = �n−1

2 � and |UR| = 
n−1
2 �. Agent 1 explores the area UL and agent 2

explores the area UR using Cautious Walk. Since there is exactly one black hole,
and the two sets are continuous and disjoint, after a finite time exactly one of
the agents will finish with the exploration. Suppose without loss of generality
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that agent 1 finishes. Then agent 1 traverses back through the explored area
until it meets a node u whose port leading to a node v has not been marked
as safe. At that point agent 1 updates explored area and divides the updated
unexplored area into new continuous and disjoint paths UL and UR having UL

starting at a node situated counter-clockwise from h and UR starting at node
v situated clockwise from h. Assigns UL to itself and UR to agent 2 and leaves
this message at node u. Now agent 1 traverses the explored area and explores its
new assigned path UL. Agent 2 either travels through a slow link (not having
explored its assigned area) or vanished in the black-hole. In the first case agent
2 will first return at node u, will check for messages and update its assigned
area for exploration. The agents repeat this procedure until exactly one of them
vanishes into the black-hole. Then the other agent which repeats the procedure,
will eventually come up with an explored area of size n − 1. At that point it
knows the exact location of the black-hole.

Algorithm 4. (2 agents with memory in an asynchronous ring with whiteboards)
1: The agents get distinct identities and agree on the clockwise orientation
2: Let X := h
3: while |E| < n− 1 do
4: Divide U into two continuous disjoint parts UL (starting counter-clockwise of

node X) and UR (starting clockwise of node X) of almost equal sizes
5: Agent 1(2) leaves a message at X saying that she will explore UL(UR)
6: Agent 1(2) explores UL(UR) using Cautious Walk
7: Agent 1(2) traverses clockwise (counter-clockwise) the explored area until it

reaches a node u with a not safe port
8: Update E and U
9: Let X := u

10: end while
11: Report the black-hole location

Theorem 19 ([47]). Algorithm4 locates the black-hole in an asynchronous ring
of n nodes with two co-located agents within 2n log n + O(n) moves.

A natural question is the following: Can we decrease the time needed for
Black Hole Search if we have k ≥ 2 available co-located agents?

3.4.3 The Case of n − 1 Agents
Algorithm 5 shows that n − 1 co-located agents can locate the black hole in an
asynchronous ring of n nodes within 2n − 4 moves.

In Algorithm 5, it should be clear that among the n − 1 agents, exactly one
will finish the algorithm, while all the other n − 2 agents will vanish into the
black hole. Also notice that the n − 1 agents use the whiteboard only at the
starting node in order to assign distinct identities to themselves.
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Algorithm 5. (n − 1 agents with memory in an asynchronous ring with white-
boards)
1: Agents get distinct identities from the set {1, 2, ..., n−1} and agree on the clockwise

orientation
2: Agent i travels i− 1 edges in clockwise direction
3: Agent i travels n− 2 edges in counter-clockwise direction
4: Agent i returns to homebase traveling in clockwise direction
5: Agent i reports that the black hole resides at a distance i clockwise

Theorem 20 ([47]). Algorithm5 lets n − 1 co-located agents find the black hole
in an asynchronous ring of n nodes within 2n − 4 moves.

Proof. Suppose that the black hole resides at a node B which is B steps clockwise
from node 0 (where the agents start). Then agent with label B travels B − 1 +
n − 2 + n − (B + 1) = 2n − 4.

4 Solving Problems in Dangerous Graphs

4.1 Multiple Black Hole Search

As previously mentioned, the only way to locate a black hole in an asynchronous
network is to have at least one agent visit all the nodes except the black hole.
Therefore, the network minus the black hole has to be connected. Otherwise,
the presence of the black hole may partition the network into several discon-
nected subgraphs, making it impossible to visit all nodes. Also recall that, in
synchronous networks, with the help of a time-out mechanism, the single black
hole search problem can still be solved even if the network is disconnected by
the black hole (as is the case for tree networks).

Clearly, the problem becomes more complex when the network contains mul-
tiple black holes. For example, Fig. 5 illustrates a ring network containing 3
black holes that disconnect the ring into 3 sub-graphs. Unless there are enough
agents starting at specific nodes, locating these multiple black holes cannot be
guaranteed even on synchronous networks.

Strategies for finding multiple black holes can be intuitively grouped into
three categories, each with different assumptions and results, which are discussed
next.

4.1.1 Best Effort Without Modifying the Black Hole Search Problem
This strategy tries to find as many black holes as possible without modifying the
traditional black hole search problem. In a synchronous network, as discussed in
Sect. 1.3.1, finding out whether there is a single black hole is fairly easy given a
time-out mechanism. Should the network be disconnected due to the presence
of several black holes, some nodes may never be explored. In this case, finding
all the black holes is impossible. Otherwise, Cooper et al. [25] offer a solution to
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Fig. 5. A ring network that is disconnected by multiple black holes, represented as
solid circles.

finding all possible black holes. First, they study the multiple black hole search
problem in synchronous networks using the face-to-face model. They assume that
k co-located agents know the topology of the whole network including the size n
and number of black holes b. They conclude that any exploration algorithm needs
Ω(n/k+Db) steps in the worst case to solve a multiple black hole search problem,
while Db is the diameter of the network with at most b nodes deleted. They then
provide a general algorithm that performs the exploration in O(

n
k log n

log log n + bDb)
steps in an arbitrary network with network maps available to the agents, where
b � k/2. In the case where b � k/2, bDb = O(

√
n) and k = O(

√
n), they give

a refined algorithm that performs the exploration in asymptotically optimal
O(n/k) steps. Ultimately a node can be identified as a black hole or as a safe
node (if and only if it can be reached following a path of safe nodes).

4.1.2 Variants of the Black Hole Search Problem
In the traditional black hole search problem, the existence of a black hole is
persistent. That is, a black hole is not affected by the arrival of any incoming
agent. Cooper et al. [26] solve a variant of the multiple black hole search problem
in synchronous networks by changing this model. They introduce the notion of
a faulty node, which is a weak form of a black hole. A faulty node is repaired
when first visited by an agent (which, however, vanishes repairing it). And once
repaired, this node will permanently behave as a normal one. Hence, when a
network contains more than one faulty node, the agents are still able to explore
the whole graph. Also, if more than one agent enters the same faulty node at
the same time, only one will repair the faulty node and vanish while the others
can continue their explorations.

The agents used in [26] know the topology of the whole network, move syn-
chronously, use the face-to-face model, and are initially co-located at the same
node. Given a network map, the whole network is first divided into equal par-
titions of size O(D), where D is the diameter of the network. Consequently, an
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agent should spend O(D) time to explore one such partition. All the agents start
from the same homebase and each agent explores a partition. After O(D) time,
if an agent returns to the homebase, it is inferred that the partition it explored
contains no faulty node. Should an agent not show up on time, it is assumed
to be dead in a faulty node (which it repaired) and the partition to which it
was assigned is still marked as unsafe and thus in need of further exploration.
After one such iteration of exploration, once all surviving agents come back
to the homebase, they will start a new iteration of exploration on the remain-
ing unsafe partitions of the network. This process will be repeated until there
are no more unsafe partitions. Eventually, this ‘faulty node repair’ problem can
be solved within O(n

k + D log f
log log f ) time steps, where f = min(n

k , n
D ), assuming

that the number of faulty nodes is at most k/2. It must be emphasized that,
in [26], because the face-to-face model leaves no mark on the nodes, once an
agent vanishes repairing a node, the other agents cannot know where it van-
ished. Therefore, ultimately, all faulty nodes are repaired but their locations
remain unknown.

D’Emidio et al. [35,36] study the same problem under the same conditions
as [26] with a slight change to one assumption: if more than one agent enters
the same faulty node at the same time, all agents vanish. Trying to make the
problem more realistic, the authors however introduce a new behavior: if one
agent enters a faulty node u, all agents within distance r from u disappear along
with the faulty node. D’Emidio et al. first prove that the faulty node repair
problem is NP-hard even when b = k = 1, where b is the number of faulty nodes
and k is the number of agents. Second, when r = 0 (which means the agents
die only when they physically enter a faulty node), using a simple variation of
the algorithm of Cooper et al., the faulty node repair problem can be solved
in Θ( n

k−b + D log f
log log f ) with k > b always true. Otherwise, all agents will vanish.

Third, for any r > 0, the faulty node repair problem requires Ω(n) time steps
in the worst case. Fourth, when r = 1, the faulty node repair problem can be
solved in Θ(n) time steps, and the authors provide two strategies to achieve this
bound. Finally, the authors report their experimental results to demonstrate
correctness.

Shi et al. [96,107] proposed a new attack mode that involves multiple faulty
nodes that are repairable by software agents. Once repaired, a faulty node
behaves like a normal one. However, a gray virus can infect again a repaired
faulty node due to this node’s inherent vulnerability. A gray virus is a piece of
malicious software that can infect a repaired node by residing in it and turning
it into a black hole. This gray virus has no effect on a normal node or link.
Under this attack model, the authors propose solutions to solve the Faulty Node
Repair and Dynamically Spawned Black Hole Search (FNR-DSBHS ) problem in
an asynchronous ring. In order to study the worst (i.e., the most expensive in
terms of number of agents used) case for cost of a repair, the authors assume an
agent “dies” after having repaired a faulty node. Moreover, should several agents
simultaneously enter a faulty node, one agent will die after repairing that node,
whereas all other agents die immediately. Clearly, fewer agents are needed to
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solve the problem in the case where at least one other agent in the same faulty
node survives after the repair.

Contrary to the traditional black hole search in which all agents start in a
network with one and only one black hole whose existence is known a priori,
in the proposed new attack model, a repaired faulty node can be infected and
turned into a black hole at any point in time while the agents traverse the
network to try to repair the faulty nodes. This detail drastically changes the
nature of the problem at hand in asynchronous networks: the possible scenarios
in this case are significantly more complex than for the traditional black hole
search, especially with the presence of multiple faulty nodes in need of repair,
each of which eliminating all agents that simultaneously enter it. Furthermore,
the co-existence of a black hole and multiple faulty nodes in the proposed model
significantly increases the difficulty of both repairing faulty nodes and locating
this black hole because no agent knows the difference between the two types of
nodes a priori.

In an asynchronous network, if a gray virus can move faster than the agents,
and/or if multiple gray viruses reside in the network, it is possible that, from an
agent’s viewpoint, all the repaired nodes appear to be black holes. Consequently,
in the presence of a multi-stop gray virus or multiple gray viruses, the FNR-
DSBHS problem becomes unsolvable in an asynchronous network. Thus both
[96,107] study the FNR-DSBHS problem under the condition that a gray virus
present in the asynchronous ring stops moving once it infects a repaired node.

Shi et al. [107] proposed an algorithm to solve this problem in an asyn-
chronous ring network with only one whiteboard (which resides in a node called
the homebase). The authors conclude that, using this proposed algorithm, b + 4
agents can repair all faulty nodes and locate the black hole infected by a virus v
within finite time. The algorithm works even when the number of faulty nodes
b is unknown a priori.

Peng et al. [96] demonstrate that in such a ring, b + 9 agents can repair all
faulty nodes as well as locate the black hole that is infected by this single one-
stop gray virus. They also show that in the worst case, within O(kn2) moves,
b + 9 agents suffice to repair b faulty nodes and report the location of the black
hole that is infected, at any arbitrary point in time, by the one-stop gray virus.

In a different vein, Flocchini et al. [62,63] solve the multiple black hole search
problem via a subway model using co-located agents with the whiteboard model,
the number b of black holes being known to the agents. The authors use carriers
(the subway trains) to transport agents (the passengers) from node to node (the
subway stops), and the carriers move asynchronously in a directed graph. When
a carrier enters a node, the agents can either get off from the carrier and explore
the node, or stay on the carrier to go to another node. In a traditional black
hole search, any incoming data will be deleted, including the carrier. However,
in this subway model, the black holes no longer affect the carriers and can only
eliminate the agents. At the homebase, there is a whiteboard that is used to
record all explored, unexplored and dangerous nodes. Initially, all nodes are
recorded as unexplored except the homebase. Once an agent chooses to explore
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a node, the node will be marked as dangerous until the agent comes back and
marks it as explored. Eventually, the algorithm terminates when n − b nodes
have been explored, the remaining b dangerous nodes being the black holes. In
[62,63], when k = r + 1 agents are used (where r is the number of carrier stops
at black holes), the number of carrier moves is O(k · n2

C · lR + nC · l2R). Here nC

is the number of subway trains, and lR is the length of the subway route with
the most stops.

Under the same assumption and keeping the same carrier moves as [62,63],
Flocchini et al. [65] solve the same problem with dispersed agents. Instead of
having a whiteboard at the homebase, these authors put the whiteboard on
the carriers. Thus, an agent only has to come back to a carrier to update its
exploration information.

4.1.3 A Simplifying Assumption
As Fig. 5 suggests, if the presence of multiple black holes results in the network
being effectively partitioned by the latter into several disconnected partitions,
then it is impossible to visit all nodes without going through a black hole. In
order to alleviate this difficulty, some researchers make the assumption that the
network minus the black holes is connected.

For example, Flocchini et al. explicitly state this simplifying assumption in
[64]: “after deleting all the black holes, the network still remains interconnected”.
(Clearly, without this assumption, it is impossible to locate all the black holes in
any given network.) However, these authors also complicate multiple black hole
search by adding link failure. That is, in their model, an link failure is locally
detectable at an adjacent node. More specifically: (1) an edge is identified by its
port number in its incident node and (2) if information about an edge is written
on a whiteboard, an agent can notice the absence of an edge with such a port
number. If no information about an edge is written (i.e., this edge has disap-
peared before any agent has visited), it is treated likely it has never existed. It is
assumed that any such failure occurs only when no agent is traversing that link,
and that the failures do not disconnect the safe part of the network (otherwise
dangerous graph exploration is clearly unsolvable). Under this assumption, the
authors present an algorithm to solve dangerous graph exploration with link
deletions in an arbitrary unknown graph with asynchronous dispersed agents
using the whiteboard model. The algorithm can correctly solve the link deletion
problem within finite time by marking all safe edges as such, and marking as
dangerous every port that is on a safe node leading to a black hole or to a faulty
edge (i.e., an edge that has failed). The total number of moves performed by the
agents is at most O(k2 ·ns +ns ·m+k ·ns ·D), where k is the number of agents,
ns is the number of safe nodes, and m is the number of edges or links.

Kosowski et al. [85,86] also assume that the graph is strongly connected
if all black holes are removed. They find out that O(d · 2d) co-located agents
are sufficient to solve the black hole search problem in a directed graph with an
arbitrarily large n, where the network is synchronous and d is the number of edges
leading to the black holes. Furthermore, the authors show that when d = 2, 4



502 E. Markou and W. Shi

agents are always sufficient in synchronous networks. However, in asynchronous
networks, at least 5 agents are required when d = 2. Finally, when d = 1, 2
agents are always sufficient and sometimes required in both synchronous and
asynchronous networks.

4.2 Other Types of Malicious Behaviour

Beyond studying the traditional black hole and its variants (e.g., (a) the
repairable black holes introduced in [26] by Cooper et al. and (b) the new subway
model presented by Flocchini et al. in [62,63]), work on other types of malicious
hosts exists and is briefly discussed here.

Dobrev et al. [43,45] study the rendezvous problem of mobile agents in asyn-
chronous rings in spite of a black hole. More specifically they study how k dis-
persed agents can rendezvous in an anonymous, asynchronous ring in spite of
a black hole. They first prove that if the ring is unoriented, then it is impossi-
ble for k − 1 agents to rendezvous. They also show that if k is unknown, then
rendezvous requires locating the black hole and hence either k or n must be
known for rendezvous. Rendezvous of dispersed agents can be solved easily in
the “whiteboard” model in an oriented anonymous, asynchronous ring in spite
of a black hole when k is known. In this case one agent vanishes in the black hole
while the rest will rendezvous within at most 3n− 6 traversals. In an unoriented
ring and when k is a known odd number k − 2 agents can gather within at most
5(n − 2) traversals. We refer the interested reader to articles [43,45] for more
results concerning cases when k is an even number, or unknown in oriented and
unoriented rings, etc.

Chalopin et al. [23] study the rendezvous problem in a network with faulty
links. In that model, some of the edges in the graph are dangerous for the agents:
any agent that attempts to traverse such an edge (from either direction) simply
disappears, without leaving any trace. Notice that if all the edges incident to a
node u are faulty, then node u can never be reached by any agent and thus is
essentially equivalent to a black hole.

Das et al. [33,34] consider the rendezvous problem in spite of a malicious
agent. The agents that need to gather are called ‘honest agents’ and their com-
munication model is similar to the face-to-face one. In the network there is a
mobile fault which they call malicious agent. This agent can physically block
the movement of a honest agent to the node it occupies, preventing the honest
agents from gathering in some cases. The malicious agent can move arbitrarily
fast along the edges of the graph, it has full information about the graph and
the location of the agents, and it may even have full knowledge of the actions
that will be taken by the honest agents. On the other hand the malicious agent
can be detected by a honest agent, when it blocks the movement of this honest
agent. They show that even one malicious agent can prevent gathering of honest
agents in many cases [34]. For a single malicious agent, the graph must be at
least bi-connected otherwise the problem is unsolvable. In [33] they investigate
the feasibility of gathering for k ≥ 2 honest agents in oriented and unoriented
ring networks in the presence of the malicious adversary, that blocks other agents
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from having access to parts of the network. The honest agents are identical (thus
anonymous), and they only have local communication capabilities allowing two
agents to talk only when they are in the same node. Furthermore since the honest
agents have only constant-sized memory, they do not know the size of the ring
and the number of agents present in the ring. Since gathering of identical agents
in a ring is impossible due to symmetry, even if the agents have infinite memory
and know the size of the ring and the number of agents they use the following
symmetry breaking mechanism: they assume the existence of a specially marked
node in the ring which can be used as landmark. Although the use of a landmark
node is the simplest mechanism for symmetry breaking that guarantees an imme-
diate solution in fault free networks, in the presence of a malicious agent, the
gathering problem still remains challenging as the malicious agent may prevent
the honest agents from ever reaching the landmark node, if the malicious agent
occupies this node. They provide a characterization of the feasible instances for
gathering of k agents in a ring of size n, in presence of a malicious agent. In an
oriented ring, they show that gathering is always possible and they provide a
gathering algorithm for any k ≥ 2. In an unoriented ring network of n nodes they
show that gathering of asynchronous agents is not solvable if k is even while,
gathering of synchronous agents is unsolvable when both n is odd and k is even.
They show that all the other cases in an unoriented ring are solvable for k > 2
agents and provide algorithms for all those cases. In particular, they give (i)
an algorithm for asynchronous agents that works for any n whenever k is odd,
and (ii) an algorithm for synchronous agents which works for all solvable cases,
i.e., when either k is odd or n is even (assuming k > 2). For the special case of
k = 2 agents in an unoriented ring, they prove that rendezvous is impossible for
constant-sized memory agents; however they present a protocol for rendezvous of
2 synchronous agents when they have enough memory to count up to n. In [34]
they study oriented mesh topologies and they prove that the problem can be
solved when the honest agents initially form a connected configuration without
holes if and only if they can see which are the occupied nodes within a two-hops
distance.

Královič and Mikĺık [87,92] study how the various capabilities of a malicious
host affect the solvability of exploration problems in asynchronous networks
with whiteboards. They first consider networks with a malicious host (called
gray hole) which can at any time choose whether to behave as a black-hole or as
a safe node. Since the malicious behavior may never appear, the agents might
not be able, in certain cases, to decide the location of the malicious host. Hence,
they introduce and study the so called Periodic Data Retrieval problem in which,
on each safe node of the network, an infinite sequence of data is generated over
time and these data have to be gathered in the homebase. The goal is to design
a protocol for a team of initially co-located agents so that data from every safe
node are reported to the homebase, infinitely often, minimizing the total number
of agents used. One agent can solve the problem in networks without malicious
hosts, where the problem reduces to the Periodic Exploration problem (e.g.,
see [27] and references therein) in which the goal is to minimize the number of
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moves between two consecutive visits of a node. When the malicious host is a
black hole, the Periodic Data Retrieval and the Periodic Exploration problem
are solved by the same number of agents. As observed in [87], n − 1 agents are
sufficient for solving the Periodic Data Retrieval problem in any 2-connected
network of n nodes with one malicious host when the topology is known to the
agents: each of the n − 1 agents selects a different node of the network and
periodically visits all other nodes. The authors show that two agents are not
sufficient to solve the problem in a ring with a gray hole and they present a
protocol which solves the problem using 9 agents. They also consider a second
type of malicious host which behaves as a gray hole and, in addition, can alter
the contents of its whiteboard; they show that 27 agents are sufficient to solve
the Periodic Data Retrieval problem in a ring, under this type of malicious host.
Later Bampas et al. [9] refine the model of [87] and improve the solution. They
show that at least 4 agents are needed when the malicious host is a gray hole, and
at least 5 agents are needed when the malicious host whiteboard is unreliable. On
the positive side, they propose an optimal protocol for Periodic Data Retrieval
in asynchronous rings with a gray hole, which solves the problem with only 4
agents. Finally, they propose a protocol with 7 agents when the whiteboard of
the malicious host is unreliable.

Cai et al. [17–19] consider the problem of a black virus that, like a black hole,
deletes any incoming agent. But, unlike a black hole (which is defined as a static
host), a black virus moves from node to node, thus potentially increasing the
number of dangerous nodes. Furthermore, unlike a black hole (which can only
be located but not removed), a black virus is destroyed if it enters a node that
contains an anti-viral system agent. Thus, the only way to remove a black virus is
to surround it by anti-viral system agents and force it to move to a neighbouring
node that already contains at least one anti-viral system agent. In the same vein,
some theoretical work has focused on the intruder capture problem (also known
as graph decontamination): an intruder (a harmful agent) moves through the
network infecting nodes and the goal is to remove the intruder from the network
using mobile agents. Unlike a black virus, an intruder can only harm nodes, not
agents. This problem has been extensively studied as for example in [12,15,66].

Finally, black hole attack [3,11,109] is also a research topic remotely related
to black hole search. Most importantly, the networks considered for black hole
attack are different from those of black hole search: In the latter, the networks
are static, while in the former, the networks can be dynamic (e.g., MANET
(Mobile Ad-Hoc networks), wireless networks, mobile networks). For example,
in MANET, the network topology is only formed once one node needs to send a
data package. Khari et al. [81] survey security attacks, as well as secured routing
protocols in MANET, and offer a definition for black hole attack. Moreover,
their survey mentions a variation of black hole attack called grey hole attack
[2,10,103]: whereas a black hole will delete any incoming data packages, a grey
hole only deletes part of the packages.
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5 Discussion and Future Work

In this section, we highlight some future work in the following three categories:

1. single black hole search in both asynchronous networks and synchronous net-
works,

2. multiple black hole search,
3. other models of agents and malicious behaviour.

5.1 Single Black Hole Search in Both Asynchronous and
Synchronous Networks

We first list all possible combinations of different assumptions then organize the
single black hole search studies under each such combination. Our findings are
presented in Tables 4 and 5. We then point out the remaining combinations that
have not yet studied, then identify interesting open problems for future research.

5.1.1 Asynchronous Networks
A list of papers studying the Black Hole Search problem in asynchronous net-
works is shown in Table 4.

We do not include edge-labelling in our discussion because it is widely
adopted in the field. Also, since network size must be known a priori in asyn-
chronous networks, we do not further mention n in this subsection. Also recall
that, when using co-located agents to explore a ring, whether or not the ring is
oriented does not affect the move cost of the algorithm. Therefore, we do not
discuss separately each of these two possibilities below. Finally, as ring is a spe-
cial topology, namely the sparsest bi-connected graph, we list it separately in
Table 4.

Glaus et al. solve the black hole search problem without the knowledge of
incoming links in an unknown un-oriented arbitrary network when both the
agents and the network nodes have distinct IDs. Whether, under the same
assumptions, the black hole search problem is still solvable in an anonymous
network when anonymous agents are used, remains an open problem. Solving
the black hole search problem without the knowledge of incoming links in an
unknown un-oriented arbitrary network also remains an open problem if (a)
it is in a synchronous network and/or (b) tokens and/or (c) dispersed agents
are used (in lieu of the asynchronous network with whiteboard and co-located
agents of [75]).

Balamohan et al. identify another open problem in [8]: Is there an algorithm
that locates the black hole in 3

2n − O(1) time (average case) and 2(n − 1) time
(the worst case) using n − 1 co-located agents and the whiteboard model?

In [42], Dobrev et al. study the black hole search problem assuming no topol-
ogy knowledge. They prove that the black hole can be located in any graph G
within O(Δ2M2n5) moves, using the enhanced token model with Δ + 1 co-
located agents, where Δ is the maximum degree, M is the number of edges and
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n is the number of nodes of G. Under the same conditions, solving the problem
in the whiteboard model only costs Θ(n2) moves. Whether there is a solution
at a lower move cost for the problem using the enhanced token model when the
topology knowledge is unknown remains another open problem. Our intuition is
that relaxing the assumption regarding knowledge of topology possibly leads to
further reductions of the move cost.

While only ring, hypercube, torus, and complete network have been studied
under the enhanced token model, consideration of other topologies under the
same assumptions may be another research direction. With respect to the use
of the pure token model, whether or not the number of moves can be further
reduced by increasing the number of agents and/or by knowing the topology at
hand is an open question. Other open problems pertaining to this model include:
(a) whether black hole search is solvable in an arbitrary unknown graph and (b)
whether dispersed agents can still solve the problem (over co-located agents,
which have been the only ones used with this model so far).

Table 4. Existing work on black hole search in asynchronous networks.

# Communication
model

Agent
starting
location

Network knowledge Paper

1 Whiteboard Co-located No knowledge [28,44,46,75]

2 Whiteboard Co-located Network topology [39,40]

3 Whiteboard Co-located Sense of direction and
no network topology

[44,46]

4 Whiteboard Co-located Ring [7,8,43,47]

5 Whiteboard Co-located Complete knowledge [39,40,44,46,48,49]

6 Whiteboard Dispersed Un-oriented ring [43,45,47]

7 Whiteboard Dispersed Oriented ring [43,45,47]

8 Enhanced token Co-located No knowledge [41,42]

9 Enhanced token Co-located Oriented ring [50]

10 Enhanced token Co-located Sense of direction and
network topology

[105,106]

11 Enhanced token Dispersed Sense of direction and
network topology

[105,106]

12 Enhanced token Dispersed Oriented ring [52]

13 Enhanced token Dispersed Un-oriented ring [51,53]

14 Pure token Co-located Ring [59,60]

15 Pure token Co-located Complete knowledge [59,60]

16 Pure token Co-located No knowledge [6]
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5.1.2 Synchronous Networks
Single black hole search in synchronous networks is not studied as often as in
the more realistic asynchronous networks. Additionally, we have observed that,
for black hole search in asynchronous networks, using co-located agents always
costs fewer moves than using dispersed agents. As shown in Table 5, the pure
token model is only used with dispersed agents. These 4 papers study the black
hole search problem in this model on ring and torus topologies leaving it open
for other topologies (such as hypercube or mesh): studying the use of co-located
agents with the pure token model in a synchronous network could further support
this observation. Moreover, it has been proven that, in asynchronous arbitrary
networks, the pure token model can offer the same complexity as the white-
board model provided a network map is available. Whether this is also true for
synchronous networks also needs to be studied.

Table 5. Existing work on black hole search in synchronous networks.

# Communication
model

Agent
starting
location

Network knowledge Paper

1 Pure token Dispersed Unknown n, oriented
torus

[20]

2 Pure token Dispersed Unknown n,
un-oriented torus

[91]

3 Face-to-face +
Pure token

Dispersed Unknown n, oriented or
un-oriented ring

[21,22]

4 Face-to-face Co-located Tree [29,31]

5 Face-to-face Co-located Complete knowledge [30,82–84]

Finally, the possibility of using face-to-face communication is one of the sev-
eral advantages of solving the black hole search problem in synchronous versus
asynchronous networks. A hybrid that combines this model with the use of white-
boards or tokens might lead to further reduction on both time costs and agent
moves.

5.2 Multiple Black Hole Search

As previously mentioned, Flocchini et al. [62] solve the multiple black hole search
problem with a subway model in an asynchronous network using the whiteboard
model and co-located agents. These initial results suggest several questions to
research such as (a) whether a different communication model can be used,
(b) whether a solution for a synchronous network can be obtained (especially
given that it is assumed that a carrier takes the same amount of time to travel
between two stations) and (c) how such new solutions would compare in costs
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with the solution put forth by these authors. In particular, with respect to choice
of communication model, it may be interesting to assume that no whiteboard is
available and that a cell phone network does not work in subways. Consequently,
a new model to study would have agents only communicate with each other
when they meet in the same subway station or in the same carrier. Alternatively,
agents could use ‘walkie-talkies’ that support two-way communication over short
distances. Both of these models-to-study are essentially variants of the face-to-
face model. Finally, recall that Flocchini et al. (a) assume the network is a
directed graph and (b) distinguish between carrier moves and agent moves. This
prompts asking whether or not the use of an undirected graph may help reducing
(a) the carrier move complexity and/or (b) the total move cost of the agents.

As emphasized by Peng et al., without any additional assumptions, the gen-
eral Faulty Node Repair and Dynamically Spawned Black Hole Search problem
[96,107] becomes a multiple black hole search problem and remains unsolvable in
an asynchronous network. Therefore, it is worth finding the weakest additional
assumptions to make this problem become solvable in the presence of one multi-
ple one-stop GV s and in the case of one or more multi-stop GV s in an arbitrary
unknown network topology. Furthermore, whether the general problem or any of
its specializations is solvable in a synchronous network should also be considered.

5.3 Other Models of Agents and Malicious Behaviour

Many solutions presented in this chapter rest on the use of agents endowed with
unlimited memory so that they can carry a network map or build such a map
during the network exploration. In reality, however, the memory of a mobile agent
is constrained. Flocchini et al. [58] introduce agents with very limited memory.
More generally, an agent is oblivious if all the information it holds is cleared at
the end of each computing cycle. In essence, such agents are memoryless, that is,
have no memory of any past actions and computations: the decision on the next
action can only be based on what has been determined in the current computing
cycle. The consequences of using such agents (or agents with similar constrained
behavior) remain to be explored. In particular, can the ‘absence’ of memory in
such agents be compensated by the use of a whiteboard or tokens?

Black hole is a particular type of a malicious host with a simple behavior:
eliminating every agent instantly without leaving any trace. In fact, a host has
many ways to harm the agents: it may not only eliminate any agent residing
in it at any point in time, it may also alter an agent’s behavior (e.g., alter it
to disobey communication protocols, such as following FIFO order), duplicate
agents, introduce fake agents or tamper the runtime environment (e.g. changing
the contents of the whiteboard). Moreover the malicious threat can be mobile
instead of static and the malicious behavior of a host may be periodic instead
of constant. Those are all very interesting and challenging future directions on
protecting a network from hostile nodes or malicious agents.
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Abstract. The Network Decontamination problem consists of coordi-
nating a team of mobile agents in order to clean a contaminated network.
The problem is actually equivalent to tracking and capturing an invisi-
ble and arbitrarily fast fugitive. This problem has natural applications in
network security in computer science or in robotics for search or pursuit-
evasion missions. Many different objectives have been studied: the main
one being the minimization of the number of mobile agents necessary to
clean a contaminated network.

Many environments (continuous or discrete) have also been consid-
ered. In this Chapter, we focus on networks modeled by graphs. In
this context, the optimization problem that consists of minimizing the
number of agents has a deep graph-theoretical interpretation. Network
decontamination and, more precisely, graph searching models, provide
nice algorithmic interpretations of fundamental concepts in the Graph
Minors theory by Robertson and Seymour.

For all these reasons, graph searching variants have been widely stud-
ied since their introduction by Breish (1967) and mathematical formal-
izations by Parsons (1978) and Petrov (1982). This chapter consists of an
overview of the algorithmic results on graph decontamination and graph
searching.

Keywords: Graph searching · Path- and tree-decompositions
(Distributed) graph algorithms · Computational complexity

1 Introduction

Network Decontamination is a problem in which a team of mobile agents, called
searchers, aims at clearing the links and nodes of an infected network. Alterna-
tively, it can be defined as a pursuit-evasion game between a malicious intruder,
called the fugitive, and a team of searchers that must capture the fugitive.

Since its introduction by Breisch [Bre67], Parsons [Par78a] and Petrov
[Pet82], this field has received a lot of attention due to its numerous applica-
tions in network security and distributed computing, in robotics and differential
games, and in graph theory. Previous surveys on network decontamination have
been proposed [Bie91,Als04,FS06,FT08,CHI11,Bre12]. Most of them mainly
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focus either on a centralized setting or on a distributed setting. This chapter
aims at presenting an up-to-date (as exhaustive as possible) overview on graph
decontamination both in distributed and centralized settings.

Lost in a Cave. In 1967, Breisch opened the field of network decontamination
by asking the following question:

“A person is lost in a particular cave and is wandering aimlessly. Is there
an efficient way for the rescue party to search for the lost person? What is the
minimum number of searchers required to explore a cave so that it is impossible
to miss finding the victim if it is in the cave?” [Bre67].

Parsons [Par78a] and Petrov [Pet82] independently formalized the problem
in a continuous setting where the objective is, for a team of mobile agents, the
searchers, to capture an invisible and arbitrarily fast fugitive, in an environment
modeled by a continuous embedding of a graph G on a surface. In this model,
both the fugitive and the searchers move simultaneously in a continuous way
from a point of G (corresponding to a vertex or in the interior of an edge) to
another. The searchers capture the fugitive if, at some time, the fugitive occupies
the same point as a searcher. We recall this technical definition for completeness.

Definition 1 [Par78a]. For any k ∈ N
∗, let Ck(G) be the set of families

F = {s1, · · · , sk} such that, for every 1 ≤ i ≤ k, si : [0,∞[→ G is a con-
tinuous function. A search plan for G is a family F ∈ Ck(G) such that, for every
continuous function f : [0,∞[→ G, there exists tf ∈ [0,∞[ and i ∈ {1, · · · , k}
such that si(tf ) = f(tf ).

Intuitively, k represents the number of searchers. A search plan of Ck(G) is
therefore a set of trajectories determined for each searcher (si represents the
trajectory of searcher i), which ensures that, whatever be the trajectory f of
the fugitive in G, there is a searcher that will occupy the same point as the
fugitive at some time tf . In other words, a search plan ensures that whatever
be the strategy used by the fugitive, it must eventually be captured. Note that
this definition does not constrain the speeds of the searchers and of the fugitive.
Note also that, this model of pursuit-evasion game is actually equivalent to
the network decontamination problem where a team of searchers must clear an
infected network (e.g., a system of tunnels contaminated by some toxic gas, a
computer network infected by a virus, etc.).

The continuous model of Parsons and Petrov can equivalently be defined in
a discrete setting where environments are modeled by graphs [Par78b,Gol89a,
Gol89b]. This latter formulation (formal definitions and examples are postponed
to Sect. 2.1) is often referred to as Graph Searching1 in the literature. Besides its
natural applications in robotics or network security, one of the reasons for the
vast literature on graph searching is probably its close relationship with some
of the cornerstones of the Graph Minors theory [RS83,RS04]. Precisely, graph

1 We should emphasize that there is another different topic of graph theory, related
to Depth/Breadth First Search, called Graph Searching, a.k.a. Graph Traversals
(e.g. [CDH+16]).
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searching provides an algorithmic interpretation of tree- and path-decompositions
of graphs [RS90] that are important (algorithmic) tools of modern graph theory
(see [CM93,DH08,BFL+09,FLS18]). This relationship led to numerous results
common to graph searching and graph decompositions (see Sects. 2 and 4.1).

Pursuit-Evasion Games. Before starting our survey on graph searching, let
us briefly mention different approaches for studying pursuit-evasion games.
Roughly, the field may be divided into two main branches: pursuit-evasion games
in continuous environments (polygonal environments, polyhedral surfaces, etc.)
or in graphs. For the former approach, in a continuous setting, the reader is
invited to see [GLL+99,CHI11,BKIS12,KS15,ABC+15] and references therein.
In the case of discrete environments (i.e., in graphs), the field of pursuit-evasion
games may also be divided into (at least) two different families of problems where
results and tools are very different: Cops and robber games (see, e.g., [BN11] and
Chap. 1 of [Nis14]) and Graph Searching. The main differences between these
two approaches are (1) the different speeds of the fugitive, and (2) that Cops and
Robber games are played turn-by-turn by two players while, in graph searching,
the searchers and the fugitive move simultaneously. Roughly, both Graph Search-
ing and Cops and Robber games are related to graph structural properties, but
Cops and Robber games also rely on graph metric properties.

In this Chapter, we focus on graph environments, with searchers and an arbi-
trarily fast fugitive moving simultaneously, i.e., we speak about Graph Searching.

Organization of the Chapter. The main graph searching variants are for-
mally defined in Sect. 2, where relationships with graph decompositions and
algorithmic results are presented. In Sect. 3, we focus on the connected variant
of graph searching and on distributed algorithms for graph decontamination.
Finally, Sect. 4 is devoted to the study of several alternative graph searching
models. In this paper, the network decontamination terminology will be mainly
used in Sects. 2 and 3, and the pursuit-evasion terminology is used in Sect. 4.

We assume that the reader is familiar with graph terminology (see [Die12]).
In particular, see [BLS99] for the definitions of the graph classes mentioned
throughout the chapter.

2 Graph Searching

This section is devoted to the presentation of the basics of graph searching. We
focus on computational complexity, algorithms in a centralized setting, and on
the relationship between variants of graph searching and graph parameters and
decompositions.

2.1 The Seminal Model: Edge-Search

Graph searching aims at clearing the vertices and edges of a graph using a team
of mobile agents, called searchers. Let us now formally define the seminal variant
of graph searching, a.k.a. edge-searching [Par78b].
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Network Decontamination Terminology. Initially all vertices and edges of
a graph2 G = (V,E) are contaminated. A vertex is cleared when it is occupied
by a searcher (in particular, initially, no vertices are occupied). An edge e ∈ E
is cleared if a searcher slides along e. Once a vertex/edge has been cleared, it
is said clear. However, an unoccupied clear vertex is recontaminated as soon as
there is a path free of searchers from it to a contaminated vertex. Similarly, an
edge is recontaminated as soon as one of its endpoints is recontaminated.

A strategy consists of a finite sequence of steps, or moves, where each step
consists of either sliding a searcher along an edge, or placing a searcher at some
vertex of the graph, or removing a searcher from a vertex of G. The number
of searchers used by a strategy is the maximum number of searchers present in
the graph among all its steps. A strategy is winning if, eventually, it results in a
state where all vertices and edges are (simultaneously) clear.

Simple Examples. As a warm-up, let us consider the following examples
(Fig. 1).

v

Fig. 1. Schematic overviews of optimal edge-search strategies in paths and cycles.

Paths. Let Pn be an n-node path. A strategy in Pn consists of, first, placing a
searcher at one end of Pn and, then, sequentially sliding this searcher along
every edge until it reaches the other end of Pn. It is easy to see that, when the
searcher reaches the second end, every node and edge of Pn have been cleared
and have never been recontaminated. Hence, such a strategy is winning.

Cycles. As a second example, let us consider the cycle Cn on n ≥ 3 vertices. The
first step of any strategy can only consist of placing a searcher at some vertex
v ∈ V (Cn) which becomes clear. Now, removing this searcher from v would
result in the recontamination of v by its neighbors (and so it would result in
the initial state). On the other hand, sliding the searcher along an edge from
v to one of its neighbors u would result in a symmetrical state where only u is
clear and occupied (since v and the edge uv would be recontaminated by the
other neighbor of v). Hence, the only meaningful move is to place a second

2 Unless stated otherwise, all graphs considered in this chapter are simple, undirected,
and connected.
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searcher at v (actually we may imagine placing this second searcher at other
vertices but it would lead to other recontaminations) and slide it “around”
the cycle until it comes back to v. During every sliding step, the searcher
at v has guarded the vertex v, preventing the recontamination of all edges
traversed by the second searcher. Therefore, the presented strategy using 2
searchers is winning.

Universal strategy. The last example is a universal strategy, i.e., which is winning
in any (connected) graph G = (V,E) with n vertices. During the n first steps,
let us place one searcher at every vertex of G. Let v ∈ V be any vertex of
G and consider the searcher A at v. Sequentially, let us slide this searcher A
along the edges of G until all edges of G have been traversed at least once. At
this step, all edges not incident to v have both their ends occupied and have
been cleared by A, therefore they are all clear. Finally, for every neighbor
u ∈ N(v)3 of v, let us slide the searcher at u along the edge uv from u to v.
Clearly, the presented strategy is winning and uses n searchers.

Search Number. As illustrated by the above examples, in any n-node graph,
there exists a winning strategy using n searchers. On the other hand, a sin-
gle searcher may not be sufficient to ensure the existence of a winning strat-
egy (as shown in any cycle). Therefore, a natural optimization problem is to
determine what is the minimum number of searchers required to clear a given
graph. Precisely, the search number of a graph G, denoted by s(G), is the min-
imum integer k ≥ 1 such that there is a winning search strategy for G using k
searchers [Par78b].

Most of the work on graph searching has been dedicated to compute the
search number of graphs and to design optimal strategies (i.e., winning strategies
using the minimum number of searchers), both in centralized and distributed
settings. However, several other objectives (see Sects. 3.2 and 4.4) have been
considered such as minimizing the “cost” of a strategy, its “length”, the number
of moves of the searchers or the number of “rounds” of a strategy, etc.

Monotonicity. Before going further, let us define a crucial notion when dealing
with search strategies. A search strategy is monotone if, when following it, no
vertices nor edges are recontaminated. Said differently, in a monotone strategy,
it is forbidden to remove a searcher from a vertex v if v has at least one incident
contaminated edge and no other searcher is occupying v. Moreover, sliding a
searcher from a vertex v to one of its neighbors u ∈ N(v) is allowed only: if v is
occupied by another searcher; or if all edges incident to v are already clear; or if
vu ∈ E is the only edge incident to v that is still contaminated.

One of the first challenges concerning Graph Searching has been to answer
the following question: “does recontamination help?”. In other words, does
there always exist an optimal strategy that is monotone? This latter ques-
tion was first asked (and conjectured to be true) by Megiddo et al. [MHG+88].

3 Given a graph G = (V, E) and v ∈ V , N(v) denotes the set of neighbors of v, i.e.,
N(v) = {u ∈ V | uv ∈ E}.
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At a first glance, this question looks “intuitively obviously true” (why would it
be useful to let vertices be recontaminated?) but it is actually not obvious at all
and, moreover, we will see (Sects. 3 and 4.2) that there are variants of graph
searching where recontamination actually helps. The conjecture of Megiddo
et al. has been first proved by LaPaugh [LaP93] and an elegant proof of it
by Bienstock and Seymour [BS91] is sketched in the next sub-section.

Theorem 1 [LaP93,BS91]. “Recontamination does not help”, i.e., in any graph
G, there exists a winning monotone strategy using s(G) searchers.

We refer to Theorem 1 by saying that the edge-search variant is monotone.
To see the importance of this theorem, let us do the following remarks.

– First, there always exists a winning monotone strategy with a number of steps
which is polynomial (actually linear) in the size of the graph (since each edge
and vertex is cleared exactly once). Therefore, such a strategy constitutes a
polynomial-size certificate for the search number, i.e., given a graph G and
an integer k ≥ 1 as inputs, the problem of deciding if s(G) ≤ k is in NP. We
are not aware of another method to prove this fact.

– Second, monotone strategies are much easier to imagine and design, and they
are much easier to manipulate to prove lower bounds. For instance, the uni-
versal strategy presented above allows to show that s(Kn) ≤ n where Kn is
the complete graph with n ≥ 1 vertices. For any n > 3, this result is tight,
i.e., s(Kn) = n for every n > 3. The general technique to prove such a lower
bound is to consider an optimal monotone strategy (which exists by Theo-
rem 1) and assume, for the purpose of contradiction, that it uses less than n
searchers. Finally, it can be shown that because at most n − 1 searchers are
used, there must be a step with recontamination, leading to a contradiction.

– Last but not least, the monotonicity result allows to establish the equivalence
between graph searching and other graph parameters such as the parameters
related to graph decompositions that are the corner stone of the Graph Minor
theory (see Sects. 2.2 and 4.1).

2.2 Mixed/Node-Search and Pathwidth

The edge-search model provides a natural way to describe the seminal problems
of Breisch [Bre67] and Parsons [Par78a] and it is the main model studied in a
distributed setting (see Sects. 3.2 and 3.3). Variants “close” to edge-search have
been proposed because they are somehow easier to work with and, moreover,
provide alternative definitions for graph parameters known in other contexts.

Node-Search. Kirousis and Papadimitriou defined node graph searching
because of its relationship with pebble games [KP85,KP86,Bie91]. In this set-
ting, a strategy is defined as a sequence of moves like in edge-searching with
two main differences. First, only two moves are allowed: placement/removal of a
searcher at/from a vertex (so searchers do not slide along edges). Second, an edge



522 N. Nisse

becomes clear as soon as both its ends are occupied. In this variant, recontam-
ination and monotone strategies are defined as in edge-search. The correspond-
ing graph invariant is the node search number, denoted by ns. For any graph G,
ns(G)−1 ≤ s(G) ≤ ns(G)+1 [KP86]. Moreover, the three cases are possible since
s(Pn) = 1 < ns(Pn) = 2 (where Pn is a path on n nodes), s(G) = ns(G) = 2 if G
is a star with at least three leaves and s(K3,3) = 5 > ns(K3,3) = 4 (Fig. 2) [KP86].
Simple (and polynomial-time) transformations allow to “transpose” node-search
to edge-search and vice versa. Indeed, Kirousis and Papadimitriou proved that,
for any graph G, s(G//) = ns(G) + 1 and that s(G) = ns(G++) − 1 where
G// (resp., G++) is obtained from G by replacing each edge by two parallel edges
(resp., by three edges in series) [KP86]. As we will see below, the node-search vari-
ant is important because monotone node-strategies provide an algorithmic inter-
pretation of path-decompositions of graphs.

a b c

x y z

a b c

x y z

Fig. 2. Schematic overviews of optimal edge-search and node-search strategies in K3,3.
In both cases, one searcher remains at each of the vertices in {a, b, c}. In node-search
(left), the fourth searcher goes sequentially to x, y and then z. In edge-search (right),
a fourth search first goes to x while the fifth searcher sequentially clears the edges
incident to x, then the fourth searcher goes to y and the fifth searcher clears the edges
incident to it, and so on.

Mixed-Search. To prove Theorem 1, Bienstock and Seymour defined the notion
of mixed-search strategy [BS91] as an edge-search strategy with the difference
that an edge is cleared either when it is crossed by a searcher or when both
its ends are occupied by a searcher. The corresponding graph invariant is the
mixed search number, denoted by mixs. Again, there is a close relationship with
edge-search. Precisely, for any graph G, mixs(G) ≤ ns(G) ≤ mixs(G)+1 [BS91]
and inequalities are tight. Moreover, mixs(G+) = s(G) for any graph G where
G+ is obtained from G by subdividing each edge once [BS91].

As mentioned above, mixed-searching has been introduced because it allows
an elegant proof of Theorem 1. We aim at sketching this (a bit technical) proof
because it is instructive since many studies on graph searching use a similar
formalism, representing search-strategies by a sequence of tuples of sets of edges
or vertices.
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Sketch of Proof of Theorem 1 [BS91]. A crusade in a graph G = (V,E) is a
sequence (E0, · · · , E�) of subsets of E such that E0 = ∅, E� = E and |Ei −
Ei−1| ≤ 1 for every 1 ≤ i ≤ �. The crusade uses k searchers if |δ(Ei)| ≤ k for
every 0 ≤ i ≤ �, where δ(Ei) is the set of vertices incident with an edge in Ei

and an edge in E \ Ei. A crusade is progressive if Ei−1 ⊆ Ei for every 1 ≤ i ≤ �.
The proof consists of first easily showing that, if there is a mixed strategy

using k searchers, then there is a crusade using at most k searchers. The second
easy step of the proof is to show that, if there is a progressive crusade using k
searchers, then there is a monotone mixed strategy using at most k searchers.
The key of the proof is to prove that if there is a crusade using k searchers then
there exists a progressive crusade using at most k searchers. The latter step is
proved by considering a crusade C (using k searchers) such that

∑

0≤i≤�

(|δ(Ei)|+1)

is minimum and, under the previous assumption,
∑

0≤i≤�

|Ei| is minimum. Then,

using the submodularity of the function δ (i.e., for every A,B ⊆ E, |δ(A∪B)|+
|δ(A ∩ B)| ≤ |δ(A)| + |δ(B)|), it can be shown that C is progressive. �

This proves that mixed-searching is monotone. Noticing that the simple
transformations presented above preserve monotonicity, this implies that both
node-search and edge-search are monotone too.

Additionally, the monotonicity of mixed search allows to prove that, for any
graph G, mixs(G) − 1 actually equals the proper pathwidth of G [TUK95].

Path-Decomposition and Pathwidth. Pathwidth is an important structural
measure that appears in the Graph Minor theory [RS83,Bie91,Bod98] but also
in other domains such as VLSI design [DKL87,Kin92,FL94]. Given a graph
G = (V,E), a path-decomposition is a sequence P = (X0, · · · ,X�) of subsets of
vertices of G, called bags, such that (1)

⋃
0≤i≤� Xi = V ; (2) for every uv ∈ E,

there exists 0 ≤ i ≤ � with {u, v} ⊆ Xi; and (3) for every 0 ≤ i ≤ j ≤ k ≤ �,
Xi ∩ Xk ⊆ Xj . The width of P is the size of its largest bag minus one, and the
pathwidth of G, denoted by pw(G), is the minimum width of a path-decomposition
of G (see an example on Fig. 3).

From any path-decomposition P = (X0, · · · ,X�) of a graph G, it is easy
to derive a node-search strategy for G: for i from 0 to �, sequentially place
a searcher at every vertex of Xi and then sequentially remove the searchers
from the vertices in Xi \ Xi−1 (see an example on Fig. 3). From the properties
of path-decompositions, for every 0 ≤ i < �, S = Xi ∩ Xi+1 separates A =⋃

0≤j≤i Xj \Xi+1 from B =
⋃

i<j≤� Xj \Xi [Bod98] and therefore, the searchers
at S prevent B from recontaminating A. Hence, it is easy to see that such a
strategy is winning and monotone and that the number of searchers used equals
the width of P plus one. Reciprocally, from any monotone winning strategy using
k searchers, it is easy to derive a path-decomposition of width k −1 (where each
bag corresponds to the set of vertices occupied by a searcher at each step).
Therefore, by Theorem1 (applied to node-search):
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Fig. 3. Example of a graph G (left) and one of its path-decompositions P =
(X0, · · · , X7) of width 3 (right). Prove that it is optimal, i.e., that pw(G) = 3.
A (monotone winning) node-search strategy corresponding to P is then S = (a, b, c,
ā, b̄, d, e, f, c̄, ē, h, g, d̄, i, ḡ, j, ī, j̄, k, l, f̄ , h̄, m, o, k̄, ō, n), where x means to place a
searcher at vertex x, while x̄ means to remove the searcher at x.

Theorem 2 [KP85,KP86,EST94]. For any graph G, ns(G) = pw(G) + 1.

Among other important consequences, Theorem 2 allows to transpose the numer-
ous results concerning pathwidth to node-search and, sometimes, to edge-search
and mixed-search by using the simple transformations seen above.

Note that pathwidth, and so node-search number, may be equivalently
defined in terms of a measure, called vertex-separation, of linear layouts of ver-
tices [Kin92]. Similarly, the mixed-search number of a graph G can be defined in
terms of linear width (some measure on the linear layouts of the edges) [Thi00].

2.3 Complexity and Algorithms

This subsection is devoted to the computational complexity of the edge-, node-
and mixed graph searching problems. Algorithms to compute the search numbers
(and corresponding strategies) in general graphs and particular graph classes are
also presented.

Hardness. Given an n-node graph G and an integer k ≥ 1 as inputs, the prob-
lem of deciding if s(G) ≤ k has first been proved to be NP-hard in [MHG+88].
Then, Monien and Sudborough proved that this problem is NP-hard in the class
of planar graphs with maximum degree 3 [MS88]. This latter result also holds for
both node-search and mixed-search. Later on, Gustedt proved that deciding the
pathwidth (and so the node-search number) is NP-hard in the class of chordal
graphs [Gus93]. Edge-search is also NP-hard in chordal graphs [PTK+00]. More-
over, assuming the Small Set Expansion Conjecture, the problem of deciding
the pathwidth of a graph is NP-hard to approximate within a constant fac-
tor [WAPL14].
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Exact Generic Algorithms. On the positive side, all graph searching variants
mentioned so far are closed under taking minor. That is, for any minor4 H of a
graph G, s(H) ≤ s(G) (resp., ns(H) ≤ ns(G) and mixs(H) ≤ mixs(G)). There-
fore, from the Graph Minor theory [RS04,Die12], it follows that, for any fixed k ≥
1, the set of minimal obstructions for having a search-number at most k is finite,
and so each search-number admits a Fixed Parameter Tractable (FPT) algo-
rithm [RS95,CFK+15] (where the parameter is the size of the solution). In the
case of node-search, Ellis et al. first designed an algorithm in time O(n2k2+4k+8)
via dynamic programming [EST87]. They also gave structural characterizations
of graphs with node-search number at most 3 [EST94]. Then, Bodlaender and
Kloks gave the first constructive FPT algorithm for deciding whether ns(G) ≤ k

in time kO(k3)n [BK96]. In the case of mixed-search (and linear width), Bod-
laender and Thilikos gave a constructive FPT algorithm [BT04]. Thilikos also
designed a linear-time algorithm to decide whether a graph has mixed-search
(resp., edge-search) number at most two by fully characterizing the set of min-
imal obstructions [Thi00]. In addition to parameterized algorithms, other algo-
rithms have been proposed to compute the pathwidth of general graphs. The
best known exact exponential-time algorithm computing the pathwidth runs in
time O(1.89n) [KKK+16] (see also [SV09]). Moreover, using the definition(s)
of graph searching in terms of vertex-layout, several Integer Linear Programs
solving these problems have been proposed [PSS13,CMN16,Cou16,Mal18].

Graph Classes. Search problems can be solved in various graph classes in poly-
nomial time. The case of trees has been particularly studied [Par78a,MHG+88,
EST94,PHH+00]. In particular, Skodinis designed a linear-time algorithm for
computing the node-search number of trees and a corresponding strategy [Sko03].
A generic and distributed algorithm for computing, in time O(n log n), any of
the search numbers in n-node trees (only the initial setting of the algorithm dif-
fer) has been designed in [CHM12], where the interesting notion of hierarchical
decomposition of trees is introduced. The algorithms for trees are all based on
the so-called Parsons’ lemma. Since trees are particularly interesting in graph
searching, we sketch its proof below. In the following, given a tree T , a vertex
v ∈ V (T ) and a connected component T ′ of T \ v, let T ′ ∪ v denote the subtree
induced by the vertices of T ′ and v.

Lemma 1 (Parsons’ lemma [Par78b]). For any k ∈ N
∗ and any tree T ,

s(T ) ≥ k + 1 if and only if T has a vertex v with at least three components
T1, T2, T3 of T \ v such that s(Ti ∪ v) ≥ k for every i ∈ {1, 2, 3}.
Sketch of Proof. The “if” part follows from monotonicity. Indeed, assume there
is a monotone search strategy using at most k searchers in T and let v, T1, T2,
and T3 be as defined in the lemma. By monotonicity, we may assume that T1 ∪ v,
T2 ∪ v and T3∪v are cleared in this order. However, to clear T2∪v, there must be
a step at which all k searchers are occupying vertices of T2, which would imply
a recontamination of T2 ∪ v from T3, a contradiction.
4 A minor of a graph G is any subgraph of any graph obtained from G by contracting

some edges.
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On the other hand, if there exists no vertex v as in the lemma, it is possible
to find a subpath P , called an avenue, such that, for every connected component
Tu of T \ P (where u is the unique neighbor of Tu in P ), s(Tu ∪ u) < k (see
Fig. 4). Then, a strategy using k searchers consists of sliding one searcher from
one end of P to its other end, while sequentially clearing the components of T \P
using the k − 1 remaining searchers. The avenues can be recursively computed
by a dynamic programming algorithm. �

= k ≤ k≤ k ≤ k≤ k

≤ k≤ k ≤ k≤ k ≤ k≤ k ≤ k≤ k

≤ k≤ k ≤ k≤ k

≤ k≤ k

≤ k≤ k

≤ k≤ k

= k

= k

vx y

Fig. 4. Schematic overview of a tree T with s(T ) = k + 1. A triangle labelled with
“≤ k” represents a subtree with search number at most k. The node v has at least
three components (in red) with search number k. The bold path (between x and y) is
an avenue in T . (Color figure online)

The above strategy implies that s(T ) = O(log n) in any n-node tree T .
Moreover, this bound is tight (consider a rooted tree where all internal vertices
have degree 3 and all leaves are at the same distance from the root).

In contrast, we should mention that graph searching is NP-hard in weighted
trees, where weights on vertices represent the number of searchers required to
preserve a vertex from recontamination, and edge-weights represent the number
of searchers that must simultaneously traverse an edge to clear it [MT09].

Many other graph classes have been studied. The pathwidth is polynomial-
time computable in circular arc graphs (in time O(n2)) [ST07], unicyclic graphs
[EM04,YZC07], biconvex bipartite graphs [PY07], in some subclasses of chordal
graphs [Gus93], in hypercubes [CK06], in cographs [BM93] (in linear time), etc.
The pathwidth can also be computed in time nO(1) (in the proposed algorithm,
the exponent is larger than 11) in outerplanar graphs (using the fact that these
graphs have bounded treewidth) and 2-approximation algorithms (using the dual
of outerplanar graphs) running in time O(n log n) are designed in [BF02,CHS07].

The other variants have also been studied. The mixed search number can be
computed in linear time in interval graphs, in polynomial time in split graphs
[FHM10], and in linear time in permutation graphs [HM08]. The edge search
number can be computed in linear time in cographs [GHM12] and in polynomial
time in split graphs and interval graphs [PTK+00].
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Open Questions. We would like to conclude this section with some intriguing
open questions. First, note that there are no known graph classes where the
complexity of deciding the edge/node/mixed search number differs. Moreover,
for any graph G and any distinct x, y ∈ {s, ns, mixs} as inputs, the complexity
of computing x(G) − y(G) is not known.

3 Connected Graph Searching and Distributed Setting

In all models defined in Sect. 2, removing a searcher and placing it at any vertex is
allowed. Such a jump may however be unrealistic or even impossible in practical
applications. Removing a searcher from a vertex v and placing it at another
vertex u may be replaced by a sequence of slides along the edges of a path
from v to u. However, this would imply that the searcher travels in an unsafe
environment (through a part that is still contaminated) and moreover, it may
lead to strategies that are not monotone. To handle this problem, Barrière et
al. proposed a new variant, called connected graph searching, where removing a
searcher is not allowed and in which, at every step, the subgraph induced by the
clear edges and vertices must be connected [BFFS02].

Two main questions were asked with the introduction of connected graph
searching in [BFFS02,BFST03]. First, what is “the cost of connectivity” in terms
of the number of searchers? That is, does there exist a constant c such that any
graph G admits a connected search strategy using at most c · s(G) searchers?
Second, is connected graph searching monotone?

3.1 Cost of Connectivity

A connected search strategy S in a graph G = (V,E) and using k ≥ 1 searchers
can be defined as follows. First, a vertex v0 ∈ V , called homebase, is chosen and
all the k searchers are placed at it. Then, S is a sequence of moves, where each
move consists of sliding a searcher at u ∈ V along an edge e = uv ∈ E and such
a move is allowed only if, after the sliding, there is path of clear edges from v0
to v, i.e., the clear part must always be connected (here we only consider the
edge-search variant where an edge is cleared when a searcher slides along it). The
connected search number of a graph G, denoted by cs(G), is the smallest k such
that there exists a connected search strategy that clears G using k searchers.
Clearly, the choice of the homebase has an impact on the number of searchers
(e.g., consider a path where the homebase is not one of its ends). Hence, the
connected search number is defined with respect to the “best” possible homebase.

(Non) Monotonicity. Connected strategies clearly allow recontamination.
Monotone connected search strategies are defined in a similar way: first, a ver-
tex v0 ∈ V is chosen and all the k searchers are placed at it, then, the strategy
consists of a sequence of moves, where each move consists of sliding a searcher
at u ∈ V along an edge e = uv ∈ E only if either u is still occupied by a searcher
after the move, or all incident edges of u but possibly e were already clear before
the move. One important and surprising result is that, contrary to the classical
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graph searching, in the connected variant, recontamination may help [YDA09]. It
is interesting to mention that their counter-example G has about 400.000 vertices
and is such that cs(G) = 281 while any monotone connected strategy requires
at least 290 searchers (see Fig. 5). We are not aware of a smaller example.
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Fig. 5. Schematic overview of a graph G such that cs(G) = 281 < mcs(G) =
290 [YDA09]. Any circle with label x inside represents a clique of size x. A bold edge
between two cliques A and B (with |A| ≤ |B|) represents a perfect matching between
the vertices of A and a subset of size |A| of the vertices of B. A dotted line with label
� between two cliques of same size x represents a “path” of � cliques of size x where
two consecutive cliques are joint by a perfect matching.

Hence, the monotone connected search number of a graph G, denoted by
mcs(G), may be strictly larger than its connected search number cs(G). A con-
sequence of this result is that it is not known whether the problem of computing
the connected search number of a graph is in NP. As far as we know, there
are no lower or (non-trivial) upper bounds on the number of steps of connected
search strategies. Another difference between the search number and its (mono-
tone or not) connected counter part is that mcs and cs are not minor-closed.
Hence, it is not clear whether the problem of computing the (monotone) con-
nected search number of graphs admits a fixed parameter tractable algorithm
(nor even a polynomial-time algorithm when the number k of searchers is fixed).
However, both parameters are closed under taking contractions [BGTZ16].

Recontamination does not help for connected graph searching in trees, i.e.,
mcs(T ) = cs(T ) in any tree T [BFFS02,BFF+12] (proof à la Bienstock and
Seymour). Besides, in any n-node tree T and for any homebase v0, there exists
a monotone connected strategy, starting from v0 and using at most 1 + cs(T )
searchers and, moreover, cs(T ) = O(log n) [BFFS02]. In the same paper, it is
shown that computing the connected search number can be done in polynomial
time in trees. Recently, it has been shown that recontamination does not help in
the class of graphs with connected search number at most two [BGTZ16]. That
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is, for any graph G, mcs(G) = 2 if and only if cs(G) = 2. The result follows
from the characterization of this class of graphs by exhibiting the family of 177
minimal-contraction obstructions.

Bk−1Bk−1 Bk−1Bk−1

Bk−1Bk−1

Fig. 6. On the left, the tree D3 such that s(D3) = 3 < cs(D3) = 4. On the right, the
recursive construction of the tree Dk where Bk−1 is the complete binary tree of depth
k − 1 for any k ≥ 2. For any tree T , cs(T ) ≥ k + 1 if and only if T admits Dk as a
minor [BFST03,BFF+12].

Cost in Number of Searchers. Let us start with a simple example. Consider
the complete rooted tree D3 with all internal vertices with degree three and all
leaves at distance 3 from the root. It is easy to see that s(D3) = 3 < cs(D3) =
4 (Fig. 6). Therefore, connectivity has some price in terms of minimum number
of searchers. In any tree T , cs(T ) ≤ 2s(T )− 2 and this bound is tight [BFST03,
BFF+12]. The proof relies on the fact that cs(T ) is closed under taking minors
in the class of trees and that cs(T ) ≥ k if and only if T contains some specific
tree Dk as a minor (in contrast with the classical search number, the set of
minimal obstructions for connected search number in trees is reduced to a single
tree).

Therefore, the question of the cost of connectivity arises naturally: how far
is the connected search number of a graph from its pathwidth? In other words,
does there exist a constant c ≥ 2 bounding the ratio between connected search
number and search number in any graph? Several partial results have been pro-
posed [Nis09,BFF+12] before Dereniowski closed the question:

Theorem 3 [Der12b]. mcs(G) ≤ 2s(G) + 3 in any graph G.

To prove Theorem 3, Dereniowski designed a polynomial time algorithm that
transforms any monotone search strategy using k searchers into a connected one
using at most 2k+3 searchers. His result shows that the ratio between monotone
connected search number and connected search number is bounded by 2.

Complexity and Algorithms. On the complexity point of view, computing cs
is NP-hard since cs(G∗) = s(G)+1 for any graph G where G∗ is obtained from
G by adding a universal vertex. Dereniowski proved that weighted connected
graph searching is also NP-hard in weighted trees [Der11]. On the positive side,
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a polynomial time approximation with approximation ratio 3 is designed for this
problem in trees [Der12a]. Similar results were proved while with different termi-
nology (speaking about edge-width instead of weight) [BTK11]. The connected
search number of outerplanar graphs has been investigated in [FTT05]. Very
recently, Dereniowski et al. proved that the problem of deciding if cs(G) ≤ k
can be solved in polynomial-time when k is fixed [DOR18].

Open Questions. Is the problem of deciding (when k is part of the input)
whether cs(G) ≤ k in NP? Is it FPT in k?

Internal Graph Searching. To conclude this subsection, let us mention inter-
nal graph searching that can be defined as monotone connected graph searching
but where there may be several homebases. That is, initially, one or more ver-
tices are chosen and some searchers are placed at them. Then, the only allowed
moves are to slide searchers if it does not create recontamination. This variant
has been first introduced in [BFST03] and an interesting heuristic has been pro-
posed in [FNS07]. In this paper, the initial vertices (the homebases) are chosen
randomly and then the searchers grow the cleared part around these vertices
in a BFS manner, then the best obtained strategies are used to generate next
generations of strategies using a classical genetic algorithm.

3.2 Distributed (Monotone) Connected Graph Searching

A major reason for which the connectivity constraint has been introduced is that
it ensures safe communications between the searchers during the execution of the
strategy. For instance, when the searchers have to coordinate themselves but have
no way to communicate when they are far from each other, possible solutions
would be either to leave some messages on the vertices or to use a searcher for
carrying instructions between other searchers. In both cases, the connectivity
constraint helps since it allows to avoid that messages are left on contaminated
vertices that the searcher crosses when moving in the contaminated area to
transfer instructions.

In this subsection, we study the clearing of graphs in such environments where
the searchers have only local vision of their environment and must communicate
to coordinate the clearing.

Distributed Model. The k searchers are modeled by synchronous autonomous
mobile computing entities (automata) with distinct IDs from 1 to k. Otherwise
searchers are all identical, run the same program, and use at most O(log n) bits
of memory, where n is the number of vertices of the network. A network is mod-
eled by an undirected connected graph G. A priori, the network is asynchronous.
However, as explained below, any synchronous algorithm can be transposed into
an asynchronous environment by adding an extra searcher traveling in the (con-
nected) clear part of the graph to synchronize the moves of all searchers. More-
over, the network is anonymous, that is, the vertices are not labelled. The edges
incident to any vertex u are labelled from 1 to its degree, so that the searchers can
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distinguish the different edges incident to a vertex. Every vertex of the network
has a zone of local memory, the whiteboard in which searchers can read, erase,
and write symbols (unless stated otherwise, whiteboards have size O(log n) bits
and are only used for face-to-face communication between searchers occupying
a same vertex). It is moreover assumed that searchers can access these white-
boards in fair mutual exclusion. The goal is then to design an algorithm, called a
search protocol, such that the fewest number of searchers running this algorithm
achieves the clearing of the graph in a connected way.

Universal Algorithms. In this section, we present several search protocols
that have been designed to clear any graph G = (V,E). In this setting, the
searchers do not know in advance in which graph they are launched. That is,
when occupying some vertex u, a searcher executes the algorithm only based on
its current state (the memory of the searcher), on the content of the whiteboard
at u, and on the degree of u. [BFNV08] designed a general algorithm allowing
mcs(G) + 1 searchers to connectedly clear any graph G. Since the extra searcher
(compared to the centralized case) cannot be avoided due to the asynchronic-
ity of the network, this is optimal. Roughly, this algorithm orders all possible
sequences of moves in some well-suited lexicographical order and tries them one
after the other (sequentially increasing the number of searchers that are used)
until the graph is clear. For this purpose, the searchers use whiteboards of size
O(|E| log |V |) bits where they write all their moves. At the end, a description
of the strategy is then stored in a distributed way on the whiteboards. This
algorithm has however two drawbacks: it takes an exponential amount of time
(which cannot be avoided unless P = NP ) and the clearing is not monotone.

To deal with monotonicity, [NS09] proposed to address the problem by pro-
viding a small amount of information (advice) to the searchers, following the
framework of [FIP06]. Precisely, it is shown that the minimum number of bits of
information that must a priori be distributed in an n-node graph G in order to
clear it monotoneously with the optimal number of searchers is Θ(n log n) [NS09].
Roughly, this piece of information encodes a spanning tree “along which” the
clearing must be performed.

Another approach to handle monotonicity is to allow the use of more
searchers. More precisely, the cost of a search protocol P in a graph G with
homebase v0 is measured by the ratio between the number of searchers it uses
to clear G and the search number mcs(G) of G. This ratio, maximized over all
graphs and all starting vertices, is called the competitive ratio of the protocol P.
[INS09] proved that monotonicity has an important cost (i.e., may increase sig-
nificantly the minimum number of searchers) in a distributed setting since any
search protocol (clearing any graph in a monotone connected way) has compet-
itive ratio Ω( n

log n ) and that this lower bound holds in the class of trees with
maximum degree 3. On the positive side, this bound is tight: there exists a search
protocol with competitive ratio O( n

log n ) [INS09]. The idea behind the algorithm
is to “control” a (partial) spanning tree of the clear part and to determine the
next edge to be cleared according to it in such a way that this tree does not
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contain a “high” ternary tree as a minor (since such a minor would lead to the
use of many searchers).

Fig. 7. Illustrations of a chordal ring (left), the hypercube of dimension 4 (center) and
the Sierpiński graph built by 4 iterations (right).

Specific Topologies. Many distributed search protocols specialized for particu-
lar graph classes have also been designed. A distributed algorithm that computes
the connected search number of trees has been proposed in [BFFS02,BFF+12].
Then, a self-stabilizing algorithm for clearing trees has been designed [MM09]
and further improved in [BMM10]. The latter algorithm allows 1+log n searchers
to clear any n-node tree and stabilizes in O(n log n) moves after initialization.
Moreover, it is a non-silent algorithm, meaning that it continues to clear the
tree indefinitely.

Topologies that are commonly used for interconnection networks (see exam-
ples on Fig. 7) have been studied. Precisely, the following topologies have been
considered: grids [FLS05], chordal rings and tori [FHL07], hypercubes [FHL08],
and Sierpiński graphs [Luc09]. In this setting, the authors compare the number
of searchers, moves, and the number of rounds of their algorithms in two mod-
els. In the first model, a particular searcher is used to coordinate the clearing
while, in the latter one, the searchers are endowed with some visibility abil-
ity: they can see whether their neighbors are clear or contaminated, empty or
occupied. All designed algorithms use the fact that all these graph classes admit
relatively well-structured centralized strategies and, moreover, the symmetries of
these topologies allow the searchers to benefit from some sense of direction (for
instance, clockwise orientation in chordal rings or standard compass-labelling in
grids). For instance, in a grid starting from one of its corners, the strategy first
makes the searchers occupy all vertices of the first column and then move “in
parallel” from one column to the next one until the grid is clear. In the case
with visibility, the searchers can locally decide when they have to go to the next
column without recontamination. Table 1 summarizes the obtained results (note
that these results consider the clearing of vertices only or, said differently, an
edge is cleared in the same way as in node-search).

Open Questions. The studies of the tradeoffs between the number of searchers,
moves, and time steps are left as open problems.
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Table 1. Monotone connected search in specific topologies. Results marked with a star
(∗) are known to be optimal.

Topology Model # searchers # moves # time steps

m × n Grids [FLS05]

(m ≤ n)

Coordinator

Visibility

m + 1∗
m∗

m2+4mn−5m−2
2

m2+2mn−3m
2

mn − 2

m + n − 2∗

m × n Tori [FHL07]

(m ≤ n)

Coord.

Vis.

2m + 1∗
2m∗

2mn−4m−1

mn − 2m

mn − 2m

n − 2

n-node Chordal rings [FHL07]

with largest chord of length �

and �′ second largest chord

Coord.

Vis.

2� + 1∗
2�∗

4n − 6� − 1

n − 2�

3n − 4� − 1

� n−2�
2(�−�′) �

Hypercubes [FHL08]

(dimension n)

Coord.

Vis.

Θ( n√
log n

)∗

n/2

O(n log n)

O(n log n)

O(n log n)

O(log n)∗

Sierpiński graphs [Luc09]

built by n iterations

Coord.

Vis.

n + 1∗
n + 2

O(n3n), Ω(3n)

−
O(3n), Ω(3n/n)

−

A search protocol has also been designed for partial grids (i.e., connected
subgraphs of n × n grids) that uses O(

√
n) searchers [DU16]. The algorithm

strongly uses sense of direction and the algorithm in [BDK15] as a subprocedure.
The algorithm is optimal since some partial grids require this amount of searchers
and moreover, the authors prove that, for any search protocol, there are partial
grids (with search number O(log n)) that force the algorithm to use Ω(

√
n)

searchers [DU16].
To conclude this subsection, let us mention the cloning variant proposed

in [FHL08]. In this model, the searchers may clone themselves, i.e., the searchers
are not restricted to appear at the homebase but, at any step, a searcher at v
may create new searchers at v (this essentially allows to decrease the number
of moves and time steps). Various topologies have been studied in this setting:
hypercubes [FHL08], graph products [ISZ07], grids and tori [ISZ08], and pyra-
mids [SIS06].

3.3 Exclusive Graph Searching and Look/Compute/Move

Exclusive graph searching is defined as mixed graph searching with the extra
exclusivity constraint (each vertex can be occupied by at most one searcher at a
time) and such that searchers cannot jump from one vertex to another one, i.e.,
searchers can only slide along edges [BBN17].

Exclusive graph searching addresses two limitations of classical variants as
far as practical applications are concerned. First, as in internal graph search-
ing, the unrealistic assumption that searchers may jump is got rid of. Second,
classical variants assume that any vertex can be simultaneously occupied by
several searchers. This assumption may be unrealistic in several contexts. Typ-
ically, placing several searchers at the same vertex may simply be impossible
in a physical environment in which, e.g., the searchers are modeling physical
searchers moving in a network of pipes. In the case of software agents deployed
in a computer network, maintaining several searchers at the same node may
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consume local resources (e.g., memory, computation cycles, etc.). The exclusiv-
ity constraint aims at dealing with this problem.

More formally, given a connected n-node graph G, an exclusive search strategy
in G, using k ≤ n searchers consists of (1) placing the k searchers at k different
vertices of G, and (2) performing a sequence of slidings ensuring the exclusiv-
ity constraint. An edge becomes clear whenever either a searcher slides along
it, or one searcher is placed at each of its extremities (as in mixed-search). The
exclusive-search number of G, denoted by xs(G) is the smallest k for which there
exists a winning search strategy in G. Exclusive graph searching behaves very
differently from classical variants. For instance, xs(Sn) = n − 1 for any star Sn

with n ≥ 3 leaves. More important, it is not monotone even in trees and it is not
closed under taking subgraphs [BBN17]. It has been proved that, for any graph
G with maximum degree Δ, ns(G) ≤ xs(G) ≤ (Δ−1)(ns(G)+1) [BBN17]. Sur-
prisingly, computing the monotone exclusive search number is NP-hard in split
graphs (where pathwidth can be polynomially computed) and can be solved
in polynomial time in a subclass of star-like graphs (where pathwidth is NP-
hard) [MNP17]. A linear-time algorithm in cographs is also proposed in [MNP17].
A polynomial-time algorithm that computes the monotone exclusive search num-
ber of trees has been designed in [BBN17]. It is based on a lemma in the same
vein as Parsons’ lemma (while more technical) and then follows the same princi-
ples as the algorithm of Ellis et al. for edge-search (see Lemma 1) but the proof
is more technical due to the non-closedness under subgraph.

Open Questions. Is the problem of deciding (when k is part of the input)
whether xs(G) ≤ k in NP? Is it polynomial when k is fixed? Is it FPT in
k? Also the study of the exclusive search number in various graph classes is still
open.

Distributed exclusive graph searching has been studied in the Look-Compute-
Move model where searchers have very weak abilities (they are anonymous and
oblivious) but can “see” the whole network (see Chaps. 8 and 9 for more
details). Algorithms for paths and trees, using the optimal number of searchers
(or more), have been designed in [BBN12] and the case of cycles is studied
in [DSN+15,DNN17]. The algorithm in cycles relies on a subprocedure that
places the searchers in an adequate configuration that can also be used to solve
other coordination problems such as gathering and perpetual exploration.

Open Questions. One intriguing remaining question in the cycle is whether 4
searchers can exclusively clear any cycle with at least 10 vertices in the Look-
Compute-Move model. Indeed, for any n-node cycle with n > 10, it is possible
to clear it with k ∈ {5, · · · , n − 3} ∪ {n} searchers and not possible with ≤ 3
searchers or k ∈ {n − 2;n − 1} searchers [DSN+15].

4 Plethora of Alternative Models

Recall that, in the Introduction, it was mentioned that the network decontam-
ination problem can be equivalently seen as a pursuit-evasion game between a
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team of searchers and a fugitive (an intruder, a lost spelunker...). Variants of
graph searching that have been described so far can all be stated in terms of
capturing a lucky invisible and arbitrarily fast fugitive in a graph. By “lucky” (or
“omniscient”), we mean that the objective is the design of a strategy that cap-
tures the fugitive in the worst case, i.e., whatever be the behavior of the fugitive.
From now on, we use the pursuit-evasion terminology (except in Subsect. 4.3)
because it fits the proposed models better.

4.1 Visible/Inert Fugitive and Tree-Like Structures

Visible Fugitive. A first natural extension of node-search concerns the case of
a visible fugitive. In this variant, the fugitive occupies a vertex that is known by
the searchers but may move at any step to another (known) vertex. In particular,
if a step of a strategy consists of placing a searcher at the vertex occupied by
the fugitive, the latter may simultaneously (before the searcher “lands”) move
to any vertex it can access (through a path free of searchers). The visible search
number of a graph G, denoted by vns(G), is the minimum number of searchers
required to catch a visible fugitive in this setting. For instance, vns(T ) = 2 for
any tree T (not reduced to a single vertex) while, for any n ∈ N

∗, there are
n-node trees T such that ns(T ) = Θ(log n) (see Sect. 2.3). The visible search
number shares a relationship with treewidth5, denoted by tw(G), that is similar
to the relationship between pathwidth and node-search number. Precisely:

Theorem 4 [ST93]. For any graph G, vns(G) = tw(G) + 1.

As in the case of pathwidth and node-search, it is easy to show that monotone
visible node-search strategies are equivalent to tree-decompositions. Again, the
difficulty is to prove that there always exists an optimal strategy that is mono-
tone. Seymour and Thomas proved the monotonicity of visible graph searching
by defining a dual structure for the tree-decompositions, namely the brambles
(initially called screens) [ST93], that actually corresponds to a winning strategy
for the fugitive. Given a graph G = (V,E), a bramble is a family B = (Bi)0≤i≤�

of subsets of vertices such that (1) Bi induces a connected subgraph of G for
each i and (2) the sets Bi are pairwise touching (i.e., any two sets intersect or
there exists an edge linking them). The order of B is the minimum size of a
hitting set, i.e., the smallest number of vertices in V that intersect each set in
B. The treewidth of a graph G is at most k − 1 ∈ N (and so vns(G) ≤ k) if
and only if the maximum order of a bramble of G is k [ST93]. Given a graph
G with a bramble B of order k + 1, it is easy to describe a winning strategy for
the fugitive against ≤ k searchers. Indeed, at every step, the fugitive can move
(since the sets are connected and pairwise touching) to a set of B whose vertices
are occupied by no searcher. The notion of bramble is very useful to prove lower
bounds on the visible search number of graphs. For instance, it is easy to show
that vns(Gn×n) ≤ n + 1 in any n × n grid Gn×n and a bramble of order n in

5 Due to the huge number of works on treewidth, we have decided not to detail them
(nor the definition of treewidth) and refer the reader to [Bod98,Die12,CFK+15].
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Gn×n can also easily be found. Altogether, this proves that vns(Gn×n) = n + 1
(such a result is rather technical without the help of brambles).

The connected capture of a visible fugitive has been studied in [FN08]. As its
invisible counterpart, it is not monotone. However, in contrast with the invisible
case (Theorem 3), this variant may require Ω(log n ∗ vns(G)) searchers in some
n-node graphs G and this is asymptotically tight [FN08].

Non-deterministic Graph Searching. Non-deterministic graph searching
generalizes both node-search and visible node-search [FFN09]. Given a fixed
integer q ≥ 0, a non-deterministic strategy aims at catching an invisible fugitive
with the additional ability that the fugitive is visible during at most q steps of
the game (the choice of when to see the fugitive is left to the searchers dynami-
cally during the strategy). The minimum number of searchers required to catch
the fugitive in this setting is denoted by nsq(G). By definition, ns0(G) = ns(G)
(the fugitive is always invisible) and ns∞(G) = vns(G) (the fugitive is always
visible). Computing nsq(G) is NP-hard for any q ≥ 0 and an exponential-time
algorithm to compute it is presented in [FFN09]. The monotonicity of this variant
is proved in [MN08] and a constructive FPT algorithm is designed in [BBM+13].
A polynomial-time dynamic programming algorithm to compute a
2-approximation of nsq(T ) in the class of trees T (exact for q ≤ 1) is designed
in [ACN15].

Open Questions. The existence of an exact polynomial-time algorithm that
computes nsq(T ) in any tree T and for any q > 1 is still open.

Another interesting open question is the definition of a dual structure
(similar to brambles for visible node-search [ST93] or to blockage for node-
search [BRST91]) for non-deterministic graph searching.

Inert Fugitive. Another variant of node-search is related to tree-decompositions.
A fugitive is inert (a.k.a., lazy) if it is invisible but can only move if a searcher
is landing at the vertex it is currently occupying. In any graph G, the minimum
number of searchers required to catch the fugitive in this setting also equals the
treewidth of G plus one [RT11].

LIFO-Search. Last but not least, let us mention a variant of graph searching
related to another tree-like parameter of graphs. Namely, LIFO-search is a variant
of node-search where the searchers are labelled with distinct integers and with the
extra constraint that a searcher can be removed only if no searcher with smaller
label is present in the graph [GHT12]. In [GHT12], this variant is proved to be
monotone and equivalent to the tree-depth of graphs [NdM08].

4.2 Directed Graphs

During the last decade, several digraph decompositions have been proposed in
order to try to bring to directed graphs the same algorithmic power as tree-
decompositions provide for undirected graphs [GHK+16]. Interestingly, most of
these attempts have been defined through graph searching games. An important
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difference between directed graph searching games and undirected ones arises via
the notion of monotonicity. In the directed case, there are two distinct definitions of
monotonicity: a game is cop-monotone if each vertex is occupied at most once by a
searcher, it is robber-monotone if the area reachable by the fugitive never increases.
Clearly a cop-monotone game is robber-monotone. However, as shown below, the
converse is not always true.

K2p−1K2p−1 K2p−1K2p−1

Kp−1Kp−1

IpIp

Fig. 8.On the left, a graph in which 4 searchers can capture a visible fugitive constrained
to move in strongly connected components free of searchers (directed treewidth vari-
ant) but every robber-monotone strategy requires 5 searchers [Adl07]. On the right, the
schematic overview of a graph where 3p − 1 searchers can capture a visible fugitive con-
strained to follow the orientation of the arcs (DAG-width variant) but every monotone
strategy requires 4p−2 searchers, for any p ≥ 2 [KO11]. Kx denotes a clique on x vertices
and Ix is an independent set on x vertices. A directed edge between two parts A and B
means that there are edges from every vertex in A to every vertex in B. Undirected edges
mean that there are edges between A and B in both directions.

Johnson et al. first defined the directed tree-decomposition which roughly
“translates” the connectivity properties of tree-decomposition into strong connec-
tivity properties in directed graphs [JRST01]. Their variant is closely related to the
graph searching game where a visible fugitive has the extra constraint that it can
move only in strongly connected components free of searchers. That is, the fugitive
can go from vertices u to v if there is a directed path from u to v free of searchers and
a directed path from v to u free of searchers. It has been shown that, in this game,
the non-monotone, the cop-monotone and the robber-monotone variants may dif-
fer [JRST01,Adl07] (see Fig. 8, left). Because of the non-monotonicity result, no
min-max theorem can be expected via graph searching. However, [JRST01] proved
a weaker result: if k searchers have a winning strategy in a digraph D, then 3k − 1
searchers have a robber-monotone winning strategy in D, which leads to a min-
max theorem up to a constant ratio between directed treewidth and so-called
havens [JRST01]. In [EHS13], it is proved that the cop-monotone version of this
game is actually equivalent to the D-width defined by Safari [Saf05] leading to
an exact algorithm for computing this variant. Moreover, [EHS13] showed that
D-width and directed treewidth are actually equivalent (in the sense that one is
bounded if and only if the other is bounded).

The DAG-decomposition is weaker than directed tree-decomposition
(bounded DAG-width implies bounded directed treewidth) [BDH+12].
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It corresponds to the cop-monotone version of the game where the visible fugi-
tive is constrained to follow the direction of arcs. While robber-monotone and
cop-monotone variants coincide [BDH+12], this game is not monotone [KO11]
(see Fig. 8, right). However, a drawback of DAG-decomposition is that the
best known upper bound of the size of such a decomposition with width k in
an n-node digraph is O(nk) and that the corresponding optimization problem
is PSPACE-complete [AKR16]. Another decomposition weaker than directed
tree-decomposition is the Kelly-decomposition that corresponds to the robber-
monotone variant of the the game where an inert fugitive is forced to follow the
arcs [HK08]. Again, this game is not monotone [KO11]. A polynomial-time algo-
rithm to recognize digraphs with Kelly-width at most 2 is given in [MTV10].
Approximation algorithms for computing directed treewidth, Dag- and Kelly-
width, with approximation ratio O(log3/2 n) have been designed in [KKK15].

To conclude, let us mention that several directed path-decompositions and
directed invisible graph searching variants have also been proposed. These vari-
ants mainly differ (1) in the abilities of the searchers and the fugitive: either both
have to follow the direction of arcs, or only one of them, and (2) in the variant
of graph searching that is considered: edge, node or mixed. More details can be
found in [Bar06,YC07b,ADHY07,YC07a,Yan07,YC08c,YC08b,YC08a,YC09].
Contrary to their visible counterparts, all these directed variants are monotone.

4.3 Recontamination Alternatives

In classical graph searching, a vertex is recontaminated instantaneously if it is not
occupied and adjacent to a contaminated vertex. Flocchini et al. proposed sev-
eral alternative definitions for recontamination. In a first variant, with threshold
immunity or local immunity, a vertex can be recontaminated only if a sufficient
number of its neighbors are contaminated [LPS06]. In a second model, with tem-
poral immunity, a vertex can be recontaminated only t steps after it has been left
by a searcher, where t ≥ 0 is a parameter [FMS08].

Local Immunity. In [LPS06], a clear (and unoccupied) vertex is recontaminated
if more than half of its neighbors are contaminated. In this setting, any graph with
maximum degree three can be cleared by at most 2 searchers and by a single one if
moreover there is a pendant vertex. [LPS06] gave search protocols for tori that are
optimal in terms of number of searchers and asymptotically tight for the number
of moves. They also considered the case of trees. Their results have been extended
by the generalization proposed in [FLPS16].

In [FLPS16], the parameterized version of this problem is considered where the
parameter m ≥ 1 represents the minimum number of neighbors of a vertex v that
must be contaminated to recontaminate v. In n1×· · ·×nd d-dimensional grids, one
searcher is sufficient for any m ≥ d, Πd−m

j=1 nj searchers are sufficient otherwise. In
the case of the n1×· · ·×nd d-dimensional torus, 2d·Πd−m

j=1 nj searchers are sufficient
for m ≤ d − 1 and 22d−m searchers are sufficient for d ≤ m ≤ 2d.
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Open Questions. It is not known whether these upper bounds are tight.

Finally, a dynamic programming algorithm that computes optimal monotone
search strategies in trees has also been designed [FLPS16].

Temporal Immunity. A graph G has temporal immunity t ≥ 0 if a vertex
becomes recontaminated after having been exposed (i.e., unoccupied and with a
contaminated neighbor) during more than t steps [FMS08]. As an example, assume
that t = 2, then an n-node cycle can be cleared by a single searcher moving clock-
wise during 2n steps (note that the strategy is not monotone). [DJS16] defined
the immunity number ιk(G) of G as the minimum integer t ≥ 0 such that k ≥ 1
searchers can clear G with temporal immunity t.

A distributed algorithm for computing the minimum number of searchers
needed to clear a tree with temporal immunity t ≥ 0 has been designed and a
structural characterization of trees with ιk(T ) = t is provided [FMS08]. Roughly,
ιk(T ) = t if and only if T does not contain a subtree obtained from the complete
ternary tree of height k whose all edges have been subdivided � t

2�+1 times. Finally,
an algorithm for clearing any tree of height at most h with � 2h

t+2� searchers is pre-
sented in [FMS08].

For any k ∈ {1, 2, 4}, any n × n grid with temporal immunity at least
(4−k)(n−1)−1 can be cleared by k searchers [DFZ10], no results for other num-
ber of searchers are known. In the case of strong grids, k searchers are sufficient to
clear them when the immunity is at least � 2(2n−1)

k � [DFZ10].
Finally, ι1(G) has been studied in several classes of graphs [DJS16] such as

paths: ι1(Pn) = 0 for every n; cycles: ι1(Cn) = 2 for every n, and equals n − 1
if monotonicity is required; complete graphs: ι1(Kn) = n−1 for every n; complete
bipartite graphs: ι1(Kn,m) = 2m − 1 for 3 ≤ m ≤ n; n-node trees: ι1(T ) ≤ 30

√
n;

p×q grids: p/2 ≤ ι1 ≤ p for p ≤ q, etc. It can be shown that there are n-node trees
T for which ι1(T ) = Ω(n1/3+ε) for some constant ε > 0 [DJS16].

Open Questions. A challenge would be to close the gap with the upper bound
30

√
n in trees. The question of general planar graphs is also open.

4.4 Other Models and Objectives

To conclude this chapter, we would like to mention some variants of graph search-
ing that differ from previous ones by: the objective that must be optimized, the
way the fugitive is captured, the speed of the fugitive, etc. We only mention some
of these variants, others may be found in [FT08].

Different Objectives. The cost of a strategy is the sum of the number of occu-
pied vertices over all steps of a strategy. This parameter (in the node-search vari-
ant) appears to equal the profile of the graph G (minimum number of edges of
an interval supergraph of G) [FG00,Fom04], while, in the visible (or inert) vari-
ant, it equals the minimum fill in of G (minimum number of edges of a chordal
supergraph). The cost in the case of edge-search has been studied in [DD13]. The
maximum occupation time is the maximum over all vertices of the number of steps
during which a vertex is occupied. This parameter coincides with the bandwidth
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of graphs [FHT05,Der09]. The capture time (minimum number of bags of a path-
decomposition with a given width) has also been considered in [BH06,DKZ15].

Different Speeds. The case of a fugitive with bounded speed (the fugitive has
speed s if, at every step, it can move through a path of length at most s) has been
considered in [Fom98,Fom99], and the case of an inert fugitive with bounded speed
is considered in [DKT97].

Different Rules. [DYY08] introduced the fast searching game in which the
searchers cannot be removed and every edge can be traversed only once. This vari-
ant has been studied in [SY09,Yan11,SY11,Yan13,DDD13,XYZZ16,XY17]. See
also [MNP08,KP16] (and references therein) for the so-called brush game.

Different Applications. Surprisingly, a variant of graph searching has been
defined to model the problem of routing reconfiguration in optical (WDM) net-
works [CHM+09]. In this variant, an invisible fugitive is moving following the ori-
entation of the arcs in a directed graph and it is captured as soon as the searchers
constrain the moves of the fugitive to a component that is not strongly connected.
Monotonicity [NS16], computational complexity [CS11,CHM12] as well as trade-
off between the number of searchers and the cost of strategies [CCM+11] have been
studied.
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Abstract. At the core of distributed computing there is the necessity
to coordinate a group of entities in face of the uncertainty present in
the environment. Classically, such uncertainty was mainly the one intro-
duced by the loss or the delay of messages (asynchrony and failures).

In this chapter we focus on the uncertainty introduced by the
dynamism of the communication topology. We use the paradigm of
mobile agents. In such paradigm the computational entities are intel-
ligent messages circulating on top of a dynamic graph. We consider the
problems of Exploration, Gathering and Deployment. We survey the most
recent results in this interesting and relatively new field.

Keywords: Mobile agents · Dynamic graphs

1 Introduction

Mobile Agents. In the classic mobile agents paradigm, a set of computational
entities also called agents, move on top of a static graph to solve a specific task.
This paradigm abstracts a real world scenario of a computer network on which
a set of intelligent messages circulates. Each one of these messages contains a
set of instructions that, upon reception, are locally executed. These instructions
interact with the local environment of the current node, changing certain memory
locations or doing other local actions, and they decide the next destination of
the message. Among the plethora of tasks that have been studied the most
common are: Exploration [5,21,26,33,49], Gathering [11,20,27,31,38,40–42,55]
and Deployment [28,50,53].

In the Exploration problem a set of mobile agents located on an unknown or
known graph has to move in such a way to eventually visit each node.

In the Gathering problem the mobile agents, initially starting on distinct
locations, have to reach the same node, or a subset of connected nodes.

The Deployment can be seen as the dual of Gathering: in this problem the
agents have to scatter reaching a final configuration in which certain constraints
on inter-agent distances are satisfied. As an example, on a ring graph the Uniform
Deployment is solved when all distances between pairs of consecutive agents are
equal [52], supposing that the number of agents divides the size of the ring.
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(a) round 0, G0 ∈ G. (b) round 1, G1 ∈ G. (c) round 2, G2 ∈ G.

Fig. 1. Example of evolving graph G.

Dynamic Networks. Furthermore, it is evident that a real computer network
cannot be seen as an immutable entity. On one hand, there are many events
that physically prevent communication from working correctly; on the other
hand, new links can be available creating new connections. The rates at which
the network changes can be fast. Additionally, changes are mostly unpredictable,
and failures or other disruptive events cannot be accurately and timely predicted.

This inherent dynamicity of wired computer networks is exacerbated when
the communication is based on wireless technology. Wireless connections are
plagued by temporary and frequent failures. Furthermore, nodes may physical
move continuously changing the induced communication graph. With the viru-
lent spread of wireless communication the design of sound software for a modern
world can be done only when a perpetually and frequently changing topology is
considered.

For the aforementioned reasons, there has a been a strong and fertile interest
in studying classical and new computer science problems on top of dynamic
graphs, such as: information dissemination [12,17,19,43,46,48], counting [22,23,
39], consensus and approximate agreement [6,13,44].

In the effort of capturing the several peculiarities of the dynamic setting,
there has been the proposal of several dynamic graphs models, see [18,34]. One
model, famous for its simplicity and manageability, is the one of evolving graphs,
and it is the one that we will focus on.

Note that here we will discuss graphs where only edges, and thus connections
among entities, are changing. Nevertheless, there are many settings in which the
set V varies along time. In a real world network we may have entities suddenly
joining or leaving the computation, as example people may enter or exit a build-
ing while their smartphones are part of a local p2p network. This phenomenon
is known as churn [4,8,45], and there has been a longstanding and deep inves-
tigation of it in the context of p2p systems [9,10,54]. Despite being a really
interesting and challenging setting, we will neglect the churn and we will focus
only on networks where connections are dynamics and the set of computational
entities fixed.

Mobile Agents on Dynamic Networks. We will bring our attention to papers
that assume a continuously dynamic system (also known as highly dynamic)
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and that investigate the three fundamental problems of Exploration [7,29,32],
Gathering [25] and Uniform Deployment [3].

An important separation is the one between papers that assume to have the
entire knowledge on the network topology and on the future actions of the adver-
sary [1,2,29,35,47], and the ones that do not have such assumption [3,24,25,32].
When future changes are known, the challenges are due to the combinatorial
aspects of the specific task investigated. As an example, in [47] is studied the
problem of exploring an evolving graph, authors show that, when G has a lim-
ited lifetime, deciding if such exploration is doable or not is NP-complete. This
setting has been defined as Postmortem in [51].

From the perspective of the distributed algorithms designer, we could argue
that the main property of dynamic networks is the uncertainty of changes. It
is this uncertainty that agents have to overcome when they solve tasks in a
real communication network. We will see that this lack of knowledge greatly
complicate solutions of tasks, even when we restrict ourselves to topologies that
have a relatively easy structure. As an example, Terminating exploration of a
constantly connected ring is far from trivial. The main subject of this chapter is
this uncertain world, and, as in [51], we will call this setting Live.

Chapter Outline. The structure of the chapter is the following. We formalize the
model in Sect. 2. After, we will have a brief look on works for the Postmortem
setting in Sect. 3. In Sect. 4 we will show results for the Live Exploration. We
will discuss the problem of Gathering in Sect. 5. Finally, we will show some really
recent results for the problem of Uniform Deployment, see Sect. 6.

2 Model

2.1 Dynamic Networks

In our model the time is discrete, and it is divided in time units called rounds.
Each round r is a number in N. An evolving graph G = (G0 = (V,E0), G1 =
(V,E1), . . .), is a sequence of static graphs. The element at index r in the sequence
corresponds to the graph at round r, we indicate such graph as Gr = (V,Er)
where Er ⊆ {{v1, v2} | v1, v2 ∈ V ∧ v1 �= v2}. Each Gr is a simple graph. If the
sequence of graphs composing G is finite, we say that G has a finite lifetime,
when not specified we assume that G has an infinite lifetime. With a small abuse
of notations we write G1 ∈ G to indicate that the static graph G1 belongs to
the dynamic graph G. The set of nodes V is fixed and does not change among
rounds, what changes is the set of edges Er, see Fig. 1.

Given an evolving graph G, the footprint F (G) of G is defined as F (G) =
(V,

⋃r=+∞
r=0 Er) that is the union of all graphs in the sequence G, see Fig. 2. It is

obvious, that the most general footprint is the complete graphs, other footprints
implicitly limit the possible elements appearing in the evolving graph. Given two
distinct nodes vs, vt ∈ V and a round r, we say that there exists a journey from vs

to vt, Jvs,vt
= ((e1, r1), . . . , (ek, rf )), starting at round r, if r ≤ r1 ≤ r2 . . . ≤ rf

and for any round rj in the journey, erj
∈ Grj

, see [18]. A journey Jvs,vt
starting
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at round r and terminating at round rf is foremost [16], if there is no other
journey starting at round r from vs that reaches vt before rf . That is a foremost
journey is the fastest way for the source node to reach the target.

Fig. 2. Footprint of the dynamic graph in Fig. 1.

An evolving graph G is 1-interval connected, see [43], if for any round r the
graph Gr is connected. An evolving graph G is T -interval connected, see [43], if for
any round r the graph G[r,r+T−1] = (V,

⋂i=r+T−1
i=r Ei) is connected. Intuitively,

for any round r there exists a stable backbone connecting nodes in G that lasts
at least T rounds.

An evolving graph G is connected over time if for any pair of nodes v1, v2 ∈ V
and for any round r there exists a journey from v1 to v2 starting at round
r in G.

Given an evolving graph G its temporal diameter D(G) is the maximum
number of rounds needed for a foremost journey to go from any source node vs

to any target node vt starting at any round r.
Apart from the assumptions on the connectivity of the graph, we may assume

a pattern on the presence of edges. An evolving graph G is recurrent if for any
edge e ∈ F (G) and for any round r there exists r′ > r such that e ∈ Gr′ . An
evolving graph G is δ-recurrent if for any edge e ∈ F (G) and for any round r
there exists r′ ∈ [r, r + δ − 1] with e ∈ Gr′ .

Finally, an evolving graph G is periodic if for any edge e ∈ F (G) there exists
a Pe, such that, for any two rounds r′, r such that r′ − r ≡ 0 mod Pe it holds
e ∈ Gr′ if and only if e ∈ Gr. It is clear that if an evolving graph is periodic,
and the footprint is connected, then there is connectivity over time.

2.2 Mobile Agents on Dynamic Networks

We consider a set of agents A = {a0, a1, . . . , ak−1}. They are mobile entities
moving on top of an evolving graph G. Each agent aj starts in a node v ∈ V .
At each round r, agent aj may traverse only one edge of Gr. By traversing
edges the agent moves in the evolving graph G. Usually, agents are assumed
to be anonymous, that is they do not have distinguishable identities and each
of them executes the exact same algorithm as the others. When agents can be
distinguished and they execute different algorithms we say that they have IDs.
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(a) round 0, G0 ∈ G. (b) round 1, G1 ∈ G. (c) round 2, G2 ∈ G.

Fig. 3. Dynamic 1-interval connected ring R.

Please note that anonymous agents and agents with IDs are different only in the
distributed case. In the case in which there is a single agent, or in which multiple
agents are controlled by a centralised entity such distinction is not meaningful.

As detailed before, there are two main settings that can be found in the
literature: the Postmortem and the Live setting.

Postmortem model. In the Postmortem model agents have complete knowl-
edge of the evolving graph G: agents can be seen as passive tokens moved
by a centralised entity that has knowledge of G. As said before, there is the
restriction that moving one agent from a node to a neighbour takes one round:
agents have to move using journeys over G.

Live model. In the Live model agents dot have complete knowledge of G. We
will use as reference the model defined in [24]. Since the majority of works for
the live setting solve problems on dynamic graph whose footprint is a ring,
we will present the model for this specific case.

Dynamic Ring. A dynamic graph G is a dynamic ring if

F (G) = (V = {v0, v1, . . . , vn−1}, E),

with (vx, vy) ∈ E ⇐⇒ x = i mod n ∧ y = (i + 1) mod n. We will indicate a
dynamic ring with the letter R (see Fig. 3 for an example of 1-interval connected
ring). We say that the ring is anonymous if the nodes have no distinguishable
identifiers, and with landmark if there is a node (the landmark) which is different
from all others.

Ports. Each node vi, is connected to its neighbours vi−1 and vi+1 via two dis-
tinctly labeled ports, qi− and qi+. These ports will be used to enforce the move-
ment of agents on G. To move on edge (vi, vi+1), an agent currently in vi has to
position itself on the port qi+.

Cross Detection and Chirality. Two agents moving in opposite directions on the
same edge in the same round might or might not be able to detect this. We say
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that there exists cross detection if agents detect the contemporary crossing of
the edge from opposite directions.

Each agent aj has a function λj that gives him a consistent private orienta-
tion of the ring; this function assigns each port to either label left or right and
λj(qi−) = λj(qk−), for all 0 ≤ i, k < n.

If all agents agree on the same orientation and are aware of it, we say that
there is chirality. Otherwise, when there is no chirality, agents may have different
orientations of the ring.

The Agents’ Life Cycle. Initially, all agents are inactive. Each round starts with
a non-empty subset of the agents becoming active. When an agent is activated
it performs a sequence of operations: Look, Compute, and (possibly) Move.

Look: During the look operation each agent gets a local snapshot of the node
where it resides. Specifically, it sees if there are other agents at the node and
in which positions (i.e. whether they are or not on a port, and if so on which
ones). Moreover the agent also determines its own position inside the node.

Compute: Using the content of its local memory, and the snapshot acquired in
the Look Phase, each agent executes its algorithm to determine whether or
not to move and, if so, in what direction; the result will be direction ∈
{left, right, nil}, where left and right are given according to the local ori-
entation of the agent. If direction = nil, the agent becomes inactive. If
direction �= nil, aj accesses the appropriate port. The agent also determines
if it has to updates its local memory.

Move: The move phase only involves agents inside ports. Therefore, let the agent
aj be positioned on port qi− (resp., qi+) after computing. If the link between
vi and vi−1 (resp., vi+1) is present in this round, then agent aj will move to
vi−1 (resp., vi+1), and reach it before the end of current round. If the link
between vi and vi−1 (resp., vi+1) is not present, then agent aj will remain in
the port and become inactive.

By definition of round, all active agents of round r become inactive by the
end of round r; when all agent are inactive, the system starts the new round
r + 1.

Synchronous and Semi-synchronous Scheduler. We will study two main activa-
tion schedulers: the fully synchronous (FSYNC), in which at any round r all
agents are activated; and the semi-synchronous (SSYNC), where a subset of
agents is activated (the non activated agents are said to be sleeping or passive
at round r). The fairness condition of SSYNC is that each agent is activated
infinitely often. When an agent is activated, it does not know whether or not it
was active in the previous round.

Note that in SSYNC it is possible for an agent to go inside a port, to remain
there because the edge is not present, and then to be forced to sleep by the
adversary. Therefore, it is interesting to specify what is the behaviour of an
agent that is sleeping on a port while the corresponding edge is present. What
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may happen leads to three different models. These models have been defined for
the first time in [24] and are:

– Passive Transport (PT): If at round r an edge is present and agent is inside
a port of the edge, then the agent moves to its destination (even if the agent
is sleeping).

– Eventual Transport (ET): A sleeping agent cannot move. However, there is
the following fairness condition: If an agent is sleeping on a port at round r
and the corresponding edge is present infinitely many times, then the agent
will eventually become active at a round r′ > r when the corresponding edge
is present.

– No Simultaneity (NS): A sleeping agent cannot move, and there is no other
guarantee.

Let us remark that the ET condition does not prescribe that each edge has to
be present an infinite number of rounds, it just says that if an edge e is not
perpetually removed, and an agent is waiting to traverse e, it will eventually
succeed. However, there is no bound on the time that the agent has to wait in
order to cross e. Neither is forbidden to have an edge perpetually removed.

2.3 Exploration, Gathering and Deployment

We define the three problems that we investigate in this chapter.

Exploration. Given a dynamic graph G and a set of agents A, algorithm A is
an Exploration algorithm if there exists a round rf , such that for each v ∈ V ,
∃rv ∈ [0, rf ] and node v is visited by one agent in round rv. The previous
specification says that all nodes in the graph has to be visited by at least one
agent, within finite time.

However, it does not specify what has to be the behaviour of the algorithm
when the exploration is completed. One may ask for Terminating exploration:
Algorithm A has an explicit termination if at round rf , each agent in A is in a
special terminal state, that is all agents are aware of the end of the exploration.
An algorithm A has a partial termination if after round rf at least one agent
in A is in a special terminal state, that is at least one agent is aware of the
termination.

A version of Exploration studied in the Postmortem setting is the one in which
given G and an arrangement of agents, the algorithm A has to explore the ring in
such a way that rf is minimised. When we consider a single agent such minimum
rf is the optimal exploration time of G. Following the terminology used in the
literature of dynamic graphs [16], we call this version Foremost exploration.

Finally, a non terminating version is the Perpetual exploration, in this case
algorithm A has to ensure that for any node v ∈ V there exists an infinite
sequence of rounds Sv, such that for each r ∈ Sv there is at least one agent in v.
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Gathering. Given a dynamic graph G and a set of agents A we say that an
algorithm A is a Gathering algorithm if there exists a round rf , such that for any
r′ ≥ rf all agents A are on the same node v. Also in this case an algorithm is
terminating if at round rf , each agent in A is in a special terminal state, that is
all agents are aware that the gathering ended. Unfortunately, it has been shown
that this version of Gathering is not solvable [25]. We will call the unsolvable
version strict gathering. In the following when we use the term gathering we
will consider a weaker version: An algorithm A solves gathering if there exists a
round rf such that for any round r′ ≥ rf all agents A are on two nodes v1, v2
such that v1 and v2 are neighbours in F (G).

Deployment. Given a dynamic ring R and a set of agents A we say that an
algorithm A is an Uniform Deployment algorithm if there exists a round rf , such
that for any r′ ≥ rf the minimum distance between any two agents is � |V |

|A|  [28].

3 Postmortem Exploration

In this section agents know the graph G, if not specified otherwise, such knowl-
edge is assumed by all the results presented in this chapter. Moreover, we assume
a unique agent, that is A = {a}.

In the Postmortem setting the majority of the effort has been devoted to
Foremost exploration. Before delving in the technical details, we give some basic
definitions.

A foremost exploration schedule is one of the feasible solutions of a correct
Foremost exploration algorithm. Specifically, given a graph G, and a starting
position vs of agent a, a foremost exploration schedule is a journey that allows
a to visit all nodes of G within the optimal exploration time of G.

3.1 Arbitrary Graphs

Given an undirected static graph G = (V,E), a single agent a, knowing the
graph topology, can explore the graph in linear time: a builds a spanning tree
of G and visits the tree using a DFS algorithm. The exploration time of this
strategy is at most 2|V | − 1 rounds.

In the dynamic case the optimal exploration time is far from linear, and
computing a foremost exploration schedule is hard. It is even hard to compute
an approximation of the foremost exploration schedule.

The first work examining the complexity of computing a foremost exploration
schedule, has been [47]. Interestingly, and in strike contrast with the static case,
if G has finite lifetime deciding if a single agent can explore it or not is NP-
complete.

Theorem 1 [47]. Given a 1-interval connected graph G, with finite lifetime, and
a single agent a placed on a node vs ∈ V , deciding whether Exploration is feasible
or not is NP-complete.
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vs

(a) round 0, G0 ∈ G.

vs

(b) round 1, G1 ∈ G.

vs

(c) round 2, G2 ∈ G.

Fig. 4. Temporal diameter of an 1-interval connected graph G: The red nodes represent
the set Ir(vs) (Color figure online)

Proof. The problem is clearly in NP: the certificate that a can explore G is the
union of at most |V | − 1 journeys and each of them contains at most |V | edges.
Thus it has size that is polynomial – at most quadratic – in |V |. To show that
the problem is NP-complete, [47] constructs a reduction from Hamiltonian Path:
let H be a static graph, and let GH : (G0 = H, . . . , G|V |−2 = H), an evolving
graph constituted by a sequence of |V | − 1 instances all equal to graph H. If
there exists an hamiltonian path in H starting from vs, then there must exist a
journey that visit all nodes in G in |V | − 1 steps. On the other hand if GH can
be explored, then the exploration schedule is an hamiltonian path on H starting
from vs, since there are only |V |−1 instances agent a cannot visit the same node
twice, otherwise it will necessarily leave a node unexplored. �

As observed by [47], the previous proof can be adapted to show the difficulty
of finding an approximation of the foremost exploration schedule for graphs that
are not interval connected. Essentially, finding an exploration schedule with an
exploration time that is within a polynomial factor from the optimal is equivalent
to solve the hamiltonian path. The idea is to modify the GH used in the proof
of Theorem 1 by appending to it, first a sequence of |V |k graphs without edges,
and then an infinite sequence constituted by instances of H. Any algorithm that
does not visit all nodes in the first |V | − 1 rounds, using the hamiltonian path
on H, has to wait at least |V |k rounds to complete the exploration. Since the
optimal exploration time is |V | − 1 the inaproximability follows.

A key point of Theorem 1 is the finite, and very limited, lifetime of the
graph. When G is 1-interval connected and its lifetime is big enough, Exploration
is always feasible. To prove this, let us first do a simple observation on the
temporal diameter of a 1-interval connected graph.

Observation 1 [43,48]. Given an 1-interval connected graph G, with infinite
lifetime, its temporal diameter is at most |V | − 1.

Proof. Let us consider a source vs and a target vt, we will show that in any
G and for any round r there exists a journey Jvs,vt

starting at round r with
duration upper bounded by |V | − 1 rounds. Let us define the set Ir(vs) =
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(∪∀v∈Ivs (r−1)Nr(G, v)) ∪ Ir−1(vs) for r > 0 and I0(vs) = {vs}; where Nr(G, v) is
the set of neighbours on graph Gr−1 ∈ G of v. Intuitively, Ir(vs) is the set all the
destinations reachable by vs in r rounds. We argue that |I|V |−1(vs)| = |V |. In
fact, if |Ir(vs)| < |V |, then |Ir+1(vs)| ≥ |Ir(vs) + 1|: since G 1-interval connected
there is an edge between Ir(vs) and V \Ir(vs), see Fig. 4. This implies that Ir(vs)
has at least size min(r + 1, |V |). �

Observation 1 says that an agent on source vs can reach a node vt in at most
n rounds.

This observation allows [47] to give a simple algorithm (Simple Explo-
ration) that explores any interval connected graph G = (V,Er) in O(|V |2)
rounds. Simple Exploration starts with a set of unexplored node, initially
equal to V , and it proceeds in iterations: at each iteration we pick one node
vt from the set of unexplored nodes. From the current position of a we reach
vt using a foremost journey (see [16] for a polynomial algorithm to compute
foremost journeys on dynamic graphs). Once a is in vt, we update the set of
unexplored nodes by removing all nodes visited during the journey. We keep
iterating until there are no more unexplored nodes. The Simple Exploration
has a polynomial running time.

The reader would have noticed a large gap between the exploration time of
Simple Exploration, that is O(|V |2) rounds, and temporal diameter |V | − 1.
However, it is not possible to do better than that:

Theorem 2 [29]. For every n ≥ 1, there exists a 1-interval connected dynamic
graph G with |V | = 2n, such that the optimal exploration time of G is Ω(|V |2)
rounds.

Proof. The set of nodes is V = C ∪ L, where C = (c0, . . . , cn−1) and L =
(�0, . . . , �n−1) The graph G = (G1, G2, . . .) is an infinite sequence of star graphs
where each Gr has center cr mod n. Let the agent a be on node �i. The fastest
way to visit a node �j with j �= i, is to first go to the center cr of the current
graph Gr, and then to wait until cr is again the center of the star, thus n − 1
round. Once cr is again the center, we can finally move to node �j . This implies
that to visit all nodes in L at least Ω(|V |2) rounds are needed. �

A similar Theorem can be found in [7], where the same idea is used to shown
that a random walk has an exponential hitting time on dynamic graphs. Accord-
ing to Theorem 2, the optimal exploration time is Ω(|V |2) in the worst case,
while it is linear for static graphs. To make things worse, [29] shows that is
not possible, unless P=NP, to find an exploration schedule that approximate
the optimal one with a ratio that is better than O(|V |1−ε). This holds even in
1-interval connected graphs:

Theorem 3 [29]. Given an 1-interval connected graph G finding an exploration
schedule with an approximation ratio that is better than O(|V |1−ε) is NP-hard.

The dynamic graph used to prove Theorem 3 is built extending the one used in
the proof of Theorem 2. The idea is to substitute nodes in L with copies of the
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same static graph G. Inside graph G two nodes are selected s and t. The several
copies of G are all connected by paths. Each of these paths go from the t node
of copy i to the s node of copy i + 1. In the last copy, the node t is connected to
nodes in C. The dynamic of the graph is built in such a way that, if in G there
exists an hamiltonian s-t path, then an optimal exploration algorithm explores
the graph in O(|V |), and viceversa. On the contrary, exploring the graph without
using an hamiltonian s-t path in G takes O(|V |2) rounds.

Recurrent Graphs. In the above we only discussed 1-interval connected graphs.
An investigation on the complexity of finding a foremost exploration schedule for
recurrent dynamic graphs can be found in [1]. Where there is an exponential time
algorithm to compute the Foremost exploration for general recurrent graphs. In
a follow-up paper [2], the same authors present a 12δ

5 approximation for general
δ-recurrent graphs.

3.2 Dynamic Rings

As we have seen in Sect. 3.1, exploring a 1-interval connected graph in less than
O(|V |2) rounds is not always possible. It is also NP-hard to decide whether G
can be explored with less than a quadratic number of rounds.

Luckily, if we restrict ourselves to dynamic rings, the optimal exploration time
is linear and a foremost exploration schedule can be computed by a polynomial
algorithm. See [1] for an algorithm to compute a foremost exploration schedule
on recurrent rings, that works also on 1-interval connected. The investigation of
bounds on the optimal exploration time for 1-interval connected rings has been
done independently in [29,37]. However, [37] is the only one that focus on the
case of a T -interval connected R. We will first describe the elegant proof in [37]
for an upper bound of 2|V | − 2 rounds on the exploration time of an 1-interval
connected ring R.

Theorem 4 [37]. Given an 1-interval connected ring R = ((V,Er))+∞
r=0, an

agent a starting from an arbitrary source node vs ∈ V explores R in at most
2|V | − 2 rounds.

Proof. The proof uses n = |V | virtual agents. The first part of the proof shows
that, starting from any round r, there exists a source node vsr

∈ V such that
an agent located in vsr

is able to move for n− 1 consecutive rounds in clockwise
direction, exploring the ring. Node vsr

exists despite the dynamic of R.
Let us consider the case where each node is initially occupied by one agent.

Each agent moves clockwise for n − 1 consecutive rounds. At each round r ∈
[0, n − 2] the adversary removes only one edge of R. With each edge removal
the adversary blocks at most one new virtual agent. For the proof purpose we
can imagine that a blocked agent disappears. However, there are at most n − 1
removals and the number of agents is n. Thus, it must exist one agent that
cannot be blocked by the adversary. This agent is the one that at round r was
located in vsr

, and it moves clockwise for n − 1 rounds exploring the ring.
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To complete the proof we have to show how to use a single agent to explore
the ring. Let a be this agent. First of all a computes the node vsn−1 using the
simulation with virtual agents as discussed above. Now agent a has to reach
node vsn−1 by round n−1. However, by Observation 1 we know that a can reach
any node in v ∈ V in at most n − 1 rounds. �

The bound given by Theorem 4 is not tight. In [37] there are better upper
bounds.

Theorem 5 [37]. Given a T -interval connected ring R = ((V,Er))+∞
r=0, with

|V | = n,an agent a starting from an arbitrary source node vs ∈ V explores R in
at most f(T ) rounds, where:

f(T ) =

⎧
⎪⎨

⎪⎩

2n − 3 if T = 1
2n − T − 1, if 2 ≤ T ≤ n+1

2

� 3(n−1)
2 , if T > n+1

2

And such bounds are tight:

Theorem 6 [37]. For any n ≥ 3, there exists a T -interval connected ring
R = ((V,Er))+∞

r=0, with |V | = n, such that an agent a needs at least f(T ) rounds
to explore R. Where f(T ) is

⎧
⎪⎨

⎪⎩

2n − 3 if T = 1
2n − T − 1, if 2 ≤ T ≤ n+1

2

� 3(n−1)
2 , if T > n+1

2

[0, n− 2T + 1)e1

e2

[n− T, 2n)

v0

v1

vT

vT−1

Fig. 5. Lower bound graph, from [37]. An interval is the set of rounds in which the
corresponding edge is missing.
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Proof. The proof is first given for T ∈ [2, �n+1
2 �]; at the end we will show that

this implies the correctness also for other values of T .
The graph R = ((V,Er))+∞

r=0 is constructed as follows. V = {v0, v1, . . . , vn−1}.
In Er all the edges are always present with two exceptions: edge e1 = (v0, v1)
and edge e2 = (vT−1, vT ). Specifically, for any r ∈ [0, n − 2T + 1) edge e1 �∈ Er;
for any r ∈ [n − T, 2n) the edge e2 �∈ Er, see Fig. 5. The graph R is T interval
connected: between the last round in which e1 is removed and the first round in
which e2 is removed, there are T − 1 rounds where all edges are present.

Agent a starts in node v0, we now show that a needs 2n − T − 1 rounds to
complete the exploration. We focus on the order in which a explores node vT−1

and node vT .

Case 1. Agent a explores node vT−1 before vT . In this case a has to necessarily
traverse edge e1. However, the edge is absent until round n − 2T − 1, and
the clockwise distance, according to our figure, between v0 and vT−1 is T − 1
edges. This means that, agent a needs n − T rounds to reach vT−1. But, at
time n−T the edge e2 is missing, and it will be removed until round 2n. This
forces agent a to reach vT going in counter-clockwise direction all the way
from vT−1, paying n−1 rounds. The total time is n−T +n−1 = 2n−T +1.

Case 2. Agent a explores node vT before vT−1. Note that the counter-clockwise
distance between v0 and vT is n − T edges. Thus agent a reaches node vT at
time n−T . But, at time n−T the edge e2 is removed, and it will be removed
until round 2n. At this point agent a has to still explore node vT−1. So the
only things it can do is to go counter-clockwise direction all the way from vT ,
paying n−1 rounds. Also in this case the total time is n−T +n−1 = 2n−T −1.

To conclude the proof we have to show that considering T ∈ [2, �n+1
2 �] is enough

to prove the claim of the theorem. The case of T = 1 is trivially included: a
2-interval connected ring is also a 1-interval connected ring. The case of T >
�n+1

2 � is implied by the corner case T = �n+1
2 �. However, when T = �n+1

2 � the
edge e1 is always present. The only removed edge is e2 and a dynamic graph
where only one edge is removed is T -interval connected for any T ≥ 1. �

3.3 Other Topologies

For 1-interval connected graphs, the study of several specific topologies can be
found in [29]. Briefly, a 1-interval connected 2 × n grid can be explored in
time O(n log3 n); a graph with treewidth bounded by k can be explored in
O(n

3
2 k

3
2 log n) rounds, and there are planar graphs with maximum degree 4

where the optimal exploration time is Ω(n log n) rounds.
The case of 1-interval connected cactus has been studied in [35], where an

algorithm with exploration time of n · 2Θ(
√

log n) rounds is given.
Regarding the complexity of computing a foremost exploration schedule in

recurrent, δ-recurrent and periodic dynamic graph, the reader can look at [1,2].
Where the authors prove that on recurrent graphs the foremost exploration
schedule is not approximable, even when the footprint of F (G) is a star or a
tree with maximum degree 3. Interestingly, if the graph is δ-recurrent, and the
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footprint is a tree there exists a δ-approximation of the foremost exploration
schedule, and such approximation is tight. Polynomial algorithms are given for
the case of rings and paths.

4 Live Exploration

In this section we switch our focus to a setting where G is unknown, or partially
unknown, and where agents have only a local view of the system. In the Live
setting, concepts that were neglected in the Postmortem setting (such as the
anonymity of the agents, the anonymity of the graph and the presence or not of
common chirality) become key aspects, and they have a strong impact on the
feasibility and design of distributed algorithm for Exploration.

At the time of writing, we are aware of only few papers [14,15,24,37] that
tackle the Exploration in the non-periodic dynamic graphs, and all of them deals
with the case of the dynamic ring. Other works investigated more general topolo-
gies, but assuming a special kind of periodic graphs, the so called carrier networks
[30,32,36].

4.1 Interval Connected Rings

The study of Exploration in 1-interval connected ring R = ((V,Er))+∞
r=0 has been

done in [24], where the main focus is on Terminating exploration. The paper
that the access to ports is mutual exclusive. However, such assumption can be
dropped if we assume that agents start from distinct nodes, as we do in this
chapter. We use n to indicate the number of nodes.

As expected, in the Live setting one agent is not enough to explore the ring:

Observation 2. Given an agent a on a node v0, the adversary can block agent
a on node v0 forever.

Proof. If agent a tries to leave v0 using port q0−, then the adversary removes
edge (vn−1, v0) and keeps it removed while a is in the port q0−. If agent a leaves
port q0− and enters port q0+ the adversary removes edge (v0, v1). �

Therefore, 2 or more agents are necessary. Now, we will show that Terminating
exploration with 2 agents requires either some kind of knowledge on R (such as,
an upper bound on its size), or that R is not an anonymous ring (there must
exist a landmark). Before proving it we observe that two agents cannot meet.

Observation 3 [24]. Let us consider a Fsync scheduler, and two agents a0, a1

starting at different location. The adversary can always prevent them to meet at
the same node, and it would do so by never blocking both agents in the same
round.

Proof. There are only two cases in which a0 and a1 meet: (1) they both try
to move on the same node v, traversing two different edges e, e′, the adversary
removes one of edge, let us say e′ preventing the meeting; or (2) one agent
remains still, say a1, in node v and a0 tries to move on v using edge e′, the
adversary removes edge e′. �
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Note that the previous observation holds also if agents are moved by a cen-
tralised entity, therefore also if agents have IDs, communications, etc.

Theorem 7 [24]. There does not exist any partially terminating deterministic
exploration algorithm of anonymous rings of unknown size by two agents, even
with distinct IDs, common chirality, and when the scheduler is Fsync.

Proof. The proof is by contradiction. Let A be a partially Terminating exploration
algorithm. Let E be an execution of A on a dynamic ring of size n, where agents
a and b start in two distinct locations and where the adversary always prevents
the meeting of the agents, never blocking the agents at the same round. By
Observation 3, this run exists. We assume, w.l.o.g., that a is the first agent
terminating in E, and that it terminates at round r(E). Using execution E,
until round r(E), we construct an execution E′ of A on a dynamic ring of
size n′ = 8r(E). In execution E′ the agents start at two distinct locations at
distance 4r(E). The execution E′ is constructed in such a way that, until round
r(E) neither agent can distinguish this execution from E. We argue that this
is possible, since in execution E the adversary never blocks the two agents at
the same time, and the agents do not meet. This implies that a terminates
in E′ at round r(E). However, the size of the ring is 8r(E) and the agents
started 4r(E) apart. Therefore, at round r(E) there are at least 6r(E) unexplored
nodes. Since a does not move anymore, it remains a unique active agent b in the
system. Execution E′ is completed by having the adversary blocking agent b from
round r(E) on (see Observation 2). The existence of execution E′ contradicts
the correctness of A. �

If we have 3 agents with IDs, it is unknown whether it is possible or not to
have a Terminating exploration for an anonymous unknown R. However, if we
restrict ourselves to anonymous agents, then increasing their quantity, to any
constant number, does not help. Being the ring anonymous, if edges are not
removed, they will move in a symmetric way, never meeting, and therefore never
terminating.

Fully-Synchronous Scheduler. In this section we discuss algorithms for the
Fsync scheduler. They will use as a building block procedure Explore (dir |
p1:s1; p2:s2; . . . ; pk:sk), where dir is either left or right , pi is a predicate, and si

is a state.
In Procedure Explore, the agent performs Look, then evaluates the predi-

cates p1, . . . , pk in order; as soon as a predicate is satisfied, say pi, the procedure
exits and the agent does a transition to the specified state, say si. If no predicate
is satisfied, the agent tries to Move in the specified direction dir and the proce-
dure is executed again in the next round. Predicates that we use are, catches: the
agent observes the other agent on the port corresponding to its moving direction;
caught: the agent is on the port after a failed move, the other agent is observed in
the node. Variables are: Tsteps: the total number of rounds since the beginning
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of the algorithm; Btime: the number of consecutive rounds the agent has been
currently waiting in a port.

Known Upper Bound on Ring Size. When a bound N on the ring size is known,
[24] presents an algorithm that terminates in 3N − 6 rounds. The Algorithm
KnownNNoChirality is in Algorithm 1, and it does not assume neither chi-
rality nor cross detection. Let us briefly explain the algorithm: Agents start in
the Init state. Initially, each agent moves in its left direction. Note that the left
direction is not necessarily the same for both agents. If an agent enters in the
state Forward it keeps moving left until termination. When an agent enters in
state Bounce it changes direction to right , and it keeps moving right until termi-
nation. When an agent terminates it enters the state Terminate, and it remains
still forever. An agent goes from Init state to Bounce if: it catches the second
agent; or it reaches round 2N −4 and Btime = N −1, that is it has been blocked
for the last N − 1 rounds of the first 2N − 4 rounds. An agent goes from Init
state to Forward if: it is caught by the second agent; or it reaches round 2N − 4
and Btime �= N − 1.

Algorithm 1. Algorithm KnownNNoChirality

States: {Init, Bounce, Forward, Terminate}.
In state Init:

Explore(left | (Ttime ≥ 2N − 4 ∧ Btime ≥ N − 1): Bounce; catches: Bounce;
caught: Forward; Ttime ≥ 2N − 4: Forward)
In state Bounce:

Explore(right | Ttime ≥ 3N − 6: Terminate)
In state Forward:

Explore(left | Ttime ≥ 3N − 6: Terminate)

Theorem 8 [24]. Algorithm KnownNNoChirality allows two anonymous
agents without chirality to explore a 1-interval connected anonymous ring and
to explicitly terminate in time 3N − 6, where N is a known upper bound on the
ring size.

Proof. First of all, each agent enters in Terminate state, and it terminates at
round 3N − 6. We have to show that when r = 3N − 6 the ring has been
explored. Let us first notice that if the two agents cross each other and keep
moving in opposite directions, then they explore the ring in N − 1 rounds. This
is obvious, since the adversary at each round can block only one of them, by
removing one edge, then the agent that is not blocked makes progress.

We have two cases according to the chirality of agents:

Case 1. Agents disagree on the left direction: After N −3 rounds, the agents are
at minimum distance 2, or are at minimum distance 1, or crossed each other.
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In case the distance between the agents is 2, then they were initially on two
neighbouring nodes; therefore, in the next round, the ring will be explored.
In case they are at distance 1 and the edge between them is not missing for
the successive N − 1 rounds, then they will cross each other and the ring will
be explored by at most round 3N − 6. Otherwise, in case the edge between
them is missing for the successive N − 1 rounds, then at round 2N − 4 they
will both change direction and the ring will be explored in the next N − 2
rounds. If they crossed each other, then they will not change direction for the
successive N − 1 rounds exploring the ring.

Case 2. Agents agree on the left direction: If they catch each other before round
2N − 4, then they will move in opposite directions starting from the same
node. Therefore, the ring will be explored in the next N−1 rounds terminating
the exploration by round 3N −6. Let us suppose they do not catch each other,
then at each round at least one of them will traverse an edge: they cannot
be blocked at the same time. Let us suppose that a traverses N − k edges
with k > 2; then b traversed at least x = 2N − 4 − (N − k) edges, that is
x = N − 4 + k ≥ N − 1, exploring the ring. It remains the case when agent
a traverses exactly N − 2 edges; but this implies that also b has traversed at
least N −2 edges and, since they start from different nodes, the ring has been
explored also in this case. �

It is easy to see that Algorithm KnownNNoChirality has a termination
time that is asymptotically optimal. The only knowledge on R is the upper
bound N . Thus, if we consider a dynamic ring that has always all edges, let it be
R (R is essentially a static ring), the only way for a single agent to terminate is
to do N − 1 steps in some direction. Having two agents, as in our case, does not
help, since they are anonymous they make symmetric movements, never meeting
on R. This means that each of them has to terminate on its own, and therefore
it has to do O(N) steps.

Unknown Ring. In Theorem 7, we have seen that, if R is unknown and anony-
mous, two agents cannot terminate. However, it is possible for them to explore
R unconsciously: they explore the ring but they are not able to terminate.
The algorithm that we discuss is the Unconscious Exploration of [24] (see
Algorithm 2, where variable Etime is the number of rounds since the last call
of procedure Explore).

The main technique is to try to guess the ring size. The guess G, initially
G = 2, is repetitively increased until it is big enough to allow ring exploration.
More precisely, the algorithm implicitly divides the time in phases. In each phase
an agent moves in its direction for a number of rounds that is twice the current
guess. At the start of a new phase, each agent doubles its guess G, and it decides if
it has to keep, or change, the direction of the previous phase: it changes direction
if it has been blocked for the last G rounds, otherwise it keeps its direction.
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Algorithm 2. Algorithm Unconscious Exploration

States: {Init, Bounce, Reverse, Forward, Keep}.
In state Init:

G ← 2, dir ← left
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse, Etime ≥ 2G: Keep, catches:

Bounce, caught:Forward)
In state Reverse:

G ← 2 · G, dir ← opposite(dir)
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse, Etime ≥ 2G: Keep, catches:

Bounce, caught:Forward)
In state Keep:

G ← 2 · G
Explore(dir; Etime ≥ 2G ∧ Btime > G: Reverse, Etime ≥ 2G: Keep, catches:

Bounce, caught:Forward)
In state Bounce:

Explore(opposite(dir))
In state Forward:

Explore(dir)

Theorem 9 [24]. Algorithm Unconscious Exploration allows two anony-
mous agents without chirality to explore, without terminating, an 1-interval con-
nected anonymous ring; the exploration is completed in O(n) time.

Proof. Once agents catch each other, they will have opposite direction forever.
Thus, if agents catch each other, then they will explore the ring in the successive
n − 1 rounds. So we have to consider the case in which agents do not catch each
other. Let a phase be the period of time when the guess remains the same. The
guess G is doubled after 2G time steps, this means that at time tn ≤ 4n, G ≥ n.
Let P be the phase in which G ≥ n and r be the first round of this phase. In
case agents are moving in the same direction, at round r, in each time step at
least one of them makes progress (our hypothesis is that they do not catch each
other). Therefore in the next 2G time steps the ring will be explored.

Consider now the case when agents are moving in opposite directions, and
let us examine what is the configuration at round rendP = r + 2G − 1, that is
the last round before phase P + 1: If at time rendP neither of them is blocked
on an edge, then they must have crossed each other. In phase P + 1 they will
both keep different directions, notice that at the end of round rendP both agent
decides to not reverse direction. The ring will be explored by the end of phase
P + 1.

Otherwise, at time rendP at least one of them has to be blocked on an edge e.
At the beginning of the next phase, round rstart(P+1) = rendP +1, we have three
options:

– Only one agent decides to change direction; in this case, they will have the
same direction in phase P + 1, exploring in O(n) rounds.
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– Both agents decide to change direction; then both have been blocked for the
last G rounds of phase P . Being both blocked at the same time, then they
have to be waiting on two opposite endpoints of the same edge e. When they
both reverse direction they will explore the ring starting from e by at most
round rstart(P+1) + n − 1.

– No one changes direction; this means that no one of them has been blocked
consecutively for the last G ≥ n rounds. Agents are going on opposite direc-
tions in phase P , therefore after the first G ≥ n rounds of phase P they
either are at distance 1 from each other or they crossed. In case they have
not crossed, since they are not both blocked for the last G rounds of phase
P , then they must cross by at most round rstart(P+1). This means that they
explore the ring in phase P + 1.

We have shown that the agents explore by the end of phase P +1. Phase P +1 is
reached after a number of rounds that is linear in n, this means that the claimed
bound of the theorem follows. �

In case the ring has a landmark, the termination is possible: there exists a
O(n) algorithm when agents share the same chirality, in this case the landmark
is used as reference to understand when agents loop around the ring. When there
is no chirality [24] gives a O(n log n) algorithm. The case without chirality it is
quite complex. In that algorithm, agents exploits the absence of edges to break
the symmetry. Once the symmetry is broken, each agent acquires a unique ID.
The IDs and a doubling strategy, as for Algorithm Unconscious Exploration,
are used to orchestrate the movements of agents in such a way that they either
meet, establishing a common orientation for the ring, or they loop around the
ring enough time to ensure the termination of both.

Semi-synchronous Scheduler. We have seen that under the Fsync sched-
uler, Terminating exploration and Exploration are possible also in the Live setting.
In this part of the chapter, we consider a Ssync scheduler. In this case we have
three different models NS, ET, PT, see Sect. 2.2. Between these models there is
the following relationship P (NS) ⊆ P (ET) ⊆ P (PT), where P (X) is the set of
problems solvable in model X. First of all in the weakest of the three models,
NS, is not possible to explore.

Theorem 10 [24]. In the NS model, exploring the ring is impossible with any
number of agents, even if the ring and the agents are not anonymous and there
is chirality.

Proof (Sketch). Let us imagine to have a ring R where all nodes but one, let it be
v, are occupied by agents. The only way to visit v is by having agents that go in
v by both its incident edges e1, e2. Unfortunately, this is not possible in NS. The
adversary forces to sleep the agents that are in the port of e2, and removes edge
e1. By alternating this strategy with a bit of carefulness, the adversary creates
a fair scheduler and it prevents the exploration of v. �
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Interestingly, two anonymous agents are not enough to explore a ring even
in the strongest PT.

Theorem 11 [24]. In the PT model without chirality two anonymous agents
are not sufficient to explore a ring of size n ≥ 5. The result holds even if there is
a distinguished landmark node and the exact network size is known to the agents.

Proof (Sketch). The proof is by contradiction. Let A be a correct exploration
algorithm for agents a, b. The adversary is able to decide the orientation of the
agents, their starting position and the topology of the ring R. The adversary
picks 4 nodes v, v′ and u, u′, these nodes are disjoint and none of them is the
landmark. It also partially fixes the topology of R by creating edge (v, v′) and
(u, u′) and it puts agent a on v and agent b on u. Note that as long as one
agent does not go outside these nodes, the adversary does not have to specify
the remaining topology of the ring. Initially, the adversary keeps agent b sleeping
and activates a. Agent a is activated and it is prevented to go in other nodes
but node v′. Eventually, a either decides to visit node v′ or it decides to wait
perpetually on the port of v that goes outside the portion {v, v′}.

Let us assume that a goes to v′. At this point the adversary activates agent
b, and it uses the same scheduler that used for a. Now if a, resp. b, switches
between nodes v, v′, resp. u, u′, then they will never explore the ring, and thus A
is not correct. This means that eventually a has to decide to perpetually wait on
a port p that connects the portion {v, v′} to other nodes of the ring. But being
agent b anonymous also b decides to do the same. At this point the adversary
fixes the topology of the ring, and also orientation of the agents, in such a way
that a and b are perpetually waiting on the two endpoints of the same edge e.
The adversary removes edge e forever keeping the agents stuck and preventing
the exploration. �

Note that the above proof requires the absence of chirality. If chirality is
present, 2 agents can explore and partially terminate both in PT and ET.

Without chirality three agents are enough to explore and partially terminate
in PT and ET. In this case the number of steps required is quadratic in n,
while linear steps were sufficient in the Fsync case. In Ssync we can have only
partial termination, as shown in [24], it is impossible to build an algorithm in
PT with chirality where two agents correctly terminate. Finally, in ET partial
termination can be achieved only if there is exact knowledge of n, an upper
bound or a landmark are not enough, this is in contrast with PT. The reader
that is interested in these results can read [24].

4.2 Connected over Time Rings

In [14,15] the authors investigate the distributed Perpetual exploration of rings
that are connected over time in Fsync. In their model there are no ports on
nodes, that is an agent does not have to enter inside a port to move on an edge,
but it directly goes on the edge. An agent during the Look sees if there is a
missing edge incident in the current node.
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This means that an agent cannot be trapped on a single node: if agent a sees
a missing left edge then it leaves the node taking the right edge. However, a
variant of Observation 2 holds: a single agent can be trapped on two adjacent
nodes.

A significative difference is that when edges are not accessed using ports an
agent does not know the direction of other agents in its same node. However,
[14,15] show that such knowledge is not required to solve Perpetual exploration.
In a model without ports, predicate catches has the following equivalent: In the
previous round I was alone, I moved to a new node v, and now I am not alone
in v.

Algorithm 3. Algorithm PEF 3+
States: {Init, Reverse}.
In state Init:

dir=left
Explore(dir | catches: Reverse)

In state Reverse:
dir = opposite(dir)
Explore(dir | catches: Reverse)

In [15] the authors propose the PEF 3+ algorithm (Algorithm 3). PEF 3+
solves Perpetual exploration when there are 3 or more agents and the ring is
connected over time. Note that agents do not have to share the same chirality.

Theorem 12 [15]. Given a connected over time ring R, 3 or more anonymous
agents executing algorithm PEF 3+ solve Perpetual exploration.

We give the intuition behind the correctness of PEF 3+ for the case of 3
agents. Suppose first that all robots have the same direction. If two of them
never meet then, the robots perpetually explore the ring. This is obvious since
for the robots to not meet they have to keep spinning around the ring. To prevent
this the adversary has to make at least two robots meet. However, when this
happens one agent catches the other. Therefore at this point we have at least
two agents with opposite directions, so we enter in the case in which not all
agents have the same direction. If there are such two agents, we eventually reach
a configuration in which there is a segment of the ring containing all robots,
and two robots a and b at the two extremes of this segment, one agent going
left and the other going right . These agents are the extreme agents. Note that
the extreme agent is not fixed: during the execution other agents may switch
position with a or b. The key point is that no matter of how agents catch each
other, there will always be two extreme agents. Since the extreme agents are
going in opposite directions they either explore the ring perpetually, or they
will be blocked forever on the two endpoints of the same edge. In this last case
the presence of the third agent c ensures the perpetual exploration: agent c will
ping-pong among a and b perpetually visiting all nodes.
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Interestingly, the authors show that 2 agents are not enough to explore a
connected over time ring of arbitrary size.

Theorem 13 [15]. Given a connected over time ring R of arbitrary size, there
exists no algorithm solving Exploration with 2 anonymous agents.

The idea used in the proof is similar to the one of Theorem 11, and it draws an
interesting parallelism between 1-interval connected rings with a Ssync sched-
uler and connected over time rings with Fsync scheduler.

Self-stabilizing Algorithm. Paper [14] tackles the challenging case of designing a
self-stabilizing algorithm for Exploration. They prove that 3 agents with IDs are
enough to solve Exploration on rings of any size. The task is impossible if there
are only two agents.

Theorem 14 [14]. Three non-anonymous agents are necessary and sufficient to
solve the self-stabilising Exploration of a connected over time ring R of arbitrary
size.

The idea of the algorithm is similar to the one of PEF 3+. However, in this
case there is the need to solve the situation in which two robots are on the same
node and with the same state. To break this symmetry the IDs of the robots are
used. They are scanned bit by bit in a circular fashion, and the bit is used to
decide the direction of the agent in the current round.

4.3 Recurrent Rings

When the ring is δ-recurrent, Observation 2 is not valid and a single agent is enough
to explore the ring. [37] shows an algorithm, namely Stubborn Traversal, for
δ-recurrent T -interval connected rings. The idea of Stubborn Traversal is
quite simple: the unique agent a picks one direction and stubbornly moves in that
way. Being the graph recurrent each edge eventually appears, thus a visits all
nodes. The upper bound of the algorithm is

n − 1 + � n − 1
max{1, T − 1}�(δ − 1)

rounds. The idea behind the bound is immediate. The agent has to traverse
n − 1 edges. For the T -interval property when a removed edge reappears there
cannot be other removals for T − 1 rounds. Therefore, the agent encounters at
most � n−1

max{1,T−1}� blocked edges. Being the graph δ-recurrent, an edge can be
missing for at most δ − 1 rounds.

Surprisingly, the algorithm is almost optimal. [37] shows a lower bound of

n − 1 + � n − 3
max{1, T − 1}(δ − 1)

rounds.
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(a) On the static graph G there are three
carriers: red, blue and green.

(b) The dynamic graph induced by the car-
ries at round 0.

Fig. 6. Example of carrier network (Color figure online)

4.4 Periodic Graphs

The Terminating exploration of periodic graphs has been studied in [30,32,36].
[32] has been the first paper to look at the problem of exploration in the dynamic
setting, if we exclude the random walk studied in [7].

The model of [32] is different from the one that we are analyzing. In their
case the dynamic graph is induced by a set of carriers that are moving on top of
a static graph G. Each carrier performs a periodic visit of certain nodes moving
at constant speed; each node is covered by at least one carrier (see Fig. 6).

The unique agent a has to visit the graph, but it is restricted to instanta-
neously move from one carrier to the other. Agent a cannot disembark a carrier
and wait for another one. In Fig. 6 the agent may move from the green carrier
to the red one. Each carrier has a unique ID. This model is known as carrier
network.

When G is anonymous, and the carriers have all the same period (the carriers
are homogenous), the authors propose a simple algorithm, namely Hitch-A-
Ride. The agent is required to know an upper bound B on the maximum path
of each carrier. The algorithm performs a DFS on a spanning tree of the carriers.

Initially, the agent starts in the root carrier. When an agent is inside a new
carrier c it stays there for B rounds, and memorises the IDs of all other carriers
it meets, increasing the set ToV isit and the set reachable(c). After B rounds,
carrier c is considered visited, so it is removed from ToV isit. At this point the
agent goes to a new carrier c′ ∈ ToV isit ∩ reachable and set parent(c′) = c. If
c′ does not exist, the agent backtracks going to parent(c′).

Theorem 15 [32]. Given a carrier network G, with k carriers, and an upper
bound B on the maximum cycle of each carrier, an agent executing algorithm
Hitch-A-Ride explores the graph in at most (3k − 2)B rounds.

Notice that B has to be known. Given any algorithm A that does not need
the knowledge of B, we can show that A is not correct. Let us consider a graph
with nodes {v0, v1, v2} and a carrier that does a loop on the three nodes, in this
case B = 3. On this graph A terminates after t rounds. Now we construct an
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(a) Configuration in E :
the unique axis of symme-
try intersects two edges; a
leader edge can be elected.

(b) Configuration not in
P or E : the unique axis of
symmetry intersects one
node; a leader node can be
elected.

(c) Configuration in P:
the distances between
homebases are periodics;
it is not possible to elect
either a leader node or a
leader edge.

Fig. 7. Examples of homebases configurations. The homebases are the red nodes. (Color
figure online)

undistinguishable graph where the nodes are the same but the carrier performs
a non-simple cycle doing t loops on v0, v1 and then going to v2, in this case
B = t+1. Being the graph anonymous A terminates also in this last graph, and
it terminates after t rounds, missing the visit of node v2. A more formal proof
of the necessity of B knowledge is contained in [32].

The work of [36] builds on top of [32], allowing the agent to wait. While [30]
considers the exploration of carrier networks with black-hole. A black-hole is a
node, or an edge, that destroys visiting agents.

5 Live Gathering in Dynamic Rings

In this section we will focus on Gathering. Specifically, the results of [25] for
anonymous agents on 1-interval connected rings under the Fsync scheduler. On
a dynamic ring R, Gathering is solved when agents are located on nodes that are
neighbours in F (R). The impossibility of strict gathering (i.e., all agents on the
same node) is immediate from Observation 3.

Homebases and Configurations. We assume that agents starts in distinct nodes,
the starting nodes are marked in such a way to be distinguishable from other
nodes. These nodes are the homebases. Besides the homebases the ring is anony-
mous, and the homebases are all equal. It is well known that if the agents are
anonymous, the ring is anonymous and there are no homebases, gathering is
impossible even in static rings.

The locations of the k homebases in F (R) define a configuration C (refer
to Fig. 7). Intuitively, gathering can be solved only when the configuration is
such that all agents ca uniquely identify a distinguished edge (leader edge) or a
distinguished node (leader node). It is impossible to elect such references when
the configuration of homebases is periodic, this impossibility holds also for the
static case. Clearly, to elect a leader edge the disposition of homebases on the
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ring has to admit a unique axis of symmetry going through two edges; to elect
a leader node the configuration has to either have a unique symmetry axis that
goes through a node or no symmetry axes, see Fig. 7. Formal definitions are in
[25]. We indicate with P the set of periodic configurations, and with E the set
of configurations where a leader edge can be elected.

5.1 Chirality and Cross Detection

When there is cross detection and chirality is possible to solve Gathering in
O(|V |) rounds; however, the knowledge of either n = |V | or k is required. When
there is chirality is possible to elect a leader node also when the configuration is
E : the leader node is the left endpoint of the leader edge.

We present the Simple Gathering algorithm, the algorithm is obtained by
adapting the techniques proposed in [25] for the special case of cross detection
and chirality. Simple Gathering is divided in two phases: Discovery Phase and
Gathering Phase.

In the Discovery Phase, agents try to learn the configuration by doing a loop
of the ring in clockwise direction. If the loop is prevented, all agents gather on
the same node and they are aware of that. Otherwise, Discovery Phase ends, all
agents know the current configuration, and they agree on an elected leader node.
Note that agents have memory, therefore even if they have only local view, after
a loop of the ring, they are able to construct the current configuration in their
memory.

The Gathering Phase starts after the Discovery Phase. In this phase, agents
first try to gather on the elected node. If this does not happen, agents are
partitioned in two groups. These two groups move in such a way that agents
gather; also, agents are able to recognise the gathering and terminate correctly.

In the following, we will provide more details on these two phases.

Discovery Phase. Let us first introduce a basic observation that will be used in
the Discovery Phase.

Observation 4 [25]. Let A be a set of agents moving clockwise during an inter-
val of time I lasting at least 3n − 4 rounds. If an agent a∗ ∈ A moves less than
n − 1 steps in I, then there exists a round r ∈ I where all agents in A are on
the same node.

Proof. At each round only one edge could be missing. Therefore if at round r ∈ I
a∗ is blocked, then every a ∈ A that at round r′ is not at the same node of a∗

moves. Agent a∗ moves less than n−1 steps in an interval lasting at least 3n−4
rounds, this means that the number of rounds in which a∗ is blocked is at least
2n − 2. For the above, the agents in A that are not in the same node as a∗

have moved towards a∗ of at least 2n − 2 steps. It is also true that, every time
a∗ moves, the other agents might be blocked; however, by hypothesis, this has
happened less than n− 1 times. The initial distance between a∗ and an agent in
A is at most n − 1, this distance increases less than n − 1 (due to a∗ moving),
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but it decreases by 2n − 2 (due to a∗ being blocked); thus the distance is zero,
(the agents reach the same node) by the end of interval I. �

Algorithm 4. Discovery Phase of Algorithm Simple Gathering when n is
known.

States: {Init, GatheringPhase, Terminate}.
In state Init:

Explore (left | Ttime = 3n−1 ∧ ( Esteps < n−1∨#Agents = k): Terminate;
Ttime = 3n − 1: GatheringPhase)

Algorithm 5. Discovery Phase of Algorithm Simple Gathering when k is
known.

States: {Init, GatheringPhase, Terminate}.
In state Init:

Explore (left | #Agents = k: Terminate; Ttime = 3n − 1: GatheringPhase)

There are two variants of the Discovery Phase: one is used when agents know
k and the other when they know n. In Algorithm 4 there is the variant for known
n and in Algorithm 5 the variant for known k. The variable #Agents indicates
the number of agents in the current node. The variable Esteps the number of
steps that an agent did since the start of procedure Explore.

– Variant for known n: Each agent goes clockwise (direction left). The only
check is done at time 3n − 1. Where an agent terminates if Esteps < n − 1
or if it sees k agents.
Note that k is initially unknown. Nevertheless, an agent computes k after a
loop of the ring, this can be done by counting the homebases. By Observa-
tion 4, at time 3n−1 if an agent does not terminate for Esteps < n−1, then
it knows k, so it can perform the check #Agents = k. If an agent does not
terminate it goes to state GatheringPhase.

– Variant for known k: Each agent goes clockwise. An agent terminates if
#Agents = k. Otherwise, once r = 3n − 1 it goes to state GatheringPhase.
Note that n is initially unknown. Nevertheless, an agent computes n after a
loop of the ring, the loop is detected by seeing k + 1 homebases.
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Lemma 1. Given a set of agents, with common chirality, knowing n (resp. k)
and executing the Algorithm 4 (resp. 5) on a 1-interval connected ring. The
following hold:

– If an agent enters state Terminate, every agent does so. Moreover, all agents
are on the same node.

– If an agent enters state GatheringPhase, every agent does so. Moreover, all
agents have done a loop of the ring.

Proof. We divide the proof in two parts.

– Agents know n and execute the Algorithm of Fig. 4. We partition the agents
in two sets L and NL. The set L is composed by agents that have done a
loop of the ring (Esteps ≥ n − 1). The set NL by the remaining agents, the
ones with Esteps < n − 1.
It is immediate that if NL = ∅ the statement of the lemma is correct: all
agents know k, so they either all terminate, on the same node, by seeing
#Agents = k or they all go to GatheringPhase.
In case NL �= ∅, we have that agents in NL terminates at round 3n − 1: by
definition for them hold Esteps < n−1. However, by Observation 4 we know
that all agents are on the same node. Therefore, at round 3n − 1 for agents
in L the predicate #Agents = k is true. This implies that all agents go to
Terminate.

– Agents know k and execute the Algorithm of Fig. 5. The correctness when
#Agents = k is immediate. We have to show that when all agents enter in
state GatheringPhase they have done a loop of the ring. By Observation 4 if
at round 3n − 1 exists an agent that has not done a loop around the ring
(Esteps < n − 1), then all agents are on the same node, and they terminate
seeing #Agents = k. Therefore, if agents do not terminate by round 3n − 1,
then they all know n. �

Gathering Phase. Thanks to Lemma 1 we know that at the start of Gathering
Phase all agents know the configuration of the ring, and thus k and n. Moreover,
they agreed on a leader node vl, recall that the configuration is not in P.

The Gathering Phase is in Algorithm 6, for simplicity we assume it starts
at round 0. The algorithm uses the boolean variable Crossed, the value of this
variable is true when an agent crossed someone on an edge in the previous round.

Initially, all agents move left ; an agent keeps walking until it either reaches
vl (predicate onNode(vl)) or Ttime = 3n − 1. If an agent reaches vl it enters
state Wait, otherwise it enters state ReachingElected. An agent in Wait state
stays still until round 3n − 1 and then it enters state ReachedElected. At round
3n − 1 agents are partitioned in two sets: ReachingElected and ReachedElected.
Agents in ReachingElected walks right , while agents ReachedElected walks left.
In both states agents terminate using the same conditions: #Agents = k or
Crossed = true or Btime = n − 1.
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Algorithm 6. Gathering Phase of Algorithm Simple Gathering

States: {ReachedElected, ReachingElected, Terminate}.
In state GatheringPhase:

dir=left
Explore (dir | onNode(vl): Wait; Ttime = 3n − 1: ReachingElected)

In state Wait:
Explore (nil | Ttime = 3n − 1: ReachedElected)

In state ReachedElected:
Explore (dir | #Agents = k ∨ Crossed = true ∨ Btime = n − 1: Terminate)

In state ReachingElected:
dir = right
Explore (dir | #Agents = k ∨ Crossed = true ∨ Btime = n − 1: Terminate)

Theorem 16. Given a set of agents knowing the configuration C of homebases.
If C �∈ P and the agents execute Algorithm 6, then Gathering is solved in O(n)
rounds.

Proof. Since C �∈ P and there is chirality, it is possible to elect the leader node
vl. First of all, observe that at time 3n − 1 all agents are partitioned in two set
R and NR. The set NR is the one of agents in state ReachingElected, the set R
is the set of agents in state ReachedElected.

By using an analogous argument of the one in Observation 4, we can easily
show that all agents in set R (resp. NR) are on the same node. Thus at round
3n − 1 agents are partitioned in two nodes forming two groups. A group is a set
of agents in the same state, on the same node, and moving in the same direction.
Note that a group behaves as a single agent.

The two groups move with opposite directions. After at most n − 1 rounds
the groups either meet on the same node, or they are at distance 1, or they cross
on an edge. They clearly terminate if they cross each other or if they go on the
same node, predicates #Agents = k or Crossed = true. If they are at distance 1,
waiting on the two endpoints of the same missing edge, then eventually one group
terminates, predicate Btime = n − 1. The other group either terminates for the
same reason, or it crosses the edge gathering on a single node and terminating
for #Agents = k. �

Removing the Cross Detection. Removing the cross detection from Simple
Gathering is not immediate. While the Discovery Phase is not impacted by
the cross detection, the Gathering Phase uses it.

A technique to remove the cross detection is the Logic Ring [25]. Intuitively,
a Logic Ring assigns a sequence of rounds to each pair edge-direction. An agent
is allowed to cross an edge in a specific direction only when the current round is
in the sequence assigned to that edge-direction. In this way agents synchronise
their movements such that they never cross the same edge, from two different
directions, at the same round. The construction of the Logic Ring is possible
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when the symmetry of the ring is broken by the election of a node or an edge.
The Logic Ring increases the cost of solving Gathering to O(n log n) rounds, it is
unknown if such increase is necessary.

5.2 No Chirality

The absence of chirality breaks Simple Gathering. More clever strategies have
to be designed for both the Discovery Phase and the Gathering Phase. Interest-
ingly, when n is known, the absence of chirality does not impact the solvability
of the problem, that can be still solved for any configuration C �∈ P. While when
k is unknown, the absence of chirality makes the problem unsolvable when the
configuration is in E .

Theorem 17 [25]. In rings with no chirality, Gathering is impossible without
knowledge of n when starting from a configuration C ∈ E. This holds even if
there is cross detection and k is known.

Interestingly, also the cross detection is necessary when the configuration is
in E .

vu1

vu2

v′
u2

v′
u1

eu ed

Fig. 8. Configuration where Gathering is impossible when there is no cross detection.
Homebases are in red. (Color figure online)

Theorem 18 [25]. Without chirality and without cross detection, Gathering is
impossible when starting from a configuration C ∈ E. This holds even if the
agents know C (which implies knowledge of n and k).

Proof (Sketch). The proof is by contradiction. Let us consider an initial config-
uration C with two agents al, ar, a unique axis of symmetry passing through
edges eu, ed, and where the two homebases hl, hr are at distance at least 4 from
eu and 5 from ed (see an example in Fig. 8). Let A be an algorithm that solves
Gathering starting from configuration C.

We consider an execution E where the adversary does not remove any edge.
For the symmetry of C, in E the agents cross each other only over eu or ed never
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meeting in the same node at the same time. Furthermore, agents can only gather
at the two endpoints of one of these edges. W.l.o.g, we assume that algorithm A
terminates when the agents are on the endpoints of eu = (vu1 , vu2). Let v′

u2
be

the neighbour of vu2 different from vu1 (resp. v′
u1

the neighbour of vu1 different
from vu2). Let rf be the round in which al reaches vu1 and terminates (note
that al could have passed by vu1 several times before, without terminating) and
let r1, possibly equal to rf , be the first round when al reaches a node in the set
{vu1 , vu2 , v′

u2
, v′

u1
} and such that al does not leave that set after r1.

Agent al may reach vu1 at round rf in several ways, but note that since the
agents anonymous, ar does exactly the symmetric moves of al with respect to
the axis.

We now construct, using the same configuration C, a new execution E′. In
execution E′ agents behave like in execution E until they possibly find themselves
blocked by an edge removal. Moreover, E′ is constructed in such a way that agent
al is never blocked. Thus al behaves exactly as in execution E terminating in
node vu1 at round rf . However, in execution E′ gathering is not achieved because
we will block agent ar away from al.

Let us suppose that in execution E, agents al and ar never cross before round
r1. In this case in execution E′, we block ar in the first round on its homebase,
and we keep a blocked forever.

We now prove that al does not distinguish E′ from E, terminating at least
two edges away from ar. Suppose the contrary: this means that in E agent al

reaches the homebase of ar before round r1. This either implies that ar crosses
the edge ed or that ar crosses eu and leaves the set {vu1 , vu2 , v′

u2
, v′

u1
}. Both

cases imply that al and ar cross in execution E before round r1 (each time al

traverses the symmetry axis also ar does). We have two cases, according to the
edge where they cross the last time before round r1.

– They cross at round rlast on edge ed. In this case the adversary blocks ar

on an endpoint of ed immediately after the cross. Note that agent al cannot
reach the node where ar is blocked, it would contradict the fact that in E
round rlast is the last round in which agents cross outside {vu1 , vu2 , v′

u2
, v′

u1
}.

– They cross at round rlast on edge eu. Since the cross is before round r1, there
exists a round r′ < r1 where both agents leave the set {vu1 , vu2 , v′

u2
, v′

u1
}, and

round r′ is after the cross. In this case the adversary blocks ar right after r′,
when ar is outside the set {vu1 , vu2 , v′

u2
, v′

u1
}. Also in this case, if al reaches

the node where ar is blocked, it contradicts the fact that rlast was the last
round in which they cross before r1: to reach the node where ar is blocked,
al has to either cross edge eu and then leave {vu1 , vu2 , v′

u2
, v′

u1
}, or it has to

cross edge ed. Both cases contradict the fact that in execution E the round
rlast is the round of the last cross between agents.

We have shown that in all cases agent al cannot distinguish execution E′ from
E. Thus in E′, al terminates on vu1 , while agent ar is not on a neighbour node
of vu1 . This contradicts the correctness of A. �

When Gathering is solvable the known algorithms give the following upper
bounds: with cross detection and without chirality Gathering can be solved in
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O(n) rounds; the bound is O(n2) when also cross detection is absent. It is an
open problem to determine if the quadratic bound is tight.

6 Live Uniform Deployment in Dynamic Rings

The problem of Uniform Deployment has been studied in [3] (the authors call the
problem Dispersion but we will use the term Uniform Deployment). The authors
assume that the number of agents is equal to the number of nodes, that is
|A| = |V |, we will see in the following why this assumption is somehow needed.

The model is as follows. There are no ports. Each agent has a visibility
radius ρ. At each round, an agent sees the current topology up to ρ hops from
its position. Agents have IDs, and each agent is able to see the IDs of other agents
on its same node. Moreover, agents have a global weak multiplicity detection,
that is they can see if a certain node, inside their visibility radius, is occupied
by more than one agent.

The dynamic is interesting, the adversary is allowed to permute the nodes
of the ring. More precisely, the dynamic graph VP = (G1, G2, . . . ) is such that
each Gj ∈ VP is a ring, but we may have Gj �= Gi

1. We call this kind of
dynamic graphs node permuting rings (VP). It is also possible to consider the
union of node permutation and 1-interval connectivity (VP-1): in this case a
graph VP-1 = (G1, G2, . . . ) is such that each Gj ∈ VP-1 is either a path or a
ring.

It is easy to see that if the dynamic graph is VP any constant number of
agents k can be confined in at most 3k nodes. Let the k agents be initially
placed in different nodes; at round r the agent ai is on node vi, node vi has two
neighbours vi−1, vi+1. Agent ai can move either to vi−1 or vi+1. Let us suppose
w.l.o.g. that it goes to vi−1. At round r + 1 the adversary shuffle the ring such
that vi−1 has neighbours vi+1, vi.

The previous observation gives an hint on the necessity of non constant num-
ber of agents to solve non trivial problems in VP. An interesting open question is
to characterise the non-trivial problems that are solvable in VP with a constant
number of agents.

To solve the Uniform Deployment in VP-1, [3] proposes the algorithm VP-1-
Interval-Chain. The algorithm assumes full-visibility (i.e., the agents can see
the entire ring so we have ρ = � |V |−1

2 �) and chirality. Before introducing the
VP-1-Interval-Chain, we give few definitions.

A hole is an empty node, a multinode is a node with multiple agents, and
a singleton is a node with only one agent. A chain is a sequence of consecutive
nodes, starting with a multinode, followed by zero or more singletons and ter-
minating with an empty node. A good chain is a chain such that there is no
missing edge between nodes in the chain. A bad chain is a chain with a missing
edge between two nodes of the chain. If in clockwise direction the multinode
precedes the hole, then the chain is a clockwise chain. Otherwise, the chain is a
counter-clockwise one. See Fig. 9.
1 The footprint of the graph is not necessarily a ring.
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(a) Good clockwise chain (b) Bad clockwise chain

Fig. 9. Examples of chains, from [3].

The idea of VP-1-Interval-Chain is as follows. If agent a is in a singleton
node in a clockwise good chain, then a moves towards the hole. If agent a is in
a singleton node in a counter-clockwise good chain, then a moves towards the
hole if and only if the multinode of the chain is not part of another good chain.
Regarding the agents in the multinode only the one with lowest id, let it be u,
moves. If u is in a multinode that is part of only one good chain, then u moves
towards the hole. If u is part of two good chains, then u moves clockwise.

Theorem 19 [3]. AlgorithmVP-1-Interval-Chain solves Uniform Deployment
on VP-1 dynamic rings in O(|V |) rounds.

Proof. It is immediate to see that as long as the dispersion is not solved there
are multinodes, recall that |A| = |V |. It is also clear that there are at least two
chains: take a sequence of empty nodes, let it be empty, and consider the two
sequences of occupied nodes at left and right of such empty space. Let them be
chainleft and chainright. Since only one edge can be absent at each round, at
least one between chainleft or chainright is a good chain. If one chain expands
in empty, then the number of empty nodes decreased by at least 1.

Otherwise, by construction of the algorithm, chainright has to be a bad chain
and chainleft a good chain. Moreover chainleft did not expand in empty. For
chainleft to not expand in empty, it means that its multinode is also part of a
clockwise good chain, chain′. By the rule of the algorithm chain′ will expand.
Thus, also in this case, the number of empty nodes decreased by at least 1.

The previous implies that the number of empty nodes decreases at each
round. �

When chirality is not present authors solve Uniform Deployment under more
restricted assumptions. If robots start all in the same node they solve the problem
in O(|V |) rounds in VP-1; otherwise, they give solution algorithms for rings of
odd size or for rings of size 4.

The authors show that Uniform Deployment is not solvable when the visibility
of each robot is limited to its current node. The impossibility holds both in VP
and in interval connected rings. It is an open problem to determine the solvability
of Uniform Deployment for other visibility radiuses.
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7 Conclusion

The study of agents on dynamic graph is a challenging topic. Few works have
investigated the design of distributed algorithms in the agent model. For now,
they considered a very limited set of problems and, most of the time, strong
restrictive assumptions.

A future work could be to extend the study of the exploration on topologies
that are more complex than rings, another one could be to investigate the impact
of Ssync on the problems of Gathering and Uniform Deployment. The field is still
in its early stage and there are many new directions worth considering.

Acknowledgment. The author thanks Giuseppe Prencipe and the anonymous
reviewer for their invaluable feedbacks.
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portation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS
2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25873-2 31

37. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs:
the case of the ring. Theory Comput. Syst. 62(5), 1144–1160 (2018)

38. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

39. Kowalski, D., Mosteiro, M.: Polynomial counting in anonymous dynamic networks
with applications to anonymous dynamic algebraic computations. In: Proceedings
of the 45th International Colloquium on Automata, Languages, and Programming
(ICALP), pp. 156:1–156:14 (2018)

40. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 60

41. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in
the Ring. Morgan & Claypool, San Rafael (2010)

42. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous prob-
lem in the ring. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS), pp. 592–599 (2003)

43. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the 42nd Symposium on Theory of Computing (STOC), pp.
513–522 (2010)

44. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: Proceedings of the 30th Symposium on Principles of Distributed Computing
(PODC), pp. 1–10 (2011)

45. Merritt, M., Taubenfeld, G.: Computing with infinitely many processes. Inf. Com-
put. 233, 12–31 (2013)

https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/11682462_60


584 G. A. Di Luna

46. Michail, O.: An introduction to temporal graphs: An algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

47. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs.
Theor. Comput. Sci. 634, 1–23 (2016)

48. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: Proceedings of the Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), pp. 104–110 (2005)

49. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33,
281–295 (1999)

50. Proskurnikov, A.V., Parsegov, S.E.: Problem of uniform deployment on a line seg-
ment for second-order agents. Autom. Remote Control 77(7), 1248–1258 (2016)

51. Santoro, N.: Time to change: on distributed computing in dynamic networks. In:
Proceedings of the 19th International Conference on Principles of Distributed Sys-
tems (OPODIS), pp. 1–14 (2015)

52. Shibata, M., Kakugawa, H., Masuzawa, T.: Brief announcement: space-efficient
uniform deployment of mobile agents in asynchronous unidirectional rings. In:
Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 489–493. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 37

53. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deploy-
ment of mobile agents in asynchronous rings. In: Proceedings of the 35th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 415–424 (2016)

54. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Pro-
ceedings of the 6th ACM SIGCOMM Conference on Internet Measurement (IMC),
pp. 189–202 (2006)

55. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)

https://doi.org/10.1007/978-3-319-69084-1_37


Other Computational Settings



Geometric Aspects of Robot Navigation:
From Individual Robots to Massive

Particle Swarms

Sándor P. Fekete(B)

Department of Computer Science, TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

Abstract. We describe a spectrum of challenges and results related to
geometric aspects of robot navigation, advancing from centralized meth-
ods for difficult offline problems (such as the Art Gallery Problem), to
online tasks for many robots (as in online exploration by a swarm of
robots), locally managing the connectivity and shape of a large swarm
(i.e., cohesive control), all the way to controlling massive swarms of par-
ticles by global forces.

1 Introduction

Ever since the first work on autonomous robots, algorithmic aspects of robot
navigation have played an important role, with new theoretical insights making
it possible to expand the practical possibilities, and new real-world challenges
motivate algorithmic innovation. Particularly important roles in these develop-
ments were played by geometry and by the advances of distributed models and
methods. In the following, we provide a number of highlights: The Art Gallery
Problem described in Sect. 2 deals with localizing stationary viewpoints for map-
ping all of a given, known region. Section 3 describes how to explore and triangu-
late an unknown region by a swarm of simple robots with only weak sensor and
navigation capabilities. Section 4 deals with the challenge of cohesive control,
i.e., organizing a swarm of simple agents by local interaction, such that connec-
tivity is maintained, even in the presence of external forces and agent failures.
The final Sect. 5 describes how to control a massive swarm of particles by using
uniform external forces.

2 Art Gallery Problems

2.1 Motivation

Consider a robot platform that can produce high-resolution, virtual environ-
ments, based on a limited number of laser scans. For mapping all of a given
region in the presence of obstacles, we need to compute an optimal set of scan
positions. This is closely related to one of the classic problems of computational
geometry: The Art Gallery Problem (AGP) asks for illuminating or surveying
all of a given polygonal region P from as few positions (“guards”) as possible.
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2.2 Formal Aspects

Consider a given polygonal region P . For any point g ∈ P , the visibility region
V(g) is the set of all positions p ∈ P for which there is a straightline connection
between G and p that lies completely in P . The Art Gallery Problem (AGP)
asks for a minimum cardinality guard set G ⊂ P that sees all of P , i.e., such that⋃

g∈G V(g) = P . An important distinction arises from the possible positions of
guards: a vertex guard must be placed at a vertex of P , while a point guard can
be located anywhere in P .

2.3 Context

As first proven by Chvátal [15] and shown by Fisk [32] in a beautiful and concise
proof, �n

3 � guards are sometimes necessary and always sufficient for guarding a
simple polygon P with n vertices. See O’Rourke [64] for an early overview.

Algorithmically, the AGP is NP-hard, even for a simply connected polygonal
region P [51]. Eidenbenz et al. [20] showed that for a region with holes, finding
an optimal set of vertex guards is at least as hard as the problem Set Cover, so
there is little hope of achieving a better approximation guarantee than Ω(log n).
It seems unlikely that this gets any easier when allowing general point guards,
as there is no known simple characterization of a discrete candidate set of guard
locations. Furthermore, recent work by Abrahamsen et al. [1] proves that the
AGP is complete for the existential theory of the reals, implying that it is unlikely
to even belong to the class NP.

All this shows the difficulty of the AGP, but it does not rule out methods
that combine structural insights with powerful mathematical tools to achieve
provably optimal solutions for instances of interesting size.

Computing optimal solutions for general AGP instances is not only relevant
from a theoretical point of view, but has also gained in practical importance in
the context of modeling, mapping, and surveying complex environments, such
as in the fields of architecture, robotics and medicine.

2.4 Application Scenario

One particular real-world platform giving rise to instances of the Art Gallery
Problem is Irma3D (Intelligent Robot for Mapping Applications in 3D), an
autonomous robot; see Fig. 1. Its main sensor is a Riegl VZ-400 laser scanner. A
typical 3D laser scan needs 3 min, producing up to 20 million highly precise 3D
measurements of the surrounding. A globally consistent scan matching is used
to merge the 3D scans to a single scene [11]. Irma3D is built on a Volksbot RT-3
chassis; it uses the Xsens MTi IMU and odometry to sense its own position.
See Fig. 2 for a real-world image (Top) and the schematic view with an optimal
set of scan points (Bottom). The algorithmic challenge is to plan number and
positioning of these scans.
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Fig. 1. IRMA3D in front of the town hall of Bremen, scanning the city square.

Fig. 2. (Top) part of a real-life AGP instance with 15 holes and 332 vertices: a square in
the city center of Bremen. (Bottom) a corresponding extracted polygonal region, with
an optimal set of scan positions, shown as 15 black dots. The white holes correspond
to obstacles formed by buildings in the square.
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2.5 Algorithmic Insights

Independently, different groups (Braunschweig and Campinas) have combined
methods from integer (IP) and linear programming (LP) with non-discrete geo-
metry in order to obtain optimal solutions; first for the discrete case of vertex
guards [17], but later also for general point guards [46,73].

The algorithm in [73] computes lower and upper bounds for the AGP, based
on computing finite set cover instances with the help of a state-of-the-art IP
solver. To generate a lower bound, a finite set of witness candidates is chosen
and a restricted AGP is solved, in which only the witnesses have to be covered.
For this, it suffices to extract a finite set of potential guard positions from the vis-
ibility arrangement of the witness set to ensure optimality. Similarly, finite sets of
potential witness positions for a given finite guard set can be extracted from the
visibility arrangement of the guards. This allows it to compute upper and lower
bounds for the optimal AGP value by solving discrete set cover instances. The
algorithm in [73] iterates between generating tighter lower and upper bounds by
refining the witness and guard candidate sets along the iterations. It stops when
lower and upper bounds coincide. Although no proof of theoretical convergence
is known (and the work by Abrahamsen et al. [1] strongly suggests that no such
convergence can exist for all classes of instances), in tests, the approach is able to
yield optimal solutions for a large variety of instance classes, even for polygons
with up to a thousand vertices.

An approach presented in [46] considers a similar primal-dual scheme, but
focuses on the linear relaxation of the primal guard cover with guard set G, from
which a small subset has to be selected to cover all points from a witness set
W : For each point w ∈ W , a guard in its visibility region V(w) must be chosen.
Allowing fractional guards corresponds to admitting guard variables 0 ≤ xg ≤ 1
for any guard g ∈ G. This yields the following linear program.

min
∑

g∈G

xg (1)

s. t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈ W (2)

0 ≤ xg ≤ 1 ∀g ∈ G (3)

Its dual is the witness packing problem, in which the objective is to find as
many independent witness positions w ∈ W as possible, such that no two of
them can be seen from the same guard position g ∈ G.

max
∑

w∈W

yw (4)

s. t.
∑

g∈G∩V(w)

yw ≤ 1 ∀g ∈ G (5)

0 ≤ yw ≤ 1 ∀w ∈ W (6)
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Because of strong duality of linear programming, considering these fractional
guard and witness values leads to optimal primal and dual solutions with identi-
cal objective values. To eliminate fractional solutions, we can apply appropriate
cutting planes derived from the set cover polytope, based on specific subsets
J1 ∩ G and J2 ∩ G. ∑

g∈J2∩G

2xg +
∑

g∈J1∩G

xg ≥ 2 (7)

As it turns out [24], only a small subset of these inequalities matter in the
context of AGP instances. Together with a similar primal-dual iteration scheme
such as the one in [73], we can find optimal integral solutions for a large range of
benchmark instances, including the one shown in the scenario above; see Fig. 3
for a pair of primal and dual solutions.

2.6 Extensions

There are various extensions and related questions. In the work described above,
the robot has unlimited viewing distance, only the number of scans is to be
minimized, and the given region is known in advance. We have also studied this
problem for the case of limited viewing distance and an objective function that is
a linear combination of the number of scans and distance traveled by the robot.
See [29] and the cited related work. We have also studied the context of exploring
an unknown region by a robot with discrete vision; see [31].

2.7 Acknowledgments

The content of this section is based on the abstract [10] and paraphrases the
joint work with Dorit Borrmann, Pedro de Rezende, Cid de Souza, Stephan
Friedrichs, Alexander Kröller, Andreas Nüchter and Christiane Schmidt con-
tained in the papers [24,46]. For a visualization, see the video that accompa-
nies [10], to be found at the website http://www.computational-geometry.org/
SoCG-videos/socg13video/#Borrmann-etal.

3 Online Exploration and Triangulation by a Swarm of
Simple Robots

3.1 Motivation

Consider a swarm of inexpensive robots without explicit mapping capabilities in
an unknown area. Each robot has a limited visibility range, but can move around
to get a more complete picture of the environment. Once the region has been
fully covered, the robots can also stay around so that we can get live updates.
How can we organize this exploration and make sure that we can continue to
observe all parts of the environment after they are discovered?

http://www.computational-geometry.org/SoCG-videos/socg13video/#Borrmann-etal
http://www.computational-geometry.org/SoCG-videos/socg13video/#Borrmann-etal
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Fig. 3. A pair of primal and dual solutions to the fractional linear programming
relaxation.
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3.2 Formal Aspects

We are given a polygonal region P , and a point z ∈ P on the boundary of P . In
addition, we are given a supply of robots with limited (circular) communication
range r; for ease of description, we normalize to r = 1. Within this range,
perception of and communication with other robots is possible. In the Minimum
Relay Triangulation Problem (MRTP), the goal is to compute a set R of robot
positions within P (with z ∈ R and V ⊆ R for the vertex set V of P ), such
that there is a (unit) triangulation of P whose vertex set is exactly the set R
and whose edges stay within P and have length at most 1. The objective is to
minimize the number of robots. In the Maximum Area Triangulation Problem
(MATP), the number of available robots is bounded by a number k; the goal is to
determine a set R of at most k robot positions, with a unit triangulation covering
a maximum possible area. For the online versions (OMRTP and OMATP), the
polygon P is unknown. Each robot may move through the area, and has to
decide on a new location for a triangulation vertex, while still being within
reach of the previously placed relays. Once it has stopped, it becomes part of
the static triangulation, allowing other relays to extend the exploration.

3.3 Context

In recent years, the field of robotics has seen two diverging trends. One has been
to achieve progress by increasing the capabilities of individual robots, keeping
the cost of state-of-the-art machines relatively high. An opposite direction has
been to develop simpler and cheaper platforms, at the expense of reducing the
capabilities per robot. The latter raises new challenges for developing new princi-
ples and algorithms, such as coordinating many robots with limited capabilities
into a swarm that can carry out difficult tasks, such as exploration, surveillance,
and guidance.

3.4 Application Scenario

A real-life example of an advanced, low-cost, swarm robot design with limited
sensor capabilities is the r-one [61], shown in Fig. 4. Its estimated unit cost is
about US $250. Measuring only 11 cm in diameter, it has a 32-bit ARM-based
microcontroller, running at 50 MHz with no floating point unit. The local infrared
(IR) communication system is used for inter-robot communication and localiza-
tion. Each robot has eight IR transmitters and eight receivers. The transmitters
broadcast in unison and emit a radially uniform energy pattern. The robot’s
eight IR receivers are radially spaced to produce 16 distinct detection regions
(shown in Fig. 4 (Right)). By monitoring the overlapping regions, the bearing
of neighbors can be estimated to within ≈π/8. Thus, it has limited capabili-
ties for measurement, which is intertwined with local communication. The IR
receivers have a maximum bit rate of 1250 bits per second. Each robot transmits
(Δ + 1) 4-byte messages during each round, one being a system announce mes-
sage, the others containing the bearing measurements to that robot’s neighbors.



594 S. P. Fekete

Fig. 4. (Left) the r-one for multi-robot research, designed by the MRSL group at Rice
University. (Right) IR receiver detection regions. Each receiver detects an overlapping
68◦, allowing to determine angles within about 22.5◦.

The system supports a maximum of Δ = 10. For more on experimental work on
coordination and navigation of r-ones, see [61,62].

The algorithmic challenge is to exploit the capabilities of a swarm to over-
come the limitations of the individual robots, and achieve overall behavior with
provable performance guarantees that are rooted in solid algorithmic theory.

3.5 Algorithmic Insights

The problems MRTP and MATP were introduced in [26]; the currently best
results for the online versions OMRTP and OMATP were presented in [25,68].
Both problems share their decision problem, which is known to be NP-hard.
For the OMRTP, there is a lower bound of 6/5 on the competitive factor of any
deterministic strategy, as well as a 3-competitive algorithm for general polygons.
This strategy is shown in Fig. 5: We place robots at unit intervals along the
boundary (green) and fill the interior with a regular triangular grid (blue). The
space between the two is patched together using a third class (red). One can prove
that the size of each of the three classes is bounded by the number of robots in an
optimal solution. For polyominoes, algorithms with better competitive factors
exist [30].

On the other hand, the OMATP does not admit a deterministic strategy
with a constant competitive factor, if the polygon may have small corridors. If
these can be excluded, greedy strategies perform well [30].

These strategies have been used on the real robots described above; see Fig. 6
for a snapshot.

3.6 Extensions

Once a well-formed triangulation (with lower bounds on minimum edge length
and minimum internal angle) is established, it can be employed for a number
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Fig. 5. The 3-competitive strategy for the OMRTP, consisting of three sets of robots:
green robots are placed along the boundary at vertices and at unit distance along
edges; blue robots fill the interior by a grid; red robots complete the triangulation by
connecting boundary interior robots. (Color figure online)

Fig. 6. A swarm of r-ones executing the online algorithm for the OMATP in the real
world.
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of different purposes. In [53], we show how the underlying connectivity graph of
the robots forming the triangulation can be used for maintaining the correspond-
ing dual graph (in which vertices correspond to triangles, and edges represent
triangles sharing a common boundary), and how a minimum hop count in the
unweighted dual graph achieves a constant stretch factor compared to the short-
est geometric distances, i.e., manages to stay within a constant factor of the
shortest achievable distance with global information; see Fig. 7.

Fig. 7. Using a dual path for routing in a triangulated environment: a shortest path
(shown in red) is approximated by a minimum-hop path (shown in yellow), achieving
constant stretch. (Color figure online)

Another application of a triangulation is to use it for surveying the under-
lying region by additional, mobile robots, again based on the dual graph of the
stationary triangulation. In [2,54,57], we discuss various aspects of local policies
for patrolling the vertices of such a graph.

3.7 Acknowledgments

The content of this section is based on the abstract [28] and paraphrases the
joint work with Aaron Becker, Tom Kamphans, Alexander Kröller, Seoung
Kyou Lee, James McLurkin, Joe Mitchell, Christiane Schmidt, described in the
papers [25,52,54]. For a visualization, see the video http://www.computational-
geometry.org/SoCG-videos/socg13video/#Becker-etal that accompanies [28].
See the journal paper [54] for full technical details of the robotics side and its
extensions.

4 Distributed Cohesive Control

4.1 Motivation

Consider a swarm of robots that needs to remain connected. There is no cen-
tral control and no knowledge of the overall environment. This environment is

http://www.computational-geometry.org/SoCG-videos/socg13video/#Becker-etal
http://www.computational-geometry.org/SoCG-videos/socg13video/#Becker-etal
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hostile: The swarm is being pulled apart by external forces, stretching it into
a number of different directions, so it is in danger of breaking up. Individual
robots are weak, with limited sensing, limited communication, and limited con-
nectivity; even worse, each robot’s expected lifetime is limited by random, per-
manent failures, which may destroy connectedness and functioning of the swarm
as a whole. How can we achieve coordinated dynamic swarm behavior without
centralized coordination? How can we employ each robot as much as possible,
without depending on it if it fails? How can we balance overall flexibility and
robustness to deal with the hostile environment?

The challenge is to develop local self-stabilizing mechanisms that allow the
swarm to stay locally well connected (forcing swarm members to stay close to
each other), even when it is being pulled apart by several distant and mobile
sites (forcing swarm members to spread out).

Fig. 8. A robust robot swarm emulating a Steiner tree between five diverging leader
robots.

4.2 Formal Aspects

We consider a finite set of robots R with an externally controlled subset of
leader robots L � R, |L| � |R|. We want the remaining robots R\L to maintain
a dynamic and robust network that keeps the swarm connected, even in the
presence of random robot failures and arbitrary leader movements. Thus, the
overall shape of the swarm should form a “thick” Steiner tree among the leaders
with the robots R \ L evenly distributed along the edges, as shown in Fig. 8.

Robots have the shape of circles; two of them are connected when within
a maximum distance and with an unobstructed line of sight. Robots know the
relative positions and orientations of their neighbors and can communicate asyn-
chronously. Each robot has a unique ID; leader IDs are known by all others.
Robot’s translations and rotations are limited in velocity and acceleration. Com-
munication is possible by broadcasting to immediate neighbors.
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The perception of all robots is local; however, due to the known position
and orientation difference, each robot can transform vectors of its neighbors to
its own coordinate system. We avoid multi-hop transformations to keep errors
small.

4.3 Context

One of the earliest works on flocking is Reynold’s pioneering work [66]. In recent
years, a considerable number of aspects and objectives have extended this per-
spective. We highlight only some of the ensuing papers, showing how they differ
from our perspective.

A basic component of flocking is volumetric control, as it was presented
by Spears [71]: Robots use local potential field controllers (with attractive and
repulsive forces) for constructing a regular lattice with a corresponding base
density [40,63]. This does not necessarily preserve connectivity [3,36,71]. While
the latter can be side-stepped by simply assuming that robots are always con-
nected [70], we aim for connectivity as a requirement, which is vital in a fully
distributed setting in which deterministic recovery from disconnectedness may
be impossible.

Some of the ideas of Olfati-Saber [63] form the basis of our work; however,
in that model, robots do utilize global information, e.g., the position of a guide
robot in a shared coordinate frame [14,49,50,63] or environmental potential [34].
Instead of the potentials, Cortes et al. [16] and Lindhé et al. [56] used Voronoi
tessellation. This is based on a density function, requiring global information for
covering a region. Overall, this differs from our objective of developing methods
that are fully distributed, aiming for collective mechanisms for complex group
behavior that go beyond relatively simple objectives [9], but also for systems
that are robust against partial hardware failures [43].

The final property is cohesiveness of the overall swarm: all robots should
maintain a unified state, such as desired distance or orientation; see [63] for
a formal definition. As described in [60], detecting and maintaining a swarm
boundary is of particular importance for maintaining swarm cohesiveness and
connectedness. This is based on and related to work in the field of wireless sensor
networks (WSNs), which has considered many geometric settings in which a
large swarm of stationary nodes is faced with the task of achieving a large-scale
overall goal, while the individual components can only operate locally, based on
limited individual capabilities and information; refer to Fekete et al. [27,47] for a
detailed description. In addition to the work on swarm robotics described above,
there is a large body of theoretical work on geometric swarm behavior; here we
only mention Chazelle [13] for flocking behavior, and Fekete et al. [27,47] for
geometric algorithms for static sensor networks, including distributed boundary
detection.

Beyond the involved properties and paradigm, the overall goal for the swarm
can also be described as a distributed optimization problem: Maintain a gen-
eralized Steiner tree with limited edge lengths that connects a moving set of
terminals. To the best of our knowledge, only Hamann and Wörn [35] have
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explicitly considered the construction of Steiner trees by a robot swarm. For
static terminals, they start with an exploratory network; as soon as all terminals
are connected, only best paths are kept and locally optimized.

Even in a centralized and static setting with full information, we must deal
with a generalization of the well-known NP-hard problem of finding a good
Steiner tree [33]; see the books by Hwang et al. [41] and Prömel and Steger [65]
for further introduction. More specifically, we are faced with the relay placement
problem: The input is a set of sensors and a number r ≥ 1, the communication
range of a relay. The objective is to place a minimum number of relays so that
between every pair of sensors is connected by a path through sensors and/or
relays. The best known theoretical performance bound for this NP-hard problem
was given by Efrat et al. [19], who presented a 3.11-approximation algorithm;
they also showed a worst-case lower bound of 3 for a large class of approximation
algorithms. For a fixed number of available relays, this turns into our problem of
maximizing the achievable networks size, with matching approximation factor.

4.4 Algorithmic Insights

A key insight is that achieving complex overall behavior can be based not only
on local interaction that resembled physical forces, but also on principles of dis-
tributed algorithms that build more complex structures. To this end, we have
developed a number of powerful local mechanisms for maintaining a dynamic
swarm of robots with limited capabilities and information, in the presence of
external forces and permanent node failures. These mechanisms consist of a set
of local, self-stabilizing, continuous algorithms that together produce a gener-
alization of a Euclidean Steiner tree, maintain a dynamic and robust network
between leader robots. At any stage, the resulting overall shape achieves a good
compromise between local thickness, global connectivity, and flexibility to fur-
ther continuous motion of the terminals, adopting the directions of multiple
leaders, while preserving a uniform thickness along the edges of the Steiner tree.
The resulting swarm behavior scales well, is robust against node failures, and
performs close to the best known approximation bound for a corresponding cen-
tralized static optimization problem.

We first sketch the base behavior of the robots, inducing an almost con-
vex swarm shape. This is subsequently improved by leader forces, and stability
improvement and thickness contraction.

4.4.1 Base Behavior
Our base behavior consists of three components that result in a swarm shape of
a droplet. (i) The flocking algorithm of Olfati-Saber [63] considers regular dis-
tribution and movement consensus. The algorithm is a stateless equation based
on potential fields and is proven to converge. It uses three rules: Attraction to
neighbors, repulsion from too close neighbors, and adaption to the velocity of
neighbors. We slightly modified the algorithm for better response to additional
forces. (ii) An extended version of the boundary detection algorithm of McLurkin
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and Demaine [60], which determines if a robot lies on the boundary and also
identifies small holes by using the average angle. (iii) The boundary tension of
Lee and McLurkin [55], which straightens and minimizes the boundary of the
swarm. This is done by simply pushing boundary robots to the middle of its two
boundary neighbors.

Fig. 9. A swarm configuration in which a purely physics-based mechanism lead to
disconnection.

The base behavior without any other forces results in at most convex shapes
before losing connectivity. Figure 9 shows a situation in which the swarm is about
to lose connectivity. For stronger control and more variable shapes, leader forces
are introduced.

4.4.2 Leader Forces
A single leader constitutes the simplest form of swarm control. In this case the
swarm motion is determined by the leader’s velocity. With multiple (possibly
antagonistic) leaders, the swarm is not just steered, but may be stretched to
the limit until connectivity is lost. To this end, each robot needs to find an
appropriate balance between the influence of different leaders. See top of Fig. 10
for an illustration. We therefore combine both methods by a smooth transition
between velocity matching close to the leaders and leader pursuit when further
away; see the bottom of Fig. 10.

4.4.3 Stability Improvement and Thickness
Near Steiner points, connections along concave swarm boundaries may be
stretched by boundary forces. When the involved edges approach the upper
bound for communication, connections may be disrupted, to the point where the
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Fig. 10. (Top) A one-dimensional scenario with two leaders (red) moving in oppo-
site directions. (Bottom) With increasing distance to the leader, the effect shifts from
velocity matching to leader pursuit. (Color figure online)

swarm loses connectivity. By adding a thickness-dependent compression force,
we reduce neighbor distances without influencing the Steiner-tree shape of the
swarm; in effect, this works similar to compression stockings. Algorithmically,
the involved mechanisms resemble methods that have been studied in the con-
text of sensor networks, such as local methods for boundary detection and hop
distance from the boundary. This gives rise to notions such as the hop circle of
radius h with robot r as circle center: This is the set of all robots with a hop
count ≤h to c; only robots with hop distance at least h may be on the boundary,
so a hop circle of maximal radius around a given robot gives an indication of the
local thickness in its neighborhood. (For an example, see Fig. 11.)

Fig. 11. Thickness determination for a limb part of a swarm. The indicated triples of
numbers at each node r correspond to (b(r)/t(r)/h(r)), where b(r) is the hop count
from the boundary, t(r) is the local thickness, and h(r) is the circle center distance. A
largest hop circle is marked in blue. (Color figure online)

This allows local approaches to keep track of and maintain local thickness
and connectivity, even in the presence of external forces and robot failures. See
our paper [48] for more technical details.

4.5 Extensions

There are numerous possible extensions, most notably for dealing with a cohe-
sive swarm in the presence of obstacles. At this time, these are still under
development.
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Fig. 12. A comparison of strategies for the same example, for a swarm with n = 400
and failure rate 0. As indicated, columns correspond to strategies Base, Leader, and
All. Rows show the swarms at times T = 200, T = 2000, T = 3000, T = 7600,
T = 12, 000, with 60 steps per simulated second. When a swarm is no longer shown, it
has become disconnected right after the previous time step.

4.6 Acknowledgments

The content of this section is based on the abstract [22] and paraphrases the joint
work with Maximilian Ernestus, Michael Hemmer and Dominik Krupke con-
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5 Controlling Swarms by Global Forces

5.1 Motivation

One of the exciting new directions of robotics is the design and development
of micro- and nanorobot systems, with the goal of letting a huge population of
robots perform complex operations in a complicated environment. Due to scaling
issues, individual control of the involved robots becomes physically impossible:
While energy storage capacity drops with the third power of robot size, medium
resistance decreases much slower. A possible answer lies in applying a global,
external force to all particles in the swarm. This is what many current micro-
and nanorobot systems with many robots do: The whole swarm is steered and
directed by an external force that acts as a common control signal. These com-
mon control signals include global magnetic or electric fields, chemical gradients,
and turning a light source on and off.

5.2 Formal Aspects

We consider a two-dimensional grid world, with some cells occupied and others
free. Initially, the planar square grid is filled with some unit-square particles
(each occupying a cell of the grid) and some fixed unit-square blocks. All particles
are commanded in unison: a valid command is “Go Up” (u),“Go Right” (r),“Go
Down” (d), or “Go Left” (l). All particles move in the commanded direction until
they hit an obstacle or another particle. A representative command sequence is
〈u, r, d, l, d, r, u, . . .〉. We call these global commands force-field moves. We assume
that we can bound the minimum particle speed and that we can guarantee that
all particles have moved to their maximum extent.

5.3 Application Scenario

Becker et al. [8] demonstrate how to apply a magnetic field to simultaneously
move cells containing iron particles in a specific direction within a fabricated
workspace; see Fig. 13a. Other recent examples include using the global magnetic
field from an MRI to guide magneto-tactic bacteria through a vascular network
to deliver payloads at specific locations [12], and using electromagnets to steer
a magneto-tactic bacterium through a micro-fabricated maze [45]; however, this
still involves only individual particles at a time, not the parallel motion of a
whole, massive swarm. How can we manipulate the overall swarm with coarse
global control, such that individual particles arrive at multiple different destina-
tions in a (known) complex vascular network such as the one in Fig. 13b?

5.4 Context

The problem resembles the logic puzzle Tilt [72], and dexterity ball-in-a-maze
puzzles such as Pigs in Clover and Labyrinth, which involve tilting a board to
cause all mobile pieces to roll or slide in a desired direction. Problems of this type
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.025 mm 65 mm 0.5 mm 
(a) (Left) After feeding iron particles to ciliate eukaryon (Tetrahymena pyriformis)
and magnetizing the particles with a permanent magnet, the cells can be turned
by changing the orientation of an external magnetic field (see colored paths in the
center image). (Right) Using two orthogonal Helmholz electromagnets, Becker et al. [8]
demonstrated steering many living magnetized T. pyriformis cells. All cells are steered
by the same global field.

(b) Biological vascular network (cottonwood leaf). (Photo:
Royce Bair/Flickr/Getty Images.) Given such a network along
with initial and goal positions of N particles, is it possible to
bring each particle to its goal position using a global control sig-
nal? Note that this arrangement is not a tree, but a graph struc-
ture with many cycles. Matlab code for driving N particles
through this network is available at http://www.mathworks.

com/matlabcentral/fileexchange/42892.

Fig. 13. (Top) State of the art in controlling small objects by force fields. (Bottom)
A complex vascular network, forming a typical environment for the parallel naviga-
tion of small objects. This section investigates parallel navigation in discretized 2D
environments. (Color figure online)
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are also similar to sliding-block puzzles with fixed obstacles [18,37–39], except
that all particles receive the same control inputs, as in the Tilt puzzle. Another
connection is to Randolph’s Ricochet Robots [21], a game that allows individual
and independent control of the involved particles.

In the real world, driving ferromagnetic particles with a magnetic resonance
imaging (MRI) scanner gives examples of this challenge, from nano- to micro-
scales; see [74].

5.5 Algorithmic Insights

Clearly, having only one global signal that uniformly affects all robots at once
poses a strong restriction on the ability of the swarm to perform complex oper-
ations. The only hope for breaking symmetry is to use interactions between the
robot swarm and obstacles in the environment. The key challenge is to estab-
lish if interactions with obstacles are sufficient to perform complex operations,
ideally by analyzing the complexity of possible logical operations.

It is important to note that there are two fundementally different classes of
algorithmic problems, which we denote by External Computation and Internal
Computation.

5.5.1 External Computation
Considering the particle swarm as input for a given algorithmic problem, we are
faced with a number of questions that need to be resolved by a computing device
“outside” of the particle system, such as the following.

1. Given a map of an environment, such as the vascular network shown in
Fig. 13b, along with initial and goal positions for each particle, does there
exist a sequence of inputs that will bring each particle to its goal position?

2. Given a map of an environment, such as the vascular network shown in
Fig. 13b, along with initial and goal positions for each particle, what is the
shortest sequence of moves that will bring each particle to its goal position?

3. Given initial and goal positions for each particle in a swarm, how can we
design a set of obstacles and a sequence of moves, such that each particle
reaches its goal position?

Deliberate use of existing stationary obstacles leads to a wide range of pos-
sible particle configurations. In our work [4–6,69], we address all these issues.
For the first two questions, we show that they may lead to computationally dif-
ficult situations. We also develop several positive results for the third question.
The underlying idea is to construct artificial obstacles (such as walls) that allow
arbitrary rearrangements of a given two-dimensional particle swarm.

Theorem 1. Given a specified goal location and an initial configuration of mov-
able particles and fixed obstacles, it is NP-hard to decide if a move sequence exists
that ends with some particle at the goal location.



606 S. P. Fekete

The proof relies on a reduction from 3SAT. Suppose we are given n Boolean
variables x1, x2, . . . , xn, and m disjunctive clauses Cj = Uj ∨Vj ∨Wj , where each
literal Uj , Vj ,Wj is of the form xi or ¬xi. We construct a problem instance that
has a solution if and only if all clauses can be satisfied by a truth assignment
to the variables. This instance is composed of variable gadgets for setting indi-
vidual variables True or False, clause gadgets that construct the logical or of
groupings of three variables, and a check gadget that constructs the logical and
of all the clauses. A particle is only delivered to the goal location if the variables
have been set in such a way that the formula evaluates to True. See Fig. 14 for
an overview of the whole construction.

On the positive side, we can show that for a given labeled arrangement of
particles, arbitrary permutations can be achieved with appropriate sets of obsta-
cles. To this end, we consider a 2D array of particles, as shown in Fig. 15. For an
ar × ac matrix A and a br × bc matrix B, of equal total size N = arac = brbc, a
matrix permutation assigns each element in A a unique position in B.

Theorem 2. Let A and B be matrices with dimensions as above. Any matrix
permutation that transforms A into B can be executed by a set of obstacles in just
four moves. For N particles, the constructed arrangement of obstacles requires
(3N + 1)2 space and 4N + 1 obstacles. If particles move with a speed of v, the
required time for those four moves is 12N/v.

This can be employed to realize larger sets of permutations all at once, as
shown in Fig. 16.

The previous construction is efficient with respect to the number of required
moves, at the expense of a possibly higher number of obstacles. By allowing a
larger number of moves, we can limit the number of obstacles for achieving any
permutation, as shown in Fig. 17.

Theorem 3. We can construct a set of O(N) obstacles such that any ar × ac

arrangement of N particles can be rearranged into any other ar×ac arrangement
π of the same particles, using at most O(N2) force-field moves.

Proof. See Fig. 17. Use Theorem 2 to build two sets of obstacles, one each for
p and q, such that p is realized by the sequence 〈u, r, d, �〉 (clockwise) and q is
realized by 〈r, u, �, d〉 (counterclockwise). Then we use the appropriate sequence
for generating π in O(N2) moves.

On the other hand, minimizing the number of moves for achieving a desired
goal configuration for all particles turns out to be pspace-complete.

Theorem 4. Given an initial configuration of (labeled) movable particles and
fixed obstacles, it is pspace-complete to compute a shortest sequence of force-
field moves to achieve another (labeled) configuration.

The proof is largely based on a complexity result by Jerrum [42], who con-
sidered the following problem: Given a permutation group specified by a set of
generators and a single target permutation π, which is a member of the group,
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x1 x3 x4 x2 x3 x4 x4x1 x2 x1 x2 x3

OR OR OR OR

AND

(a) Initial state with particles (colored) on the upper right.
The objective is to move one particle into the grey target rectangle at lower

left.

(b) Setting variables to (False, True, False, True) does not satisfy this
3SAT instance.

(c) Setting the variables (True, False, False, True) satisfies this 3SAT
instance.

(d) Successful outcome. (True, False, False, True) moves a single particle
into the target region.

Fig. 14. Combining twelve variable gadgets, four 3-input or gadgets, and a 4-input
and gadget to realize the 3SAT expression (¬x1 ∨¬x3 ∨x4)∧ (¬x2 ∨¬x3 ∨x4)∧ (¬x1 ∨
x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3). (Color figure online)
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1 

2 

3 
4 

Fig. 15. In this image for N = 15, black cells are obstacles, white cells are free, and
colored discs are individual particles. The world has been designed to permute the
particles between ‘A’ into ‘B’ every four steps: 〈u, r, d, �〉. See the video at http://
youtu.be/3tJdRrNShXM. Visually, the distinction between particles of the same color
does not matter; however, the arrangement of obstacles induces a specific permutation
of individual particles. (Color figure online)

Fig. 16. For any set of k fixed, but arbitrary permutations of N particles, we can
construct a set of O(kN) obstacles, such that we can switch from a start arrangement
into any of the k permutations using at most O(log k) force-field moves. Here k = 4 and
‘A’ is transformed into ‘B’, ‘C’, ‘D’, or ‘E’ in eight moves: 〈r, d, (r/�), d, (r/�), d, �, u〉.

Fig. 17. Repeated application of two base permutations can generate any permutation,
when used in a manner similar to Bubble Sort. The obstacles in (A) generate the base
permutation p = (1, 2) in the clockwise direction 〈u, r, d, �〉 (B) and q = (1, 2, . . . , N)
in the counterclockwise direction 〈r, u, �, d〉 (C).

what is the shortest expression for the target permutation in terms of the gen-
erator? This problem was shown to be Pspace-complete in [42], even when the
generator set consists of only two permutations π1 and π2. Combining this with
the idea of our construction of Theorem 3 yields the claimed result: Use two sets
of obstacles for realizing π1 by a sequence of four clockwise moves and π2 by a

http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM


Geometric Aspects of Robot Navigation 609

sequence of four counterclockwise moves; then a shortest sequence of force-field
moves for achieving a desired target permutation π3 corresponds to a minimum
generation of π3 by π1 and π2.

5.5.2 Internal Computation
Considering the particle swarm as a complex system that can be reconfigured in
various ways, we are faced with issues of the computational power of the swarm
itself (as opposed to that of an external device), such as the following.

1. Can the complexity of particle interaction be exploited to model logical oper-
ations?

2. Are there limits to the computational power of the particle swarm?
3. How can we achieve computational universality with particle computation?

In [4,5,69], we give precise answers to all of these questions. In particular, we
show that the logical operations and, nand, nor, and or can be implemented
in our model using dual-rail logic. Using terminology from electrical engineering,
we call these components that calculate logical operations gates. We establish a
fundamental limitation for particle interactions: We cannot duplicate the output
of a chain of gates without also duplicating the chain of gates. This means that a
so-called fan-out gate cannot be generated. We resolve this missing component
with the help of 2× 1 particles, which can be used to create fan-out gates that
produce multiple copies of the inputs without needing duplicate gates, as shown
in Fig. 18 for a physical prototype. Using these fan-out gates, we provide rules
for replicating arbitrary digital circuits, allowing us to establish the full range of
computational universality as presented by complex digital circuits.

Fig. 18. Gravity-fed hardware implementation of particle computation. The reconfig-
urable prototype is set up as a fan-out gate using a 2 × 1 robot (white)
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5.6 Extensions

There are numerous extensions to the basic framework of control by uniform
global forces. In [58] we develop methods for mapping, foraging, and coverage
with a particle swarm. In [59] we show how to collect a particle swarm. In [44] we
show how to use uniform global forces in combination with appropriate obstacles
to efficiently sort and classify polyomino shapes.

In combination with “sticky” particles that bind together when brought into
contact, we can use the basic setup to build production lines for assembling
given shapes; see our paper [7] for a basic algorithmic and complexity analysis,
and [67] for more efficient methods that proceed in a hierarchical fashion.

5.7 Acknowledgments

The content of this section is based on the abstract [6] and paraphrases the
joint work with Aaron Becker, Erik Demaine, Golnaz Habibi, Jarrett Lonsford,
James McLurkin, Hahmed Mohtasham Shad, Rose Morris-Wright contained in
the papers [4,5,69]. For an animated visualization, see the video at https://
youtu.be/H6o9DTIfkn0.
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Abstract. The vision for programmable matter is to realize a physi-
cal substance that is scalable, versatile, instantly reconfigurable, safe to
handle, and robust to failures. Programmable matter could be deployed
in a variety of domain spaces to address a wide gamut of problems,
including applications in construction, environmental science, synthetic
biology, and space exploration. However, there are considerable engineer-
ing and computational challenges that must be overcome before such a
system could be implemented. Towards developing efficient algorithms
for novel programmable matter behaviors, the amoebot model for self-
organizing particle systems and its variant, hybrid programmable mat-
ter, provide formal computational frameworks that facilitate rigorous
algorithmic research. In this chapter, we discuss distributed algorithms
under these models for shape formation, shape recognition, object coat-
ing, compression, shortcut bridging, and separation in addition to some
underlying algorithmic primitives.

Keywords: Programmable matter · Self-organizing particle systems
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1 Introduction

The idea of a robot that can transform into different shapes and sizes (e.g.,
Hasbro’s Transformers) or multitudes of tiny mobile robots that collectively
build structures, move objects, or even act as weapons or shields (e.g., Disney’s
Big Hero 6 or Marvel’s Black Panther) have become as ubiquitous and iconic
in science fiction futurism as flying cars, holographic video conferencing, and
teleportation. Yet this vision does not exist solely in fiction; since the 1990s,
many researchers spanning across biology, chemistry, physics, mathematics, and
computer science have contributed significant results towards realizing versatile,
scalable robotic systems. In 1991, Toffoli and Margolus [54] defined programmable
matter as a physical computing medium composed of simple, homogeneous nodes
that can be (i) assembled into “lumps” of arbitrary size, (ii) dynamically recon-
figured into any regular structure that grows at most polynomially, (iii) inter-
actively controlled by user input or environmental stimuli, and (iv) accessed in
real time for observation, analysis, or modification.
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The vision for programmable matter is to realize a physical substance that is
scalable, versatile, instantly reconfigurable, safe to handle, and robust to failures.
Programmable matter could be deployed in numerous domain spaces to address
a wide gamut of problems: in construction, it could be used as a self-repairing
building material or as a dynamically reconfigurable support scaffolding; in envi-
ronmental science, it could be used to locate and metabolize pollutants at the
micro-scale; in biological processes, it could aid in the construction and mainte-
nance of nano-scale structures or even boost healing by artificially transporting
and applying medicine where it’s most needed; in robotics, it could be used to
sustain long-term missions in isolated or hazardous environments where it would
be difficult for a human to intervene.

There are formidable challenges to realizing programmable matter both from
the engineering and computational perspectives. In this chapter, we abstractly
consider programmable matter as a collection of simple computational entities
that must coordinate at the individual level to achieve useful behaviors at the
system level. Using the amoebot model and hybrid programmable matter model
as our computational frameworks, we will present a series of distributed algo-
rithms for programmable matter and give rigorous theoretical results regarding
their correctness and efficiency.

1.1 Related Work

When considering the various models and implementations of programmable
matter, one can differentiate between passive and active systems. In passive sys-
tems, individual units of programmable matter cannot control their own move-
ments, instead relying on their structural properties and interactions with their
environment for locomotion. They may, in some cases, have limited compu-
tational abilities to make decisions and communicate. Prominent examples of
passive systems include population protocols [2], molecular computing and tile
self-assembly models [26,40], and slime molds [7,44].

Our focus is primarily on active systems, where the individual units can con-
trol their actions and movements to achieve some task. Examples of physical
active systems include swarm robotics [47] as well as self-reconfigurable modular
robotics [59]. These systems seek similar coordinated behaviors as those consid-
ered in the amoebot model, but use robots that often have significantly more
powerful sensing and communication abilities. Among the theoretical models of
active systems, the nubot model from molecular programming [58] and metamor-
phic robots [12,56] have the most similarities to the amoebot model, including
their representations of space and their emphasis on simple, local computational
units. However, they include some capabilities (e.g., rigid body movements in
the nubot model) that prohibit a direct translation between the models.

The amoebot model for self-organizing particle systems (fully described in
Sect. 2.1) envisions programmable matter as a system of simple, homogeneous
particles that have only local communication and vision, constant-size memory,
and no global sense of direction. This model was introduced to facilitate rigorous
algorithmic research on programmable matter systems, and has since served as
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the computational framework for many theoretical investigations and even one
experimental study [48].

Hybrid programmable matter (Sect. 6) combines the active and passive
approaches by considering a passive structure of connected tiles that can be
reconfigured by a collection of active robots. When considering only the passive
tiles, this model shares many similarities with the tile self-assembly models men-
tioned before, where tiles bond to each other based on predefined “glues” (see,
e.g., [26,40]). On the other hand, the active robots in the hybrid setting are very
similar to the particles of the amoebot model, with the added capability of lifting
and moving tiles. When considering only the robots’ movements on a static tile
structure, hybrid programmable matter reduces to an instance of the mobile
agents on graphs model, where problems such as gathering/rendezvous [41],
intruder caption [6], and graph searching and exploration [13,28] have been
studied extensively. DNA nanomachines offer a promising realization of hybrid
programmable matter, and are capable of walking on one- and two-dimensional
surfaces [35,39,57], transporting cargo [51,53], and acting as the head of a finite
automaton on an input tape [45].

1.2 Chapter Organization

In Sect. 2, we define the amoebot model for programmable matter, including the
rationale behind its modeling choices and a list of common model extensions.
Section 3 contains three algorithmic primitives under the amoebot model—leader
election, the spanning forest primitive, and distributed binary counters—that
are utilized by the algorithms of Sects. 4 and 5. The shape formation and object
coating algorithms of Sect. 4 are largely deterministic, while the algorithms for
compression, shortcut bridging, and separation in Sect. 5 are fully stochastic.
Hybrid programmable matter is defined in Sect. 6, and algorithms for shape
formation and shape recognition in this hybrid setting are described in Sect. 7.
A summary of the chapter and an outline of future research are given in Sect. 8.

For clarity and brevity, we do not give any proofs of the theoretical results
in this chapter and occasionally omit algorithm details that detract from a clear
understanding of an algorithm’s main ideas. However, we cite all underlying
publications in their respective sections and encourage the interested reader to
read further.

2 The Amoebot Model

The amoebot model is an abstract computational model of programmable mat-
ter intended to enable rigorous algorithmic analysis of collective systems at the
nano-scale. Originally proposed as “amoeba-inspired self-organizing particle sys-
tems” in [25], the model was polished and formally announced as the amoebot
model in [18]. It has since undergone many updates and changes over the years
to support new settings and considerations, but has kept to the same core prin-
ciples throughout. Here, we give a complete description of the current model in
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Sect. 2.1, provide some intuition behind its details in Sect. 2.2, and describe its
common extensions in Sect. 2.3.

2.1 Model Description

In the amoebot model, programmable matter consists of individual, homoge-
neous computational elements called particles. Any structure that a particle
system P can form is represented as a subgraph of an infinite, undirected graph
G = (V,E) where V represents all positions a particle can occupy relative to its
structure and E represents all atomic movements a particle can make. Each node
in V can be occupied by at most one particle at a time. In the geometric amoebot
model, it is further assumed that G = GΔ, where GΔ is the triangular lattice1

(see Fig. 1a). Fixing the position of some particle, GΔ represents the discretiza-
tion of space relative to this particle and the possible atomic movements between
these discrete positions. This discretization can be conceptualized as a tiling of
two-dimensional space; GΔ corresponds to the hexagonal tiling (Fig. 1a).

Fig. 1. (a) A section of the triangular lattice GΔ (black) and its dual, the hexagonal
tiling (gray). (b) Expanded and contracted particles (black dots) on GΔ (gray lattice).
Particles with a black line between their nodes are expanded. (c) Two particles with
different offsets for their port labels.

Each particle occupies either a single node in V (i.e., it is contracted) or a
pair of adjacent nodes in V (i.e., it is expanded), as in Fig. 1b. Particles move via
a series of expansions and contractions: a contracted particle can expand into
an unoccupied adjacent node to become expanded, and completes its movement
by contracting to once again occupy a single node. An expanded particle’s head
is the node it last expanded into and the other node it occupies is its tail ; a
contracted particle’s head and tail are both the single node it occupies.

Two particles occupying adjacent nodes are said to be neighbors. Neighboring
particles can coordinate their movements in a handover, which can occur in one
of two ways. A contracted particle P can initiate a “push” handover with an
expanded neighbor Q by expanding into a node occupied by Q, forcing it to

1 Some papers refer to GΔ as the equilateral triangular grid graph Geqt or the trian-
gular lattice Γ .
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contract. Alternatively, an expanded particle Q can initiate a “pull” handover
with a contracted neighbor P by contracting, forcing P to expand into the node
it is vacating.

Each particle keeps a collection of ports—one for each edge incident to the
node(s) it occupies—that have unique labels from its own local perspective.
Although each particle is anonymous, lacking a unique identifier, a particle can
locally identify any given neighbor by its labeled port corresponding to the edge
between them. The particles are assumed to have a common chirality (i.e., notion
of clockwise direction), which allows each particle to label its ports in clockwise
order. However, particles do not share a coordinate system or global compass
and may have different offsets for their port labels, as in Fig. 1c.

Each particle has a constant-size local memory partitioned into internal mem-
ory and one addressed memory for each neighboring node. A particle can only
write into its own memory, but can read all the addressed and internal memories
of its neighbors for communication. A particle’s internal memory stores whether
it is expanded or contracted, its local port labeling (including which ports are
incident to its head versus its tail), and any other application-specific informa-
tion. Particles do not have any global information and—due to the limitation of
constant-size memory—cannot know the total number of particles in the system
nor any estimate of this value.

The system progresses through atomic actions according to the standard
Async model of computation from distributed computing (see, e.g., [36]). A
classical result under this model states that for any concurrent asynchronous
execution of atomic actions, there exists a sequential ordering of actions produc-
ing the same end result, provided conflicts that arise in the concurrent execution
are resolved. In the amoebot model, an atomic action corresponds to the activa-
tion of a single particle. Once activated, a particle can (i) perform an arbitrary,
bounded amount of computation involving information it reads from its local
memory and its neighbors’ memories, (ii) write to its local memory, and (iii)
perform at most one expansion or contraction. Conflicts involving simultaneous
particle expansions into the same unoccupied node are assumed to be resolved
arbitrarily such that at most one particle moves to some unoccupied node at any
given time2. Thus, while in reality many particles may be active concurrently,
it suffices when analyzing algorithms under the amoebot model to consider a
sequence of activations where only one particle is active at a time. The resulting
activation sequence is assumed to be fair : for any inactive particle P at time t, P
will be activated again at some time t′ > t. An asynchronous round is complete
once every particle has been activated at least once. Unless otherwise specified,
a round refers to an asynchronous round.

2 A particle can only write into its own memory in the amoebot model’s publishing-
based communication, so no conflicts of concurrent writes to the same memory loca-
tion are possible.
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2.2 Rationale

We now provide some intuition behind the amoebot model and its details. At
the highest level, we seek to answer the question: what complex, collective behav-
iors are achievable by extremely simple, restricted programmable particles? The
amoebot model was designed to restrict the capabilities of the individual parti-
cles as much as possible in hope of developing algorithms that could be useful
to many implemented systems across task domains and scales. For example,
it may seem unnecessarily restrictive to a swarm robotics engineer to consider
robots with only constant-size memory, since commodity hardware often sup-
ports O(log n) or even O(n) memory, for reasonable swarm sizes n. However,
this assumption makes algorithms under the amoebot model applicable both
to swarm systems with extra memory as well as systems at the more restrictive
micro- or nano-scales. Moreover, the resulting systems can be arbitrarily scalable
to any number of units, a desirable property for programmable matter.

Communication. Restricting particle communication and vision to immediate
neighbors captures the local nature of unit interactions in programmable matter.
The amoebot model’s communication scheme is a publishing-based version of
standard message passing protocols in the Async model. If a particle P wants
to send some information x to its neighbor Q, it writes x to its addressed memory
facing Q. Particle P must wait for Q to activate, read x, and acknowledge its
receipt before P can know the information was communicated. Situations where
multiple neighbors try to send information to the same particle concurrently
must be resolved by the recipient. (See Sect. 2.3 for a simpler variant of this
publishing-based communication model).

Chirality. The chirality assumption, which states that particles have a common
sense of clockwise direction, is reasonable in many settings. Having a shared chi-
rality is essentially equivalent to the system’s ability to break spatial symmetry,
such as distinguishing between “up” and “down”. This is usually fairly simple to
decide; for example, if a particle system were deployed in any medium subject to
gravity, the system’s top and bottom would be trivially distinguishable. Recent
results by Di Luna et al. suggest that this assumption may not be necessary for
all applications [23,24]. We will discuss this further at the end of Sect. 3.1.

Connectivity. A particle system is connected if the subgraph of G induced by the
occupied nodes of V is also connected. This notion does not imply any particular
kind of connectivity in a physical programmable matter system; connections
could be physical bonds, points of contact between neighboring units, or even
wireless communication links. Although the amoebot model does not require
that a system remains connected, this is often a desirable property that its
algorithms maintain. If a particle system disconnects, there is little hope the
resulting components could ever reconnect. Since each particle can only see and
communicate with its immediate neighbors and does not have a global compass,
disconnected components have no way of knowing their relative positions and
thus cannot intentionally move toward one another to reconnect.
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Space. To aid system connectivity, we chose the triangular lattice GΔ to repre-
sent space in the geometric amoebot model. In the other regular two-dimensional
lattices (square and hexagonal), particles are often forced to momentarily dis-
connect from the rest of the system even to perform moves as simple as shifting
“around” another particle by one position (see Fig. 2).

Fig. 2. Illustration of a particle moving “around” a neighboring particle to get to the
next position on the surface, depicted as a gray star, on the (a) triangular lattice GΔ,
(b) square lattice, and (c) hexagonal lattice.

Movement. Modeling movements as expansions, contractions, and handovers
also has roots in connectivity. Splitting a particle’s movement from one node
to another into an expansion and a contraction can be thought of as a look-
ahead mechanism in which the particle reserves a space and examines its new
surroundings before deciding whether or not to go through with the movement.
This is vaguely similar to human walking, where we put one foot forward before
completely shifting our weight to take another step. By looking ahead, a par-
ticle can determine whether its move might break system connectivity before
committing to it. Handovers, as described in Sect. 2.1, allow the system to main-
tain connectivity while moving. These movements were not simply included for
convenience; there are tasks—such as moving through a static tunnel of width
1—which are impossible without handovers if connectivity must also be main-
tained at all times.

2.3 Extensions

Many papers on the amoebot model utilize techniques and assumptions that
extend the core model described in Sect. 2.1. These extensions can be thought
of as modules which combine and repackage core model features into useful,
higher-level functionalities.

Leader Particle. Some algorithms under the amoebot model assume the exis-
tence of a unique leader particle (or seed) at initialization which can be used to
coordinate the rest of the system. This assumption is reasonable, since the leader
election algorithm in [16] can be used as a preprocessing step for obtaining this
leader particle (see Sect. 3.1 for details). Notably, a leader can impose its labeling
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scheme on all other particles in the system to establish a global compass. In the
other direction, if the system establishes a global compass without a leader, it
becomes trivial to solve leader election (e.g., “elect the south-most, west-most
particle”). Thus, any algorithm under the amoebot model which hopes to run in
sublinear time—faster than the leader election algorithm of [16], which matches
the worst-case lower bound—must restrict itself only to local compasses.

Static Objects. An object is a finite, connected, static set of nodes O ⊂ V . We
model objects as a collection of contracted particles in a special object state
which do not move, communicate, or perform any computation throughout the
execution of an algorithm. These object particles simply represent some fixed
surface or entity in space and are usually not considered members of the particle
system. For example, the coating algorithm in Sect. 4.3 assumes the existence
of an object to be coated, and the stochastic algorithm for shortcut bridging
in Sect. 5.2 considers two objects that the particle system must bridge between.
Particles can differentiate between object and non-object particles.

Node Differentiation. It is sometimes useful to consider physical spaces that have
heterogeneous properties, such as a marsh with both land and water locations
or a tree-lined path with some parts exposed to sunlight and others in shade.
Node differentiation models these differences by considering an assignment Φ :
V → {1, . . . , k} that maps each node of the graph G to one of k types, where
k is a constant. A contracted particle occupying a node u ∈ V can read Φ(u),
but cannot alter it. Analogously, an expanded particle occupying adjacent nodes
u, v ∈ V can read but not write Φ(u) and Φ(v). This assignment Φ need not be
static, but any dynamics controlling its evolution should reflect changes in the
environment and not the actions of the particle system. This extension should
not be used to encode global information for the particles to utilize.

Token Passing. A token is a constant-size message that can be passed from
particle to particle. More specifically, a particle P can pass a token t to a neighbor
Q by publishing t to its addressed memory facing Q, wait for Q to read, copy,
and acknowledge t, and then delete t from its own memory. Due to the constant-
size memory constraint of the amoebot model, each particle can hold only a
constant number of tokens at once. Rules on whether tokens must be passed in
a pipelined fashion, merge together, or interact in more complex ways may vary
by each algorithm’s need.

Many algorithms under the amoebot model use token passing to relay infor-
mation beyond a particle’s immediate neighborhood. For example, the leader
election algorithm in Sect. 3.1 uses tokens extensively to facilitate communica-
tion and competition between candidates which are often far from one another.
Although token passing often makes algorithms more complex, especially when
tokens of different protocols interact, its flexibility and direct compatibility with
the model make it a viable tool for many applications.
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Direct Write Communication. In the publishing-based communication scheme of
the amoebot model, a particle only has write access to its own memory, but has
read access to all addressed and internal memories of its neighbors. As described
in Sect. 2.2, if a particle P wants to send some information x to its neighbor Q,
a multi-step process of publishing and acknowledging x is initiated. However,
this can greatly complicate the presentation of algorithms that rely heavily on
writes (e.g., any algorithm that uses token passing), as every write is split over
multiple particle activations that must be locally synchronized.

One could greatly simplify communication descriptions by employing a vari-
ant of the publishing-based communication model. In the direct write communi-
cation model, a particle can do the following in one activation: (i) perform an
arbitrary, bounded amount of computation involving information it reads from
its local memory and its neighbors’ memories, (ii) write to its local memory,
(iii) directly write updates to at most one neighbor’s memory, and (iv) perform
at most one expansion or contraction. However, in the asynchronous setting of
the amoebot model, this direct write communication allows for write conflicts,
where multiple particles concurrently attempt to write to the internal memory
of a common neighbor. These conflicts are assumed to be resolved arbitrarily
such that each particle is involved in at most one write at any given time (i.e.,
at any given time, either a particle P is writing to a neighbor, a neighbor is writ-
ing to P , or neither). This direct write communication model can be faithfully
emulated by the publishing-based communication scheme of the amoebot model
via a simple emulation primitive, described fully in [17].

Random Number Generation. It is often assumed that each particle has access
to random bits with which it can generate random values. However, due to the
constant-size memory constraint of the core model, each particle can only hold a
constant number of random bits and thus can only store constant precision ran-
dom values. It is left to the algorithm designer to ensure that constant precision
is sufficient for their application; see [1,11] for examples of such arguments.

Agent Emulation. It can be useful for a particle to run multiple instances of
an algorithm at once, especially in settings where it needs to participate in
different phases of an algorithm concurrently. In the leader election algorithm
in Sect. 3.1, for example, a particle executes up to three instances concurrently
(one per boundary it is incident to). To accommodate this, a single particle can
emulate up to a constant number of agents, each with its own memory, running
its own instance of a given algorithm. This respects the constant-size memory
constraint as each algorithm instance requires only constant memory and each
particle emulates at most a constant number of agents.

3 Algorithmic Primitives for the Amoebot Model

Several algorithmic primitives exist under the amoebot model, acting as reusable
building blocks for the algorithms of Sects. 4 and 5. These include leader election
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(Sect. 3.1), which is used by other algorithms as a black box for obtaining a
unique leader particle, the spanning forest primitive (Sect. 3.2), which is used to
locally organize and move a particle system along a specified path, and distributed
binary counters (Sect. 3.3), which enable n particles to collectively emulate a
binary counter storing unsigned values up to 2n − 1.

3.1 Leader Election

To date, there have been two approaches to the classical problem of leader elec-
tion under the amoebot model: the token-based approach by Derakhshandeh and
Daymude et al. [16,22], and the erosion-based approach by Di Luna et al. [23].
We will focus primarily on the algorithm in [16], which simplifies and extends the
algorithm and analysis of [22] to a fully local, distributed, asynchronous setting.
At a glance, the algorithm in [16] elects a leader in O(L) asynchronous rounds
with high probability3, where L is the length of the outer boundary of the system
and w.h.p. applies to both correctness and runtime. A brief comparison to the
erosion-based approach is made at the end of this section.

Problem Description. An algorithm is said to solve the leader election prob-
lem if for any connected particle system of initially contracted particles, even-
tually a single particle irreversibly declares itself the leader (e.g., by setting a
dedicated bit in its memory) and no other particle ever declares itself to be
the leader. The running time of a leader election algorithm is defined to be the
number of asynchronous rounds until a leader is declared. The algorithm is not
required to terminate for particles other than the leader, though a leader could
broadcast its existence to the rest of the system to trigger termination, if desired.

Algorithm. We begin with a high-level overview of the algorithm’s six phases.
These phases are not strictly synchronized among each other, i.e., at any point
in time, different parts of the particle system may execute different phases. Fur-
thermore, a particle can be involved in the execution of multiple phases at the
same time. The first phase is boundary setup. In this phase, each particle locally
checks whether it is part of a boundary of the particle system. Only particles on
a boundary participate in leader election. Particles occupying a common bound-
ary organize themselves into a directed cycle. The remaining phases operate on
each boundary independently. In the segment setup phase, the boundaries are
divided into segments. Each particle flips a fair coin: particles that flip heads
become candidates and compete for leadership whereas particles that flip tails
become non-candidates and assist the candidates in their competition. A segment
consists of a candidate and all subsequent non-candidates along the boundary
up to the next candidate. The identifier setup phase assigns a random identifier
to each candidate. The identifier of a candidate is stored distributedly among the

3 An event occurs with high probability (w.h.p.) if the probability of success is at least
1 − 1/nc, where c > 0 is a constant; in our setting, n is the number of particles.
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particles of its segment. In the identifier comparison phase, the candidates com-
pete for leadership by comparing their identifiers using a token passing scheme.
Whenever a candidate sees an identifier higher than its own, it revokes its candi-
dacy. Whenever a candidate sees its own identifier, the solitude verification phase
is triggered. In this phase, the candidate checks whether it is the last remaining
candidate on the boundary. If so, it initiates the boundary identification phase
to check if it occupies the unique outer boundary of the system. In that case, it
becomes the leader; otherwise, it revokes its candidacy.

Boundary Setup. The boundary setup phase organizes the particle system into a
set of boundaries, as in Fig. 3a. Let A be the set of nodes in GΔ that are occupied
by particles, and consider the graph GΔ|V \A induced by the unoccupied nodes in
GΔ. An empty region is a maximal connected component of GΔ|V \A. Let N(R)
be the neighborhood of an empty region R in GΔ; that is, N(R) = {u ∈ V \ R :
∃v ∈ R such that (u, v) ∈ E}. Note that by definition, all nodes in N(R) are
occupied by particles. We refer to N(R) as the boundary of the particle system
corresponding to R. Since A corresponds to a finite set of particles, exactly one
empty region has infinite size while any others have finite size. The boundary
corresponding to the infinite empty region is the unique outer boundary, and any
boundary corresponding to a finite empty region is an inner boundary.

Fig. 3. (a) Boundaries of a particle system. The solid line represents the unique outer
boundary and the dashed lines represent the inner boundaries. (b) Agents (black dots)
of particles (gray circles) organized into directed cycles along the boundaries of (a).

Next, the particles of each boundary organize into a directed cycle. Upon its
first activation, each particle P determines its place in these cycles using only
local information as follows. If P has no neighbors, then since the particle system
is connected, P must be the only particle. So P immediately declares itself the
leader and terminates. If P is surrounded (i.e., it has six neighbors), P is not
part of any boundary and simply terminates.

Otherwise, the neighborhood of P must contain at least one occupied and one
unoccupied node. For each maximal, connected sequence of unoccupied nodes



626 J. J. Daymude et al.

S in the neighborhood of P (of which there can be at most three; see Fig. 4),
let P act as a distinct agent aS that independently executes the remainder of
the leader election algorithm. This ensures that the leader election algorithm
runs on each boundary independently, since P cannot locally decide which such
sequences belong to which boundary. Each agent aS chooses the particle imme-
diately clockwise (resp., counterclockwise) of S to be its successor (resp., prede-
cessor).

Fig. 4. Possible results (up to rotation) of the boundary setup phase depending on
the neighborhood of a particle. For each boundary, the depicted arrow starts at the
particle’s predecessor and ends at its successor.

Figure 4 shows all possible neighborhoods of a particle (up to rotation) and
the corresponding predecessor and successor assignments of its agents. These
assignments organize the set of all agents into disjoint cycles spanning the bound-
aries of the particle system (see Fig. 3b). It is possible that a particle can occur
up to three times on the same boundary as different agents. While this property
can be ignored for most of the remaining phases, it will remain a cause for special
consideration in the solitude verification phase.

Segment Setup. All remaining phases (including this one) execute exclusively
on each boundary independently. Therefore, we only consider a single boundary
for the remainder of the algorithm description. The segment setup phase divides
the boundary into disjoint “segments” as follows. Each agent flips a fair coin;
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those that flip heads become candidates and those that flip tails become non-
candidates. In the following phases, candidates compete for leadership while non-
candidates assist this competition. A segment is a maximal sequence of agents
(a1, a2, . . . , ak) such that a1 is a candidate, ai is a non-candidate for i > 1,
and ai is the successor of ai−1 for i > 1. We refer to the segment starting at a
candidate c as the segment of c (denoted c.seg) and denote its length as |c.seg|. In
the following phases, each candidate uses its segment as a distributed memory.

Identifier Setup. After the segments have been set up, each candidate generates
a random identifier for use in the competition of the next phase by assigning
a random digit to each agent in its segment. Note that the term identifier is
slightly misleading in that two distinct candidates can have the same identifier.

To generate its random identifier c.id, a candidate c sends a token (recall
token passing from Sect. 2.3) along its segment in the direction of the boundary.
As the token traverses the segment, it assigns a value chosen uniformly at random
from {0, 1} to each visited agent4. The resulting identifier is a binary number
consisting of |c.seg| bits where c holds the most significant bit and the last agent
of c.seg holds the least significant bit.

After generating c.id, each candidate c creates a copy of c.id that is stored
in reverse digit order in its segment. This copy is used in the next phase to
compare against the identifiers of other candidates. The token that generated
c.id is reused in creating the reversed copy as follows. It first reads the digit of
the last agent of the segment c.seg. It is then passed to the beginning of c.seg (to
candidate c) and stores a copy of that digit. It then reads the digit of c and is
passed back to the end of the segment where it stores a copy of that digit. This
continues in a similar fashion with the second to last and second agent and so
on until c.id is completely copied. Finally, the token is passed to c to signal the
end of this identifier setup phase.

Identifier Comparison. During the identifier comparison phase, the candidate
agents use their identifiers to compete with each other. When comparing identi-
fiers of different lengths, longer identifiers are defined to be higher than shorter
ones; otherwise, the identifiers are compared directly. A candidate with the high-
est identifier eventually progresses to the solitude verification phase, described
in the next section, while any candidate with a lower identifier withdraws its
candidacy. To achieve the comparison, the non-reversed copies of the identifiers
remain stored in their respective segments while the reversed copies move back-
wards along the boundary as a sequence of tokens. More specifically, a digit
token is created for each digit of a reversed identifier. A digit token created by
the last agent of a segment is marked as a delimiter token. We define the token
sequence of a candidate c as the sequence of digit tokens created by the agents
in c.seg. Once created, digit tokens traverse the boundary against the direc-
tion of the cycle spanning it. Each agent is allowed to hold at most two tokens

4 In [16], the digits are chosen uniformly at random from [0, r − 1] where r is a fixed
constant. The resulting identifiers are numbers with radix r.
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at a time, and can forward at most one token per activation. Tokens are not
allowed to overtake each other. Furthermore, an agent can only receive a token
after it creates its own digit token. This ensures that token sequences of distinct
candidates remain separated and the tokens within a token sequence maintain
their relative order along the boundary.

We give a high level description of the token passing scheme for identifier
comparison, illustrated in Fig. 5, using two successive candidates c and c′. Here,
the token sequence of c′ is compared with c.id. Initially, agents are active and
tokens are inactive, as in Fig. 5a. Whenever a token is forwarded by a candidate
into a new segment, the token becomes active, as in Fig. 5b. When an active agent
receives an active token, they match, storing the result of their digit comparison
(<, >, or =) in the agent and both becoming inactive (Fig. 5c). A matched
(inactive) token is then simply passed on without incident until reaching c, who
reactivates it when forwarding it into the next segment (Fig. 5d).

The delimiter token of c′, say dc′ , eventually enters c.seg (Fig. 5d). As dc′

traverses c.seg, it sees the results of the previous digit comparisons from least
to most significant and updates its record of the overall comparison accordingly
(Fig. 5e–f). When candidate c eventually receives dc′ , it locally compares iden-
tifier lengths as follows. If c already matched with a non-delimiter token of c′,
then |c.seg| < |c′.seg| and c withdraws its candidacy. If the delimiter token dc′

already matched with some agent before c, then |c.seg| > |c′.seg| and c remains a
candidate. Finally, if c matches with dc′ (as in Fig. 5g), we have |c.seg| = |c′.seg|.

In this last case, c must use the record of the overall comparison stored in dc′

in combination with its own digit comparison with dc′ to decide the comparison
result. If c.id < c′.id, c withdraws its candidacy. If c.id > c′.id, c remains a
candidate. Finally, if c.id = c′.id, c may have just compared against its own
identifier and thus initiates the solitude verification phase to determine if it is
the only remaining candidate on the boundary.

As an aside, candidates who withdraw candidacy still reactivate inactive
tokens when forwarding them. The delimiter token also resets inactive agents as
it passes over them, preparing them for future identifier comparisons (Fig. 5e–g).

Solitude Verification. The goal of the solitude verification phase is for a can-
didate c to check whether it is the last remaining candidate on its boundary.
Solitude verification is triggered during the identifier comparison phase when-
ever a candidate detects equality between its own identifier and the identifier of
a token sequence that traversed its segment. Such a token sequence can either
be a candidate’s own or that of another candidate with the same identifier.
Once the solitude verification phase is started, it runs in parallel to the identifier
comparison phase and does not interfere with it.

A necessary (but insufficient) condition for candidate c to be the only remain-
ing candidate on its boundary is if the next candidate along the boundary occu-
pies the same node as c. The following algorithm checks this condition. Treat
the directed edges of the boundary cycles as vectors in the two-dimensional
Euclidean plane. The next candidate along the boundary, say c′, occupies the
same node as c if and only if the sum of the vectors corresponding to boundary
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Fig. 5. Illustration of identifier comparison between c.id = 0101 and c′.id = 1110.
Active elements are white while inactive elements are gray. The digit tokens are
depicted as squares, while the star depicts the special delimiter token.

edges from c to c′ is 0. To decide if this is the case in a local manner, c defines
a local two-dimensional coordinate system (e.g., as in Fig. 6) and uses a token
passing scheme to check whether the x-components of the vectors sum to 0. An
analogous scheme is used for the y-components, which runs in parallel.

First, c sends an activation token in the direction of the cycle towards the next
candidate. Whenever the token moves in the positive (resp., negative) direction of
the locally defined x-axis, it creates a positive token (resp., negative token). These
tokens are sent back towards c. Positive and negative tokens move independently
of each other, but cannot overtake tokens of the same type. Once these tokens
either reach c or cannot move any closer to c, they become settled. Note that once
all positive (or negative) tokens are settled, they form a consecutive sequence
whose length corresponds to the number of tokens, as in Fig. 6a–c.

When the activation token reaches the next candidate, it reverses its move-
ment back towards c, staying behind any positive or negative tokens that have
not settled. Once they have settled, deciding whether the vectors sum to 0 can
be done in a local manner: the vectors from c to the next candidate sum to 0
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Fig. 6. The local vector construction used in solitude verification. The logical positions
of the positive and negative tokens after they have settled are shown on the right, for
the situation where the only remaining candidate(s) is/are (a) c, (b) c and c′, and (c)
c and c′′.

if and only if the length of the positive and negative token sequences are equal;
i.e., if the last settled tokens in these sequences are held by the same agent.
For example, this is the case in Fig. 6a–b, but not in Fig. 6c. Thus, the activa-
tion token simply observes whether or not this is the case and then moves back
towards c to report the result. On the way, it deletes all positive and negative
tokens.

However, as hinted before, this is not sufficient to decide whether c is the
last remaining candidate on the boundary. For agents belonging to the same
particle on the same boundary, as with c and c′ in Fig. 6b, the vectors will sum
to 0 despite there being at least two agents remaining. To handle this case, each
particle assigns a locally unique identifier from {1, 2, 3} to each of its agents in
an arbitrary way. When the activation token reaches the next candidate, it reads
its agent identifier and carries this information back to c. It is not hard to see
that c is the last remaining candidate on the boundary if and only if the vectors
sum to 0 and the agent identifier stored in the activation token equals the agent
identifier of c.

Finally, we address the interaction between the solitude verification and iden-
tifier comparison phases. If solitude verification is triggered for a candidate c
while c is still performing a previously triggered execution of solitude verification,
it ignores this trigger and simply continues with the already ongoing execution.
Candidate c may also be eliminated by the identifier comparison phase while it
is performing solitude verification. In this case, c waits for the ongoing solitude
verification to finish and only then withdraws its candidacy.

Boundary Identification. Once a candidate c determines that it is the only
remaining candidate on its boundary, it initiates the boundary identification
phase to check if it lies on the unique outer boundary. If so, the particle acting
as c declares itself the leader; otherwise, c revokes its candidacy. This phase uses
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the fact that, due to the boundary setup phase, the outer boundary is oriented
clockwise while any inner boundary is oriented counterclockwise (see Fig. 3b).

To distinguish between clockwise and counterclockwise oriented boundaries,
a candidate c sends a token along its boundary that sums the angles of the turns
it takes according to Fig. 7, storing the results in a counter α. When the token
returns to c, there are two cases: α = 360◦ for the unique outer boundary, and
α = −360◦ for any inner boundary. We encode α as k ∈ Z such that α = k · 60◦.
It is sufficient to store k modulo 5 so that we have k = 1 for the outer boundary
and k = 4 for an inner boundary, requiring only three bits of memory.

Fig. 7. Determining α. The incoming and outgoing arrows represent the directions the
token enters and leaves an agent, respectively, up to rotation.

Analysis. We now briefly discuss the correctness and runtime of the leader
election algorithm, stating the main results.

Correctness. Recall that for a leader election algorithm to be correct, a single
particle must irreversibly declare itself the leader and no other particle can ever
do so. The boundary identification phase ensures that no candidate on an inner
boundary can ever declare itself the leader, so the analysis focuses only on the
outer boundary. For a single candidate agent c∗ on the outer boundary to become
the leader, it must have the highest identifier on the boundary; i.e., c∗.id > c.id
for every other candidate c �= c∗ on the outer boundary. The analysis upper
bounds the probability of another candidate having the same highest identifier
by an inverse polynomial in n, the number of particles in the system. Barring this
event, a unique candidate c∗ with the highest identifier emerges. It eventually
compares its own identifier with itself, triggering solitude verification. When
solitude verification succeeds, boundary identification will indicate that c∗ is on
the unique outer boundary. Thus, we can state the following result.

Theorem 1. The algorithm correctly solves the leader election problem, w.h.p.

Runtime. The first two phases of the algorithm (boundary setup and segment
setup) are performed by each particle in their first activation, and thus are
completed in the first round. The identifier setup phase takes O(�2) rounds for
a segment of length �, and the length of a segment on the outer boundary is
O(log n), w.h.p. Combining these results, the identifier setup phase completes
for all candidates on the outer boundary in O(log2 n) rounds. Token sequences of
the identifier comparison phase are then shown to traverse the outer boundary
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in O(L) rounds, where L is the number of agents on the outer boundary. By a
similar argument, the solitude verification phase is shown to take O(�) rounds,
where � is the number of agents between the current and next candidates. Finally,
the boundary identification phase on the outer boundary it proven to take O(L)
rounds. Therefore, all together, we obtain the following.

Theorem 2. The algorithm solves the leader election problem in O(L) = O(n)
rounds, w.h.p., where L is the number of agents on the outer boundary and n is
the number of particles in the system.

Comparison to Leader Election by Erosion. Di Luna et al. [23] take
another approach to leader election. At a high level, all particles originally start
as candidates. Using local rules that depend on the number and configuration of
a particle’s neighbors, a particle may decide to withdraw its candidacy. Impor-
tantly, these rules are carefully designed so that the set of candidate particles
always forms a connected component. At the end of this erosion process, there
are one to three remaining candidates in a symmetric configuration. They give a
deterministic protocol for attempting to break this symmetry, but it is possible
that it may fail and a simple coin-flipping scheme must be used instead.

In comparison to the token-based algorithm described above, the erosion-
based algorithm does not need long-range communication in the form of token
passing, nor does it require that the system has a common chirality (i.e., notion
of clockwise direction). However, it cannot handle particle systems which contain
empty regions (“holes”), and was not shown to be extensible to situations where
the particle system is moving, as is shown for the token-based algorithm in [21]
(see Sect. 4.3 for more details). Their algorithm achieves the same runtime bound
of O(n) rounds w.h.p., where n is the number of particles in the system.

3.2 Spanning Forest Primitive

Without a global compass or shared coordinate system, particles of a particle
system must use some local mechanisms to coordinate their movements. Many
algorithms under the amoebot model solve this problem using the spanning for-
est primitive, originally introduced in [22]. This primitive organizes the particle
system into one or more “trees”, each of which is composed of follower particles
following a single root particle. The root is responsible for directing the move-
ment of its tree; the followers simply perform a follow-the-leader protocol to trail
along behind the root. For simplicity, we will present this primitive with respect
to a single spanning tree; in general, this primitive executes on each tree of the
spanning forest concurrently and independently.

Problem Description. Consider an initially connected particle system P of
contracted, idle particles, a designated root particle R, and a (simple) path
L ⊂ GΔ beginning at the node occupied by R. We desire for the particle system
to traverse the path L exactly without becoming disconnected.
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Two caveats are needed for considering this problem in practice. First, the
root particle R is not usually predetermined. A root can either arises as the result
of some local mechanism (e.g., “if adjacent to an object, become a root”) or can
be elected using leader election (Sect. 3.1) as a subprimitive. Second, L is usually
not given explicitly; it is more often the path the root particle R traverses as it
executes some local algorithm. Nevertheless, for this standalone presentation of
the primitive, we assume R and L are given.

Algorithm. Particles can be in one of three states: idle, follower, or root. All
particles (except the unique root R), are initially idle. When an idle particle P is
activated, it checks if it has a follower or root neighbor Q. If so, P sets its parent
pointer P.parent ← Q and becomes a follower; otherwise, P does nothing.

When a follower particle P is activated, it first checks whether it is contracted
or expanded. If P is contracted and its parent Q (pointed at by P.parent) is
expanded, P expands in a push handover with Q, forcing Q to contract. In
doing so, it may need to update P.parent so it still points to Q. Otherwise, if
P is expanded, there are two cases. First, if P has no idle neighbors and no
children—i.e., no neighbors Q such that Q.parent points to the tail of P—P
simply contracts. Otherwise, if P has a child Q that is contracted, P contracts
in a pull handover with Q, forcing Q to expand. Similar to the push handover,
P may need to update Q.parent so it still points to P .

When the root particle R is activated, it also checks whether it is contracted
or expanded. The rules for when it is expanded are the same as for followers:
if it has no idle neighbors and no children, it contracts; otherwise, if it has a
contracted child, it performs a pull handover. If R is contracted, on the other
hand, it checks if it has reached the end of the given path L. If so, it does nothing;
otherwise, it simply expands into the next node of L.

Example. Consider an example run of the spanning forest primitive, illustrated
in Fig. 8. All particles except the root R are initially idle (Fig. 8a). Particle P1

has the root R as a neighbor and becomes a follower, setting P1.parent ← R,
while R expands into the next node of the path L (Fig. 8b). Eventually, all idle
particles become followers; a handover occurs between R and P1 (Fig. 8c). Root
R moves into the final node of L via expansions and handovers that propagate
out through the rest of the tree (Fig. 8d–f). Eventually, all particles become
contracted, and L has been traversed by the particle system (Fig. 8g).

Root Swaps. One caveat is necessary: it is possible that as R traverses L, it may
be blocked by another part of the particle system, as in Fig. 9a. In this case, it
will not be able to expand into the next node of L since this node is occupied by
another particle Q. Instead, R performs a root swap with Q (if Q is contracted),
in which R transfers the contents of its memory to Q, promotes Q to become
the new root, demotes itself to become a follower, and sets R.parent ← Q (see
Fig. 9b). Note that this does not disrupt the tree structure of the particle system,
even if Q was idle or has idle neighbors.



634 J. J. Daymude et al.

Fig. 8. Example of the spanning forest primitive. The root R is shown as a black dot
with a black circle, and the path L it follows is shown in gray. The black arcs point
from a follower’s head to its parent, and expanded particles have a black line connecting
their head and tail.

Fig. 9. Example of using a root swap to overcome a blocked path.

Analysis. We now state the main correctness and runtime results for the span-
ning forest primitive.

Correctness. Two properties must hold for the particle system P to correctly
traverse path L: (i) P always makes eventual progress along L until L has
been entirely traversed, and (ii) P never becomes disconnected. These are the
liveness and safety conditions for the spanning forest primitive, respectively.
Liveness depends on the root’s ability to continue expanding and performing
handovers along L. In [21,22], Derakhshandeh et al. prove that every expanded
particle (including the root) eventually contracts. Thus, a contracted root will
always be able to either expand into the next node of L or perform a root
swap with the particle blocking it, since this blocking particle is also guaranteed
to eventually be contracted. Safety follows more immediately. The only way P
can become disconnected is if a particle with children or idle neighbors contracts
outside a handover, breaking their connectivity to the tree. However, the protocol
explicitly disallows this, so we have the following.

Theorem 3. A particle system P following the spanning forest primitive will
correctly traverse any given simple path L.
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Runtime. A dominance argument [14,20] is used to analyze the runtime of the
spanning forest primitive. These arguments first consider a parallel execution
of an algorithm where all particles make progress in lock-step. This is often
much easier to reason about. For the spanning forest primitive, it is shown that
in O(n) parallel rounds, all n particles are the root or its followers and the
resulting tree forms a pattern of alternating expanded and contracted particles.
Once in this configuration, the tree makes exactly one node of progress along L
every 2 parallel rounds. Together, this implies that the spanning forest primitive
traverses the entire path L in O(|L|) parallel rounds.

Using careful case analysis, the concurrent, asynchronous execution of an
algorithm is then shown to always make at least as much progress per round
as its parallel counterpart. This implies that the runtime bound for the parallel
execution is an upper bound on the runtime of the asynchronous execution. For
the spanning forest primitive, this argument yields the following bound.

Theorem 4. A particle system P following the spanning forest primitive will
traverse a given path L in O(|L|) rounds, where |L| is the length of path L.

3.3 Distributed Binary Counters

Many behaviors for programmable matter are realized by efficient algorithms
under the amoebot model that only use constant-size state variables and mes-
sages. However, it can be useful in many applications to work with values that
are on the order of O(log n) or even O(n), where n is the number of particles
in the system. An example of such values appeared in leader election (Sect. 3.1),
where candidates generated identifiers of logarithmic length to compete for lead-
ership. Other applications could include, for example, measuring the size of an
object with a particle system in order to replicate its shape.

Due to the constant-size memory constraint of the amoebot model (Sect. 2.1),
individual particles cannot keep these larger values in memory by themselves.
However, with the help of a leader particle, a system of n particles can be
organized into distributed memory in the form of a distributed binary counter
that stores unsigned values up to 2n−1 and supports increments and decrements
by one as well as zero-testing. Porter and Richa first introduced an increment-
only binary counter under the amoebot model in [42]; Daymude et al. extended
this work to support decrements and zero-tests in [15].

Problem Description. Consider an initially connected particle system P of
contracted particles organized in a simple path P0, P1, . . . , Pn−1 with a leader
particle � = P0 at its start. We desire for the particle system to self-organize into
a distributed binary counter that supports increments and decrements by one
(initiated by the leader �). Additionally, the distributed binary counter should
support reliable zero-testing, i.e., the leader � should reliably be able to determine
whether or not the counter’s value is equal to zero.

Although the particles could move while maintaining the binary counter (e.g.,
according to the spanning forest primitive of Sect. 3.2), for ease of presentation
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we will assume they are static. It is also assumed that the leader � never causes
the counter to reach negative values; i.e., at any given time, � has initiated at
least as many increments as decrements. Presumably, � could perform a zero-test
before initiating a decrement to ensure the counter will not go negative, but for
our presentation this nonnegativity assumption will suffice.

Algorithm. Each particle Pi (for 0 ≤ i < n) has a bit value Pi.bit ∈ {∅, 0, 1},
where Pi.bit = ∅ implies Pi is not part of the counter; i.e., it is beyond the most
significant bit. A final token f represents the end of the counter. If a particle Pi

holds f , the counter value is represented by the bits of each particle from the
leader � (holding the least significant bit) up to and including Pi−1 (holding the
most significant bit). Although not necessary for increments and decrements,
utilizing f will allow the leader to zero-test the counter locally and efficiently.

The leader � is responsible for initiating counter operations, while the other
particles carry these operations out using only local information. To increment
the counter, the leader � simply generates an increment token c+ (assuming it was
not already holding a token). Now consider this operation from the perspective
of any particle Pi holding a c+ token, where 0 ≤ i < n. If Pi.bit = 0, Pi can
simply consume c+ and set Pi.bit ← 1. Otherwise, if Pi.bit = 1, this increment
needs to be carried over to the next most significant bit. As long as Pi+1 is not
already holding a token, Pi can forward c+ to Pi+1 and set Pi.bit ← 0. Finally,
if Pi.bit = ∅, this increment has been carried over past the counter’s end, so Pi

must also be holding the final token f . In this case, Pi simply forwards f to Pi+1

and sets Pi.bit ← 1.
Decrements are similar; when considering this operation from the perspective

of any particle Pi holding a c− token, where 0 ≤ i < n, the cases for Pi.bit ∈
{0, 1} are anti-symmetric to those for the increment, with two exceptions. First,
we only allow Pi to consume c− and set Pi.bit ← 0 if Pi+1 is not also holding a
c−. While not necessary for the correctness of the decrement operation, this will
enable conclusive zero-testing. Second, if Pi.bit = 1 and Pi+1 is holding f , then
Pi is the most significant bit. So this decrement shrinks the counter by one bit;
thus, Pi consumes c−, takes f from Pi+1, and sets Pi.bit ← ∅.

Finally, the zero-test operation: if P1 is holding a decrement token c− and
P1.bit = 1, � cannot perform the zero-test conclusively. Otherwise, the counter
value is 0 if and only if �.bit = 0, P1 is holding the final token f , and P1 is not
holding an increment token c+.

Analysis. We only present the correctness and runtime results for the dis-
tributed binary counter primitive from [15], as these subsume those in [42].

Correctness. For the distributed binary counter primitive to be correct, it must
eventually yield the same values as a centralized counter, assuming both are given
the same sequence of operations as input. Because the algorithm ensures that
the increment and decrement tokens are processed in the same order that their
respective operations are initiated, the resulting distributed counter will correctly
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process an arbitrary number of increment and decrement operations (assuming
the counter value remains in {0, 1, . . . , 2n −1}). The zero-test operation is shown
to always eventually be available (i.e., P1 is not holding a decrement token c−

or P1.bit �= 1) and is reliable whenever it is available. Together, this yields:

Theorem 5. A particle system P running the distributed binary counter prim-
itive will maintain a distributed counter that eventually yields the same values
as a centralized counter, given the same sequence of increment, decrement, and
zero-test operations.

Runtime. The following runtime bound is proven using a careful dominance argu-
ment (see, e.g., Sect. 3.2) applied to the progress of the increment and decrement
tokens in the counter.

Theorem 6. Given any nonnegative sequence of m operations, a particle system
P running the distributed binary counter primitive processes all operations in
O(m) rounds.

Applications. We briefly discuss some applications of the distributed binary
counter primitive whose details are beyond the scope of this chapter. In [42],
Porter and Richa give an algorithm using the increment-only counter for matrix-
vector multiplication. For an a × b matrix (i.e., a rows and b columns), this
algorithm requires O(ab) rounds to set up and an additional O(a + b) rounds
to perform the multiplication. By performing a sequence of these matrix-vector
multiplications, an a × b matrix can be multiplied by an b × c matrix in O(ab +
c(a + b)) rounds. Applications of these matrix multiplication algorithms to edge
detection and color transformation in image processing are described in [42].

In [15], Daymude et al. use the distributed binary counter primitive to aid
in convex hull formation, in which a particle system must seal an object using
as few particles as possible. At a very high level, a leader particle traverses the
surface of the given object, updating its estimate of the object’s convex hull as it
goes. Using its followers as a distributed binary counter, it stores the distances
from its current position to each of the six half-planes constituting the convex
hull. Once it completes its estimation, it can use these stored distances to lead
its followers along the convex hull itself, eventually sealing the object as desired.

4 Deterministic Algorithms Under the Amoebot Model

This section is devoted to the deterministic algorithms under the amoebot model.
These algorithms use the full capabilities of the amoebot model, including several
of its extensions (Sect. 2.3) and algorithmic primitives (Sect. 3). We focus on two
basic problems for programmable matter: forming a shape using all the particles
in the system, and coating an object. In basic shape formation (Sect. 4.1), a
follow-the-leader type protocol is used to construct regular shapes such as lines
and hexagons. In general shape formation (Sect. 4.2), a more complex algorithm
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is given for constructing a much broader range of shapes. Finally, in object coating
(Sect. 4.3), an algorithm is given for coating surfaces in one or more layers of
particles as evenly as possible.

4.1 Basic Shape Formation

Shape formation is one of the most immediate and natural applications of pro-
grammable matter. A “lump” of programmable matter should be able to recon-
figure into new shapes based on user input or autonomous sensing of its environ-
ment. Moreover, the final shape should scale with the size of the initial “lump”.
In basic shape formation, a particle system self-organizes to form regular, geo-
metric shapes. Here, we focus on lines, hexagons, and triangles; however, the
general framework can be applied to obtain other shapes as well. Line forma-
tion was first investigated in [22], while hexagon and triangle formation were
introduced in [19]. Detailed versions of all three algorithms can be found in [52].

Problem Description. An instance of a shape formation problem has the form
(I,G), where I is the initial configuration of the particle system and G is a set
of goal configurations. An instance is valid if (i) I and all configurations of G
are each connected, and (ii) I is composed of all contracted, idle particles and a
unique seed particle. An algorithm solves a valid instance of the shape formation
problem if, starting from initial configuration I, the algorithm terminates in a
configuration of G, after which all particles are contracted and no longer move.

The specific line formation, hexagon formation, and triangle formation prob-
lems simply define the desired set of goal configurations G as all configurations of
straight lines, (almost) regular hexagons, and (almost) regular triangles, respec-
tively. Note that, depending on the number of particles in I, the outermost layer
of a hexagon or triangle may not be complete.

Algorithm. Particles can be in one of four states: idle, follower, root, and
retired. All particles are initially idle except the unique seed particle, which is
always retired. At a high level, this algorithm constructs the desired shape one
particle at a time in a snake-like fashion, starting at the seed. Thus, at any point
in time before termination, the structure of retired particles partially forms the
goal configuration.

The spanning forest primitive (Sect. 3.2) is used to organize the system. In
basic shape formation, root particles always traverse the structure of retired
particles in a clockwise direction, trailing their followers behind them. The
most recent particle to retire (starting with the seed), say P , keeps a pointer
P.retireDir to the next node to be filled by a retired particle. When a contracted
root Q finds that it occupies this node (by seeing P.retireDir pointing to it), it
retires, locally calculates the next node to be filled by a retired particle, and sets
Q.retireDir to point to it. As other roots continue their traversal and their fol-
lowers become roots when they touch the surface of retired particles, eventually
all particles retire, forming the desired shape.
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It remains to specify how a newly retired particle calculates the next node to
add to the structure. Recall from Sect. 2.1 that each particle keeps a set of ports
(one for each edge incident to the node(s) it occupies) labeled in clockwise order.
Suppose a particle P has already retired and set P.retireDir, and another particle
Q has just retired in the position referenced by P.retireDir. Let i be the port
label of Q pointing to P . For line formation, Q sets Q.retireDir ← (i+3) mod 6;
this specifies that the next node to join the line should be opposite the direction
of the existing structure, resulting in a straight line (see Fig. 10). For hexagon
formation, Q sets Q.retireDir to the label of the first port clockwise from i that
does not point to another retired particle; this causes the hexagon to be formed
in counterclockwise order (see Fig. 11).

Finally, for triangle formation, a two-step mechanism is used5. Particle Q
first checks the position immediately clockwise from i, say j = (i + 1) mod 6. If
j does not point to a retired particle (as in Fig. 12c), Q is on a new side of the
triangle and sets Q.retireDir ← j to grow a new layer on this side. Otherwise, if
j points to a retired particle (as in Fig. 12d), Q is simply extending an existing
layer. So it sets Q.retireDir ← (j + 2) mod 6.

Fig. 10. Example of line formation with 10 particles, where the seed is depicted as a
large black circle. Followers are shown with black arcs pointing to their parents, roots
are shown with a gray circle, and retired particles are shown with a black circle. A
retired particle’s retireDir is shown as a black arrow.

5 For this presentation, we use a simplified scheme that results in a triangle with the
seed at its center; the original scheme given in [19,52] is significantly more complex
and results in a triangle with the seed at one vertex.
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Fig. 11. Example of hexagon formation with 18 particles.

Analysis. We now briefly motivate and state the main correctness and runtime
results for basic shape formation.

Correctness. Showing that the basic shape formation algorithms correctly form
their desired shapes can be split into guaranteeing (i) liveness; i.e., that the
particle system P makes eventual progress towards terminating in the desired
shape, and (ii) safety ; i.e., that P never disconnects. Both liveness and safety
follow from the correctness of the spanning forest primitive (Theorem 3), though
proving that the final shape is the desired one relies on inspection of the retiring
rules described above.

Theorem 7. The basic shape formation algorithms correctly solve the line for-
mation, hexagon formation, and triangle formation problems.

Runtime. In [19,22], Derakhshandeh et al. prove runtime bounds for the basic
shape formation algorithms in terms of work, or the total number of particle
movements required for an algorithm to terminate. It is shown that the worst-
case amount of work required by any algorithm to solve any of the three basic
shape formation problems (line formation, hexagon formation, or triangle for-
mation) is Ω(n2), where n is the number of particles in the system. The basic
shape formation algorithm described above is shown to match this worst-case
bound in all three cases, terminating in O(n2) work.

In his Ph.D. thesis, Strothmann uses a dominance argument (see, e.g.,
Sect. 3.2) to prove runtime bounds for these three algorithms in terms of asyn-
chronous rounds [52]. Formally, his thesis gives the following theorem.
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Fig. 12. Example of triangle formation with 18 particles. Unlike in Fig. 11, the resulting
shape in (f) is not fully regular due to the number of particles. Additionally, note that
(a)–(c) are the same as Fig. 11a–c; the basic shape formation algorithms only differ in
the way retired particles set their pointers.

Theorem 8. The total number of rounds required by the basic shape formation
algorithms to solve the line formation, hexagon formation, or triangle formation
problem is O(n), where n is the number of particles in the system.

4.2 General Shape Formation

The basic shape formation algorithm of Sect. 4.1 has two major disadvantages
that the general shape formation algorithm of this section seeks to alleviate.
First, it can only construct simple shapes that are amenable to being built one
particle at a time along a continuous path. Second, as stated in Theorem 8, it
generally requires O(n) rounds to construct a shape of n particles, even when
the shape could be formed more efficiently. The general shape formation algo-
rithm [20,29] can form a much broader class of shapes and, assuming the particle
system is well initialized, can do so as fast as any other local-control algorithm.

Problem Description. Let S be a finite set of faces in the triangular lattice
GΔ. S is a shape if the faces of S are connected—i.e., there exists a path from
any face in S to any other via pairs of faces that share a side—and the number of
faces s = |S| is constant. A shape S is sequentially constructible6 if there exists
6 The original publication on “universal” shape formation [20] claimed the algorithm

could construct any shape with a constant number of faces. However, Gmyr corrected
an oversight in this paper’s analysis in his Ph.D. thesis [29] and, as a result, the class
of shapes had to be restricted to sequentially constructible shapes.
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a permutation (a1, a2, . . . , as) of the faces of S such that for every 1 ≤ i ≤ s,
the subset of faces (a1, a2, . . . ai) is itself a shape Si and the face ai has a side
on the outer boundary of Si. This means that a sequentially constructible shape
can be built by adding triangular faces to the outside of an intermediate shape.

Recall from basic shape formation (Sect. 4.1) that a shape formation prob-
lem (I,G) defines the initial configuration I and the set of goal configurations
G. For the general shape formation problem, I forms a triangle consisting of
n contracted particles, each with a binary representation of a sequentially con-
structible shape S to form stored in memory. The set of goal configurations G
contains all transformations of S, where a transformation can be any combina-
tion of a translation, rotation by a multiple of 60◦, and isotropic scaling that
still coincides with the triangular lattice GΔ (see, e.g., Fig. 13). An algorithm
solves the general shape formation problem if, starting from I, the algorithm
terminates in a configuration of G. Note that the final configuration can contain
both expanded and contracted particles.

Fig. 13. A sequentially constructible shape consisting of 16 faces (left) and one of its
transformations (right) involving a 120◦ rotation counterclockwise and an isotropic 2×
scale-up.

Algorithm. We present the general shape formation algorithm in several parts.
First, we describe several movement primitives that are used throughout the
algorithm. Next, we give highlights of an algorithm that transforms the initial
triangle of particles into a useful intermediate structure. Finally, we describe the
actual formation process. Our presentation prioritizes the algorithm’s main ideas
over its details, and we refer the interested reader to [20,29] for a more thorough
description.

Movement Primitives. Several movement primitives are used throughout the
algorithm to move large sets of particles in a coordinated and efficient manner.
The first of these is chain movement, in which a “chain” of particles moves along
a simple path L without disconnecting. This is essentially the spanning forest
primitive described in Sect. 3.2, but the set of particles moving along L is already
organized into a simple path instead of a tree.
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The remaining movement primitives operate on a set of contracted particles
that form a triangle. Four primitives are available to such triangles: expansion,
contraction, rotation, and shift. Figure 14 depicts the first three of these prim-
itives. An expansion of a triangle results in an expanded triangle, which is a
rhombus composed of two triangles that share a side and are each the same size
as the original triangle. A contraction of a triangle transforms an expanded tri-
angle back into a triangle. Together, an expansion and contraction of a triangle
rotates a triangle by 60◦ about one of its vertices. Finally, a shift of a triangle
moves all of its particles by one node in a common direction.

Fig. 14. Expansion, contraction, and rotation of a triangle. A triangle (left) can expand
to form an expanded triangle (middle), which in turn can contract back to a triangle
(right), rotating the original triangle by 60◦.

At a high level, the triangle movement primitives are initiated by a triangle
coordinator that occupies one of the triangle’s three vertices. The coordinator
organizes the particles in each row of its triangle into particle chains that can
then be moved according to the chain movement primitive; for example, Fig. 15
depicts how the particle chains are moved in an expansion of a triangle. The
coordinator initiates and completes these chain movements using a token passing
scheme whose details we omit.

Reaching the Intermediate Structure. The first step of the general shape for-
mation algorithm is to reconfigure the particle system from its initial triangle
shape to the intermediate structure depicted in Fig. 16. This intermediate struc-
ture is composed of Δ equilateral triangles of side length � arranged in a line
and a remainder composed of too few particles to form an additional triangle.
All particles in the intermediate structure should be contracted.

The side length � must be chosen carefully so that the resulting number of
triangles Δ in the intermediate structure is sufficient to construct the desired
shape S. More specifically, Δ should satisfy (3/4)s + 1 ≤ Δ ≤ s − 3, where
s = |S| is the number of faces in S; the choice of these particular bounds is
explained in [29]. If L is the side length of the initial triangle of all n particles,
then � is chosen to be � = 
L/�c · √

s�, where c < 1 is a constant. It is shown
in [29] that there is a c which yields the desired bounds on Δ, assuming s and
L are sufficiently large.

To form this intermediate structure, the particle system first performs leader
election (Sect. 3.1) to elect a unique leader particle on the boundary of the initial
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Fig. 15. A counterclockwise expansion of a triangle. The coordinator C is located at
the top vertex of the triangle. The rows of the triangle expand as independently moving
particle chains along the paths shown as dashed arrows.

Fig. 16. The intermediate structure for general shape formation. The triangles (dark
gray) form a straight line, and the remainder (light gray) is not large enough to form
another triangle.

triangle. The leader then uses a token to transfer its leadership to a particle at
one of the triangle’s vertices. Next, the particle system determines the value of
�. However, since � = Ω(

√
n), a single particle cannot keep � in its constant-size

memory. So the leader initiates the following token passing scheme to store � in a
distributed fashion over multiple particles. The leader generates a counter token
and sends it down one of the initial triangle’s sides. The counter token stores the
number of steps it has taken modulo �c · √

s, which is a constant since c and s
are. Whenever the token’s count is 0 (starting at the leader), a marker token is
generated that moves back towards the leader without overtaking other marker
tokens. When the counter token is consumed by the particle at the end of the
triangle’s side, exactly � marker tokens will have been generated. Thus, when
all marker tokens have moved back towards the leader as far as possible—which
can be detected by the leader using a process similar to “settling” in the solitude
verification phase of leader election (Sect. 3.1)—exactly � particles, starting with
the leader, will be holding marker tokens.

Using �, the leader coordinates a recursive process to form the intermediate
structure. The process first splits the current triangle into a smaller triangle and
an isosceles trapezoid with legs of length � (see Fig. 17). The trapezoid imme-
diately becomes part of the intermediate structure, while the smaller triangle
must be rotated, shifted twice, and rotated again to be placed in line with the
next part of the intermediate structure. This process then recurs on the smaller
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triangle until a triangle with side length at most � is moved, completing the
intermediate structure.

Fig. 17. Constructing the intermediate structure. The parts shown in dark gray form
the intermediate structure, while the triangles that are moved are shown in light gray.
The dashed arrows show these triangle movements. For example, the leftmost triangle
is rotated 60◦ about the marked vertex, shifted once right and once down-right, and
then rotated 120◦ about the next marked vertex.

Forming the Final Shape. To form the desired shape S, the leader coordinates a
process that sequentially adds triangles from the intermediate structure to the
outside of the shape under construction. In [29], Gmyr first describes a “simple
algorithm” which captures the main ideas of the general shape formation algo-
rithm. However, there are three issues the simple algorithm does not address.
First, faces of S have overlapping edges while triangles formed by particles do
not, since each node of GΔ can be occupied by at most one particle. Thus, realiz-
ing a shape may require pruning triangles to different side lengths (as in Fig. 18)
and reincorporating the pruned particles elsewhere. Second, the remainder of
particles in the intermediate structure that did not form a complete triangle
must somehow be incorporated into the final shape. Finally, the algorithm for
constructing the intermediate structure constructs at most s − 3 triangles, but
the desired shape S has s faces. Thus, some expanded triangles need to make up
for the missing triangles. We will only present the simple algorithm for general
shape formation, and refer the interested reader to [29] for the full algorithm.

In the simplified setting, suppose that the particles pruned to create smaller
triangles do not need to be reincorporated and that the intermediate structure
consists of exactly s triangles without a remainder. The algorithm constructs a
scaled representation of the desired shape S, where each face has side length �.
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Fig. 18. A shape composed of six faces with overlapping edges (left) and one possible
realization requiring triangles of three different side lengths (right).

The leader first computes a permutation (a1, a2, . . . , as) of the faces of S
such that for every 1 ≤ i ≤ s, the subset of faces (a1, a2, . . . ai) is itself a
connected shape Si and the face ai has a side on the outer boundary of Si. Such
a permutation is guaranteed to exist since S is sequentially constructible, and
the leader can compute it since s is a constant.

The triangles of the intermediate structure are then mapped to the faces in
the permutation (a1, a2, . . . , as). If needed, a triangle can be pruned by one or
two rows of particles; the pruned rows are moved out of the way using chain
movements. The triangles of the intermediate structure are then added to the
outer boundary of the shape in the order defined by the permutation using tri-
angle rotations and shifts. If the intermediate structure or pruned rows obstruct
the placement of a triangle, they are simply moved out of the way.

Analysis. As described earlier, the intermediate structure with a desired num-
ber of triangles is constructed correctly, assuming the number of faces s in the
goal shape and the number of particles in the system n are sufficiently large.
It is shown in [20,29] that this intermediate construction completes in O(

√
n)

rounds, w.h.p. The w.h.p. qualifier is inherited from leader election (Sect. 3.1).
A triangle can be moved from the intermediate structure to its goal position

in the final shape using only a constant number of triangle rotations and shifts,
each of which requires O(�) rounds, where � = O(

√
n) is the side length of the

triangle. The number of rows pruned from triangles is constant, and each has
length O(�) = O(

√
n). These pruned rows are moved out of the way a distance

O(
√

n) at most a constant number of times, so moving the pruned rows requires
O(

√
n) rounds in total, by Theorem 4. Therefore, all together, the following

runtime bound is obtained.

Theorem 9. The general shape formation algorithm constructs any sequentially
constructible shape in O(

√
n) rounds, w.h.p.

We conclude with the following theorem, which shows that the general shape
formation algorithm achieves the optimal bound.
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Theorem 10. Any local-control algorithm for forming a non-triangular shape
S requires Ω(

√
n) rounds in the worst case.

4.3 Object Coating

Object coating is another natural application of programmable matter. For exam-
ple, one can imagine a particle system coating remote parts of a bridge to identify
stress points, or coating a vehicle as a layer of smart paint. Instead of developing
a class of coating algorithms that each coats a specific object, a more elegant
approach might seek one general algorithm that dynamically adapts to any given
object. We present such an algorithm in this section. The universal coating algo-
rithm was defined and proven to be correct in [21], and its runtime analysis and
proofs of worst-case optimality appeared in [14].

Problem Description. We begin with some terminology. Layer i of an object
O is the set of unoccupied nodes in GΔ whose shortest path to O has length i.
Let Bi denote the number of nodes in layer i. An object O has a tunnel of width
k if the subgraph of GΔ induced by the non-object nodes is not k-connected; for
example, Fig. 19 depicts an object with a tunnel of width 1.

An instance of the object coating problem has the form (P, O), where P
is a system of n particles and O is a static object to be coated. An instance
is valid if: (i) all particles in P are initially contracted and in an idle state,
(ii) the nodes occupied by particles of P and the object O induce a connected
subgraph of GΔ, (iii) O does not contain holes, and (iv) O does not contain any
tunnels of width 2(
n/B1� + 1). Coating an object with narrow tunnels requires
technical mechanisms that complicate the protocol without contributing to the
main idea of coating, so these types of objects are not considered. An algorithm
solves a valid instance (P, O) of the object coating problem if it terminates in
a configuration where all particles of P are as close to the object O as possible,
after which no particle ever moves or changes state. Intuitively, this means that
P coats O as evenly as possible.

Fig. 19. An object with a tunnel of width 1.
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Algorithm. The universal coating algorithm is composed of several algorithmic
primitives that run concurrently without any underlying synchronization. The
first of these is the spanning forest primitive described in Sect. 3.2, which ori-
ents the particles towards the object. The complaint-based coating primitive is
responsible for coating layer 1 of the object (also called the surface layer). The
node-based leader election primitive is a variant of the leader election algorithm
described in Sect. 3.1 that, instead of directly electing a leader particle, elects a
leader node on the surface layer. After the surface layer is completely coated,
the particle occupying the leader node becomes the leader particle. This leader
particle triggers the general layering primitive, which allows each layer i ≥ 2 to
form once layer i − 1 is complete. We describe each of these primitives in detail
after introducing some preliminaries.

Preliminaries. Particles can be in one of five states: idle, follower, root, marker,
and retired. Throughout the coating algorithm, a particle P keeps track of its
current layer number, denoted P.layer. However, to respect the constant-size
memory constraint, P.layer is stored modulo 4 in a particle’s memory. A layer
is said to be filled if all nodes in that layer are occupied by retired particles.

Spanning Forest Primitive. The spanning forest primitive for coating extends
the spanning forest primitive in Sect. 3.2. Instead of assuming the root particles
are predetermined, idle particles become roots if they are adjacent to the object
or a retired particle. Additionally, if the new root was adjacent to the object, it
makes the node it occupies a leader candidate node and begins to assist in leader
election, described below. As usual, the root is responsible for leading its tree
of followers; the path it traverses is defined by the complaint-based coating and
general layering primitives, described below. It is possible that a root may be
blocked by particles of another tree during its path traversal. Instead of using the
root swap operation defined in Sect. 3.2, blocked roots in the coating algorithm
simply wait. An unblocked root is called a super-root.

Complaint-Based Coating. The complaint based-coating primitive is responsible
for coating the surface layer with particles. When an idle particle becomes a
follower according to the spanning forest primitive, it generates a complaint
flag. Complaint flags are forwarded from particles to their parents through the
spanning forest. In more detail, each particle can hold at most two complaint
flags. Whenever a particle P is holding at least one complaint flag, it forwards
one flag to its parent as long as its parent is holding less than two flags.

These complaint flags eventually accumulate at and behind a super-root of
the spanning forest. A super-root can only expand along its traversal path if it
is holding a complaint flag and, when it expands, it consumes one complaint flag
(see Fig. 20b–c). No other particles (i.e., roots or followers) need complaint flags
to perform their movements. When a root is in a situation where it could perform
a handover with either another root on the object or a follower not yet on the
object, it gives preference to the follower (see Fig. 20d–e). These movement rules
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ensure that a particle not yet in the surface layer will eventually join, provided
the surface layer is not already filled.

Fig. 20. Example of the complaint-based coating primitive. The roots (black dots with
gray circles) are coating the object (black polygon) behind the super-root (gray circle
with black arrow). Complaint flags are forwarded to the super-root to enable movement
and allow more followers to join the surface layer.

Node-Based Leader Election. The node-based leader election primitive runs in
parallel with the complaint-based coating primitive to elect a leader node on the
surface layer. This primitive uses a variant of the algorithm presented in Sect. 3.1,
where the leader candidates are nodes instead of static particles. The roots in
the surface layer facilitate the competition between leader node candidates by
storing and transferring all the tokens and state information used by the leader
election algorithm for the node(s) they occupy. Root movements are handled
carefully so that no leader election information is lost or moved to a different
node; for example, during a handover between an expanded particle P and a
contracted particle Q, P transfers all leader election information about the node
occupied by its tail to Q.

The node-based leader election primitive will not successfully elect a leader
node until all nodes of the surface layer are occupied. Once a leader node emerges,
the first contracted particle to occupy it becomes both retired and a marker. This
marker particle designates a neighboring node in layer 2 as a marker node, which
will act as the starting point for the next layer. If a contracted root is following
a retired particle, it also becomes retired, causing the surface layer to fill with
retired particles in counterclockwise order. Once the surface layer is completely
filled with retired particles, the general layering primitive is activated.

One caveat is necessary before presenting the final primitive. If the surface
layer is longer than the number of particles in the system (i.e., B1 > n), a leader
node will never be elected. However, the complaint-based coating primitive will
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still continue until all complaint flags are consumed by the super-root, bringing
all particles in the system into the surface layer. This results in a successful
coating of the object; all particles are as close to the object as possible.

General Layering. The general layering primitive handles the coating of all layers
i ≥ 2. Following the spanning forest primitive, followers become roots whenever
they become adjacent to a retired particle. In the general layering primitive,
roots perform a clockwise traversal of their layer if their layer number is odd
(see, e.g., Fig. 21a), and a counterclockwise traversal otherwise.

One of three cases eventually occurs for a root P . First, if P encounters an
unoccupied node in the layer below it, it moves into the lower layer, causing it to
change the direction of its traversal (Fig. 21b–c). Second, if P is contracted and
encounters a retired particle in its layer, it also retires (Fig. 21d). Finally, if P is
contracted and occupies the marker node designated by the marker particle in
the layer below, it waits until the marker particle signals that layer P.layer−1 is
completely filled (which it can determine locally). Once signalled, P retires and
becomes the marker particle for layer P.layer, designating a neighboring node
in layer P.layer + 1 as the next marker node. This continues until all particles
become retired.

Analysis. The correctness of the universal coating algorithm follows from the
safety condition, i.e., that the set nodes occupied by particles and objects remains
connected at all times, and the liveness condition, i.e., that the system eventually
makes progress. Progress is made if an idle particle becomes active (i.e., a root
or follower), a movement is executed, or an active particle retires. Both safety
and liveness are proven by Derakshandeh et al. in [21].

In [14], Daymude et al. use a careful dominance argument to bound the
runtime of the universal coating algorithm. To coat the surface layer, the particle
system first organizes into a spanning forest. By Theorem 4, this is achieved in
O(n) rounds. The surface layer is then coated in O(B1) = O(n) rounds, where
B1 is the length of the surface layer, assuming there are enough particles to
do so. By Theorem 2, a leader node is elected in an additional O(B1) rounds,
w.h.p., allowing the particles of the surface layer to retire in O(B1) more rounds.
By a similar argument, coating the higher layers is shown to take another O(n)
rounds in the worst case. All together, we have the following theorem.

Theorem 11. The universal coating algorithm correctly solves a valid instance
of the object coating problem (P, O) in O(n) rounds in the worst case, w.h.p.,
where n is the number of particles in P.

We conclude with the following theorem, which shows that the universal
coating algorithm achieves the optimal bound.

Theorem 12. The worst-case runtime required by any local-control algorithm
to solve the object coating problem for a system of n particles is Ω(n) rounds.
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Fig. 21. Example of the general layering primitive. Retired particles are shown in
black circles, and marker particles are shown in black hexagons. A root (gray circle)
(a) traverses layer 3 in a clockwise direction, (b) encounters an unoccupied location in
layer 2, (c) enters layer 2 and changes directions, and (d) retires.

5 Stochastic Algorithms Under the Amoebot Model

In the stochastic approach to self-organizing particle systems, algorithms under
the amoebot model are designed and analyzed using concepts from statistical
physics and stochastic processes. Instead of using careful state management and
communication to drive particle computation and movement as in the algorithms
of Sect. 4, these stochastic algorithms are stateless, use almost no communica-
tion, and depend only on probabilistic decisions. Designing these algorithms
begins by defining an energy function that captures the objectives for the parti-
cle system. One then designs Markov chains that, in the long run, favor particle
system configurations with desirable energy values. Although Markov chains are
usually defined at a global, system level, these must be designed carefully so that
they can be translated into fully distributed, local, asynchronous algorithms run
by each particle individually.

The motivation underlying the design of these Markov chains comes from sta-
tistical physics, where ensembles of particles similar to those considered in the
amoebot model represent physical systems. Previous studies on these systems
have shown that local micro-behaviors can induce global, macro-scale changes
to a system [3,4,46], yielding the kind of emergent phenomena desirable for pro-
grammable matter. Like a spring relaxing, physical systems favor configurations
that minimize energy. Each system configuration σ is assigned an energy value
by a Hamiltonian H(σ) and a corresponding weight w(σ) = e−B·H(σ), where
B = 1/T is inverse temperature. Markov chains have been well-studied as a
tool for sampling system configurations with probabilities proportional to their
weight w(σ), where configurations with the least energy H(σ) are the most likely
to be sampled.

The stochastic approach to self-organizing particle systems utilizes a Hamil-
tonian H(σ) over particle system configurations σ that assigns the lowest val-
ues to desirable configurations; a corresponding Markov chain algorithm is then
designed to favor these configurations with small H(σ). Each problem uses a dif-
ferent Hamiltonian. Each problem also uses a bias parameter λ = eB . The weight
of a configuration then becomes w(σ) = λ−H(σ). Thus, raising λ (by increasing
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B, effectively lowering temperature) increasingly favors configurations with lower
energy values, yielding the desired particle system configurations.

Before introducing the stochastic algorithms under the amoebot model, we
give a brief primer on the terminology and techniques used in their design.

Terminology. A particle system configuration is the set nodes (locations) of GΔ

occupied by particles. An edge of a configuration is an edge of GΔ where both
endpoints are occupied by particles. When referring to a path, we mean a path of
such edges. Two particles are connected if there exists a path between them, and
a configuration is connected if all pairs of particles are7. A hole in a configuration
is a maximal finite connected component of unoccupied locations.

Markov Chains. A Markov chain M is a memoryless stochastic process defined
on a state space Ω. Here, Ω is a set of particle system configurations; thus, we
only consider state spaces that are finite and discrete. The transition matrix
Q : Ω × Ω → [0, 1] is defined so that Q(σ, τ) is the probability of moving from
state σ to state τ in one step, for any pair of states σ, τ ∈ Ω. In Markov chains
for particle systems, transitions correspond to one particle moving one unit in
one direction, and the transition probabilities are chosen carefully to achieve
some objective. The t-step transition probability Qt(σ, τ) is the probability of
moving from σ to τ in exactly t steps.

A Markov chain is irreducible, or its state space is connected, if there is
a sequence of valid transitions from any state to any other state; i.e., for all
σ, τ ∈ Ω, there is a t such that Qt(σ, τ) > 0. A Markov chain is aperiodic if for
all σ, τ ∈ Ω we have gcd{t : Qt(σ, τ) > 0} = 1. A Markov chain is ergodic if
it is both irreducible and aperiodic. Any finite, ergodic Markov chain converges
to a unique stationary distribution π defined as limt→∞ Qt(σ, τ) = π(τ), for
all σ, τ ∈ Ω. Any distribution π′ satisfying the detailed balance condition—
π′(σ)Q(σ, τ) = π′(τ)Q(τ, σ) for all σ, τ ∈ Ω—must be this unique stationary
distribution (see, e.g., [27]).

Given a state space Ω, a set of allowable state transitions, and a desired sta-
tionary distribution π on Ω, the celebrated Metropolis-Hastings algorithm [32]
defines a Markov chain on Ω that uses only allowable transitions and has sta-
tionary distribution π. This algorithm sets the probabilities of state transitions
as follows. Starting at a state σ ∈ Ω, choose a neighboring state τ ∈ Ω (one
with an allowable transition from σ to τ) uniformly with probability 1/(2Δ),
where Δ is the maximum number of neighbors of any state. Move from σ to
τ with probability min{1, π(τ)/π(σ)}; with the remaining probability stay at σ
and repeat. Assuming the allowable transitions connect the state space, then
detailed balance will verify that this algorithm yields a Markov chain with π
as its stationary distribution. Although calculating π(τ)/π(σ) seems to require
global knowledge, this ratio can often be calculated with only local information
when many terms cancel out, as is the case for the algorithms presented here.

7 This definition of configuration connectivity is equivalent to that of system connec-
tivity given in Sect. 2.2.
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Obliviousness and Robustness. Compared to the mostly deterministic algorithms
in Sect. 4, these stochastic algorithms are nearly oblivious, requiring very lit-
tle memory. Markov chains are naturally memoryless, and thus the distributed
algorithms derived from them also have very little dependence on memory and
communication. As we will see in Sects. 5.1, 5.2 and 5.3, only 1–2 bits of memory
per particle are required in the resulting distributed algorithms. This is an arti-
fact of translating the Markov chain algorithms—where a particle moves from
one node to a neighboring node in a single step—into ones that fully respect
the constraints of the amoebot model, where a particle can perform at most one
expansion or contraction per activation.

Our stochastic algorithms are also significantly more robust (i.e., have a
higher tolerance to failures) than those in Sect. 4. A distributed algorithm’s fault
tolerance is its ability to correctly solve a problem in spite of potential failures, a
highly desirable and relevant property for programmable matter. One can imag-
ine that in a system of thousands of particles, a small number of them may die
and cease to move, compute, or communicate (i.e., a crash failure) or become
corrupted and move, compute, or communicate erroneously (i.e., a Byzantine
failure). Even a single fault of either type would cause complete failure in the
algorithms in Sect. 4. In contrast, the stochastic algorithms have robustness built
in. Because these algorithms are stateless and do not rely on communication,
crashed particles and particles attempting to communicate arbitrary or malicious
information have no real effect on the behavior of non-faulty particles. However,
crashed particles act as fixed points that will affect the resulting particle system
configurations.

5.1 Compression

The original publication on compression was the first to introduce the stochastic
approach to self-organizing particle systems [11]. This line of work continued with
shortcut bridging (Sect. 5.2) and separation (Sect. 5.3), both of which extend the
original algorithm design of compression to achieve more complex behaviors. We
will thus give more motivation and details for compression, while focusing more
on the distinguishing features of the later algorithms.

In the compression problem, a particle system gathers together as tightly as
possible, as in a sphere or its equivalent in the presence of some underlying geom-
etry. There are many metrics that capture this behavior; e.g., system diameter or
average particle distance to the system’s center of mass. Here, a particle system
must reorganize to minimize its perimeter, where a configuration’s perimeter is
measured by the length of the walk along its boundary. Several examples of this
behavior exist in nature, particularly in social insects: fire ants gather to form
floating rafts [38], cockroach larvae perform self-organizing aggregation [34], and
honeybees choose hive locations based on decentralized swarming and recruit-
ment [9]. While no individual insect can view the whole group when making
decisions and soliciting information, it can take cues from its immediate neigh-
bors to achieve cooperation.
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Problem Description. Let p(σ) denote the perimeter of a particle system
configuration σ. For a system of n particles, the minimum possible perimeter
is pmin := pmin(n) = Θ(

√
n). A configuration σ with no holes is said to be

α-compressed if p(σ) < α · pmin, for any α > 1. An algorithm solves the com-
pression problem if, given any particle system in an initially connected config-
uration and any α > 1, eventually the system reaches and remains in a set of
α-compressed configurations with all but a probability exponentially small in n.

Analogously, the maximum possible perimeter for a system of n particles
is pmax := pmax(n) = 2n − 2. A configuration σ with no holes is said to be
β-expanded if p(σ) > β · pmax, for any 0 < β < 1. An algorithm solves the
expansion problem if, given any particle system in an initially connected config-
uration and any 0 < β < 1, eventually the system reaches and remains in a set
of β-expanded configurations with all but a probability exponentially small in n.

Markov Chain M. We first present the Markov chain M for compression and
will later show its translation into a distributed, local, asynchronous algorithm
A that can be run by individual particles. M is defined on the state space Ω
of all connected particle system configurations of n contracted particles. Both
M and A start in an arbitrary configuration σ0 ∈ Ω and take a bias parameter
λ > 1 as input, where λ controls the preference for having small perimeter.

Recall that, for each stochastic algorithm, a Hamiltonian H(σ) is defined
which assigns the lowest energy values—and thus the largest weight w(σ) =
e−B·H(σ) = λ−H(σ)—to desirable configurations. To achieve compression, the
lowest energy values should be assigned to the configurations with the smallest
perimeter. In [11], Cannon et al. prove that minimizing configuration perimeter
p(σ) is equivalent to maximizing the number of configuration edges e(σ). Thus,
by setting H(σ) = −e(σ), we obtain w(σ) = λe(σ). This implies that λ > 1
corresponds to particles favoring having more neighbors while λ < 1 corresponds
to particles favoring having fewer neighbors.

Markov chain M is carefully designed to maintain several critical properties
that are necessary for its correctness and for applying certain tools from Markov
chain analysis. First, M must keep the particle system connected and hole-free
throughout its execution, assuming it starts in a connected, hole-free configu-
ration. Next, M should be ergodic and, after a move is made, there should be
a nonzero probability that it is undone in the next step. Finally, in order to
solve the compression problem, M must eventually reach a stationary distribu-
tion that favors system configurations proportional to their weight w(σ) = λe(σ)

using only local information and local particle moves.

Local Properties for Simple Connectivity. Two local properties are used to ensure
the particle system remains connected and hole-free throughout the execution
of M. Together, these properties ensure that a particle’s local connectivity with
respect to its neighbors does not change as a result of its move. Moreover, they
ensure that every move can be undone, as desired.

We use the following notation. For a location � of GΔ, let N(�) denote the
set of particles adjacent to �. For adjacent locations � and �′, we use N(� ∪ �′) to
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denote the set N(�) ∪ N(�′), excluding particles occupying � or �′. Let S = N(�) ∩
N(�′) be the particles adjacent to both locations; note that |S| ∈ {0, 1, 2}. The
following properties can be locally checked by an expanded particle occupying
both � and �′, and are symmetric with respect to these locations (see Fig. 22).

Property 1. |S| ∈ {1, 2} and every particle in N(� ∪ �′) is connected to a particle
in S by a path through N(� ∪ �′).

Property 2. |S| = 0, � and �′ each have at least one neighbor, all particles in
N(�)\{�′} are connected by paths within this set, and all particles in N(�′)\{�}
are connected by paths within this set.

Fig. 22. Examples of particle neighborhoods with respect to Properties 1 and 2. Par-
ticles of S are drawn with black circles around them.

We can now present the Markov chain M for compression (Algorithm 1).

Algorithm 1. Markov Chain M for Compression
Beginning at any connected configuration σ0 of n contracted particles, repeat:

1: Select particle P uniformly at random from among all particles; let � be its location.
2: Choose a neighboring location �′ and q ∈ (0, 1) uniformly at random.
3: if �′ is unoccupied then
4: P expands to occupy both � and �′.
5: Let e = |N(�)| be the number of neighbors P had when it was contracted at �,

and let e′ = |N(�′)| be the number of neighbors P would have if it contracts to �′.
6: if (i) � and �′ satisfy Property 1 or 2, (ii) e < 5, and (iii) q < λe′−e then
7: P contracts to �′.
8: else P contracts back to �.

Distributed, Local, Asynchronous Algorithm A. We now present the
local, distributed, asynchronous algorithm A that each particle runs. Recall
from Sect. 2.1 that during a single activation of a particle P , P can perform
an arbitrary amount of computation and at most one expansion or contraction.
In particular, P cannot do both an expansion and a contraction in one activation
as M does in a single step. Thus, A must decouple a single step of M into two
(not necessarily consecutive) particle activations and carefully handle the way
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Algorithm 2. Distributed Algorithm A for Compression run by Particle P

If P is contracted:
1: Let � denote P ’s current location.
2: Particle P chooses neighboring location �′ uniformly at random from the six pos-

sible choices, and generates a random number q ∈ (0, 1).
3: if �′ is unoccupied and P has no expanded neighboring particle at � then
4: P expands to occupy both � and �′.
5: if there are no expanded particles adjacent to � or �′ then
6: P sets a flag f = True in its local memory.
7: else P sets f = False.

If P is expanded:
8: Let N∗(·) ⊆ N(·) be the set of neighboring particles excluding any heads of

expanded particles.
9: Let e = |N∗(�)| be the number of neighbors P had when it was contracted at �,

and let e′ = |N∗(�′)| be the number of neighbors P would have if it contracts to �′.
10: if (i) � and �′ satisfy Property 1 or 2 with respect to N∗(·), (ii) e < 5, (iii)

q < λe′−e, and (iv) f = True then
11: P contracts to �′.
12: else P contracts back to �.

in which the particle’s neighborhood may change between its two activations
(see [11] for full details of this decoupling).

Each particle P continuously runs Algorithm A, executing Steps 1–7 if P is
contracted and Steps 8–12 if P is expanded. Conditions (i)–(iii) in Step 10 of
A are the same as those in Step 6 of M. The additional Condition (iv) ensures
P is the only particle in its neighborhood potentially moving to a new posi-
tion since it last expanded. Any conflicts arising from two particles concurrently
attempting to expand into the same location are assumed to be resolved arbi-
trarily (Sect. 2.1). Hence, any concurrent movements will cover pairwise disjoint
neighborhoods and the respective actions will be mutually independent.

However, in an asynchronous setting, one cannot typically assume the next
particle to be activated is equally likely to be any particle, as in Step 1 of M. This
assumption is made in order to explicitly calculate the stationary distribution of
M (Lemma 1) and rigorously analyze it (Theorems 13 and 14), but the system’s
behavior is not expected to differ substantially if this requirement was relaxed.

These random sequences of particle activations can be approximated using
Poisson clocks with mean 1. That is, each particle can activate and execute Algo-
rithm A at a random real time drawn from the exponential distribution e−t.
After each action, a particle could then compute another random time drawn
from the same distribution e−t and activate again after that amount of time has
elapsed. The exponential distribution is unique in that, if particle P has just
activated, it is equally likely that any particle will be the next particle to acti-
vate, including particle P (see, e.g., [27]). Moreover, a particle updates without
requiring knowledge of any other particle’s clock. As an aside, the analysis can
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be modified to accommodate each clock having its own constant mean; however,
for ease of presentation, we assume here that they are all i.i.d.

Results. Cannon et al. give a detailed analysis of Markov chain M in [11]; here,
we briefly present the major results on some properties of M, its stationary
distribution π, and its correctness in solving compression. We conclude with
results on using M to also solve expansion. Note that all results for M extend
to the local algorithm A.

Invariants of M. Cannon et al. prove that if the particle system is initially
connected, M maintains system connectivity. Moreover, once a connected con-
figuration with no holes is reached, M will never introduce new holes to the
system. Together, these imply that once M reaches the subspace Ω∗ ⊂ Ω of all
connected, hole-free configurations of n particles, it will remain in Ω∗ forever.
Since M is finite and ergodic on Ω∗ (a result shown in [11]), it converges to a
unique stationary distribution π on Ω∗ that can be verified by detailed balance.

Lemma 1. Markov chain M for compression has a unique stationary distribu-
tion π given by:

π(σ) =
{

λe(σ)/Z if σ ∈ Ω∗;
0 otherwise,

where Z =
∑

τ∈Ω∗ λe(τ) is the normalizing constant or partition function.

Achieving Compression and Expansion. Markov chain M—and, by extension,
local algorithm A—solve both the compression and expansion problems depend-
ing on the value of bias parameter λ. Although compression or expansion could
occur before M even converges to its stationary distribution π, the proofs in [11]
rely on analyzing π. First, it is shown that for any α > 1 and provided λ and n are
large enough, a configuration chosen at random according to π is α-compressed
with all but a probability that is exponentially small in n.

Theorem 13. For any α > 1, let λ∗ = (2+
√

2)α/(α−1). There exists n∗ ≥ 0 and
ζ < 1 such that for all λ > λ∗ and n > n∗, the probability that a random sample
σ drawn according to the stationary distribution π of M is not α-compressed is
exponentially small:

Pr
σ∼π

[p(σ) ≥ α · pmin] < ζ
√

n.

It can also be shown that there is some constant α for which α-compression
occurs when λ > 2 +

√
2 is fixed. However, there is a tradeoff: smaller values of

λ require larger values of α and vice versa.
The algorithm also provably achieves expansion for different values of the

bias parameter λ. It is shown that, for all 0 < λ < 2.17 and provided n is
large enough, there is a constant 0 < β < 1 such that a configuration chosen
at random according to the stationary distribution of M is β-expanded with all
but exponentially small probability in n. This is counterintuitive, since it implies
that λ > 1 (i.e., favoring more neighbors) is not sufficient to guarantee particle
compression.
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Theorem 14. For any 0 < β < 1, let λ∗ = (
√

2/(2+
√

2)β)1/(1−β). There exists
n∗ ≥ 1 and ζ < 1 such that for all λ < λ∗ and n ≥ n∗, the probability that a
random sample σ drawn according to the stationary distribution π of M is not
β-expanded is exponentially small:

Pr
σ∼π

[p(σ) ≤ β · pmax] < ζ
√

n.

Similar to compression, it is also shown that there is a constant β for which
β-expansion occurs when 0 < λ < 2.17 is fixed. Again, there is a tradeoff in
larger values of λ requiring smaller values of β and vice versa.

Convergence Time of M. Although compression provably occurs with all but
exponentially small probability once M converges to its stationary distribution,
no explicit bounds are given on the time required for this to occur. However,
simulations support the conjecture that the worst-case number of steps of M
needed to observe compression is Ω(n3) and O(n4), or O(n3) rounds of A.

Simulations. In practice, Markov chain M yields good compression. Figure 23
depicts a simulation of M for λ = 4 on 100 particles that begin in a line and
become compressed. In contrast, λ = 2 (which still favors having more particle
neighbors), does not yield compression; see Fig. 24, where even after 20 million
steps of M, the particles have not compressed. Cannon et al. conjecture there
is a phase transition in λ, i.e., a critical value λc such that for all λ > λc the
particles compress and for all λ < λc they do not. Such phase transitions exist
for similar statistical physics models (e.g., [8]). Theorems 13 and 14 indicate that
if λc exists, then 2.17 ≤ λc ≤ 2 +

√
2.

5.2 Shortcut Bridging

Andrés Arroyo et al. further validated the stochastic approach to self-organizing
particle systems in an investigation of shortcut bridging [1]. This work is inspired
by an entomological study [43] that found army ants of the genus Eciton con-
tinuously modify the shape and position of foraging bridges—constructed and
maintained by their own bodies—across holes and uneven surfaces on the forest
floor. These bridges appear to stabilize in a structural formation that balances
the “benefit of increased foraging trail efficiency” with the “cost of removing
workers from the foraging pool to form the structure” [43]. Shortcut bridging is
an attractive goal for programmable matter, which may need to make similar
tradeoffs when maintaining bridges over terrain with structural irregularities.

To consider this problem in the amoebot model, two model extensions
(Sect. 2.3) are employed. First, static objects are used to anchor the particle
system to certain fixed sites. Second, the locations of GΔ are considered either
gap (unsupported) or land (supported) using node differentiation. The notion of
configuration perimeter used in compression (Sect. 5.1) is extended to address
this new land/gap setting as follows. The weighted perimeter p(σ, c) of a particle
system configuration σ is the summed weight of the edges on the boundary of σ,
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Fig. 23. 100 particles in a line with occupied edges drawn, after (a) 1 million, (b) 2
million, (c) 3 million, (d) 4 million, and (e) 5 million steps of M with bias λ = 4.

Fig. 24. 100 particles in a line with occupied edges drawn, after (a) 10 million and (b)
20 million steps of M with bias λ = 2.

where edges between land locations have weight 1, edges between gap locations
have weight c ≥ 1, and edges with one endpoint on land and one endpoint in
the gap have weight (1 + c)/2.

Problem Description. An instance of the shortcut bridging problem has the
form (L,O, σ0, c, α), where L ⊆ V is the set of land locations, O is the set of
(two) objects to bridge between, σ0 is the initial configuration for the particle
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system, c ≥ 1 is a fixed weight for edges between gap locations, and α > 1 is
a parameter capturing error tolerance. An instance is valid if (i) the objects of
O and particles of σ0 all occupy locations in L, (ii) σ0 connects the objects,
and (iii) σ0 is connected. Let pmin := pmin(L,O, σ0, c) be the minimum possible
weighted perimeter of a configuration. An algorithm solves a valid instance if,
beginning from σ0, with all but exponentially small probability it reaches and
remains in a set of configurations Σ∗ such that any σ ∈ Σ∗ has p(σ, c) < α ·pmin.

Algorithm. As an extension of compression, the Markov chain and resulting
distributed algorithm for shortcut bridging share many characteristics with the
Markov chain M (Algorithm 1) and algorithm A (Algorithm 2) for compression.
For brevity, we focus on the main differences.

To solve the shortcut bridging problem, an algorithm must yield configura-
tions that have small weighted perimeter. In essence, an algorithm must balance
the competing objectives of having a short path between the two objects while
not forming too large of a bridge. These competing objectives are captured by
preferring configurations σ that have both small perimeter p(σ), the length of
the walk around the boundary of σ, and small gap perimeter g(σ), the number of
perimeter edges in the gap. Using the weights defined above, weighted perimeter
becomes p(σ, c) = p(σ) + (c − 1)g(σ); thus, minimizing weighted perimeter is
equivalent to simultaneously minimizing both perimeter and gap perimeter.

Two bias parameters are used: λ and γ. The desired Markov chain for short-
cut bridging should sample configurations σ proportional to weight w(σ) =
λ−p(σ)γ−g(σ). Setting λ > 1 corresponds to favoring having small perimeter,
as it did for compression, while γ > 1 corresponds to favoring having small gap
perimeter. Arithmetic shows λ−p(σ,c) = λ−p(σ)−(c−1)g(σ) = λ−p(σ)(λc−1)−g(σ),
so setting γ = λc−1 results in the desired relationship between perimeter, gap
perimeter, and weighted perimeter.

The same local properties from compression (Properties 1 and 2) are used in
shortcut bridging to ensure the particle system remains connected, no new holes
form, and every move made can be undone. Only one small change is made: the
definitions of location neighborhoods (e.g., N(�), N(� ∪ �′), etc.) are extended
to include objects, ensuring that the system does not break away from the points
it is supposed to bridge between.

We can now present the Markov chain MB for shortcut bridging. It follows
the same procedure as Markov chain M for compression (Algorithm 1), with
two differences. First, instead of counting neighbors as in Step 5 of M, MB

simply refers to the configuration with particle P at its original location � as σ
and the configuration with P at its new location �′ as σ′. Then, MB replaces
the probability condition in Step 6 of M with q < λp(σ)−p(σ′)γg(σ)−g(σ′). One
might observe that this probability is not defined locally; however, an argument
in [1] shows that it can be calculated by an expanded particle occupying � and
�′ using only local information from its neighborhood.
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Markov chain MB can be directly translated to a fully distributed, local,
asynchronous algorithm AB for shortcut bridging using the same decoupling
and Poisson clock mechanisms described for compression.

Results. In [1], Andrés Arroyo et al. give a detailed analysis of the Markov
chain MB and resulting distributed algorithm AB for shortcut bridging. Here,
we will only present the highlights. As for compression, MB is shown to maintain
system connectivity. It is also shown to eventually reach the set of configurations
with no holes, after which all configurations will remain hole-free.

The resulting stationary distribution πB over ΩB (the set of all configura-
tions reachable from σ0, the initial configuration, via valid transitions of MB)
is shown to be πB(σ) = λ−p(σ)γ−g(σ)/Z, where Z =

∑
τ∈ΩB

λ−p(τ)γ−g(τ) is
the normalizing constant. Analyzing this stationary distribution with a careful
Peierls argument results in the following theorem, which shows MB correctly
solves the shortcut bridging problem.

Theorem 15. Consider any α > 1 and let λ∗ = (2 +
√

2)α/(α−1). There exists
n∗ > 0 such that for all λ > λ∗ and n > n∗, if γ = λc−1, the probability that
a random sample σ drawn from the stationary distribution of MB has weighted
perimeter p(σ, c) ≥ α · pmin is exponentially small in n, where n is the number
of particles in the system.

Simulation results supporting the findings of Theorem 15 can be seen in
Figs. 25 and 26, where MB was run with biases λ = 4 and γ = 2 (i.e., c = 3/2)
on a V-shaped and N-shaped land mass, respectively.

Fig. 25. A particle system, beginning in configuration (a), using biases λ = 4 and
γ = 2 to shortcut a V-shaped land mass after (b) 2 million, (c) 4 million, (d) 6 million,
and (e) 8 million steps of Markov chain MB . The two objects (large, dark gray) anchor
the particle system (black) to land (gray).

Dependence on Gap Angle. The shortcut bridging algorithm is also shown in [1]
to have a dependence on the internal angle θ of the gap similar to that of the
army ant bridges studied in [43]. Informally, it is shown that when θ is sufficiently
small, with all but exponentially small probability the bridge constructed by the
particles stays close to the bottom of the gap (away from the apex of angle θ).
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Fig. 26. A particle system, beginning in configuration (a), using biases λ = 4 and
γ = 2 to shortcut an N-shaped land mass after (b) 10 million and (c) 20 million steps
of Markov chain MB .

For some large values of θ, it is shown that the bridge constructed by the particles
stays close to the top of the gap (nearer to land) with all but exponentially
small probability. Although the bounds obtained in [1] are relatively narrow
(e.g., the proofs for small θ only hold for gap angles less than θ1 = 0.0879–5.03◦),
simulations suggest these bounds are far from tight. Figure 27 depicts simulation
results that are consistent with the proven angle dependence behaviors, but were
obtained using angles and bias parameter values outside the proven bounds.

Fig. 27. A particle system using biases λ = 4 and γ = 2 to shortcut a V-shaped land
mass with gap angle (a) π/6, (b) π/3, and (c) π/2 after 20 million steps of Markov
chain MB .

5.3 Separation

Examples of heterogeneous entities separating and integrating exist at many
scales, from molecules exhibiting attractive and repulsive forces, to mixed solu-
tions of varying viscosities, to inherent human biases that influence how we form
and maintain social groups. This fundamental behavior of heterogeneous entities
separating or integrating in response to environmental stimuli spans remarkably
diverse areas of study. Of particular relevance to the stochastic approach to self-
organizing particle systems are the Schelling model [49,50]—which explores how
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micro-motives of individuals can induce macro-phenomena such as racial seg-
regation in residential neighborhoods—and the Ising model of ferromagnetism
from statistical physics [55].

In the separation problem, a heterogeneous particle system—i.e., one in which
particles have different immutable colors—must self-organize to form monochro-
matic clusters, resulting in observable color class separation. Each particle P
keeps a color c(P ) ∈ {c1, . . . , ck} in its memory that is visible to itself and its
neighbors, where k < n is some small constant. An edge between two neigh-
boring particles P and Q is homogeneous if c(P ) = c(Q) and is heterogeneous
otherwise. Cannon et al. give a Markov chain algorithm MS for separation in a
two-color particle system in [10], though the algorithm has also been shown to
generalize to k-color particle systems in simulations (for a constant k). We will
focus on the two-color case for the problem statement, results, and simulations,
but will describe the Markov chain MS and corresponding distributed algorithm
AS for separation in full k-color generality.

Problem Description. Informally, a two-color particle system configuration is
separated if there is a set R of particles such that R mostly contains particles of
color c1, its complement R mostly contains particles of color c2, and the boundary
between R and R is small. If this is the case, R and R are called clusters. More
formally, a configuration is (β, δ)-clustered, for β > 0 and δ < 1/2, if there are at
most δ|R| particles of color c2 in R, at most δ|R| particles of color c1 in R, and
the boundary between R and R is of size at most β

√
n, where n is the number

of particles in the system.
An instance of the separation problem has the form (σ0, β, δ) where σ0 is a

connected initial configuration of colored particles and β > 0 and 0 < δ < 1/2
are constants. An algorithm solves an instance if, beginning from configuration
σ0, with all but exponentially small probability it reaches and remains in a set
of configurations that are (β, δ)-clustered.

Algorithm. As was the case for shortcut bridging (Sect. 5.2), the Markov chain
MS and corresponding distributed algorithm AS for separation are also exten-
sions of the compression algorithm (Sect. 5.1) and follow the stochastic approach
to self-organizing particle systems. To achieve separation, an algorithm should
favor configurations with many edges (inducing small perimeter, as in Sect. 5.1)
and large monochromatic clusters. These objectives are achieved by sampling
configurations σ proportional to their weight w(σ) = λe(σ)κa(σ) where e(σ) is
the number of edges and a(σ) is the number of homogeneous edges in σ. Bias
parameter λ controls the system’s preference for having small perimeter, as in
compression and shortcut bridging; larger values of λ increasingly favor com-
pressed configurations while for small λ the opposite is true. The additional
bias parameter κ controls separation, favoring clustered/separated configura-
tions when κ is large and well-integrated configurations when κ is small.

A new swap move is introduced to enable adjacent particles of different colors
to switch places. For two neighboring contracted particles P and Q, either P or
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Q can initiate a swap to exchange colors, which can be implemented as follows: P
reads x ← c(Q) from the memory of Q, overwrites c(Q) ← c(P ) in the memory
of Q, and finally updates its own color c(P ) ← x. Adding this swap move enables
faster convergence of the separation algorithm in practice, but is not necessary
for any of its formal results.

In addition to the usual location neighborhood definitions (e.g., N(�), N(� ∪
�′)) used in compression and shortcut bridging, separation also uses color-specific
location neighborhoods. More precisely, for a location �, Ni(�) denotes the set
of particles of color ci adjacent to location �. For neighboring locations � and �′,
Ni(� ∪ �′) denotes the set Ni(�) ∪ Ni(�′), excluding particles occupying � and
�′. These color-specific neighborhoods are used when calculating the difference
in the number of homogeneous edges between a particle’s new and old position.

Separation also uses local Properties 1 and 2 from compression to ensure
the particle system remains connected and no new holes form. However, these
properties need not be verified for swap moves, which do not change the set of
occupied nodes and thus cannot disconnect the system or create a hole. We can
now present the Markov chain MS for separation (Algorithm 3).

Algorithm 3. Markov Chain MS for Separation
Beginning at any connected configuration σ0 of n contracted particles, repeat:

1: Select particle P uniformly at random from among all particles; let ci be its color
and � its location.

2: Choose a neighboring location �′ and q ∈ (0, 1) uniformly at random.
3: if �′ is unoccupied then
4: P expands to occupy both � and �′.
5: if (i) � and �′ satisfy Property 1 or 2, (ii) |N(�)| < 5, and (iii) q <

λ|N(�′)|−|N(�)|κ|Ni(�
′)|−|Ni(�)| then

6: P contracts to �′.
7: else P contracts back to �.
8: else if �′ is occupied by particle Q of color cj then
9: P calculates |Ni(�)| and |Nj(�) \ {Q}| and sends these values to Q.

10: Q calculates |Ni(�
′) \ {P}| and |Nj(�

′)|.
11: if q < γ|Ni(�

′)\{P}|−|Ni(�)|+|Nj(�)\{Q}|−|Nj(�
′)| then Q swaps with P .

While MS has much in common with the Markov chain M for compres-
sion (Algorithm 1), it also has important differences. In particular, condition
(iii) in Step 5 of MS specifically addresses homogeneous edges and Steps 8–11
of MS implement the new swap move. Moreover, the translation of MS to a
fully distributed, local, asynchronous algorithm AS for separation does not fol-
low trivially from the translation given for compression. Although decoupling
a particle’s expansion and contraction in Steps 3–7 of MS can be done in a
similar manner to that of compression, locally synchronizing the swap move of
Steps 8–11 of MS requires additional mechanisms. Details can be found in [10].
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Results. Cannon et al. rigorously analyze the Markov chain MS and corre-
sponding distributed algorithm AS for k-color separation in [10]. As for com-
pression and shortcut bridging, MS is shown to maintain system connectivity
and remain hole-free throughout its execution, assuming it begins at a connected
and hole-free configuration σ0. Additionally, its stationary distribution πS over
ΩS (the set of all connected, hole-free configurations with the same number
of particles of each color as σ0) is shown to be πS(σ) = λe(σ)κa(σ)/Z, where
Z =

∑
τ∈ΩS

λe(τ)κa(τ) is the normalizing constant.
While these initial results follow from standard techniques, proving that MS

achieves separation requires significantly heavier machinery. Using a Markov
chain analysis technique known as bridging [37] (not to be confused with the
shortcut bridging behavior described in Sect. 5.2), it is shown that, among
two-color configurations with the same small external boundary, a configura-
tion sampled according to the stationary distribution πS of MS will be clus-
tered/separated as desired with all but exponentially small probability. We
present the corresponding theorem in its full formality below, but refer the reader
to [10] for a more detailed explanation.

Theorem 16. For any α > 1, β > 4α, and δ < 1/2, there exists κ∗ and n0

(which depend on α, β, and δ) such that for all κ > κ∗ and n > n0, for any
α-compressed boundary B, the probability that a configuration sampled according
to πS from among two-color configurations with n particles and boundary B is
not (β, δ)-clustered is at most ζ

√
n for some constant ζ < 1.

Simulations. In simulation, MS exhibits the expected separation behavior
for large λ and κ, as well as integration behaviors for other parameter values.
Figure 28 shows a simulation of MS on a two-color system with 50 particles of
each color using biases λ = 4 and κ = 4, the regime in which the system should
compress and individual color classes should separate. Much of the progress
towards a compressed and separated system occurs in the first million steps,
though the simulation runs for much longer. Figure 29 compares the resulting
configurations after running MS from the same initial configuration for the
same number of steps, varying only the values of λ and κ. Four distinct phases
appear: expanded-integrated, expanded-separated, compressed-integrated, and
compressed-separated. Thus, although Theorem 16 only proves separation for
two-color systems with small, fixed boundaries, MS appears to be capable of a
diverse set of dynamic behaviors in practice.

6 Hybrid Programmable Matter

In this section, we discuss a variant of the amoebot model known as hybrid pro-
grammable matter, in which a collection of active robots operate on a connected
system of passive tiles. The robots have similar capabilities to the particles of the
amoebot model, but the tiles—which are uniform and stateless—cannot move
themselves nor perform any computation. To change its (relative) position, a
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Fig. 28. A two-color heterogeneous particle system starting in an arbitrary state
after—from left to right—0; 50,000; 1,050,000; 17,050,000; and 68,250,000 steps of
MS with λ = 4 and κ = 4.

Fig. 29. A two-color heterogeneous particle system starting in the leftmost configu-
ration of Fig. 28 after 50 million steps of MS for various values of the parameters
λ and κ.

tile must be lifted and moved by a robot. Unlike in the amoebot model, sys-
tem connectivity is defined with respect to the structure of tiles (including tiles
being carried by robots) and must be maintained at all times. Since the set of
robots does not need to stay connected, we can abstract away from any specific
locomotion primitive such as the amoebot model’s expansions and contractions.

Although most of the algorithms presented in this section focus on systems
with only one robot, we present the complete model with respect to multiple
robots, as it is the basis of ongoing research. A system of hybrid programmable
matter is composed of k active robots operating on a set of n passive hexagonal
tiles. Each tile occupies exactly one node of the triangular lattice GΔ = (V,E)
(see, e.g., Fig. 30a). A configuration (T, P ) consists of a set T ⊂ V of all nodes
occupied by tiles, and the robots’ positions P ⊂ V . Each node can be occupied
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Fig. 30. (a) A connected set of tiles positioned on the triangular lattice GΔ. The black
dots indicate robot positions. (b) Possible movements of tiles u, v, and w. Tile w cannot
be moved anywhere without violating connectivity.

by at most one robot. We describe the relative positions of adjacent nodes by
the six compass directions N, NE, SE, S, SW, and NW (see Fig. 30a). As in the
amoebot model, we assume that the robots have a common chirality, but do not
share a coordinate system or global compass. For this chapter, we will present
the algorithms using a single robot as if the robot’s orientation was a global
one; for ease of presentation, we will also assume a common orientation for the
distributed algorithms utilizing multiple robots.

Each robot must occupy or be adjacent to a node occupied by a tile. Addi-
tionally, the subgraph of GΔ induced by T ∪ Pc must stay connected, where
Pc ⊆ P is the set of positions occupied by robots carrying a tile. In a scenario
where a tile structure swims in a liquid, for example, this restriction prevents
the robots or parts of the tile structure from floating apart. Some examples of
possible tile-moving steps are shown in Fig. 30b.

The robots act as finite automata and operate in rounds of Look-Compute-
Move cycles. In the Look phase, a robot observes the node it occupies, say p, and
the six nodes adjacent to p. For each of these nodes, the robot can determine if it
is occupied by a tile, if it is occupied by a robot, and, in the latter case, the state
of that robot. In the Compute phase, a robot potentially changes its state and
determines its next move according to the observed information. Furthermore,
it may change the state of any robots occupying adjacent nodes. In the Move
phase, a robot can either (i) lift a tile from p if p ∈ T , (ii) place a tile it is
carrying on p if p /∈ T , or (iii) move to an adjacent node while possibly carrying
a tile with it. Each robot can carry at most one tile.

A robot is additionally allowed to carry a constant number of pebbles, which
can be placed on tiles in order to mark them. More specifically, in the Look
phase, a robot can additionally observe whether any tile in its neighborhood is
marked by a pebble. In the Move phase, in addition to its other options, a robot
can either pick up a pebble (if its current tile is marked by a pebble) or place a
pebble (if the current tile is not already marked and the robot has a pebble at
its disposal). Pebbles are stateless and indistinguishable.
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We assume the standard Async model from distributed computing in which
robots are activated in an arbitrary sequence of activations, where a robot per-
forms exactly one Look-Compute-Move cycle before the next robot is activated.
A round is complete whenever each robot has been activated at least once.

7 Algorithms for Hybrid Programmable Matter

As the research in hybrid programmable matter is still in its infancy, only a few
results have been established so far. In this section, we focus on two problems:
shape formation and shape recognition. The former is concerned with transform-
ing the tile structure into some desired shape, while the latter considers the
problem of recognizing a given shape. As in the amoebot model, the main dif-
ficulty in designing algorithmic solutions for these problems lies in the robot’s
limited memory and visibility. Here, we investigate how these challenges can be
overcome for hybrid programmable matter.

7.1 Algorithmic Primitives

Before presenting the shape formation and recognition algorithms, we first out-
line some basic results and present a set of helpful primitives.

Exploring the Tile Structure. The hybrid programmable matter model essentially
reduces to a set of robots moving in a possibly dynamic but discrete environment.
A natural question to ask is whether the robots are able to gather information
about the environment. For example, one may ask whether a single robot is able
to explore the tile structure, i.e., visit each node at least once, and then halt. It
is known that, if the tile structure is assumed to be compact, a single robot can
fully traverse the structure by visiting the adjacent columns (i.e., consecutive
connected tiles from N to S ) of any column in clockwise order. An additional
pebble (or a second robot) suffices to let the algorithm terminate. However, when
considering arbitrary tile structures, even a single pebble does not suffice; this
follows from the observation that, when the tile structure is static, the hybrid
model reduces to Finite Automata in Labyrinths [33]. On the other hand, this
problem can be solved with two pebbles [5].

The exploration problem relates to many other practical problems: tile move-
ment safety, i.e., deciding whether the removal of a tile would disconnect the tile
set, hole detection, i.e., deciding whether a structure is simply connected, and
boundary detection, i.e., reaching the structure’s outer boundary. Similar to the
construction given by Gmyr et al. [31], it can be shown that none of these prob-
lems can be solved by a single robot without using a pebble. The same authors
show that while tile movement safety can be decided with a single pebble, the
best known solutions for hole and boundary detection require two pebbles. How-
ever, these results only hold if the robots are not allowed to move tiles. Once
this is allowed, these problems can be easily solved using approaches similar to
the algorithms we present in Sects. 7.2 and 7.3.
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Safe Tile Movements. Given the previous discussion on the difficulty of decid-
ing tile movement safety, it may seem that a complex, multi-robot strategy for
identifying tiles to be moved may be necessary for ensuring tile structure con-
nectivity. However, a different—and surprisingly simple—strategy to maintain
connectivity under tile movements is the following. If the tiles in the neighbor-
hood of a tile t satisfy local connectivity—i.e., they form a connected component
around t—t can be safely moved, as in Fig. 31a. If the neighboring tiles form two
connected components separated by a single empty node u in the neighborhood
of t, then t can be safely placed onto u without violating connectivity (Fig. 31b).
Otherwise, tile movement safety cannot be locally decided (Fig. 31c). Using these
local rules, a tile t that is safe to move can always be found by moving NW, SW,
or N (in that precedence) until reaching a tile that has no adjacent tile in any
of these directions. If t satisfies local connectivity, it can be lifted and moved
anywhere; otherwise, it must have adjacent tiles to the northeast and south but
no adjacent tile to the southeast, so t can be placed onto the empty node to the
southeast. By repeating this strategy, a robot is guaranteed to eventually find a
tile that is locally connected, and therefore safely removable.

Fig. 31. The black tile can (a) be safely removed, (b) only be moved to the adjacent
node marked by a dashed outline, or (c) not be moved at all. (d) The triangle to be
constructed by the shape formation algorithm in Sect. 7.2.

7.2 Shape Formation

Arguably one of the most interesting problems for hybrid programmable matter
is shape formation. Shape formation problems may consider different shapes to
form (e.g., a hexagon as in Sect. 4.1, or a sequentially constructible shape as in
Sect. 4.2), different optimization goals (e.g., runtime, or distance of moved tiles),
and side conditions (e.g., avoiding moving tiles beyond the initial structure’s
convex hull). In this section, we consider the problem of forming a triangle. We
first present an algorithm for triangle formation by a single robot, and then show
how it can be modified to handle a multi-robot setting. Finally, we present two
variants of the algorithm that aim at minimizing the algorithm’s running time
and only moving tiles within the initial structure’s convex hull, respectively.
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The section is based on the work of Gmyr et al. [31], where proofs and more
detailed descriptions of the algorithms can be found.

Problem Description. Consider a connected set of tiles and a single robot
that is initially placed on some tile. An algorithm solves the triangle formation
problem for hybrid programmable matter if it transforms the initial tile structure
into a triangle that is axis-aligned along the robot’s north-south axis and grows
from east to west (see Fig. 31d).

Algorithm. In a naive approach to shape formation, the robot could iteratively
search for a tile that can be removed without disconnecting the tile structure
and then move that tile to some position such that the shape under construction
is extended. Although a safely removable tile always exists, a robot may not be
able to find it as previously discussed. Instead, the safe tile movements discussed
in Sect. 7.1 are used to first transform the structure into a line (i.e., a sequence of
connected tiles from north to south). From this intermediate structure, a triangle
can easily be constructed in a second stage.

To construct a line, the robot first moves S as far as possible, i.e., as long as
there is a tile in direction S. Then, it alternates between a tile searching phase,
in which it moves N, NW, and SW (in that precedence) until there is no longer
a tile in any of these directions; and a tile moving phase, in which it lifts the tile,
moves one step SE, moves S until it reaches an empty node, and then places the
tile. The line is complete once the robot does not encounter any adjacent tiles
to the east or west in the tile searching phase. Figure 32 shows the first several
steps of this algorithm.

Fig. 32. First several steps of line formation. The black tiles are moved to the positions
marked by dashed outlines.

In the second stage, the triangle is built by repeatedly taking the northern-
most tile of the line, carrying it south to the vertex of the forming triangle, and
adding it to the westernmost layer of the triangle (see Fig. 33). More specifically,
the robot places the first tile NW of the triangle’s vertex. Every other tile of
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the triangle is then placed as follows. The robot first takes the northernmost
tile of the line and brings it to the vertex. It then walks NW and S (in that
precedence) until an empty node is reached. If there is a tile to the southeast,
the robot moves one step S and places the tile. Otherwise, the robot moves N
to the top of the layer, takes one step NW, and places the tile. In this manner,
the robot continues to extend the triangle tile by tile until the line only consists
of the triangle’s vertex.

Fig. 33. Snapshots of triangle formation. If the number of tiles is not triangular, the
final layer will not be completely filled.

Analysis. We now state the main results for the triangle formation algorithm.

Correctness. The two stages of the algorithm can be analyzed separately. The
correctness of the line formation stage follows from (i) the tile searching phase
always leads the robot to discover a safe tile to move, (ii) the tile moving phase
never disconnects the tile structure, and (iii) the algorithm terminates when a
line is formed. The correctness of the triangle formation stage is easily estab-
lished, resulting in the following theorem.

Theorem 17. The algorithm correctly transforms any connected tile structure
into a triangle.

Runtime. The two stages are again analyzed separately. In the first stage, each
tile is moved by at most n steps. This is due to the fact that the easternmost
column of the initial configuration is never moved, and since tiles are only moved
S and SE. As there are n tiles, the total number of rounds that account to moving
tiles is bounded by O(n2). Additionally, the robot has to move through the
structure in order to search for tiles. By assigning coordinates to the nodes and
using the coordinates of the robot as a potential function, it can be shown that
the total number of rounds that account to searching for tiles is also bounded
by O(n2). In the second stage, each tile is carried by a distance of at most n,
and moving to the next tile takes an additional n steps at most. Therefore, we
have the following theorem.
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Theorem 18. The algorithm constructs a triangle within O(n2) rounds.

It is not hard to see that Ω(n2) rounds are necessary to rearrange an arbi-
trary initial tile configuration into a triangle using a single robot. If the initial
configuration is a line, then a constant fraction of the tiles must be moved by a
distance linear in n and thus, in total, Ω(n2) move steps are necessary.

Distributed Algorithm. In order to extend the algorithm to construct a tri-
angle with multiple robots that work in coordination, several challenges must
be overcome. First, robots which are hanging off the edge of the tile structure
may be disconnected if another robot lifts the tile they were hanging on. Thus,
a robot checks for any hanging robots before lifting a tile. Second, the line for-
mation stage must be modified so that all robots eventually learn the line has
been formed. Finally, robots may obstruct one another’s progress when forming
the line and triangle, requiring them to either communicate or simply wait in
order to become unblocked.

Although correctness can be proven for this multi-robot approach, it is diffi-
cult to make any runtime guarantees. This is due to the fact that, when there are
many robots compared to the number of tiles, many robots are blocked by others
and must wait to make progress. However, simulation results for distributed line
formation [31] suggest a reasonable speedup for few robots in randomly gener-
ated initial configurations. In order to guarantee a speedup for multiple robots,
we believe different formation strategies that better utilize coordination between
the robots will be useful.

Alternative Intermediate Structures. Although a line can be constructed
efficiently, its linear diameter (i.e., the maximal length of a shortest path between
any two tiles) may make it an undesirable intermediate structure. In fact, if both
the initial diameter D and the diameter of the desired shape are small, moving
tiles by a linear distance seems to be an excessive effort. Therefore, we briefly
describe how to construct two alternate intermediate structures, namely a block
and a tree, noting their advantages and disadvantages.

Block Formation. In a block, all tiles except those farthest to the west have a
neighbor to the northwest. A block has only one westernmost column, and every
row begins with a tile from that column (see Fig. 34a).

As in the line formation algorithm, constructing a block alternates between
searching and moving phases. The robot first searches for a locally northwestern-
most tile by repeatedly moving NW, SW, or N (in that precedence). The robot
then lifts the tile, moves SE until it reaches an empty node, and places the tile
there. Although this simple algorithm correctly constructs a block, detecting
its completion requires a series of more complex tests performed alongside the
block’s construction.

Theorem 19. The algorithm constructs a block within O(nD) rounds and
ensures that no tile is ever moved by more than a distance D.
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Fig. 34. A (a) block, (b) overhang, and (c) tree.

Note that since tiles are exclusively moved SE, the resulting block has at
most D rows consisting of at most D tiles each, and therefore has diameter
O(D). Therefore, by using a block as an intermediate structure, a triangle can
be constructed in O(nD) rounds. When the initial configuration’s diameter is
low, i.e., D = O(

√
n), a triangle can thus be formed in O(n3/2) rounds.

Tree Formation. While the block-based approach focuses on quickly construct-
ing a suitable intermediate structure, it may also be desirable to minimize the
required work space. Both the line and block are, in many cases, built almost
completely outside the initial configuration’s convex hull (where we refer to the
convex hull of the corresponding set of hexagonal tiles in the Euclidean plane).
We briefly describe an algorithm that builds a tree in time O(n2) by exclusively
moving tiles inside the structure’s convex hull. A tree is a connected tile configu-
ration that does not contain an overhang, i.e., a set of vertically adjacent empty
nodes bounded by tiles to the north, west, and south. Examples of an overhang
and a tree can be found in Fig. 34b and c, respectively.

We describe the tree formation algorithm at a high level and refer the inter-
ested reader to [31] for a detailed description. Roughly speaking, the robot tra-
verses the columns of the tile structure from west to east until it encounters an
overhang. It then fills the overhang by retrieving tiles from western columns.
Here, the robot exploits the property that the western columns no longer have
overhangs, which allows it to find safely removable tiles efficiently and to bring
them back to the overhang. After filling the overhang, the algorithm recurs. Cor-
rectness of this approach is established by proving that the algorithm (i) fills an
overhang if one exists and (ii) terminates after a complete traversal. Together
with a detailed runtime analysis, we have the following theorem.

Theorem 20. The algorithm constructs a tree within O(n2) rounds without ever
placing a tile outside the initial structure’s convex hull.
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7.3 Shape Recognition

For many applications of programmable matter such as shape formation, trans-
formation, repair, or sealing, it may be useful or even necessary to first determine
whether the initial structure has a certain shape. However, as already argued,
the detection capabilities of a single robot are very limited: it is, for example, not
able to distinguish (i) a spiral from a hollow hexagon [31], or (ii) a parallelogram
whose longer side is, say, the square of its shorter side, from a larger parallel-
ogram [30]. Therefore, we begin by presenting a set of simple structures that
can be detected by a single robot. Afterwards, we present some results for the
recognition of parallelograms of certain side ratios with the help of pebbles. Note
that instead of using pebbles the robot may also cooperate with other robots,
each mimicking the behaviour of a pebble. The details of the results presented
in this chapter can be found in [30].

Problem Description. Consider a single robot that is placed on some tile
of an arbitrary initial tile configuration. The shape recognition problem tasks
the robot with deciding if the tile structure is of a certain shape, e.g., a line,
triangle, hexagon, or parallelogram. If the shape is a parallelogram, the robot
must additionally decide if its longer side has length � = f(h), for a given function
f(·), where h is the length of its shorter side. In this section, we ask whether
� = ah + b for some constants a and b.

Algorithm. All four types of shapes can be recognized using a similar strategy.
For example, to test if a given tile shape is a line, the robot first chooses a
direction in which there is a tile (say, w.l.o.g., N ), walks in that direction as far
as possible, and then traverses the structure in the opposite direction until no
longer possible. If it ever encounters a tile to the east or west of any traversed
tile, the structure is not a line.

To test if a given tile shape is a (filled) parallelogram axis-aligned along the
robot’s N and NE directions, the robot first moves to a locally southernmost
tile by moving S and SW as long as there is a tile in either of these directions. It
then traverses the shape column by column in a snake-like fashion (see Fig. 35a)
by repeating the following movements: move N as far as possible; move one
step NE ; move S as far as possible, and finally move one step NE. The above
procedure is repeated until a NE movement is impossible. The robot can decide
whether the structure is a parallelogram by performing a sequence of checks
alongside these movements. Any other axis-aligned parallelogram, and all other
aforementioned shapes, can be tested in a similar fashion.

Now consider the problem of determining whether � = ah + b. W.l.o.g.,
assume that the longer side of the parallelogram is in the northeast direction.
The longer side can be determined by moving to the northernmost tile of column
0 (where the columns are numbered from 0 to �− 1 from west to east), and then
moving SE as far as possible; if there is a tile to the southeast (resp., to the
south), then the longer side is in the northeastern (resp., southern) direction. If
there is no tile to the northeast or south, then the parallelogram is a rhombus.
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Fig. 35. (a) The snake-like traversal to detect a parallelogram. (b) The traversal to
decide whether � = ah + b (where in this case a = 2 and b = 3).

To decide whether � = ah + b, the robot first moves to the northernmost
tile of column 0. It then traverses the tile structure in two stages to verify the
ratio of the sides. In the first stage, the robot “measures” the distance ah along
the length of the parallelogram by moving in a zig-zag fashion as depicted in
Fig. 35b. In the second stage, the robot measures b. More specifically, in the first
stage, the robot repeats the following movements in a loop: (i) move SE as far
as possible, (ii) move N as far as possible, and (iii) move one step NE. After
having performed the complete sequence of SE movements a times, the robot
moves on to the second stage, in which it makes an additional b NE steps.

If the robot reaches the easternmost column before completing the above
procedure, or halts on a tile with a neighboring tile to the northeast, it terminates
with a negative result. Otherwise, it terminates with a positive result.

Analysis. We have the following theorem for shape recognition.

Theorem 21. A single robot can detect whether the structure is a line, a tri-
angle, a hexagon, or a parallelogram. Furthermore, it can detect whether the
structure is a parallelogram with � = ah + b for any constants a, b ∈ N.

However, the following theorem shows that a single robot by itself cannot
hope to verify any side ratios of a parallelogram that are not linear.

Theorem 22. A single robot without any pebbles cannot decide whether the tile
configuration is a parallelogram with � = f(h), where f(x) = ω(x).

Theorem 22 can be proven using the following observation: to correctly detect
the length of a parallelogram of length f(h), the robot must move from the
westernmost to the easternmost column (or vice versa) at least once (otherwise
it would be unaware of any elongation of the parallelogram). Therefore, if h is
chosen such that �(f(h) − 2)/h > k, where k is the given number of states of
the robot, there must be a row of the parallelogram in which the robot steps on
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more than k tiles of columns between column 1 and � − 2, which implies that
it visits at least two of these tiles in the same state. Therefore, there must be
a repetition in the traversal between column 0 and � − 1, and if the length of
the parallelogram is elongated by a multiple of the distance between these two
tiles, the robot will not recognize this change. This can be used to construct
an elongated parallelogram that is indistinguishable from the original one by a
single particle with no pebbles.

The Power of Pebbles. For the problem of recognizing parallelograms of
certain side ratios, equipping a robot with a set of pebbles tremendously increases
its capabilities. For example, whereas a single robot without any pebbles cannot
decide any superlinear function, by Theorem 22, a single pebble suffices to decide
any polynomial of constant degree and with constant coefficients. Furthermore,
two pebbles suffice to decide certain exponential functions. An overview of some
results for a robot with pebbles, which can be found in full detail in the work of
Gmyr et al. [30], is shown in Table 1.

Table 1. A summary of results for recognizing whether a given parallelogram has
height h and length � = f(h) given a certain number of pebbles.

Pebbles Possible Impossible Remarks

1 f(x) = anxn + . . . + a0 f(x) = ω(x6k+2) n, ai constant for all i;
k is the number of the
robot’s states

2 f(x) = 22
..
.2

x

︸ ︷︷ ︸

s+1

—
s constant; asymptotic
lower bound does not
exist

n fn(x) fn+1(x) For some function
family fn

8 Conclusion and Future Work

This chapter presented a comprehensive review of the distributed algorithms
for programmable matter defined under the amoebot model, and surveyed some
initial results in the budding new model of hybrid programmable matter. For
the amoebot model, we presented two distinct types of algorithms: those that
are (mostly) deterministic and heavily utilize state management and particle
communication, and those that are fully stochastic, keeping little to no state
and requiring very little communication between particles. There is an inherent
tradeoff between these two approaches. The former often yields algorithms that
provably terminate within a linear number of rounds or better, but are more
complex to design, more difficult to implement, and have single points of failure.
On the other hand, the stochastic algorithms are very difficult to analyze in
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terms of convergence times and are observed to be relatively slow in simulations;
however, they are inherently robust and are relatively easy to design.

Looking forward, there are several intriguing research directions for the amoe-
bot model. First, any physical implementation of programmable matter would
need to meaningfully address the challenge of power management as it expends
energy moving and computing. Extending the amoebot model to incorporate
energy costs for particle actions could lead to interesting modeling questions,
such as how individual particles obtain energy and share it among the collective.
Moreover, considering energy usage as an alternative to time complexity when
analyzing algorithm efficiency could yield new paradigms for algorithm design.
Second, developing a general framework for fault tolerant algorithms under the
amoebot model would be a huge step towards realizing programmable matter
systems that can handle unpredictable and potentially hazardous application
domains. Third, generalizing the amoebot model to three-dimensional space is
an exciting goal and a current research direction that may bring our theoretical
investigations closer to physically realizable systems.

This is also of interest for hybrid programmable matter; in particular, con-
sidering three-dimensional tiles that are hollow (e.g., skeletal polyhedra) would
allow active robots to move through the resulting structure, generalizing the
movement primitives used in two-dimensional space. One could additionally
imagine that the hollow tiles could fold into a condensed shape, enabling robots
to transport tiles through other tiles. Other directions for future work on hybrid
programmable matter include developing algorithms for multiple robots that
provably benefit from the power of coordination, considering settings where tiles
may break or need to be repaired, and settings where tiles may attach and detach
at random based on environmental changes outside of the robots’ control.
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