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Abstract

Pear breeding programs are mainly focused on
resistance to biotic stress and fruit quality
traits. In the last two decades, major efforts
have been undertaken toward identification of
major genes and quantitative trait loci (QTLs)
linked to both biotic resistance and fruit
quality traits, along with their associated
molecular markers in order to enable
marker-assisted selection and breeding. This
chapter will cover most relevant results
reported so far pertaining to markers and
QTLs linked to resistance to pathogens and
pests (such as fire blight, scab, brown and
black spot, pear psylla, pear sludge, and blister
mite), fruit quality (fruit size, firmness, skin
overcolor, russeting, fruit sweetness, and fruit
acidity), and other traits (such as tree habit,
chilling requirement, and harvest time). Fur-
thermore, summaries of findings of studies
conducted before and after the beginning of
the genomics era will be provided. In addition,
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all progenies and selected parental lines
capable of conferring traits of interest to their
progenies are described herein. The aim is to
provide breeders with tools to identify pear
ideotypes in which several traits can be
combined into a single individual. Further-
more, knowledge of genes and their related
functions should serve as the basis for pursu-
ing new plant breeding technologies, such as
cisgenesis or DNA editing. These unprece-
dented advances in genomics and breeding
strategies promise to enable dramatic
improvements in breeding efficiencies, even
for pears, that will also reduce time and costs
incurred in today’s traditional genetic
improvement efforts.

6.1 Introduction

Among the critical objectives of primary impor-
tance in pear breeding programs are resistance to
biotic stresses, ability to adapt to environmental
changes, and desirable fruit quality traits. In the
past 20 years, major efforts have been under-
taken to identify disease resistance genes and to
develop molecular tools that will support breed-
ing programs in overcoming these adversities. In
recent years, various studies have also aimed at
identifying genes responsible for fruit quality
traits whose activities result in high levels of
phenotypic  variability observed in pears.
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Collectively, these studies have revealed that in
most cases disease resistance traits are rather
complex; moreover, most fruit quality-related
traits are also highly polygenic, in which many
loci with minor phenotypic effects are involved
rather than a few major genes with major effects.

The synteny between the genomes of apple
and pear, as well as transferability of molecular
markers between these two species (Pierantoni
et al. 2004), has aided in the development of the
first genetic maps for pear, in which a number of
qualitative trait loci (QTL) linked mostly to dis-
ease and pest resistance traits have been identi-
fied (see Chap. 5 on linkage maps, and literature
cited in this chapter).

Earlier efforts in using molecular approaches
have proved to be very useful in studying
monogenic and polygenic traits related not only
to resistance to various pathogens, inciting fire
blight, scab, black and brown spot, and pests,
such as pear psylla, but also to fruit quality traits,
such as fruit color and size, firmness, as well as
acid and sugar contents in pear. As most of these
traits of pear are of polygenic nature, several
QTLs have been identified.

The first genetic maps for pear have been
mainly based on microsatellite or simple
sequence repeat (SSR) and amplified fragment
length polymorphism (AFLP) markers (Yama-
moto et al. 2002; Dondini et al. 2004; Pierantoni
et al. 2004). However, nowadays the availability
of a single nucleotide polymorphism (SNP) chip
for genotyping in pear (Montanari et al. 2013)
allows for the construction of new generations of
high-density maps, using classical segregating
populations, thereby dramatically promoting
discovery of numbers of new loci, while reduc-
ing time and effort involved. In turn, this has
greatly facilitated efforts to identify and localize
QTLs for disease/pest resistance and those for
fruit quality, as well as identify genes responsible
for these QTLs, and develop molecular markers
for assisted selection and breeding.

With the advent of the genomic revolution, in
particular the availability of whole genome
sequence approaches and technologies, complete
draft sequences for several genomes of various
fruit tree species have been published, including
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those for Pyrus x bretschneideri, Chinese white
pear (Wu et al. 2013b), and for P. communis,
European pear (Chagné et al. 2014). In particular,
availability and utilization of next-generation
sequencing (NGS) techniques, in most cases, for
analysis of whole transcriptomes, have greatly
facilitated identification of those genes, and their
related allelic variants, underlying expression of
agronomic traits, and in some cases, these have
also allowed development of markers for use in
marker-assisted selection/breeding (MAS/MAB).

Identifying major genes, their sequences, and
functions has allowed efforts to pursue new plant
breeding technologies (NPBT), such as the
development of cisgenic cultivars, as well as the
introduction of specific mutations using
CRISPR-Cas9 gene editing (Schaart et al. 2016).
Therefore, this chapter aims to provide a review
of genes and QTLs identified in Pyrus species
that will support future breeding efforts.

6.2 Major Genes and QTLs
for Resistance Against
Pathogens and Pests

Often, plant breeders have very ambitious pro-
grams aimed at developing disease- and
pest-resistant pear cultivars. Unfortunately, these
efforts have been limited in the past due to the
scarce knowledge of sources of genetic resistance
to various important diseases and pests. How-
ever, with recent advances in new genetic and
genomic technologies along with the availability
of worldwide germplasm, collections of Pyrus
have allowed for the accumulation of new
knowledge of genetic and genomic resources for
pear. Currently, a few monogenic sources, as
well as QTLs for disease and pest resistance,
have been identified. Furthermore, a number of
molecular markers have been developed that are
potentially useful for MAS.

6.2.1 Resistance to Fire Blight

Few pathogens are as devastating as the bacterial
pathogen Erwinia amylovora (Burrill) Winslow
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et al. that incites fire blight disease in pears, as
well as in apples. Despite the presence of quar-
antine measures in several countries, fire blight
disease continues to spread throughout the world
and contributing to severe yield losses.

The bacterium takes advantage of either nat-
ural openings (flowers) or wounds (caused by
hail or pruning cuts, among others) to infect
plants; moreover, insects can also serve as car-
riers. When the bacterium infects plant tissues, it
spreads along young shoots producing a charac-
teristic symptom known as ‘shepherd’s crook’
(Dondini and Sansavini 2012). Lack of com-
pletely effective control measures has accentu-
ated the importance of the availability of fire
blight-resistant cultivars with durable resistance
as a promising tool for an effective management
strategy for this disease (Dondini and Sansavini
2012; Montanari et al. 2016). Fire blight resis-
tance is known to be a polygenic trait (Le Lézec
et al. 1997). Several sources of fire blight resis-
tance are known to be available in the pear

Fig. 6.1 Schematic
representation of positions of
known QTLs for fire blight

resistance. Colors of QTL LG 2 LG 3
bars correspond to supporting ] M
literature |

LG 11 LG 12
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germplasm, such as ‘Old Home’, ‘Seckel’,
‘US309°, and ‘Michigan 437, P. ussuriensis,
and P. pyrifolia, among others, and these have
been used to develop and release a number of
resistant cultivars, such as ‘Harrow Sweet’ and
‘Moonglow’ (Dondini and Sansavini 2012;
Montanari et al. 2016). These plant materials
have been used to investigate the genetic basis of
resistance and to identify a number of QTLs
linked to resistance (Fig. 6.1).

Overall, three QTLs have been identified in
linkage groups (LGs) 2, 4, and 9 of the European
pear ‘Harrow Sweet’ (Dondini et al. 2004; Le
Roux et al. 2012), while two additional QTLs were
identified on LGs 9 and 11 of a resistant accession
of P. ussuriensis (Bokszczanin et al. 2009, 2011),
and a major QTL was found on LG 2 of ‘Moon-
glow’ (Montanari et al. 2016). Interestingly, some
QTLs have also been identified in susceptible
accessions, including those found on LGs 3 and 4
of ‘Doyenne du Comice’ (Bokszczanin et al. 2009,
2011), as well as those located on LGs 7,9, 10, 12,

QTLs for Fire blight resistance

LG4 LG7 LG9

LG 10
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and 15 of PEAR3, an interspecific hybrid between
P. x bretschneideri and P. communis (Montanari
et al. 2016). The high numbers of QTLs identified
in this latter study were attributed to the use of a
high-density map for QTL analysis, wherein an
apple and pear Infinium H I 9K SNP array was
used for genotyping (Montanari et al. 2013), as
well as for phenotyping conducted under different
environmental conditions, in both France and New
Zealand.

It is important to point out that the two major
QTLs identified in ‘Harrow Sweet’ and ‘Moon-
glow’  co-localize around SSR  marker
TsuENHO17, in spite of the fact that the two
LOD curves in the two cultivars do not perfectly
overlap. The same consideration can be taken
into account for QTLs identified on LG 4 of
‘Harrow Sweet’” and ‘Doyenne du Comice’,
around SSR marker CH02CO02, and those found
on LG 9 of ‘Harrow Sweet’ and P. ussuriensis in
a region around SSR marker CHO5CO7.

Unfortunately, monogenic sources for fire
blight resistance have not yet been identified.
However, there is a strong indication of the
presence of several major resistance genes in
specific regions of the pear genome that could be
transferred into new pear cultivars with durable
fire blight resistance.

Fig. 6.2 Schematic
representation of positions of

! LG 1 LG 2
major genes and QTLs for
pear scab resistance 1 1
Vnk =
Rvpl
Rvn2
Vn
LG 10

LG 17
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6.2.2 Resistance to Pear Scab

Scab is one of the most serious fungal diseases
affecting the European pear, and it is incited by
the fungal pathogens Venturia pirina Aderh. and
V. nashicola Tanaka et Yamamoto. Most com-
monly grown European pear cultivars are sus-
ceptible to scab, and unfortunately, there are no
commercial cultivars with high levels of resis-
tance to scab. Furthermore, the severity of dis-
ease symptoms is also influenced by
environmental conditions, as well as by the
variability of V. pirina biotypes (Chevalier et al.
2004). On the other hand, European pear culti-
vars seem to serve as sources of resistance to V.
nashicola (Abe et al. 2008; Cho et al. 2009;
Bouvier et al. 2012).

In contrast to fire blight, there are a few
monogenic sources for resistance to pear scab
that have been identified in both European and
Japanese pear cultivars (Fig. 6.2; Abe et al. 2008;
Cho et al. 2009; Bouvier et al. 2012). Using
interspecific pear hybrids, a single dominant
gene, designated as Vn, has been identified to
confer resistance to V. nashicola and proposed to
be present in European pears ‘La France’ and
‘Bartlett’ (Abe et al. 2008). Subsequently, two
additional V. mashicola resistance genes have

Major genes and QTLs for scab resistance

LG3 LG4 LG5 LG7
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been identified, Vnk, mapped on LG 1 of ‘Kin-
chaku’(Terakami et al. 2006), and Rvn2, puta-
tively derived from ‘Bartlett” (Cho et al. 2009).
This latter gene has been mapped to LG 2;
however, it is proposed that Vn and Rvn2 could
be indeed the same gene (Bouvier et al. 2012).
Furthermore, Bouvier et al. (2012) have reported
on the presence of yet another monogenic source
of resistance to V. pirina, the Rvpl gene, located
on LG 2 of the European pear ‘Navara’.

In addition to these monogenic sources of
resistance, several QTLs for pear scab resistance
have also been identified in recent years
(Fig. 6.2) (Pierantoni et al. 2007; Won et al.
2014; Perchepied et al. 2015). Among these, two
QTLs have been identified on LG 3 and LG 7 of
‘Abbé Fétel’ following analysis of a progeny
derived from a cross of ‘Abbé Fétel” x ‘Max
Red Bartlett’ (a ‘Bartlett’ red sport); however, no
associations have been identified on LG 2
(Pierantoni et al. 2007), wherein the previously
described Rvn2 gene derived from ‘Bartlett” was
mapped (Cho et al. 2009).

Progeny from the interspecific cross PEAR1
PEAR?2, derived from European (P. communis)
and Asian (P. pyrifolia and P. ussuriensis) pears,
was inoculated with three single-spore isolates of
V. pirina and used to develop a high-density
linkage map (Won et al. 2014). Using this link-
age map, QTLs were identified on LGs 7, 10, and
17 of PEAR1 and on LGs 2, 5, and 7 of PEAR2.
Furthermore, the QTL on LG 17 of PEAR1 was
found to be effective against all V. pirina isolates,
while the QTL on LG 7 of PEAR2 was effective
against two isolates of V. pirina (Won et al.
2014). In addition, the QTLs on LG 7 of PEAR1
and ‘Abbé Fétel’ seem to map in the same
position, while the QTLs of PEAR2 on LG 2
seem to co-localize with Rvpl and Rvn2 genes
(Cho et al. 2009; Bouvier et al. 2012). Interest-
ingly, this region has been deemed to be syntenic
to an apple scab resistance gene cluster on LG 2
(Bouvier et al. 2012).

Using yet another high-density linkage map,
Perchepied et al. (2015) have identified two new
QTLs for pear scab resistance against V. pirina in
P3480, a hybrid with resistance derived from
‘Wilder’, and in ‘Euras’. One locus, designated
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as qrvp-1, is mapped both as a major gene and as
a QTL on LG 1 (within the same region of the
Vnk gene for resistance against V. nashicola),
while the second locus, designated as qrvp-o4, is
mapped as a QTL on LG 4. Using the cross
‘Euras’ x P3480, it has been possible to pyra-
mid these two sources of scab resistance into
single genotypes (Perchepied et al. 2015). All
these findings are summarized in Fig. 6.2.

Overall, the availability of several known
sources of pear scab resistance has enabled pur-
suit of new breeding efforts aimed at selecting
new pear genotypes with durable resistance to
pear scab.

6.2.3 Resistance and Susceptibility
to Stemphylium
vesicarium
and to Alternaria
alternata

Among the various fungal threats to pears,
Alternaria alternata (Fries) Keissler and Stem-
phylium vesicarium (Wallr.) E. Simmons, causal
agents of black and brown spot, respectively, are
among the most widespread diseases. Interest-
ingly, genetic resistance to black spot has been
primarily investigated in Japanese pears, while
that of brown spot has been investigated more so
in European pears.

Early efforts have focused on inducing resis-
tance to A. alternata in black spot-susceptible
cultivars of apple and pear using gamma-ray
irradiation, and have suggested the presence of
susceptibility genes that are inactivated by
mutagenesis (Sanada et al. 1988; Saito et al.
2001). Subsequently, these susceptibility genes,
including Aki, Ana, and Ani, have been identified
in different Japanese pear cultivars and then
mapped to LG 11 of P. pyrifolia (Fig. 6.3).
These genes are proposed to be involved in
and/or responsible for observed necrotic activi-
ties of fungal toxins (Iketani et al. 2001; Ter-
akami et al. 2007, 2016). The locus for black spot
susceptibility on LG 11 of P. pyrifolia has also
been confirmed using a genome-wide association
study (GWAS) approach (Iwata et al. 2013b).
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Fig. 6.3 Schematic
representation of positions of
major genes and QTLs for
black and brown spot
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Major genes and QTLs for brown and black spot resistance
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On the other hand, most pear cultivars are
highly susceptible to brown spot disease, with
the important exception of ‘Bartlett’ and its
mutant sports, such as ‘Max Red Bartlett’
(Llorente and Montesinos 2006). Susceptibility
to S. vesicarium has been identified, wherein a
major QTL for susceptibility is located on LG 15
of ‘Abbé Fétel’, and the putative position of a
susceptibility gene, designated as Sv, is estimated
to be located at the lower end of the linkage
group (Fig. 6.3; Cappai et al. 2018).

Identification of genes controlling suscepti-
bility to black and brown spot diseases will aid in
pursuing new plant breeding technologies, such
as CRISPR-Cas9 systems, to efficiently develop
new pear genotypes with resistance to these
fungal pathogens using targeted gene inactiva-
tion approaches (Cappai et al. 2018).

6.2.4 Resistance to Pear Psylla
and Other Pests

Pear psylla (CacopsyllapyriL.)is a serious pest for
pear-growing areas due to the high susceptibility
of almost all marketed pear cultivars. Therefore,
breeding efforts have focused on identifying
sources of tolerance or resistance to pear psylla.
Pyrus fauriei, P. calleryana, and P. ussuriensis
have been identified as sources of psyllaresistance
(Dondini and Sansavini 2012). The genetic control
for resistance to pear psylla is reported to be
polygenic; however, only limited studies have

been conducted thus far (Bellini and Nin 2002).
Nevertheless, resistance to psylla has been intro-
duced from P. ussuriensis genotype ‘Illinois 65’
into a number of pear selections, including
‘NY10352°, ‘NY10353’, and ‘NY10355* (Westi-
gard et al. 1970; Harris 1973). The latter two
selections have been used to characterize resis-
tance responses following pear psylla attack. For
example, Pasqualini etal. (2006) have investigated
behavior of psyllids on pear selections derived
from ‘NY10353°, while Salvianti et al. (2008)
have analyzed differential gene expression in
‘NY10355’ following challenge with psyllids. In
addition, Civolani et al. (2013) have monitored the
feeding activity of adults and nymph psyllids on
‘NY10353°, and have concluded that resistance
factors are located in the phloem sap of this
selection.

A major QTL for psylla resistance is located on
LG 17 of pear selection ‘NY10353" (Fig. 6.4;
Dondini et al. 2015). This QTL, linked to the nym-
phal vitality, is first identified using gene scanning,
and then subsequently validated following analysis
of seedlings of a whole progeny derived from the
cross ‘NY10353° x ‘Doyenne du Comice’ (Don-
dini et al. 2015). In addition, this QTL is also con-
firmed to be present in ‘NY10355° following
analysis of a progeny of ‘NY10355” X ‘Angelys’,
wherein ‘Angelys’ is used as a psylla-susceptible
parent (Fig. 6.4; Perchepied et al. 2016). Further-
more, Perchepied et al. (2016) have identified four
QTLs on LG 1, wherein these QTLs on LG 1 have
strong epistatic effects on the QTL on LG 17.
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Fig. 6.4 Schematic QTLs for resistance to psylla and other pests
representation of the positions - —_—
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Yet, another source of resistance to pear psylla
has been identified, derived from the Chinese white
pear P. x bretschneideri. QTLs for resistance to
pear psylla have been identified on LGs 5 and 8 of
the hybrid ‘PEAR3’ [‘Xuehuali’ (P. x bretschnei-
deri) x ‘Max Red Bartlett’ (P. communis)], as well
as on LG 15 of “‘Moonglow’, the other parent of the
‘PEAR3’ x ‘Moonglow’ progeny used in this
study (Fig. 6.4; Montanari et al. 2015).

Very recently, QTLs for resistance to pear
slug (the larvae of the sawfly Caliroa cerasi L.)
and pear blister mite (Eriophyes pyri Pagen-
stecher) have been identified (Brewer et al. 2018)
using progeny derived from the cross
‘PremP003” x ‘Moonglow’.  Specifically, a
major QTL for resistance to pear blister mite was
located on LG 13 of ‘PremP003’. For pear slug,
three QTLs for oviposition were mapped on LG
7 and LG 9 of ‘Moonglow’ and on LG 10 of
‘PremP003°, while another QTL for leaf damage
was located on LG 9 of ‘Moonglow’, just below
the oviposition QTL (Fig. 6.4; Brewer et al.
2018).

All the above findings are critical in setting up
molecular protocols and MAS breeding strategies

Perchepied et al. 2016

aimed at selecting and developing new pear
cultivars with combined resistances to different
pathogens and pests.

6.3 Major Genes and QTLs for Fruit
Quality Traits

As most pear fruit quality traits are under highly
polygenic control, with rare exceptions such as
the red skin fruit color in European pear, this has
hampered identification of major genes. How-
ever, with the advent of functional genomics,
transcriptomics, and proteomics, many candidate
genes or gene families controlling important
biosynthetic pathways involved in pear fruit
quality have been and are currently under
investigation (Lu et al. 2011; Nashima et al.
2013; Li et al. 2014a, 2014b, 2014c, 2014d; Wu
et al. 2014b; Dai et al. 2015; Li et al. 2015; Xu
et al. 2015; Reuscher et al. 2016; Song et al.
2016; Wei et al. 2016; Zhang et al. 2016; Shen
et al. 2017). For further detailed review of
functional genomics studies, please refer to
Chap. 14.
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6.3.1 Fruit Color

Although most common pear cultivars have
either yellow or green fruit color, there is an
increasing interest and appreciation for cultivars
with red skin fruit color. In addition to increased
fruit appeal for consumers, red skin color is
deemed as a desirable nutritional trait due to the
antioxidant activity of anthocyanins, as these
flavonoid compounds determine red color
pigmentation.

Red skin fruit color in European pears is
considered to be a monogenic dominant trait, as
confirmed following analysis of seven segregat-
ing progenies having one of the following culti-
vars, ‘Max Red Bartlett’, ‘Cascade’, or
‘California’, as their red-skinned fruit parental
line (Dondini et al. 2008). Moreover, this trait is
mapped onto LG 4 in ‘Max Red Bartlett’, a
spontaneous red mutant of ‘Williams’, syn.
‘Bartlett’ (Fig. 6.5; Dondini et al. 2008).

In Rosaceae, as in most other plant taxa,
anthocyanin accumulation is regulated mainly at
the transcriptional level, with transcription factors
belonging to the Myb family playing a key role
(Lin-Wang et al. 2010). The pear transcription
factor from European pear (P. communis)
PcMYBI0, an ortholog of the apple MdMYB10
(Espley et al. 2007), is reported to be expressed at
much higher levels in ‘Max Red Bartlett’ than in

Fig. 6.5 Schematic
representation of positions of
major genes and QTLs for red LG 4 G5
skin color and for fruit _ -
russeting. QTLs refer mainly I

to Asian pears, whereas

positions of the Red locus
(from ‘Max Red Bartlett’) and
of the PcMYB10 gene for
European pear are

reported herein

Red —H—

PyMYB114 -1+

B \Wuetal 2014a

B Yamamoto et al. 2014
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‘Williams’, and it is positively correlated with
anthocyanin accumulation during fruit develop-
ment (Pierantoni et al. 2010). Furthermore,
methylation of the PcMYBI0 promoter and its
transcriptional silencing are associated with
regression to the green color fruit skin phenotype
of the same cultivar (Wang et al. 2013). Interest-
ingly, expression of PcMYBI0 in the interspecific
hybrid ‘Wujiuxiang’ (‘Ya Li’ x ‘Bartlett’) is
positively correlated with anthocyanin accumula-
tion in response to both developmental and
cold-temperature induction (Li et al. 2012). These
findings clearly point to the role of PcMYBI0 in
regulating the anthocyanin biosynthesis pathway
during fruit development. Furthermore, it is pro-
posed that PcMYBI10 acts along with a complex
containing two other proteins, bHLH (basic helix—
loop-helix 33) and WD40 (tryptophan-aspartic
acid repeat protein) transcription factors, that bind
to promoters of genes for key enzymes of antho-
cyanin biosynthesis, among which is the gene
encoding for UDP-glucose: flavonoid-3-O-
glucosyltransferase, UFGT (Pierantoni et al.
2010; Wang et al. 2013). This hypothesis is also
supported by expression analysis of other Euro-
pean pear cultivars (Lietal. 2012; Wu et al. 2013c;
Yang et al. 2013; 2015). Nevertheless, PcMYB10
ismapped on LG 9 of ‘Max Red Bartlett’ (Fig. 6.5;
Pierantoni et al. 2010). Therefore, it is independent
from the ‘Red’ locus, which maps on LG 4 of ‘Max

Major genes and QTLs for fruit skin color and russetting

LG 13 LG 16

LG9

LG8

(1] Russeting

PcMYB10 =
Red:  Dondini et al. 2008; Xue et al. 2018

PcMYB10: Pierantoni et al. 2010

[ - PyMYB114: Yao et al. 2017
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Red Bartlett’ (Dondini et al. 2008). However, the
gene underlying this phenotypic change is yetto be
identified, although it must indeed act somehow
upstream of PcMYBI0 in the regulation of gene
expression.

The red skin fruit color in Asian pears is less
frequently observed, and its genetic basis is
under investigation. In addition to overall lower
accumulation, patterns of anthocyanin synthesis
in P. pyrifolia, P. and
P. x bretschneideri are different from that
observed in P. communis, albeit it still correlates
with expression of common genes, mainly driven
by PcMYB10 orthologs (Feng et al. 2010; Zhang
et al. 2011b; Yu et al. 2012; Yang et al. 2014).
Expression analysis studies in Chinese pear fur-
ther support the presence of a common pathway
for anthocyanin regulation, involving two Myb
transcription factors, PbMYB10b and PbMYB9,
promoting expression of UFGT and of other
genes (Zhai et al. 2016). However, when the
genetic control of anthocyanin accumulation has
been investigated, discordant results have been
obtained. In particular, three QTLs are detected
for fruit skin red color in a progeny having
‘Bayuehong’, a hybrid between the European
pear ‘Clapp’s Favorite’ and the Chinese pear
‘Zaosuli’, as the red-skinned parent (Wu et al.
2014a). One of these QTLs is mapped onto LG 4,
but its position (4.8 cM) seems to be incompat-
ible with that of the ‘Red’ locus (64 cM) found in
‘Max Red Bartlett’ (Dondini et al. 2008). The
other two QTLs have been located on LGs 13
and 16. However, subsequent analysis of the
same population has led to the identification of a
new QTL located on the bottom of LG 5, and an
additional Myb transcription factor, PyMYB114,
has been identified within this QTL region (Yao
et al. 2017). Expression of the PyMYBII4 is
positively correlated with red skin coloration, as
genetic transformation experiments have con-
firmed ability of PyMYBI14 to induce antho-
cyanin biosynthesis, confirming that there are
transcription factors, other than the ortholog of
PcMYBI0, that are also involved in expression of
this trait.

USSUriensis,
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Xue et al. (2017) have adopted a modified
QTL-seq method to compare two DNA pools of
red-skinned and green-skinned pears derived
from a cross between P. pyrifolia cultivars
‘Mantianhong’ and ‘Hongxiangsu’, both having
red fruits. This analysis has highlighted a
582.5-kb region in chromosome 5 as the main
responsible region for red/green fruit color
development. This region is compatible with the
map position of PyMYBII4 and confirms its
position at the bottom of LG 5 as a region con-
trolling this trait in Asian pears. Moreover, unlike
in European pear, this study has suggested that
the green color is dominant over the red skin
color. Therefore, despite the presence of a com-
mon biosynthetic pathway for anthocyanin
biosynthesis along with a likely conserved role
for Myb transcription factors, the genetic control
of red skin fruit color appears to be different in
Asian and European pears. However, recent
analysis of the Chinese pear cultivar ‘Red
Zaosu’, a bud mutant of ‘Zaosuli’, with red fruits
and foliage, has revealed the dominance of red
over green phenotypes (Xue et al. 2018). Fur-
thermore, this trait is mapped to the corre-
sponding locus on LG 4 (Xue et al. 2018), at a
position that matches with that of the ‘Red’ locus
of ‘Max Red Bartlett’ (Dondini et al. 2008). On
the other hand, a QTL for fruit skin blush is
mapped on the bottom of LG 5 in a European
pear progeny of ‘Flamingo’ x ‘Abbé Fétel’
(Ntladi et al. 2018) and corresponding to the
main QTL previously characterized in Asian pear
(Yao et al. 2017). These findings reinforce the
hypothesis that the same genes regulate antho-
cyanin biosynthesis and accumulation in Euro-
pean and Asian pears. However, the different
genomic positions to which this trait has been
associated with reflect its complex genetic con-
trol, with many loci playing a role and with the
red phenotype arising independently from
mutations of various genes.

It should also be noted that an important
component of the skin color depends upon
suberification of peridermal cells (russeting),
conferring a brown color, that is unrelated to the
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presence of anthocyanins, which is more likely to
occur in Asian rather than in European pears. In
fact, a major QTL for this trait has been detected
near the top of LG 8 in Japanese pear ‘Akiakari’
(Fig. 6.5; Yamamoto et al. 2014).

6.3.2 Fruit Size

In pears, like in most cultivated fruit species, fruit
size is probably one of the traits that have
changed most dramatically during the domesti-
cation process. Although the actual fruit size
always depends on the interaction between
environmental and genetic factors, potential fruit
size is genetically determined and varies signifi-
cantly among different cultivars (Zhang et al.
2006).

Fruit size behaves as a typical quantitative
trait, with many loci contributing to its expres-
sion. QTL analyses aimed at identifying genomic
regions controlling fruit size have been per-
formed mainly in Asian pears (Fig. 6.6). Using
progeny of ‘Bayuehong’ and ‘Zaosuli’
(P. X bretschneideri), two QTLs for fruit size
were identified on LGs 17 and 13, with the
position of QTL 17 found to be compatible with
two additional QTLs for transverse and vertical
fruit diameter (Wu et al. 2014a). Although this
progeny was previously analyzed, resulting in
the identification of several QTLs (Zhang et al.

QTLs for fruit size

LG 3 LG 11

LG 13 LG 17

B Wuetal 2014a [ Yamamoto et al. 2014

Fig. 6.6 Schematic representation of positions of QTLs
for fruit size
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2013), unfortunately, the generated map was
based mainly on AFLP and SRAP markers.
Thus, these QTLs could not be reliably anchored
to reference maps of pear and apple and render-
ing it difficult to compare positions of these
QTLs with those detected in other studies. In yet
another study, QTLs for fruit size in Japanese
pears were found on LG 11 of ‘Akiakari’ and LG
3 of ‘Taihaku’ (Yamamoto et al. 2014), thus once
again highlighting how segregation of this trait in
different genetic backgrounds might depend on
different loci.

Given the complexity of this trait, it is not
easy to identify candidate genes for pursuing
gene expression studies. ‘Da Nanguoli’ is a
spontaneous large-fruited mutant cultivar of
‘Nanguoli’ (P. ussuriensis), and it has served as
a useful tool for studying the genetic mechanism
of fruit size. A comparative study of transcript
profiling between ‘Da Nanguoli’ and ‘Nanguoli’
has revealed the presence of a large pool of genes
whose expression is differentially modulated
during the development of large-sized and
small-sized fruits (Zhang et al. 2011a). While this
finding suggests the importance of the role of
transcription factors in regulating cellular pro-
cesses that determine fruit size, the causal
mutation has yet to be identified.

Analysis of cytological events involved in
fruit development has revealed that fruit size is
ultimately determined by the number and size of
mesocarp cells, and therefore may vary in
response to variations in both cell division and
expansion. Larger cell size is responsible for the
production of larger fruits in ‘Giant La France’, a
mutant of the European pear ‘La France’, and it
is found to be associated with variations in ploidy
of mesocarp cells rather than a result of a genetic
mutation (Isuzugawa et al. 2014). Interestingly,
polyploidization only impacts fruit flesh, leaving
other reproductive tissues diploid, thus suggest-
ing presence of factors determining occurrence
and persistence of DNA reduplication in recep-
tacles of ‘Giant La France’. Subsequently, two
candidate genes, PcWEEI, a cell cycle-
associated protein kinase, and PcCCS52A, an
anaphase-promoting complex activator, have
been isolated, based on homology with tomato
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genes known to play similar roles, and are found
to be up-regulated in receptacles of ‘Giant La
France’ (Hanada et al. 2015). This has suggested
that differences in expression levels of these two
genes may induce DNA reduplication and con-
sequent increase in size of mesocarp cells
(Hanada et al. 2015).

When comparing common diploid pear culti-
vars, variations in fruit size are normally asso-
ciated with variations in cell number rather than
in cell size (Zhang et al. 2006). Homologs of
fw2.2, a gene controlling fruit size by regulating
cell division in tomato (Frary et al. 2000), are
proposed to be involved in the same process in
different plant species including fruit trees. In
cherry trees, some of these fw2.2 homologs are
co-localized with known QTLs for fruit size (De
Franceschi et al. 2013). Two genes belonging to
this family, PbFWLI and PbFWL2, have been
characterized in Chinese pear and are found to be
expressed at higher levels in small-fruited culti-
vars, consistent with the negative regulatory role
of fw2.2 in cell division (Tian et al. 2016).
Therefore, these two genes are good candidates
for control of fruit size in pear. However, addi-
tional studies are required to study functionality
of these genes.

6.3.3 Fruit Sensory Qualities

Fruit taste is determined by many different bio-
chemical factors, such as accumulation of sugars
and acids, flesh firmness and texture, and emis-
sion of volatile compounds (aroma). However,
limited information is available regarding genetic
regions controlling these traits in segregating
pear progenies, although QTLs for soluble solid
content, fruit acidity, and firmness have been
identified (Fig. 6.7).

Soluble solid content of pear fruits is essen-
tially determined by sugars and organic acids.
The amounts and ratios between these different
compounds are critical factors in determining
fruit taste and therefore deemed as key compo-
nents of fruit quality. As sugars and organic acids
are primary metabolites, many factors can impact
their synthesis and accumulation in fruits. Not
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surprisingly, QTLs for soluble solid content have
been detected in different genomic regions of
P. pyrifolia, LGs 4 and 8 (Yamamoto et al.
2014), P. x bretschneideri, LGs 5, 10, and 14
(Wu et al. 2014a), and an interspecific hybrid
population of Asian and European pear, LGs 9
and 10 (Saeed et al. 2014). Unfortunately, it is
not possible to determine whether or not the two
QTLs for soluble solid content in LG 10 (Wu
et al. 2014a; Saeed et al. 2014) overlap, although
they seem to be located in the same chromosomic
region. A recent analysis conducted on a Japa-
nese pear population derived from the cross
‘Akizuki® x ‘373-55°, besides a QTL for total
sugar content on LG 11, has detected two QTLs
associated with the conversion of sucrose to
fructose and glucose on LGs 1 and 7 (Nishio
et al. 2018). Moreover, two acid invertase
(AIV) genes are found in close proximity of both
QTLs, thus serving as interesting candidates for
control of sugar conversion in pear fruits. On the
other hand, a single QTL for fruit acidity, located
on LG 14, is reported (Yamamoto et al. 2014). It
is noteworthy to point out that the organic acid
content can also be significantly influenced by
maternal inheritance, suggesting that non-nuclear
genes may play important roles as well (Liu et al.
2016).

Fruit firmness is determined by cell wall
components, which are degraded by several
hydrolases during ripening and leading to fruit
softening. QTLs for this trait have been identified
on LG 4 (Yamamoto et al. 2014) and LG 3
(Saeed et al. 2014). The latter linkage group, LG
3, has effects on other ripening-related traits,
such as fruit friction discoloration, polyphenol
oxidase (PPO) activity, and polyphenol content.
Furthermore, QTLs associated with PPO activity
have been identified on LGs 2 and 3, as well as a
number of QTLs associated with contents of 17
polyphenolic compounds have also been identi-
fied (Saeed et al. 2014).

In addition to the different enzymes that cat-
alyze cell wall degradation, expansins are pro-
posed to play a role in fruit softening as they
disrupt hydrogen bonds between cellulose
microfibrils and matrix polysaccharides, thereby
rendering substrates available to hydrolases. An
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expansin gene, PcExp7, from P. communis, has
been mapped on LG 1 in a region in which a
firmness QTL has been detected in apple (Costa
et al. 2008). The presence of a member of the
gene family coding for 1-aminocyclopropane-
1-carboxylate synthase, which plays a role in
determining harvest time, may also be involved in
pear fruit softening (Iwata et al. 2013b; Yamamoto
et al. 2014). However, further studies are required
to ascertain whether or not such a candidate gene
co-localizes with QTLs for firmness in pear.

6.4 Major Genes and QTLs for Other
Traits

Most efforts for developing molecular markers
for marker-assisted selection (MAS) have
focused on traits for resistance to pathogens and
pests, as well as on fruit quality traits. However,
there are limited efforts in developing molecular
markers linked to other traits.

Using a progeny derived from a cross between
‘Spadona’ (with a low chilling requirement) and
‘Harrow Sweet’ (with a high chilling require-
ment) along with a comparative analogy to an
apple linkage map, QTLs for bud break (follow-
ing release from dormancy) have been found on
LG 8, corresponding to SSR NAUpy98n, and LG
9, between SSRs NH029 and CHO1f03b (Gabay
et al. 2017). The same population was analyzed
more in depth by developing a high-resolution

1 55: Soluble Solid content ¥ 5C: Sucrose Conversion

SNP map, using a genotyping by sequencing
(GBS) approach, detecting three additional QTLs
on LGs 5, 13, and 15 (Gabay et al. 2018), and
confirming the presence of QTLs on LGs 8 and 9.
The latter was further confirmed in a different
progeny of European pear (Ntladi et al. 2018). For
further information on bud break, please look up
Chap. 12 of this volume.

Using a genome-wide association study
(GWAS) analysis of 76 cultivars of P. pyrifolia,
QTLs for harvest time have been mapped on LGs 3
(corresponding to SSR marker BGA35) and 15
(identified by the CAPS marker PPACS2)
(Fig. 6.8; Iwata et al. 2013b). Incidentally, the
marker PPACS2 identifies the position of a member
of the 1-aminocyclopropane-1-carboxylate syn-
thase gene family (Iwata et al. 2013b; Yamamoto
et al. 2014). In addition, both QTLs have been
identified by analyzing a segregating progeny
derived from the cross ‘Akiakari’ x ‘Taihaku’
(Yamamoto et al. 2014). Furthermore, both mark-
ers BGA35 and PPACS2 have been validated by
analyzing segregation data in six F1 progenies of
P. pyrifolia, demonstrating that alleles of 263 bp of
PPACS2and 136 bp of BGA35 are inlinkage to the
early ripening fruit trait (Nishio et al. 2016).
This QTL, together with another QTL found on LG
15, has been identified in the parent “Taihaku’.
Interestingly, results of findings on LG 3 of pear
have also been confirmed in a subsequent GWAS in
apple in which a major association for ripening time
is found on chromosome 3 (Urrestarazu et al. 2017).
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representation of posi-
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Although other traits such as plant vigor have
been phenotyped in 76 cultivars of P. pyrifolia,
no associations could be found (Iwata et al.
2013b); whereas, associations for plant vigor and
early flowering have been detected in pear root-
stock breeding studies (Knédbel et al. 2015,
2017). By genotyping a very large progeny
derived from the cross ‘Old Home’ x ‘Louise
Bonne de Jersey’, wherein all seedlings are used
for grafting the pear scion cultivar ‘Doyenne du
Comice’, high-density linkage maps have been
developed. Using these linkage maps, QTLs have
been identified on the top of LG 5 of ‘Old Home’
for tree architecture, tree vigor, and various pre-
cocity traits, including number of branches per
tree, tree height, number of inflorescences,
number of spurs per tree, trunk cross-sectional
areas (TCA) of the rootstock and of the scion
around the graft zone, and root suckering (Kné-
bel et al. 2015). Furthermore, except for a num-
ber of inflorescences, additional QTLs have been
identified for all other mentioned traits on the top
of LG 6 of ‘Old Home’ and in the middle of LG
6 of ‘Louise Bonne de Jersey’ (Knibel et al.
2015). Other minor QTLs, for trunk
cross-sectional areas of the scion and of the
rootstock, are found on LGs 7 and 16 of ‘Louise
Bonne de Jersey’, respectively (Fig. 6.9; Knébel
et al. 2015). In a different study on apples, a
major QTL, controlling most of the dwarfing
effects conferred to a scion, has been identified
on LG 5 of the apple rootstock ‘M9’ (Foster et al.
2015). It is proposed that the SSR marker
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flanking the Dw! locus in apple (Hi01c04) also
segregates for dwarfing and precocity in pear
with an allele of 116 bp in size associated with
these traits (Kndbel et al. 2015). The synteny
between the apple and pear genomes is very
important in identifying candidate genes for
controlling various traits, including these repor-
ted herein.

Using the same progeny described above,
QTLs controlling the development of adventi-
tious roots on hardwood cuttings have been
identified on LGs 7, 8, 10, and 11 of ‘Old Home’
and on LGs 7, 15, and 16 of ‘Louise Bonne de
Jersey’. In addition, a single QTL associated with
callus and root development has been found on
LG 4 of ‘Louise Bonne de Jersey’ (Knébel et al.
2017). Furthermore, favorable alleles of markers
in QTL peaks of LG 7 (58527788659 in ‘Old
Home’ and ss527789100 in ‘Louise Bonne de
Jersey’) have demonstrated male and female
additive and dominance effects for all years
(Knébel et al. 2017). Therefore, the availability
of molecular markers will support breeding
efforts aimed at selecting new pear rootstocks
that are easily propagated along with other
desirable traits such as vigor and early flowering
of known dwarfing rootstocks available for
apples.

Finally, an important trait for consideration
pertains to the S-RNase-based gametophytic
self-incompatibility (GSI), previously reviewed
by De Franceschi et al. (2012) and Wu et al.
(2013a). In addition to determining cross-
compatibility of cultivars, GSI may also influ-
ence transmission of genes in proximity of the
S locus. The S-RNase gene has been mapped on
the bottom of LG 17 in both Japanese and
European pears (Yamamoto et al. 2002) and
consistent with the position of the S locus in
apple (Maliepaard et al. 1998). Subsequently,
identification and mapping of S-locus F-box
brother genes, the male counterpart of S-RNase
(Sassa et al. 2007), confirmed their linkage to S-
RNase (De Franceschi et al. 2011). A detailed
information and review of self-incompatibility of
pear are provided in Chap. 10 of this volume.
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Fig. 6.9 Schematic
representation of positions of 164 IG5
QTLs for vigor, flowering,
and root development in pear
rootstocks
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6.5 Conclusions

Identification of major genes and QTLs linked to
disease and pest resistance, fruit quality, and
other tree-related traits in Pyrus will certainly
contribute to advances in MAS and in other
applications offered by the tools of genomics. In
particular, identification of QTLs will also assist
in identification of additional genes, and possibly
of related allelic variants, underlying observed
phenotypic effects. These findings will in turn
enable design of new additional markers for use
in MAS. The release of the genome sequences
for the Asian and European pears, along with the
availability of high-throughput genotyping tech-
niques, which allows for simultaneous analysis
of thousands of markers, will offer opportunities
for more targeted and efficient selection of
desirable genotypes in a pear breeding
population.

The availability of tools for large-scale geno-
typing will also assist in pursuing GWAS
approaches of pear germplasm collections, and
enhance efforts in identifying genes and alleles
responsible for traits of interest. Unfortunately,
the time required for phenotyping remains the
greatest bottleneck in pursuing these approaches.
Nevertheless, genes controlling various traits can
be identified via transcriptomic approaches that
next-generation sequencing technologies have

I vigor
I Root success

LG 11 LG 15 LG 16

JRoot success

I Root success

| Rootstock TCA!

I Root success

made possible. For more information on func-
tional genomics studies in pear, please read
Chap. 14.

For those genes with strong effects on phe-
notypic variability, such as transcription factors,
and for major QTLs, molecular marker selection
offers serious advantages. Unfortunately, a
number of QTLs with minor effects on a phe-
notype have been presented in this current
review. For these cases, the utility of linked
markers for MAS is likely to be less effective in
supporting pear breeding programs. This is par-
ticularly true in instances wherein the cost for
genotyping seedlings must be justified when
compared to conventional phenotypic selection
methods. Nevertheless, novel approaches such as
genomic selection are becoming more feasible
and offer promise in making significant great
advances in this arena (Iwata et al. 2013a; Min-
amikawa et al. 2018).

Finally, it is important to conclude that once
genes and their related functions become known,
a critical consideration must be taken into
account. Whether, we should choose to use new
plant breeding technologies, such as cisgenesis or
DNA editing, in inserting mutations and altering
gene functions (Schaart et al. 2016), and how
best to exploit breeding advantages offered via
use of modified genes, either gene mutations or
gene editing, with significant reduction in time
and costs in developing and releasing improved
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pear genotypes with enhanced and desirable
traits compared to earlier traditional pear breed-
ing efforts.
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