
Analysis and Evaluation of Conformance
Preserving Graph Transformation Rules

Fazle Rabbi(B), Yngve Lamo, and Lars Michael Kristensen

Western Norway University of Applied Sciences, Bergen, Norway
{Fazle.Rabbi,Yngve.Lamo,Lars.Michael.Kristensen}@hvl.no

Abstract. Model transformation is a formal approach for modelling the
behavior of software systems. Over the past few years, graph based mod-
eling of software systems has gained significant attention as there are
numerous techniques available to formally specify constraints and the
dynamics of systems. Graph transformation rules are used to model the
behavior of software systems which is the core element in model driven
software engineering. However, in general, the application of graph trans-
formation rules cannot guarantee the correctness of model transforma-
tions. In this paper, we propose to use a graph transformation technique
that guarantees the correctness of transformations by checking required
and forbidden graph patterns. The proposed technique is based on the
application of conformance preserving transformation rules which guar-
antee that produced output models conform to their underlying meta-
model. To determine if a rule is conformance preserving we present a new
algorithm for checking conformance preserving rules with respect to a set
of graph constraints. We also present a formal proof of the soundness of
the algorithm. We apply our technique to homogeneous model trans-
formations where input and output models must conform to the same
meta-model. The algorithm relies on locality of a constrained graph to
reduce the computational cost.

Keywords: Model transformation · Graph constraint ·
Metamodelling · Formal correctness of model transformations ·
Domain-specific modeling languages

1 Introduction

Model transformation is the process of transforming a model into another model
and plays a key role in model driven software development. A transformation
rule describes how a target model can be automatically generated from a source
model. Often these models need to conform to the syntax and semantics of a
metamodel. There are various applications of model transformations such as
model migration, model synthesis, code generation, model simulation, model
execution, and model repair. Formal development of transformation rules is an
important concern since precisely defined rules can be used to verify that the

c© Springer Nature Switzerland AG 2019
S. Hammoudi et al. (Eds.): MODELSWARD 2018, CCIS 991, pp. 284–307, 2019.
https://doi.org/10.1007/978-3-030-11030-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11030-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-11030-7_13


Analysis and Evaluation of Conformance Preserving Graph 285

automated transformations are correct [24]. Graph transformation is a formal
technique to represent model transformation rules enabling reasoning and study-
ing properties of transformation systems. Depending on the source and target
language, a transformation can be homogeneous or heterogeneous. In homoge-
neous model transformation, input models and output models belong to the
same language. Heterogeneous model transformation transforms models from
one language to another. In general, the result of the application of a model
transformation rule may lead to inconsistency, i.e., the target model violating
constraints defined in its metamodel. Therefore, the application of a model trans-
formation rule requires conformance checking of the target model which is time
consuming. To address this problem, it is of interest to develop techniques to
reduce the complexity of conformance checking. Since the application of a con-
formance preserving transformation rule retains the conformance of a model, it
eliminates the need for conformance checking of target models. This approach
is particularly suited for the development of systems where models produced in
every step of a model transformation are supposed to be valid i.e., conforming
with respect to a set of constraints.

Current verification approaches for model transformation rules include the-
orem proving and model checking. The authors in [7] proposed a relational and
logical approach to graph grammars that allow the analysis of asynchronous
distributed systems with infinite state spaces. They used relational structures
to define graph grammars and first-order logic to model graph transformations.
They provided a semi-automated process to prove structural properties of reach-
able graphs using theorem proving. Another theorem proving technique was pre-
sented in [19] based on translating graph grammars into Event-B specifications
preserving its semantics and then using theorem provers available for Event-B
for analysis. Automatic verification of model transformation is gaining popular-
ity and several methods have already been proposed. Baresi and Spoletini [4]
proposed a methodology to analyze graph transformation systems by means of
Alloy. Given an initial graph of a system, the method can be used to check the
configurations that can be obtained by applying a sequence of transformation
rules. In [25], Wang et al. investigated the use of the Alloy analyzer for analyz-
ing model transformation systems. A bounded verification approach was used
to check if a model transformation system is correct with respect to confor-
mance by translating a metamodel specification into a relational logic specifica-
tion in Alloy. The authors in [23] presented a formal semantics of the ATL model
transformation language using rewriting logic and Maude. Through the formal-
ization it was possible to simulate and verify model transformations. Although
model checking is an elegant analysis method, it requires building the complete
state space. This can easily lead to the state explosion problem thereby limit-
ing its practical applicability. Hackel and Wagner [14] presented an approach
that ensures the conformance of graph transformations by automatically adding
application conditions to rules. Application conditions are derived by analyzing
the constraints individually which can produce an unnecessary large number of
application conditions.



286 F. Rabbi et al.

In our approach, we use characteristics of model transformation rules and
present an algorithm to check if a transformation rule is conformance preserving
with respect to a given set of constraints. We focus on homogeneous model
transformation. We do not automatically modify a rule, but provide an algorithm
for checking the conformance preserving property of a transformation rule that
can be used to provide feedback to the modeler. The approach is illustrated by
an example from the healthcare domain.

This paper is an extended version of a previously published article, Rabbi,
F., Kristensen, L.M, and Lamo, Y.: Static Analysis of Conformance Preserving
Model Transformation Rules, in the proceedings of the 6th International Con-
ference on Model-Driven Engineering and Software Development. This extended
version of the paper includes a report on the proof of concept implementation
of the proposed algorithm and also includes an evaluation of the proposed algo-
rithm. The rest of the paper is organized as follows. Section 2 provides back-
ground on the theoretical foundation of our approach. Section 3 presents the
concept of conformance preserving rules. Section 4 presents our algorithm for
checking conformance preserving rules. Section 5 presents the evaluation of the
proposed technique. Section 6 concludes the paper with a discussion of related
and future work. We assume that the reader is familiar with graph transforma-
tion systems [10].

2 Modelling in DPF

We use Diagrammatic Logic [8] and the Diagram Predicate Framework (DPF)
[20] for the formal development of metamodel specifications. In DPF, a model
is represented by a diagrammatic specification S = (S,CS : Σ) consisting of
an underlying graph S together with a set of atomic constraints CS specified
by a predicate signature Σ. A predicate signature consists of a collection of
predicates, each having a name, an arity (shape graph, αΣ(p)), visualization
and semantic interpretation (see Table 1). The underlying graph and arity of
predicates specify type graphs with a data algebra as in [10]. A predicate is
used to specify a constraint in a model by means of graph homomorphisms.
DPF provides a general mechanism of diagrammatic modeling as it supports
various kinds of graph structures. DPF provides a formalization of multi level
meta-modelling by defining the conformance relation between models at adjacent
levels of a meta-modelling hierarchy. DPF has a potentially unbounded number
of metalevels.

There are two kinds of conformance: typed by and satisfaction of constraints.
Figure 1 (top) shows a DPF metamodel specification S of a Multiple Sclerosis
Clinic. Multiple sclerosis (MS) is a progressive disabling disease of the brain and
the spinal cord (central nervous system). In this disease, the immune system
attacks the protective sheath (myelin) that covers nerve fibers and causes com-
munication problems between the brain and the rest of the body. Eventually,
the disease can cause the nerves themselves to deteriorate or become perma-
nently damaged. The signs and symptoms of this disease vary. Treatments can



Analysis and Evaluation of Conformance Preserving Graph 287

Table 1. Predicates of a signature, Σ [18].

help reduce the MS symptoms [3]. While some people with severe MS may loose
mobility, others experience long periods of remission. It is therefore essential
to monitor the progression of the symptoms of MS patients. In the DPF meta-
model specification, we model an MS-application that aims to serve the following
purposes:

– Patients can be registered to the MS clinic and can be assigned to medical
doctors;

– Medical doctors can have appointment slots;
– Patients can be allocated to appointment slots;
– Patients with appointments to the MS clinic may participate in a survey

where they can enter information about their symptoms;
– The doctor assigned to a patient can give an order to perform MRI for

patients.

The metamodel specification is constrained by a set of predicates from the
signature Σ. Constraints are added into the specifications by graph homomor-
phisms from the arity (shape graph) of the predicates to the model elements.
Below is a list of constraints specified in S:

– C1. A patient must have exactly one birthdate (specified by <mult(1,1)>)
– C2. An appointment time-slot allocated to a patient must belong to that
patient’s assigned doctor (specified by <composite>)

– C3. An order for MRI can only be given to a patient by that patient’s assigned
doctor (specified by <composite>)

– C4. An appointment time-slot cannot be allocated to more than one patient
(specified by <injective>)



288 F. Rabbi et al.

– C5. Only registered patients who have appointments are allowed to participate
in survey (specified by <pre-condition>).

To be a valid instance of a DPF metamodel specification, requires that the
instance is typed by the shape graph of the metamodel specification and satisfies
all the constraints specified in the metamodel. Formally, this means that there
is a graph homomorphism (ιI : I → S) from the graph I to the graph of S,
where S is the underlying graph of S. We use a compact notation (I, ιI) for
representing a DPF instance.

2.1 Coupled Graph Constraints

The semantics of a DPF predicate can be specified in various ways. In this paper,
we use graph constraints to specify the semantics of the predicates. Typically
a graph constraint N

n←− L
u−→ R consist of three graphs: left L, right R and

an application condition N (positive or negative application condition), and
two injective graph homomorphisms n and u where the graphs are typed by
the underlying graph of the model [10]. We propose to use graph constraints
which conforms to two syntactic formats ∀Lp → ∃Rp and ∀Lp → ¬∃Rp where
the graphs are typed by the shape graph of the predicates. Therefore we use
graph constraints of the following forms where superscript p indicates that the
constraint is giving the semantics of a DPF predicate, p. The graph constraints
are called coupled graph constraints as they link to predicates.

– ∀(Lp : αΣ(p)) → ∃(Rp : αΣ(p)), read as “for all matches of the condition
pattern Lp (typed by αΣ(p)) in a model, there exists a match of the required
pattern Rp (typed by αΣ(p)) in the model”

– ∀(Lp : αΣ(p)) → ¬∃(Rp : αΣ(p)), read as “for all matches of the condition
pattern Lp (typed by αΣ(p)) in a model, there does not exist a match of the
forbidden pattern Rp (typed by αΣ(p)) in the model”.

Fig. 1. Metamodel specification S of an Orthopedic department.



Analysis and Evaluation of Conformance Preserving Graph 289

Here Lp and Rp are typed graphs over the arity of the predicate p and
there exists an inclusion graph morphism mc : Lp ↪→ Rp. A coupled graph
constraint gc may have a post-condition PC(gc) imposed on Rp. Table 2 shows
the semantics of predicates from signature Σ in terms of graph constraints. The
semantic of the <mult(1,1)> predicate is given by two graph constraints where
the patterns are typed by αΣ(<mult(1,1)>), i.e., the arity of the <mult(1,1)>
predicate.

Let gc ∈ GC(p) be a graph constraint linked to a predicate p. A match (δ,mL)
of the condition pattern (Lp : αΣ(p)) for the graph constraint gc in a model (I, ιI)
is given by an atomic constraint δ : αΣ(p) → S and an injective morphism mL

such that constraint δ and the injective graph homomorphism mL together with
the typing morphisms ιc : (Lp ∪ Rp) → αΣ(p) and ιI : I → S constitute a
commuting square: ιc; δ = mL; ιI as shown in Fig. 2(a). If gc has a required
pattern (Rp : αΣ(p)), then for any match (δ,mL) of the condition pattern in
(I, ιI), a match (δ,mR) of the required pattern must exist, which is given by the
commuting diagram in Fig. 2(b). If gc has a forbidden pattern (Rp : αΣ(p)), then
for any match (δ,mL) of the condition pattern in (I, ιI), a match (δ,mR) of the
forbidden pattern must not exist such that it constitutes a commuting diagram
as shown in Fig. 2(c). A valid model is typed by its metamodel specification and
conforms to the constraints specified in its metamodel specification. Formally, it
states that a valid model (I, ιI) satisfies all the constraints defined in S, which
is written as I |= S.

Table 2. A set of graph constraints giving semantics to the predicates in Σ [18].



290 F. Rabbi et al.

Fig. 2. (a) Match of a condition pattern; (b) match of a required pattern; (c) satisfac-
tion of a forbidden pattern [18].

3 Conformance Preserving Rules

DPF provides functionality to specify graph-based model transformations [21].
We use the standard double-pushout (DPO) [10] approach for defining transfor-
mation rules. A model transformation rule (r : N

n←− L
ml←−− K

mr−−→ R) has a
matching pattern (L), a gluing graph (K), a replacement pattern (R) and an
optional negative application condition, NAC(n : L → N) where L, K, R, N
are typed by S and ml, mr, n are injective graph morphisms. We use a transfor-
mation approach where transformation rules have a set of negative application
conditions as proposed by Lambers et al. in [16].

Given a model (I, ιI), a model transformation I
r,m
==⇒

I∗ via a transformation rule r : L ← K → R with a set
of negative application conditions NACr and a match
m : L → I consists of the double pushout as shown in
the diagram to the right. Here, the injective morphism
m satisfies each NAC in NACr, written m |= NACr. When a rule is applied,
some elements from the source model are deleted and some elements are added
to the target model. The rest of the source model remain unchanged in the target
model. A rule is applied as long as it satisfies its negative application conditions.
Negative application conditions are typically used in graph transformation to
prohibit an infinite number of rule applications. Figure 3 shows a model trans-
formation rule for allocating resources (i.e., appointment) to patients in a model
of the metamodel specification from Fig. 1. The transformation rule r1 encodes
the following instructions:

– Allocate an appointment appt to patient pt1 if appt belongs to the doctor
whom pt1 is assigned to

The typing information of a modelling element in r1 appears after a colon
(:). The green color (thick arrow) is used to represent elements that the rule is
going to produce. The rule r1 has one negative application condition to prohibit
an infinite number of rule applications.

One problem with this version of the transformation rule is that it does not
guarantee the conformance of constraint C4 (an appointment time-slot cannot
be allocated to more than one patient). The application of the rule may allocate
an appointment time-slot to more than one patients. Figure 4 illustrates how



Analysis and Evaluation of Conformance Preserving Graph 291

Fig. 3. Transformation rule r1 for individual resource allocation of patients. (Color
figure online)

we check the satisfaction of the atomic constraint (<injective>, δ1) over model
(I∗, ιI∗) by its graph constraint. Even if the rule is applied on a valid model,
it does not guarantee that the result will be a valid model conforming to the
metamodel specification. The portion of the model that is not conforming to the
constraints are highlighted in red (thick arrow) in the figure.

The rule r1 can be enhanced so that while matching with a model it makes
sure that the result will be a valid model. Since the appointment allocation
in a valid model of S can possibly violate atomic constraints C2 and C4, we
enhance rule r1 with an additional negative application condition to make sure
that when applied on a valid model of S, the output does not violate any of
the above mentioned constraints. Figure 5 shows rule r2 which is conformance
preserving and therefore the application of rule r2 will not require any further
conformance checking.

Fig. 4. Application of rule r1 over a valid model (I, ιI) and the checking for the satis-
faction of a graph constraint (adapted from [18]). (Color figure online)



292 F. Rabbi et al.

Fig. 5. Conformance preserving transformation rule (r2) for individual resource allo-
cation of patients.

A formal definition of conformance preserving transformation rule is given
below:

Definition 1 (Conformance Preserving Rule). Given a metamodel speci-
fication S = (S,CS : Σ). A transformation rule r is conformance preserving
w.r.t a set of atomic constraints from CS if the application of r on any valid
model (I, ιI) |= S always results in a valid model of S.

4 Analysis for Checking Conformance Preserving Rules

In this section, we present an algorithm to automatically check if a transfor-
mation rule is conformance preserving w.r.t a set of constraints specified in a
metamodel. To develop an efficient method for determining if a rule is confor-
mance preserving or not, we need to analyze the possibility of the rule to make
changes that may violate a given constraint. If a rule makes changes to only
the unconstrained portion of a graph, then we can claim that the rule will pre-
serve conformance by its application. If a rule makes changes to the constrained
portion of a graph, it is possible that the rule will preserve conformance by its
application. We present an algorithm with the aid of a set of patterns to make
sure that consistency preserving rules exhibit certain desirable structures.

4.1 A Sufficient Condition for Conformance

Here we present three conditions to determine if a transformation rule
r : L ← K → R can make changes to the constrained portion of a graph
i.e., if r can possibly affect an atomic constraint (p, δ):

– Cond 1: r creates an element x of type X where X is constrained by a
predicate p and X is mapped by the condition pattern of a graph constraint
gc ∈ GC(p) via the typing morphism of Lp and the atomic constraint (p, δ),
i.e., X ∈ ιc; δ(Lp);



Analysis and Evaluation of Conformance Preserving Graph 293

– Cond 2: r deletes an element y of type Y where Y is constrained by a
predicate p and Y is mapped by the elements from (required pattern, Rp \
condition pattern, Lp) via the typing of (Rp ∪Lp) and the atomic constraint
(p, δ), i.e., Y ∈ ιc; δ(Rp \ Lp);

– Cond 3: r creates an element x of type X where X is constrained by a
predicate p and X is mapped by the elements from (forbidden pattern, Rp \
condition pattern, Lp) via the typing of (Rp ∪ Lp) and the atomic constraint
(p, δ), i.e., X ∈ ιc; δ(Rp \ Lp);

Intuitively, Cond 1, 2, and 3 checks if a rule can create a new match with
the condition pattern, delete an existing match of a required pattern, or create
a new match with the forbidden pattern of a graph constraint, respectively.

Lemma 1. Given a metamodel specification S with a set of constraints CS.
A transformation rule r is conformance preserving if it does not satisfy any of
Cond 1–3.

Proof. Let (I, ι) be a valid instance of S and the application of r on (I, ι) pro-
duces an instance (I∗, ι∗). There are three ways (I∗, ι∗) may violate a constraint
from CS: (i) r produces a new match with the condition pattern Lp of a graph
constraint where the corresponding required pattern is missing; (ii) r deletes an
existing match of a required pattern; (iii) r produces a new match with the for-
bidden pattern. However, it can be seen that if r does not satisfy any of Cond
1–3, then it does not affect any constraint from CS because of the following
reasons:

– r does not satisfy Cond 1; therefore, it does not produce any new match
with the condition pattern Lp of a graph constraint.

Fig. 6. Informal description of the algorithm illustrating the intuition.



294 F. Rabbi et al.

– r does not satisfy Cond 2; therefore, it does not delete any existing match
of a required pattern.

– r does not satisfy Cond 3; therefore, it does not produce any new match
with the forbidden patterns.

4.2 Desired Patterns for Conformance

It is possible for a rule r to be conformance preserving even if it satisfies some
conditions from Cond 1–3 and complies with desired patterns described below.
Figure 6 illustrates a diagram representing the intuition of the proposed method
where P.C1#1, P.C1#2, ... indicates a pattern number.

Fig. 7. Patterns for a conformance preserving rule r that satisfies Cond 1.

Patterns for Cond 1 : In our approach, if a rule satisfies Cond 1 for a graph con-
straint gc, it has to comply with the patterns specified in Fig. 7. Patterns specified
in the figure makes sure that if the creation of an element produces a new match
with the condition pattern of a graph constraint, the required pattern must exist
(P.C1#1); otherwise a new match with the condition pattern is not produced
by the application of rule r (P.C1#2). Note that in the graph patterns, solid
arrows are representing injective graph homomorphisms. In pattern (P.C1#2),
we check for the non existence of condition pattern by the following condition:
N ∈ NACr s.t. N \ (n(L) ∪ mLN (Lp)) = ∅, y ∈ mLN (Lp) s.t. y /∈ L and y /∈ R.

Figure 8 shows an example of a conformance preserving rule, r. The rule deletes
two edges 1 : A → 2 : B and 3 : C → 2 : B and creates three edges 1 : A → 4 : D,
4 : D → 2 : B, and 3 : C → 2 : B. The application of rule r over a valid instance is
shown in the figure. The output of the transformation is a DPF model instance that
produces a new match with the condition pattern, Lp. Since the transformation



Analysis and Evaluation of Conformance Preserving Graph 295

also produces a corresponding match with the required pattern, Rp, the output
model instance is a valid DPF model. To help the reader understanding about the
portion of the model being affected by the graph constraint, we show the graph
constraint with the typing information using the composition ι; δ in the left bottom
part of Fig. 8.

Fig. 8. Example of a conformance preserving transformation rule that complies with
P.C1#1.

Given the same model and graph constraint as in Fig. 8, an example of a
transformation rule r′ that is not conformance preserving is shown in Fig. 9.
The application of rule r′ produces two matches with the condition pattern Lp

but it produces one corresponding match with the required pattern Rp. Hence
it is not satisfying P.C1#1 and therefore r′ is not conformance preserving.

Fig. 9. A transformation rule that does not comply with (P.C1#1).



296 F. Rabbi et al.

Fig. 10. A conformance preserving rule that complies with (P.C1#2).

Fig. 11. A transformation rule that does not comply with (P.C1#2).

Figure 10 shows an example of a conformance preserving transformation rule
r2 that complies with (P.C1#2). Even though rule r2 creates and edge that
partially matches with the condition pattern Lp i.e., a : A → d : D matches with
1 : A → 4 : D, the rule r2 has a NAC to ensure that the application of rule r2
does not produce a complete match with Lp. Therefore we can see that rule r2
is conformance preserving as it complies with (P.C1#2).

Figure 11 shows an example of a transformation rule r′
2 that does not comply

with (P.C1#2). In this rule X ∈ NACr′
2

but X \ (n(LHS) ∪ mLN (Lp)) 
= ∅ as
specified in (P.C1#2) (see Fig. 7). Because of the additional elements (7 : G,
1 : A → 7 : G) in X, the rule does not comply with (P.C1#2).



Analysis and Evaluation of Conformance Preserving Graph 297

Patterns for Cond 2 . The patterns presented in Fig. 12 makes sure two of the
following:

– (P.C2#1): If the deletion of an element removes an existing match of a
required pattern of a graph constraint, then another match of a required
pattern is produced;

– (P.C2#2): Deletion of an element that partially matches with a required
pattern, does not remove an existing match of a required pattern.

For checking the non existence of a required pattern in (P.C2#2), it is sufficient
to check for the non existence of the corresponding condition pattern. If the
condition pattern does not exist, we can safely remove portion of a model that
partially matches with the requird pattern. Note that in pattern (P.C2#2),
we check for the non existence of condition pattern by the following condition:
N ∈ NACr s.t. N \ (n(L) ∪ mLN (Lp)) = ∅, z ∈ mLN (Lp) s.t. z /∈ L and z /∈ R.
In the rest of the section we provide some examples of transformation rules that
comply with the patterns described above.

Fig. 12. Patterns for a conformance preserving rule that satisfies Cond 2.

Figure 13 shows an example of a conformance preserving rule that complies with
(P.C2#1). The rule removes an existing match with a required pattern by
deleting elements 2 : B and 3 : C → 2 : B but produces another match of the
required pattern by creating elements 4 : B and 3 : C → 4 : B.



298 F. Rabbi et al.

Fig. 13. Example of a conformance preserving rule that complies with (P.C2#1).

Figure 14 shows an example of a conformance preserving transformation rule
that complies with (P.C2#2). The rule deletes an element 1 : A → 6 : F that
partially matches with the required pattern, but the rule has a NAC that ensures
the non existence of the condition pattern of the graph constraint shown at the
bottom of Fig. 14.

Fig. 14. Example of a conformance preserving rule that complies with (P.C2#2).

Fig. 15. Pattern for a conformance preserving rule r that satisfies Cond 3.



Analysis and Evaluation of Conformance Preserving Graph 299

Fig. 16. Example of a conformance preserving transformation rule that complies with
P.C3#1.

Patterns for Cond 3 : The pattern P.C3#1 presented in Fig. 15 makes sure
that the creation of an element does not produce a match with the forbidden
pattern of a graph constraint. We check for the non existence of the forbidden
pattern by the following condition: N ∈ NACr s.t. N \ (n(L) ∪ mRN (Rp)) =
∅, y ∈ mRN (Rp) s.t. y /∈ R.

Figure 16 shows an example of a conformance preserving transformation rule
that creates an element 1 : A → 4 : D which partially matches with the forbid-
den pattern of a graph constraint. However, the rule makes sure that a complete
match with the forbidden pattern does not exist by means of a negative appli-
cation condition. Therefore, it complies with P.C3#1.

4.3 Algorithm for Checking Conformance Preserving Rule

Algorithm 1 provides a method for checking the conformance preserving property
of a rule w.r.t a set of graph constraints.

Theorem 1 (Soundness of Algorithm 1). Let S = (S,CS : Σ) be a meta-
model specification and r (typed by S) a transformation rule which is determined
to be conformance preserving w.r.t CS by Algorithm 1. If r is applied on a valid
model (I, ιI) |= S then the result (I∗, ιI∗) will be a valid model of S.

Proof. Let GC be a set of constraints giving semantics to the set of constraints
CS. To prove the theorem by contradiction, it is sufficient to show that there
exists a gc ∈ GC such that (I∗, ιI∗) does not satisfy gc. There are three ways in
which it is possible for (I∗, ιI∗) to violate the graph constraint:

i gc is of the form ∀(Lp : αΣ(p)) → ∃(Rp : αΣ(p)) and a new match (δ,mLI∗)
is produced from (Lp : αΣ(p)) to I∗ but a corresponding match from (Rp :
αΣ(p)) to I∗ is missing.

ii gc is of the form ∀(Lp : αΣ(p)) → ∃(Rp : αΣ(p)) and a required match from
(Rp : αΣ(p)) to I is removed but a corresponding match from (Lp : αΣ(p))
to I still remains in I∗.



300 F. Rabbi et al.

iii gc is of the form ∀(Lp : αΣ(p)) → ¬∃(Rp : αΣ(p)) and a new match is
produced from the forbidden pattern (Rp : αΣ(p)) to I∗.

Case (i). r satisfies Cond 1 since a new match for the condition pattern is
produced. According to Algorithm 1, r must comply with either P.C1#1 or
P.C1#2. The pattern in P.C1#2 has a NAC that prevents the existence of
pattern that matches with (Lp : αΣ(p)). Since a new match with (Lp : αΣ(p))
is produced in (i), r must comply with P.C1#1. Therefore, when the rule is
applied, a corresponding match (δ,mRI∗) from (Rp : αΣ(p)) to I∗ for the match
(δ,mLI∗) must exist. Therefore (I∗, ιI∗) satisfies the graph constraint gc. Hence
we reach to a contradiction.

Case (ii). This case is explained by considering three matches:

– (δ,mLI) : (Lp : αΣ(p)) → (I : S),
– (δ,mRI) : (Rp : αΣ(p)) → (I : S),
– (δ,mLI∗) : (Lp : αΣ(p)) → (I∗ : S).

where mc;mRI = mLI , mLI(Lp) = mLI∗(Lp) and there does not exist a corre-
sponding match (δ,mRI∗) : (Rp : αΣ(p)) → (I∗ : S) such that mc;mRI∗ = mLI∗ .
Therefore ∃ y ∈ (mRI(Rp) \ mLI(Lp)) from which we obtain Y ∈ ιc; δ(Rp \ Lp)
where Y is the type of y. Hence, r satisfies Cond 2 and according to Algorithm 1,
r must comply with either P.C2#1 or P.C2#2. Pattern in P.C2#2 has a NAC
that prevents the existence of pattern that matches with (Lp : αΣ(p)). Since in

Algorithm 1 . Check for conformance preserving rule.

Require: a coupled transformation rule r, a set of graph constraints GC
C := R \ L of r //set of elements created by r
D := L \ R of r //set of elements deleted by r
for each x in C do

for each gc ∈ GC do
if gc has a required pattern Rp

and r satisfies Cond 1 for x and gc then
if r does not comply with P.C1#1 or P.C1#2 for x then

return ‘‘may not be conformance preserving’’
if gc has a forbidden pattern Rp

and r satisfies Cond 3 for x and gc then
if r does not comply with P.C3#1 for x then

return ‘‘may not be conformance preserving’’

for each y in D do
for each gc ∈ GC do

if gc has a required pattern Rp

and r satisfies Cond 2 for y and gc then
if r does not comply with P.C2#1 or P.C2#2
for y then

return ‘‘may not be conformance preserving’’

return ‘‘conformance preserving’’



Analysis and Evaluation of Conformance Preserving Graph 301

case (ii), the matching with the condition pattern remains, the rule r must com-
ply with P.C2#1. However, pattern P.C2#1 makes sure that a corresponding
match for the required pattern is produced which contradicts with the second case.

Case (iii). r satisfies Cond 3 since a new match for the forbidden pattern is
produced. According to Algorithm 1, r must comply with P.C3#1. Pattern
P.C3#1 has a NAC that prevents the existence of pattern that matches with
(Rp : αΣ(p)). Therefore we reach to a contradiction.

In all three cases we have shown that if r is applied on a valid model I |= S
then the result (I∗, ιI∗) cannot violate the constraints specified in S.

Complexity of Algorithm 1. The complexity of the algorithm depends on two
factors: (i) the size of graph patterns of the graph constraints and (ii) the size
of graph patterns in transformation rules. The size of a graph pattern refers to
the number of vertices of the graph. The performance of the algorithm depends
on injective matching. Finding an injective match from an n-vertex graph (G)
to a m-vertex graph (H) has complexity 2O(n log m) as finding all possible ver-
tex subsets of H of size at most n is mO(n) and for each subset we need to
try all possible mappings from G. The algorithm avoids processing the models
of a system, therefore it is expected to analyze the transformation rules fast
because in a typical situation, the size of graph patterns in graph constraints
and transformation rules would be very small compared to the size of models.

Theorem 2. Given a metamodel specification S = (S,CS : Σ) and a set of
conformance preserving rules R = {r1, ...rn} w.r.t a set of atomic constraints
CS. If the rules are applied on a valid model of S a finite number of times, the
result will be a valid model of S.

Proof. The theorem can be proved by induction over the number of application
of the transformation rules as the results produced in each step are valid models
of S.

5 Evaluation

We have implemented a proof of concept (PoC) tool [1] for graph transformation,
conformance checking, and detecting conformance preserving graph transforma-
tion rules. The tool takes a metamodel specification and model transformation
rules as input in JSON format and provides a visualization of models and rules
using a graph visualization software called ‘Graphviz’ [11]. The algorithm pre-
sented in Sect. 4 has been implemented in the web-based PoC tool. Figure 17
shows a screenshot of the PoC tool where the user can visualize the model,
transformation rules and can select predicates from a drop-down list. The map-
pings of the predicates to the model (i.e., constraint) are visualized by color
matching. For example, the node ’W’ from the predicate is mapped to the node
’A’ in the model which is represented by the same color. The user can check for



302 F. Rabbi et al.

the conformance from the web-based tool. Note that the example presented in
Fig. 17 is the same as presented in Fig. 8.

To evaluate the performance of our algorithm for checking conformance we
performed experiments with models and model transformation rules of various
size. Table 3 shows the results of the experiments. The table shows the size of

Fig. 17. Screenshot from the PoC tool.



Analysis and Evaluation of Conformance Preserving Graph 303

the models and transformation rules being considered for the evaluation, and
the time taken to detect conformance. Below is a description of the columns of
the table:

– Index No: Experiment number;
– vertex + edges: Number of vertex and edges in the model;
– LHS: Total number of elements in the LHS of the rule;
– X ∩ RHS: Number of common elements in X and RHS of the rule;
– X \ (LHS ∪ RHS): Number of unique elements in X of the rule;
– LHS \ K: Number of elements deleted by the rule;
– RHS \ K: Number of elements created by the rule;
– time (in ms): Time required to determine the conformance of the rule.

In experiment number 1–7, we consider the models, graph constraints and
transformation rules from Figs. 8, 9, 10, 11, 13, 14, and 16, respectively. To
evaluate the performance of the algorithm, we used a Java program to produce
models and model transformation rules of increasing size. The Java program
takes meta information such as the number of nodes and edges in the model,
and number of nodes and edges in the LHS, and RHS of the transformation
rule. The program also takes input specifying the percentage of nodes and edges
that will be removed and produced by the rule. From the meta information,
the program produces models and transformation rules in JSON format which

Table 3. Time required for conformance checking in different settings.

Index Size of model Size of rule Computation

No vertex+ edges LHS X ∩ RHS X \ (LHS ∪ RHS) LHS \ K RHS \ K time (in ms)

1 4 + 5 = 9 6 0 0 2 4 12

2 4 + 5 = 9 6 0 0 2 6 14

3 6 + 8 = 14 6 4 2 4 5 11

4 7 + 9 = 16 6 4 4 4 5 12

5 4 + 4 = 8 6 0 0 3 4 12

6 6 + 7 = 13 8 2 2 6 3 11

7 6 + 7 = 13 6 4 2 4 5 12

8 4 + 7 = 11 3 4 2 1 5 11

9 8 + 12 = 20 3 4 2 2 6 12

10 12 + 18 = 30 3 4 2 2 6 11

11 10 + 200 = 210 3 4 3 2 6 11

12 50 + 200 = 250 3 4 3 2 6 12

13 4 + 8 = 12 23 18 16 16 23 23

14 4 + 8 = 12 23 29 16 4 23 31

15 4 + 8 = 12 23 49 36 4 43 145

16 4 + 8 = 12 43 63 36 10 43 250

17 15 + 38 = 53 47 71 36 6 43 61563



304 F. Rabbi et al.

is compatible with the PoC tool. Experiment number 8–12 are performed over
transformation rules with a small number of elements and models with increas-
ing size; and experiment number 13–16 are performed over models with small
number of elements and transformation rules with increasing size. These exper-
iments (i.e., 8–16) are performed with one graph constraint using the predicate
<composite>. The results indicate that the algorithm takes longer time to detect
if we have transformation rule with larger size. Experiment number 17 has been
performed with a graph constraint using a predicate with 23 elements in the con-
dition pattern and 26 elements in the required pattern. The longer time (approx.
one minute) required for this experiment is expected as the algorithm need to
check for various injective matches from the condition and required pattern of
the constraint to the transformation rule.

6 Related Work and Conclusion

In this paper, we have presented a static analysis technique for checking the
conformance property of transformation rules. The static analysis technique
processes the semantics of graph constraints and analyzes if a transformation
rule exhibits certain structure in order to be conformance preserving rule with
respect to a set of constraints. We presented the idea in the context of DPF
which provides a formal framework for metamodelling. We performed perfor-
mance evaluation tests suggesting that the approach is promising for analyzing
model transformation rules.

There has been a great deal of research related to the formal analysis of
termination, confluence, functional behaviour of model transformation systems
[6,13,15,17] and tool support [2,22]. One important difference between our app-
roach and existing approaches is that our approach rest on diagrammatic logic.
Our approach is closely related to the work of Heckel and Wagner [14]. They
ensured consistency of graph transformations by automatically adding applica-
tion conditions to single pushout (SPO) rules. They propose a technique for
deriving application conditions from SPO rules of the form L

r−→ R and con-
straints. Constraints are specified in the form P

c−→ Q where P and Q are directed
graphs and c is an injective morphism. In their approach, a post-condition (i.e.,
an application condition over the right hand side of a rule) is constructed as a set
of all right-sided constraints by generating all possible gluings of the premise P
and the graph R. The post-condition is then used to construct a left-sided con-
straint (i.e., an application condition over L) by inverse decomposition of pushout
diagrams. One issue with this approach is that a post-condition induced by a
constraint may include a large number of right-sided constraints. A simple tech-
nique was presented in [14] to reduce the number of right-sided constraints from
a post-condition. The idea of the reduction is based on the removal of right-sided



Analysis and Evaluation of Conformance Preserving Graph 305

constraints that is obtained from a gluing R
s−→ S

p←− P where the image of P in
S does not depend on elements generated by rule r i.e., p(P ) ∩ s(R − r(L)) = ∅.
This reduction technique however cannot handle situations where a rule deletes
an element that matches with the required pattern Q of a constraint c : P → Q
(see Cond 2 of Fig. 6). To illustrate this issue, consider an input graph G with
c;mq = mp where mp : P → G and mq : Q → G are two injective morphism.
Now consider a rule L

r−→ R where p(P ) ∩ s(R − r(L)) = ∅ which means that
the reduction will disregard the constraint c and no left-sided constraint will be
constructed. But it is possible for the rule to remove an element x from mq(Q)
which results in an output not conforming to its metamodel.

Later on, this approach for ensuring consistency was adapted for a double
pushout approaches and generalized for high level transformation systems [10].
The approach was further enhanced for nested constraints in [12]. Although the
approach presented in [10,12] can deal with situations where a rule add/delete
elements, the construction of application conditions do not include any reduc-
tion technique. This results in a large number of application conditions. In our
approach, we rely on the modeller to develop transformation rules and automati-
cally check conformance using our algorithm. The proposed algorithm filters out
trivially conformance preserving rules as described in Sect. 4.1 before checking
the existence of the desired patterns in Sect. 4.2 for optimal performance.

Becker et al. [5] developed a verification technique for structural safety prop-
erty of a transformation system which is very similar to our approach in the
sense that their technique is based on checking the locality of transformation
rules against a set of safety properties. In their approach, the authors checked
if the application of transformation rules can violate any safety property given
as a set of forbidden graph patterns. Dyck and Giese [9] improved the technique
for the automated verification of structural invariants for graph transformation
systems by extending the expressive power. They provided support for nega-
tive application conditions in constraints and support for application conditions
in transformation rules. However, both techniques only check against forbidden
patterns while in our approach we support checking the conformance property
of transformation rules against both required and forbidden patterns. Making
sure that the application of a transformation rule does not violate any required
pattern is more complex than checking against a set of forbidden patterns as it
involves more scenarios to cover for the checking algorithm.

In future, we plan to adapt the algorithm to more expressive constraint lan-
guage such as nested graph constraints. We also plan to enhance the proof of
concept presented in this paper with more user interaction and visualization
support.

Acknowledgement. The authors would like to thank the reviewers for their con-
structive comments on the earlier version of this paper.



306 F. Rabbi et al.

References

1. Analysis of conformance preserving transformation rule (2018). https://github.
com/fazlRabbi/ConformanceTxRule

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

3. Artemiadis, A.K., Vervainioti, A.A., Alexopoulos, E., Rombos, A., Anagnostouli,
M.C., Darviri, C.: Stress management and multiple sclerosis: a randomized con-
trolled trial. Arch. Clin. Neuropsychol.: Off. J. Nat. Acad. Neuropsychol. 27(4),
406–16 (2012)

4. Baresi, L., Spoletini, P.: On the use of alloy to analyze graph transformation sys-
tems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006). https://
doi.org/10.1007/11841883 22

5. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifi-
cation for systems with dynamic structural adaptation. In: Proceedings of the 28th
International Conference on Software Engineering, ICSE 2006, pp. 72–81. ACM,
New York (2006)

6. Bruggink, H.J.S., König, B., Zantema, H.: Termination analysis for graph trans-
formation systems. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 15

7. da Costa, S.A., Ribeiro, L.: Verification of graph grammars using a logical app-
roach. Sci. Comput. Program. 77(4), 480–504 (2012)

8. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
Electron. Notes Theor. Comput. Sci. 203(6), 19–41 (2008). Proceedings of the 2nd
Workshop on Applied and Computational Category Theory (ACCAT 2007)

9. Dyck, J., Giese, H.: Inductive invariant checking with partial negative applica-
tion conditions. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS,
vol. 9151, pp. 237–253. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21145-9 15

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

11. Graphviz: Graph visualization software (2018). https://www.graphviz.org/
12. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems

relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)
13. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-

formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45832-8 14

14. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph grammars - a
constructive approach. ENTCS 2(C), 118–126 (1995)

15. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal analysis of functional
behaviour for model transformations based on triple graph grammars. In: Ehrig, H.,
Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp.
155–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-
2 11

https://github.com/fazlRabbi/ConformanceTxRule
https://github.com/fazlRabbi/ConformanceTxRule
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/11841883_22
https://doi.org/10.1007/11841883_22
https://doi.org/10.1007/978-3-662-44602-7_15
https://doi.org/10.1007/978-3-662-44602-7_15
https://doi.org/10.1007/978-3-319-21145-9_15
https://doi.org/10.1007/978-3-319-21145-9_15
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://www.graphviz.org/
https://doi.org/10.1007/3-540-45832-8_14
https://doi.org/10.1007/978-3-642-15928-2_11
https://doi.org/10.1007/978-3-642-15928-2_11


Analysis and Evaluation of Conformance Preserving Graph 307

16. Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Embedding and confluence of graph
transformations with negative application conditions. In: Ehrig, H., Heckel, R.,
Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 162–177.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 12

17. Plump, D.: Checking graph-transformation systems for confluence. ECEASST 26,
16 (2010)

18. Rabbi F., Kristensen L.M., Lamo Y.: Static analysis of conformance preserving
model transformation rules. In: Hammoudi, S., Pires, L.F., Selic, B. (eds.) Proceed-
ings of the 6th International Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2018, 22–24 January 2018, Funchal, Madeira
- Portugal, pp. 152–162. SciTePress (2018)

19. Ribeiro, L., Dotti, F.L., da Costa, S.A., Dillenburg, F.C.: Towards theorem proving
graph grammars using Event-B. ECEASST 30, 16 (2010)

20. Rutle, A.: Diagram predicate framework: a formal approach to MDE. Ph.D. thesis,
Department of Informatics, University of Bergen, Norway (2010)

21. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification
and transformation of constraints in mde. J. Logic Algebraic Program. 81(4), 422–
457 (2012)

22. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25959-6 35

23. Troya, J., Vallecillo, A.: Towards a rewriting logic semantics for ATL. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 230–244. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13688-7 16

24. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of
visual languages. Sci. Comput. Program. 44(2), 205–227 (2002)

25. Wang, X., Büttner, F., Lamo, Y.: Verification of graph-based model transforma-
tions using alloy. ECEASST 67, 13 (2014)

https://doi.org/10.1007/978-3-540-87405-8_12
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-642-13688-7_16

	Analysis and Evaluation of Conformance Preserving Graph Transformation Rules
	1 Introduction
	2 Modelling in DPF
	2.1 Coupled Graph Constraints

	3 Conformance Preserving Rules
	4 Analysis for Checking Conformance Preserving Rules
	4.1 A Sufficient Condition for Conformance
	4.2 Desired Patterns for Conformance
	4.3 Algorithm for Checking Conformance Preserving Rule

	5 Evaluation
	6 Related Work and Conclusion
	References




