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Abstract. The Capacitated Vehicle Routing Problem (CVRP) is the
well-known combinatorial optimization problem having a wide range of
practical applications in operations research. It is known that the prob-
lem is NP-hard and remains intractable even in the Euclidean plane.
Although the problem is hardly approximable in the general case, some
of its geometric settings can be approximated efficiently. Unlike other
versions of CVRP, approximability of the Capacitated Vehicle Routing
Problem with Time Windows (CVRPTW) by the algorithms with perfor-
mance guarantees seems to be weakly studied so far. To the best of our
knowledge, the recent Quasi-Polynomial Time Approximation Scheme
(QPTAS) proposed by L. Song et al. appears to be the only one known
result in this field. In this paper, we propose the first Efficient Polyno-
mial Time Approximation Scheme (EPTAS) for CVRPTW extending
the classic approach of M. Haimovich and A. Rinnooy Kan.
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the widely known com-
binatorial optimization problem introduced by Dantzig and Ramser in their
seminal paper [5]. This problem has a wide range of applications in operations
research (see, e.g. [4] and references within). In addition, CVRP settings stem
from specific models of unsupervised learning [1]. For instance, in [7], CVRP is
considered as a clustering problem, where the clusters are formed by customers
serviced by the same route and intra-cluster costs are defined by lengths of the
corresponding routes.

As the well-known k-means clustering problem [2,10], CVRP remains NP-
hard even in finite dimensional Euclidean spaces (see, e.g. [17]). Although the
problem is hardly approximable in general, its geometric settings can be approx-
imated rather well. Most of the known results in this field date back to the
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famous papers by Haimovich and Rinnooy Kan [8] and Arora [3]. To the best
of our knowledge, the most recent among them are the Quasi-Polynomial Time
Approximation Scheme (QPTAS) proposed in [6] for the Euclidean plane and
extended in [15,16] to the case of finite number of non-intersecting time windows,
and the Efficient Polynomial Time Approximation Scheme (EPTAS) introduced
in [12] for the CVRP in the Euclidean space of an arbitrary dimension d > 1.
Although, for the Capacitated Vehicle Routing Problem with Time Windows
(CVRPTW) there is a significant success in development of branch-and-cut exact
methods and heuristics that can solve its numerous instances coming from the
practice efficiently (see surveys in [14,17]), the known results concerning the
algorithms with performance guarantees remain still very rare.

In this paper, we try to bridge this gap and propose the first EPTAS for
CVRPTW extending the famous approach proposed by Haimovich and Rinnooy
Kan [8] and some other previous results [11,12,15,16].

The rest of the paper is structured as follows. In Sect. 2 we provide a math-
ematical statement of CVRPTW. In Sect. 3, we discuss the main idea of the
scheme proposed, provide its rigorous description, and claim our main result. Its
proof for the simplest non-trivial case of the problem defined in the Euclidean
plane is presented in Sect. 4. Finally, in Sect. 5 we come to conclusions and list
some open questions.

2 Problem Statement

In the simplest setting of the Capacitated Vehicle Routing Problem with Time
Windows (CVRPTW), we are given by a set X = {x1, . . . , xn} of customers
and a set T = {t1, . . . , tp} of consecutive time windows. It is assumed that, for
any 1 ≤ j < p, the time window tj precedes time window tj+1, i.e. the set T
is ordered. In the sequel, we denote this order by �. Each customer xi has the
unit non-splittable demand, which should be serviced in a given time window
t(xi) ∈ T . Service is carried out by a fleet of vehicles arranged at a given depot
x0. Each vehicle has the same capacity q and visits customers assigned to it in
a cyclic route starting and finishing at the depot x0. The goal is to visit all the
customers minimizing the total transportation cost subject to capacity and time
windows constraints.

The mathematical statement of the CVRPTW can be defined as follows.
The instance is given by the weighted complete digraph G = (X ∪ {x0}, E,w),
a partition

X1 ∪ . . . ∪ Xp = X, (1)

and the capacity bound q ∈ N. Here,

(i) the non-negative weighting function w : E → R+ defines transportation
costs for location pairs (xi, xj), such that, for any route R = xi1 , . . . , xis ,
its cost w(R) =

∑s−1
j=1 w(xij , xij+1)

(ii) any subset Xj of partition (1) consists of customers xi, which should be
serviced in time window t(xi) = tj ∈ T
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(iii) for any feasible vehicle route R = x0, xi1 , . . . , xis , x0, the following con-
straints

s ≤ q (capacity) (2)
t(xij ) � t(xij+1) (time windows) (3)

are valid.

It is required to find a collection of feasible routes S = {R1, . . . , Rl} that
visits each customer once and has the minimum total transportation cost w(S) =
∑l

i=1 w(Ri).
If the weighting function w satisfies the triangle inequality, then CVRPTW

is called metric and transportation costs w(xi, xj) are called distances between
locations xi and xj . In this paper, we consider the Euclidean CVRPTW, where
X ∪ {x0} ⊂ R

d and w(xi, xj) = ‖xi − xj‖2.

3 Approximation Scheme

Our scheme (Algorithm 1) extends the approach proposed in the seminal paper
by Haimovich and Rinnooy-Kan [8].

Its main idea is quite simple and consists of the following points

(i) decomposition of the initial CVRPTW instance with p time windows to a
single CVRPTW subinstance induced by the outer customers and p inde-
pendent subinstances of the classic CVRP that describe servicing of the
inner ones

(ii) the famous Iterated Tour Partition (ITP) heuristic (Algorithm2) reducing
the CVRP to an appropriate instance of the Traveling Salesman Problem
(TSP) induced by a subset of the inner customers, which should be serviced
in the fixed time window tj , j ∈ {1, . . . , p}

(iii) an upper bound for the optimum TSP∗ of the TSP instance enclosed in the
Euclidean sphere of a given radius.

At first glance, the worst case time complexity of Algorithm1 is determined
by running time of the dynamic programming procedure applied to finding the
exact solution of CVRPTW (due to Step 2), i.e. the proposed scheme should be
extremely inefficient.

Actually, it is not so. As we show in Sect. 4, for any ε > 0, p ≥ 1, ρ ≥ 1,
and q ∈ N there exist a bound K̃ = K̃(ε, p, ρ, q) such that Eq. (4) is satisfied by
at least one 1 ≤ k ≤ K̃. Therefore, for n > K̃, the solution S0 can be obtained
by dynamic programming with time complexity bound O(qk22k) (see, e.g. [9]),
which does not depend on n. Further, for finding ρ-approximate solutions for
the inner Euclidean TSP problem, one can employ an arbitrary approximation
algorithm. Since running time of the ITP is O(n2), the overall time complexity
is mainly determined by the complexity TIME(TSP, ρ, n) of such an algorithm.
The main result is claimed in Theorem 1. For the sake of simplicity, we present it
for the case of Euclidean plane postponing more general result to the forthcoming
paper.
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Algorithm 1. Approximation Scheme for the Euclidean CVRPTW
Input: an instance of the Euclidean CVRPTW defined by a complete graph G(X ∪
{x0}, E, w), a capacity q, and partition X1 ∪ . . . ∪ Xp = X
Parameters: ε > 0 and ρ ≥ 1
Output: an (1 + ε)-approximate solution SAPP of the given CVRPTW instance

1: relabel the customers in the order r1 ≥ . . . ≥ rn, where ri = w(x0, xi) is a distance
between the customer xi and the depot x0

2: for the given ε > 0, find the smallest number k = k(ε, p, q) such that

q (2k + p(1 + ρ))
rk∑n
i=1 ri

+ 2q
√

πpρ

√
rk∑n
i=1 ri

< ε (4)

or set k = n, if equation (4) is violated by any k < n.
3: split the set X to subsets X(k) = {x1, . . . , xk−1} and X ′(k) = X \ X(k) of outer

and inner customers, respectively
4: find an optimal solution S0 for the CVRPTW subinstance defined by the subgraph

G〈X(k)∪x0〉, partition (X1 ∩X(k))∪ . . .∪(Xp ∩X(k)), and capacity q by dynamic
programming

5: find a ρ-approximate solution H of the auxiliary TSP instance defined by the
subgraph G〈X ′(k)〉. Split H into p cycles H1, . . . , Hp such that each cycle Hj

spans X ′(k) ∩ Xj (Fig. 1)
6: for all j ∈ {1, . . . , p} do
7: obtain a partial CVRP solution Sj by employing the ITP heuristic (Algorithm 2)

to the cycle Hj and CVRP subinstance defined by G〈X ′(k) ∩ Xj ∪ {x0}〉 and
capacity q

8: end for
9: output the solution SAPP = S0 ∪ S1 ∪ . . . ∪ Sp

Theorem 1. For any ε > 0 an (1 + ε)-approximate solution for the Euclidean
CVRPTW can be obtained in time TIME(TSP, ρ, n)+O(n2)+O(qk22k), where
k = k(ε, p, q, ρ) = O

(
p(ρ + 1) exp (O(q/ε)) exp

(
O(

√
pq/ε)

))
.

Remark 1. As it follows from Theorem 1, the scheme proposed is EPTAS for any
fixed p and q and remains PTAS for q = O(log log n) and p = O(log log n).

4 Proof Sketch

We start with description of the well-known ITP heuristic (Algorithm2). As
it is shown in [8,13], for the cost w(SITP) of the ITP-produced solution SITP,
there exists the following upper bound, which remains valid for an arbitrary
non-negative weighting function w.

Lemma 1. For r̄ = 1/|X|∑|X|
i=1 ri and l = 
|X|/q�,

w(SITP) ≤ 2lr̄ +
(

1 − l

|X|
)

w(H) ≤ 2lr̄ + (1 − 1/q) w(H). (5)
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Algorithm 2. ITP heuristic
Input: an instance of CVRP defined by a complete weighted digraph G(X∪{x0}, E, w)
and capacity q, and an arbitrary Hamiltonian circuit H in the subgraph G〈X〉
Output: an approximate solution SITP of the given CVRP instance

1: for all x ∈ X do
2: starting from the vertex x, split the circuit H into l = 	|X|/q
 chains, such that

each of them, except maybe one, spans q vertices
3: connecting endpoints of each chain with the depot x0 directly, construct a set

S(x) of l routes
4: end for
5: output the solution SITP = arg min{w(S(x)) : x ∈ X}

Lemma 1 can be easily extended to the case of metric CVRPTW. Indeed, con-
sider an instance of the metric CVRPTW defined by the graph G(X∪{x0}, E,w),
partition X1∪ . . .∪Xp = X, and capacity q. Let H be a Hamiltonian cycle span-
ning all the customers X. For any j, obtain a Hamiltonian cycle Hj for the
subset Xj by shortcutting the cycle H (Fig. 1). Then, for each CVRP subin-
stance defined by the subgraph G〈Xj ∪ {x0}〉 and capacity q and for the appro-
priate cycle Hj , apply Algorithm2 to construct the partial solution Sj . For the
combined solution S = S1 ∪ . . . ∪ Sp, the following upper bound is valid.

Fig. 1. Shortcutting of a Hamiltonian cycle. Triangles, squares and circles denote cus-
tomers, which should be serviced in different time windows.



Efficient PTAS for the Euclidean CVRP with Time Windows 323

Lemma 2.

w(S) ≤ p

(

1 − 1
q

)

w(H) +
2
q

|X|∑

i=1

ri + 2prmax, (6)

where rmax = max{r1, . . . , r|X|}.
Proof. by Lemma 1, for each Sj , we have

w(Si) ≤ 2
⌈

nj

q

⌉

r̄j +
(

1 − 1
q

)

w(Hj), (7)

where nj = |Xj | and r̄j = 1/nj

∑{ri : xi ∈ Xj}. Since, by construction, w(Hj) ≤
w(H) and 
nj/q� ≤ nj/q + 1,

w(S) =

p∑

i=1

w(Sj) ≤
(

1 − 1

q

) p∑

j=1

w(Hj) + 2

p∑

j=1

⌈
nj

q

⌉

r̄i ≤

≤ p

(

1 − 1

q

)

w(H) +
2

q

p∑

j=1

nj r̄j + 2

p∑

j=1

r̄j ≤ p

(

1 − 1

q

)

w(H) +
2

q

|X|∑

i=1

ri + 2prmax.

Lemma 2 is proved.

In particular, in the case when the cycle H is found by ρ-approximation algorithm
applied to the auxiliary TSP instance (with optimum TSP∗(X)) defined by the
subgraph G〈X〉,

w(S) ≤ p

(

1 − 1
q

)

ρTSP∗(X) +
2
q

|X|∑

i=1

ri + 2prmax.

Notice that, for an arbitrary feasible solution of the metric CVRP, the following
simple lower bound

w(S) ≥ 2
q

|X|∑

i=1

ri (8)

is also valid.
Further, let the customers x1, . . . , xn (elements of the set X) be ordered

by decreasing their distances r1 ≥ r2 ≥ . . . ≥ rn from the depot x0. Given
some k ∈ {1, . . . , n}, consider a decomposition of the initial CVRP instance to
two independent subinstances induced by the subsets X(k) = {x1, . . . , xk−1}
and X ′(k) = X \ X(k) of outer and inner customers and the same depot x0.
Denote by OPT(X), OPT(X(k)), and OPT(X ′(k)) optimum values of the initial
instance and the produced subinstances, respectively. Then, the following lemma
holds the metric CVRP.

Lemma 3. For any 1 ≤ k ≤ n,

OPT(X(k)) + OPT(X ′(k)) ≤ OPT(X) + 4(k − 1)rk. (9)
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It is easy to verify that the claim of Lemma 3 remains valid for the case of metric
CVRPTW as well.

The next step to our proof of Theorem1 is concerned with an upper bound
the optimum value of the Euclidean TSP instance enclosed in a sphere of a
given radius R. As we mentioned above, in this paper we restrict ourselves to
the simplest non-trivial case of the Euclidean plane described in the following
lemma. As it was shown in [11,12], the similar bounds can be obtained for any
fixed-dimensional Euclidean space.

Lemma 4. Let an instance of the Euclidean TSP be given by a set X = {x1, . . . ,
xn} that be enclosed in a circle of radius R = max{ri : i ∈ {1, . . . , n}} centered
at x0. Then, for the optimum TSP∗(X),

TSP∗(X) ≤ 2R + 4

√
√
√
√πR

n∑

i=1

ri. (10)

Proof. For some h < π, partition the enclosing circle to 
2π/h� sectors such
that all of them, except maybe one, have h as a value of their central angle.
Consider the cyclic route walking back and forth all the obtained radii and
augmented by the double connection of each point xi to the closest radius.
Transform this ‘strange’ route to a Hamiltonian cycle with shortcutting by the
triangle inequality. Denote the length of the tour obtained by L(h). Since the
distance between xi and the nearest radius is at most ri sin(h/2) ≤ rih/2 and
the total length of all the radii does not exceed R(2π/h + 1), we have

L(h) ≤ 2R +
4πR

h
+ h

n∑

i=1

ri. (11)

The rhs of (11) is minimized by

h∗ = 2

√
πR

∑n
i=1 ri

∈ (0, 2
√

π].

Therefore,

TSP∗(X) ≤ L(h∗) ≤ 2R + 4

√
√
√
√πR

n∑

i=1

ri.

Lemma is proved.

Consider a solution S = S0 ∪ S1 ∪ . . . ∪ Sp provided by Algorithm1 for some
k. By construction, w(S0) = OPT(Xk). At this point, we are ready to estimate
the relative approximation error of the solution S

e(k) =
w(S) − OPT(X)

OPT(X)
=

OPT(X(k)) + APP(X ′(k)) − OPT(X)
OPT(X)

, (12)

where APP(X ′(k)) =
∑p

i=1 w(Si).
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Lemma 5.

e(k) ≤ q (2k + p(1 + ρ))
rk∑n
i=1 ri

+ 2q
√

πpρ

√
rk∑n
i=1 ri

(13)

Proof. Indeed,

e(k) =
OPT(X(k)) + APP(X ′(k)) − OPT(X)

OPT(X)

=
(OPT(X(k)) + OPT(X ′(k)) − OPT(X)) + APP(X ′(k)) − OPT(X ′(k))

OPT(X)
.

Since,

OPT(X(k)) + OPT(X ′(k)) − OPT(X) ≤ 4(k − 1)rk, by Lemma 3,

OPT(X) ≥ 2/q

n∑

i=1

ri and OPT(X ′(k)) ≥ 2/q

n∑

i=k

ri, by Eq. (8),

APP(X ′(k)) ≤ p

(

1 − 1
q

)

ρTSP∗(X ′(k)) +
2
q

n∑

i=k

ri + 2prk, by Lemma 2, and

TSP∗(X ′(k)) ≤ 2rk + 4

√
√
√
√πrk

n∑

i=k

ri, by Lemma 4,

we obtain

e(k) ≤ (2q(k − 1) + ρpq + pq)
rk∑n
i=1 ri

+ 2
√

πpρq

√
rk∑n
i=1 ri

≤ q (2k + p(1 + ρ))
rk∑n
i=1 ri

+ 2q
√

πpρ

√
rk∑n
i=1 ri

.

Lemma 5 is proved.

The following technical lemma is the last stair to the proof of our main result.

Lemma 6. For any ε > 0, p ≥ 1, ρ ≥ 1, and q ∈ N, there exists K̃ =
K̃(ε, p, ρ, q), such that the equation

q (2k + p(1 + ρ))
rk∑n
i=1 ri

+ 2q
√

πpρ

√
rk∑n
i=1 ri

< ε (14)

holds at least for one 1 ≤ k ≤ K̃.

Proof. Suppose, for some K̃, Eq. (14) is violated by any natural k from the
interval [1, K̃], i.e., for any 1 ≤ k ≤ K̃,

s2k +
2
√

πpρ

2k + p(1 + ρ)
sk − ε

q(2k + p(1 + ρ))
≥ 0 (15)
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for sk =
√

rk∑n
i=1 ri

. Since the lhs of Eq. (15) has the roots of different sign,

Eq. (15) implies

sk ≥ −
√

πpρ

2k + p(1 + ρ)
+

√
πp2ρ2

(2k + p(1 + ρ))2
+

ε

q(2k + p(1 + ρ))

or

sk ≥ − B

2k + A
+

√(
B

2k + A

)2

+
C

2k + A
≥ − B

2k + A
+

√
C√

2k + A
,

where A = p(1 + ρ), B =
√

πpρ, and C = ε/q.
Hence,

s2k ≥ C

2k + A
+

B2

(2k + A)2
− 2B

√
C

(2k + A)3/2
≥ C

2k + A
− 2B

√
C

(2k + A)3/2
(16)

Further, we suppose that n is sufficiently large, i.e. K̃ ≤ n. Therefore,

K̃∑

k=1

s2k =
K̃∑

k=1

rk∑n
i=1 ri

≤ 1

and

1 ≥
K̃∑

k=1

s2k ≥
K̃∑

k=1

C

2k + A
−

K̃∑

k=1

2B
√

C

(2k + A)3/2

≥
∫ K̃

1

Cdx

2x + A
− 2B

√
C

(2 + A)3/2
−

∫ K̃

1

2B
√

Cdx

(2x + A)3/2

≥ C

2
ln

2K̃ + A

2 + A
− 2B

√
C

(2 + A)3/2
− 1

2
B

√
C√

2 + A

≥ C

2
ln

2K̃ + A

2 + A
− 5

2
B

√
C√

2 + A
≥ C

2
ln

2K̃ + A

2 + A
− 5B

2

√
C

A
,

since B
√

C > 0. Thus,

ln
2K̃ + A

2 + A
≤ 2

C

(

1 +
5B

2

√
C

A

)

=
2
C

+
5B√
AC

and

K̃ ≤ A · exp

(
2

C
+

5B√
AC

)

= p(ρ + 1) · exp
(
2 · q

ε

)
· exp

(

5
√

πpρ

√
1

p(1 + ρ)

√
q

ε

)

≤ p(ρ + 1) · (exp (q/ε))2 ·
(
exp(

√
(pq)/ε)

)5
√

πρ

,

since A = p(ρ + 1) ≥ 2. Lemma 6 is proved.

The proof of Theorem1 follows straightforward from the lemmas above.
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5 Conclusion

In this paper, we proposed new approximation scheme for the Capacitated Vehi-
cle Routing Problem with Time Windows. To the best of our knowledge, the
scheme proposed is the first EPTAS for this problem for any fixed capacity
q and number of time windows p. Our scheme remains PTAS with respect to
n even for q = log log n and p = log log n. Although the proof presented in
this paper concerns the simplest case of the problem (Euclidean plane, single
depot), the scheme proposed seems to be applicable to the more general setting
of CVRPTW. In forthcoming paper, we are going to present the full proof for
multiple depots and Euclidean spaces of an arbitrary fixed dimension d > 1.
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