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Abstract. The known asymptotically optimal algorithm for the
Euclidean maximum Traveling Salesman Problem by Serdukov builds
approximate solution for the problem around the maximum-weight per-
fect matching. In this paper we are going to discuss an asymptotically
optimal algorithm for the Euclidean maximum TSP with running-time
O(n3), that uses a maximum weight cycle cover of the initial graph as a
foundation for constructing the TSP solution. We also prove a number
of structural results for the optima of some maximization problems in
normed spaces, which follow from the algorithm.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the most well-known NP-hard
problems. Given an n-vertex undirected complete graph G(V,E) and a weight
function w : E → R

+, the problem is to find a Hamiltonian cycle H of minimum
or maximum total weight:

W (H) =
∑

e∈H

w(e) → max (min).

We refer the reader to the books [10] and [7] for the detailed overview of the
known results on the problem. Historically, the most attention was paid to the
minimization variant of the TSP, but the maximum TSP is also of great interest
[1]. The Max TSP has many applications including the shortest superstring
problem [9], matrix reordering in data analysis and clustering [8,11]. Both Max
TSP and Min TSP are NP-hard in the general case, so there is no much hope
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to obtain fast (polynomial time) exact algorithms for these problems. Thus, the
study of special subclasses of the problem is an important aspect in the field of
operations research.

One of the most studied sub-classes is the Metric Max TSP, where the weights
of edges satisfy the triangle inequality. Another important variant of the problem
is the Euclidean Max TSP (Max ETSP). In this case the vertices of a given
graph correspond to points in R

k for some k ≥ 1 and the weight of each edge
is determined by the Euclidean distance between its endpoints. It is known that
Max ETSP is NP-hard, if the dimension of the space k ≥ 3 [2].

In 1987 Serdukov [12] presented the first polynomial-time asymptotically
optimal algorithm for the Max ETSP. Later the algorithm was modified and
simplified in [5,6].

Definition 1. An approximation algorithm A for a maximization problem is
said to have a guaranteed relative error εA, if

OPT (X) − FA(X)
OPT (X)

≤ εA

for any input X, where FA(X) is the value of the approximate solution obtained
by algorithm A, and OPT (X) is the optimum.

Definition 2. For an optimization problem on an n-vertex graph, an approxi-
mation algorithm is called asymptotically optimal if the relative error is a func-
tion of the number of vertices n, and εA(n) → 0 as n → ∞.

Asymptotically optimal algorithms for the Max ETSP from papers [5,6,12]
start with constructing the maximum weight matching M∗, which can be rep-
resented as a set {e1, . . . , eμ} ⊂ R

k of (closed) straight intervals in Euclidean
space, μ = �n/2�. The intervals are sorted in non-decreasing order of their
weights (length). Choosing parameter t in a spacial way, the last t intervals are
declared light, while the remaining intervals are declared heavy. The following
lemma establishes a fact that was crucial for proving the asymptotic optimality
of these algorithms.

Lemma 1 ([12]). Suppose that an arbitrary set of t straight line segments is
given in Euclidean space R

k of fixed dimension k. Then, the smallest angle
between two segments from this set is upper bounded by a constant α(k, t) such
that α(k, t) → 0 as t → ∞. Moreover

sin2 α(k, t)
2

≤ γk

t2/(k−1)
, (1)

where the constant γk ≤ (k
√

π/2)
2

k−1 .

The heavy and light edges in the algorithm AE from [12] are used to
form a multigraph G (see Fig. 1), that consists of four Hamiltonian cycles
H1,H2,H3,H4, where each Hi contains all the edges of M∗. The structure of
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these Hamiltonian cycles differs in cases of odd and even μ. The output of the
algorithm AE is the heaviest of the four Hamiltonian cycles. In case of odd n,
at the final step of the algorithm vertex v /∈ M∗ is arbitrary inserted into the
constructed cycle.

The key points used in [12] to prove the asymptotic optimality of the algo-
rithm AE when t = �n k−1

k+1 � are Lemma 1 and the fact that the total weight of
the heavy edges is at least (1 − t

μ )W (M∗).

Fig. 1. Multigraph G from [12]. Heavy edges of M∗ are represented by bold vertical
lines, and light edges are represented by thin vertical lines. The numbers refer to the
number of copies of the corresponding edges in the multigraph G.

Later a new more simple version A′ of algorithm AE was presented in [5,6].
In contrast to AE , an asymptotically optimal solution obtained by algorithm A′

does not contain the edges of the maximum weight matching. This circumstance
later played an essential role in implementing the asymptotically optimal app-
roach to such an important generalization of the Traveling Salesman Problem
as the Euclidean Maximum m-Peripatetic Salesman Problem [3]. In the latter
work, the edges of maximal matching are used as the foundation in constructing
each of m edge-disjoint traveling salesmen routes.

In this paper we discuss a new modification of the Serdukov’s approach for
the Euclidean Max TSP, that starts with constructing an optimal cycle cover.
In Sect. 2 we describe the algorithm. In Sect. 3.1 we prove that the algorithm is
asymptotically optimal in the Euclidean space, and as a structural corollary we
show that in the Euclidean space the weight of optimal solution to the maximum
cycle cover problem and the double weight of the maximum weight matching
are asymptotically equal. In Sect. 3.2 using the approach from [13] we show that
the results obtained in the previous section can be extended to the case of an
arbitrary normed space.

2 Modified Algorithm Ã Based on Maximum Cycle
Cover

In this section we construct the main algorithm Ã for the Max TSP with running-
time O(n3), that uses maximum weight cycle cover C∗ = (C1, C2, . . . , Cμ) of the
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initial graph as a foundation for constructing the solution to TSP. The analysis
of algorithm Ã will be given in Sect. 3.

2.1 Description of Algorithm Ã

Stage 1. Given a complete n-vertex complete undirected graph G, construct
a cycle cover C∗ = (C1, C2, . . . , Cμ) of maximum total weight. Let μ be the
number of cycles in this cover. If μ = o(n), go to Stage 2. Otherwise, perform
Stage 3.

Stage 2. (The case μ = o(n)). Run the following μ-stage procedure to transform
the optimal cycle cover C∗ into a Hamiltonian cycle H. Let C ′ = C∗.

At each step of the procedure, find the lightest edge a = (a1, a2) in the set
of edges C ′ and the heaviest edge b = (b1, b2) among the edges of all cycles
in C ′ that do not contain a. Combine 2 cycles, that contain edges a and b,
into one cycle by replacing the edges a, b with the heaviest pair of edges: either
(a1, b1) ∪ (a2, b2) or (a2, b1) ∪ (a1, b2). Stop when the edges of C ′ form one cycle,
which is clearly a Hamiltonian cycle. Set H = C ′, output H.

Stage 3. (The case of μ = O(n)).

3.1. Select an edge ei of minimum weight in each cycle Ci of the cycle cover
C∗, i = 1, . . . , μ. Let C =

{
C1 \ e1, . . . , Cμ \ eμ

}
be the family of remaining

chains.
3.2. Let V ′ be the set of vertices of the selected edges, |V ′| = 2μ. Let G′ = G[V ′]

be the corresponding induced subgraph of G. Note that M ′ = {e1, . . . , eμ}
is a maximum weight perfect matching in G′.

3.3. In subgraph G′ construct a Hamiltonian cycle H ′ that doesn’t contain edges
{e1, . . . , eμ}. The detailed implementation of this step will be given in Sub-
sect. 2.2 (Algorithm A′ [5]).

3.4. The obtained Hamiltonian cycle H ′ consists of two perfect matchings M ′
1

and M ′
2. Denote by M̃ the matching with a larger total weight.

3.5. As a result of Stage 3 return the Hamiltonian cycle H = C ∪M̃ (see Fig. 2).

Fig. 2. The Hamiltonian cycle H = C ∪ ˜M . The bold curves are the chains of C.
The bold lines correspond to the edges of ˜M . The dashed lines together with ˜M form
Hamiltonian cycle H ′ in subgraph G′.
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2.2 Algorithm A′: Constructing Hamiltonian Cycle H ′ in G′

Preliminary Step
Recall that the edges {e1, . . . , eμ} in the 2μ-vertex graph G′ form the perfect
matching M ′ of maximum weight. Fix parameter t ≤ μ/2. Sort the edges of M ′

in non-decreasing order with respect to their weights. We will refer to the first
(μ − t) edges of M ′ as heavy edges, and the last t edges as light.

Algorithm A′ constructs a Hamiltonian cycle H ′, which does not include
edges of M ′ = {e1, . . . , eμ}, in G′.

Stage 1. Let angle α = α(k, t) satisfy inequality (1).

Definition 3. An α-chain is a sequence of edges (intervals in R
k), where the

angle between any two neighboring edges of the sequence is at most α. The first
edge in the sequence is called the master edge, and the last one is the inferior
edge.

We are going to build a set I of α-chains. Each α-chain will consist only of
heavy edges. Note that an edge is a one-element α-chain.

Start with I = {e1, e2, . . . , et} consisting of the first t heaviest edges of M ′.
Set j = t. In the current t-set I, find a pair of α-chains such that the angle
between their master edges is at most α. Join these chains into one α-chain by
setting their master edges to be neighbors in the new sequence and assign one
of the end edges of the joined chain (one of the former inferior edges) to be the
new master edge. Set j := j + 1. If j < μ − t, then append one more heavy edge
ej to the current set I and repeat this block.

Otherwise, we have obtained a sequence C′ = {C ′
1, . . . , C

′
t} of t α-chains such

that each chain consists of a sequence of heavy edges, where an angle between
any neighboring (consecutive) pair of edges in this chain is at most α = α(k, t).

Stage 2. Let’s regard the sequence C′ as a cycle, i.e. the α-chain C ′
t is followed

by the α-chain C ′
1. Let the edges of the α-chains C ′

1, . . . , C
′
t be enumerated so

that C ′
r = {eνr−1+1, . . . , eνr−1}, 1 ≤ r ≤ t, where ν1 < ν2 < . . . < νt are the

numbers reserved for the remaining light edges of the maximum weight matching
M ′ (ν0 = 0, νt = μ).

Arbitrary place t light edges of the maximum weight matching M ′

to the positions ν1, ν2, . . . , νt = μ. Finally, we have a sequence S =
{C ′

1, eν1 , C
′
2, eν2 , . . . , C

′
t, eνt

} of t α-chains consisting of heavy edges, which alter-
nate with the t light edges (Fig. 3).

Stage 3. Construct Hamiltonian cycle H ′ in the following way.
We assume that the sequence of edges of the maximum weight matching

M ′ = {e1, e2, . . . , eμ} is given according to their order in the sequence S, ej =
(xj , yj), j = 1, . . . , μ. Now we are going to construct a partial tour T consisting
of the end vertices of the light edge eμ = (xμ, yμ) and of two (μ − 1)-vertex
paths.

Step 1. Set T = xμ ∪ yμ; u1 := x1; v1 := y1 and j = 2.
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Fig. 3. The bold lines correspond to the edges of M ′, while the dashed lines indicates
the α-chains. The t light edges of M ′ were placed to the positions between the α-chains.
The last light edge eνt is placed between the first and the t-th α-chains.

Fig. 4. The bold lines correspond to the edges of M ′, the dashed lines correspond to
the partial tour. We connect each two neighboring edges of M ′ with the edges of the
partial tour in a best possible way. Note that the edges of the perfect matching are not
included to the partial tour.

Step 2. While 1 < j < μ do: if

w(uj−1, xj) + w(vj−1, yj) ≥ w(uj−1, yj) + w(vj−1, xj),

then set uj = xj ; vj = yj ; otherwise, set uj = yj and vj = xj . Supplement
the partial tour T with a pair of new edges (Fig. 4) and increase j by 1:

T := T ∪ (uj−1, uj) ∪ (vj−1, vj).

Step 3. At the previous step we have obtained a partial tour consisting of the
end vertices of the light edge eμ = (xμ, yμ) and of the two non-intersecting
paths (u1, u2, . . . , uμ−1) and (v1, v2, . . . , vμ−1):

T = (u1, u2, . . . , uμ−1) ∪ (v1, v2, . . . , vμ−1) ∪ {xμ} ∪ {yμ}.

Close T into a 2μ-vertex cycle (Fig. 5) by adding a pair of two-edge chains
(uμ−1, yμ, v1) ∪ (vμ−1, xμ, u1) or (uμ−1, xμ, v1) ∪ (vμ−1, yμ, u1) with the greatest
total weight.

The description of the algorithm A′ is complete.
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Fig. 5. The partial tour is closed into a Hamiltonian cycle H ′, according to the best
of two possible variants

Theorem 1 ([5]). Let G′ be an undirected 2μ-vertex complete graph in
Euclidean space R

k of a fixed dimension. Set parameter t = �(2μ)
k−1
k+1 �. Algo-

rithm A′ builds an asymptotically optimal solution H ′ in G′ for the Max ETSP.
The relative error εA′(n) of algorithm A′ satisfies:

εA′(n′) ≤ β′

(n′)
2

k+1
, (2)

where n′ = 2μ, β′ ≤ (k
√

π/2)
2

k−1 . The total weight of the approximate solution
H ′ satisfies:

2W (M ′)(1 − εA′(n′)) ≤ W (H ′) ≤ 2W (M ′), (3)

where M ′ is the maximum weight perfect matching in G′.

Remark 1. The obtained Hamiltonian cycle H ′ consists of 2 perfect matchings
M1 and M2. Note that by construction of H ′, M ′ ∪ M1 and M ′ ∪ M2 are also
Hamiltonian cycles. Thus, adding M1 or M2 to the set of chains C = C∗ \M ′ at
Step 3.5 of the main algorithm Ã gives a Hamiltonian cycle in the initial graph G
(see Fig. 2).

3 Asymptotic Optimality of Algorithm Ã

3.1 The Case of Euclidean Space

Next statement shows the asymptotic optimality of algorithm Ã in the case of
μ = o(n) for the Metric Max TSP and the Euclidean Max TSP.

Theorem 2. In the case of μ = o(n), algorithm Ã gives asymptotically optimal
solutions for the Metric Max TSP and the Euclidean Max TSP with guaranteed
relative error

ε
˜A(n) ≤ μ

n
. (4)
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Proof. Consider the procedure from Stage 2 of the algorithm, that transforms
the optimal cycle cover C∗ into a Hamiltonian cycle H̃. In the beginning of the
procedure we have the set of edges C ′ = C∗. At each step of the procedure,
the lightest edge a = (a1, a2) in the set C ′ and the heaviest edge b = (b1, b2)
among the edges of all cycles, that does not contain a, are chosen. The cycles
containing a and b are united into one cycle by replacing the edges a and b by
the pair of edges of maximum total weight: either u = (a1, b1) and v = (a2, b2)
or c = (a1, b2) and d = (a2, b1). By the triangle inequality we have

w(b) ≤ w(u) + w(c) and w(b) ≤ w(v) + w(d).

Summing these inequalities, we obtain

2w(b) ≤ w(u) + w(v) + w(c) + w(d)

and, therefore,
w(b) ≤ max

(
w(u) + w(v), w(c) + w(d)

)
.

Thus, the new pair of edges compensate the weight of the heaviest edge b, and
the loss of weight does not exceed the weight w(a) of the lightest edge.

After μ steps, we obtain a Hamiltonian cycle H, and the total loss of
weight does not exceed the weight of μ lightest edges of C∗, which is at most
(μ/n)W (C∗). Thus,

(1 − μ/n)W (C∗) ≤ W (H) ≤ W (H∗) ≤ W (C∗), (5)

where H∗ is the maximum weight Hamiltonian cycle. Finally, for the relative
error we have:

ε
˜A(n) =

W (H∗) − W (H)
W (H∗)

= 1 − W (H)
W (H∗)

≤ 1 − (1 − μ
n )W (C∗)

W (H∗)
≤ μ

n
.

Next claim shows the asymptotic optimality of algorithm Ã in the case of
μ = O(n) for the Euclidean Max TSP.

Theorem 3. In the case of μ = O(n), algorithm Ã gives an asymptotically
optimal solution for the Euclidean Max TSP, if the dimension k of the Euclidean
space R

k is fixed. The relative error satisfies

ε
˜A(n) =

εA′(n′)
3

≤ β

(n′)
2

k+1
, (6)

n′ = 2μ, μ = O(n), β ≤ (k
√

π/2)
2

k−1 /3.

Proof. Let M∗ be the maximum weight perfect matching, C∗ be the maximum
weight cycle cover, and H∗ be the maximum weight Hamiltonian cycle in the
given graph.

At Step 3.1 algorithm Ã deletes the lightest edge ei from each cycle Ci in
the cycle cover C∗ and sets M ′ = {e1, . . . eμ}. Since each cycle in the cycle cover
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consists of at least 3 edges, from W (Ci) ≥ 3w(ei) for all i = 1, . . . , μ, it follows
that:

W (C∗) ≥ 3W (M ′).

Using (3), for the matching M̃ , which is the heaviest matching in the Hamil-
tonian cycle H ′ formed at Step 3.3 of algorithm Ã, we have:

W (M̃) ≥ W (H ′)
2

≥ 2
(
1 − εA′(n′)

)
W (M ′)

2
=

(
1 − εA′(n′)

)
W (M ′).

Finally, due to the construction of the desired Hamiltonian cycle H, the
relative error of algorithm Ã is

ε
˜A(n) = 1 − W (H)

W (H∗) ≤ 1 − W (H)
W (C∗) = 1 − W (C∗\M ′)+W (˜M)

W (C∗)

≤ 1 − W (C∗\M ′)+
(
1−εA′ (n′)

)
W (M ′)

W (C∗) = 1 − W (C∗)−εA′ (n′)W (M ′)
W (C∗)

= εA′ (n′)W (M ′)
W (C∗) ≤ εA′ (n′)

3 ≤ β

(n′)
2

k+1
.

Remark 2. The running-time of algorithm Ã is determined by the time one needs
to construct a maximum weight cycle cover C∗, which is O(n3) [4].

Remark 3. For the practical use of algorithm Ã one can set the following thresh-
old in choosing between Stages 2 and 3. If the number of cycles μ in optimal
the cycle cover at most n

k+1
k+3

(
βk+1/4

) 1
k+3 , perform Stage 2, otherwise perform

Stage 3. In this case for the total relation error of the algorithm we have:

ε
˜A(n) ≤

(
βk+1

4n2

) 1
k+3

.

Corollary 1. Let M∗ be the maximum weight perfect matching, C∗ be the max-
imum weight cycle cover, and H∗ be the maximum weight Hamiltonian cycle of
an n-vertex complete graph G(V,E) in Euclidean space of fixed dimension. Then

2W (M∗) = W (H∗)(1 + o(1)) = W (C∗)(1 + o(1)).

In other words, in Euclidean space of fixed dimension the weights of the optimal
C∗,H∗ and the doubled weight of M∗ are asymptotically equal.

Proof. The first equality follows from (3) for an n-vertex graph. The second
equality follows from (5) and from the proof of Theorem3, where having:

1 − W (H)
W (C∗)

≤ β

(n′)
2

k+1
and W (C∗) ≥ W (H∗) ≥ W (H)

we obtain W (C∗) = W (H∗)(1 + o(1)).
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3.2 The Case of an Arbitrary Normed Space

In 2014 Shenmaier [13] introduced the notation of a remote angle α(x, y) between
two vectors x and y in an arbitrary normed space:

α(x, y) = min{‖x/‖x‖ − y/‖y‖‖, ‖x/‖x‖ + y/‖y‖‖}.

He proved that substituting the angle, defined by the dot product, with the
remote angle α(x, y) in Serdukov’s algorithm [12] (or its modification [5]), one can
obtain an asymptotically optimal algorithm AN for the Max TSP in an arbitrary
normed space. The relative error of algorithm AN is εAN

≤ (k+1)/�n 1
k+1 �, where

k is the dimension of the space.
It is easy to see that due to the same modifications our algorithm Ã would also

give asymptotically optimal solutions to the Max TSP in an arbitrary normed
space. First note, that in the case of small number of cycles in the optimal cycle
cover (μ = o(n)) according to Theorem 2 algorithm Ã is asymptotically optimal
in any metric space. For the case of large number of cycles in the optimal cycle
cover (μ = O(n)) the asymptotic optimality follows strictly from Theorem3 and
the result by Shenmaier [13].

Corollary 2. Using the remote angle instead of an angle, defined by the dot
product, at Step 3.3, our algorithm Ã also gives asymptotically optimal solutions
for the Max TSP in an arbitrary normed space. The relative error of the algo-
rithm in the case of executing Stage 3 is ε

˜A(n) = εAN
(n′)/3, where n′ = 2μ,

μ = O(n) is the number of cycles in the optimal cycle cover C∗.

Now we can extend the structural results from the Corollary 1 to the case of
an arbitrary normed space.

Corollary 3. Let M∗ be the maximum weight perfect matching, C∗ be the max-
imum weight cycle cover, and H∗ be the maximum weight Hamiltonian cycle of
a complete graph G(V,E) in an arbitrary normed space of fixed dimension. Then
the weights of the optimal C∗,H∗ and the doubled weight of M∗ are asymptoti-
cally equal: 2W (M∗) = W (H∗)(1 + o(1)) = W (C∗)(1 + o(1)).

4 Conclusion

This paper present a new modification Ã of an approximation algorithm for the
Max TSP with O(n3) running-time. Maximum weight cycle cover C∗ of the ini-
tial graph is used as a foundation for constructing the approximate solutions. It
is shown that if the number of cycles in C∗ is μ = o(n), algorithm Ã is asymp-
totically optimal for the Metric Max TSP (and, thus, also for the Euclidean Max
TSP). In the case of μ = O(n) algorithm Ã is asymptotically optimal for the
Euclidean Max TSP and due to [13] can be easily modified to give asymptot-
ically optimal solutions for the Max TSP in an arbitrary normed space. The
performance and analysis of algorithm Ã do not depend neither on the parity of
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the number of vertices in the initial graph, nor on the parity of the number of
edges μ in the maximum weight matching.

As a corollary, we’ve showed that, given a complete undirected weighted
graph in an arbitrary normed space, the weights of the maximum Hamiltonian
cycle, the maximum weight cycle cover and the doubled weight of the maximum
weight matching are asymptotically equal.

For the future work it would be interesting to extend the ideas of the algo-
rithm, so it could find approximate solutions with improved approximation ratio
for the Metric Max TSP, when μ = O(n).
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