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Abstract. The accurate geo-localization of mobile devices based upon
received signal strength (RSS) in an urban area is hindered by obsta-
cles in the signal propagation path. Current localization methods have
their own advantages and drawbacks. Triangular lateration (TL) is
fast and scalable but employs a monotone RSS-to-distance transfor-
mation that unfortunately assumes mobile devices are on the line of
sight. Radio frequency fingerprinting (RFP) methods employ a reference
database, which ensures accurate localization but unfortunately hinders
scalability.

Here, we propose a new, simple, and robust method called lookup lat-
eration (LL), which incorporates the advantages of TL and RFP with-
out their drawbacks. Like RFP, LL employs a dataset of reference loca-
tions but stores them in separate lookup tables with respect to RSS and
antenna towers. A query observation is localized by identifying common
locations in only associating lookup tables. Due to this decentralization,
LL is two orders of magnitude faster than RFP, making it particularly
scalable for large cities. Moreover, we show that analytically and exper-
imentally, LL achieves higher localization accuracy than RFP as well.
For instance, using grid size 20 m, LL achieves 9.11 m and 55.66 m, while
RFP achieves 72.50 m and 242.19 m localization errors at 67% and 95%,
respectively, on the Urban Hannover Scenario dataset.
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1 Introduction and Literature Review

The localization of wireless mobile devices [8,20] has become a key issue in emer-
gency cases [1,6], surveillance, security, family tracking, radio network planning
and optimization, et cetera. GPS-based localization, while very accurate, is not
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preferred because of its high energy consumption; thus, a wide range of tech-
nologies has emerged for localization based on received signal strength (RSS),
time of arrival (ToA), and angle of arrival (AoA). The two latter methods, ToA
and AoA, require additional equipments, such as an antenna array to time syn-
chronization between the transmitter and the receiver, while AoA requires some
array to identify the signal’s angle. However, RSS measurements are ubiquitous
and readily available in almost all wireless communication systems; hence, it
seems plausible to gain information about mobile devices’ position.

The main problem is characterized as follows: We assume that we are given
a set of antennas A = {ai = (aix , aiy ) ∈ R2} and several RSS measurements
for a single mobile phone: MRSS = [ra1 , ra2 , ...., ra|A| ], where rai

denotes RSS
from antenna ai, measured in dBm if it is observed; NaN otherwise. Antenna
ai and its location will be used interchangeably in this article. The main task
is to determine the mobile phone’s location, where its RSS measurements were
observed. A straightforward method to carry out a simple localization is the
triangular lateration (TL) that calculates the mobile phone’s location by solving
the following optimization problem:

min
(x,y)

∑

i:rai
∈MRSS

(
(aix − x)2 + (aiy − y)2 − (d(rai

))2
)2

, (1)

where d(.) denotes a distance function. For monotone functions d(.) and for at
least three measurements, the optimization problem becomes convex and avoids
the local minima phenomenon. However, there are two main issues with app-
roach. First, it requires a well-calibrated signal-to-distance conversion function
d(.). For urban areas, the COST-HATA models were developed by the COST
European Union Forum based on various field experiments and research [13].
Second, it assumes mobile devices on line of sight (LoS), which is hardly met in
practice in urban areas because signal propagation is hindered by obstacles, con-
crete constructions, churches, tunnels, underpasses, etc. In this case, the observed
distance can be decomposed as d(rai

) = Li + ei + NLOSi, where Li is the true
distance and ei is the receiver noise assumed to be a zero mean Gaussian random
variable. Note that, NLOSi � ei according to field test results.

The quantity NLOSi denotes the error caused by obstacles on the signal
propagation path. These obstacles interfere with the signal by either weakening
it or changing its path a.k.a multipath propagation. In either case, the antenna
receives weaker signals indicating mobile phones farther away than they are as
illustrated in Fig. 1A. The NLOS error can be modeled by a probabilistic dis-
tributions [5] or can be considered a deterministic error [10,12]. These methods
show promising results when few obstacles can be found on the landscape, though
how these methods will work in a dense urban area remains to be seen.

To characterize the NLoS error, we analyzed the Urban Hannover Scenario
dataset [15], which contains approximately 22 Gb of localized RSS measurements
from Hannover. For further details, see results section or [15]. In our analysis we
first selected tower ID = 183 randomly and identified mobile phones located at
the fourth degree from the tower’s azimuth. The data are shown in Fig. 1C, where
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Fig. 1. (A) Triangular lateration hindered by obstacles. D(RSS) denotes the distance
determined by RSS. The dashed circle denotes the true distance of a mobile phone
from tower B, which appears farther because of the obstacle (represented by a box)
between them. (B) Lateration in Hannover dataset using the six strongest RSSs. The
red dot denotes the mobile device’s true location, the black dots denote antennas, and
the circles denote the circle of positions. Data (User ID= 10048 and Time = 0.1) is
from [15]. (C) Location of mobiles phones (marked blue dots) from antenna ID= 183
(marked blue triangle at the bottom) at 4th degree to its azimuth (clockwise). (D)
Distance vs. RSS for phones from panel (C). (Color figure online)

the blue triangle denotes the tower’s location and where the blue dots indicate
the mobile phones’ locations. The scatter plot of the measured RSSs versus the
true distance is shown in Fig. 1D. The relationship indicates an exponential-
like correlation. However, the weaker the signal is, the noisier the correlation
becomes. As signal strength decreases, the conversion becomes more ambiguous.
For instance, an observed −90 dBm signal could indicate a mobile phone located
somewhere between 2.4 km and 4.5 km. It is also worth noticing that the phones
are not distributed evenly in this range; rather, they are concentrated at certain
distances. For instance, no phone is located between 2.5 km and 3.0 km in this
direction. This gap can be seen at the railways shown in Fig. 1C.

The radio frequency fingerprinting (RFP) [2,7] approach is designed to
overcome the NLoS problem. This is a two-phase algorithm. The first step,
called offline training phase or surveying, is to construct a reference dataset
that consists of a collection of localized RSS measurement vectors MXY =
[ra1 , ra2 , . . . , ra|A| ] all over the area, where x, y denotes its true position. In the
second phase, localization phase, the query device’s position producing MRSS is
estimated based on the nearest dataset member via a k-Nearest Neighbor (kNN)
approach. In other words, the location x, y is determined by solving the following
search problem:

x̃, ỹ = argmin
x,y

d(MRSS ,MXY ), (2)

where the distance function d(., .) can be, say, an Euclidean distance or cosine
distance [9], etc., which simply omit NaN values. One drawbacks of RFP is the
lack of scalability, which means that it can be considerably slow over large areas.

Grid systems are often utilized to mitigate data redundancy, making local-
ization faster with less memory consumption in which measurements replaced by
their grid centers. Therefore, RFP can be formulated as follows: localize query
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MRSS in the center of grid x̃y calculated by x̃y = argminxy∈G d(MRSS , μxy),
where μxy is the sample mean observed in grid xy, G denotes the set of grids
and d(., .) is a suitable distance function. This reduces search time and the size
of the reference datasets by a couple of magnitudes at the expense of localiza-
tion accuracy, and the trade-off can be controlled with the grid’s size. To make
localization even faster, Campos et al. [3] have developed filtering procedures to
reduce the search space.

Besides RFP, which is based on a k-NN, several classic machine learning
methods have been evaluated and tested on localization problems. For instance,
Wu et al. [18] have tried support vector machines, Nuño-Barrau et al. [14] have
used linear discriminant analysis, and Campus et al. and Magro et al. [4,11] have
used genetic algorithms for positioning measurements. Artificial neural networks
are also popular; they can learn a regression function to map a MRSS to its
corresponding location x̃, ỹ [16,17,19]. No matter which methods are used, they
all need to learn highly nonlinear mapping like in Fig. 1D to provide a bona fide
approximation. In our opinion, this seems quite challenging in practice.

In this paper, we present a new method called lookup lateration (LL) for the
rapid and accurate geo-localization of mobile phones based on RSS. The under-
lying idea is based on the decentralization of the reference dataset. For every
antenna tower ai ∈ A, LL builds a lookup table to store associating reference
locations, that is, τai

(rai
) = {(XY ) | rai

∈ MXY }. Therefore, the localization of
a given query MRSS can be carried out by simply determining the common loca-
tions in the associating lookup tables as follows: x̃, ỹ =

⋂
rai

∈MRSS
τai

(rai
). The

main advantages of LL compared to RFP is that LL does not need to search the
whole reference dataset, only two-six tables associated to query measurements.
This results in a great acceleration; LL is around 100 times faster than RFP on
the Urban Hannover Scenario dataset, and we believe LL can be even faster in
very big cities.

LL resembles TL to some extent. Every lookup table can be considered an
RSS-to-distance nonlinear mapping d(., .) (more precisely, a relation) w.r.t. a
given antenna tower. However, instead of solving a nonconvex optimization prob-
lem, LL carries out the localization by determining common elements in the
lookup tables. Therefore, LL does not involve local minima problems, but it
may result in multiple locations, which need to be addressed.

2 Lateration Using RSS-to-Location Lookup Tables

In the previous section, we concluded that the relationship between received RSS
and true distance is nonmonotone in dense urban areas. Using any nonmono-
tone, continuous function d(.) in Eq. 1 would result in a nonconvex optimization
problem. Here, we introduce a new procedure that we termed lookup lateration
(LL).

The procedure is provided a collection of MXY measurements annotated
with their true locations as training data. Then lookup tables τa(r) contain
mobile locations with respect to RSS r measured by antenna a. This procedure is
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shown by Algorithm 1. To avoid redundant locations in lookup tables and reduce
their size, nearby locations can be grouped using clustering algorithms, and the
center of clusters can be stored in lookup tables. Because RSS measurements
r are real valued and hindered by some measurement noise, we simply applied
binning techniques to group measurements together. The corresponding bin b
of a measurement r using bin size s is calculated b = �r/s�. In most of our
experiments, we simply used bin s = 1; thus, all r were rounded down to the
closest integer. For instance, −64.7 dBm is rounded down to −65. In the rest of
the paper, s = 1, unless it is specified otherwise.

Figure 2A shows an example, where data were taken from the Urban Han-
nover Scenario and green dots mark the locations stored in τ88(−50), while blue
triangle (bottom) indicates the tower location (ID = 88).

Algorithm 1 . Construction of lookup
tables. The input is a list of localized RSS
measurement M = {(xi, yi, rai

)}N
i=1. Triplet

(xi, yi, rai
) denotes location xi, yi, where RSS

rai
is measured from tower ai. D is the maximal

allowed diameter of a cluster.

1: procedure ConstructLookupTables(M,D)
2: for all antenna tower a do
3: for all RSS r do
4: S ← {(xi, yi) | rai

= r, ai = a}
5: τa(r) ← Clustering(S, D) �

Group mobiles nearby.
6: end for
7: end for
8: return τ
9: end procedure

Algorithm 2 . Lookup lateration. The
input MRSS = {ra1 , ra2 , ...., ran} is a list of
RSS measurements in decreasing order. Returns
a location estimation for MRSS .

1: procedure LookupLateration(MRSS)
2: Remove rai

∈ MRSS from MRSS if
τai

(rai
) is empty

3: return some default location if M = ∅
4: k ← 1
5: Ck ← τak

(rak
)

6: for k = 1 . . . |MRSS | do

7: break if Ck is ambiguous
8: k ← k + 1
9: Ck ← {ci|ci ∈ Ck−1, cj ∈

τak
(rak

), d(ci, cj)≤T}
10: end for
11: Ck ← Ck−1 if Ck is empty
12: return mean of locations in Ck for query

MRSS

13: end procedure

Now the next step is to determine the location of a given measurement
MRSS = [ra1 , ra2 , ...., ra|A| ]. Here, the principle is that it can be carried out by
determining the common locations in the corresponding tables τai

(rai
), that is,

MRSS is annotated by the location
⋂

i τai
(rai

) for rai
�= NaN and τai

(rai
) �= ∅.

In practice, this could lead easily to an empty set or unambiguous locations. Our
method, shown in Algorithm 2, is slightly different as, in a greedy manner, it
takes into account that stronger signals provide more reliable information. Let
M = {rai1

, rai2
, ..., rain

} be a list of the observed RSS from MRSS in decreasing
order. Our algorithm starts with the set of candidate locations C1 = τa1(ra1)
provided by the strongest signal. In subsequent iterations, in the while loop at
line 6, candidate location ci ∈ C1 is eliminated from C1 if it does not appear as
a candidate location from another antenna ak (k = i2, . . . , in) within a tolerance
T . This iteration terminates if either all measurements are processed or the can-
didate locations in Ck have a smaller variance than a predefined threshold. The
iteration also terminates when Ck is emptied. Figure 2 shows an example of how
this algorithm works.
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)C()B()A(

Fig. 2. Illustration of lookup lateration for query MRSS = {88:−50; 27:−55; 135:−55}.
Candidate locations are marked by green dots, and three antennas (ID= 88 [bottom],
ID= 27 [top], ID = 135 [right hand side]) are marked by blue triangles. (A) Initial
locations in C1 = τ88(−50) at the beginning of Algorithm 2. (B) Next, locations not
present in τ27(−55) are removed, and the resulting locations in C2 are shown. (C) Points
not present in τ135(−55) are also removed, yielding an ambiguous location estimation
in C3 for MRSS . In this example, the lookup lateration stops after three iterations.
(Color figure online)

3 Error Estimation in Grid Systems

The LL method can also be used with grid systems, which can also lead to further
simplifications of the algorithm. In our experiments, Algorithm 1 simply stored
unique grid references in τa(r). Thus, clustering algorithms were not needed.
Moreover, filtering condition (d(ci, cj) < T ) in line 9 of Algorithm 2 was replaced

with a Kronecker delta (δci,cj
?= 1)1, which is more quickly evaluated.

Now we can compare the error obtained by fingerprinting and lookup later-
ation methods under two assumptions: (1) completeness and (2) unambiguous-
ness. By completeness, we assume that there are enough data observed in each
grid. This ensures that error is not induced by data sparsity, poor design, or
the localization is not carried out in, say, Paris if site survey was taken in New
York, etc. By unambiguousness we assume that identical observations cannot be
found in different grids. This assumption ensures that any observation can be
determined unambiguously. Now we can claim the following:

Theorem 1. Let E[ELL] and E[ERFP ] be the expected error obtained with LL
and RF, respectively. Under the conditions mentioned above, E[ELL] ≤ E[ERFP ].

Proof. First, let us consider the fingerprinting method. Let B ⊂ R|A| be the
measurement space, G be the grid system, Pxy be the density distribution of
measurements belonging to grid xy ∈ G, and μxy be the mean vector of Pxy. The
distance function d in RFP localization implicitly specifies a Voronoi partition
of B: {Rxy}xy∈G , where

Rxy = {r ∈ B | d(r, μxy) ≤ d(r, μuv) ∀uv �= xy ∈ G}. (3)

1 Defined by Kronecker delta (δa,b = 1 ⇐⇒ a = b, otherwise 0).
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Second, let MRSS ∈ B denote a query measurement observed at position Mxy,
which is in grid xy ∈ G.

If MRSS ∈ Rxy and MRSS /∈ Ruv for any other uv �= xy ∈ G, then RFP
localizes MRSS in the center of grid xy. The localization error is ε1 = d(Mxy, cxy),
that is, the distance between Mxy and the center of the grid cxy. Let E1 be this
type of error and let Exy[ε1] be the expected value of this error type in grid xy.

If MRSS /∈ Rxy, then ∃uv ∈ G in which RFP localizes MRSS . The error is
ε2 = d(Mxy, cuv). Let Exy[ε2] denote the expected error of this type with respect
to grid xy. Let E2 denote this type of error. Note that error ε2 is always greater
than error ε1, which implies that

Exy[ε1] < Exy[ε2]. (4)

If MRSS ∈ Rxy and MRSS ∈ Ruv for uv �= xy ∈ G, then that means either
MRSS is on the border of two regions Rxy and Ruv or μxy = μuv. In the first
case, RFP has to choose between the two grids. Let us give some advantage to
RFP and assume for the sake of simplicity, it always chooses the correct grid
somehow. In the second case, we have Rxy = Ruv. In our opinion this case
happens rarely in practice, so we omit this type of error, and we assume that
μab �= μcd for any ab, cd ∈ G in the rest of this proof.

The probability that RFP localizes MRSS in its correct grid is

pxy(E1) =
∫

Rxy

Pxy(ra1 , ra2 , . . . , ra|A|) dra1 . . . dra|A| , (5)

and it is indicated by the white area under Pxy in Fig. 3. The probability that
RFP localizes MRSS in a grid incorrectly is

pxy(E2) =
∫

B\Rxy

Pxy(ra1 , . . . , ra|A|) dra1 . . . dra|A| = 1 − pxy(E1). (6)

and it is indicated by the gray area under Pxy in Fig. 3.
Last, the total expected error for the fingerprinting method can be summa-

rized as follows:

E[ERFP ] =
∑

xy∈G
p(xy) [pxy(E1)Exy[ε1] + pxy(E2)Exy[ε2]] , (7)

where p(xy) denotes a priori probability of receiving an RSS from grid xy.
Now we examine LL, and let us consider MRSS = [ra1 , ra2 , ..., ra|A| ] measured

in grid xy. Because of the first and second assumptions, we have xy ∈ τai
(rai

)
and

⋂
i τai

(rai
) = {xy}, respectively. This means when Algorithm 2 terminates,

the set Ck unambiguously contains only one candidate grid, where the measure-
ment was observed. Hence, the total expected error for lookup lateration can be
summarized as follows:

E[ELL] =
∑

xy∈G
p(xy)E[E1], (8)

Following from Eq. 4 we obtain E[ELL] ≤ E[ERFP ], which proves our claim. �
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To illustrate the proof of Theorem 1, let us consider a scenario in which
there is one antenna tower A and two nearby grids Gxy, Guv. Furthermore, let
us assume that A receives −53,−55,−57,−59, and −61 dBm from Gxy and
−58,−60,−62,−64, and −66 dBm from Guv. The mean values are μxy = −57
and μuv = −62 and Rxy = {x | x ≥ −59.5} and Ruv = {x | x ≤ −59.5}. RFP
locates measurement M = −61 dBm in grid Guv incorrectly because M ∈ Ruv,
that is, M closer to μuv than to μxy. However, LL constructs a table τA in
which τA(−66) = τA(−64) = τA(−62) = τA(−60) = τA(−58) = {Guv} and
τA(−61) = τA(−59) = τA(−57) = τA(−55) = τA(−53) = {Gxy}. Therefore, LL
will find Gxy ∈ τA(−61) and localize M in it correctly.

Fig. 3. (A) Distribution of measurements for three grids rs, xy, and uv in fingerprinting
scenario. Decision boundaries between Rrs, Rxy, and Ruv are halfway between distri-
bution means. (B) Decision boundaries in case of multi-modal density distributions.
The decision boundary defined with RFP is located between μxy, μuv and the corre-
sponding regions Rxy, Rxy denoted on horizontal bar A. Decision boundaries defined
by the NPL non-continuous and are shown on bar B.

One may argue that Theorem 1 is based on two conditions that are hard
to ensure in practice. We may agree, but in our opinion, Theorem 1 shows the
conceptual limitation of the fingerprinting method. However, if we easy up on
the conditions and if the unambiguousness is not required, then we claim

Theorem 2. Fingerprinting method is suboptimal in the sense of the Neyman-
Pearson criterion.

Proof. Localization using grid systems can be considered a classification prob-
lem in which grids are considered classes, and a localization method has to
decide whether to classify a query MRSS in a given class xy. Let P+(MRSS) =
Pxy(MRSS) and P−(MRSS) = 1

Z

∑
uv �=xy Puv(MRSS) be likelihood functions,

where Z is an appropriate normalization factor. According to the Neyman-
Pearson Lemma (NPL), the highest sensitivity can be achieved with the following
likelihood-ratio rule:
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Localize MRSS in grid xy if
P+(MRSS)
P−(MRSS)

≥ η, (9)

where η is a trade-off parameter among false positive, false negative error, and
statistical power. Let η = 1 for sake of simplicity. The region R+ = {MRSS |
P+(MRSS) ≥ P−(MRSS)} in which a query MRSS ∈ R+ is localized in grid xy
and defined by the likelihood ratio can be noncontinuous region. However, Fig. 3B
illustrates that the region Rxy defined by RFP in Eq. 3 is always continuous and
different from R+. Therefore, RFP yields less or equal sensitivity than it could
be achieved with NPL, where equality holds iff all distribution belonging to grids
are symmetric and unimodal. �

In other words, the weakness of RFP arises from the fact that RFP does
not take into account the full distribution of measurements, it uses only the
mean vectors of the distributions, which can be disadvantageous for multimodal
distributions. Contrary, NPL utilizes the whole distribution.

On the other hand, LL will identify all candidate grids in which the query
can be found. Therefore, the set of candidate grids C(k) will contain the correct
grid as well. If LL was programmed to localize a query by the center of the grid
x̃y for which x̃y = argmaxxy∈C(k){Pxy(MRSS)}, then LL would be optimal in
the sense of NPL. However, we decided to report the mean of the candidate
grids. In this case, E2 happens, but we hope averaging the candidate locations
would mitigate the amount of error ε2. This also does not require us to store or
model full measurement distributions.

4 Results and Discussion

We have carried out our experiments on the Urban Hannover Scenario dataset
[15]. This dataset contains approximately 22 Gb of RSS measurements simu-
lated in Downtown Hannover, along with a reference x-y location. The reference
point (0-0) for the coordinate system is the lower left corner of the scenario. The
data is the result of a prediction with a calibrated ray tracer using 2.5D build-
ing information. For each mobile phone, the 20 strongest RSS measurements
are provided. For further details, we refer to [15]. Data was split into training
and test sets randomly, and experiments were repeated ten times. Results were
averaged. The variance in results was very small because of the dataset’s huge
size; therefore, standard deviation is not shown for the sake of simplicity. Algo-
rithms were implemented in Python programming language and executed on a
PC equipped with a 3.4 GHz CPU and a 16 GB RAM.

First, we investigated the localization accuracy of RFP and LL methods using
grid sizes 5, 10, 20, and 50 m. The full dataset was split to 10% training and
90% test data. The results shown in Fig. 4 clearly tell us LL and RFP perform
nearly the same when the grid size is small (Figs. 4A–B). The performance of LL
remains roughly the same as the size of the grid grows (Figs. 4C–E), while the
performance of RFP decreases quickly. In our opinion the dramatic drop in the
performance of RFP is in accordance with Theorems 1 and 2. Large grids cover
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Fig. 4. Performance of RFP and LL using various grid sizes. Dashed lines corresponds
to errors at 67% and 95%.

a large area containing various obstacles on the ray propagation path, which
result in wide, multimodal measurement distributions w.r.t. grids. This is not
taken into account by RFP. Next, we analyzed the speed of these methods, and
the results are summarized in Fig. 4F. LL seems to be extremely fast, around
two magnitudes faster compared to the RFP method. This improvement stems
from the fact that LL processes only a few lookup tables related to a query.
On the other hand, RFP iteratively processes all grids while seeking the most
similar RSS vector pattern. It is also surprising, the execution time of LL does
not depend on the grid size, while RFP quadratically becomes slower as the grid
size decreases.

Next, we investigated how RFP and LL methods perform with improper site
surveying. We calculated a site coverage defined as the ratio of grids that contain
training data. For instance, 35% of coverage means that the training data belong
to 35% of the total grids, and all queries would be localized in one of these grids.
The coverage is driven by two factors: (i) grid size and (ii) the size of the training
data. First, we took 5% of the training data and calculated the coverage and the
localization error at 67% and 95% using various grid sizes. The results shown
in Table 1 tell us a larger grid size results in larger coverage, and both methods
yield a larger localization error at 67%. However, if we take a closer look and
calculate a relative error (RE) as the ratio of the error and the grid size, we
can observe opposite tendencies. The RE obtained with LL decreases as the grid
size grows, and we think this is the result of increased coverage. However, the
RE obtained with RFP increases in spite of increased coverage, and we explain
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this by the arguments in Theorems 1 and 2. On the other hand, the RE and the
overall error show opposite tendencies at 95%. LL decreases while RFP increases
the overall error and RE as the sizes of grids and coverage grow.

Table 1. Localization Error (m) and Coverage with various grid sizes

Grid size (m) 1 5 10 20 50

Cov. (%) 26.38 54.42 66.74 71.78 87.20

Error REa Error RE Error RE Error RE Error RE

67% LL 0.77 0.77 2.44 0.49 4.74 0.47 9.11 0.46 22.24 0.44

RFP 1.09 1.09 5.76 1.15 16.36 1.64 72.50 3.63 157.17 3.14

95% LL 125.98 125.98 89.51 17.9 69.37 6.94 55.66 2.78 49.88 0.998

RFP 6.32 6.32 45.05 9.01 138.62 13.68 242.19 12.11 343.94 6.88

The training set size was 5%. a Relative error (RE) is defined as the ratio of error and grid
size.

5 Conclusions

In this article, we have presented a new method called lookup lateration for
localization problems in densely populated urban areas using received signal
strength (RSS) data. Our method combines the advantages from both triangular
lateration and fingerprinting.

Lookup lateration outperforms triangular lateration and fingerprinting-based
methods in localization accuracy as well. Triangular lateration does not take into
account NLOS objects; hence, its performance in urban areas is always limited.
We also showed conceptual limitations of the fingerprinting method in Theorems
1 and 2. Briefly, the problem is that RSS observations are aggregated in the same
grid position, and their variances are not taken into account. As a consequence,
fingerprinting is prone to annotate observations with incorrect grid positions.
This situation cannot happen with lookup lateration because it stores all grid
positions for any observed RSS values separately. This fact makes LL very robust
to larger grid sizes.

Finally, it is very easy to migrate from RFP to LL. Since LL does not need any
additional data compared to RFP, lookup tables can be constructed from the site
surveying data of RFP. Lookup tables can also be an intelligent reorganization
of fingerprinting data, which preserves measurement variance implicitly. Our
method is very simple, easy to implement in distributed systems, and inexpensive
to maintain, which, we hope, can make it appealing for large-scale industrial
applications.



Lookup Lateration: Mapping of Received Signal Strength to Position 245

References

1. Directive 2002/58/EC on privacy and electronic communications
2. Bahl, P., Padmanabhan, V.N.: Radar: an in-building RF-based user location and

tracking system. In: Proceedings of Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2, pp. 775–
784. IEEE (2000)

3. Campos, R.S., Lovisolo, L.: A fast database correlation algorithm for localization
of wireless network mobile nodes using coverage prediction and round trip delay.
In: VTC Spring. IEEE (2009)

4. Campos, R.S., Lovisolo, L.: Mobile station location using genetic algorithm opti-
mized radio frequency fingerprinting. In: Proceedings of ITS 2010 International
Telecommunications Symposium (2010)

5. Cong, L., Zhuang, W.: Nonline-of-sight error mitigation in mobile location. IEEE
Trans. Wirel. Commun. 4(2), 560–573 (2005)

6. FCC: Revision of the commission rule to ensure compatibility with enhanced 911
emergency calling system. Technical report RM-8143, Federal Communications
Commission (FCC), Washington, DC (2015)

7. Gentile, C., Alsindi, N., Raulefs, R., Teolis, C.: Geolocation Techniques: Principles
and Applications. Springer, Heidelberg (2012)

8. Gezici, S.: A survey on wireless position estimation. Wirel. Pers. Commun. 44(3),
263–282 (2008)

9. He, S., Chan, S.H.G.: Tilejunction: mitigating signal noise for fingerprint-based
indoor localization. IEEE Trans. Mobile Comput. 15(6), 1554–1568 (2016)

10. Ma, C., Klukas, R., Lachapelle, G.: A nonline-of-sight error-mitigation method for
TOA measurements. IEEE Trans. Veh. Technol. 56(2), 641–651 (2007)

11. Magro, M.J., Debono, C.J.: A genetic algorithm approach to user location esti-
mation in UMTS networks. In: The International Conference on “Computer as a
Tool”, EUROCON 2007, pp. 1136–1139. IEEE (2007)

12. Marco, A., Casas, R., Asensio, A., Coarasa, V., Blasco, R., Ibarz, A.: Least median
of squares for non-line-of-sight error mitigation in GSM localization. In: 2008 IEEE
19th International Symposium on Personal, Indoor and Mobile Radio Communi-
cations, pp. 1–5, September 2008

13. Neskovic, A., Neskovic, N., Paunovic, G.: Modern approaches in modeling of mobile
radio systems propagation environment. IEEE Commun. Surv. Tutorials 3(3), 2–12
(2000)

14. Nuño-Barrau, G., Páz-Borrallo, J.M.: A new location estimation system for wire-
less networks based on linear discriminant functions and hidden Markov models.
EURASIP J. Appl. Signal Process. 2006, 159–159 (2006)

15. Rose, D.M., Jansen, T., Werthmann, T., Türke, U., Kürner, T.: The IC 1004
urban hannover scenario - 3D pathloss predictions and realistic traffic and mobility
patterns (2013)

16. Takenga, C., Xi, C., Kyamakya, K.: A hybrid neural network-data base corre-
lation positioning in GSM network. In: 2006 10th IEEE Singapore International
Conference on Communication Systems, pp. 1–5, October 2006

17. Takenga, C.M., Kyamakya, K.: Location fingerprinting in GSM network and
impact of data pre-processing (2006)

18. Wu, C.L., Fu, L.C., Lian, F.L.: WLAN location determination in e-home via sup-
port vector classification. In: 2004 IEEE International Conference on Networking,
Sensing and Control, vol. 2, pp. 1026–1031. IEEE (2004)



246 A. Shestakov et al.

19. Yu, L., Laaraiedh, M., Avrillon, S., Uguen, B.: Fingerprinting localization based
on neural networks and ultra-wideband signals. In: 2011 IEEE International Sym-
posium on Signal Processing and Information Technology (ISSPIT), pp. 184–189,
December 2011

20. Zekavat, R., Buehrer, R.M.: Handbook of Position Location: Theory, Practice and
Advances, 1st edn. Wiley/IEEE Press, Hoboken/Piscataway (2011)


	Lookup Lateration: Mapping of Received Signal Strength to Position for Geo-Localization in Outdoor Urban Areas
	1 Introduction and Literature Review
	2 Lateration Using RSS-to-Location Lookup Tables
	3 Error Estimation in Grid Systems
	4 Results and Discussion
	5 Conclusions
	References




