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Abstract. Glomerulal structures in kidney tissue have to be analysed at
a nanometer scale for several medical diagnoses. They are therefore com-
monly imaged using Transmission Electron Microscopy. The high resolu-
tion produces large amounts of data and requires long acquisition time,
which makes automated imaging and glomerulus detection a desired
option. This paper presents a deep learning approach for Glomerulus
detection, using two architectures, VGG16 (with batch normalization)
and ResNet50. To enhance the performance over training based only
on intensity images, multiple approaches to fuse the input with tex-
ture information encoded in local binary patterns of different scales have
been evaluated. The results show a consistent improvement in Glomeru-
lus detection when fusing texture-based trained networks with intensity-
based ones at a late classification stage.

Keywords: Glomerulus detection - Transmission Electron
Microscopy + Convolutional Neural Networks + Local binary patterns
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1 Introduction

The glomerulus is a structure in the kidney which acts as a filtration barrier for
metabolic waste from the bloodstream. A number of diseases, such as minimal
change disease, systemic lupus and many others, can affect the glomerulus and
have serious impact on the kidneys and their function. Analysis of the thickness
of the glomerular basement membrane (GBM), deposits of amyloid fibres, protein
or virus-like deposits in the membrane, and foot process effacement, are some of
the necessary nephropathological diagnostic procedures. Diagnostically relevant
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glomerular structures, such as protein fibres and deposits, are of nanometer-
scale dimensions, which makes Transmission Electron Microscopy (TEM) the
preferred imaging technique for glomerular analysis.

The first step in the analysis is detection of glomeruli in the sample. This is
typically done at low magnification which allows a relatively large field of view
(FOV) of the sample. A pathologist then continues the analysis of zoomed-in
regions of interest, i.e., at higher magnification, focusing on the relevant struc-
tures of the glomerulus. This multi-scale analysis is currently performed manu-
ally, requiring that a pathologist spends a long time at the electron microscope.
Figure 1 shows a typical sample mesh used in TEM, and a series of visualizations
at increasing magnifications to the level at which the foot processes along the
GBM are visible.

Fig. 1. A series of magnifications illustrating the vast search space for glomeruli on a
mesh grid used for TEM with a diameter of 3mm (left) to a single acquired image of
size 16 x 16 wm (right). For ground truth annotation, to reliably identify a glomerulus,
the foot processes along the GBM were used for recognition

Fully automated image acquisition of the relevant portions of the sample
(glomeruli) in high magnification would significantly reduce the consumption of
precious expert time and allow the expert to perform the diagnosis at his/her
choice of time and place, rather than at the microscope.

We suggest a two-step approach to automate the imaging process: (1) Scan-
ning is first performed at low magnification to identify regions of interest, fol-
lowed by (2) imaging of only those detected regions of interest at high magni-
fication. In this study, we focus on the first step: glomerulus detection in low
magnification TEM images. The detection is based on classification of whole
(low-mag) images as either part of a glomerulus or as other kidney tissue. An
example of such a low-mag image is shown in Fig. 1 (right).

In bright-field microscopy images, glomeruli are recognized and detected by
their characteristic texture; a variant of the LBP texture descriptor, named
multi-radial color LBP (mcLBP) has recently shown to perform very well on
the task [18]. In this study, we combine the ability of LBPs to describe the fine
textural details with the classification power of Convolutional Neural Networks
(CNNs). We are particularly inspired by the approach proposed in [1,8], where
authors compute dense LBP feature maps which, in combination with raw image
data, are classified using deep CNNs.



Glomerulus Detection by Fusion of CNN and LBP Maps 467

2 Background and Preliminaries

2.1 Previous Work

The descriptive power of recently suggested mcLBP for glomeruli detection in
bright-field microscopy images [18], results from concatenated histograms of
LBPs with different radii, computed for each RGB color channel separately. To
further boost the performance and decrease the number of false positive detec-
tions, authors train a deep CNN, GoogleLeNet. They observed that the deep
learning based approach solely performs worse than the one based on mcLBP. A
number of other papers have demonstrated that it is often beneficial to combine
hand crafted and learned features [12,13,16,17]. This can be seen as a varia-
tion of transfer learning, where the network is helped by additional views of the
imaged data.

Approaches to combine the power of machine learning and LBPs in texture-
based classification include extraction of histograms of LBP responses over slid-
ing windows (in histopathological whole-slide images), followed by support vec-
tor machine (SVM) classification [18]. LBP histograms have also been used in
combination with learned features of CNNs [12]. LBP-like features can also be
learned, as in [11]. Instead of computing LBP histograms, LBPs can be used as
a dense feature extractor, and combined with CNN [1,8]. Furthermore, LBPs
can be interpreted as convolutional layers, with learned parameters [6,9].

We are following the very promising approach proposed in [1,8], where
authors use dense LBP maps, in combination with the raw image data, as input
for a CNN. The generation of LBP codes of an image results in an unordered
set of binary codes where the distance between code values of two patterns does
not reflect the distance between the patterns. This makes the direct usage of
LBP codes unsuitable for CNNs; the discrete convolution operation computes a
weighted sum of input values, similar to interpolation, but interpolation of the
LBP codes does not have a meaningful interpretation. Therefore, a dissimilarity
measure, defined in [8] for all possible codes, is used in multidimensional scaling
(MDS), which is then applied to map the unordered set of codes into a metric
space. This enables the (meaningful) use of convolutions on LBP maps.

2.2 Preliminaries

Local Binary Patterns (LBP) [14] are among the most successful texture
descriptors in image analysis. Over time, a number of variants have been pro-
posed [10], finding numerous applications [15].

In general, the LBP code LBE. ,(c), for a pixel ¢ with intensity value g, is

p! 12>0
LBP. = i — ge) 2 = =" 1
»(0) ;8(9 ge) s(x) {0 o0 (1)

where ¢g; € {0...p — 1} are pixels sampled equidistantly in a circle of radius r
in the neighborhood of g. (Fig.2).
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Fig. 2. LBP code sampling for intensity images

LBP codes are most often binned over the full image into a histogram, thereby
providing a feature vector of size 2P for the entire image. In [8] however, an LBP
code is generated for every pixel without any following binning. Hence, a value
in the range [0,2P~!] is obtained for every pixel. This texture representation is,
however, not well suited as an input to a deep convolutional network. CNNs
are based on discrete convolutions which can be seen as a weighted average
of their input. On the other hand, LBP codes are binary encoded such that
codes with similar numeric values may represent not at all similar patterns.
Performing numerical operations such as averaging is therefore not reasonable
on a set of LBP codes; they need to be mapped into a metric space first. Such
an approach, using multidimensional scaling to map LBP codes into Euclidean
space, is proposed in [8].

Multidimensional Scaling (MDS) is a common technique in data science.
Using (dis-)similarities of data points, MDS can be used to map the data from
an unordered set X C {25} into a metric space by numerical optimization [2].

Non-metric multidimensional scaling is performed on the dissimilarity matrix
A = (0;;) € R*™. The so-called representation function f(d;;) specifies the
relation between the dissimilarities and their corresponding metric values D =
(dij) € R}*™ which lie in an Euclidean space and approximate a monotonic
transformation of d;;. The resulting optimization problem aims to minimize an
objective function referred to as stress. We follow [8] and use non-metric stress
normalized by the sum of squares of the inter-point distances, also known as
Kruskal’s normalized stress-1 criterion [7]:

22 0) = di (X))
Stress-1 = \/ > 2 (X) (2)

Dissimilarity Measure. To apply MDS to the set of LBP codes, we use one
of the dissimilarity measures between the codes suggested in [8]:

15 = O(Ps, Py) = min {3(PY, PP),d(rev(P?), PY),3(P,xev(PI) ). (3)

Here, 6(P;, P;) = |CDF(P;) — CDF(P;)||1, where CDF(P) is the cumulative
distribution function of bit values; this approximates the Earth Mover’s Distance
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between the strings (more details about the efficient computation can be found
in [8]). PP is the concatenation of the binary string P and an additional bit of 0
and rev(P) the rearrangement of a string P in reverse order.

LBP Maps are obtained by MDS (using Eq. (2)) applied to LBP codes com-
puted for every image pixel. We follow recommendations from [1,8] and map the
LBP codes into a 3-dimensional space. An example of a resulting LBP map is
shown in Fig. 3, visualized as an RGB image.

Fig. 3. Intensity image of Glomerulus and its corresponding LBP map in 3D metric
space

3 Method

3.1 Dataset

16-bit intensity images of the size 2048 x 2048 pixels were acquired using
MiniTEM!, a desktop, low-voltage (25keV) transmission electron microscope.
The dataset consists of 494 images, grouped in two sets used for training and
testing. The sets were independently acquired at different occasions using the
built-in automatic imaging function in MiniTEM. The training set consists of
260 images, 70 of which have been marked as containing glomerulus specific
structures, and 190 to contain other kidney tissue. The field of view (FOV) cov-
ered by one image is 16 pm, yielding a pixel size of 7.8 nm. The test set consists
of 56 images containing glomerulus tissue, and 178 images of other kidney tissue
(from two different samples). Example images of both classes, i.e., glomerulus
and non-glomerulus, are shown in Fig. 4, illustrating the difficult task of distin-
guishing the two. Ground truth annotation was done on an image level based on
the visual detection of foot processes.

! Vironova AB, Stockholm.
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(b) Other tissue structures

Fig. 4. Example images from the two classes

3.2 Architecture

We compare two architectures for the CNN models: VGG16 and ResNet50. They
are trained from scratch on either the raw image data or the LBP maps. We
evaluate fusion of raw and LBP data at three different depths of the networks.

Data augmentation, consisting of 0°,90°,180°,270° rotations and mirroring,
is performed for all training data, leading to 8x data augmentation without
interpolation. LBP codes are computed on the TEM intensity images. Following
the LBP computation, the input data (intensity images as well as LBP maps)
were resized to 224 x 224 pixels using nearest neighbor interpolation.

VGG16-like Architecture: The architecture used in the experiments is a
modification of the VGG16 network [19], shown in Fig. 5(a). A batch normaliza-
tion layer is introduced after each convolutional layer.

ResNet50: ResNet50 is a residual neural network with a total of 177 layers
including batch normalizations and activation layers. The layers are learning
residual functions with respect to the layer inputs [5].

We have investigated three different fusion strategies — early, mid and late
fusion — to combine texture and intensity information. To enhance multi-scale
descriptive power of LBPs, we observe LBF, g, LBFR g, and LBR, g, and create
their corresponding maps.

Early Fusion: In the early fusion model, the raw image layer is stacked with
the three layers of (3D) LBP maps and fed into the input layer of the CNN. The
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(b) ResNet50 architecture as introduced in [5]

Fig. 5. Used architectures. Early fusion takes place in the input layer, mid fusion in
the second fully connected layer (VGG16 only), and late fusion after the softmax layer.

intensity image and LBP maps are subsequently jointly used in training using
cross-entropy loss and stochastic gradient descent. In the multi-scale experimen-
tal setup, the raw image layer is stacked with the, in total, nine layers of LBP
maps corresponding to the varying radii (r € {1,2,3}) in LBP extraction.

Mid Fusion: The mid fusion model is only tested for the VGG16-like architec-
ture. It uses a two-stream architecture; one CNNs is trained on the normalized
intensity images, the other on the (single scale) 3-layer LBP maps. Once the two
networks are trained, the outputs of the second fully connected layers of both
architectures are concatenated, resulting in 2 x 4096 features. A linear SVM is
then trained on the resulting 8192-feature vectors.

Late Fusion: Two CNNs are independently trained, one using the normalized
intensity data as input, the other the 3-layer LBP maps. As in [1], the output
probabilities of the softmax layers of the two networks are concatenated and a
linear SVM is trained to classify the data based on such 4-feature vectors. For

the multi-scale setup, the outputs of four networks are fused, thus resulting in
8-feature vectors for the SVM.
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Table 1. Classification accuracies (with std. dev.) for the different approaches.

Architecture Input No fusion Early fusion | Mid fusion Late fusion
VGG16 Intensity 0.907 (0.061)

VGG16 LBP; g 0.843 (0.014) | 0.839 (0.076) | 0.971 (0.013) | 0.972(0.017)
VGG16 LBP; g 0.941 (0.012) | 0.770 (0.046) | 0.970 (0.011) | 0.977 (0.019)
VGG16 LBP3 g 0.915 (0.013) | 0.759 (0.068) | 0.972 (0.009) | 0.969 (0.007)
ResNet50 Intensity | 0.964 (0.016)

ResNet50 LBP g 0.926 (0.018) | 0.728 (0.004) 0.984 (0.003)
ResNet50 LBP; g 0.929 (0.073) | 0.724 (0.008) 0.979 (0.007)
ResNet50 LBP3 g 0.946 (0.016) | 0.731 (0.018) 0.984 (0.006)
VGG16 Multiscale 0.863 (0.026) 0.983 (0.008)
ResNet Multiscale 0.857 (0.021) 0.980 (0.004)
VGG16 Transfer Intensity | 0.877 (0.062)

ResNet50 Transfer Intensity | 0.963 (0.005)

VGG16 ResNet50 Ensemble | Intensity 0.970 (0.005)
SVM, baseline LBPa s 0.752

4 FEvaluation

All models are trained from scratch for 20 epochs using stochastic gradient
descent with momentum of 0.9, a learning rate of 0.001, an Ly regularization
of 107* and a mini-batch size of 16. Average accuracy (ratio of the correctly
identified test samples and their total number) over seven runs of CNN exper-
iments for two types of architectures, VGG16 and ResNet50, are reported in
Table1 and Fig.6. We present results obtained by networks trained solely on
one type of input (intensity images or LBP maps), as well as results obtained by
different methods of fusion (early, mid, or late) of the intensity images and LBP
maps, with different (indicated) parameters. Multiscale refers to the fusion of
the LBP maps of three different radii with the intensity image data (4 networks
fused).

For comparison, transfer learning on the intensity data is evaluated for the
VGG16, as well as the ResNet50 architecture. Both networks were pretrained on
ImageNet [3], whereafter the last fully connected layer (in each) was retrained
on the glomerulus data. Results are included in Table 1. The transfer learning
performance is slightly lower than the from-scratch performance; we assume this
is due to TEM images differing significantly from ImageNet data.

The effect of architecture ensembles has been investigated for reference by
training a linear SVM on the softmax layer output of the VGG16 like architec-
ture and ResNet50 architecture which were trained from scratch on the intensity
images. The approach is similar to the late fusion, but with two different archi-
tectures on the same input, instead of the same architecture with two different
input sources. It improves the outcome slightly compared to a single architecture
performance, but does not reach the performance of the multiple input ensembles
(fusion) utilizing the LBP maps.

As a reference performance, classification based on (multiple versions of clas-
sic) LBP histograms, using a linear SVM classifier, is performed. We observe
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Fig. 6. Misclassification rate of different approaches, VGG16 in blue, ResNet50 in
orange. Late fusion models, in particular based on ResNet50, give best results

0 o

(b) Detected, mislabeled Glomerulus

Fig. 7. The only two misclassifications of the ResNet50 Late Fusion of intensity images
and LBP3s: (a) False negative and (b) False positive detection (confirmed as misla-
beled)

uniform LBP; g and LBP; g, as well as two rotation-invariant versions of LBP; g
and LBP s: by bit-wise shifting [14], and by using the discrete Fourier transform
[4]. The best accuracy, reached by the DFT rotation-invariant LBPs g, is 0.752,
which is considerably worse than the performance of the proposed method.

During manual post-validation of the results, one image, consistently classi-
fied as a false positive Glomerulus detection (and included in the quantitative
evaluation as such), is found to have been incorrectly labelled during ground
truth annotation. The only two misclassified images are shown in Fig. 7.
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5 Conclusions

Our results show a consistent improvement in classification accuracy when tex-
ture information in form of LBP maps is fused with intensity information and
classified using CNNs, compared to only relying on either classic SVM classifi-
cation of LBPs, or CNN classification based on the intensity information only.
Mid and late fusion exhibit similar performance for the VGG16 architecture, and
both yield clearly better results than the early fusion strategy. ResNet50 exhibits
superior performance to VGG16 when applied to a single type of input, in all
cases but one (for LBP; g). The early fusion of input sources for ResNet50 per-
forms the worst for all LBP maps, while the late fusion gives very good results,
of which all exceed the accuracy achieved by VGG16. The multiscale approach
of fusing LBP maps of varying LBP radii and intensity information gave the
best results among all experiments for the early fusion setup, yet the late fusion
yields overall best results. For the late fusion we cannot draw any clear conclu-
sion about optimal LBP radius, the different radii perform roughly equally well.
The multi-scale approach has higher impact on VGG16. We confirm that delay-
ing the fusion and reduction of features to the very end leads to the best results
for this application. OQur promising preliminary results encourage continuation
of the study on a larger dataset.
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