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Abstract. While implicit generative models such as GANs have shown
impressive results in high quality image reconstruction and manipula-
tion using a combination of various losses, we consider a simpler app-
roach leading to surprisingly strong results. We show that texture loss
[1] alone allows the generation of perceptually high quality images. We
provide a better understanding of texture constraining mechanism and
develop a novel semantically guided texture constraining method for
further improvement. Using a recently developed perceptual metric
employing “deep features” and termed LPIPS [2], the method obtains
state-of-the-art results. Moreover, we show that a texture representation
of those deep features better capture the perceptual quality of an image
than the original deep features. Using texture information, off-the-shelf
deep classification networks (without training) perform as well as the
best performing (tuned and calibrated) LPIPS metrics.
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1 Introduction

Recently, the task of single image super-resolution (SISR) has taken an inter-
esting turn. Convolutional neural networks (CNNs) based models have not only
been shown to reduce the distortions on full reference (FR) metrics for, e.g.,
PSNR, SSIM and IFC [3–8], but also to produce perceptually better images [4,9].
The models trained specifically to reduce distortions fail at producing visually
compelling results. They suffer from the issue of “regression-to-the-mean” as
they mainly rely on minimizing the mean square error (MSE) between a high
resolution image IHR and an estimated image Iest, approximated from its low
resolution counterpart ILR. This minimization of MSE leads to the suppression
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of high frequency details in Iest, entailing blurred and over-smoothed images.
Therefore, FR metrics do not conform with the human perception of visual
quality as illustrated in [10,11] and mathematically analyzed in [12].

The newly proposed methods [4,9,13] made substantial progress in improv-
ing the perceptual quality of the images by building on generative adversarial
networks (GANs) [14]. The adversarial setting of a generator and a discrimina-
tor network helps the generator in hallucinating high frequency textures into the
resultant images. Since the goal of the generator is to fool the discriminator, it
may hallucinate fake textures which are not entirely faithful to the input image.
This fake texture generation can be clearly observed in an 8× image super-
resolution images. This behavior of GANs can be reduced using a combination
of content preserving losses. This not only limits the ability of the generator to
induce high quality textures but also makes it fall short in reproducing image
details in the regions which have complex and irregular patterns such as tree
leaves, rocks etc (Fig. 1).

(a) Bicubic (b) SRresnet (c) ENet (d) SRGA (e) TSRN (f) Original

Fig. 1. Visual Comparison of the recent state-of-the-art methods as measured by dis-
tortion and perceptual quality metrics with our texture based super-resolution network
(TSRN) for 4× SISR.

In the present paper we show that, in the task of SISR, perceptually high
quality textures can be synthesized on the estimated images Iest using the Gram
matrices based texture loss [1]. The loss was first employed by Gatys et al. in
transferring realistic textures from a style image (Is) to a content image (Ic).
Despite the success of this method, the utility of texture transfer for enhancing
natural images has not been studied extensively. This is because of the fact
that while preserving the local spatial information of the textures, the texture
loss discards the global spatial arrangement of the content image, rendering the
semantic guidance of texture transfer a difficult problem.

We explore the effectiveness of Gram matrices in transferring and halluci-
nating realistic texture in the task of SISR. We show that despite its simplicity
through the use of a single loss function, our proposed network yields favorable
results when compared to state-of-the-art models that employ a mixture of loss
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functions and involve GANs that are notoriously difficult to train. In contrast,
our model converges without the need of hand-tuned training schemes. We fur-
ther build on this finding by providing external semantic guidance to control the
texture transfer. We show that this scheme prevents the random spread of small
features across object boundaries thus improving the visual quality of results
especially in the challenging task of 8× SISR. Furthermore, we demonstrate,
that Gram matrices of deep features perform surprisingly well in measuring
human perceived similarity between image patches.

2 Related Work

Super Resolution. Single image super-resolution (SISR) is the problem of
approximating a high resolution (IHR) image from its corresponding low resolu-
tion (ILR) input image. The task is to fill in missing information in IHR which
involves the reconstruction and hallucination of textures, edges and low-level
image statistics while remaining faithful to the low-resolution ILR input. It is
an under-determined inverse problem where different image priors have been
explored to guide the upsampling of ILR [15–17]. One of the earliest methods
involved simple interpolation schemes [18], e.g. bicubic, Lanczos. Due to their
simplicity and fast inference, these methods have been widely used, however they
suffer from blurriness and can not predict high frequency details.

Much success has been achieved by using recent data-driven approaches
where a large number of training examples are used to set the prior over
the empirical distribution of data. These learning based methods that try to
learn a mapping between ILR to IHR can be classified into parametric and
non-parametric methods [19]. Non-parametric algorithms include neighborhood
embedding algorithms [20–23], that seek for the nearest match in an available
database and try to synthesize an image by simple blending of different patches.
Prone to mismatch and misalignment in patches these methods suffer from ren-
dering artifacts in the HR output [24]. Parametric methods include sparse models
[17], regression functions [8] and convolutional neural networks (CNNs). Dong
et al. [7] first employed a shallow CNN to perform SISR on a bicubic interpo-
lated image and got impressive results, [25] successfully used a deep residual
network. These CNN based methods use mean square error (MSE) as an opti-
mization objective which leads to blurriness and fails to reconstruct high fre-
quency details. Methods like [3,4] tend to overcome this issue by minimizing
perceptual losses in feature space. Ledig et al. [4] proposed SRResNet to show
improvements in full-reference (FR) metrics. Follow-up work used a multi-scale
optimized SRResNet architecture to win the NTIRE 2017 SISR Challenge [26]
for 4× super-resolution. Moreover, [6] uses a coarse-to-fine laplacian pyramid
framework to achieve state-of-the-art results in 8× super-resolution with respect
to FR metrics.

More recently, GANs based methods [4,9,13] showed promising results by
drastically improving the perceptual quality of images. In addition to the per-
ceptual and adversarial losses used by [4], the patch-wise texture loss used
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by [9] helps synthesizing high quality textures. Our approach is different from
[9], as we give up on the adversarial and perceptual loss terms. Moreover, we
also don’t use patch-wise texture loss and show that a globally applied texture
loss is enough for spatially aligning textures and generating photo-realistic high-
quality images. [27] also used patches and manually derived segmentation masks
to constrain the texture synthesis in Iest. However, it highly relies on the effi-
ciency of a slow patch matching algorithm and thus is prone to wrong matching
of regions in Iest and IHR which renders artifacts. The loss is also shown to
be an important ingredient of a recent image-inpainting method [28]. A new
deep features based contextual loss [29] is used by [30] to maintain the natural
image statistics of Iest. The method is conceptually similar to texture loss. More
recently, a perceptual image enhancement challenge (PIRM) [31] made a huge
step to promote perceptual enhancement in images.

2.1 Neural Texture Transfer

The concept of neural texture transfer was first coined by Gatys et al. [1]. The
method relies on matching the Gram matrices of VGG-19 [32] features to transfer
the texture of one image to another. Afterwards, much work has been done in
order to improve the speed [3,33] and quality [34,35] of style transfer using feed
forward networks and perceptual losses. Building on fast style transfer, [36,37]
proposed models to transfer textures from multiple style images. [35] showed
improvement in style transfer by computing cross-layer Gram matrices instead
of within-layer Gram matrices. Recently, Li et al. [38] has shown that matching
the Gram matrices for style transfer is equivalent to minimizing MMD with
the second order polynomial kernel. In addition to improving the style transfer
mechanism, some work has been done to spatially constrain the texture transfer
in order to maintain the textural integrity of different regions [39,40]. Gatys
et al. [40] demonstrated the spatial control of texture transfer using guided Gram
matrices where binary masks are used as guidance channels in order to constrain
the textures. Similar scheme was used by [34] in constraining style transfer.
Instead of enforcing spatial guidance in the feature space of deep networks like
these methods, we enforce it in pixel-space via customized texture loss which,
unlike other methods, not only enables it to easily scale to multiple style images
but also does not require semantic details at the test time.
Our main contributions are as follows:

– We provide a better understanding of texture constraining mechanism via
texture loss and show that SISR of high perceptual quality can be achieved
by using this as an objective function. The results compare well with GANs
based methods on 4× SISR and outperform them on 8× SISR.

– Unlike GANs based methods, our method is easily reproducible and generates
faithful textures especially in the constrained domain of facial images.

– To further enhance the quality of 8× SISR results, we formulate a novel
semantically guided texture transfer scheme in order to avoid the intermixing
of interclass textures such as grass, sky etc. The method is easily scalable to
multiple style images and does not require semantic details at test time.
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– We also show that Gram matrices provide a better and richer framework to
capture the perceptual quality of images. Using this, our off-the-shelf deep
classification networks (without training) perform as well as the best per-
forming (tuned and calibrated) LPIPS metrics [2].

3 Texture Loss

The texture transfer loss was first proposed in the context of neural style trans-
fer [1], where both style Is and content images Ic are mapped into feature space
using a VGG-19 architecture [32], pre-trained for image classification on image-
net. The feature maps of both Is and Ic are denoted by F l ∈ R

Nl×Ml and
P l ∈ R

Nl×Ml respectively, where Nl is the number of feature maps in layer
l and Ml is the product of height and width of feature maps in layer l i.e.
Ml = height × width. A Gram matrix is the inner product of vectorized fea-
ture maps. Therefore the Gram matrices for both F l and P l are computed as
Gl

i,j = FT
i Fj and Al

i,j = PT
i Pj . The texture loss Ltexture is defined by the

mean squared error between the feature correlations expressed by these Gram
matrices.

Ltexture =
1

4N2
l M

2
l

Nl∑

i=1

Ml∑

j=1

(Gl
i,j − Al

i,j)
2 (1)

The loss tries to match the global statistics of Ic with Is, captured by the corre-
lations between feature responses in layers l of the VGG-19. These correlations
capture the local spatial information in the feature maps while discard their
global spatial arrangement [41].

3.1 Constraining Texture Transfer

The above loss tries to match the global level statistics of Is and Ic without
retaining the spatial arrangement of the content image. However, we observe
that if there exists a good feature space correspondence between Is and Ic then
the Gram matrices alone constrain the texture transfer such that it preserves
the semantic details of the content image. The composition of Gram matrices
makes use of the translational invariance property of the pre-trained VGG-19’s
[32] convolutional kernels in mapping the textures correctly. We shed more light
on this texture constraining mechanism and its translational invariant mapping
in the appendix. Thus Gram matrices’ provide a stable spatial control such that
the texture from Is maps to the corresponding features on Ic. Figure 2 shows
texture transfer of a non-texture image for different initial approximates of Ic
using iterative optimization approach by [1]. Second column depicts the results
of vanilla style transfer [1] on a plain white image, 4× upsampled image and an
8× upsampled images respectively. In case of plain white image, the texture gets
transferred in an uncontrollable fashion. This is the known phenomenon in image
style transfer. However, the texture transfer on a 4× and 8× upsampled images
shows consistency in texture mapping i.e. texture from Is gets mapped to the
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correct corresponding regions of Ic. We observe that the interpolated approxi-
mates Iest of ILR are good enough for establishing feature-space correspondences
and thus mapping the textures correctly.

Fig. 2. (a) shows IHR (in insets) and a plain white, 4× and 8× upsampled versions
of IHR as Ic. (b) vanilla neural texture transfer [1]. (c) neural texture transfer with
semantic guidance.

In the Fig. 2, one can observe that the texture transfer for a 4× interpolated
image is much better than that for an 8×. The ambiguousness in texture transfer
for an 8× upsampled ILR is because of the absence of enough content features
to establish correspondences. Thus to better guide the texture transfer in 8×
SISR, we devise an external semantic guidance scheme. The third column in
Fig. 2 shows the effectiveness of the semantically guided texture transfer. In
comparison to the second column we can see that the texture is transferred in a
more coherent fashion.

3.2 Texture Loss in SISR

In SISR we try to find a mapping between a low-resolution input image ILR and
a high-resolution output image IHR. As a function approximator we use a deep
CNN. While recent state-of-the-art methods use a combination of various loss
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functions, our texture super resolution network (TSRN) is specifically trained to
optimize for Ltexture in Eq. 1 which yields images of perceptually high quality
for 4× and 8× super-resolution, Figs. 5 and 6.

3.3 SISR via Semantically Constrained Textures

In order to make full use of the texture loss based image super resolution, we also
performed externally controlled semantic texture transfer. We enforce semantic
details via loss function. For the implementation of semantic control of texture
transfer, we use the ground truth segmentation masks provided by the recently
released dataset MS-COCO stuff dataset [42].

Additional spatial control is provided by making use of the semantic informa-
tion present inside an image. Instead of matching the global level statistics of an
image we divide the image into r segments semantically. Each segment exhibits
its own local level statistics which are different from the other segments of the
same image. This facilitates us to match the local level statistics at an individual
segment level. Also it helps in preserving the global spatial arrangement of the
segments as the relative spatial information of each segment is considered before
extracting them from the images.

Fig. 3. Scheme for semantically controlled texture transfer.

Our method gains inspiration from the spatial control of texture transfer
based on guided Gram matrices (GGMs) [40] where binary segmentation masks
are used to define which region of a style image would get mapped to the specific
region of a content image. It uses r segmentation masks Irseg to compute guidance
channels (Tr

l ) for each layer l of a CNN by either down-sampling them to match
the dimensions of each layer’s feature maps or by enforcing spatial guidance only
on neurons whose receptive field lie inside the guidance region for better results.
The guidance channels are then used to form spatially guided feature maps by the
element-wise multiplication of texture image features and the guidance channels.
This method of computing GGMs for training a deep architecture is not feasible,
especially in our case where we have multiple segmentation masks for each image.
We propose a simplification of this process by removing the need of guidance
channels (Tr

l ) and the explicit computation of spatially guided feature maps
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altogether. The r binary segmentation masks Irseg (having pixel value of 1 for
the class of interest and 0 elsewhere) where each mask categorically represents a
different region of an image are element-wise multiplied with the texture image
IHR and the estimated image Iest to give out Irtarget and Irest respectively, Fig. 3.

Irtarget = IHR ◦ Irseg (2)

Irest = Iest ◦ Irseg (3)

These segmented images are then propagated to the VGG19 and Gram matri-
ces of their feature maps are then computed in normal fashion. The method is
flexible and relatively fast to enforce spatial guidance of texture transfer, espe-
cially when it has to be used for training a deep architecture. The texture loss is
then performed individually for all the segmented images. Equation 4 shows the
objective function formulation of the complete semantically controlled texture
transfer. See abstract to check the effectiveness of our proposed semantically
controlled fast style transfer.

Ltexture =
r∑

k=1

1
4N2

l M
2
l

Nl∑

i=1

Ml∑

j=1

(Gl
i,j(I

k
target) − Al

i,j(I
k
est))

2 (4)

4 Architecture

For the implementation of TSRN, we employ a fully convolutional neural network
architecture inspired by [9]. The architecture is efficient at inference time as it
performs most feed forward computations on ILR and is deep enough to perform
texture synthesis. The presence of residual blocks facilitates convergence during
training. Similarly to [9], we also add a bi-cubically upsampled version of ILR

to the predicted output such that the network is only required to learn the
residual image. This helps to reduce color shifts during training as also reported
by [9]. However, instead of using nearest neighbor up-sampling, we use a pixel
resampling layer [43] because of its recent proven success in generative networks
[44]. The method is also shown to be agnostic to model’s depth. See appendix
for more details.

5 Implementation

We trained our network on MS-COCO [42], where we center crop image patches
sized 256 × 256 pixels. The patches are then bi-cubically down-sampled 4× or 8×
to 64 × 64 or 32 × 32, respectively. We first pretrain our network by minimizing
mean square error (MSE) for 10 epochs. We found this pre-training beneficial for
the subsequent Gram matrix based optimization as it facilitates the detection
of relevant features for texture transfer. After pretraining, we train our model
using only 1 as an objective function for another 100 epochs. We found that
the network converges after approximately 60 epochs. For the implementation
of Ltexture, we compute Gram matrices on layers conv2 2, conv3 4, conv4 4 and
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conv5 2 of a pre-trained VGG-19 architecture. To justify the selection of spe-
cific VGG-19’s layers for texture loss, we provide a qualitative and quantitative
(LPIPS) analysis on SunHays dataset in Fig 4. We considered convolutional lay-
ers before each pooling layer except (conv1 2 ) as this layer, containing more
pixel-level and less structural information, causes artifacts and over-smoothing
in images. The selection of only higher layers tend to generate checkboard arti-
facts. In Fig. 4, all the networks are trained using the same architecture and
procedure mentioned in the paper for 100 epochs. The network is trained with
the learning rate of 0.0005 using ADAM as an optimizer. We use the PyTorch
framework [45] to implement the model on a Nvidia Tesla P40 GPU. Inference
time for 4× and 8× SISR is approximately 41 and 32 ms for a 1 mega-pixel image
and 0.203 and 0.158 s for a 5 mega-pixel image on the GPU.

Fig. 4. Layer and loss ablation study on SunHays dataset [24]. Each column shows
the effects of different VGG19 [32] layers on the visual quality of a restored image.
Perceptual loss using deep features (F) generates blurred images (left most column)
in comparison to Gram matrices (G) based restoration. The last row shows the mean
LPIPS score on the dataset (lower score is better).

For our results on segmentation based super-resolution (TSRN-S), we pre-
train on the MS-COCO dataset before we train on the MS-COCO stuff dataset
using Eq. 4 as an objective function. The stuff dataset is particularly suited for
our task as it not only contains the segmentation masks of object instances but
also outdoor scenes like grass, sky, buildings etc. Statistically, these regions cover
more than 60% [46] of images showing natural scenes. To reduce the computation
time, we consider the binary segmentation masks of only six maximally repre-
sented classes in each image (based on their pixel count). Whereas the seventh
mask covers the ‘others’ class, containing the remaining regions of the image. If
there are less than six classes in an image then the ‘others’ class is replicated to
give out seven masks per image.
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6 Experimental Results

We evaluate both our proposed models, one with globally computed Gram matri-
ces (TSRN-G) and semantically guided Gram matrices (TSRN-S).

6.1 Quantitative Evaluation

For quantitative comparison we follow [9] and report the performance in object
recognition as a proxy for perceived image quality. Additionally, we report num-
bers for a recently proposed no-reference based method [12] and the learned
full-reference image quality metric [2] that approximates perceptual similarity.

Object Recognition Performance. The perceptual quality of an image cor-
relates very well with its performance on object recognition models which are
trained on the large corpus of image-net, as corroborated by [9]. Recently, the
same methodology of assessing image quality has been adopted by a competi-
tion1. Therefore, we perform our comparison with other methods utilizing the
standard image classification models trained on ImageNet. We randomly pick
1000 images from the ILSVRC 12 validation dataset and super-resolve their
downsampled versions using different super-resolution models. The performance
is evaluated on how much recognition accuracy is retained by each model, com-
pared to the baseline accuracy. Tables 1 and 2 show that our proposed TSRN
model outperforms all other state-of-the-art SISR methods for both 4× and 8×
super-resolution.

Table 1. Top-1 and Top-5 image recognition accuracy on 4× SISR images

TopK Methods Bicubic SRResNet [4] SRGAN [4] ENet-PAT [9] TSRN-S TSRN-G Baseline

Top 1 DenseNet-169 0.594 0.641 0.666 0.658 0.688 0.692 0.713

ResNet-50 0.545 0.616 0.655 0.649 0.674 0.671 0.703

VGG-19 0.455 0.538 0.578 0.571 0.610 0.609 0.656

Top 5 DenseNet-169 0.788 0.862 0.864 0.857 0.876 0.871 0.890

ResNet-50 0.776 0.841 0.847 0.843 0.862 0.866 0.885

VGG-19 0.676 0.772 0.798 0.792 0.819 0.821 0.853

Table 2. Top-1 and Top-5 image recognition accuracy on 8× SISR images

TopK Methods Bicubic SRResNet [4] SRGAN [4] TSRN-S TSRN-G Baseline

Top 1 DenseNet-169 0.353 0.506 0.432 0.509 0.506 0.713

ResNet-50 0.301 0.437 0.424 0.484 0.503 0.703

VGG-19 0.239 0.343 0.267 0.374 0.389 0.656

Top 5 DenseNet-169 0.602 0.727 0.676 0.733 0.743 0.890

ResNet-50 0.518 0.689 0.657 0.718 0.717 0.885

VGG-19 0.406 0.565 0.504 0.613 0.611 0.853

1 http://www.ug2challenge.org/.

http://www.ug2challenge.org/
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No-reference Image Quality Measure. A no-reference image quality assess-
ment is proposed by [12] and is based on NIQE [47,48]. Based on this method,
our method obtained 2.227 perceptual index.

LPIPS. The Learned Perceptual Image Patch Similarity (LPIPS) metric [2] is a
recently introduced full-reference image quality assessment metric which tries to
measure the perceptual similarity between two images. The metric uses linearly
calibrated off-the-shelf standard deep classification networks trained to measure
the perceptual similarity of the images. The networks are trained on the very
large Berkeley-Adobe Perceptual Patch Similarity (BAPPS) [2] dataset, con-
taining human perceptual judgments. We use the pre-trained, linearly calibrated
AlexNet and SqueezeNet networks2. The networks are trained on patches sized
64 × 64 pixels. Therefore, we also divide the images into patches of size 64 × 64
pixels. For each image, we pick its shorter dimension and find the nearest pos-
sible value v divisible by 64, then we center crop an image of resolution v ×
v. The cropped image is then further divided into patches of size 64 × 64. We
report the averaged perceptual similarity determined on those patches.

In Table 3 we use the recommended AlexNet (linear) and SqueezeNet (lin-
ear) models for measuring the perceptual quality. We found the quantitative
evaluations to be consistent across numerous models that have been trained
to improve either PSNR, SSIM scores such as SRResNet, LapSRN, SRCNN or
the ones trained to improve perceptual quality such as SRGAN and ENet-PAT.
TSRN consistently achieves better perceptual similarity scores than other meth-
ods (Table 4).

Table 3. Comparison for 4× SISR on pre-trained AlexNet-linear and SqueezeNet-linear
LPIPS metric [2]. Lower score is better.

Metric Set 5 Set 14 BSD 100 Urban

AlexNet SNet AlexNet SNet AlexNet SNet AlexNet SNet

Bicubic 0.1585 0.1202 0.1731 0.1320 0.1463 0.1007 0.1552 0.1238

SRCNN [7] 0.0964 0.0732 0.1175 0.1025 0.1257 0.0920 0.0960 0.0905

LapSRN [6] 0.0566 0.0556 0.1002 0.0967 0.1005 0.0753 0.0746 0.0757

MSLapSRN [49] 0.0551 0.0574 0.0972 0.0916 0.0989 0.0720 0.0691 0.0709

SRResNet [4] 0.0538 0.0491 0.0848 0.0821 0.0909 0.0625 0.0628 0.0652

SRGAN [4] 0.0275 0.0466 0.0575 0.0679 0.0484 0.0527 0.0401 0.0584

ENet-PAT [9] 0.0251 0.0391 0.0569 0.0590 0.0494 0.0472 0.0414 0.0467

TSRN-S (Ours) 0.0273 0.0394 0.0438 0.0483 0.0478 0.0420 0.0397 0.0404

TSRN-G (Ours) 0.0285 0.0358 0.0463 0.0456 0.0481 0.0404 0.0385 0.0392

2 https://github.com/richzhang/PerceptualSimilarity.

https://github.com/richzhang/PerceptualSimilarity
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Table 4. Comparison for 8× SISR on pre-trained AlexNet-linear and SqueezeNet-linear
LPIPS Perceptual Similarity Metric models. Lower score is better.

Metric Set 5 Set 14 BSD 100 Urban

AlexNet SNet AlexNet SNet AlexNet SNet AlexNet SNet

Bicubic 0.27464 0.22877 0.27390 0.24669 0.22802 0.20202 0.23854 0.22946

LapSRN [6] 0.19849 0.15506 0.21525 0.19058 0.19009 0.16379 0.15638 0.15426

MSLapSRN [49] 0.16748 0.13609 0.20184 0.17599 0.17679 0.15276 0.13252 0.13328

SRResNet [4] 0.13679 0.11958 0.18091 0.16060 0.16148 0.13512 0.13714 0.13217

SRGAN [4] 0.14230 0.15007 0.13801 0.12720 0.13276 0.10902 0.12929 0.12470

TSRN-S (Ours) 0.0859 0.0863 0.1194 0.0963 0.1021 0.0823 0.0918 0.0802

TSRN-G (Ours) 0.0900 0.0859 0.1277 0.1092 0.1029 0.0833 0.0900 0.0817

6.2 Visual Comparison

In Figs. 5 and 6 we show visual comparisons with recently proposed state-of-the-
art models for both 4× and 8× super-resolution. Our TSRN model manages to
hallucinate realistic textures and image details and compares favorably with the
state-of-the-art.

6.3 TSRN-Faces on CelebA Dataset

In addition to training on MS-COCO dataset [42], we also tested our pro-
posed texture based super resolution method for CelebA faces dataset [52]. Our
method yields visible improvements over other methods. More specifically we
compare with Enhancenet-PAT [9] which employs GAN for enhancing textures.
We observe that such method has a tendency to manipulate the overall facial fea-
tures, thus not maintaining the integrity of the input image. In comparison, our
method learns the texture mapping between a low resolution image (ILR) and
its high resolution counterpart (IHR) thus generates visually plausible results.

(a) SRResNet (b) SRGAN (c) ENet-PAT (d) TSRN-G (e) TSRN-S (f) Original

Fig. 5. Visual Comparison of recent state-of-the-art methods based on distortion met-
rics and perceptual quality with our texture based 4× image super-resolution.
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(a)Bicubic (b)LapSrn (c)SRresnet (d)SRGAN (e)TSRN-G (f)TSRN-S (g)Original

Fig. 6. Visual comparison of recent state-of-the-art methods based on distortion met-
rics and perceptual quality with our texture based 8× image super-resolution.

7 Using Texture as a Perceptual Metric

In this section, we propose an improvement on LPIPS [2], a recently proposed
perceptual similarity metric based on deep features. The method computes the
distance between the deep features of two images in order to determine the per-
ceptual similarity between them. We argue that Gram matrices that measure the
correlations of the same deep features, provide a richer and better framework for
capturing the perceptual representation of images than the features themselves.
Therefore, instead of computing the distances between the features of a given
convolutional layer, we compute the distance between their Gram matrices. For
a pair of reference and distorted patches (x, x0), we compute their normalized
Gram matrices Ĝl and Âl ∈ R

Cl×Cl , where C is the number of channels in layer
l. We compute the distance between them using the same formulation as in Eq. 1
and then sum it up across all layers l, i.e.

d(x, x0) =
∑

l

1
C2

l

Cl∑

i=1

Cl∑

j=1

(Gl
i,j − Al

i,j)
2 (5)

Using the features of “uncalibrated” pre-trained image classification net-
works, this Gram matrices distance achieves better 2AFC scores on the BAPPS
validation dataset than the distances based on the features themselves. In Fig. 8,
our results (Net-G) are comparable to the “calibrated” LPIPS models (specif-
ically trained on BAPPS training datasets) and also outperform them in some
benchmarks. For comparison, we adopted the same configuration of three refer-
ence models (SqueezeNet [50], AlexNet [51] and VGG-16 [32]) used by [2]. How-
ever, to get the best results we changed the number of layers for the distance
computation, more specifically we did not use the feature activations before
the first pooling layer and after the penultimate pooling layer of each model.
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(a) Bicubic (b) ENet-PAT (c) ENet-PATF  (d) TSRN-Faces (e) Original

Fig. 7. Visual comparison of different networks trained on CelebA dataset [52] for
4× SISR. TSRN yields visually faithful results to the original input image.

Fig. 8. Quantitative comparison between different methods for determining perceptual
similarity on the BAPPS validation dataset [2]. Our Gram matrices based distance
(Net-G) scores better than the feature based method (Net-F). Net-G results are com-
parable to calibrated *LPIPS metrics which are specifically trained on BAPPS training
dataset, thus have an advantage.

This is because the texture from the lowest layers do not contain any structure
in them whereas the last layers capture abstract and semantically more mean-
ingful representations but lack in their ability to capture the perceptual details
[41] (Fig. 7 and Table 5).
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Table 5. 2AFC scores (higher is better) for different methods using disparity in
deep feature representations [2] and texture representations (ours) on BAPPS vali-
dation dataset. Values in bold are highest performing while the values in italic are
the second best. Our texture based scores from untrained supervised networks consis-
tently perform better than the feature based scores and compare to *LPIPS metrics
which are specifically trained on BAPPS training dataset, thus have an advantage over
other untrained methods

Subtype Metric Distortions Real algorithms All

Traditional CNN-

Based

All Super-res Video

Deblur

Colorization Frame

Interp

All

Oracle Human 80.8 84.4 82.6 73.4 67.1 68.8 68.6 69.5 73.9

Squeeze – lin 76.1 83.5 79.8 71.1 60.8 65.3 63.2 65.1 70.0

*LPIPS [2] Alex – lin 73.9 83.4 78.7 71.5 61.2 65.3 63.2 65.3 69.8

VGG – lin 76.0 82.8 79.4 70.5 60.5 62.5 63.0 64.1 69.2

Squeeze – scratch 74.9 83.1 79.0 71.1 60.8 63.0 62.4 64.3 69.2

Alex – scratch 77.6 82.8 80.2 71.1 61.0 65.6 63.3 65.2 70.2

VGG – scratch 77.9 83.7 80.8 71.1 60.6 64.0 62.9 64.6 70.0

Squeeze – tune 76.7 83.2 79.9 70.4 61.1 63.2 63.2 64.5 69.6

Alex – tune 77.7 83.5 80.6 69.1 60.5 64.8 62.9 64.3 69.7

VGG – tune 79.3 83.5 81.4 69.8 60.5 63.4 62.3 64.0 69.8

Supervised- SqueezeNet [50] 73.3 82.6 78.0 70.1 60.1 63.6 62.0 64.0 68.6

Nets [2] AlexNet [51] 70.6 83.1 76.8 71.7 60.7 65.0 62.7 65.0 68.9

VGG [32] 70.1 81.3 75.7 69.0 59.0 60.2 62.1 62.6 67.0

Supervised- SqueezeNet [50] 77.5 83.2 80.4 71.6 61.1 65.1 62.9 65.2 70.2

Nets (Ours) AlexNet [51] 73.5 83.0 78.3 71.5 60.9 65.6 63.4 65.4 69.7

VGG [32] 78.3 83.7 81.0 70.9 60.9 64.3 63.1 64.8 70.2

8 Conclusion

Transferring texture via matching Gram matrices has been very successful in
image style transfer, however their utility for natural image enhancement has
not been studied extensively. In this work we demonstrate that Gram matri-
ces are very powerful in capturing perceptual representations of images which
makes them a perfect candidate for their use in a perceptual similarity met-
ric like LPIPS. Exploiting this ability, we obtain image reconstructions of high
perceptual quality for the task of 4× and 8× single image super-resolution. We
further devise a scheme for external semantic guidance for controlling texture
transfer which is particularly helpful for 8× super-resolution. Our method is
simple, easily reproducible and yet effective. We believe that texture loss can
have far reaching implications in the future research of image restoration.
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