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Abstract. Drones equipped with cameras have been fast deployed to a
wide range of applications, such as agriculture, aerial photography, fast
delivery, and surveillance. As the core steps in those applications, video
object detection and tracking attracts much research effort in recent
years. However, the current video object detection and tracking algo-
rithms are not usually optimal for dealing with video sequences captured
by drones, due to various challenges, such as viewpoint change and scales.
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To promote and track the development of the detection and tracking algo-
rithms with drones, we organized the Vision Meets Drone Video Detec-
tion and Tracking (VisDrone-VDT2018) challenge, which is a subtrack of
the Vision Meets Drone 2018 challenge workshop in conjunctioStefanoshe
15th European Conference on Computer Vision (ECCV 2018). Specif-
ically, this workshop challenge consists of two tasks, (1) video object
detection, and (2) multi-object tracking. We present a large-scale video
object detection and tracking dataset, which consists of 79 video clips
with about 1.5 million annotated bounding boxes in 33, 366 frames. We
also provide rich annotations, including object categories, occlusion, and
truncation ratios for better data usage. Being the largest such dataset
ever published, the challenge enables extensive evaluation, investigation
and tracking the progress of object detection and tracking algorithms on
the drone platform. We present the evaluation protocol of the VisDrone-
VDT2018 challenge and the results of the algorithms on the benchmark
dataset, which are publicly available on the challenge website: http://
www.aiskyeye.com/. We hope the challenge largely boost the research
and development in related fields.

Keywords: Drone · Benchmark
Object detection in videos · Multi-object tracking

1 Introduction

Developing autonomous drone systems that are helpful for humans in everyday
tasks, e.g., agriculture, aerial photography, fast delivery, and surveillance, is one
of the grand challenges in computer science. An example is autonomous drone
systems that can help farmers to spray pesticide regularly. Consequently, auto-
matic understanding of visual data collected from these platforms become highly
demanding, which brings computer vision to drones more and more closely. Video
object detection and tracking are the critical steps in those applications, which
attract much research in recent years.

Several benchmark datasets have been proposed in video object detection
and tracking, such as ImageNet-VID [43] and UA-DETRAC [30,51] for object
detection in videos, and KITTI [16] and MOTChallenge [25] for multi-object
tracking, to promote the developments in related fields. The challenges in those
datasets are quite different from that on drones for the video object detection
and tracking algorithms, such as large viewpoint change and scales. Thus, these
algorithms in video object detection and tracking are not usually optimal for
dealing with video sequences generated by drones. As pointed out in recent stud-
ies (e.g., [20,34]), autonomous video object detection and tracking is seriously
limited by the lack of public large-scale benchmarks or datasets. Some recent
preliminary efforts [20,34,42] have been devoted to construct datasets captured
using a drone platform, which are still limited in size and scenarios covered,
due to the difficulties in data collection and annotation. Thus, a more general
and comprehensive benchmark is desired to further boost research on computer

http://www.aiskyeye.com/
http://www.aiskyeye.com/
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vision problems with drone platform. Moreover, thorough evaluations of existing
or newly developed algorithms remains an open problem.

To this end, we organized a challenge workshop, “Vision Meets Drone Video
Object Detection and Tracking” (VisDrone-VDT2018), which is a part of the
“Vision Meets Drone: A Challenge” (VisDrone2018) on September 8, 2018, in
conjunction with the 15th European Conference on Computer Vision (ECCV
2018) in Munich, Germany. This challenge focuses on two tasks, i.e., (1) video
object detection and (2) multi-object tracking, which are described as follows.

– Video object detection aims to detect objects of a predefined set of object
categories (e.g., pedestrian, car, and van) from videos taken from drones.

– Multi-object tracking aims to recover the object trajectories in video
sequences.

We collected a large-scale video object detection and tracking dataset with sev-
eral drone models, e.g., DJI Mavic, Phantom series 3, and 3A, in various scenar-
ios, which are taken at different locations, but share similar environments and
attributes.

We invite researchers to submit the results of algorithms on the proposed
VisDrone-VDT2018 dataset, and share their research at the workshop. We also
present the evaluation protocol of the VisDrone-VDT2018 challenge, and the
results of a comparison of the submitted algorithms on the benchmark dataset,
on the challenge website: www.aiskyeye.com/. The authors of the submitted
algorithms have an opportunity to publish the source code at our website, which
will be helpful to track and boost research on video object detection and tracking
with drones.

2 Related Work

2.1 Existing Datasets and Benchmarks

The ILSVRC 2015 challenge [43] opens the “object detection in video” track,
which contains a total of 3, 862 snippets for training, 555 snippets for validation,
and 937 snippets for testing. YouTube-Object dataset [37] is another large-scale
dataset for video object detection, which consists of 155 videos with over 720, 152
frames for 10 classes of moving objects. However, only 1, 258 frames are anno-
tated with a bounding-box around an object instance. Based on this dataset,
Kalogeiton et al. [23] further provide the annotations of instance segmentation1

for the YouTube-Object dataset.
Multi-object tracking is a hot topic in computer vision with many applica-

tions, such as surveillance, sport video analysis, and behavior analysis. Several
datasets are presented to promote the developments in this field. The MOTChal-
lenge team2 release a series of datasets, i.e., MOT15 [25], MOT16 [31], and
MOT17 [1], for multi-pedestrian tracking evaluation. Wen et al. [51] collect
1 http://calvin.inf.ed.ac.uk/datasets/youtube-objects-dataset/.
2 https://motchallenge.net/.

www.aiskyeye.com/
http://calvin.inf.ed.ac.uk/datasets/youtube-objects-dataset/
https://motchallenge.net/
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the UA-DETRAC dataset for multi-vehicle detection and tracking evaluation,
which contains 100 challenging videos captured from real-world traffic scenes
(over 140, 000 frames with rich annotations, including illumination, vehicle type,
occlusion, truncation ratio, and vehicle bounding boxes). Recently, Du et al. [12]
construct a UAV dataset with approximate 80, 000 fully annotated video frames
as well as 14 different kinds of attributes (e.g., weather condition, flying altitude,
vehicle category, and occlusion) for object detection, single-object tracking, and
multi-object tracking evaluation. We summarize the related datasets in Table 1.

2.2 Brief Review of Video Object Detection Methods

Object detection has achieved significant improvements in recent years, with the
arriving of convolutional neural networks (CNNs), such as R-CNN [17], Faster-
RCNN [40], YOLO [38], SSD [29], and RefineDet [57]. However, the aforemen-
tioned methods focus on detecting objects in still images. The object detec-
tion accuracy in videos suffers from appearance deterioration that are seldom
observed in still images, such as motion blur, video defocus, etc. To that end,
some previous methods are designed to detect specific classes of objects from
videos, such as pedestrians [49] and cars [26]. Kang et al. [24] develop a multi-
stage framework based on deep CNN detection and tracking for object detection
in videos in [43], which uses a tubelet proposal module to combine object detec-
tion and tracking for tubelet object proposal, and a tubelet classification and
re-scoring module to incorporate temporal consistency. The Seq-NMS method
[18] uses high-scoring object detections from nearby frames to boost scores of
weaker detections within the same clip to improve the video detection accuracy.
Zhu [59] design an end-to-end learning framework for video object detection
based on flow-guided feature aggregation and temporal coherence. Galteri et
al. [14] connect detectors and object proposal generating functions to exploit
the ordered and continuous nature of video sequences in a closed-loop. Bertasius
et al. [5] propose to learn the spatially sample features from adjacent frames,
which is robust to occlusion or motion blur in individual frames.

2.3 Brief Review of Multi-object Tracking Methods

Multi-object tracking aims to recover the target trajectories in video sequences.
Most of the previous methods formulate the tracking problem as a data asso-
ciation problem [11,32,36,56]. Some methods [3,9,45,55] attempt to learn the
affinity in association for better performance. In addition, Sadeghian et al. [44]
design a Recurrent Neural Network (RNN) structure, which jointly integrates
multiple cues based on the appearance, motion, and interactions of objects over
a temporal window. Wen et al. [52] formulate the multi-object tracking task
as dense structure exploiting on a hypergraph, whose nodes are detections and
hyperedges describe the corresponding high-order relations. Tang et al. [46] use
a graph-based formulation that links and clusters person hypotheses over time
by solving an instance of a minimum cost lifted multicut problem for multiple
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Table 1. Comparison of current state-of-the-art benchmarks and datasets. Note that,
the resolution indicates the maximum resolution of the videos/images included in the
dataset.

Video object detection Scen. #Frms Cat. Avg. #Labels/cat. Res. Occ. Year

ImageNet VID [43] life 2017.6k 30 66.8k 1280 × 1080
√

2015

UA-DETRAC [51] surv. 140.1k 4 302.5k 960 × 540
√

2015

MOT17Det [1] life 11.2k 1 392.8k 1920 × 1080
√

2017

Okutama-Action [4] drone 77.4k 1 422.1k 3840 × 2160 2017

VisDrone-VDT2018 drone 33.4k 10 149.9k 3840 × 2160
√

2018

Multi-object tracking Scen. #Frms Cat. Avg. #Labels/cat. Res. Occ. Year

KITTI [16] driving 19.1k 5 19.0k 1392 × 512
√

2013

MOT2015 [25] surveillance 11.3k 1 101.3k 1920 × 1080 2015

UA-DETRAC [51] surveillance 140.1k 4 302.5k 960 × 540
√

2015

DukeMTMC [41] surveillance 2852.2k 1 4077.1k 1920 × 1080 2016

Campus [42] drone 929.5k 6 1769.4k 1417 × 2019 2016

MOT17 [1] surveillance 11.2k 1 392.8k 1920 × 1080 2017

VisDrone-VDT2018 drone 33.4k 10 149.9k 3840 × 2160
√

2018

object tracking. Feichtenhofer et al. [13] set up a CNN architecture for simulta-
neous detection and tracking, using a multi-task objective for frame-based object
detection and across-frame track regression.

3 The VisDrone-VDT2018 Challenge

As described above, the VisDrone-VDT2018 challenge focuses on two tasks in
computer vision, i.e., (1) video object detection, and (2) multi-object tracking,
which use the same video data. We release a large-scale video object detec-
tion and tracking dataset, including 79 video clips with approximate 1.5 million
annotated bounding boxes in 33, 366 frames. Some other useful annotations,
such as object category, occlusion, and truncation ratios, are also provided for
better data usage. Participants are expected to submit a single set of results
per algorithm in the VisDrone-VDT2018 dataset. We also allow the participants
to submit the results of multiple different algorithms. However, changes in the
parameters of the algorithms are not considered as the different algorithms.
Notably, the participants are allowed to use additional training data to optimize
their models. The use of external data should be explained in submission.

3.1 Dataset

The VisDrone-VDT2018 dataset consists of 79 challenging sequences with a
total of 33, 366 frames, which is divided into three non-overlapping subsets,
i.e., training set (56 video clips with 24, 198 frames), validation set (7 video
clips with 2, 846 frames), and testing set (16 video clips with 6, 322 frames).
These video sequences are captured from different cities under various weather
and lighting conditions. The manually generated annotations for the training
and validation subsets are made available to users, but the annotations of the
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Fig. 1. The number of objects with different occlusion degrees of each object category
in the training, validation and testing subsets for the video object detection and
multi-object tracking tasks.

Fig. 2. The number of objects per frame vs. percentage of video frames in the training,
validation and testing subsets for the video object detection and multi-object track-
ing tasks. The maximal, mean and minimal numbers of objects per image in the three
subsets are presented in the legend.

testing set are reserved to avoid (over)fitting of algorithms. The video sequences
of the three subsets are captured at different locations, but share similar envi-
ronments and attributes. We focus on five object categories in this challenge,
i.e., pedestrian3, car, van, bus, and truck, and carefully annotate more than
1 million bounding boxes of object instances in the video sequences. Some anno-
tated example frames are shown in Fig. 3. We present the number of objects with
different occlusion degrees of each object category in the training, validation,
and testing subsets in Fig. 1, and plot the number of objects per frame vs. per-
centage of video frames in the training, validation, and testing subsets to
show the distributions of the number of objects in each video frame in Fig. 2.

3 If a human maintains standing pose or walking, we classify it as a pedestrian; other-
wise, it is classified as a person.



502 P. Zhu et al.

In addition, we also provide the occlusion and truncation ratios annotations
for better usage. Specifically, we annotate the occlusion relationships between
objects, and use the fraction of pixels being occluded to define the occlusion ratio.
Three degrees of occlusions of objects are provided, i.e., no occlusion (occlusion
ratio 0%), partial occlusion (occlusion ratio 1%∼), and heavy occlusion (occlu-
sion ratio >50%). We also provide the truncation ratio of objects, which is used
to indicate the degree of object parts that appear outside a frame. If an object
is not fully captured within a frame image, we label the bounding box inside the
frame boundary and estimate the truncation ratio based on the region outside
the image. It is worth mentioning that a target trajectory is regarded as ending
if its truncation ratio starts to be larger than 50%.

3.2 Video Object Detection

Video object detection aims to locate object instances from a predefined set of
five object categories in the videos. For the video object detection task, we require
the participating algorithms to predict the bounding boxes of each predefined
object class in each video frame.

Evaluation Protocol. For the video object detection task, we require each
algorithm to produce the bounding boxes of objects in each video frame of
each video clip. Motivated by the evaluation protocols in MS COCO [28] and
the ILSVRC 2015 challenge [43], we use the APIoU=0.5:0.05:0.95, APIoU=0.5,
APIoU=0.75, ARmax=1, ARmax=10, ARmax=100, and ARmax=500 metrics to evalu-
ate the results of the video detection algorithms. Specifically, APIoU=0.5:0.05:0.95 is
computed by averaging over all 10 intersection over union (IoU) thresholds (i.e.,
in the range [0.50 : 0.95] with the uniform step size 0.05) of all object categories,
which is used as the primary metric for ranking. APIoU=0.50 and APIoU=0.75 are
computed at the single IoU thresholds 0.5 and 0.75 over all object categories,
respectively. The ARmax=1, ARmax=10, ARmax=100 and ARmax=500 scores are
the maximum recalls with 1, 10, 100 and 500 detections per frame, averaged
over all categories and IoU thresholds. Please refer to [28] for more details.

Detectors Submitted. We have received 6 entries in the VisDrone-VDT2018
challenge. Four submitted detectors are derived directly from the image object
detectors, including CERTH-ODV (A.1), CFE-SSDv2 (A.2), RetinaNet s (A.3)
and RD (A.4). The EODST (A.5) detector is a combination of the image object
detector and visual tracker, and the FGFA+ (A.6) detector is an end-to-end
learning framework for video object detection. We summarize the submitted
algorithms in Table 2, and present a brief description of the submitted algorithms
in Appendix A.

Results and Analysis. The results of the submitted algorithms are presented in
Table 3. CFE-SSDv2 (A.2) achieves the best performance of all submissions, which
design a comprehensive feature enhancement module to enhance the features for
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Table 2. The descriptions of the submitted video object detection algorithms in the
VisDrone-VDT2018 challenge. The running speed (in FPS), GPUs for training, imple-
mentation details, training datasets and the references on the video object detection
task are reported.

Method Speed GPU Code Datasets Reference

CERTH-ODV (A.1) 1 GTX1070 Python MS-COCO
VisDrone-VDT

FRCNN [39]

CFE-SSDv2 (A.2) 1 TitanXP×4 Python VisDrone-VDT
MS-COCO

SSD [29]

RetinaNet s (A.3) 25 GTX1080Ti Pytorch VisDrone-VDT RetinaNet [27]

RD (A.4) 1.5 TitanXP×3 Caffe VisDrone-VDT RefineDet [57]

EODST (A.5) 1 Titan Caffe VisDrone-VDT SSD [29]

FGFA+ (A.6) GTX1080 Python
Matlab

VisDrone-VDT FGFA [59]

small object detection. In addition, the multi-scale inference strategy is used to
further improve the performance. The EODST (A.5) detector produces the second
best results, closely followed by FGFA+ (A.6). EODST (A.5) considers the con-
currence of objects, and FGFA+ (A.6) employs the temporal context to improve
the detection accuracy. RD (A.4) performs slightly better than FGFA+ (A.6) in
AP50, but produces worse results on other metrics. CERTH-ODV (A.1) performs
on par with RetinaNet s (A.3) with the AP score less than 10%.

Table 3. Video object detection results on the VisDrone-VDT2018 testing set. The
submitted algorithms are ranked based on the AP score.

Method AP [%] AP50 [%] AP75 [%] AR1 [%] AR10 [%] AR100 [%] AR500 [%]

CFE-SSDv2 21.57 44.75 17.95 11.85 30.46 41.89 44.82

EODST 16.54 38.06 12.03 10.37 22.02 25.52 25.53

FGFA+ 16.00 34.82 12.65 9.63 19.54 22.37 22.37

RD 14.95 35.25 10.11 9.67 24.60 29.72 29.91

CERTH-ODV 9.10 20.35 7.12 7.02 13.51 14.36 14.36

RetinaNet s 8.63 21.83 4.98 5.80 12.91 15.15 15.15

3.3 Multi-object Tracking

Given an input video sequence, multi-object tracking aims to recover the trajec-
tories of objects. Depending on the availability of prior object detection results
in each video frame, we divide the multi-object tracking task into two sub-tasks,
denoted by MOT-a (without prior detection) and MOT-b (with prior detection).
Specifically, for the MOT-b task, we provide the object detection results of the
Faster R-CNN algorithm [40] trained on the VisDrone-VDT2018 dataset in the
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Fig. 3. Some annotated example video frames of multiple object tracking. The bound-
ing boxes and the corresponding attributes of objects are shown for each sequence.

VisDrone2018 challenge, and require the participants to submit the tracking
results for evaluation. Some annotated video frames of the multi-object tracking
task are shown in Fig. 3.

Evaluation Protocol. For the MOT-a task, we use the tracking evaluation
protocol of [35] to evaluate the performance of the submitted algorithms. Each
algorithm is required to produce a list of bounding boxes with confidence scores
and the corresponding identities. We sort the tracklets (formed by the bounding
box detections with the same identity) according to the average confidence over
the bounding box detections. A tracklet is considered correct if the intersection
over union (IoU) overlap with ground truth tracklet is larger than a threshold.
Similar to [35], we use three thresholds of evaluation, i.e., 0.25, 0.50, and 0.75.
The performance of an algorithm is evaluated by averaging the mean average
precision (mAP) per object class over different thresholds. Please refer to [35]
for more details.

For the MOT-b task, we follow the evaluation protocol of [31] to evaluate
the performance of the submitted algorithms. Specifically, the average rank of
10 metrics (i.e., MOTA, MOTP, IDF1, FAF, MT, ML, FP, FN, IDS, and FM)
is used to rank the algorithms. The MOTA metric combines three error sources,
i.e., FP, FN and IDS. The MOTP metric is the average dissimilarity between
all true positives and the corresponding ground truth targets. The IDF1 metric
indicates the ratio of correctly identified detections over the average number
of ground truths and the predicted detections. The FAF metric indicates the
average number of false alarms per frame. The FP metric describes the total
number of tracker outputs which are the false alarms, and FN is the total number



The Vision Meets Drone VisDrone2018 Challenge Results 505

of targets missed by any of the tracked trajectories in each frame. The IDS
metric describes the total number of times that the matched identity of a tracked
trajectory changes, while FM is the times that the trajectories are disconnected.
Both the IDS and FM metrics describe the accuracy of the tracked trajectories.
The ML and MT metrics measure the percentage of tracked trajectories less than
20% and more than 80% of the time span based on the ground truth respectively.

Table 4. Multi-object tracking results without prior object detection in each
video frame on the VisDrone-VDT2018 testing set. The submitted algorithms are
ranked based on the AP metric.

Method AP AP@0.25 AP@0.50 AP@0.75 APcar APbus APtr.k APped APvan

Ctrack 16.12 22.40 16.26 9.70 27.74 28.45 8.15 7.95 8.31

deep-sort d2 10.47 17.26 9.40 4.75 29.14 2.38 3.46 7.12 10.25

MAD 7.27 12.72 7.03 2.07 16.23 1.65 2.85 14.16 1.46

Table 5. Multi-object tracking results with prior object detection in each frame
on the VisDrone-VDT2018 testing set. The submitted algorithms are ranked based on
the average rank of the ten metrics. ∗ indicates that the tracking algorithm is submitted
by the committee.

Method Rank MOTA MOTP IDF1 FAF MT ML FP FN IDS FM

V-IOU 2.7 40.2 74.9 56.1 0.76 297 514 11838 74027 265 1380

TrackCG 2.9 42.6 74.1 58.0 0.86 323 395 14722 68060 779 3717

GOG EOC 3.2 36.9 75.8 46.5 0.29 205 589 5445 86399 354 1090

SCTrack 3.8 35.8 75.6 45.1 0.39 211 550 7298 85623 798 2042

Ctrack 3.9 30.8 73.5 51.9 1.95 369 375 36930 62819 1376 2190

FRMOT 4.0 33.1 73.0 50.8 1.15 254 463 21736 74953 1043 2534

GOG∗ [36] - 38.4 75.1 45.1 0.54 244 496 10179 78724 1114 2012

IHTLS∗ [11] - 36.5 74.8 43.0 0.94 245 446 14564 75361 1435 2662

TBD∗ [15] - 35.6 74.1 45.9 1.17 302 419 22086 70083 1834 2307

H2T∗ [53] - 32.2 73.3 44.4 0.95 214 494 17889 79801 1269 2035

CMOT∗ [3] - 31.5 73.3 51.3 1.42 282 435 26851 72382 789 2257

CEM∗ [33] - 5.1 72.3 19.2 1.12 105 752 21180 116363 1002 1858

Trackers Submitted. There are in total 8 different multi-object tracking
methods submitted to the VisDrone-VDT2018 challenge. The VisDrone com-
mittee also reports 6 baseline methods (i.e., GOG (B.9) [36], IHTLS (B.13) [11],
TBD (B.10) [15], H2T (B.14) [53], CMOT (B.12) [3], and CEM (B.11) [33])
using the default parameters. If the default parameters are not available, we
select the reasonable values for evaluation. The Ctrack (B.7), TrackCG (B.5)
and V-IOU (B.6) trackers aim to exploit the motion information to improve
tracking performance. GOG EOC (B.2), SCTrack (B.3) and FRMOT (B.4) are
designed to learn discriminative appearance features of objects to help tracking.
Another two trackers MAD (B.1) and deep-sort v2 (B.8) combines the detectors
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(e.g., RetinaNet [27] and YOLOv3 [38]) and tracking algorithms (e.g., Deep-
SORT [54] and CFNet [50]) to complete the tracking task. We summarize the
submitted algorithms in Table 6, and present the descriptions of the algorithms
in Appendix B.

Table 6. The descriptions of the submitted algorithms in the multi-object tracking
task in the VisDrone-VDT2018 challenge. The running speed (in FPS), CPU and GPU
platforms information for training and testing, implementation details (i.e., P indicates
Python, M indicates Matlab, and C indicates C/C++), training datasets, and the
references on the multi-object tracking task are reported. The ∗ mark is used to indicate
the methods are submitted by the VisDrone committee.

Method Task Speed CPU GPU Code Datasets Reference

MAD (B.1) a 1.35 E5-2620 TitanXP P VisDrone-VDT CFNet [50]

GOG EOC (B.2) b 1 i7-6700 TitanXP P,M UAVDT [12] GOG [36]

SCTrack (B.3) b 2.90 i7-4720 - M - SCTrack [2]

FRMOT (B.4) b 5 - TitanXP P VOC 2007 FRCNN [39]

TrackCG (B.5) b 10 i7-6700 - C - TrackCG [47]

V-IOU (B.6) b 20 − 200 i7-6700 - P - IOU [6]

Ctrack (B.7) a/b 15 i7-6700HQ - M - Ctrack [48]

deep-sort v2 (B.8) a 25 - GTX1080Ti P MS-COCO

VisDrone-VDT

DSORT [54]

GOG∗ (B.9) b 564.80 i7-3520M - M - GOG [36]

IHTLS∗ (B.13) b 16.30 i7-3520M - M - IHTLS [11]

TBD∗ (B.10) b 0.70 i7-3520M - M - TBD [15]

CMOT∗ (B.12) b 1.39 i7-3520M - M - CMOT [3]

CEM∗ (B.11) b 7.74 i7-3520M - M,C - CEM [33]

H2T∗ (B.14) b 1.56 i7-3520M - C - H2T [53]

Results and Analysis. The results of the submissions of the MOT-a and
MOT-b tasks are presented in Tables 4 and 5, respectively.

As shown in Table 4, Ctrack (B.7) achieves the top AP score among all sub-
missions in the MOT-a task. In terms of different object categories, it performs
the best in the bus and truck categories. We suspect that the complex motion
models used in Ctrack (B.7) are effective in tracking large size objects. Deep-
sort d2 (B.8) produces the best results for cars and vans. Since these two cate-
gories of objects usually move smoothly, the IOU similarity and deep appearance
features are effective to extract the discriminative motion and appearance fea-
tures of these objects. MAD (B.1) produces the top APped score, which demon-
strates the effectiveness of the model ensemble strategy.

As shown in Table 5, we find that V-IOU (B.6) produces the top average
rank of 2.7 over the 10 metrics. The TrackCG method (B.5) achieves the best
MOTA and IDF1 scores among all submissions. GOG EOC (B.2) considers the
exchanging context of objects to improve the performance, which performs much
better than the original GOG method (B.9) in terms of the MOTP, IDF1, FAF,
ML, FP, IDS and FM metrics, and ranks at the third place. Ctrack (B.7) per-
forms on par with SCTrack (B.3), but produces better MT, ML and FN scores.
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Ctrack (B.7) uses the aggregation of prediction events in grouped targets and
the stitching procedure by temporal constraints to help tracking, which is able to
recover the target objects with long-time disappearance in the crowded scenes.

To further analyze the performance of the submissions thoroughly in different
object categories, we present the MOTA and IDF1 scores of 5 evaluated object
categories (i.e., car, bus, truck, pedestrian, and van) in Figs. 4 and 5. The top

Fig. 4. Comparisons of all the submissions based on the MOTA metric for each object
category.

Fig. 5. Comparisons of all the submissions based on the IDF1 metric for each object
category.
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two best trackers V-IOU (B.6) and TrackCG (B.5) produce the best results in
all categories of objects. We also observe that V-IOU (B.6) and FRMOT (B.4)
produce the best results in the bus category, which may be attributed to the
effectiveness of the IOU and deep feature based similarities in tracking the large
size objects.

4 Conclusions

This paper concludes the VisDrone-VDT2018 challenge, which focuses on two
tasks, i.e., (1) video object detection, and (2) multi-object tracking. A large-
scale video object detection and tracking dataset is released, which consists of 79
challenging sequences with 33, 366 frames in total. We provide fully annotations
of the dataset with annotated bounding boxes and the corresponding attributes
such as object categories, occlusion status and truncation ratios. 6 algorithms are
submitted to the video object detection task and 14 algorithms are submitted to
the multiple object tracking (i.e., 3 methods do not use the prior object detection
in video frames and 12 methods use the prior object detection in video frames).
The CFE-SSDv2 (A.2) method achieves the best results in the video object
detection task, Ctrack (B.7) achieves the best results in the MOT-a task, and V-
IOU (B.6) and TrackCG (B.5) perform better than other submitted methods in
the MOT-b task. The VisDrone-VDT2018 challenge was successfully held on
September 8, 2018, which is a part of the VisDrone2018 challenge workshop. We
hope this challenge is able to provide a unified platform for video object detection
and tracking evaluations on drones. Our future work will focus on revising the
dataset and evaluation kit based on the feedbacks from the community.
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A Submissions in the Video Object Detection Task

A.1 CERTH’s Object Detector in Videos (CERTH-ODV)

Emmanouil Michail, Konstantinos Avgerinakis, Panagiotis Giannakeris, Ste-
fanos Vrochidis, Ioannis Kompatsiaris
{michem,koafgeri,giannakeris,stefanos,ikom}@iti.gr

CERTH-ODV is based on the Inception ResNet v2 Faster R-CNN [40] method
pretrained on the MSCOCO dataset. The model is fine-tuned on the training set
of the Visdrone-VID2018 dataset. Training images are selected every 5 frames
to avoid overfitting. Since pedestrian and cars are dominant compared to other
classes, to balance the number of the object classes, we remove several thousand
car and pedestrian ground-truths. For training, we used the Inception ResNet
v2 Faster R-CNN model pretrained on the MSCOCO dataset.
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A.2 SSD with Comprehensive Feature Enhancement (CFE-SSDv2)

Qijie Zhao, Feng Ni, Yongtao Wang
{zhaoqijie,nifeng,wyt}@pku.edu.cn

CFE-SSDv2 is an end-to-end one-stage object detector with specially designed
novel module, namely the Comprehensive Feature Enhancement (CFE) module.
We first improve the original SSD model [29] by enhancing the weak features
for detecting small objects. Our CFE-SSDv24 model is designed to enhance
detection ability for small objects. In addition, we apply multi-scale inference
strategy. Although training on the input images with the size of 800 × 800, we
expand the input images to the size of 2200 × 2200 in testing, leading to further
improvements in detection accuracy, especially for small objects.

A.3 Some Improvement on RetinaNet (RetinaNet s)

Jianfei Zhao, Yanyun Zhao
{zjfei,zyy}@bupt.edu.cn

RetinaNet s is based on the RetinaNet50 model [27]. We change the anchor size
to detect more small objects. For the same reason, we add a conv layer in FPN’s
P3 and P4 where the higher feature add to the lower feature. We also use the
multi-scale training and multi-scale testing techniques, and the Soft-NMS [8]
algorithm in post processing.

A.4 RefineDet with SEResNeXt-50 Base Network (RD)

Oliver Acatay, Lars Sommer, Arne Schumann
{oliver.acatay,lars.sommer,arne.schumann}@iosb.fraunhofer.de

RD is a variant of the RefineDet detector [27], and uses the novel Squeeze-and-
Excitation Network (SENet) [21] as the base network. Specifically, we train the
detector with SEResNeXt-50 as the base network and adapt the anchor sizes
and training parameters to the dataset.

A.5 Efficient Object Detector with the Support of Spatial
and Temporal Information (EODST)

Zhaoliang Pi, Yinan Wu, Mengkun Liu
{zhaoliangpi xdu,18710706807,18700919098}@163.com

EODST is based on the SSD detector [29] and ECO tracker [10]. Our method
consists of three main components: (1) still-image object detection, (2) visual
tracking, (3) false positive analysis. Specifically, our still-image object detectors
adopt the SSD framework. To deal with the imbalance problem of classes, we
crop the objects from the training data to generate more training samples and

4 https://github.com/qijiezhao/CFENet.

https://github.com/qijiezhao/CFENet
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balance the samples among each class as possible. Then we test the images (with
contrast, clarity or brightness enhanced) in multi-scales and merge the detection
result of cropped images using NMS technique. Afterwards, we use the track-
ing algorithms from ECO and associate still-image object detection. For each
object class in a video clip, we track high-confidence detection objects bidirec-
tionally over the temporal dimension. Additionally, we consider the relationship
of contextual regions, i.e., features of different contextual regions validate each
other (like bicycle and people, motor and people). We conduct box refinement
and false positive suppression by inference according to temporal and contextual
information of videos.

A.6 Modified Flow-Guided Feature Aggregation for Video Object
Detection Based on Image Segmentation (FGFA+)

Jie Gao, Yidong Bai, Gege Zhang, Dan Wang, Qinghua Ma
ggzhang 1@stu.xidian.edu.cn, baiyidong@sina.cn

FGFA+ is the improved variant of an efficient method for frames detection [59].
However, the emerging problems can be listed as follows: (1) nearly all images
from training set are taken under the sunset, while many images from testing
set are in the night time. (2) According the fact that quite a large regions are
ignored so that the objects in them are not necessary to be detected accurately.
In order to solve these problems, the contributions are listed as follows:

(1) The frames are enhanced in contrast and brightness before they are used
for training in FGFA. (2) The ignored regions are set to black so that FGFA can
extract obvious features for training process. (3) For such object with both high
evolutions in two classes, it may be correctly classified using NMS. (4) NMS is
necessary when we merge the whole images for submission to restore the cutting
images.

B Submissions in the Multi-object Tracking Task

B.1 Multi-object Tracking Algorithm Assisted by Detection (MAD)

Wei Song, Yuxuan Li, Zhaoliang Pi, Wenhua Zhang
522545707@qq.com

MAD is mainly based on YOLOv3 [38] and CFNet [50]. To determine the initial
tracking position of objects, we adopt the detection strategy combining YOLOv3
and RetinaNet. YOLO has a good detection effect for usual objects but is not
ideal for smaller and denser objects, yet the advantages of RetinaNet are detect-
ing dense small objects well. To deal with small objects, we first expand the
three object categories (i.e., van, truck, bus), including rotation, deformation,
and brightness adjustment. Second, we train a model separately for them. There-
fore, we train three models: (1) YOLO for pedestrian and car, (2) YOLO for van,
truck and bus, (3) RetinaNet. After the inference is completed, repeating objects
are removed by NMS.
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B.2 Globally-Optimal Greedy Algorithms with the Harmony Model
Exchanging Object Context (GOG EOC)

Hongyang Yu, Guorong Li, Qingming Huang
hyang.yu@hit.edu.cn, {liguorong,qmhuang}@ucas.ac.cn

Our method is based on the Globally-Optimal Greedy algorithms (GOG) [36].
For the graph built in the GOG tracker, we change the cost of connecting
the detections between two frames. Specifically, the cost consists of the object
detection overlap and the context harmony degree. The proposed context har-
mony degree measures the detections harmony with Exchanging Object Context
(EOC) patches via the Siamese network.

B.3 Semantic Color Tracker (SCTrack)

Noor M. Al-Shakarji, Filiz Bunyak, Guna Seetharaman, Kannappan Palaniap-
pan
{nmahyd,bunyak}@mail.missouri.edu, gunasekaran.seetharaman@rl.af.mil, pala-
niappank@missouri.edu

SCTrack is a detection-based multi-object tracking system [2] that uses a multi-
step data association approach to ensure time-efficient processing while preserv-
ing tracking accuracy. The system relies on a robust but discriminative object
appearance model combined with a novel color correlation cost matrix to main-
tain object identities in time.

B.4 Faster-RCNN Features for Multiple Object Tracking (FRMOT)

Elena Luna, Diego Ortego, Juan C. San Miguel, Jos é M. Mart ínez
{elena.luna,diego.ortego,juancarlos.sanmiguel,josem.martinez}@uam.es

FRMOT is composed of five main modules: feature extraction, data associa-
tion, track management, model update and spatial prediction. In this frame-
work, targets are modeled by their visual appearance (via deep features) and
their spatial location (via bounding boxes). Firstly, we describe the appearance
of each bounding box by using off-the-shelf features from the pre-trained deep
neural network Faster R-CNN. Secondly, we use Kalman filtering for predicting
the spatial position of targets with constant velocity motion and linear observa-
tion model. Thirdly, we use the Hungarian algorithm for associating detections
to targets. Notably, each match between targets and detections is employed
to determine the tracks (i.e., sequential information of targets over time). We
employ two counters for each target for handling initialization and suppression
of trackers. One counter focuses on the number of consecutive frames where the
target matches any detection. Another counter focuses on the number of con-
secutive frames where the target is unmatched. To update the target model,
we perform two strategies. The spatial target model is updated via the update
step of each corresponding Kalman filter. The appearance model update con-
sists in maintaining a buffer/gallery of the last n samples previously associated
appearance descriptors of the target.
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B.5 Multi-object Tracking with Combined Constraints and
Geometry Verification (TrackCG)

Wei Tian, Zhiming Ma, Martin Lauer
wei.tian@kit.edu, zhiming0405@sjtu.edu.cn, martin.lauer@kit.edu

TrackCG is based on the work [48] with modifications adapted to the current
dataset. This algorithm is separated into two stages. In the first stage, it mainly
estimates the state of a target based on the motion pattern of grouped objects
and builds short tracklets from individual detections. In the second stage, it
deploys graph models for long range association, which means associating track-
lets to construct tracks. Additionally, according to [47], we deploy a regression
method to coarsely estimate the ground plane to filter out outliers. In our exper-
iment, this filtering procedure is also combined with criteria like track length,
average object size and score, ratio of consecutive frames in the track, etc.

B.6 Visual Intersection-Over-Union Tracker (V-IOU)

Erik Bochinski, Tobias Senst, Thomas Sikora
{bochinski,senst,sikora}@nue.tu-berlin.de

V-IOU is based on the IOU tracker [6] which associates detections to tracks
solely by their spatial overlap (Intersection-over-Union) in consecutive frames.
The method is further improved by visual tracking to continue a track if no
detection is available. If a valid detection can be associated again, visual tracking
is stopped and the tracker returns to the original IOU tracker functionality.
Otherwise, the visual tracking is aborted after ttl frames. For each new track,
visual tracking is performed backwards for a maximum of ttl previous frames
or until the track can be merged with a finished one if the IOU criteria of
[6] is satisfied. This extension is made to efficiently reduce the high amount of
fragmentation of the tracks produced by the original IOU tracker. V-IOU can
be used in association with a wide range of visual single-object trackers. In our
evaluation, we consider Medianflow [22] and KCF [19] achieving state-of-the-art
performance at processing speeds of 20 and 209 fps respectively. Please refer to
[7] for further details.

B.7 Constrained Track (Ctrack)

Wei Tian, Zhiming Ma, Martin Lauer
wei.tian@kit.edu, zhiming0405@sjtu.edu.cn, martin.lauer@kit.edu

Ctrack is based on two ideas to deal with multiple object tracking, including
the aggregation of prediction events in grouped targets and the stitching proce-
dure by temporal constraints. Thanks to these strategies, we are able to track
objects in crowded scenes and recover the targets with long time disappearance.
Specifically, we analyze the motion patterns within grouped targets in the light
of aggregated prediction events. Additionally, we use a stitching procedure based
on graph modeling to link separated tracks of the same target. Please refer to
[48] for more details.
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B.8 More Improvements in Detector and Deep-sort for Drones
(deep-sort d2)

Jianfei Zhao, Yanyun Zhao
{zjfei,zyy}@bupt.edu.cn

Deep-sort d2 is based on RetinaNet50 [27] and Deep-SORT [54]. For detection,
we use a RetinaNet50 [27], and we change the anchor size to detect more small
objects. For the same reason, we add a conv layer in fpn’s p3 and p4 where the
higher feature add to the lower feature. We also use multi-scale training and
multi-scale testing, meanwhile we use the Soft-NMS [8]. For tracking, we make
some improvement on the deep sort algorithm [54]. The algorithm can be divided
into four steps. First, we compute iou distance between the tracks which appear
on the last frame and the detections, if the distance is lower than a strict thresh,
we think they are matched. And if the unmatched detections are more than the
matched detections, we think the camera moved suddenly or rotated, then we
will change the parameters and strategies in the other steps. Second, we get
the detections appearance features from an AlignedReID net [58], and we use a
cascade strategy to matching the unmatched tracks and unmatched detections
from last step. Then we compute the IOU distance again between the unmatched
tracks and unmatched detections with a higher thresh than the first step. Final, if
the camera does not move, for every two matches, which matched track appeared
in last three frames, we would switch their detections’ positions if their relative
angle were changed. For every tracks, we use the Gaussian Process Regressor to
process the continuous part. Besides, we compute the average position to fill the
fragmentations.

B.9 Globally-Optimal Greedy Algorithms for Tracking a Variable
Number of Objects (GOG)

Submitted by the VisDrone Committee

GOG formulates the multi-object tracking problem as the integer linear program
(ILP). Specifically, the model is based on the min-cost flow network, which is
efficient in the greedy manner. It allows us to handle long sequences with large
number of objects, even in complex scenarios with long-term occlusion of objects.
Please refer to [36] for further details.

B.10 3D Traffic Scene Understanding From Movable Platforms
(TBD)

Submitted by the VisDrone Committee

TBD is a probabilistic generative model for multi-object traffic scene understand-
ing from movable platforms. The model extracts a diverse set of visual cues in
the form of vehicle tracklets, including vanishing points, semantic scene labels,
scene flow, and occupancy grids. For each of these cues, the likelihood functions
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are proposed, which are integrated into a probabilistic generative model and are
learnt from the training data using contrastive divergence. Please refer to [15]
for further details.

B.11 Continuous Energy Minimization for Multitarget Tracking
(CEM)

Submitted by the VisDrone Committee

CEM is an offline multi-object tracking algorithm as minimization of a contin-
uous energy over all target locations and all frames of a time window. Thus
the existence, motion and interaction of all objects of interest in the scenes
are represented by a suitable energy function. To solve the non-convex energy
minimization problem, we introduce a number of jump moves which change the
dimension of the current state, thereby jumping to a different region of the search
space, while still decreasing the energy. Please refer to [33] for further details.

B.12 Robust Online Multi-object Tracking Based on Tracklet
Confidence and Online Discriminative Appearance Learning
(CMOT)

Submitted by the VisDrone Committee

CMOT is an online multi-object tracking method based on the tracklet confi-
dence using the detectability and continuity of the tracklet. According to the
confidence values of tracklets, reliable tracklets with high confidence are locally
associated with online-provided detections, while fragmented tracklets with low
confidence are globally associated with other tracklets and detections. The pro-
posed online discriminative appearance learning can handle similar appearances
of different objects in tracklet association. Please refer to [33] for further details.

B.13 The Way They Move: Tracking Multiple Targets with Similar
Appearance (IHTLS)

Submitted by the VisDrone Committee

IHTLS is a tracking by detection multi-object tracking method, which uses
motion dynamics as a cue to distinguish targets with similar appearance. Specifi-
cally, it formulates the problem as a generalized linear assignment (GLA). Then,
the efficient IHTILS algorithm is employed to estimate these similarity measures.
Please refer to [11] for further details.



The Vision Meets Drone VisDrone2018 Challenge Results 515

B.14 Multiple Target Tracking Based on Undirected Hierarchical
Relation Hypergraph (H2T)

Submitted by the VisDrone Committee

H2T formulates the multiple object tracking as a data association problem.
Specifically, hierarchical dense neighbourhoods searching is performed on the
dynamically constructed undirected affinity hypergraph. The nodes denote the
tracklets of objects and the hyperedges describe the appearance and motion rela-
tionships among different tracklets across the temporal domain, which makes the
tracker robust to the spatially close targets with similar appearance. Please refer
to [53] for further details.
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