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Abstract. This paper introduces a newly collected and novel dataset
(StereoMSI) for example-based single and colour-guided spectral image
super-resolution. The dataset was first released and promoted during the
PIRM2018 spectral image super-resolution challenge. To the best of our
knowledge, the dataset is the first of its kind, comprising 350 registered
colour-spectral image pairs. The dataset has been used for the two tracks
of the challenge and, for each of these, we have provided a split into train-
ing, validation and testing. This arrangement is a result of the challenge
structure and phases, with the first track focusing on example-based
spectral image super-resolution and the second one aiming at exploit-
ing the registered stereo colour imagery to improve the resolution of the
spectral images. Each of the tracks and splits has been selected to be con-
sistent across a number of image quality metrics. The dataset is quite
general in nature and can be used for a wide variety of applications in
addition to the development of spectral image super-resolution methods.
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1 Introduction

Imaging spectroscopy devices can capture an information-rich representation of
the scene comprised by tens or hundreds of wavelength-indexed bands. In con-
trast with their trichromatic (colour) counterparts, these images are composed
of as many channels, each of these corresponding to a particular narrow-band
segment of the electromagnetic spectrum [1]. Thus, imaging spectroscopy has
numerous applications in areas such as remote sensing [2,3], disease diagnosis
and image-guided surgery [4], food monitoring and safety [5], agriculture [6],
archaeological conservation [7], astronomy [8] and face recognition [9)].
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Recent advances in imaging spectroscopy have seen the development of sen-
sors where the spectral filters are fully integrated into the complementary metal-
oxide-semiconductor (CMOS) or charge-coupled device (CCD) detectors. These
are multispectral imaging devices which are single-shot and offer numerous
advantages in terms of speed of acquisition and form-factor [10,11]. However,
one of the main drawbacks of these multispectral systems is the low raw spatial
resolution per wavelength-indexed band in the image. Hence, super-resolving
spectral images is crucial to achieving a much improved spatial resolution in
these devices.

Note that, during recent years, there has been a steady improvement in the
performance of example-based single image SR methods [12-15]. This is partly
due to the wide availability of various benchmark datasets for development and
comparison. For example, the dataset introduced by Timofte et al. [16,17], [18-
21], Urban100 [22], and DIV2K [23] are all widely available.

Similar to RGB or grey-scale super-resolution, recently example-based tech-
niques for spectral image super-resolution have started to appear in the litera-
ture [24]. However, in contrast to their RGB and grey-scale counterparts, mul-
tispectral /hyperspectral datasets suitable for the development of single image
super-resolution are not as abundant or easily accessible. For example, the
CNN-based method in [24] was developed by putting together three different
hyperspectral datasets. The first of these, the CAVE [25] consists of only 35
hyperspectral and RGB pairs gathered in a laboratory setting and controlled
lighting using a camera with tunable liquid crystal filters. Similarly, the second
dataset from Harvard [26] contains fifty hyperspectral images captured with a
time-multiplexed 31-channel camera with an integrated liquid crystal tunable
filter. The third dataset is that in [27], which includes 25 hyperspectral images
of outdoor urban and rural scenes also captured using a tunable liquid-crystal fil-
ter. Probably the largest spectral dataset to date with more than 250 31-channel
spectral images is the one introduced with the NTIRE 2018 challenge on spectral
reconstruction from RGB images [28].

Moreover, while the topic of spectral image super-resolution utilizing colour
images, i.e., pan-sharpening, has been extensively studied [29-31] so as to
develop efficient example-based super-resolution methods, stereo registered
colour-spectral datasets are limited to small number of hyperspectral images.
One of the very few examples is that of the datasets in [32], where the authors
introduced a stereo RGB and near infrared (NIR) dataset of 477 images and
propose a multispectral SIFT (MSIFT) method to register the images. However,
the dataset is promoted in the context of scene recognition. In addition, the NIR
images are comprised of only one wavelength-indexed band. Similarly, in [33],
the authors introduce an RGB-NIR image dataset of approximately 13h video
with only one band dedicated to NIR images. The dataset was gathered in an
urban setting by mounting the cameras on a vehicle.

In this paper we introduce a novel dataset of colour-multispectral images
which we name StereoMSI. Unlike the above two RGB-NIR datasets, the dataset
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Fig.1. A sample image from the StereoMSI dataset. Here we show the RGB image
and the 14 wavelengths channels of the multispectral camera indicated by \;, ¢ =
{1,2,...,14}. All wavelengths are in nm and, for the sake of better visualisation, we
have gamma-corrected the 14 channels by setting v = 0.75.

was primarily developed for the PIRM2018 spectral SR challenge® [34] and com-
prised 350 registered stereo RGB-spectral image pairs. The StereoMSI dataset
is hence large enough to help develop deep learning spectral super-resolution
methods. Moreover, it is, to the best of our knowledge, the first of its kind. As
a result, the paper is organised as follows. We commence by introducing the
dataset. We then present a number of image quality metrics over the dataset
and the proposed splits for training, validation and testing. Then we present
a brief review of the challenge and elaborate upon the results obtained by its
participants. Finally, we discuss other potential applications of the dataset and
conclude on the developments presented here.

2 StereoMSI Dataset

As mentioned above, here we propose the StereoMSI dataset. The dataset is a
novel RGB-spectral stereo image dataset for benchmarking example-based single
spectral image and example-based RGB-guided spectral image super-resolution
methods. The dataset is developed for research purposes only (Fig. 1).

2.1 Diversity and Resolution

The 350 stereo pair images were collected from a diverse range of scenery in the
city of Canberra, the capital of Australia. The nature of the images ranges from
open industrial to office environments and from deserts to rainforests. In Figs. 2
and 3 we display validation images for the former and latter, respectively.

It is worth noting that, during acquisition time, we paid particular attention
to the exposure time and image quality as the stereo pairs were captured using

! Refer to https://pirm2018.org/ for the spectral SR challenge and the dataset down-
load links.
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Fig. 2. Validation images for the Track 1 of the PIRM2018 challenge. Each of the
panels corresponds to the normalised spectral power of one of the validation images,
i.e. the norm of the spectra per-pixel normalised to unit maximum over the image.

Fig. 3. Validation images of Track 2 of the PIRM2018 challenge. In the left-hand and
third columns we show the normalised spectral power of the spectral imagery, whereas
the second and third columns show their registered RGB image pairs.
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Raw spectral pixel

Raw RGB pixel

4 x w

Fig. 4. Illustration of raw pixels for RGB and spectral cameras. The RGB camera used
to acquire the images of our dataset has x4 the resolution of the spectral camera. Here
we show the RGGB Bayer pattern of the colour camera and the actual wavelengths of
the multispectral sensor in our MQ022HG-IM-SM4x4 camera. The two invalid filters
on the array are crossed out in the panel above. The wavelengths for the remaining
14 channels from the top left to the bottom right across the 4 x 4 spectral filter array
are 553.3nm, 599.9nm, 510.9nm, 477.2nm, 562.5nm, 612.9 nm, 523.2nm, 500.3 nm,
590.6 nm, 548.9 nm, 489.5nm, 577.3nm, 617.5nm, and 537.9 nm.

different cameras. One is an RGB XiQ camera model MQ022CG-CM and the
other is a XiQ multispectral camera model MQ022HG-IM-SM4x4 covering the
interval [470 — 620 nm] in the visible spectral range.

The original spectral images were processed and cropped to the resolution
480 x 240 so as to allow the stereo RGB images to be resized to a resolution
2 times larger in each axis, that is 960 x 480. This is due to the fact that, in
practice, the RGB camera used, based upon a CMOS image sensor, has a 2 x 2
Bayer RGGB pattern whereas the IMEC spectral sensors have a 4 x 4 pattern
delivering 16 wavelength bands. Hence, the resolution of the RGB images in
each axis is twice that of the spectral images. Figure 4 illustrates this resolution
relationship between the two filter arrays on both cameras. When processing the
images, no gamma correction was applied.

2.2 Structure and Splits

After collecting the StereoMSI 350 images, the two invalid wavelength-indexed
bands on the IMEC sensor were removed. We then registered the images using
Flownet2.0 [35] and used MATLAB’s imresize? function to obtain lower resolu-
tion versions of each image by downscaling them by factors of x2 and x3 with
nearest neighbour interpolation.

2 For more information on the imresize function, go to https://www.mathworks.com/
help/images/ref/imresize.html.
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The dataset for Track 1 (single image super-resolution) consists of 240 differ-
ent spectral images. The 240 images have been split into 200 for training, 20 for
validation and 20 for testing with low resolution (HR) and high resolution (LR)
on self explicatively named directories. The dataset for Track 2 (colour-guided
spectral image super-resolution) consists of 120 randomly selected image stereo
pairs, where one view is captured by the spectral imager and the other one by
the colour camera. The images have been split into 100 pairs for training, 10
for validation and 10 for testing with HR, and LR on self explicatively named
directories. All the images, for both tracks, are in band-sequential, 16 bit, ENVI
standard file format. Tablel summarized the dataset and camera properties
explained above.

2.3 Bicubic Upsampling Metrics

To quantitatively assess our StereoMSI dataset, and to provide a baseline for
future benchmarking, we have performed image upsampling by applying a bicu-
bic kernel. Python’s imresize function from the scikit-image® toolbox was used to
perform bicubic upsampling. With the upsampled images in hand, we have then
computed a number of image quality metrics so as to compare the performance
of current and future example-based spectral super-resolution algorithms. To
this end, we up-sampled the lower-resolution images in the dataset by x2 and
x3 and compared against their HR reference counterparts.

For the sake of consistency, here we use the same metrics as those applied
in the PIRM2018 spectral super-resolution challenge [34]. This are the mean
relative absolute error (MRAE) (introduced in [28]), the Spectral Information
Divergence (SID), the per-band Mean Squared Error (MSE), the Average Per-
Pixel Spectral Angle (APPSA), the average per-image Structural Similarity
index (SSIM) and the mean per-image Peak Signal-to-Noise Ratio (PSNR). For
more information on these metrics refer to the PIRM2018 spectral image super-
resolution challenge report [34].

In Table 2, we show the image metric results for the whole 350 images com-
prising the StereoMSI dataset, and the testing images. We have included the
testing split in the table since the testing imagery for both tracks is the same.
Tables 3, and 4 show the results for full dataset, training and validation splits of
Track 1 and Track 2, respectively.

Table 1. Summarised dataset and camera properties

Tmage properties StereoMSI Trackl Track2 Testing
Whole Training Validation Whole Training Validation

Number of images 350 240 200 20 130 100 10 20

Spectral RGB

LRx3 LR X2 HR LRx3 LRx2

Image resolution (80 x 160) (120 x 240) (240 x 480) (160 x 320) (240 x 480) (480 x 960)

Spectral camera model XiQ MQO022HG-TM-SM4x4

RGB camera model XiQ MQ022CG-CM

3 https://scikit-image.org/.
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Table 2. Mean and standard deviation (in parenthesis) for the evaluation metrics under
consideration for each of the two down sampling factors, i.e., x2 and x3, for the whole
dataset and the testing split used for both tracks of the PIRM2018 Example-based
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Spectral Image Super-resolution challenge.

Dataset Downsampling | MRAE |SID APPSA |MSE PSNR | SSIM
split Factor
StereoMSI | x2 0.28 0.000315 |0.107 |6285331 [29.6 |0.549
dataset (1.05) |(0.000329)|(0.043) |(4810190) |(3.5) |(0.062)
x3 0.37 0.000390 |0.117 7779412 28.6 0.455
(1.62) |(0.000397)|(0.0466) (5932423) |(3.5) |(0.069)
Testing X2 0.18 0.000274 |0.102 5055678  [30.3 0.566
(0.14) |(0.000269)|(0.044) (3481870) |(3.0) (0.062)
%3 0.21 0.000353 |0.110 |{6353052 [29.3 |0.474
(0.18) |(0.000373)|(0.047) |(4280365) |(3.1) |(0.073)

Table 3. Mean and standard deviation (in parenthesis) for the evaluation metrics

under consideration for each of the two down sampling factors, i.e., x2 and x3, for

the training and validation splits used in the Track 1 of the PIRM2018 Example-
based Spectral Image Super-resolution challenge and the full set of images (the testing,
training and validation splits combined).

Dataset | Downsampling | MRAE |SID APPSA |MSE PSNR |SSIM
split factor
Full set X2 0.31 0.000306 |0.107 6054107 [29.8 |0.548
(1.26) |(0.000325)|(0.043) |(4672311) |(3.6) |(0.065)
%3 0.42 0.000379 |0.117 7508098 |28.8 |0.454
(1.94) |(0.000389)|(0.047) |(5801852) ((3.6) | (0.072)
Training | x2 0.34 0.000305 |0.107 6228138 [29.6 |0.549
(1.38) 1(0.000331)|(0.044) | (4742463) |(3.5) |(0.064)
X3 0.45 0.000376 |0.116 |7712721 [28.7 |0.455
(2.12) |(0.000391)|(0.047) |(5898619) |(3.5) |(0.070)
Validation | x2 0.20 0.000346 |0.115 |5312227 [31.0 |0.520
(0.14) |(0.000305) | (0.038) |(4804457) |(4.5) |(0.070)
X3 0.25 0.000430 |0.125 6616913 |30.1 0.421
(0.21) |(0.000378)|(0.041) |(5927250) |(4.6) | (0.070)
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Table 4. Mean and standard deviation (in parenthesis) for the evaluation metrics
under consideration for each of the two down sampling factors, i.e., X2 and x3, for
the training and validation splits used in the Track 2 of the PIRM2018 Example-
based Spectral Image Super-resolution challenge and the full set of images (the testing,
training and validation splits combined).

Dataset Downsampling MRAE |SID APPSA MSE PSNR |SSIM
split factor
Full dataset|x2 0.21 0.000327 0.108 6543403 129.3 |0.555
(0.22) |(0.000330)(0.043) |(4873250) |(3.3) |(0.058)
x3 0.28 0.000409 0.118 8087251 |28.3 |0.461
(0.42) |(0.000410)|0.046 (5937327) |(3.2) (0.065)
Training X2 0.20 0.000336 |0.109 7005111 |29.0 0.552
(0.21) |(0.000344)((0.044) |(5213318) |(3.4) |(0.058)
x3 0.28 0.000419 0.119 8629452 |28.0 |0.458
(0.45) |(0.000421)|(0.047) |(6352718) |(3.3) |(0.065)
Validation |x2 0.35 0.000337 0.111 4901777 129.8 |0.558
(0.32) |(0.000284)(0.037) |(1855890) |(1.8) |(0.045)
x3 0.42 0.000425 0.121 61333642 (28.8 |0.464
(0.40) |(0.000356)(0.041) |(2299881) |(1.7) |(0.055)

3 PIRM2018 Spectral Image Super-Resolution Challenge

The PIRM2018 challenge has a twofold motivation. Firstly, the notion that, by
using machine learning techniques, single image SR systems can be trained to
obtain reliable multispectral super-resolved images at testing. Secondly, that by
exploiting the higher resolution of the RGB images registered onto the spectral
images, the performance of the algorithms can be further improved.

Track 1 focuses on to the problem of super-resolving the spatial resolution
of spectral images given training image pairs, whereby one of these is an LR
and the other one is an HR image, i.e. the ground truth reference image. The
aim is hence to obtain x3 spatially super-resolved spectral images making use
of training imagery. Track 2, in the other hand, aims at obtaining x3 spatially
super-resolved spectral images making use of spectral-RGB stereo image pairs.

Each of the participating teams is expected to submit HR testing images
which are to be evaluated with respect to several quantitative criteria concerning
the fidelity of the reconstruction of the spectra in the super-resolved spectral
images. The quantitative assessment of the fidelity of the images consists of the
comparison of the restored multispectral images with their corresponding ground
truth. For this, the challenge used the MRAE, the SID, the MSE, the APPSA,
the SSIM and the mean PSNR. However, only MRAE and SID were used for
ranking.

In Table 5, we present the fidelity measurements for the testing images sub-
mitted by the challenge winners. Additionally, in Fig.5 we show sample super-
resolved results for the two winners of the competition. For more details regard-
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Table 5. Mean and standard deviation (in parenthesis) for the evaluation metrics under
consideration for the winners (IVRL_Prime [36], and VIDAR [37]) of both tracks of the
PIRM2018 Example-based Spectral Image Super-resolution challenge. For the sake of
reference, we also show the results yielded by up-sampling the LR (x3) testing images
using a bicubic kernel.

Team Track | MRAE | SID APPSA | MSE PSNR | SSIM
IVRL_Prime 1 0.07 0.00006 | 0.06 1246673 |36.7 | 0.82
VIDAR 1 0.11 0.000180.08 3414849 132.2  0.62
IVRL_Prime 2 0.07 0.00005 | 0.05 852268 |38.2 |0.86
VIDAR 2 0.09 0.000110.08 1940939|34.5 |0.75
Bicubic upsampling (x3) 0.21 0.00035|0.11 6353052 (29.3 0.47

x2 downsampled X2 upsampled using bicubic interpolation Output of the network of IVRL_Prime

x3 downsampled X3 upsampled using bicubic interpolation Output of the network of VIDAR

Fig. 5. Performance of IVRL_Prime, and VIDAR teams on image 124 from the Track
2 testing split, compared to bicubic upsampled LR x2 and LRx3 images. Note that,
for IVRL_Prime, inputs are LR x2 and LR x3 images, and for VIDAR the input is only
the LR x3 image. For the sake of comparison we also show an up-sampled LR image
(factor x3) obtained using a bicubic kernel. All the imagery in the panels corresponds
to the normalized spectral power image, and for the sake of better visualization, we
have gamma-corrected the 14 channels by setting v = 0.75.

ing the challenge, the super-resolution results obtained by other participants and
the networks and algorithms used at the challenge, we would like to refer the
interested reader to [34].

4 Discussion and Conclusions

In this paper, we have introduced the StereoMSI dataset comprising of 350 stereo
spectral-colour image pairs. The dataset is a novel one which is specifically struc-
tured for multispectral super-resolution benchmarking. Although it was acquired
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with spectral image super-resolution in mind, it is quite general in nature. Hav-
ing a ColorChecker present in every image, it can also be used for a number
of other learning-based applications. Moreover, it also provides lower-resolution
imagery and training, validation, and testing splits for both colour-guided and
example-based learning applications. We have also presented a set of quality
image metrics applied to the images when up-sampled using a bicubic kernel
and, in doing so, provided a baseline based upon an image resizing approach
widely used in the community. We have also provided a summary of both tracks
in the PIRM2018 spectral image super-resolution challenge and shown the results
obtained by the respective winners.

Acknowledgemnts. The PIRM2018 challenge was sponsored by CSIRO’s DATA61,
Deakin University, ETH Zurich, HUAWEI, and MediaTek.
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