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Abstract. Image enhancement on smartphones needs rapid processing
speed with comparable performance. Recently, convolutional neural net-
works (CNNs) have achieved outstanding performance in image process-
ing tasks such as image super-resolution and enhancement. In this paper,
we propose a lightweight generator for image enhancement based on CNN
to keep a balance between quality and speed, called multi-connected
residual network (MCRN). The proposed network consists of one dis-
criminator and one generator. The generator is a two-stage network: (1)
The first stage extracts structural features; (2) the second stage focuses
on enhancing perceptual visual quality. By utilizing the style of multiple
connections, we achieve good performance in image enhancement while
making our network converge fast. Experimental results demonstrate
that the proposed method outperforms the state-of-the-art approaches
in terms of the perceptual quality and runtime. The code is available at
https://github.com/JieLiu95/MCRN.
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1 Introduction

Due to the demand for easy manipulation and the increase of visual qual-
ity in smartphones, numerous people choose to take photos using their phone
cameras. In general, high-resolution (HR) images need a better sensor to keep
image fidelity, resulting in additional cost. Image enhancement on smartphones
is required to provide a higher visual quality. It can be achieved by learning the
relationship between photos of smartphones and DSLR-quality images. It gener-
ates a DSLR-like image from an input image obtained by smartphones. However,
it still runs on our typically used appliances with a limit of computing resources,
and many GPUs are not available in a real situation. Thus, real-time process-
ing is required for image enhancement in smartphones, and thus a lightweight
solution is needed.

Up to the present, many outstanding studies have been done. In DSLR Photo
Enhancement Dataset (DPED) [1], the authors successfully keep the texture
and perceptual information by a generative adversarial network [2]. They also
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provide a large dataset, which contains paired images of the same scene obtained
by smartphones (e.g., iPhone, Sony, and BackBerry).
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(a) Original image. (b) Enhanced image.

Fig. 1. Sample image. (a): Input original image from iPhone 3GS. (b): Enhanced image
by our method.

In this paper, a lightweight generator for smartphones based on CNN to keep
a balance between quality and speed is proposed, called multi-connected residual
network (MCRN). In Fig. 1, we pick a pair of images to show the visual effect
generated by proposed method. Ignatov et al. proposed a weakly supervised
photo enhancer, named WESPE [3]. They mainly focus on image enhancement
for unpaired images. WESPE improves quality in texture and structure, but it
is somewhat slow in inference phase. However, their model is huge even in a
high-end workstation. Therefore, it is impossible to put them on smartphones,
and it is hard to balance speed and quality.

To address this problem, we introduce a generative network to accelerate
it, named MCRN, as shown in Fig.2. We use a small generator to speed-up
image enhancement. The generator only has 4 convolution layers and each of
them has 16 channels. Because every layer of the generator learns a few features,
we design multiple connected modes to maximize the flow of information [4]
from different levels of features, thus improving visual quality of the images
obtained by smartphones. Besides, a loss function based on a discriminator of
generative adversarial network (GAN) is proposed, which strengthens and fine-
tunes details of the estimated map by the generator. The proposed MCRN is
composed of a two-stage generator and a discriminator to get good visual quality.
The discriminator is shown in Fig. 3, and it uses adversarial loss to synthesize
textures and details.

The main contributions of this paper include:

(1) We propose a lightweight end-to-end network to learn a model to map smart-
phone images into DSLR ones. Moreover, it consists of only 4 layers, which
is very small in deep learning approaches.
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(2) We use a two-stage network architecture in the generator. For the first stage,
the generator keeps the structure feature by SSIM loss, while for the second
stage, it keeps high dimensional semantic information.

(3) We adopt multiple connections in the generator to reuse resource and get
rich features.

2 Related Work

Image enhancement methods are classified into global and local approaches in
adjusting contrast and color mapping. In power-law contour detection [5] and
gamma function [6], non-linear functions avoid saturation in bright regions while
successfully preserving an image tone. However, they have a limit in enhancing
local regions. In the past decades, histogram equalization and its variants, such
as contrast limited [7] and brightness preserving [8], are widely used for enhance-
ment to achieve better contrast. However, they are very sensitive to the change
of parameters because of manually adjusting the image correction. Thus, they
result in detail loss and over-exposure at local areas.

GAN. Generative adversarial network [2] is used to generate good quality images
with fine details because it can learn data distributions. Recently, more and
more domain translation tasks have used GAN to get an adversarial loss, which
synthesizes good features and textures. However, in a specific task, GAN plays
a special role, e.g. it is style loss in [9], and it is used to color loss in Gateways
et al.’s work [10]. Chen et al. [11] proposed two-way GAN, in which they used
U-Net [12] as global generator and an adaptive weighting scheme on WGAN
[13], to improve the quality of enhanced images. Motivated by them, we propose
an adversarial loss function based on GAN to fine-tune texture details in this
work.

Super-Resolution. Single image super-resolution is a significant problem,
which aims to generate an HR image from its low-resolution (LR) one. SRCNN
[14] proposed by Dong et al. is the first method to solve single image super-
resolution using CNN. Ledig et al. proposed SRGAN [15], which utilizes genera-
tive adversarial network to recover the HR images with high perceptual quality.
In addition, the NTIRE 2018 Challenge on Single Image Super-Resolution [16]
has achieved good results, and many teams proposed novel methods and got
good scores. In this challenge, most of the methods are based on ResNet [17]
and DenseNet [18] and achieve higher PSNR score. Inspired by CondenseNet [4],
we use multiple connections to keep image fidelity and visual quality.

Image-to-Image Mapping. Image enhancement [1,11], style transfer [19,20]
and color transfer [21-24] are the sub-tasks of image-to-image transfer [25,26].
Okura et al. [21] proposed a novel method based on comparing the exemplar
with the source for color and texture transfer, which achieved good performance.
Liu et al. [20] proposed a data-driven system to automatically transfer style to a
user’s photos. Wang et al. [27] proposed style and structure GANs, and achieved
good performance in image generation. Two GANs were trained independently
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and then learned via joint learning. Huang et al. [28] proposed a stacked GAN
that was a multi-GAN model to learn representation from top to down for image
generation. They used multi-stage models which were very big. Image enhance-
ment on smartphones is also an image-to-image mapping operation. In consid-
eration of speed and memory limitation, we adopt two-stage generator.

Image Denoising and Artifact Removal. The images captured by smart-
phones have noises which are not obvious without enlarging the image, but this
phenomenon leads to severe degradation of image quality. In most methods,
e.g. DPED [1], artifacts remain on their results. Thus, in this paper we achieve
denoising and artifact removal based on MSE and total variation losses [29] in
the training stage.

3 Proposed Method

3.1 Network Architecture

Generator. The generator of MCRN is illustrated in Fig. 2, which is composed
of 4 layers. The first 1 x 7 layer and the second 7 x 1 layer are combined with
a big receptive field layer to get features. The receptive field is 7 x 7, and the
number of the first parameters is only %th of the second ones. Then, Output OC
is used to keep structure information by SSIM loss as shown in Fig. 2, which is
defined as follows:
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Fig. 2. Network pipeline of the proposed generator. The proposed generator consists
of 5 layers in training phase and 4 layers in testing phase (remove the last layer of the
first stage supervised). Input: Images captured from smartphones cameras. Output:
OE composed of 4 layers. (Output OC: Output of the first stage output image; Output
OE': Enhanced image by proposed method).

N
Lssivy =Y 1—SSIM, (1)

n=1
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where SSTM (structural similarity) is calculated by Outout OC' (output of the
generator) and the ground truth. Lggsra is only used in the first stage and
updated successively. In addition, instance normalization (IN) [30] operation is
used after a convolution in the third layer. According to the Ulyanov et al.’s
work [30], IN layer is defined as follows:

T _
Ybehw = bChU;iﬂ’bC’ (2)
\VOop. T €

where b, ¢, h, w are batch size, feature channel, height, and width respectively. In
addition, pp. and afc are mean and covariance respectively, and they are defined

as follows:
W H
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w=1 h=

Since batch normalization (BN) slightly hurts color consistence, it is replaced
with IN. The training phase is stable under instance normalization.

In Fig.2, & is the element-wise summation operator. Since this framework
is too shallow to get enough feature, we put the element-wise add operator into
the generator to use the feature from the previous layers.
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Real or Fake

Fig. 3. Network architecture of the proposed discriminator. The discriminator consists
of 5 convolutional layers and 2 fully connected layers. An activation function produces
real and fake, while the generator tries to cheat the discriminator.

Discriminator. The discriminator is very simple as shown in Fig. 3. In the first
step, we get the down-sampled image by stride convolution, and the number of
channels increase layer by layer. The optimization function of the discriminator
is defined as follows:

Lp=—log (D (Iy)) —log (1 = D (G (1)), (4)

where I, is the ground truth, and I, is the input of the generator, which is
captured by smartphones. D and G are discriminator and generator, respectively.
Discriminator needs to distinguish the ground truth and the enhanced image
Output OF by the generator.
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3.2 Loss Functions

Adversarial Loss. The discriminator is mainly used to optimize the generator
by an adversarial loss as follows:

‘cadv: - IOg (D (IOE)) ) (5)

where Ipg = G (I;) is the Output OE. Unfortunately, the adversarial loss is
sensitive and unstable, and thus some other loss functions are needed.

Smoothness Loss. From the previous studies, the enhanced image has two
disadvantages: color distortion and noise. Thus, we get a smoothness loss by
combining MSE loss and total variation (TV) loss as follows:

Lsmooth = 1 LyrsE + a2£TV7 (6)

where a; and «q are coefficients of Ly;sg and Ly respectively.
Because M'SE norm penalizes larger errors and is more tolerant for smaller
ones, it is mainly used to reduce noise in this work as follows:

1 X X 2
Lase =~ 2 O My (@,y) = Lo (@), (7)

r=1 y=1

where the combination of z and y is the co-ordinates of image, and I, (z,y) is
the pixel at (z,y).

In the Aly et al.’s work [29], TV loss function acts as the image fidelity term.
Bastian et al. [31] also used it on denoising. In this paper, TV loss is used to
remove noise and artifacts as follows:

1
Lrv = e |

where H, W, C denote the dimensions of G (I,,).

VoG (1) + Vy G (L), (8)

Style Loss. To get better texture, we introduce the pretrained VGG-19 [32]
model. Style loss is calculated on the layers of pooll, pool2, pool3 and poold
in VGG features. In this work, we get the style loss [33] through calculated
squared L2 norm of Gramian, which is the correlation on different locations for
each feature to understand the general style of the overall image. The style loss
is defined as follows:

N-1
Lstyie = Y I(Gi(Top)) = (Gi (L)]l5, 9)

n=0

where G is Gramian, which is calculated by the Hermitian matrix of inner
products defined as:
Gi(F) = F'F, (10)

where F) is the feature map of layer [.
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Total Loss Function. The total loss function L;,:,; combines the above loss
functions with different weights as follows:

‘Ctotal - )\l‘cadv + )\2£5mooth + Ai’)ﬁstylea (11)

where the weights A1, A2 and A3 depend on the effects of sub-loss functions on
the visual quality.

4 Experiments and Results

4.1 Datasets

We use DPED dataset [1] for training and evaluation, which is provided by PIRM
2018 Enhancement on Smartphones Challenge'. It contains three sub-datasets,
and the image datasets of smartphones are captured by iPhone, BlackBerry and
Sony. The label datasets are all obtained by Canon. In PIRM 2018 Enhancement
on Smartphones Challenge, we only use iPhone-Canon sub-dataset for training
and evaluation. However, in our experiments we also evaluate the performance
of the proposed method on BlackBerry-Canon and Sony-Canon sub-datasets.

4.2 Training Details

The proposed generator MCRN only has 4,947 and 5,394 parameters in testing
and training phases respectively. For the training phase, we use a batch size of 50
whose resolution is 100 x 100. It is trained for 1.8 x 10* iterations from scratch
with initialized learning rate as 5 x 10™* and decreasing by the factor 10 for
every 8 x 103 iterations. For every 500 iterations, we make an evaluation and save
the model. Adam [34] optimization is used to optimize parameters of generator
and discriminator. In training, we set hyper-parameters for the smoothness loss:
a1 = 1 and ag = 23. The coefficients of Lioiar, A1, A2 and Az are 1, 100 and 30
respectively. The training time is about 4h on a PC with GPU GTX 1080 Ti,
Tensorflow v1.8.0, CUDA v9.0 and cuDNN v7.5.

4.3 Ablation Study

To verify the effectiveness of the proposed method, we do the ablation study con-
sidering a single-connected generator, the generator without stage-wise supervi-
sion, Lgmooth and Lgzye. Because we only have a self-evaluated iPhone dataset,
we perform the ablation study on it. In addition, the results are shown in Table 1
and Fig. 4.

! http://ai-benchmark.com/challenge.html.
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1Phone Original

(c) iPhone Original

S

(d) iPhone Original w/o Style Proposed Method

Fig. 4. The results of ablation study. We choose one example in each ablation study.
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Single Connected Generator. The single-connected generator is similar to
a standard Residual Network [17]. We apply the single-connected generator in
the same conditions. In Table1, the PSNR and MS-SSIM scores are lowest.
As shown in Fig.4(a), it is obvious that color of the proposed method is more
natural-looking than that of the single connected generator and keeps texture
details in the enlarged local image. As a result, we draw a conclusion that the
proposed multiple connected residual generator outperforms the single connected
generator.

Without Stage-wise Supervision. In this sub-task, we remove first stage
layer and thus the generator only generates Qutput OC. The other hyper-
parameters are kept the same as the proposed method. Also, we train it via the
same strategy as the previous ablation study. As shown in Table 1, the enhanced
images are not good at generating structure information without the first stage.
In Fig.4(b), the structures of tree and roof are clearer than the middle column
ones. Thus, we adopt a two-stage generator, and use stage-wise supervision to
keep structure detail.

Without Smoothness Loss. We drop out smoothness loss function to train the
same network. As shown in Fig. 4(c), the middle column image generated with-
out smoothness loss have serious noise and artifacts. Also as shown in Table1,
the PSNR socore of this experiment is lower than the proposed method, but
the MS-SSIM score is similar. Thus, we add smoothness loss to keep image
fidelity. Consequently, smoothness loss can improve visual quality while keeping
structure.

Table 1. Results of ablation study in terms of PSNR (unit: dB) and MS-SSIM.

Strategy PSNR | MS-SSIM
Single connected |22.35 |0.9167
w/o first stage 22.50 10.9213
w/o smooth loss |22.43 |0.9226
w/o style loss 22.45 10.9221
Proposed method | 22.52 | 0.9227

Without Style Loss. The style loss is used to balance texture and structure,
and we investigate the significance of this loss function by this sub-task. As
shown in Table 1 and Fig. 4(d), the style loss has a significant impact on keeping
image structure, because the MS-SSIM score increases evidently. The branches
in third column of Fig.4 are clearer than those in the middle column.

From the experimental results, it can be concluded that the proposed method
is very effective in improving visual quality of the enhanced image. The ablation
studies are based on iPhone-Canon dataset.
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4.4 Analysis and Limitation

According to this challenge [35], we provide the evaluation results in Table 2,
and the test dataset is not publicly available in the challenge. Because PSNR
and MS-SSIM scores cannot fully represent image quality, the organizers also
recommend MOS score during the test phase. Scores A, B and C are PSNR,
MOS and the balance between the speed and performance, respectively.

Table 2. Partial results on Smartphones. SRCNN and DPED are baselines provided
by PIRM 2018 Enhancement. The columns of CPU and GPU show the testing time
per image (unit: msec/image).

Methods | PSNR | MS-SSIM | MOS | CPU | GPU | Score A | Score B | Score C
SRCNN |21.31 |0.8929 2.295 3274 204 3.22 2.29 3.49
DPED 21.38 10.9034 2.4411 | 20462 | 1517 2.89 4.9 3.32
Ours 21.79 | 0.9068 2.4324 833| 83 12.0 12.59 | 14.95

In Table2, DPED [1] and SRCNN [14] are baselines. The proposed method
achieves a lower MOS score as shown in Fig.2. However, in the other metrics
the proposed method outperforms SRCNN and DPED. Moreover, the proposed
method is smaller and faster than SRCNN with only 3 layers. The proposed
method outperforms the others in both PSNR and MS-SSIM. In Fig.5, the
enhanced images are good in visual quality, and they get high brightness keeping
good textures.

However, there are also some failure cases as shown in Fig. 6. The first row is
the input images obtained by iPhone 3GS, while the second row is their enhanced
images by the proposed method. The test image is captured in under-exposure
condition as shown in middle column of Fig.6, and the enhanced image also
has slightly lower luminance. In the Fig. 6, the proposed method produces over-
enhanced results in large homogeneous regions with similar color. Thus, it can
be observed that the water and blue sky in Fig. 6 look noisy.

4.5 Training and Testing on Other Smartphones’ Datasets

In order to prove the universal validity of the proposed approach, we also apply
this method on BlackBerry and Sony images. And the test results on this two
datasets achieve good scores as shown in Table 3. We choose the same original
images from BlackBerry and Sony, and the visual results are shown in Fig.7
and Fig. 8, which are for BlackBerry and Sony respectively. From the results, it
can be observed that BlackBerry images contain more noise while Sony images
include more haze. Moreover, Sony images achieve higher quality with more vivid
color than Blackberry images.
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Fig. 5. Results by the proposed method. First column: Original iPhone 3GS image.
Second column: Output of the first stage Output OC. Third column: Enhanced images
Output OF by the proposed method.

Fig. 6. Failure cases. The first row is the input images obtained by iPhone 3GS, while
the second row is their enhanced images by the proposed method.
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(a) Original image.

(c) Original image. (d) Enhanced image.

Fig. 7. Image enhancement for BlackBerry

(a) Original image. (b) Enhanced image.

(c) Original image. (d) Enhanced image.

Fig. 8. Image enhancement for Sony

193
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Table 3. Training on three smartphones and get the following results. We test the
proposed method in DPED self-evaluation dataset and perform comparison in terms
of PSNR (unit: dB) and MS-SSIM.

Smartphone | PSNR | MS-SSIM
BlackBerry |22.39 |0.9336
iPhone 3GS | 22.52 |0.9227
Sony 23.86 |0.9461

5 Conclusions

In this paper, we propose a generative network named multiple connected resid-
ual network (MCRN) for image enhancement on smartphones. MCRN is a
lightweight generator to deal with speed and memory limitation. Moreover, the
proposed method achieves good performance in image enhancement on smart-
phones. A two-stage generator is used in MCRN to significantly improve visual
quality compared with state-of-the-art methods. In our future work, we will
investigate improving the over-enhancement effect of the proposed method by
considering human visual perception.
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