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3 Inception Institute of Artificial Intelligence, Abu Dhabi, UAE

4 Soochow University, Suzhou, China
5 Guangdong Xi’an Jiaotong University Academy, Guangdong, China

Abstract. Zero-shot learning (ZSL) is a challenging task due to the
lack of data from unseen classes during training. Existing methods tend
to have the strong bias towards seen classes, which is also known as the
domain shift problem. To mitigate the gap between seen and unseen class
data, we propose a joint generative model to synthesize features as the
replacement for unseen data. Based on the generated features, the con-
ventional ZSL problem can be tackled in a supervised way. Specifically,
our framework integrates Variational Autoencoders (VAE) and Gen-
erative Adversarial Networks (GAN) conditioned on class-level seman-
tic attributes for feature generation based on element-wise and holistic
reconstruction. A categorization network acts as the additional guide to
generate features beneficial for the subsequent classification task. More-
over, we propose a perceptual reconstruction loss to preserve semantic
similarities. Experimental results on five benchmarks show the superi-
ority of our framework over the state-of-the-art approaches in terms of
both conventional ZSL and generalized ZSL settings.

Keywords: Zero-shot learning · Variational autoencoder
Generative adversarial network · Perceptual reconstruction

1 Introduction

Deep learning contributes significantly to the rapid progress in computer vision
owing to its strong capabilities of data representation. However, there exists a
non-negligible issue that training deep neural networks requires a huge amount
of annotated data, which is usually unavailable in realistic scenarios due to labor-
intensive data annotations. Meanwhile, with the explosive growth of new cate-
gories (e.g. of objects), it is even impossible to get any training data from certain
classes. To deal with this, zero-shot learning (ZSL) has recently emerged as an
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Fig. 1. The flow chart of the proposed approach. We address the zero-shot learning
(ZSL) problem in a supervised way, by generating features for unseen classes via our
generative framework. The red dotted box denotes the conventional ZSL task, and the
blue dotted box denotes the generalized ZSL (GZSL) task. (Color figure online)

effective solution [17–19,28]. ZSL considers a more challenging case that train-
ing (seen) and test (unseen) classes are disjoint, i.e. the data of unseen classes
is totally missing during the training process.

Specific intermediate representations (e.g. semantic attributes [8,11,18] and
word vectors [10,27,37,48]) have been widely used by ZSL methods to bridge
the gap between seen and unseen classes. However, an inherent problem, known
as ‘domain shift’ [12], still remains challenging for conventional ZSL methods. In
other words, classifiers trained on seen classes are not suitable for unseen ones due
to their different underlying distributions. Consequently, most existing methods
have the strong bias towards seen data and their performance is unacceptable for
conventional ZSL settings, let alone the recently proposed more realistic general-
ized ZSL (GZSL) settings [7,42] where both seen and unseen classes are present
at test time. Therefore, it is highly desirable to develop a generalized framework
that could mitigate the domain shift and provide a universal classifier for both
seen and unseen classes. As shown in Fig. 1, in this work, we aim to address the
above issues from a new perspective, i.e. converting ZSL to supervised learning,
by hallucinating unseen class features based on deep generative models.

Deep generative models, such as Generative Adversarial Networks (GAN)
and Variational Autoencoders (VAE), have been extensively studied in the recent
few years. GAN [13] is appealing to generate realistic images, especially condi-
tioned on additional information [26,33]. VAE [15], especially the conditional
VAE (CVAE) [38], has great potential to generate data through element-wise
similarity metrics. In a similar spirit to our work, Xian et al. [43] proposed a
ZSL framework to generate features for unseen classes based on conditional GAN
(CGAN). However, GAN generally concentrates on more abstract and global
data structure. In our problem, element-wise reconstruction is also essential for
hallucinating unseen classes. Thus, we propose a joint framework by taking the
advantages of CGAN and CVAE for more delicate data generation. Note that
existing works [4,21] have already shown the effectiveness of this kind of gen-
erative model in image synthesis. In contrast, we aim at generating features
instead of images for unseen classes since the generated images are typically of
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insufficient quality to train deep networks for the final classification [43]. We
add an additional categorization network to ensure the discriminability of the
synthesized features. Different from [43], the categorizer and the generator in
our framework compete in a two-player minimax game. That is, the generator
tries to generate features that belong to the classes of real features, and the
categorizer tries to distinguish the generated features from the real ones in the
category level simultaneously. Through the competition, the generated features
will be well suited for training the final discriminative classifier. Moreover, we
propose a perceptual reconstruction loss to preserve class-wise semantics based
on the intermediate outputs of the discriminator and the categorizer.

The main contributions of this paper are summarized as follows:

– We propose a novel generative framework for zero-shot learning, which
addresses conventional ZSL problems in a supervised manner. The framework
takes the advantages of CGAN and CVAE to generate features conditioned
on semantic attributes with the additional help of a categorization network.
As a result, the generated features are not only similar to the real ones but
also discriminative for the subsequent classification task.

– We leverage the intermediate outputs of the networks for perceptual recon-
struction so that the generated features have the pixel-wise similarity as well
as the semantic similarity to the real features.

– Extensive experimental results on five standard ZSL benchmarks demonstrate
that the proposed method achieves notable improvement over the state-of-the-
art approaches in not only the conventional ZSL but also the more challenging
GZSL tasks.

The remainder of the paper is organized as follows. In Sect. 2, we give a brief
review of existing ZSL methods and generative models. In Sect. 3, we introduce
the proposed joint generative framework, which includes several networks to
synthesize high-quality features of unseen classes for the subsequent classification
task. Section 4 first introduces the datasets and experimental setup and then
provides the demonstration of the experimental results. We finally draw our
conclusion in Sect. 5.

2 Related Work

2.1 Zero-Shot Learning

Zero-shot learning is a challenging task because of the lack of training data.
Many attempts [1,8,17–19,27,28,30,31,34,45,48] have been made to exploit the
relationships between seen and unseen classes. Semantic representations, such as
semantic attributes [8,9,11,17,18] and word vectors [10,27,37,48], are employed
as the intermediate embedding to bridge the gap between the visual space and
class space. Typically, a mapping from the visual space to semantic space is
learned and then leveraged for the following classification task.

Recently, there were some works that learned the inverse mapping from the
semantic space to visual space [5,23,24,43,46], which was shown effective for
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mitigating the domain shift problem. For instance, Zhang et al. [46] proposed
an end-to-end architecture to embed the semantic representation into the visual
space. Different from the above works, we choose not to learn the inverse mapping
directly but generate synthesized features of unseen classes conditioned on class-
level semantic attributes. Recently, some works focused on data generation using
generative models, which are similar to our work. For instance, Bucher et al. [5]
generated features via GMMN [22]. Xian et al. [43] proposed a framework combin-
ing WGAN [3] and a categorization network to generate features. Our framework
differs from them by exploiting two generative models (i.e. CVAE and CGAN) for
realistic feature generation. Moreover, we propose both categorization and percep-
tual losses to generate discriminative features.

In comparison to the conventional ZSL, the generalized zero-shot learning
(GZSL) is a more realistic and difficult task, where both seen and unseen classes
are available at test time [7,42]. Despite that the conventional ZSL has gained
a lot of attention, few studies [7,37] concentrated on solving GZSL problems. It
is more desirable to design robust ZSL methods that could eliminate the bias
towards the seen data for more realistic scenarios.

2.2 Deep Generative Models

Deep generative models [13,15] have shown the great potential in data genera-
tion. There have been a variety of deep generative models [13,15,20,21,32,38].
Among these models, Variational Autoencoder (VAE) [15] and Generative
Adversarial Network (GAN) [13] play the indispensable roles. VAE models the
relationship directly through element-wise reconstruction, while GAN captures
the global relationship indirectly [21]. However, VAE has a disadvantage of often
generating blurry images as reported in [4] because element-wise distance cannot
describe the complex data structure. GAN can obtain more abstract information,
but the training process is not stable [36].

Due to the above shortcomings, some recent works attempted to combine
these two generative models for better data generation, such as VAE/GAN [21],
adversarial autoencoder [25], and CVAE-GAN [4]. Our work is thus motivated
by the above approaches; however, we utilize conditioned generative models to
synthesize features instead of images as the quality of generated images are too
low to achieve satisfactory performance in ZSL problems [43]. Specifically, our
model is conditioned on semantic attributes instead of category-level labels, so
that more delicate description can be used for feature generation. Moreover, we
add a categorization network to ensure that the generated features are helpful
for the following classification task. We also take advantage of the intermediate
outputs of the networks for perceptual reconstruction to form a richer semantic
similarity metric for feature generation.

3 Approach

This work aims to synthesize high-quality features for unseen classes by estab-
lishing a joint generative model, based on which conventional ZSL can be
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Fig. 2. The illustration of our generative framework. Particularly, our framework con-
sists of four networks: the Encoder E, the Generator G, the Discriminator D, and the
Categorizer C. Given real features and the corresponding semantic attributes as the
input, our framework will synthesize high-quality features after generative learning.

transformed into supervised learning. Specifically, our proposed model generates
semantically expressive features for unseen classes conditioned on the class-level
semantic attributes. Subsequently, we train classifiers based on the generated
features of unseen classes w.r.t. conventional ZSL settings and on both the gen-
erated features of unseen classes and real features of seen classes w.r.t. GZSL
settings. As a result, the domain shift between seen and unseen classes will be
mitigated significantly as classifiers are learned on both seen and unseen features.

In the following, we will first introduce the problem settings for ZSL and
GZSL, and then present our joint generative model in detail. Finally, how to
perform zero-shot recognition in a supervised manner is elaborated.

3.1 Problem Settings

In zero-shot learning, the training set S consists of image features, attributes, and
class labels of seen classes, i.e. S = {(xs, as, ys)|xs ∈ X, as ∈ A, ys ∈ Ys}. xs ∈
Rdx denotes the features of seen data, where dx denotes the feature dimension.
Ys = {y1

s , ..., y
Cs
s } represents the labels of Cs seen classes. as ∈ R

da denotes the
class-level attributes of seen classes, where da indicates the dimension of semantic
attributes. In terms of unseen classes, no features are available during training
and we can only employ some class-level information, e.g. semantic attributes in
our case. Specifically, the unseen set is denoted by U = {(au, yu)|au ∈ A, yu ∈
Yu}, where Yu = {y1

u, ..., yCu
u } represents the labels of Cu unseen classes and

au ∈ R
da denotes the class-level attributes of unseen classes.

It should be noted that the seen and unseen classes are disjoint, namely
Ys ∩ Yu = ∅. Given S and U , the conventional zero-shot learning task is to learn
a classifier fZSL : X → Yu, and the generalized zero-shot learning aims to learn
a universal classifier fGZSL : X → Ys ∪ Yu, which is a more challenging task.
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3.2 Joint Generative Model

In this subsection, we will introduce our proposed framework in detail. As shown
in Fig. 2, our framework consists of four networks: (1) the encoder network E,
(2) the decoder/generator network G, (3) the discriminator network D, and
(4) the categorizer network C. As our framework combines CVAE and CGAN,
the decoder in CVAE is identical to the generator in CGAN. Unless otherwise
specified, we use the generator G to denote this network branch.

The combination of CVAE and CGAN provides well-designed guidance for
feature generation. In the following, we will first introduce the network structures
of VAE conditioned on semantic attributes and GAN conditioned on semantic
attributes and category labels, respectively. An additional categorization net-
work will also be introduced along with the conditional GAN. Subsequently, we
will present our perceptual reconstruction loss and the overall objective for train-
ing in detail. Finally, we will introduce the procedure for zero-shot recognition
at test time.

VAE Conditioned on Semantic Attributes. VAE consists of an encoder
network and a generator network. In our architecture, VAE is conditioned on
class-level semantic attributes. In other words, attributes act as a part of the
input to both encoder and generator for the purpose of providing class-level
semantic information for feature generation.

As for the encoder network E with parameters θE , we aim to encode the real
features xs into a latent representation

zf ∼ pE(z|xs, as), (1)

where xs ∼ p(x) and as ∼ p(a), and p(x) and p(a) denote the prior distributions
of real features and semantic attributes, respectively. The encoder learns the
inherent structure of features and then imposes this prior over the distribution
p(z), which is usually zp ∼ N (0, I). The generator G with parameters θG decodes
the latent representation into the feature space to generate synthesized features

xf ∼ pG(x|zf , as). (2)

The overall loss function of CVAE is a combination of the reconstruction loss
and the Kullback-Leibler divergence loss:

LCV AE(θE , θG) = LKL + Lrecon, (3)

where
LKL(θE , θG) = KL(pE(z|xs, as)||p(z)), (4)

Lrecon(θE , θG) = −E[log(pG(x|zf , as))]. (5)

By minimizing Eq. (3), we can reduce the reconstruction error and the difference
between the distribution of latent representation and the prior distribution. As
a consequence, the encoder is capable of capturing the inherent structure of data
and the generator will generate features with similar structures as the real ones.
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GAN Conditioned on Attributes and Categories. In the conventional
generative adversarial network, the generator and the discriminator try to make
a balance in a two-player minimax competition. In our framework, the gener-
ator is conditioned on the semantic attributes. In addition, the category-wise
information (i.e. labels), exploited by a categorizer, works as another clue to
help the generator obtain discriminative features. We define the discriminator
with parameters θD and the categorizer with parameters θC . Concretely, the
generator tries to minimize the following loss:

LG(θG, θD, θC) = − E[log(pD(G(zp, as)))] − E[log(pD(G(zf , as)))]
− E[log(pC(ys|xp)] − E[log(pC(ys|xf )],

(6)

where

xp = G(zp, as) ∼ pG(x|zp, as), xf = G(zf , as) ∼ pG(x|zf , as).

In the meantime, the discriminator tries to minimize

LD(θG, θD, θC) = −E[log(pD(xs))]−E[log(1−pD(xf ))]−E[log(1−pD(xp))] (7)

Given zp and zf along with the semantic attributes as the input, the genera-
tor aims to synthesize features that are similar to the real features and belong to
the same class as the real ones at the same time. The discriminator tries to dis-
tinguish real features from synthesized ones. After iterative training, the network
will generate high-quality features with the guidance from semantic attributes
as well as from category-wise information.

As mentioned above, the categorizer helps to promote the discriminability of
the generated features, which has the similar spirit with the classification network
in [43]. However, we find that this additional regularization is not enough for
the subsequent classification task. To this end, we make the categorizer as the
other ‘discriminator’, which plays a minimax competition with the generator in
the category level. Concretely, the real features xs, and synthesized features xf

and xp, are fed into the categorizer, which tries to minimize the softmax based
categorization loss:

LC(θC) = −E[log(pC(ys|xs)] − E[log(pC(yf |xp)] − E[log(pC(yf |xf )], (8)

where yf denotes the label of the ‘fake’ class that is disjoint from the seen and
unseen classes. In this way, the categorizer not only needs to classify the real
features into the right classes but also regards the synthesized features as another
‘fake’ class. Through the competition, the generator is encouraged to generate
features from the same classes as the real features.

Perceptual Reconstruction. In addition to the superior characteristics of
CVAE and CGAN, we try to find a richer similarity metric to achieve more deli-
cate generation results. As we mentioned above, element/pixel-wise information
and holistic structures can be preserved by using VAE and GAN respectively, yet
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the semantic information may not be enough. Thus, we incorporate a perceptual
reconstruction loss into our framework. The perceptual loss has been explored in
the field of image style transfer and super-resolution [14], and could encourage
the generated features to be semantically similar to real ones.

Specifically, we take advantage of the intermediate output of the discrimina-
tor and categorizer for perceptual reconstruction:

Lpercept(θD, θC) = ‖fD(xs) − fD(xf )‖22 + ‖fC(xs) − fC(xf )‖22 , (9)

where fD and fC are the outputs of the last hidden layers of the discriminator
and categorizer, respectively.

Overall Objective. The ultimate goal of our framework is to minimize the
following overall loss function:

L = LKL + Lrecon + LD + LC + αLG + βLpercept. (10)

In particular, we alternatively optimize every network branch in our framework
as follows:

Encoder(θE) ← LKL + Lrecon + βLpercept; (11)

Generator(θG) ← Lrecon + αLG + βLpercept; (12)

Discriminator(θD) ← LD; (13)

Categorizer(θC) ← LC . (14)

LKL only appears in Eq. (11) because it is only related to the encoder. Similarly,
LC and LD are the objectives of the categorizer and discriminator respectively.
The generator is shared between the CVAE and CGAN so its loss can be divided
into two parts: i.e. Lrecon and Lpercept form the loss w.r.t. CVAE and LG is the
loss w.r.t. CGAN. All the objectives are complementary to each other, while the
joint training process could result in superior performance.

3.3 Zero-Shot Recognition

After finishing the training process, the synthesized features of unseen classes
can be obtained through our generator network. In particular, given an arbitrary
latent representation drawn from the Gaussian distribution zt ∼ N (0, I) and
the semantic attributes au of the corresponding unseen class as the input, the
generator will output the synthesized features as follows:

xgen = G(zt, au) ∼ pG(x|zt, au). (15)

Based on the generated features, zero-shot recognition can be transformed
into the conventional supervised learning problem. As we previously mentioned,
there exist two settings for zero-shot recognition, i.e. the conventional ZSL and
the more challenging GZSL. In conventional ZSL settings, we train the softmax
classifier based on xgen and then test on the real features of unseen classes,
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Algorithm 1. The training process of our proposed framework
Input:

Training features of seen classes: xs; semantic attributes of seen classes: as; initial
parameters of Encoder E, Generator G, Discriminator D, and Categorizer C: θE ,
θG, θD, and θC ; total training epoch: T.

Output:
The learned parameters of each network: θE , θG, θD, and θC .

1: while epoch < T do
2: Sample a batch of real features {xs, as} ⊆ S;
3: The Encoder E maps the real features into a latent representation: zf ;
4: Compute KL loss using Eq. (4);
5: Get synthesized features xf through the Generator G;
6: Compute reconstruction loss using Eq. (5);
7: Sample zp from the Gaussian distribution: zp ∼ N (0, I);
8: Get synthesized features xp through the Generator G;
9: Compute the generator loss using Eq. (6);

10: Compute the discriminator loss using Eq. (7);
11: Classify xs and synthesized features xf , xp through the Categorizer C;
12: Compute the categorization loss using Eq. (8);
13: Compute the perceptual reconstruction loss using Eq. (9);
14: Optimizing the parameters of each network using Eq. (11) - (14), respectively;
15: end while

i.e. xu. As for GZSL settings, the original data of seen classes xs will be divided
into two parts, i.e. xtr

s for training and xts
s for test. During training, we employ

xgen together with xtr
s as the training samples to learn the softmax classifier. At

test time, we evaluate on xu and xts
s to obtain the final recognition accuracy.

4 Experimental Results

In this section, we evaluate the proposed method on five ZSL benchmark
datasets. First, we make a brief introduction of the datasets, implementation
details of our framework and evaluation protocols. In order to show the effec-
tiveness of our framework, we then present our experimental results on both
conventional ZSL and GZSL tasks by comparing with several state-of-the-art
ZSL methods and baseline methods. Finally, we show the high quality of the
generated features quantitatively and qualitatively.

4.1 Datasets

Five classic datasets for ZSL are adopted in our experiments, i.e. AWA1 [18],
AWA2 [42], CUB [40], SUN [29], and aPY [8]. AWA1 [18] is the original Ani-
mals with Attributes dataset, which has 30475 images in 50 classes, and each
class is annotated with 85 attributes. However, the images of AWA1 are not
publicly available. The AWA2 [42] dataset, containing 37322 images, is a good
replacement for AWA1. These two datasets share the same classes and class-level
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Table 1. Statistics of datasets in term of number of images, attributes, and seen/unseen
classes, and the training/test split.

Dataset Image Attribute Seen/Unseen Training Test

Seen Unseen Seen Unseen

CUB [40] 11788 312 150/50 7057 0 1764 2967

AWA1 [18] 30475 85 40/10 19832 0 4958 5685

AWA2 [42] 37322 85 40/10 23527 0 5882 7913

SUN [29] 14340 102 645/72 10320 0 2580 1440

aPY [8] 15539 64 20/12 5932 0 1483 7924

attributes. Caltech-UCSD Birds 200-2011 (CUB) [40] is a fine-grained dataset
with 11788 images of birds of 200 different types annotated with 312 attributes.
SUN [29] is also a fine-grained dataset that contains 14340 images from 717 types
of scenes annotated with 102 attributes. Attribute Pascal and Yahoo (aPY) [8]
is a small-scale dataset with 15339 images from 32 classes annotated with 64
attributes. The details of the five datasets are summarized in Table 1.

As for image features, we employ the ResNet features proposed in [42].
Regarding class embeddings, we use the class-level continuous attributes for all
datasets because using continuous attributes could achieve better performance
than binary ones, as pointed out in [1]. As for data splits, in early standard
splits [18] for each dataset, some of the test classes are among the 1 K classes
of ImageNet, which are used to pre-train the ResNet. This will lead to biased
results. Therefore, we follow the recently proposed split in [42] to avoid this. The
detailed seen/unseen splits are also shown in Table 1.

4.2 Implementation Details and Parameter Settings

In our framework, all the networks are Multi-Layer Perceptrons (MLP) with
LeakyReLU activations [44]. The encoder, generator, and discriminator consist
of a single hidden layer with 1000 units, and the categorizer contains a single
hidden layer with 1024 units. As each dataset has different attribute annotations,
we set the dimension dz of zf and zp according to the number of class-level
attributes respectively. Specifically, we set dz = 256 for AWA1, AWA2, SUN,
and aPY, and dz = 512 for CUB as CUB dataset has much more attributes.

For network training, we first pre-train the categorizer branch using the seen
data for fast convergence. In terms of the parameters, we empirically set α = 0.01,
and β = 0.1 across all the datasets. The number of the generated features are
chosen to make a trade-off between the computational efficiency and classification
accuracy. Specifically, in the conventional ZSL task, we set the number of gener-
ated features as eight times the number of ground-truth unseen features on CUB,
SUN and aPY, and twice on AWA1 and AWA2. As for GZSL, we set the number of
generated features as eight times the number of ground-truth unseen features on
SUN and aPY, and six times on CUB, AWA1, and AWA2.
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Table 2. Comparison results with the state-of-the-art methods in terms of both ZSL
and GZSL settings. T1 = top-1 accuracy, u = top-1 accuracy on unseen data, s = top-1
accuracy on seen data, and H = harmonic mean. We report top-1 accuracies in %.

Method
Zero-Shot Learning Generalized Zero-Shot Learning

CUB AWA1 AWA2 SUN aPY CUB AWA1 AWA2 SUN aPY
T1 T1 T1 T1 T1 u s H u s H u s H u s H u s H

DAP[18] 40.0 44.1 46.1 39.9 33.8 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.2 25.1 7.2 4.8 78.3 9.0
IAP[18] 24.0 35.9 35.9 19.4 36.6 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 1.0 37.8 1.8 5.7 65.6 10.4
CONSE[27] 34.3 45.6 44.5 38.8 26.9 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 6.8 39.9 11.6 0.0 91.2 0.0
CMT[37] 34.6 39.5 37.9 39.9 28.0 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 8.1 21.8 11.8 1.4 85.2 2.8
SSE[47] 43.9 60.1 61.0 51.5 34.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 2.1 36.4 4.0 0.2 78.9 0.4
LATEM[41] 49.3 55.1 55.8 55.3 35.2 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 14.7 28.8 19.5 0.1 73.0 0.2
ALE[1] 54.9 59.9 62.5 58.1 39.7 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3 4.6 73.7 8.7
DEVISE[10] 52.0 54.2 59.7 56.5 39.8 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 16.9 27.4 20.9 4.9 76.9 9.2
SJE[2] 53.9 65.6 61.9 53.7 32.9 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 14.7 30.5 19.8 3.7 55.7 6.9
ESZSL[35] 53.9 58.2 58.6 54.5 38.3 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 11.0 27.9 15.8 2.4 70.1 4.6
SYNC[6] 55.6 54.0 46.6 56.3 23.9 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.9 43.3 13.4 7.4 66.3 13.3
SAE[16] 33.3 53.0 54.1 40.3 8.3 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 8.8 18.0 11.8 0.4 80.9 0.9
f-CLSWGAN[43] 57.3 68.2 - 60.8 - 43.7 57.7 49.7 57.9 61.4 59.6 - - - 42.6 36.6 39.4 - - -
SE-GZSL[39] 59.6 69.5 69.2 63.4 - 41.5 53.3 46.7 56.3 67.8 61.5 58.3 68.1 62.8 40.9 30.5 34.9 - - -
Proposed 54.9 69.9 69.5 59.0 36.3 42.7 45.6 44.1 62.7 60.6 61.6 56.2 71.7 63.0 44.4 30.9 36.5 31.1 43.3 36.2

4.3 Evaluation Protocol

As mentioned above, in conventional ZSL settings, we aim to classify the unseen
features xu into the corresponding unseen classes Yu. In GZSL settings, the class
space is Ys ∪ Yu and we need to assign class labels to both unseen features and
some of the seen features. Here we follow the unified evaluation protocol in [42].

In the conventional ZSL setting, we compute the average top-1 accuracy
for each class and then average the per-class top-1 accuracy to mitigate the
imbalance among the classes. The evaluation metric is defined as follows:

acc =
1

‖C‖
‖C‖∑

c=1

ncp

nc
, (16)

where ‖C‖ denotes the number of classes, nc denotes the number of data in
each class, and ncp is the number of correct predictions in each class. Regarding
GZSL, we use the harmonic mean, which can be computed as follows:

H =
2 ∗ s ∗ u

s + u
(17)

where s and u represent the average per-class top-1 accuracies of seen classes
and unseen classes respectively. A higher harmonic mean indicates the high
accuracies on both seen and unseen classes.

4.4 Comparison with the State-of-the-Art Methods

Table 2 shows the conventional ZSL results of our framework and the state-of-
the-art methods. In this setting, the search space is restricted to unseen classes
at test time. From the table, we can observe that our method achieves better
zero-shot recognition accuracies than the traditional ZSL methods. The overall
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Table 3. Comparison results with the baseline models in terms of both ZSL and GZSL
settings. T1 = top-1 accuracy, u = top-1 accuracy on unseen data, s = top-1 accuracy
on seen data, and H = harmonic mean. We report top-1 accuracies in %.

Method
Zero-Shot Learning Generalized Zero-Shot Learning

CUB AWA1 AWA2 SUN aPY CUB AWA1 AWA2 SUN aPY
T1 T1 T1 T1 T1 u s H u s H u s H u s H u s H

CVAE+CAT 48.7 65.0 65.2 54.4 32.0 33.3 54.0 41.2 39.3 75.9 55.7 34.7 83.3 49.0 45.1 25.5 32.6 20.4 48.5 28.7
CGAN+CAT 41.2 59.6 56.6 42.3 17.3 0.0 41.8 0.0 10.8 76.9 19.0 12.0 82.8 20.9 0.0 41.1 0.0 10.3 89.6 18.5
CVAE+CGAN 48.6 65.4 59.8 56.3 33.7 38.4 42.6 40.4 46.5 70.5 56.0 41.8 77.0 54.1 38.8 29.2 33.3 22.0 96.7 33.4
Proposed (w/o Lpercept) 51.1 68.4 66.2 58.5 34.9 40.5 7.8 43.9 50.5 67.8 57.9 51.7 74.8 61.1 49.0 26.0 34.0 30.8 37.5 33.8
Proposed 54.9 69.9 69.5 59.0 36.3 42.7 45.6 44.1 62.7 60.6 61.6 56.2 71.7 63.0 44.4 30.9 36.5 31.1 43.3 36.2

improvement is especially obvious on AWA1 and AWA2, with 6.6% and 11.2%
higher accuracies than the second best ones in traditional ZSL methods, respec-
tively. Compared with the generative models in ZSL tasks, our method have
better performance on AWA1 and AWA2 datasets, with 0.6% higher accuracies
on both of the datasets. Concerning CUB, SUN and aPY datasets, our method
performs competitively with the best ones, i.e. SE-GZSL [39] and DEVISE [10]
methods, respectively. The results clearly demonstrate that our framework is
capable of generating useful and expressive features of unseen classes, which are
beneficial for ZSL tasks.

In terms of the GZSL task, as illustrated in Table 2, our framework shows the
superiority over the traditional ZSL methods on all the five datasets. For exam-
ple, significant improvements w.r.t. harmonic mean are observed, with 172.2%,
123.7%, 122.2%, 32.7%, and 28.2% higher than the second best ones on aPY,
AWA2, AWA1, SUN, and CUB, respectively. It is noteworthy that most tra-
ditional ZSL methods achieve high accuracies on seen classes but much worse
performance on unseen classes, which indicates that those methods have strong
biases towards seen classes. Our model can mitigate the bias to a large extent
as shown in Table 2. Compared with the ZSL methods based on the genera-
tive models, our model shows the superiorities on AWA1 and AWA2 datasets.
Moreover, our model has the highest accuracy for unseen classes on AWA1, SUN
and aPY datasets, indicating that our model has the capability of balancing the
accuracy between seen and unseen classes. Therefore, our generative framework
is very useful and competitive in this realistic and challenging task.

4.5 Comparison with the Baseline Models

As our framework contains several networks together with the perceptual recon-
struction, we compare the proposed framework with four baseline models by
omitting each of them, in order to verify the importance of each branch. For
example, as shown in Table 3, ‘CVAE+CAT’ indicates the framework only con-
taining the CVAE and categorizer, and ‘Proposed (w/o Lpercept)’ denotes the
whole network without the perceptual reconstruction.

The results w.r.t. conventional ZSL settings are shown in Table 3. From the
results of ‘CVAE+CAT’ and ‘CGAN+CAT’, we can conclude that integrating the
CVAE and CGAN are beneficial for the ZSL task, and the improvement is more
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Fig. 3. Top-1 accuracy with different numbers of generated features on the CUB and
SUN datasets.

significant by incorporating the CVAE. This shows that element-wise reconstruc-
tion is essential for our task. The results of ‘CVAE+CGAN’ also demonstrate the
necessity of the categorizer branch. For example, the accuracy is improved by 7.7%
on aPY by adding the categorizer. Finally, we can see that our framework with
perceptual reconstruction outperforms the one without Lpercept.

As for GZSL, compared with the above baselines, the proposed model has
higher accuracies on unseen classes and higher harmonic mean since it can bal-
ance the seen and unseen classes. Overall, ‘CGAN+CAT’ achieves the worst per-
formance probably because CGAN captures the holistic data structure, which is
not enough for feature generation. After combining the CVAE, the performance
is enhanced significantly. All the above results in ZSL and GZSL settings clearly
demonstrate the indispensability of each part in our whole framework.

4.6 Analysis of the Generated Features

In this section, we present some further analyses of the synthesized features
of unseen classes. Figure 3 shows the classification accuracies for the unseen
classes with the increasing numbers of the generated features. In general, the
accuracy increases when generating more unseen features. We also observe that
the satisfactory accuracies can be achieved when the numbers of the generated
features are relatively small, which indicates that our model can generate high-
quality features for the classification task. The generated features can be used
as the excellent replacement of the missing unseen features. Taking some unseen
classes on the AWA1 dataset as an example, we can see from Fig. 4 that the
generated feature distribution is even more discriminative compared with the
real feature distribution. This further indicates that our generative model can
synthesize high-quality features that are beneficial for the classification task.
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Fig. 4. t-SNE visualization of the real/generated features of some unseen classes on
the AWA1 dataset.

5 Conclusion

In this work, we proposed an effective joint generative framework for feature
generation in the context of zero-shot learning. Specifically, our model combined
two popular generative models, i.e. VAE and GAN, to capture the element-wise
and holistic data structures at the same time. We took advantage of the class-
level semantic attributes as the conditional information. An additional catego-
rization network worked as the guidance for generating discriminative features.
Importantly, we incorporated the perceptual reconstruction into the framework
to preserve semantic similarities. We showed the superiority of the proposed gen-
erative framework by conducting experiments on five standard datasets in terms
of the conventional ZSL task as well as the more challenging GZSL task. The
extensive experimental results indicated that our model could generate high-
quality features to mitigate the domain gap in ZSL due to the lack of unseen
data.

Acknowledgements. This work was supported in part by the NSFC under Grant
61872286, u1531141, 61732008, 61772407 and 61701391, the National Key R&D Pro-
gram of China under Grant 2017YFF0107700, the National Science Foundation of
Shaanxi Province under Grant 2018JM6092, and Guangdong Provincial Science and
Technology Plan Project under Grant 2017A010101006 and 2016A010101005.

References

1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-
based classification. In: CVPR (2013)

2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embed-
dings for fine-grained image classification. In: CVPR (2015)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. In: ICML (2017)



A Joint Generative Model for Zero-Shot Learning 645

4. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: fine-grained image gen-
eration through asymmetric training. In: ICCV (2017)

5. Bucher, M., Herbin, S., Jurie, F.: Generating visual representations for zero-shot
classification. In: ICCV Workshop (2017)

6. Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot
learning. In: CVPR (2016)

7. Chao, W.-L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis
of generalized zero-shot learning for object recognition in the wild. In: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp.
52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6 4

8. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their
attributes. In: CVPR (2009)

9. Ferrari, V., Zisserman, A.: Learning visual attributes. In: NIPS (2008)
10. Frome, A., et al.: Devise: A deep visual-semantic embedding model. In: NIPS (2013)
11. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Attribute learning for understanding

unstructured social activity. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 530–543. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9 38

12. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot
learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2332–2345 (2015)

13. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and

super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016,
Part II. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
16. Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In:

CVPR (2017)
17. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object

classes by between-class attribute transfer. In: CVPR (2009)
18. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-

shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3),
453–465 (2014)

19. Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: AAAI
(2008)

20. Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In:
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (2011)

21. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond
pixels using a learned similarity metric. In: ICML (2016)

22. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: ICML
(2015)

23. Long, Y., Liu, L., Shao, L.: Towards fine-grained open zero-shot learning: inferring
unseen visual features from attributes. In: WACV (2017)

24. Long, Y., Liu, L., Shao, L., Shen, F., Ding, G., Han, J.: From zero-shot learning
to conventional supervised classification: unseen visual data synthesis. In: CVPR
(2017)

25. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644 (2015)

26. Mirza, M., Osindero, S.: Conditional generative adversarial nets. In: Computer
Science, pp. 2672–2680 (2014)

https://doi.org/10.1007/978-3-319-46475-6_4
https://doi.org/10.1007/978-3-642-33765-9_38
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1511.05644


646 R. Gao et al.

27. Norouzi, M., et al.: Zero-shot learning by convex combination of semantic embed-
dings. In: ICLR (2014)

28. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning
with semantic output codes. In: NIPS (2009)

29. Patterson, G., Hays, J.: Sun attribute database: Discovering, annotating, and rec-
ognizing scene attributes. In: CVPR (2012)

30. Qin, J., et al.: Zero-shot action recognition with error-correcting output codes. In:
CVPR (2017)

31. Qin, J., Wang, Y., Liu, L., Chen, J., Shao, L.: Beyond semantic attributes: discrete
latent attributes learning for zero-shot recognition. IEEE Signal Process. Lett.
23(11), 1667–1671 (2016)

32. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. Computer Science (2015)

33. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative
adversarial text to image synthesis. In: ICML (2016)

34. Rohrbach, M., Stark, M., Schiele, B.: Evaluating knowledge transfer and zero-shot
learning in a large-scale setting. In: CVPR (2011)

35. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot
learning. In: ICML (2015)

36. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. In: NIPS (2016)

37. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-
modal transfer. In: NIPS (2013)

38. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: NIPS (2015)

39. Verma, V.K., Arora, G., Mishra, A.: Generalized zero-shot learning via synthesized
examples. In: CVPR (2018)

40. Welinder, P., et al.: Caltech-ucsd birds 200. California Institute of Technology
(2010)

41. Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Latent embed-
dings for zero-shot classification. In: CVPR (2016)

42. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive
evaluation of the good, the bad and the ugly. In: CVPR (2017)

43. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-
shot learning. In: CVPR (2018)

44. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network. Computer Science (2015)

45. Yu, X., Aloimonos, Y.: Attribute-based transfer learning for object categorization
with zero/one training example. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.)
ECCV 2010, Part V. LNCS, vol. 6315, pp. 127–140. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15555-0 10

46. Zhang, L., et al.: Learning a deep embedding model for zero-shot learning. In:
CVPR (2017)

47. Zhang, Z., Saligrama, V.: Zero-shot learning via semantic similarity embedding.
In: ICCV (2015)

48. Zhang, Z., Saligrama, V.: Zero-shot recognition via structured prediction. In: Leibe,
B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VII. LNCS, vol. 9911,
pp. 533–548. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-
7 33

https://doi.org/10.1007/978-3-642-15555-0_10
https://doi.org/10.1007/978-3-319-46478-7_33
https://doi.org/10.1007/978-3-319-46478-7_33

	A Joint Generative Model for Zero-Shot Learning
	1 Introduction
	2 Related Work
	2.1 Zero-Shot Learning
	2.2 Deep Generative Models

	3 Approach
	3.1 Problem Settings
	3.2 Joint Generative Model
	3.3 Zero-Shot Recognition

	4 Experimental Results
	4.1 Datasets
	4.2 Implementation Details and Parameter Settings
	4.3 Evaluation Protocol
	4.4 Comparison with the State-of-the-Art Methods
	4.5 Comparison with the Baseline Models
	4.6 Analysis of the Generated Features

	5 Conclusion
	References




