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Abstract. Despite the rapid progress in style transfer, existing
approaches using feed-forward generative network for multi-style or
arbitrary-style transfer are usually compromised of image quality and
model flexibility. We find it is fundamentally difficult to achieve com-
prehensive style modeling using 1-dimensional style embedding. Moti-
vated by this, we introduce CoMatch Layer that learns to match the
second order feature statistics with the target styles. With the CoMatch
Layer, we build a Multi-style Generative Network (MSG-Net), which
achieves real-time performance. In addition, we employ an specific strat-
egy of upsampled convolution which avoids checkerboard artifacts caused
by fractionally-strided convolution. Our method has achieved superior
image quality comparing to state-of-the-art approaches. The proposed
MSG-Net as a general approach for real-time style transfer is compati-
ble with most existing techniques including content-style interpolation,
color-preserving, spatial control and brush stroke size control. MSG-Net
is the first to achieve real-time brush-size control in a purely feed-forward
manner for style transfer. Our implementations and pre-trained models
for Torch, PyTorch and MXNet frameworks will be publicly available
(Links can be found at http://hangzhang.org/).

1 Introduction

Style transfer can be approached as reconstructing or synthesizing texture based
on the target image semantic content [1]. Many pioneering works have achieved
success in classic texture synthesis starting with methods that resample pixels [2–
5] or match multi-scale feature statistics [6–8]. These methods employ traditional
image pyramids obtained by handcrafted multi-scale linear filter banks [9,10] and
perform texture synthesis by matching the feature statistics to the target style.
In recent years, the concepts of texture synthesis and style transfer have been
revisited within the context of deep learning. Gatys et al. [11] shows that using
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Fig. 1. Examples of transferred images and the corresponding styles using the proposed
MSG-Net.

feature correlations (i.e. Gram Matrix) of convolutional neural nets (CNN) suc-
cessfully captures the image styles. This framework has brought a surge of inter-
est in texture synthesis and style transfer using iterative optimization [1,11,12]
or training feed-forward networks [13–16]. Recent work extends style flexibility
using feed-forward networks and achieves multistyle or arbitrary style trans-
fer [17–20]. These approaches typically encode image styles into 1-dimensional
space, i.e. tuning the featuremap mean and variance (bias and scale) for differ-
ent styles. However, the comprehensive appearance of image style is fundamen-
tally difficult to represent in 1D embedding space. Figure 3 shows style transfer
results using the optimization-based approach [12] and we can see Gram matrix
representation produces more appealing image quality comparing to mean and
variance of CNN featuremap.

In addition to the image quality, concerns about the flexibility of current feed-
forward generative models have been raised in Jing et al. [21], and they point out
that no generative methods can adjust the brush stroke size in real-time. Feed-
ing the generative network with high-resolution content image usually results in
unsatisfying images as shown in Fig. 6. The generative network as a fully con-
volutional network (FCN) can accept arbitrary input image sizes. Resizing the
style image changes the relative brush size and the multistyle generative network
matching the image style at run-time should naturally enable brush-size control
by changing the input style image size. What limits the current generative model
from being aware of the brush size? The 1D style embedding (featuremap mean
and variance) fundamentally limits the potential of exploring finer behavior for
style representations. Therefore, a 2D method is desired for finer representation
of image styles.

As the first contribution of the paper, we introduce an CoMatch Layer
which embeds style with a 2D representation and learns to match the second-
order feature statistics (Gram Matrix) of the style targets inherently during
the training. The CoMatch Layer is differentiable and end-to-end learnable
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Fig. 2. An overview of MSG-Net, Multi-style Generative Network. The transformation
network explicitly matches the features statistics of the style targets captured by a
Siamese network using the proposed CoMatch Layer (introduced in Sect. 3). A pre-
trained loss network provides the supervision of MSG-Net learning by minimizing the
content and style differences with the targets as discussed in Sect. 4.2.

(a) Input (b) Mean & Var (c) Gram Matrix

Fig. 3. Comparing 1D and 2D style representation using an optimization-based app-
roach [12]. (a) Input image and style. (b) Style transfer result minimizing difference of
CNN featuremap mean and variance. (c) Style transfer result minimizing the difference
in Gram matrix representation.

with existing generative network architectures without additional supervision.
The proposed CoMatch Layer enables multi-style generation from a single feed-
forward network (Fig. 2).

The second contribution of this paper is building Multi-style Generative
Network (MSG-Net) with the proposed CoMatch Layer and a novel Upsam-
ple Convolution. The MSG-Net as a feed-forward network runs in real-time
after training. Generative networks typically have a decoder part recovering the
image details from downsampled representations. Learning fractionally-strided
convolution [22] typically brings checkerboard artifacts. For improving the image
quality, we employ a strategy we call upsampled convolution, which successfully
avoids the checkerboard artifacts by applying an integer stride convolution and
outputs an upsampled featuremap (details in Sect. 4.1). In addition, we extend
the Bottleneck architecture [23] to an Upsampling Residual Block, which reduces
computational complexity without losing style versatility by preserving larger
number of channels. Passing identity all the way through the generative network
enables the network to extend deeper and converge faster. The experimental
results show that MSG-Net has achieved superior image fidelity and test speed
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compared to previous work. We also study the scalability of the model by extend-
ing 100-style MSG-Net to 1K styles using a larger model size and longer training
time, and we observe no obvious quality differences. In addition, MSG-Net as
a general multi-style strategy is compatible to most existing techniques and
progress in style transfer, such as content style trade-off and interpolation [17],
spatial control, color preserving and brush-size control [24,25].

To our knowledge, MSG-Net is the first to achieve real-time brush-size control
in a purely feed-forward manner for multistyle transfer.

1.1 Related Work

Relation to Pyramid Matching. Early methods for texture synthesis were devel-
oped using multi-scale image pyramids [4,6–8]. The discovery in these earlier
methods was that realistic texture images could be synthesized from manipu-
lating a white noise image so that its feature statistics were matched with the
target at each pyramid level. Our approach is inspired by classic methods, which
match feature statistics within the feed-forward network, but it leverages the
advantages of deep learning networks while placing the computational costs into
the training process (feed-forward vs. optimization-based).

Relation to Fusion Layers. Our proposed CoMatch Layer is a kind of fusion layer
that takes two inputs (content and style representations). Current work in fusion
layers with CNNs include feature map concatenation and element-wise sum [26–
28]. However, these approaches are not directly applicable, since there is no sep-
aration of style from content. For style transfer, the generated images should not
carry semantic information of the style target nor styles of the content image.

Relation to Generative Adversarial Training. The Generative Adversarial Net-
work (GAN) [29], which jointly trains an adversarial generator and discrimi-
nator simultaneously, has catalyzed a surge of interest in the study of image
generation [26,27,30–39]. Recent work on image-to-image GAN [26] adopts a
conditional GAN to provide a general solution for some image-to-image gen-
eration problems. For those problems, it was previously hard to define a loss
function. However, the style transfer problem cannot be tackled using the con-
ditional GAN framework, due to missing ground-truth image pairs. Instead, we
follow the work [13,14] to adopt a discriminator/loss network that minimizes the
perceptual difference of synthesized images with content and style targets and
provides the supervision of the generative network learning. The initial idea of
employing Gram Matrix to trigger style synthesis is inspired by a recent work [30]
that suggests using an encoder instead of random vector in GAN framework.

Recent Work in Multiple or Arbitrary Style Transfer. Recent/concurrent work
explores multiple or arbitrary style transfer [17,18,20]. A style swap layer is
proposed in [20], but gets lower quality and slower speed (compared to exist-
ing feed-forward approaches). An adaptive instance normalization is introduced
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Fig. 4. Left: fractionally-strided convolution. Right: Upsampled convolution, which
reduces the checkerboard artifacts by applying an integer stride convolution and out-
putting an upsampled featuremaps.

in [18] to match the mean and variance of the feature maps with the style tar-
get. Instead, our CoMatch Layer matches the second order statistics of Gram
Matrices for the feature maps. We also explore the scalability of our approach
in the Experiment Sect. 5.

2 Content and Style Representation

CNNs pre-trained on a very large dataset such as ImageNet can be regarded as
descriptive representations of image statistics containing both semantic content
and style information. Gatys et al. [12] provides explicit representations that
independently model the image content and style from CNNs, which we briefly
describe in this section for completeness.

The semantic content of the image can be represented as the activations of
the descriptive network at i-th scale F i(x) ∈ R

Ci×Hi×Wi with a given the input
image x, where the Ci, Hi and Wi are the number of feature map channels, feature
map height and width. The texture or style of the image can be represented as the
distribution of the features using Gram Matrix G(F i(x)) ∈ R

Ci×Ci given by

G (F i(x)
)

=
Hi∑

h=1

Wi∑

w=1

F i
h,w(x)F i

h,w(x)
T
. (1)

The Gram Matrix is orderless and describes the feature distributions. For zero-
centered data, the Gram Matrix is the same as the covariance matrix scaled
by the number of elements Ci × Hi × Wi. It can be calculated efficiently
by first reshaping the feature map Φ

(F i(x)
) ∈ R

Ci×(HiWi), where Φ() is a
reshaping operation. Then the Gram Matrix can be written as G (F i(x)

)
=

Φ
(F i(x)

)
Φ

(F i(x)
)T .

3 CoMatch Layer

In this section, we introduce CoMatch Layer, which explicitly matches second
order feature statistics based on the given styles. For a given content target xc

and a style target xs, the content and style representations at the i-th scale using
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Fig. 5. We extend the original down-sampling residual architecture (left) to an up-
sampling version (right). We use a 1× 1 fractionally-strided convolution as a shortcut
and adopt reflectance padding.

(a) input (b) MSG-Net (ours) (c) baseline

Fig. 6. Comparing Brush-size control. (a) High-resolution input image and dense styles.
(b) Style transfer results using MSG-Net with brush-size control. (c) Standard gener-
ative network [14] without brush-size control. See also Fig. 8

the descriptive network can be written as F i(xc) and G(F i(xs)), respectively.
A direct solution Ŷi is desirable which preserves the semantic content of input
image and matches the target style feature statistics:

Ŷi = argmin
Yi

{‖Yi − F i(xc)‖2F
+α‖G(Yi) − G (F i(xs)

) ‖2F }.
(2)

where α is a trade-off parameter that balancing the contribution of the content
and style targets.

The minimization of the above problem is solvable by using an iterative app-
roach, but it is infeasible to achieve it in real-time or make the model differen-
tiable. However, we can still approximate the solution and put the computational
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burden to the training stage. We introduce an approximation which tunes the
feature map based on the target style:

Ŷi = Φ−1
[
Φ

(F i(xc)
)T

WG (F i(xs)
)]T

, (3)

where W ∈ R
Ci×Ci is a learnable weight matrix and Φ() is a reshaping oper-

ation to match the dimension, so that Φ
(F i(xc)

) ∈ R
Ci×(HiWi). For intuition

on the functionality of W , suppose W = G (F i(xs)
)−1, then the first term in

Eq. 2 (content term) is minimized. Now let W = Φ
(F i(xc)

)−T L(F i(xs))
−1,

where L (F i(xs)
)

is obtained by the Cholesky Decomposition of G (F i(xs)
)

=

L (F i(xs)
) L (F i(xs)

)T , then the second term of Eq. 2 (style term) is minimized.
We let W be learned directly from the loss function to dynamically balance the
trade-off. The CoMatch Layer is differentiable and can be inserted in the exist-
ing generative network and directly learned from the loss function without any
additional supervision.

4 Multi-style Generative Network

4.1 Network Architecture

Prior feed-forward based single-style transfer work learns a generator network
that takes only the content image as the input and outputs the transferred image,
i.e. the generator network can be expressed as G(xc), which implicitly learns the
feature statistics of the style image from the loss function. We introduce a Multi-
style Generative Network which takes both content and style target as inputs.
i.e. G(xc, xs). The proposed network explicitly matches the feature statistics of
the style targets at runtime.

As part of the Generator Network, we adopt a Siamese network sharing
weights with the encoder part of transformation network, which captures the
feature statistics of the style image xs at different scales, and outputs the Gram
Matrices {G(F i(xs))}(i = 1, ...K) where K is the total number of scales. Then
a transformation network takes the content image xc and matches the feature
statistics of the style image at multiple scales with CoMatch Layers.

Upsampled Convolution. Standard CNN for image-to-image tasks typically
adopts an encoder-decoder framework, because it is efficient to put heavy oper-
ations (style switching) in smaller featuremaps and also important to keep a
larger receptive field for preserving semantic coherence. The decoder part learns
a fractionally-strided convolution to recover the detail information from down-
sampled featuremaps. However, the fractionally strided convolution [22] typi-
cally introduces checkerboard artifacts [40]. Prior work suggests using upsam-
pling followed by convolution to replace the standard fractionally-strided con-
volution [40]. However, this strategy will decrease the receptive field and it is
inefficient to apply convolution on an upsampled area. For this, we use upsampled
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Fig. 7. Content and style trade-off and interpolation.

convolution, which has an integer stride, and outputs upsampled featuremaps.
For an upsampling factor of 2, the upsampled convolution will produce a 2× 2
outputs for each convolutional window as visualized in Fig. 4. Comparing to
fractionally-strided convolution, this method has the same computation com-
plexity and 4 times parameters. This strategy successfully avoid upsampling
artifacts in the network decoder.

Upsample Residual Block. Deep residual learning has achieved great success in
visual recognition [23,41]. Residual block architecture plays an important role
by reducing the computational complexity without losing diversity by preserving
the large number of feature map channels. We extend the original architecture
with an upsampling version as shown in Fig. 5 (right), which has a fractionally-
strided convolution [22] as the shortcut and adopts reflectance padding to avoid
artifacts of the generative process. This upsampling residual architecture allows
us to pass identity all the way through the network, so that the network converges
faster and extends deeper.
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Fig. 8. Brush-size control using MSG-Net. Top left: High-resolution input image and
dense style. Others: Style transfer results using MSG-Net with brush-size control.

Brush Stroke Size Control. Feeding the generative model with high-resolution
image usually results in unsatisfying style transfer outputs, as shown in Fig. 6(c).
Controlling brush stroke size can be achieved using optimization-based app-
roach [25]. Resizing the style image changes the brush-size, and feed-forward gen-
erative model matches the feature statistics at runtime should naturally achieve
brush stoke size control. However, prior work is mainly limited by the 1D style
embedding, because this finer style behavior cannot be captured using merely
featuremap mean and variance. With MSG-Net, the CoMatch Layer matching
the second order statistics elegantly solves the brush-size control. During train-
ing, we train the network with different style image sizes to learn from different
brush stroke sizes. After training, the brush stroke size can be an option to the
user by changing style input image size. Note that the MSG-Net can accept
different input sizes for style and content images. Example results are shown in
Fig. 8.

Other Details. We only use in-network down-sample (convolutional) and
up-sample (upsampled convolution) in the transformation network. We use
reflectance padding to avoid artifacts at the border. Instance normalization [16]
and ReLU are used after weight layers (convolution, fractionally-strided convo-
lution and the CoMatch Layer), which improves the generated image quality and
is robust to the image contrast changes.

4.2 Network Learning

Style transfer is an open problem, since there is no gold-standard ground-truth
to follow. We follow previous work to minimize a weighted combination of the
style and content differences of the generator network outputs and the targets
for a given pre-trained loss network F [13,14]. Let the generator network be



358 H. Zhang and K. Dana

input Dumoulin
et al. [17]

MSG-Net
(ours)

Gatys
et al. [12]

Huang
et al. [18]

Chen
& Schmidt [20]

Fig. 9. The tradeoff between style-flexibility and output-image quality is challenging
for generative models. Our approach enables multi-style transfer and has minimal dif-
ference in quality compared to the optimization-based Gatys approach [12].

denoted by G(xc, xs) parameterized by weights WG. Learning proceeds by sam-
pling content images xc ∼ Xc and style images xs ∼ Xs and then adjusting the
parameters WG of the generator G(xc, xs) in order to minimize the loss:

ŴG = argmin
WG

Exc,xs
{

λc‖Fc (G(xc, xs)) − Fc(xc)‖2F
+λs

∑K
i=1 ‖G (F i(G(xc, xs))

) − G(F i(xs))‖2F
+λTV �TV (G(xc, xs))},

(4)

where λc and λs are the balancing weights for content and style losses. We con-
sider image content at scale c and image style at scales i ∈ {1, ..K}. �TV () is the
total variation regularization as used prior work for encouraging the smoothness
of the generated images [14,42,43].



Multi-style Generative Network for Real-Time Transfer 359

Table 1. Comparing model size on disk and inference/test speed fps (frames/sec) of
images with the size of 256× 256 and 512× 512 on a NVIDIA Titan Xp GPU average
over 50 samples. MSG-Net-100 and MSG-Net-1K have 2.3M and 8.9M parameters
respectively.

Model-size Speed (256) Speed (512)

Gatys et al. [12] N/A 0.07 0.02

Johnson et al. [14] 6.7 MB 91.7 26.3

Dumoulin et al. [17] 6.8 MB 88.3 24.7

Chen et al. [20] 574 MB 5.84 0.31

Huang et al. [18] 28.1 MB 37.0 10.2

MSG-Net-100 (ours) 9.6 MB 92.7 29.2

MSG-Net-1K (ours) 40.3 MB 47.2 14.3

5 Experimental Results

5.1 Style Transfer

Baselines. We use the implementation of the work of Gatys et al. [12] as a gold
standard baseline for style transfer approach (technical details will be included in
the supplementary material). We also compare our approach with state-of-the-
art multistyle or arbitrary style transfer methods, including patch-based app-
roach [20] and 1D style embedding [17,18]. The implementations from original
authors are used in this experiments.

Method Details. We adapt 16-layer VGG network [44] pre-trained on ImageNet
as the loss network in Eq. 4, because the network features learned from a diverse
set of images are likely to be generic and informative. We consider the style repre-
sentation at 4 different scales using the layers ReLU1 2, ReLU2 2, ReLU3 3 and
ReLU4 3, and use the content representation at the layer ReLU2 2. The Microsoft
COCO dataset [45] is used as the content image image set Xc, which has around
80,000 natural images. We collect 100 style images, choosing from previous work
in style transfer. Additionally 900 real paintings are selected from the open-source
artistic dataset wikiart.org [46] as additional style images for training MSG-Net-
1K. We follow the work [13,14] and adopt Adam [47] to train the network with a
learning rate of 1 × 10−3. We use the loss function as described in Eq. 4 with the
balancing weights λc = 1, λs = 5, λTV = 1 × 10−6 for content, style and total
regularization. We resize the content images xc ∼ Xc to 256 × 256 and learn the
network with a batch size of 4 for 80,000 iterations. We iteratively update the style
image xs every iteration with size from {256, 512, 768} for runtime brush-size con-
trol. After training, the MSG-Net as a fully convolutional network [22] can accept
arbitrary input image size. For comparing the style transfer approaches, we use
the same content image size, by resizing the image to 512 along the long side. Our
implementations are based on Torch [48], PyTorch [49] and MXNet [50]. It takes
roughly 8 h for training MSG-Net-100 model on a Titan Xp GPU.
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Fig. 10. Color control using MSG-Net, (left) content and style images, (right) color-
preserved transfer result. (Color figure online)

Fig. 11. Spatial control using MSG-Net. Left: input image, middle: foreground and
background styles, right: style transfer result. (Input image and segmentation mask
from Shen et al. [51,52].)

Model Size and Speed Analysis. For mobile applications or cloud services, the
model size and test speed are crucial. We compare the model size and infer-
ence/test speed of style transfer approaches in Table 1. Our proposed MSG-Net-
100 has a comparable model size and speed with single style network [13,14].
The MSG-Net is faster than Arbitrary Style Transfer work [18], because of using
a learned compact encoder instead of pre-trained VGG network.

Qualitative Comparison. Our proposed MSG-Net achieves superior performance
comparing to state-of-the-art generative network approaches as shown in Fig. 9.
One may argue that the arbitrary style work has better scalability/capacity
[18,20]. The style flexibility and image quality are always hard trade-off for gen-
erative model, and we particularly focus on the image quality in this work. More
examples of the transfered images using MSG-Net are shown in Fig. 12.

Model Scalability. Prior work using 1D style embedding has achieved success in
the scalability of style transfer towards the goal of arbitrary style transfer [18].
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Fig. 12. Diverse images that are generated using a single MSG-Net-100 (2.3M param-
eters). First row shows the input content images and the other rows are generated
images with different style targets (first column).

To test the scalability of MSG-Net, we augment the style set to 1K images, by
adding 900 extra images from the wikiart.org [46]. We also build a larger model
MSG-Net-1K with larger model capacity by increasing the width/channels of
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the model at mid stage (64 × 64) by a factor of 2, resulting in 8.9M parameters.
We also increase the training iterations by 4 times (320K) and follow the same
training procedure as MSG-Net-100. We observe no quality degradation when
increasing the number of styles (examples shown in the supplementary material).

5.2 Runtime Manipulation

MSG-Net as a general approach for real-time style transfer is compatible with
existing recent progress for both feed-forward and optimization methods, includ-
ing but not limited to: content-style trade-off and interpolation (Fig. 7), color-
preserving transfer (Fig. 10), spatial manipulation (Fig. 11) and brush stroke size
control (Figs. 6 and 8). For style interpolation, we use an affine interpolation of
our style embedding following the prior work [17,18]. For color pre-serving, we
match the color of style image with the content image as Gatys et. al. [24]. Brush-
size control has been discussed in the Sect. 4.1. We use the segmentation mask
provided by Shen et al. [51] for spatial control. The source code and technical
detail of runtime manipulation will be included in our PyTorch implementation.

6 Conclusion and Discussion

To improve the quality and flexibility of generative models in style transfer, we
introduce a novel CoMatch Layer that learns to match the second order statis-
tics as image style representation. Multi-style Generative Network has achieved
superior image quality comparing to state-of-the-art approaches. In addition,
the proposed MSG-Net is compatible with most existing techniques and recent
progress of stye transfer including style interpolation, color-preserving and spa-
tial control. Moreover, MSG-Net first enables real-time brush-size control in
a fully feed-forward manor. The compact MSG-Net-100 model has only 2.3M
parameters and runs at more than 90 fps (frame/sec) on NVIDIA Titan Xp for
the input image of size 256 × 256 and at 15 fps on a laptop GPU (GTX 750M-
2GB).
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