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Abstract. We present an efficient neural network method for locat-
ing anatomical landmarks in 3D medical CT scans, using atlas location
autocontext in order to learn long-range spatial context. Location pre-
dictions are made by regression to Gaussian heatmaps, one heatmap
per landmark. This system allows patchwise application of a shallow
network, thus enabling multiple volumetric heatmaps to be predicted
concurrently without prohibitive GPU memory requirements. Further,
the system allows inter-landmark spatial relationships to be exploited
using a simple overdetermined affine mapping that is robust to detection
failures and occlusion or partial views. Evaluation is performed for 22
landmarks defined on a range of structures in head CT scans. Models
are trained and validated on 201 scans. Over the final test set of 20 scans
which was independently annotated by 2 human annotators, the neural
network reaches an accuracy which matches the annotator variability,
with similar human and machine patterns of variability across landmark
classes.

1 Introduction

By “anatomical landmark detection”, we refer to the task of detecting and local-
ising points in the human body which can be uniquely defined in terms of the
anatomical landscape, for instance superior aspect of right eye globe or base
of pituitary gland. Landmark identification is an important enabling technol-
ogy, providing semantic information that can be used to initialise or aid other
medical image analysis algorithms, such as volume registration [12,14,33,35],
organ segmentation [2,16,17,22], vessel tracking [29], computer aided detection
of pathology [24,40], treatment planning [23], and therapy assessment [7].

Taking a machine learning approach to automated detection enables the het-
erogeneity of appearance of each landmark to be conveniently represented. Fully
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convolutional neural networks (FCNs) are particularly well suited to this task,
since whole volumes may be efficiently parsed to detect and localise multiple
landmark points concurrently using a learned, shared feature representation.

For the purposes of prediction, the concept of a landmark may be modelled
in different ways. An intuitive method would be to regress the positions of the
landmarks. This can be done by training the network to make voxelwise predic-
tions of the Euclidean offsets of all landmarks, as in [9,34], then using a scheme
such as Hough regression to combine the votes. Offset regression carries a heavy
learning burden, since the network must learn to recognise every voxel in a scan,
or at least sufficient voxels to enable voting by agreement, and make precise,
subtly differing long-range spatial predictions, mapping appearance features to
distance measures in the process (i.e. “Where am I relative to each landmark
of interest?”). An alternative, more lightweight method is the heatmap regres-
sion technique of Payer et al. [31] in which the network is trained to predict the
presence of Gaussian heat spots centred at the landmark locations; this is math-
ematically equivalent to learning a nonlinear measure of the Euclidean landmark
offset magnitude and is a simpler learning task much more akin to straightfor-
ward appearance matching (i.e. “How much do I look like each landmark of
interest?”).

An important element of the landmark detection problem is how to incorpo-
rate long-range spatial context, since points in different parts of the body may
have similar appearance and thus be confounded. In [31], the initial appearance-
based CNN is followed by a “spatial configuration unit” in which each landmark
predicts the location of every other landmark by learning the relative Euclidean
offset. This is a reasonable approach for the featured problem of hand X-Ray
images, however it would not scale well to body parts and scan protocols in
which the orientation, scale and acquisition region are variable. Other meth-
ods of capturing global context include U-Net [36] (or the similar V-Net [26]),
dual-pathway approaches [8,19], dual networks [25], iterative cascaded networks
[37], and the reinforcement learning method of Ghesu et al. [11]. These methods
describe various mechanisms for learning both local and long-range information.
The U-Net and dual-pathway approaches are methods of combining information
at different resolutions in a single end-to-end trained network, whilst the dual
network approach delegates the learning of global and local context to different
networks. The approach of Toshev and Szegedy [37] is similar to Tu and Bai’s
idea of autocontext [38], in which the network predictions are iteratively fed to
subsequent networks along with the image data such that context is gradually
learnt, or gathered, into the network model. Finally, Ghesu et al. ’s reinforce-
ment learning approach involves the navigation of multiple agents through a
scan volume (from different starting points) until they converge on the land-
mark position. Thus, agents explicitly train to be spatially aware. A drawback
of this approach is its lack of scalability and the potential redundancy since each
landmark requires a separate model to be trained.

This paper builds on the work of O’Neil et al. [28,30] in which Tu and Bai’s
idea of autocontext [38] (iteratively feeding the probabilistic output of a model
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to a subsequent model) was modified to atlas location autocontext (iteratively
feeding the coordinate in atlas space, according to the output of a model, to a
subsequent model). In these previous works, a decision forest was used. In this
paper we show that the decision forest can be replaced by a shallow fully con-
volutional neural network, which outperforms the decision forest method, and
attains human-level performance. Since the model is shallow, this system is mem-
ory and time efficient. Memory efficiency is particularly important when taking
a unified approach for problems with large 3D inputs and many output classes
(many landmarks), requiring many kernels throughout the network, including in
the final layers.

2 Method

2.1 Landmark Detection System

Atlas Location Autocontext. The landmark detection system consists of a
cascade of two models, with the output of the first providing spatial information
to the second in the form of estimated x, y and z atlas space coordinates. The
second detector can then be trained not only on image intensity features but
also on approximate spatial features; this transmission of learned contextual
information is what we term atlas location autocontext. The two models have
identical architectures, except that the first has 1 input (image) and the second
has 4 inputs (image + atlas space coordinates). We choose to train the first
model with data at lower resolution (4 mm per voxel) and the second at higher
resolution (2 mm per voxel) in order to emphasise learning of spatial context in
pass 0, and learning of local appearance in pass 1. See Fig. 1 for illustration.

Coordinates are determined in this paper by affine alignment of the first
model’s predicted landmark locations to a landmark atlas, using iterative
weighted least squares fitting. The least squares fit is that which minimises the
sum of the squared distances between the atlas landmarks and the mapped
detected landmarks. Since the detected landmarks will sometimes be erroneous
or innaccurate — hence the need for a second model! — we weight distances by
their detection certainty values (see Sect. 2.2) to prioritise fitting of the more
confident detections, and then we do iterative refinement. Iterative refinement
involves removing landmarks one at a time i.e. dropping the landmark with
the largest mapping error, and subsequently recomputing the mapping, until
all remaining (mapped) detected landmarks are within a distance dAtlas of the
corresponding atlas landmarks. In this way a subset of landmark predictions is
discovered with a plausible spatial configuration. The value for dAtlas was chosen
by parameter sweep to minimise the average mapping error across the training
scan results.

Direct Atlas Correction. For additional robustness, we directly leverage the
affine atlas mapping to correct outliers, by mapping the atlas landmarks back
to the volume and adjusting each landmark’s predicted location to be the voxel
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Fig. 1. Landmark detection system using atlas location autocontext

with maximum certainty within a distance dV olume of its mapped atlas coun-
terpart. In other words, we generate spherical regions of interest (ROIs) with
radius dV olume, within which the detections must lie. This allows correction of
conspicuous outliers and on its own could perhaps be considered a cheap form of
“autocontext”. For this step we select a generous threshold of dV olume = 28 mm.

2.2 Proposed FCN

Model Architecture. The model has a straightforward architecture (see
Fig. 2), with 6 layers of 3 × 3 × 3 kernels, where there are 12 kernels in the
first layer and the number of kernels doubles in every subsequent layer. The
model has 2,661,166 parameters in total. All convolutions are performed using
“valid mode” (i.e. the input shrinks at each convolution) and use ReLU activa-
tion functions except for the final regression layer which has a linear activation.

Data Pre-processing. Voxel intensities were normalised by first rescaling the
HU intensities by 3 × 10−3 since this puts the soft tissue values in the typical
[−1, 1] range, and then truncating values to fit the range [−3, 3] (i.e. [-1000HU,
1000HU]). In order to detect landmarks at the edge of the scan, each scan was
dilated by the size of the margin required by the network, using pixels with a value
equivalent to air (as opposed to zero padding). During training, the data was aug-
mented by left-right reflection of the volume with corresponding switching of the
left and right side landmarks. To introduce robustness to acquisition region, scans
were randomly cropped with a margin of up to 50 mm. In practice this was done
by uniformly sampled translations in the range +/−50 mm in x, y and z.



474 A. Q. O’Neil et al.

Fig. 2. Our proposed fully convolution network. The number of filters f(L) = a× 2L,
for a = 12 and layers L = 0, 1, 2, ...5.

Patches were used during both training and application. At training time,
this was done in order to control for data imbalance and also (pragmatically)
to allow samples from many volumes within each batch without large memory
requirements. Patches of 15 × 15 × 15 (i.e. predictions made for the central
3 × 3 × 3 voxels plus the 6-voxel margin required by the model) were extracted
at the landmark positions as well as randomly from the remainder of the volume
at a ratio of 1:5. At application time, patches of 30 × 30 × 30 (i.e. 42 × 42 × 42
including margin) were tiled to make piecewise predictions covering the whole
volume.

Inference. To make the predictions, we use a modified version of the heatmap
regression proposed by Pfister et al. [32] and applied previously to landmark
detection in medical scans by Payer et al. [31]. In this scheme each landmark
has a separate volumetric output containing a Gaussian heat spot centred at
the landmark position. More formally, the temperature ti of the ith heatmap
that we regress against is determined according to distance of the voxel v from
the landmark position pi for landmark i, a standard deviation σ (chosen to be
1 voxel), and a constant k denoting the Gaussian height:

ti = ke− (v−pi)
2

2σ2 (1)

We used mean squared error as the loss function and found empirically that
the imbalance between background and proximal landmark voxels meant large
heights were required for the Gaussian in order to enable training to start (i.e.
k = 1 × 103 at 4 mm resolution, and k = 1 × 106 at 2 mm resolution). This
mechanism was chosen for convenience; note that we could have equivalently
initialised the network with small kernel weight initialisations, or experimented
with weighting of the landmark voxels in the loss function. At prediction time,
the predicted position for each landmark is chosen to be simply the output voxel
with maximum value t. We divide t by k such that it lies in the range [0, 1], and
we term this the landmark certainty.
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Training Procedure. For each model, kernel weights were initialised using
normalised He initialisation [13]. Optimisation of the network was performed
using backpropagation with Adam [20], with learning rate = 0.001, β1 = 0.9 and
β2 = 0.999. Batches of 32 patches were used, and training was run for 50 epochs
(first pass) and 200 epochs (second pass). The weights were retained from the
epoch which achieved lowest error on the validation data.

2.3 Benchmarking: Decision Forest Algorithm

As our baseline for comparison, we follow the decision forest approach of Dab-
bah et al. [4] for which we have a mature C++ implementation. Until the
recent popular adoption of CNN solutions, decision forests and their vari-
ants were the gold standard for the task of anatomical landmark detection
[5,10,12,18,27,27,39,40]. In brief, a decision forest is trained to perform vox-
elwise classification across n + 1 classes, where there are n landmarks and 1
background class. Voxels vi within 1.5 voxels of the each landmark location pi
are considered to be landmark samples, and are assigned a weight w during
training according to Gaussian distribution i.e.:

w = ke− (vi−pi)
2

2σ2 (2)

where k = 1 and σ = 0.75 voxels. Voxels outside of these spheres are considered
to be background samples. The features for each voxel are the Hounsfield Unit
(HU) values of the voxels in the local 1003 mm neighbourhood (note that scan
intensities are not normalised as was done for the FCN), with each tree being
given a random sample of 2500 features (random subspace sampling [15]). We
trained 100 trees, sampling from n = 40 randomly chosen training scans per
tree. We further tried using HOG [6] features alongside the intensity features,
since these had previously been shown to give improvement over using intensity
features alone [28] (note that we used signed rather than unsigned orientations,
with no magnitude weighting, as in [28]). In this case we randomly selected 1250
intensity features and 1250 HOG features per tree. Histograms were computed
over randomly generated box regions of up to 48 mm in each dimension.

At application time, the novel volume is scanned, and for each landmark, the
voxel is selected which has the highest probability of belonging to that landmark
class.

3 Experiments

3.1 Data

We demonstrate our method on CT head scan volumes. The data is split into 170
scans for training, 31 scans for validation, and a final (tested once) test set of 20
scans. The data was acquired from a range of scanners (Canon, Siemens, G.E.,
Philips), scan protocols (both with and without injected arterial contrast), and
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with a range of resolutions and slice thicknesses. There are approximately equal
splits between male and female subjects. Many contain pathology, inclusive of
haemorrhage, tumours and age-related change.

A set of 22 landmarks were defined in the head (see Fig. 3). Scan proto-
cols were designed by an in-house clinical analyst (E.B.) with postgraduate-level
expertise in anatomy. Three additional observers with education in biological
sciences were trained up to perform the annotation. The test set was annotated
by two observers, one of whom (observer A, L.C.) has also annotated a large
number of the training scans, the second of whom (observer B, E.S.) was inde-
pendent of the training data. In many scans, only a subset of the landmarks is
visible. This may be either because the landmark lies outside of the scan acqui-
sition region, or because the landmark is obscured for some reason, for instance
low resolution data, the presence of pathology or the absence of contrast. In the
latter case, it is marked as “uncertain” in the ground truth; the 6 landmarks
which were marked as uncertain by at least one observer are not included in our
metrics.

Fig. 3. Schematic of head landmarks

3.2 Implementation

The FCN was implemented in Python using the Keras library [3], built on top
of the Tensorflow library [1]. Parameter exploration was performed on p2.xlarge
instances on AWS; these instances have one NVIDIA K80 GPU (2496 cores,
12 GB VRAM). On a computer with an NVIDIA GTX Titan X, run times are
of the order of 1 s for the first pass and 2 s for the second (excluding data loading
and downscaling, and model loading from disk). In the second pass, we reduce
the run time by evaluating only parts of the volume containing the atlas-mapped
spherical landmark ROIs identified in the first pass.

The decision forest is implemented in C++. Experiments were run on a com-
puter with two Intel Xeon E5645 (2.4 GHz) processors. Run times are of the
order of 1 s for the first pass and 0.5 s for the second pass (excluding data load-
ing and downscaling, and classifier loading from disk). There are a number of
optimisations, as described in [4], for instance evaluating only as many trees as
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required until confident about the prediction, and performing coarse-to-fine scan-
ning of the volume within a pass (i.e. evaluate every second voxel in the volume
before evaluating all voxels in the neighbourhood of the maximum-probability
landmark positions).

Table 1. Landmark localisation disagreement. The mean, median and max error met-
rics are computed over for each scan separately and then the mean value is taken across
the 20 scans and provided below. Additionally we show the percentage (%) of land-
marks with an error greater than 4 mm, computed over all 417 landmarks in the 20
scans. DF = Decision Forest with intensity features, DF (+HOG)= Decision Forest
with intensity + HOG features, FCN = proposed fully convolutional network.

Method Reference

Observer A Observer B

Mean Median Max % Mean Median Max %

Observer A - - - - 2.20 1.49 9.27 11.0

Observer B 2.20 1.48 9.27 11.0 - - - -

Pass 0 (4mm)

DF 4.47 4.03 11.54 50.4 4.58 4.14 11.28 49.2

DF (+HOG) 4.25 3.91 10.07 47.7 4.36 3.92 9.86 46.5

FCN 3.38 2.65 12.20 21.6 3.52 2.71 12.15 23.7

FCN + Atlas Correction 3.03 2.53 10.45 16.1 3.31 2.62 10.89 21.6

Pass 1 (2mm)

DF 3.59 2.85 13.73 26.6 3.83 3.02 13.59 27.6

DF (+HOG) 3.30 2.88 9.77 24.9 3.47 2.84 9.69 26.9

FCN 2.93 1.50 19.98 12.2 3.42 1.84 20.93 17.5

FCN + Atlas Correction 2.29 1.49 11.41 10.8 2.77 1.78 12.26 16.1

Alternative: Pass 0 (2mm) + Atlas Correction

FCN 2.55 1.55 15.08 10.3 3.10 1.92 15.38 17.5

3.3 Results

Summary metrics are shown in Table 1 for landmark localisation errors (or dis-
agreements), and some visual results are shown for the FCN in Figs. 4 and 5. The
summary metrics show that the FCN outperforms the decision forest methods.
The anomalous metric is the mean max error, in other words, the mean size
of the “worst detected landmark in a scan”. This does not appear to improve
in the second pass — if anything, the worst error worsens— and the Pass 0
decision forest with HOG features is the best performer. We propose that this
occurs because landmarks with atypical appearance (e.g. see the calcified pineal
gland example in Fig. 5) are best located by use of spatial context rather than
local appearance, hence the efficacy of low resolution HOG features which are
aggregated over regions and thus are relatively insensitive to precise changes.
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Fig. 4. Coronal, sagittal and axial maximum intensity projections (MIPs) of results
for a good case (top) and a poor case (bottom). Green dots = ground truth (observer
A), red dots = detected (proposed FCN), and black lines connect corresponding pairs.
(Color figure online)

The significance of the improvements of the FCN over the decision forest were
verified using a one-tailed paired Student’s t-test for the 417 landmark examples,
using each observer in turn as the reference, and significance was found to hold
for a p-value < 0.01 for all comparisons. However, the results of the FCN model
using atlas location autocontext + direct atlas correction were not significantly
different to those using only the direct atlas correction at 2 mm resolution. It
might be that significance could be shown with a larger population of datasets,
or for landmarks which vary their relative position more dramatically relative to
other structures (e.g. on vessels); in this case the learning could learn the spatial
distribution and adapt its localisation to the observed anatomical landscape
where explicitly imposed affine constraints could not. What the autocontext
system does offer is a run time speed-up, since high-resolution processing can
be performed selectively, as opposed to over the whole volume (mean run time
of approximately 3 s i.e. 1 + 2, as opposed to 5 s for the single-pass system) —
however in this case it seems that the atlas channels of the second model have
not been conclusively proven to add a benefit.

Regarding human vs. machine performance, the FCN achieves similar mean
and median agreement with observer A as the agreement between observers A
and B. However, the FCN is less well in agreement with observer B than observer
A. There may be two reasons for this. Firstly, the algorithm was trained on
annotations from observer A amongst others, so may have learned to mimic the
annotation style of observer A. Secondly, since observer A was part of our team
for training data annotation, all of her annotations were subject to our selective
review process (a percentage of our ground truth observations are reviewed by
E.B. for quality control). Therefore mistakes or inconsistencies are more likely



Atlas Location Autocontext for Anatomical Landmark Detection 479

Fig. 5. A few landmark examples: (a) Top of R. ear (b) Acanthion (c) L. optic nerve (d)
Opisthion (e) Glabella (f) Pineal gland. The top row shows a comparison of landmark
localisations at full resolution, with green and blue denoting observers A and B and red
denoting the FCN detected landmark. The next 4 rows show the detected landmark for
Pass 0 and Pass 1, at the 4 mm and 2 mm algorithmic operating resolutions respectively,
along with MIPs of the FCN heatmaps (black = low certainty and white = high
certainty). The direct atlas correction is also used in each pass. Slices are taken at the
position of observer A, in the sagittal plane for all but the “Top of R. ear” where a
coronal slice is taken. (Color figure online)

to be have been picked up and corrected for observer A (i.e. observer A’s ground
truth will have some of the characteristics of consensus ground truth).

We further take those errors which are greater than 4 mm, and show the
breakdown between observers and between landmarks in Fig. 6. There is a similar
pattern to the human vs. human and the human vs. machine disagreement, with
most discrepancies arising on surface landmarks (notably 13. = glabella, 3. & 4. =
L & R frontal horns of the lateral ventricles). Landmarks on surfaces may be less
well defined and inspection of the underlying predictions (see Fig. 5) supports
this. Other mistakes by the algorithm are due to landmark appearances less
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frequently (or never) seen in the training data, such as the calcified appearance
of the pineal gland (20.) example in Fig. 5.

Fig. 6. Distribution of errors (> 4 mm) for all landmarks 1–22 (numbers correspond
to those in Fig. 3). The pattern of errors is similar for human vs. human as for human
vs. machine.

4 Discussion

The challenges in this work revolved primarily around how to design a system
which could detect multiple structures efficiently in a 3D volume. Even with
a relatively modest set of 22 landmarks (note that this is just a subset of the
hundreds of landmarks that a whole-body system might be expected to learn),
the volume of the outputs and the volume of the final layers of the network is
large because of the number of classes, the fact that information is generated
at the resolution of the data, and the fact that we work with 3D data. This
is in contrast to segmentation tasks with a few classes of interest, to which a
network such as U-Net might naturally lend itself. Given this requirement, we
designed a system that could be both trained and deployed by making patchwise
predictions.

It turned out that with our atlas-assisted detection system to enable the
learning of spatial context, a fairly straightforward network with a relatively
small receptive field gave good results. From the perspective of deployment, a
goal was to be robust to “awkward” scan volumes, which might be unusually
rotated or cropped, or containing variation due to anatomical or pathological dif-
ferences. By choosing a model with small receptive field, landmarks are neither
reliant nor impacted by spatial context outside of a relatively small neighbour-
hood. Detection is surprisingly tractable for many landmarks, even with such
a limited field of view. Further, so long as we detect sufficient landmarks accu-
rately to compute an accurate affine transform (a minimum of 4 landmarks are
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required, preferably well spaced i.e. not in a planar arrangement), we can lever-
age the spatial relationships between landmarks to zone in on landmarks with
unusual appearance due to pathology, anatomical or postural variation — albeit
without guarantee of precise localisation where pathology has caused an obvious
change of appearance. The system also allows mitigation of the time impact of
working at higher resolution, by selective evaluation of only the landmark ROIs.

5 Conclusion

Convolutional networks have proven their worth for image recognition tasks in
general computer vision tasks [13,21] and in this work, we have shown their
efficacy in a medical imaging application, namely the detection of landmarks
in head CT volumes. We have benchmarked against a decision forest method
(decision forests being the previous gold standard algorithm for this task), for
which we have a mature implementation and shown that, given the same system
and setup, a neural network significantly outperforms a decision forest, with and
without additional feature engineering (i.e. HOG features). Further, we have
demonstrated that we are able to attain similar agreement to human observers
as that between the human observers, showing accuracy that is approximately
equal to a single human observer.

By exploiting inter-landmark spatial relationships, we are able to use small
CNN models with a small receptive field size, and to apply selectively at high
resolution. In fact in this paper, we did not show a significant improvement over
the simpler system with direct leveraging of an atlas transform alone (our “atlas
correction” step), and this may be enough to correct outliers and achieve good
performance, at least for this problem of landmark detection in head scans. Thus,
we have trained a system which is nicely scalable — to larger scan volumes and
to greater numbers of landmarks — in terms of both GPU memory and run time
requirements. The next step is to validate this system on other body parts and
other modalities.

Acknowledgements. Many thanks to Queen Elizabeth University Hospital, Univer-
sity of Glasgow, who provided many of the medical scans used for this study, including
those shown in the images.
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