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Abstract. Multi-person human pose estimation and tracking in the wild
is important and challenging. For training a powerful model, large-scale
training data are crucial. While there are several datasets for human pose
estimation, the best practice for training on multi-dataset has not been
investigated. In this paper, we present a simple network called Multi-
Domain Pose Network (MDPN) to address this problem. By treating
the task as multi-domain learning, our methods can learn a better repre-
sentation for pose prediction. Together with prediction heads fine-tuning
and multi-branch combination, it shows significant improvement over
baselines and achieves the best performance on PoseTrack ECCV 2018
Challenge without additional datasets other than MPII and COCO.
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1 Introduction

Multi-person human pose estimation is an important component in many appli-
cations, such as video surveillance and sports video analytics. Though great
progress has been made in this field [3,4] thanks to the development of convo-
lutional neural networks (CNNs), human pose estimation remains a challenging
problem due to complex poses, diverse appearance, different scales, severe occlu-
sion and crowds. For tracking in videos, the strong camera motions and extreme
proximity of people [1] make it even more difficult.

Similar to other computer vision tasks dominated by deep learning, large-
scale training data are crucial to exploit the representation power of CNNs for
human pose estimation. There exists several extensive datasets such as COCO
Dataset [13], MPII Dataset [2], and PoseTrack Dataset [1]. These datasets differ
from each other about the distributions of images, poses and annotation stan-
dards. To promote the performance of models, many methods [7,11,18] choose to
utilize multiple datasets for training. Most of them trained the models on COCO
dataset first and then fine-tuned them on PoseTrack dataset [18] or MPII dataset
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[11]. However, it is still unclear what is the best practice to learn a model from
multiple datasets for human pose estimation.

In this paper, we treat the task of training on multi-datasets as multi-domain
learning [14,19] and propose a CNN architecture named Multi-Domain Pose Net-
work (MDPN). The network has a common backbone to share the representation
from multiple domains and separate prediction heads for dataset-specific pose
estimation. During training, we first jointly optimize on all datasets to learn the
generic pose embedding. Then each heads are fine-tuned on each domains to
further improve the accuracy of localization. We also investigate the prediction
strategies for better performance. Evaluated on PoseTrack dataset, our meth-
ods with simple network structures significantly improve the learning on multi-
dataset over baseline. Moreover, our methods is runner-up of the PoseTrack
ECCV 2018 challenge of pose estimation but achieved the best performance
without using extra training data other than MPII and COCO datasets.

Fig. 1. Network overview (Left) and multi-domain prediction (Right).

2 Methods

Overall, we adopt the top-down approach [4,18] to human pose estimation using
only single frame information, which employs person detector to detect all the
people in the image and then use single person pose estimator (SPPE) to obtain
the human poses for all the boxes. For SPPE, we take advantage of multiple
dataset information to train a multi-domain network. After that, we use simple
matching [18] on adjacent frames to associate individuals into track-lets.

2.1 Multi-Domain Pose Network (MDPN)

For training on multiple datasets, there are three simple solutions:

Mixed. All the datasets are merged into one single dataset. We also merge
all the joint sets into one single joint set with a total number of 21 keypoints.
During training, gradients are only back-propagated to the annotated joints for
each sample. Mixing the datasets can make full use of all the information from
all datasets, but different annotation standards for datasets on the same joint
may distract the training procedure.
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Transfer Learning. As done in [11,18], we can also train the model on one
dataset first to learn the generic representation. Then fine-tuning is performed
on the target dataset. COCO dataset [13] is often selected to pre-train the models
because its data distribution is good to train a generic pose estimation model.
Transfer learning can speed up the learning and often achieves good results. But
the learnt embedding is suboptimal for pose estimation and it is easy to lose the
knowledge from the first dataset when training on the target dataset for a long
time as observed by [21].

Multi-domain Learning. Another approach to train on multi-dataset is to
view it as a multi-domain learning task like [14]. It uses a common backbone
network to learn a common pose representation and several prediction heads to
learn domain-specific pose estimation. Compared with mixed datasets, multi-
domain learning addresses the different annotation distribution problem. But
to balance between different domains, the learnt prediction heads may not be
optimal. Moreover, the predictions of multi-domain network only use one single
head, which is a waste of information from other datasets.

According to the analysis above, we propose Multi-Domain Pose Network
to solve such problems. We first apply multi-domain learning on all datasets.
Then we fine-tune the full model on COCO dataset to optimize the embedding
and COCO head. Finally we fix the backbone together with COCO head and
fine-tune our network on the combination of MPII and PoseTrack dataset for
the remain heads. Figure 1 illustrates the whole network structure. The details
of structure will be explained in Sect. 2.2.

For prediction, one simple strategy is to use the predictions from correspond-
ing dataset head. In order to exploit all the information from different datasets,
we combine the predictions from different heads to form the final estimation
(Fig. 1). There are several ways of combination, which will be discussed and
compared in Sect. 3.2. Such methods can also be viewed as a lightweight multi-
dataset ensemble implemented by multi-branch predictions like [8,12].

2.2 Implementations

Model Structure. We use ResNet-152 [10] with three deconvolution layers as
backbone [18]. To address vanishing gradients, we add an intermediate prediction
after conv3 layers for supervision, and add it back to the second deconvolution
layer as skip connection. The size of input image is 384× 288.

Training. The cropping and augmentations are the same as [4]. The Gaussian
maps with sigma 9 are used as targets. We use the pre-trained models on Ima-
geNet for ResNet backbone. The base learning rate is 0.001 with batch size 128
and Adam optimizer. For the jointly training stage of MDPN, we use 120 epochs.
The learning rate is dropped to 0.0001 at 90 epochs. Then we perform 15 epochs
for fine-tuning on COCO dataset. Finally we fine-tune the model on MPII and
PoseTrack datasets for 20 epochs (The learning rate is dropped to 0.00001 at 10
epochs). To improve the performance of hard keypoints, we change the L2 loss
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to Online Hard Keypoints Mining (OHKM) [4] loss with 8 top keypoints at 100
epochs. For other models, we follow the training scheme in [18].

Testing. We follow the common practice in [4] with flipping testing and quarter
offsets. We also re-score the box with the production of box score and average
keypoint scores [4] after predictions.

Detection. We use four public person detectors trained on COCO dataset [13],
including Faster R-CNN [17], Mask R-CNN [9], YOLO [16], and DCN [5]. Then
we merge all the boxes with NMS of 0.6 and use them as detection results.

Tracking. We follow the pipelines of flow-based tracking [18] with four modifi-
cations. First, we apply OKS-NMS [15] of 0.4 after pose estimation. Second, we
use Hungarian matching instead of greedy matching. Third, after tracking we
prune short track-lets that contain less than 2 frames to reduce the false positive
cases. Finally, we do not employ box propagation because the detector ensemble
is strong enough. For multi-frame flow tracking, we use at most 8 frames before.

3 Experiments

3.1 Datasets and Evaluation

We train our models on three datasets: COCO-2017 dataset [13], MPII Dataset
[2], and PoseTrack-2018 Dataset [1]. Then we evaluate our methods on the
PoseTrack-2018 validation dataset. For multi-person pose estimation, we use
mean Average Precision (mAP) metric. For multi-person tracking, we use Multi-
ple Object Tracking Accuracy (MOTA) metric. To compare with state-of-the-art
methods, we also evaluate our methods on PoseTrack-2017 validation dataset.
For ablation study, we construct a min-val dataset from PoseTrack-2018 valida-
tion dataset by uniformly sub-sampling 15 sequences out of 75 sequences.

3.2 Ablation Study

ResNet-50 of input 256 × 192 without skip connection is used here for simplicity.

Table 1. Different training (Left) and testing (Right: MDPN-B without fine-tuning)
methods on PoseTrack-2018 min-val dataset with ResNet-50.

Methods
Wrist
mAP

Ankle
mAP

Total
mAP

MPII 58.3 49.1 58.7
COCO 70.8 59.2 68.4

PoseTrack 53.9 43.2 55.5
COCO → PoseTrack 67.5 56.4 66.8

COCO → PoseTrack + MPII 68.5 57.1 68.0
Mixed 67.1 52.5 66.3

MDPN-B w/o FT 68.4 53.7 67.7
MDPN-B 71.8 56.9 70.7

Methods
Wrist
mAP

Ankle
mAP

Total
mAP

COCO branch 68.8 54.6 66.0
PoseTrack branch 68.0 52.9 66.7

COCO + PoseTrack branch 69.1 54.6 67.4
COCO + MPII branch (A) 69.0 54.7 67.7

Voting (B) 68.4 53.7 67.7

Testing. We have tried different combination methods on the multi-domain
model: (1) COCO branch: Using the COCO branch and interpolating the head
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positions from other keypoints. (2) PoseTrack branch: Using the PoseTrack
branch. (3) COCO + PoseTrack branch: Using the COCO branch with the
head position from PoseTrack branch. (4) COCO + MPII branch: Using the
COCO branch with the head position from MPII branch. (5) Voting : Averaging
the heatmaps from common keypoints from all branches. From the right part of
Table 1, the last two methods achieve the best performance. So we will only use
these two methods for remain testing and refer them as method A and B.

Training. We compare different training strategies for multi-dataset: (1) MPII :
Training on MPII. (2) COCO : Training on COCO. (3) PoseTrack : Training
on PoseTrack. (4) COCO→ PoseTrack : Training on COCO and fine-tuning on
PoseTrack [7,18]. (5) COCO→ PoseTrack + MPII : Training on COCO and
fine-tuning on mixed datasets of MPII and PoseTrack [11]. (6) Mixed : Training
on mixed dataset. (7) MDPN-B w/o FT : Training with multi-domain learning
without fine-tuning and testing with method B. (8) MDPN-B : Training with
multi-domain learning with fine-tuning and testing with method B.

Left part of Table 1 shows that among all approaches, the MDPN-B achieves
the best performance. And fine-tuning after multi-domain training is impor-
tant for the final performance (+3.0 mAP). As for the results of single dataset,
training on COCO performs the best even without head annotations, while the
accuracy of PoseTrack is worst. This is because the images in PoseTrack are
obtained from limited videos and contain duplicate information, which leads to
a smaller dataset. Another conclusion is that fine-tuning does not always improve
the performance on the target dataset due to the knowledge forgetting problems.

Post-processing. Table 2 indicates that all post-processing is necessary for final
performance. The OKS-NMS is crucial for mAP because too many false positive
part detections may mislead the matching stage of evaluation.

Table 2. Different post-processing methods for pose estimation (Left) and tracking
(Right) on PoseTrack-2018 min-val dataset.

Methods Total mAP
MDPN-A 70.7

w/o Gaussian filter 70.3
w/o quarter offset 70.5
w/o box threshold 70.0

w/o OKS-NMS 51.2
w/o box re-score 70.2

Methods Total mAP Total MOTA
MDPN-A∗ 61.5 52.6

w/o box threshold 61.5 46.0
w/o keypoint threshold 67.6 28.3
w/o track-let pruning 61.7 52.3

w/o flow track 61.4 52.2

3.3 Results on PoseTrack Datasets

We evaluate our methods on PoseTrack 2017 [7,18,20] and 2018 dataset [6]. We
use AlphaPose [6] model as baseline and apply branch combination, OKS-NMS
and re-scoring (AlphaPose++).

Tables 3 and 4 show all the results on validation sets. For 2017 dataset, our
methods show comparable performance with state-of-the-art method [18] and
outperform other methods. For 2018 dataset, our methods also surpass the base-
lines with large margin. Meanwhile, testing with COCO-MPII combination is
better than that with voting for ResNet-152.
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Table 3. mAP on PoseTrack 2017 and 2018 datasets. * means with tracking.

Methods Dataset Head
mAP

Shoulder
mAP

Elbow
mAP

Wrist
mAP

Hip
mAP

Knee
mAP

Ankle
mAP

Total
mAP

Detect-and-Track [7] val17 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow [20] val17 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

ResNet-152 [18] val17 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

MDPN-152-A val17 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

MDPN-152-A∗ val17 79.8 84.8 78.6 71.7 74.8 72.3 67.5 75.8

AlphaPose [6] val18 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

AlphaPose++ val18 71.9 79.7 78.3 71.7 74.3 73.3 70.1 74.0

MDPN-50-B val18 72.6 75.7 75.8 69.7 72.1 70.2 65.4 71.7

MDPN-152-B val18 76.6 77.9 76.0 69.8 68.6 70.9 67.0 72.7

MDPN-152-A val18 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

MDPN-152-A∗ val18 72.4 79.0 75.3 69.6 69.2 69.2 66.7 71.7

Table 4. MOTA on PoseTrack 2017 and 2018 datasets. * means with tracking.

Methods Dataset
Head

MOTA
Shou

MOTA
Elbow
MOTA

Wrist
MOTA

Hip
MOTA

Knee
MOTA

Ankle
MOTA

Total
MOTA

Total
MOTP

Total
Prec

Total
Rec

D&T[7] val17 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2 61.5 66.4 88.1
PoseFlow[20] val17 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3 67.8 70.3 87.0

ResNet-152[18] val17 73.9 75.9 63.7 56.1 65.5 65.1 53.5 65.4 85.4 85.5 80.3
MDPN-152-A∗ val17 71.6 76.7 68.6 60.6 64.4 62.6 54.3 66.0 85.6 87.2 79.1
MDPN-152-A∗ val18 50.9 55.5 54.0 49.0 48.7 50.5 45.1 50.6 85.7 74.0 80.3

Table 5. Results on PoseTrack ECCV 2018 Challenge without (Top) and with (Bot-
tom) extra training datasets. * means with tracking. Our methods are bold.

Methods Extra? Wrist mAP Ankle mAP Total mAP Total MOTA

MDPN No 74.5 69.0 76.4 -

MDPN∗ No 69.5 66.1 72.6 58.5

openSVAI No 66.8 62.4 69.4 -

Loomo No 66.4 61.8 68.5 26.9

MIPAL No 60.2 56.9 67.8 54.9

AlphaPose++ No 66.2 65.0 67.6 -

E2E∗ No 62.1 58.3 63.3 53.6

openSVAI∗ No 59.2 56.7 63.1 54.5

DGDBQ Yes 77.8 75.4 79.0 -

ALG Yes 72.6 71.1 74.9 60.8

MSRA Yes 73.0 69.1 74.0 61.4

Miracle Yes 68.2 66.1 70.9 57.4

E2E Yes 67.0 62.5 67.8 -
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For test set (Table 5), our MDPN methods beats all the other methods
trained only on COCO, MPII and PoseTrack by a large margin (7.0 mAP for
no-tracking and 3.2 mAP for tracking). The no-tracking version also achieves
the second best performance among all methods. For tracking, our method also
performs the best among all methods without extra datasets for MOTA by a
large margin (3.6 MOTA) and achieves the third best accuracy in all methods.

4 Conclusions

In conclusion, we investigate the strategies for training on multi-dataset and
present Multi-Domain Pose Network to improve human pose estimation. It sur-
passes the baselines and achieves state-of-the-art results on PoseTrack bench-
marks. Because of the simplicity, we hope proposed methods can help improve
the performance for training on multiple datasets.
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