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Abstract. Pedestrian detection is central in applications such as
autonomous driving. The performance of algorithms tailored to solve this
problem has been extensively evaluated on benchmark datasets, such as
Caltech, which do not adequately represent the diversity of traffic scenes.
Consequently, the true performance of algorithms and their limitations
in practice remain understudied.

To this end, we conduct an empirical study using 7 classical and state-
of-the-art algorithms on the recently proposed JAAD dataset augmented
with 16 additional labels for pedestrian attributes. Using this data we
show that the relative performance of the algorithms varies depending
on the properties of the training data.

We analyze the contribution of weather conditions and pedestrian
attributes to performance changes and examine the major sources of
detection errors. Finally, we show that the diversity of the training data
leads to better generalizability of the algorithms across different datasets
even with a smaller number of samples.

Keywords: Pedestrian detection · Data properties ·
Pedestrian attributes · Benchmark dataset ·
Evaluation framework · Autonomous driving

1 Introduction

1.1 Pedestrian Detection

With the rise of autonomous driving systems, visual perception algorithms are
facing a new dilemma, that is the ability to detect and recognize objects in highly
varying scenes. Among typical objects present in traffic scenes, pedestrians are
particularly challenging for identification because they assume different poses,
have high variability of appearance and can be easily confused with other objects
with similar properties [25].

In the past decades numerous pedestrian detection algorithms [1,7,8,25,31]
have been proposed, the majority of which have been tested on the publicly avail-
able datasets such as Caltech [5] and KITTI [11]. Although these datasets contain
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(a) Localization errors (b) False positives (c) False negatives

Fig. 1. Different sources of detection errors due to the variability in the appearance of
the pedestrians and scenes: (a) shows localization errors due to the presence of bags,
backpack and umbrellas which are commonly associated with pedestrians observed in
the scenes; (b) false positives caused by various environmental factors such as reflections
on wet surfaces, over-exposure as well as the presence of objects resembling pedestrians;
and (c) false negatives due to variation in shape, e.g. children who have different aspect
ratio compared to adults, and appearance, e.g. pedestrians wearing hooded jackets,
holding umbrellas or carrying bulky backpacks.

an adequately large amount of data for evaluating the performance of pedestrian
detection algorithms, they lack sufficient variability in scene properties such as
different lighting conditions and pedestrians’ appearance corresponding to dif-
ferent weather conditions.

Given the dynamic nature of driving and the fact that autonomous vehicles
should be able to handle a wide range of conditions robustly (see examples
in Fig. 1), there is a need to examine the performance of pedestrian detection
algorithms and measure their limitations under various visual conditions.

A number of past studies have investigated the role of data properties, such as
deformation and occlusion [17], ground truth annotation [23,30], and scale [18]
in pedestrian detection algorithms. What is missing, however, is determining
the effects of visual appearances due to pedestrian attributes and environmental
conditions.

The newly proposed detection datasets collected under various conditions,
such as CityPersons [32] and JAAD [20], provide the opportunity to further
investigate the role of data properties in the performance of pedestrian detection
algorithms. To this end, we analyze the performance of state-of-the-art pedes-
trian detection algorithms using the publicly available JAAD dataset for which
we annotated all pedestrian samples with information regarding their appear-
ance, such as clothing, accessories, objects being carried and pose.

Using the newly annotated dataset together with available properties of
JAAD, we show performance variation in detection algorithms as a result of
the changes in train/test data. In particular, we investigate the influence of
weather conditions under which the data is collected and attributes that impact
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appearance and visibility of pedestrians. We also examine the effect of data
diversity on generalizability by cross-evaluating the state-of-the-art pedestrian
detection algorithms on the JAAD and Caltech datasets. As part of our contri-
bution, we release an evaluation framework for training and testing pedestrian
detection algorithms using common benchmarks and evaluation metrics.

2 Related Works

Pedestrian detection is a well-studied field. Over the years, a wide range of
algorithms have been developed, ranging from models based on hand-crafted
features [7,14,31] to modern convolutional neural networks [1,8,29], and hybrid
algorithms benefitting from a combination of both of these techniques [15,28].

The modern pedestrian detection algorithms use various techniques to over-
come the challenges of identifying pedestrians in the wild. For example, Tian
et al. [24] propose a part-based detection algorithm to deal with occlusion. The
model consists of a number of part detectors, combinations of which determine
the existence of a pedestrian in a given location. In [25], the authors use seman-
tic information of the scene in the form of pedestrian attributes, e.g. carrying
a backpack, and scene attributes such as trees or vehicles to distinguish the
pedestrians from the background.

In [29] the authors use bootstrapping techniques to mine hard negative sam-
ples to minimize confusions caused by background while detecting pedestrians.
The proposed algorithm uses features learned by a region proposal network
(RPN) to train a cascaded boosted forest for the final hard negative mining
and classification. In a more recent approach, Brazil et al. [1] show that jointly
training a Faster R-CNN network and semantic segmentation network on pedes-
trian bounding boxes can improve the overall detection results.

As the performance of state-of-the-art pedestrian detection algorithms on
benchmark datasets began to saturate (e.g. 7–9% miss rate reported on Caltech
[5]), attention has shifted towards the effects of data properties on detection
performance. A recent study on generic object recognition tasks shows that order
of magnitude increase in the size of training samples can enhance performance
even in the presence of up to 20% error in ground truth annotation [22].

As for pedestrian detection algorithms, the effect of occlusion and sample
size [17], the balance between negative and positive samples [12], and the clean-
ness of ground truth annotations [23] have been investigated. Zhang et al. [30],
for example, demonstrate that the percentage of miss-classification and localiza-
tion error varies significantly depending on the algorithm. Through experimental
evaluations, the authors show that simply by improving the quality of ground
truth annotations, localization errors can be significantly reduced resulting in
the overall performance boost of more than 7% miss rate in state-of-the-art
pedestrian detection algorithms.
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2.1 Datasets

There are a number of publicly available pedestrian detection datasets among
which some, namely the Caltech [5] and KITTI [11] datasets, are widely used for
evaluating the performance of pedestrian detection algorithms. These datasets,
although large in scale, lack the diversity in data properties such as weather
conditions, geographical locations, pedestrian attributes, etc. For example, Cal-
tech contains 10 h of driving footage collected under sunny and clear weather
conditions in streets of Los Angles. Likewise, KITTI is collected under similar
weather conditions in streets of Karlsruhe in Germany.

Recently, we have witnessed the emergence of more diverse pedestrian detec-
tion datasets. For instance, CityPersons [32] is a pedestrian detection dataset
comprised of data collected in various cities across Germany, in different seasons
and under different weather conditions. Another pedestrian detection dataset,
JAAD [20] is a set of high resolution image sequences collected in different coun-
tries and contains video footage recorded under clear and extreme weather con-
ditions such as heavy rain.

The recently proposed datasets provide a variety of scenery and pedestrian
samples suitable for studying the limitations of pedestrian detection algorithms
under different conditions. Examples of errors caused by the changes data prop-
erties are illustrated in Fig. 1.

Despite the introduction of diverse pedestrian detection datasets, there are
very few attempts on quantifying the effect of data properties on pedestrian
detection algorithms. To this end, in this paper we analyze the effect of data
properties in two ways: their impact on the performance of state-of-the-art, and
generalizability of the algorithms across different datasets. More specifically, the
contributions of this paper are as follows:

1. We introduce a large dataset of pedestrian attributes by annotating the pedes-
trian samples from the JAAD dataset [20] to study the effect of pedestrian
appearance changes on detection algorithms.

2. We examine the performance of state-of-the-art pedestrian detection algo-
rithms with respect to dataset properties and highlight changes in their behav-
ior with respect to different training and testing samples.

3. We perform a cross-evaluation of the state-of-the-art algorithms on the
JAAD and Caltech datasets to measure the generalizability of algorithms
and datasets based on different properties of the data.

4. We propose a software framework for experimentation and benchmarking
classical and state-of-the-art pedestrian detection algorithms using publicly
available pedestrian datasets.

3 The Attribute Dataset

There are a number of existing pedestrian attribute datasets that provide fine-
grained attributes (e.g. RAP [13], PETA [4]). These datasets primarily cater
to applications such as surveillance and identification tasks, and, as a result,
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Fig. 2. (a) Types and frequency of new attribute labels in the JAAD dataset color-
coded based on the attribute type (e.g. pose, clothing color, accessories); (b) Samples
of pedestrians with select attribute labels shown. (Color figure online)

often contain indoor scenes or are recorded using on-site security cameras. Such
characteristics make these datasets unsuitable for analyzing pedestrian detection
algorithms for applications such as autonomous driving.

Tian et al. [25] introduced pedestrian attribute information for the Caltech
dataset. The authors augmented the dataset with 9 attributes on 2.7K pedestrian
samples. As was mentioned earlier, the Caltech dataset has insufficient variability
of weather and scenery properties, hence the attributes lack diversity as well.

To investigate the effect of pedestrian attributes and data properties on detec-
tion algorithms, we utilized the publicly available JAAD dataset. The JAAD
dataset is a naturalistic driving dataset which comprises videos gathered under
different weather and road conditions and contains annotations for video prop-
erties, as well as some characteristics of pedestrians (e.g. their age and gender).

We further extended these annotations by adding 16 attributes for each of the
392K pedestrian samples, a total of 900K new attribute labels, summarized in
Fig. 2(a)1. There are attributes for coarse pose (left, right, back, front), clothing

1 The JAAD attributes are available at https://github.com/ykotseruba/JAAD
pedestrian.

https://github.com/ykotseruba/JAAD_pedestrian
https://github.com/ykotseruba/JAAD_pedestrian
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color (upper dark and lower dark) and length (below knee for long coats and
skirts).

There are also several attributes for the presence and location of bags and
their type: whether they are worn on the left side or right side relative to pedes-
trian’s body and carried on the shoulder (bag shoulder), elbow (bag elbow), back
(backpack) or held in the hand (bag hand). In addition, we add labels for hooded
clothing (hood) and caps (cap), accessories (e.g. phone, sunglasses) and various
objects that pedestrians can hold in their hands (e.g. object, baby).

The attributes were selected based on their appropriateness for the driving
tasks. For instance, pose of the pedestrian and color of their clothing affect
visibility; long clothing obscures the shape and movement of the human body;
caps, hoods, and sunglasses occlude pedestrian’s face and may limit their view of
the traffic scene as well; carrying large bags, backpacks or other objects may not
only change appearance and shape of the pedestrian but limit their mobility;
holding a phone does not change the pose significantly, but can be used to
determine pedestrian’s distraction [19], etc.

Clothing color and pose are the only attributes provided for all bounding
boxes in the JAAD dataset and form the minimum attribute set. As can be
seen from the bar plot in Fig. 2(a), most pedestrians in the dataset are wearing
dark clothes, for instance, nearly 70% of pedestrians have both upper dark and
lower dark attributes present.

Pose attributes, left, right, back, and front, are nearly equally distributed.
Aside from clothing color and pose, the bags category is the most represented.
In fact, nearly 50% of all pedestrians carry a bag or a backpack. In the following
sections, we will consider the effect of the diversity and uneven distribution of
attributes in the training data on detection.

4 Experimental Setup

4.1 Evaluation Framework

Our framework provides a unified API2 for experimentation with 10 classical and
state-of-the-art pedestrian detection algorithms including SPP+ [16], ACF+ [7],
Faster-RCNN [21], CCF [28], Checkerboards [31], DeepPed [26], RPN+BF [29],
LDCF+ [14], MS-CNN [2], and SDS-RCNN [1]. All algorithms in the API have
training and testing code except SPP+ and DeepPed which only have test code
as no official training code has been released by the authors.

The proposed framework is compatible with major publicly available pedes-
trian detection datasets including INRIA [3], ETH [10], TUD-Brussels [27],
Daimler [9], Caltech [5], KITTI [11], CityPersons [32], and JAAD [20]. It allows
the manipulation of these datasets in terms of scale, balancing training and test-
ing samples, selection of ground truth, etc. The results can be evaluated using
common metrics for pedestrian detection.

2 The API is available at https://github.com/aras62/PBF.

https://github.com/aras62/PBF
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The software is implemented in Matlab and is based on the code published by
the authors of the corresponding algorithms. The training and testing functions
are modified for the ease of use from a single API. Our framework uses the
original and modified versions of the Piotr toolbox [6] and follows the Caltech
benchmark standards [5].

4.2 Algorithms

For the experimental evaluations in this paper we chose three classical algorithms
as baselines including ACF+ and its variation LDCF+ [7], and LDCF++ [14],
and four state-of-the-art algorithms including RPN+BF [29], MS-CNN [2], SDS-
RPN and SDS-RCNN [1] (the top performing algorithm as of ICCV 2017). From
RPN+BF algorithm, we only report the results of its RPN component to high-
light how the weak segmentation approach proposed in SDS-RPN would behave
under different conditions.

The algorithms were trained on the subsets of the JAAD dataset using the
default parameters proposed by the authors for the Caltech dataset. The only
exception is that we modified the width of training and testing images to main-
tain the aspect ratio of the images in JAAD. For cross-evaluation with the
Caltech dataset, we used the pre-trained models published by the authors of
corresponding algorithms.

4.3 Data

The JAAD dataset contains HD quality images with dimensions of 1080× 1920
pixels. To maximize the performance of the detection algorithms using default
parameters tuned on Caltech, we resized all images to half-scale of 540 × 960.
For evaluation and training, we selected samples with reasonable scale (bounding
box height of 50 pixels or more) with partial occlusion (visibility of 75% or more).

For experimental evaluations, we divided JAAD into four different train/test
subsets according to the property of the data in terms of weather conditions
including clear, cloudy, cloudy+clear (c+c) and mix. As the names imply, clear
and cloudy subsets only include training images collected under clear and cloudy
skies with no rain/snow, and mix contains all weather conditions including clear
and cloudy, and more extreme weather conditions such as rain/snow. It should
be noted that we excluded the videos from the JAAD dataset that were collected
under very poor visibility conditions such as nighttime and heavy rain.

The training images for each subset are generated by uniformly sampling
50% of the videos that are recorded under the given condition. Each training
subset contains approximately 6.5K pedestrian samples. The remainder of the
videos (which may include all weather conditions) are also uniformly sampled
and divided into validation and test set.

4.4 Metrics

To report the performance of the algorithms, we use log-average miss rate over
the precision range of [10−2, 100] (MR2) and [10−4, 100] (MR4) false positives
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Fig. 3. ROC curves for all algorithms trained and tested on mix, clear, cloudy and c+c
(clear and cloudy) datasets with detection threshold set to 0.5 IoU. Legends for each
plot show the names of algorithms together with MR2(MR4) measures. In each plot
legend the algorithms are sorted by MR2 in a descending order.

per image (FPPI) as in [29,30]. We also follow [30] and apply two oracle test
cases to measure the contributions of background and localization errors. The
localization oracle excludes all false positives that overlap with ground truth from
evaluation thus reflecting the contribution of background error. The background
oracle does not count false positives that do not overlap with ground truth hence
showing the amount of localization error. All of our results are presented using
the matching criterion of intersection over union (IoU) ≥ 0.5, unless otherwise
stated.

5 Data Properties and Detection Accuracy

5.1 Weather

Weather conditions have multiple effects on the visibility of the pedestrians (e.g.
due to rain) and their appearance (e.g. presence of sunglasses or umbrellas). In
addition, the appearance of the scene itself may be altered by different lighting
conditions, precipitation, reflections, sharp shadows, etc., leading to detection
errors as illustrated in Fig. 1. In order to quantify these effects, we trained and
tested all pedestrian detection algorithms on different subsets of JAAD dataset
split by weather conditions as explained in Sect. 4.

We begin by reporting the ROC curves along with MR2 and MR4 metrics.
As can be seen in Fig. 3, despite the changes in the overall performance of the
algorithms, the rankings are the same across different subsets. The only exception
is in the clear case where SDS-RPN outperforms RPN.

The main difference between SDS-RPN and regular RPN is that the former
adds a weak segmentation component utilizing binary masks from bounding box
annotations. It is apparent that using this technique is only effective under clear
weather conditions which correspond to the properties of the Caltech dataset
that this algorithm was originally tested on (see Table 2). Under different weather
conditions, however, the weak segmentation results in a poorer performance
compared to the regular RPN.
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Fig. 4. The relative contribution of background and localization errors to the perfor-
mance of the pedestrian detection algorithms. The errors are calculated as changes in
(a) MR2 and (b) MR4 measures for algorithms trained and tested on different subsets
of JAAD.

Another observation is that the MS-CNN algorithm (which according to [1]
is not among top five performing algorithms on Caltech) achieves the best per-
formance by a large margin (up to 2% on mix, clear and c+c subsets and more
than 5% on cloudy) compared to state-of-the-art SDS-RCNN.

To further understand the underlying factors impacting the performance of
each algorithm, we report background and localization errors under different
weather conditions. As depicted in Fig. 4, testing and training on the subsets of
JAAD with different properties reveal inconsistencies in the performance of each
detection algorithm as well as their relative performance compared to other algo-
rithms. For example, in the case of c+c, MS-CNN reaches its highest background
error while at the same time it achieves the lowest localization error compared
to others.

For RPN-based models the same trend does not hold as they all perform
poorly in terms of localization error, when trained and tested on c+c. Compar-
atively, MS-CNN has the lowest background error on the mix, clear and cloudy
subsets and the second worst on c+c.

Likewise, on average, RPN performs best in terms of localization error, how-
ever, it is the worst in terms of background error. One interesting observation
is the added benefit of the weak segmentation component to RPN (in SDS-
RPN) which helps improve the background error but at the price of reducing its
localization accuracy.
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Table 1. The performance of pedestrian detection algorithms in the presence of individ-
ual attributes. The results are reported as MR4 metric. The top performing algorithms
for each attribute are highlighted in bold.

Algorithms
Attributes

female male pose back pose front pose left pose right child backpack bag cap hood umbrella

ACF+ 38.96 34.66 39.71 38.28 34.70 33.91 60.92 38.88 36.00 40.21 69.18
LDCF+ 37.02 33.84 35.27 37.24 32.90 30.94 55.02 33.50 33.94 38.27 68.16
LDCF++ 30.09 28.30 34.41 31.79 26.44 26.71 55.16 32.76 26.69 33.29 56.64
MS-CNN 13.49 14.03 17.77 14.00 15.20 11.19 45.37 16.01 10.77 14.08 31.06
RPN 21.99 25.79 28.03 26.82 22.72 21.34 53.59 24.59 19.48 28.97 37.35

SDS-RPN 24.31 22.57 26.58 23.67 21.51 22.74 52.54 19.50 20.12 24.61 31.68
SDS-RCNN 14.30 15.77 17.72 15.29 14.46 13.60 43.14 15.85 12.25 15.68 25.57

5.2 Pedestrian Attributes

In this section, we evaluate the contribution of select attributes (shown in
Table 1) on the performance of detection algorithms trained and tested on the
mix dataset.

Due to the fact that many attributes often appear together in various com-
binations, it is very hard to disentangle the effect of the individual attributes
on the overall detection accuracy of each algorithm. However, major differences
can be observed in the relative performances of the algorithms in the presence
of certain attributes in the scene.

As one would expect, the performance of classical models is inferior com-
pared to CNN-based algorithms, particularly with respect to some of the rarely
occurring attributes such as child and umbrella. The performance of the state-of-
the-art also varies on different attributes. For example, MS-CNN, which shows
the highest results on the mix subset of JAAD, underperforms compared to
SDS-RCNN on select attributes such as umbrella, backpack, child, pose-back.

To investigate the common causes of error for MS-CNN and SDS-RCNN we
group false positive (FP) and false negative (FN) detections at 0.1 FPPI by the
object present in the bounding box as shown in Fig. 5.

With respect to FP, SDS-RCNN and MS-CNN differ greatly not only in the
relative contributions of background and localization errors but also in terms
of the objects they commonly confuse with pedestrians. Aside from annotation
errors, MS-CNN is much more distracted by elongated objects often found in
the street scenes, such as tree trunks, hydrants and parking meters.

Many of the localization errors for both MS-CNN and SDS-RCNN are caused
by not being able to distinguish pedestrians in groups of 2 or more, particularly
when children are also present (attribute group child in Fig. 5b). SDS-RCNN also
has a higher tendency to place bounding boxes on body parts of the pedestrians
or objects they carry (e.g. bags) than MS-CNN. Finally, for both MS-CNN and
SDS-RCNN, partially occluded pedestrians, groups of pedestrians and children
stand out as main sources of false negative detections.

Note that despite individual sensitivities to certain attributes, both MS-CNN
and SDS-RCNN have trouble detecting children and pedestrians with infre-
quently occurring attributes such as backpacks, umbrellas, hooded clothing, etc.
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Fig. 5. Error analysis for MS-CNN and SDS-RCNN trained and tested on the mix
reasonable subset of JAAD. Plot (a) shows the relative percentages of false positives
(FP) and false negatives (FN) for each algorithm at 0.1 FPPI. FP is further split into
localization and background errors depending on whether the detected bounding box
overlaps with the ground truth or not. Plot (b) shows a detailed breakdown of false
positive and false negative errors grouped by the corresponding attributes.

There is also evidence that algorithms may learn the appearance of com-
mon attributes such as bags instead of the pedestrian itself leading to poor
localization.

The former issue may be addressed by increasing the variability of the train-
ing data either by explicitly ensuring the presence of certain hard attributes or
implicitly, by gathering data under different weather conditions, which in turn
affect the appearance of the pedestrians. On the other hand, explicitly learning
the attributes may also help, as demonstrated by [25].

5.3 Generalizability Across Different Datasets

Here, our goal is to identify the link between the generalizability of the dataset
and its properties, i.e. we want to measure whether using training data from a
diverse dataset can improve the performance of detection algorithms on other
datasets with more uniform properties.

For this purpose, we employed the widely used Caltech dataset [5] and JAAD.
We evaluated the algorithms trained on Caltech using the test data from the mix
subset of JAAD, and also the models trained on different subsets of JAAD using
Caltech test set. All the tests are done on a reasonable set of pedestrians with
the height of 50 pixels and above. The minimum allowable visibility is set to
75% on the Caltech test set to match the partial occlusion of the JAAD dataset.
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Table 2. The performance of state-of-the-art pedestrian detection algorithms on the
Caltech and JAAD mix datasets. The table shows the results for algorithms trained
and tested on the same dataset. The performances on the Caltech test set are reported
on both old (MRO) and new (MRN ) annotations. The best results are highlighted
with blue color.

C → C mix → mix

MRN
2 (MRO

2 ) MR2

ACF+ 26.27 (30.55) 23.36

LDCF+ 23.07 (25.79) 23.07

LDCF++ 13.66 (16.10) 16.90

RPN 11.71 (14.33) 11.71

MS-CNN 9.47 (11.21) 5.70

SDS-RPN 8.15 (9.27) 11.89

SDS-RCNN 6.58 (7.59) 7.78

Table 3. The performance of state-of-the-art pedestrian detection algorithms on the
Caltech and different subsets of the JAAD dataset. The results show the performance
of the algorithms trained on Caltech and tested on JAAD (C → mix) and trained on
different subsets of JAAD and tested on Caltech (J → C). The performances on the
Caltech test set are reported on both old (MRO) and new (MRN ) annotations. The
best and second best results are highlighted with blue and green color respectively.

C → mix
MR2

J → C
MRN

2 (MRO
2 )

mix c+c cloudy clear

ACF+ 77.94 46.97 (53.63) 49.52 (55.06) 70.79 (74.06) 49.99 (55.23)

LDCF+ 54.82 43.61 (49.93) 44.89 (50.85) 59.18 (64.11) 47.29 (52.54)

LDCF++ 47.94 37.66 (46.04) 40.41 (48.54) 54.86 (60.72) 44.77 (51.93)

RPN 40.15 27.80 (41.19) 25.74 (38.18) 34.67 (47.34) 28.75 (40.05)

MS-CNN 35.09 22.87 (34.83) 26.30 (38.11) 31.55 (46.35) 29.49 (41.64)

SDS-RPN 43.40 24.24 (30.84) 26.64 (33.61) 35.62 (42.90) 30.85 (38.52)

SDS-RCNN 25.45 21.47 (27.73) 25.29 (32.69) 35.20 (42.35) 23.81 (31.75)

Given that a large portion of the original bounding box annotations in the
Caltech dataset are poorly localized, following the advice of [30], we report the
results on both the original and newly clean Caltech test set. We denote the
miss rate results as MRO and MRN for old and new annotations respectively.
All detections are calculated on IoU ≥ 0.5. The results of the evaluations of the
algorithms trained and tested on the same dataset are summarized in Table 2
and the results of cross-evaluation between algorithms trained and tested on
Caltech and subsets of JAAD are shown in Table 3.

The first observation is that the performance of algorithms on a uniform
dataset compared to a diverse one varies significantly. SDS-RCNN algorithm that



222 A. Rasouli et al.

achieves state-of-the-art performance on Caltech is the second best in JAAD and
its counterpart, SDS-RPN, which has the second-best performance on Caltech,
performs worse compared to the regular RPN algorithm. MS-CNN, on the other
hand, performs best on the mix subset, even though on Caltech it is the third
best in our evaluation and not even in top five in the latest benchmarks [1].

As was mentioned earlier, the Caltech dataset contains images collected dur-
ing daylight under the clear sky. Surprisingly, we observe that the clear subset
of JAAD that has similar properties does not generalize best to Caltech. Besides
having the second-best performance on SDS-RCNN models, it ranks third in
other cases. In fact, we can see that diversifying the data by training on c+c
and further adding extreme weather conditions such as rainy and snowy samples
achieves the best results on the Caltech dataset.

Partly, such performance improvement is owing to better localization. For
instance, MS-CNN and SDS-RCNN on average have IoUs of 0.73 and 0.75 respec-
tively when trained on JAAD clear and 0.74 and 0.76 when trained on JAAD
mix. The same models trained on Caltech, however, have an average IoU of 0.73.

It should be noted that the CNN-based models in the table are trained on
Caltech10x [31] which contains over 45K images with more than 16K training
samples. The diverse mix dataset contains less than 7K samples, yet generalizes
better on Caltech than vice versa.

6 Discussion

In this paper, we conducted a series of experiments to investigate the effect
of dataset diversity on the performance of pedestrian detection algorithms (see
some qualitative examples in Fig. 6). Using the newly proposed JAAD dataset,
we showed that the performance measures reported on the classical benchmark

Fig. 6. Examples of the performance of state-of-the-art pedestrian detection algorithms
on samples with different weather conditions and pedestrian attributes. From left to
right, the ground truth (GT) and the results of algorithms trained on different sub-
sets of the JAAD dataset are shown. Colors green, red and blue correspond to the
ground truth, MS-CNN and SDS-RCNN respectively. The results show that the behav-
iors of both detection algorithms are affected based on the changes in the training data,
but in different and somewhat unpredictable ways. For instance, in the example in the
second row, SDS-RCNN performs better when trained on the mix subset whereas MS-
CNN does so when trained on the clear subset. (Color figure online)
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datasets, such as Caltech, do not necessarily reflect the true potential of detec-
tion algorithms in dealing with a wider range of environmental conditions. For
instance, MS-CNN which does not even rank top five in the recent state-of-the-
art benchmarks, outperforms the current top ranking algorithm, SDS-RCNN,
by a significant margin on all subsets of the JAAD dataset.

We showed that the changes in relative performance can be attributed to
different properties of the datasets, e.g. depending on what types of weather
conditions are represented in the training data. For example, SDS-RPN out-
performs the classical RPN on the Caltech dataset owing to the use of a weak
segmentation technique, however, it shows inferior results on the JAAD dataset
under all weather conditions except clear (which is the most similar to Caltech).

Similar fluctuations in the performance of detection algorithms can be seen
with respect to pedestrian attributes. Particularly, rarely occurring attributes
such as child, backpack and umbrella are associated with the highest miss rate
for all algorithms. On the other hand, some of the most frequently occurring
attributes such as hand bags are shown to be frequently localized instead of the
pedestrians.

The diversity of training data also leads to the better generalization of pedes-
trian detection algorithms across different datasets. Our empirical results suggest
that mixing samples with different properties can improve the performance of
algorithms even on a more uniform dataset. For example, the MS-CNN algorithm
trained on the mix subset of JAAD had 7% and 3% lower miss rates on Caltech
compared to the models trained on the clear and c+c subsets respectively.

A carefully selected dataset can also reduce the need for a large volume of
training data. For example, the models trained on the mix subset of JAAD using
only 7K training samples performed better on the Caltech dataset compared to
models that were trained on more than 16K training samples from Caltech and
tested on the JAAD mix.

In conclusion, our study shows that the selection of benchmark datasets for
the evaluation of pedestrian detection algorithms for practical applications such
as autonomous driving should be revisited to properly assess their performance
and limitations under different conditions, and to better reflect the nature of
generalizability that is desired.

Using larger datasets certainly benefits the training of the algorithms as does
balancing the data with respect to underrepresented weather conditions and
pedestrian categories. On the other hand, overrepresented attributes in the data
can cause detection errors which should be taken into account when designing
pedestrian detection algorithms.
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