
Profiled Power Analysis Attacks Using
Convolutional Neural Networks

with Domain Knowledge

Benjamin Hettwer1(B) , Stefan Gehrer1 , and Tim Güneysu2

1 Robert Bosch GmbH, Corporate Sector Research, Stuttgart, Germany
{benjamin.hettwer,stefan.gehrer}@de.bosch.com

2 Horst Görtz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany
tim.gueneysu@rub.de

Abstract. Evaluation of cryptographic implementations against pro-
filed side-channel attacks plays a fundamental role in security testing
nowadays. Recently, deep neural networks and especially Convolutional
Neural Networks have been introduced as a new tool for that purpose.
Although having several practical advantages over common Gaussian
templates such as intrinsic feature extraction, the deep-learning-based
profiling techniques proposed in literature still require a suitable leakage
model for the implementation under test. Since this is a crucial task, we
are introducing domain knowledge to exploit the full power of approxi-
mating very complex functions with neural networks. By doing so, we are
able to attack the secret key directly without any assumption about the
leakage behavior. Our experiments confirmed that our method is much
more efficient than state-of-the-art profiling approaches when targeting
an unprotected hardware and a protected software implementation of
the AES.

Keywords: Side-channel attacks · Deep learning
Convolutional Neural Networks

1 Introduction

Power-based Side-Channel Attacks (SCAs) are a well-known and powerful class
of threats for security enabled devices, for example in context of the Internet of
Things. They exploit information leakages gained from the power consumption
or electromagnetic emanations of a device to extract secret information such as
cryptographic keys, even though the employed algorithms are mathematically
sound. This is caused by the correlation of power consumption and processed
data. Since the advent of power-based SCAs by Kocher et al. in 1999 [14], numer-
ous papers have been published on this topic. Most of them fit into one of the
following categories:

c© Springer Nature Switzerland AG 2019
C. Cid and M. J. Jacobson, Jr. (Eds.): SAC 2018, LNCS 11349, pp. 479–498, 2019.
https://doi.org/10.1007/978-3-030-10970-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10970-7_22&domain=pdf
http://orcid.org/0000-0002-2164-6316
http://orcid.org/0000-0002-8052-7130
http://orcid.org/0000-0002-3293-4989
https://doi.org/10.1007/978-3-030-10970-7_22

480 B. Hettwer et al.

Non-profiled SCAs techniques aim to recover the secret key by performing
statistical calculations on power measurements of the device under attack
regarding a hypothesis of the device’s leakage. Typical examples are Dif-
ferential Power Analysis [15], Correlation Power Analysis [5], and Mutual
Information Analysis [9].

Profiled SCAs assume a stronger adversary who is in possession of a profiling
device. It is an open copy of the attacked device which the adversary can
manipulate to characterize the leakages very precisely in a first step. Once this
has been done, the built model can be used to attack the actual target device
in the key extraction phase. Template Attacks (TAs) [7], Stochastic attacks
[26] and machine-learning-based attacks [3,12,16] are common approaches in
this area.

In the same manner, researchers and industry developed methods to counter-
act SCAs. Masking, for instance, aims for randomizing intermediate values that
are internally processed by the cryptographic device in order to break the con-
nection between the secret (respectively some intermediate value that depends
on the secret) and its power footprint [19]. The concept of Hiding countermea-
sures are different from masking in a sense that their goal is to change the power
characteristics directly. This can be achieved, for example, by making every
operation consume the same amount of energy. However, it has been shown that
protected implementations can be broken as well, whereby particularly profiled
SCAs are a reasonable choice [10,23].

There is a recent line of work that deals with the application of Deep Learn-
ing (DL) techniques for profiled side-channel analysis. A common factor that
motivates the usage of DL models in general is that they intrinsically incor-
porate a feature extraction mechanism. That is, unlike most standard Machine
Learning (ML) classifiers, DL models can learn from the raw input data set as
they are able to identify the most informative data themselves without human
engineering. Within the SCA community, Maghrebi et al. [18] showed in a series
of experiments that DL can outperform TAs and standard ML techniques like
support vector machines when targeting hard- and software implementations of
AES. One year later, Cagli et al. [6] investigated Convolutional Neural Networks
(CNNs) combined with data augmentation to defeat cryptographic implemen-
tations which are protected with different jitter-based countermeasures. Again,
better results were reported for the DL network compared to TAs with manual
trace realignment. Summarizing the insights of the two studies, it becomes evi-
dent that DL techniques and in particular CNNs gives two major advantages
that make them interesting for profiled SCAs:

– They are able to automatically extract the areas in the side-channel traces
which contains the most information. When using standard SCA techniques,
the selection of the so-called Points of Interests (POIs) is often done manually
as preprocessing step ahead of the actual attack. This is not only tedious, but
also error prone as proper POI selection has shown to have a significant
impact on the attack efficiency [35].

Profiled Power Analysis Attacks Using CNNs 481

– CNNs are invariant to small input modifications such as noise (also artifi-
cially generated). Furthermore, they integrate time samples from the com-
plete traces efficiently (meaning they require fewer parameters which needs
to be optimized during training) for their decision. This property enables
them to perform a higher-order SCA and defeat masking countermeasures.

All studies on deep-learning-based SCAs assumed that the attacker has some
implicit knowledge about the leakage behavior of the attacked implementation.
However, the choice of an adequate leakage model (i.e., an approximation of the
physical signal that is generated by the device when computing some sensitive
intermediate value) is usually crucial for the success of SCAs [8] and heavily
depends on how much information about the target architecture is available to
the adversary. Since this is may be difficult to determine upfront, we present
a black-box approach for evaluating cryptographic implementations without a
leakage model by using CNNs with Domain Knowledge (DK) neurons.

1.1 Contributions

The contributions of this paper are twofold:

1. We introduce a novel CNN architecture for profiled SCAs which allows to
encode domain specific information. By doing so, it is possible to feed the
plaintext or ciphertext as an additional source of information into the network
(apart from the power measurements). The CNN with DK is dedicated to
autonomously learn the leakage of the device with regard to the secret key.

2. We perform practical experiments with an unprotected hardware and a pro-
tected software implementation of AES. The results confirm that our method
reduces the search space for breaking the secret key in the attack phase by at
least three orders of magnitude for the hardware implementation, and more
than ten orders in case of the protected software implementation.

The rest of this paper is structured as follows: In Sect. 2, background on
profiled SCAs, Neural Networks (NNs) and DL is provided. Section 3 intro-
duces CNNs and our architectural extension with domain neurons. In Sect. 4,
the results of our experiments are presented and discussed. The last Section
summarizes the paper and gives insights on possible future work.

2 Preliminaries

This section serves as entry point to profiled SCAs, NNs and DL. We refer the
reader to [19] for a more profound introduction into power-based SCAs, and [11]
for a comprehensive summary on NN and DL.

482 B. Hettwer et al.

2.1 Profiled Side-Channel Analysis

Profiled SCAs are considered as the most powerful type of SCAs and are divided
in two phases. In a first step, the adversary takes advantage of a profiling device
on which he can fully control input and secret key parameters of the crypto-
graphic algorithm. He uses that to acquire a set of NP profiling side-channel
traces X ∈ R

D, where D denotes the number of sample points in the mea-
surements. Let V = g(t, k) be a random variable representing the result of an
intermediate operation of the target cipher which depends partly on public infor-
mation t (plaintext or ciphertext chunk) and secret key k ∈ K, where K is the
set of possible key values. V is assumed to have an influence on the deterministic
part of the side-channel measurements. The ultimate goal of the attacker during
the profiling phase is then to estimate the probability:

Pr[X |V = v] (1)

for every possible value v ∈ V from the profiling base {Xi, vi}i=1,...,NP
. In TAs for

example, the Probability Density Function (PDF) of (1) is assumed to be mul-
tivariate Gaussian and can described by the parameter pairs (μv, Σv), depicting
the mean values and covariance matrices for the corresponding values of v [7].

During the attack phase, the adversary generates a new set of NA attack
traces from the actual target device (which is structurally identical to the profil-
ing device) whereby the secret key k is fixed and unknown. In order to retrieve
it, estimations for all possible key candidates k∗ ∈ K are made and combined
following the maximum likelihood strategy such that:

k = argmax
k∗∈K

NA∏

i=1

Pr[V = vi|Xi] (2)

where the probabilities on the right are retrieved with the help of the built profile
and public information t which is also available for the attack traces. In order
to avoid numerical instabilities, it is common to process the logarithms of the
likelihoods.

Although the Gaussian model assumption is often fairly realistic in practice
[19], arbitrary functions of the side-channel leakage cannot be captured with
templates. In settings where the PDF of the leakage is not known upfront, ML-
based profiling methods are more promising. Another issue that comes with TAs
is the necessity to find a small number of POIs in the high-dimensional side-
channel measurements. This is due to size restriction of the covariance matrices
Σv, which are (NS × NS) large when NS is the number of POIs. In order to
discover the POIs, dimensionality reduction techniques such as (PCA) can be
employed. PCA captures the data with the largest variance and thus helps to
reduce the amount of noise in the traces. That is why PCA is a heavily used
technique in side-channel analysis, not only for TAs, but also in settings where
the profiling is done with ML techniques [16,25,33]. However, in general one can
say that ML-based attacks are more suitable when it is difficult to restrict the
number of POIs effectively [17].

Profiled Power Analysis Attacks Using CNNs 483

2.2 Neural Networks and Deep Learning

NNs were partly inspired by biological learning systems (e.g. the human brain)
and date back at least into the 1960s. They are nowadays the privileged choice
for supervised classification tasks. For these, the learning system is fed with
training examples from a data set consisting of input data vectors (=features)
and associated outcome measurement (=label) and the goal is to find a suitable
relationship in order to map new inputs to the correct label. Note that in the
context of profiled SCA, the first set is equal to the profiling base NP and the
second one corresponds to the attack set NA.

NNs are composed of densely interconnected units called neurons, which take
a number of real-valued inputs and produce a single real-value output [20]. The
simplest type of a NN is the perceptron. As illustrated in Fig. 1, it receives a
vector of input features X = (x1, . . . , xD) and performs a linear combination
with the weight values w1, . . . , wD of its input connections and a bias value w0.
The result is passed through an Activation (ACT) function f , e.g., the Rectified
Linear Unit (ReLU) [21] in order to calculate the output value ỹ. For learning
the perceptron, the weights are adjusted according to the training data set.

Fig. 1. Perceptron

Single-layer perceptrons are only able to represent functions whose underly-
ing data set is linearly separable such as the Boolean AND function. To over-
come this limitation and represent more complex mappings, many perceptrons
can be stacked together to form a whole network which are generally referred to
as Multi-Layer Perceptrons (MLPs). An MLP consists of three types of units,
typically arranged in layers as shown in Fig. 2. The input layer is just a repre-
sentation of the raw input features. All neurons of the input layer are connected
to each neuron of the following hidden layer. The number of hidden layers in
an MLP and the number of units per hidden varies, depending on the required
model capacity to fit the training data. In general, too many units in the hid-
den layer may lead to overfitting, while underestimating the number of neurons

484 B. Hettwer et al.

has an negative effect on the classification performance of the MLP [11]. The
units in the output layer, finally, directly correspond to the predictions of the
classification problem to solve.

Input
layer

Hidden
layer

Output
layer

Fig. 2. Example of a simple MLP with 3 input units, 4 hidden units, 2 output units
(bias units omitted).

Training the MLP is an iterative, multi-step process by which the weights of
the network are optimized to minimize a loss function, which depicts the differ-
ence between the expected output label and the prediction result. The learning
rate hyperparameter determines how fast the weights of the network are driven
towards the optimal solution. In practice, optimizer algorithms such as Stochas-
tic Gradient Descent (SGD) or ADAM are employed for that purpose [11].

In recent years there has been a growing interest in NN models with multi-
ple hidden layers stacked upon each other, which are commonly specified under
the term deep learning. It is a particular powerful type of ML techniques that
are able to represent the learning task as nested hierarchy of concepts, where
more abstract concept representations are built from simpler ones. The usage
of deep NNs is motivated by the fact that they have and outperformed classi-
cal ML approaches in solving central problems in artificial intelligence such as
speech recognition and image classification. These tasks usually deal with high-
dimensional data which makes it exponentially more difficult to learn a classifier
that generalizes well on unseen examples, a challenge that is also known as the
curse of dimensionality [11]. Since this applies in exactly the same manner for

Profiled Power Analysis Attacks Using CNNs 485

the SCA domain as discussed before, deep NNs and especially CNNs seem like
a promising choice as tool for profiled SCAs.

3 Convolutional Neural Networks

In this section, we first describe the primary building blocks of CNNs until we
present our architectural extension with DK neurons.

3.1 Core Constructions

CNNs tackle the problem of large input data dimensions by including task-
specific mechanisms into their architecture that allow to reduce the number of
parameters of the model, while keeping or even increasing the accuracy of the
network [22]. CNNs are primarily used in the field of pattern recognition within
images, however they can also be used to process 1-D time-series data (as it is the
case for side-channel traces). Additional to the Fully-Connected (FC) layers used
in classical MLPs, CNNs include two other types of layers, namely Convolutional
(CONV) layers and Pooling (POOL) layers:

CONV layers determine the output of neurons which are connected to small
spatial regions of the input by calculating the scalar product with a set of
so-called kernels or filters as illustrated in Fig. 3. The movement policy of the
filters can be modified by the strides parameter. The weight parameters of the
kernels are learned to activate when they detect a specific feature or pattern
at a certain position in the input. In order to perceive enough information,
different filters are used yielding several outputs which increases the depth
of the network. CONV layers are to some extent, shift, scale, and distortion
invariant. This property has shown to be very useful against de-synchronized
side-channel traces [6].

POOL layers perform downsampling of their given input in order to reduce
the number of parameters and the computational complexity of the network,
by considering the max (=max-pooling) or average (=average-pooling) of
a certain spatial extent as the output. They are important for getting low-
dimensional abstract feature representations and compressing the information
that is extracted in the CONV layers.

Apart from the CONV and POOL layers which are specific for CNNs, there
are two additional techniques that can be found in common architectures of
CNNs. These are dropout and batch normalization:

Dropout is a regularization technique that helps the network to increase gen-
eralization and reduce the phenomena of overfitting [28]. The key idea of
dropout is to randomly drop units (along with their connections) from the
NN during training. The probability to drop a unit can be controlled by
the probability coefficient PDrop ∈ [0, 1). Because of that, dropout can be
seen as an ensemble method that combines a exponential number of different
“thinned” NN architectures efficiently during training. At test time, a single
network with downscaled weights is used for predictions.

486 B. Hettwer et al.

Input

0

1

2

-1

1

-3

0

Kernels

1

0

-1

0

1

0

Output

-2

2

1

2

1

1

2

-1

1

-3

Fig. 3. Example of a 1-D convolution operation with 2 kernels of length 3 and stride
of 1. The output is formed by applying the kernel to each part of the input (as with a
sliding window).

Batch Normalization was introduced by Ioffe et al. [13] to establish a stable
distribution of activation values throughout the whole layered structure of a
network. A stable distribution makes the network more robust to parameter
tuning since the input of one layer depends on the output of the previous
layer. Therefore, normalization is incorporated into the network architecture
by applying it to each mini-batch of training examples. This eventually allows
the usage of higher learning rates.

3.2 Principal Architecture

Following the Input (IN) layer, CNN architectures typically consist of repetitive
blocks of CONV and POOL layers. The basic concepts of sparse, local connectiv-
ity, weight sharing and subsampling enable the network to extract more abstract
representations of given inputs, until spatial output dimensions are small enough
to be connected to subsequent FC layers. Additionally, the use of non-linear ACT
functions such as ReLU or sigmoid right after each CONV and FC layer enables
the network to learn more complex functions. In a classification setting (as for
example the one we describe in Sect. 2.1), the neurons of the last layer in the
network output probabilities over discrete classes. These are calculated by means
of the Softmax (SOFT) function.

To sum up, the architecture of a typical CNN consists of two major parts.
A feature extractor and a feature combinator. The feature extractor consists of
alternating CONV and POOL layers. It yields low dimensional representations
of the input (in our case a side-channel trace), giving crucial information to
the subsequent layers for solving the classification task. FC layers act as feature
combinators and connect information to the desired output. A current CNN can
therefore characterized by the following construction:

IN ◦ [CONV ◦ ACT ◦ POOL]n1 ◦ [FC ◦ ACT]n2 ◦ FC ◦ SOFT

where n1 and n2 denote the number of feature extractor blocks, respectively the
number of FC layers used.

Profiled Power Analysis Attacks Using CNNs 487

3.3 CNNs with Domain Knowledge Neurons

In our approach, we study the effect of additional DK neurons in the CNN archi-
tecture for profiled SCAs. Their addition is motivated by the fact that merging
domain specific information with extracted features of the CONV layers enables
the network to go into different statistics at decision level [32]. In that sense, we
propose a multimodal CNN with late information fusion strategy where addi-
tional public data is fed to the network in order to increase the efficiency of the
attack. Since we have targeted the first byte of the AES key in our experiments
as described in Sect. 4, we decided to use the corresponding plaintext byte as
input for the DK neurons. However, it is also conceivable to exploit other related
data that is available to the attacker (e.g. the ciphertext or information about
the internal structure of the attacked implementation). Introducing a chunk of
the plaintext into the network as second input brings two major advantages that
motivates our approach:

– We do not have to stick to a certain leakage model. Instead of assuming that
the attacked implementation leaks information regarding a certain operation
for which we do the profiling (for example the output of the AES S-Box,
respectively the hamming weight of the S-Box), we directly use the secret key
k as a label. By doing so, we give the network the ability to autonomously
learn the most meaningful representation of the leakage which is needed to
classify the used secret key.

– The second advantage is a direct consequence of our generic leakage model. In
the attack phase, we do not make a key guess on all possible candidates and
combine the estimations on it via maximum-likelihood as seen in Sect. 2.1.
Instead, the network gives us a direct key estimation in form of the probabil-
ities:

Pr[k|X , t] (3)

for every attack trace X and associated plaintext t. This leads to a faster
convergence of the key rank as we will see later in the experiments section.

Our developed CNN architecture is illustrated in Fig. 4. A detailed descrip-
tion is given in Table 2 in the Appendix. In summary, the feature extractor part
of the model consists of three CONV layers and two POOL layers. All CONV
layers use the same kernel size of eight, but the number of filters is increased
from eight, to 16, up to 32. Dimensionality reduction of the features is reached
by max-pooling across two data points after the first two CONV layers. After
flattening the spatial depth of the feature extractors into a single dimension, it
is concatenated with the input of the DK neurons. Since we merge one byte of
the plaintext one-hot encoded into network, the DK layer contains 256 neurons
(one for each possible value). One-hot encoding represent the plaintext byte as
vector of 256 binary variables where only the correct value is set to one. The
information from the feature extractor part and the DK neurons is combined
by a following FC layer. The Output (OUT) layer consists of 256 neurons as we
make a classification for one key byte. In order to avoid overfitting, four dropout

488 B. Hettwer et al.

layers are included into the network architecture with a consistent dropout rate
PDrop = 0.2. Furthermore, batch normalization is employed after all CONV and
FC layers. Throughout the network, ReLU is used as an activation function.

We stress that our CNN design is not the product of some architectural
optimization technique. It was rather obtained by following best practices for
developing deep NN architectures [27], and examination of related work [6,18].

IN
CONV1

POOL1
CONV2

POOL2
CONV3

FLATTEN

...

DK

...

FC

...

OUT

Fig. 4. Simplified visualization of CNN with domain input neurons.

4 Experiments

In the following section, we present our experimental results. After explaining
the general attack setup, we compare our CNN with DK approach against four
different profiling attacks from literature regarding attack efficiency when tar-
geting an unprotected hardware and a protected software implementation of
AES.

4.1 Baseline

For our experiments, we have implemented three deep NNs which were proposed
in literature as baseline for our CNN with DK neurons. An overview of the
evaluated models and associated target operations compared to our approach is
given in Table 1. The numbers in the first column represent the number of layers
with trainable weights. We chose these networks as reference, since the proposing
authors applied them to break the same or very similar targets (unprotected

Profiled Power Analysis Attacks Using CNNs 489

hardware and protected software implementations of AES). Additionally, we
performed a classical TA for both attacked data sets. In all experiments we aim
to recover the first byte of the AES key. However, we stress that if one is able
to retrieve one byte of the key successfully, the remaining bytes can be attacked
likewise.

Table 1. Overview of implemented attacks

Type Profiling target (Label) Source

2-layer MLP V = S-box(t[0], k[0]) [18]

3-layer CNN V = S-box(t[0], k[0]) [18]

5-layer CNN V = S-box(t[0], k[0]) [24]

TA V = S-box(t[0], k[0]) [7]

5-layer CNN w/ DK k[0] This paper

Not all baseline models are described in the same level of detail in the accord-
ing papers. For example, the activation functions for the MLP in [18] are not
given. Therefore, we performed a so-called grid search for estimating the missing
hyperparameters that are needed to rebuild and train the networks. It works as
follows: First, an interval or set of possible values has to be selected for each
parameter that should be optimized. Grid search is then just a simple strategy
that tries all possible parameter combinations over the predefined ranges. We
list the optimized parameters and associated search intervals for each of the
evaluated models in Table 3 in the Appendix due space restrictions. The applied
methodology, however, has been the same for all attacks and is described in the
following section.

4.2 Methodology

Data Sets. For the conducted experiments, we have considered data sets of
NP = 200 000 profiling traces with random plaintext and keys. The number of
attack traces NA with random plaintext but fixed secret key k varies for the
attacks. We have used four sets each having 10 000 attack traces for the unpro-
tected hardware implementation, and two sets each containing 10 000 attack
traces for the protected software implementation. All attack sets were acquired
with a different key in order to prevent any bias in the results due to overfitting
to a certain key value.

Evaluation Metric. A single, well-know metric from the SCA domain has been
used to evaluate the performance of the attacks: The Key Guessing Entropy
(KGE) or key rank function. It is a technique which quantifies the difficulty
to retrieve the correct value of the key regarding the required number of attack
traces [29]. In principle, the KGE is calculated by summing up the log-likelihoods

490 B. Hettwer et al.

obtained in Eq. (2) over all key guesses k∗ ∈ K (respectively the log-likelihoods
of (3)) and do a ranking of the result. This ranking is updated after each attack
trace. The KGE has the advantage of taking the full information on the probabil-
ity distributions that are given in (2) or (3) into account, whereas the standard
accuracy metric from the DL domain only considers the label with the highest
confidence.

Attack Scenario. In order to have a fair comparison, we have applied the
following strategy for all attacks:

1. We have done a grid search hyperparameter optimization for all models
according to the values in Table 3, meaning we trained each model for all
possible parameter combinations with the full profiling set NP and validated
its performance with 2000 attack traces from NA. The model variants that
yield the lowest KGE were considered for further analysis.

2. Next, we performed 20 (10 for the software implementation) independent
attacks using the models obtained in the first step and calculated the mean
KGE, whereas each attack was conducted with an independent set of 2000
traces from NA.

The experiments last around three weeks on a single Nvidia GTX 1080 Ti
graphics card. All implemented attacks are based on the Keras [1] and scikit-
learn [2] frameworks.

4.3 Results for Unprotected Hardware Implementation

Our first series of experiments have been based on the public data set of the DPA
Contest v2 [30]. These side-channel traces were acquired from an unprotected
AES design running on an FPGA platform. The used AES module performs
one round per clock cycle. Each trace contains 3253 sample points and covers a
complete encryption operation.

As a preprocessing step, we transformed all traces to have zero mean and
unit variance (sometimes referred to as data standardization). We also inves-
tigated the effect of normalizing the traces into a range of [0, 1] or having no
preprocessing at all, but got the best results with standardization.

We have not reduced the dimension of the traces, except for TA. TAs requires
the attacker to determine a small number of sample points which contain the
most discriminative information. Otherwise they can become computationally
intractable as laid out in Sect. 2.1. We employed a PCA for that purpose with
the number of components to keep as hyperparameter. The exact parameter
configurations for the networks can be found in the Appendix.

Figure 5 shows the mean key ranks according to the number of traces for
each implemented attack. From that, we can make the following observations:

Profiled Power Analysis Attacks Using CNNs 491

0 500 1000 1500 2000

Number of attack traces

25

50

75

100

125

150

K
ey

ra
nk

Key Guessing Entropy

CNN [18]
MLP [18]
CNN [24]
Template
CNN w/ DK

Fig. 5. Mean ranks when targeting the first key byte of an unprotected AES hardware
implementation.

– Our CNN with domain neurons outperforms all other approaches, meaning it
has the lowest mean KGE after 2000 attack traces (8 vs. 30 when comparing
it with the MLP-based attack).

– None of the attacks reaches a stable key rank of zero. We indeed examined
that a larger number of traces is necessary to recover the key with a success
rate of 100% (approximately 5000 with the MLP). This is not completely in
line with the good results obtained in [18] and could be a direct consequence
of our hyperparameter optimization process and the assumptions we had to
make when reimplementing the networks. Additionally, targeting an S-box
that is not followed by a register may not be the optimal choice in a hardware
setting since the leakage of combinatorial logic is typically lower than register
leakage.

– Even though our developed CNN is not able to converge to a key rank of zero
(also not with more than 2000 attack traces), it stabilizes under the top ten
with less than ten attempts. The CNN with DK converges so much faster due
to higher probabilities for the top ranked key estimations. For example, the
top five probabilities obtained after the SOFT layer account for approximately
95% of the complete probability distribution, an effect that is not visible for
the baseline models with such an intensity. This makes our attack especially
interesting for settings where the number of attack traces is restricted to a
few of tens or even less.

492 B. Hettwer et al.

4.4 Results for Protected Software Implementation

The second platform we have targeted is a software-based AES implementation
equipped with two SCA countermeasures:

– A first-order secure masking scheme called Rotating Sbox Masking (RSM),
and

– Shuffling.

In RSM, the mask values are fixed to carefully chosen values, but rotated for
every execution. It is therefore considered a lightweight masking scheme. The
employed shuffling algorithm in the design randomly changes the order of exe-
cution of the S-boxes. The implementation originates from DPA Contest v4.2
[4].

Since the traces which were provided within the DPA Contest v4.2 were
generated with a single fixed key and we are required to have random keys for
the profiling, we self-acquired the data sets NP and NA on a ChipWhisperer-
Lite board for the second series of experiments. The board was running with
a clock frequency of 7.37 MHz. Each trace is composed of 10 000 sample points
representing approximately the first one and a half rounds of an encryption
operation. As an example, we have plotted three measurements in Fig. 6.

0 2000 4000 6000 8000 10000

−0.4

−0.2

0.0

0.2

Fig. 6. Three example traces of the protected software AES implementation. The shuf-
fling of the S-boxes is clearly visible in the range between the time samples 2500 and
6500.

We have applied the same data standardization preprocessing as for the hard-
ware target also to the traces of the software implementation. Additionally, a
separate hyperparameter optimization for the software data set has been con-
ducted. The results of the attacks are illustrated in Fig. 7. One can notice that:

– The CNN with DK performs very well on the software implementation.
Indeed, it takes roughly 20 traces to get to key rank zero for the first time and
stabilizes after roughly 600 attack traces. This demonstrates that our devel-
oped method is also able to defeat cryptographic implementations which are
secured with several countermeasures.

Profiled Power Analysis Attacks Using CNNs 493

0 500 1000 1500 2000

Number of attack traces

0

50

100

150

200

K
ey

ra
nk

Key Guessing Entropy

CNN [18]
MLP [18]
CNN [24]
Template
CNN w/ DK

Fig. 7. Mean ranks when targeting the first key byte of an protected AES software
implementation.

– Compared to the results for the unprotected hardware implementation, all
approaches except ours perform worse for the software implementation. This
indicates that the employed masking and shuffling countermeasures effectively
decrease the leakage of the targeted S-box. We have also tested the effect of
using a whole attack data set with fixed key (10 000 traces) but were not able
to reach a constant KGE of zero with the TA and the networks from related
work.

Examining the Effect of Domain Knowledge Neurons. In order to assess
the effect of DK on the attack success, we have trained our developed CNN
architecture from scratch under the exact same conditions but without the addi-
tional input of the plaintext. Afterwards, we have computed the mean KGE for
the CNN without domain neurons in the same manner as we have done for the
other implemented attacks. The results are shown in Fig. 8.

From the plots, it can be concluded that the information provided by the
domain neurons in fact improve the performance of the network. Both CNNs
(with and without DK) are able to reach a key rank below five after less than
20 traces, which indicates that our generic architecture by itself leads to a sig-
nificant performance boost. However, only the network which is equipped with
the domain input converges to zero. This demonstrates our assumption that
additional knowledge, that is present to the attacker anyway, can be used more
efficiently as it was done in state-of-the-art approaches. Maghrebi et al., e.g., used
the plaintext only to generate the labels for training/profiling and was therefore
not given to the networks in the attack phase to classify unseen traces [18].

494 B. Hettwer et al.

0 500 1000 1500 2000

Number of attack traces

0

5

10

15

20

K
ey

ra
nk

Key Guessing Entropy

Our CNN w/o domain knowledge
Our CNN w/ domain knowledge

Fig. 8. Mean KGE when targeting a protected AES software implementation with,
and without DK.

Hybrid learning systems (as our approach can be considered) have shown
remarkably result on several real-world problems [31,34]. Our developed strategy
adapts the idea to the SCA domain. The experiments presented in this section
clearly illustrate that combining different types of information (e.g. side-channel
traces and the plaintext) into one DL classifier can boost the performance of
profiled SCAs up to several orders of magnitude (compared to state-of-the art
attack methods). Furthermore, we stress that our approach may also be beneficial
to evaluate other kinds of cryptographic implementations apart from AES as we
make not us of any internal algorithmic structures or implementation details.

5 Conclusion

In this paper we have introduced CNNs with DK neurons as a tool for pro-
filed SCAs. The addition of domain neurons supplies the network with extra
information such as the plaintext. We showed that this feature gives a great
practical advantage compared to state-of-the-art profiling attacks [18,24], which
require to manually choose a certain operation of the attacked implementation
for which the profiling is done. Instead, we have demonstrated by experiments
with two different data sets that our proposed CNN with DK effectively manages
to autonomously capture the function with the highest leakage for breaking the
secret key directly. Our method can thus be seen as a novel and generic tool
to assess the side-channel resistance of cryptographic implementations in a real
black-box manner (i.e. assuming an attacker with no knowledge about internal
implementation structures).

Profiled Power Analysis Attacks Using CNNs 495

Future work might explore other kinds of DK than the plaintext. For instance,
one could try to attack the AES subkey in the last round and feed the corre-
sponding ciphertext into the network. An alternative path of future work could
be to study the effect of domain neurons in combination with other deep NN
architectures (e.g. Recurrent Neural Networks).

Acknowledgment. The authors would like to thank the reviewers for their comments.
This work is supported in parts by the German Federal Ministry of Education and
Research (BMBF) under grant agreement number 16KIS0606K (SecRec).

A Network Parameters

Table 2. Network configuration of CNN with domain neurons.

Layer type Hyperparameters

Trace input -

Convolution 1D Filters = 8, filter length = 8

Max-pooling Pool length = 2

Dropout PDrop = 0.2

Convolution 1D Filters = 16, filter length = 8

Batch normalization -

Max-pooling Pool length = 2

Dropout PDrop = 0.2

Convolution 1D Filters = 32, filter length = 8

Batch normalization -

Dropout PDrop = 0.2

Flatten -

Domain input Neurons = 256

Concatenate -

Fully-connected Neurons = 400

Batch normalization -

Dropout PDrop = 0.2

Output Neurons = 256

496 B. Hettwer et al.

Table 3. Results of grid search hyperparameter optimization for all implemented
attacks. Chosen values for the hardware attack are marked in bold letters, chosen
values for the software attack are marked by underlining.

Type Hyperparameter

2-layer MLP Batch size: [50, 100]

Epochs: [100, 200]

Optimizers: [SGD, RMSprop, Adam, Nadam]

Activation: [ReLU, sigmoid, tanh]

Learn rate: [0.001, 0.0001, 0.00001]

3-layer CNN Batch size: [50, 100]

Epochs: [100, 200]

Optimizers: [SGD, RMSprop, Adam, Nadam]

Learn rate: [0.001, 0.0001, 0.00001]

PDrop: [0.2, 0.3, 0.4, 0.5]

5-layer CNN Batch size: [50, 100]

Epochs: [100, 200]

Optimizers: [SGD, RMSprop, Adam, Nadam]

Learn rate: [0.001, 0.0001, 0.00001]

TA PCA components: [1, . . . , 5, 6, . . . , 100]

5-layer CNN w/DK Batch size: [50, 100]

Epochs: [100, 200]

Optimizers: [SGD, RMSprop, Adam, Nadam]

Activation: [ReLU, sigmoid, tanh]

Learn rate: [0.001, 0.0001, 0.00001]

PDrop: [0.2, 0.3, 0.4, 0.5]

References

1. Keras Documentation. https://keras.io/
2. Scikit-learn: machine learning in Python. http://scikit-learn.org/stable/
3. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic

multi-class support vector machines. In: Mangard, S. (ed.) CARDIS 2012. LNCS,
vol. 7771, pp. 263–276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37288-9 18

4. Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., Najm, Z.: Analysis and improve-
ments of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas, V.,
Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 201–218. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12060-7 14

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)

https://keras.io/
http://scikit-learn.org/stable/
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-540-28632-5_2

Profiled Power Analysis Attacks Using CNNs 497

CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123 (2011). https://doi.org/10.1007/
s13389-011-0010-2

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

10. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust, HOST, pp. 106–111, May 2015. https://doi.org/10.
1109/HST.2015.7140247

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

12. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293 (2011). https://doi.org/10.1007/s13389-011-0023-x

13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/
abs/1502.03167

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

15. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analy-
sis. J. Cryptogr. Eng. 1(1), 5–27 (2011). https://doi.org/10.1007/s13389-011-0006-
y

16. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learning. In: Second International Workshop on Constructive Side-
Channel Analysis and Secure Design, COSADE 2011 (2011)

17. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014.
LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21476-4 2

18. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Revealing the Secrets
of Smart Cards, 1st edn. Springer, Boston (2007). https://doi.org/10.1007/978-0-
387-38162-6

20. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann

machines. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML 2010, pp. 807–814. Omnipress, USA
(2010). http://dl.acm.org/citation.cfm?id=3104322.3104425

22. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR
abs/1511.08458 (2015)

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/s13389-011-0010-2
https://doi.org/10.1007/s13389-011-0010-2
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
http://www.deeplearningbook.org
https://doi.org/10.1007/s13389-011-0023-x
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
http://dl.acm.org/citation.cfm?id=3104322.3104425

498 B. Hettwer et al.

23. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). https://doi.org/10.1007/11967668 16

24. Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the per-
formance of deep learning for side-channel analysis. Cryptology ePrint Archive,
Report 2018/004 (2018). https://eprint.iacr.org/2018/004

25. Saravanan, P., Kalpana, P., Preethisri, V., Sneha, V.: Power analysis attack using
neural networks with wavelet transform as pre-processor. In: 18th International
Symposium on VLSI Design and Test, pp. 1–6, July 2014. https://doi.org/10.
1109/ISVDAT.2014.6881059

26. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

27. Smith, L.N., Topin, N.: Deep convolutional neural network design patterns. CoRR
abs/1611.00847 (2016). http://arxiv.org/abs/1611.00847

28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

29. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

30. TELECOM ParisTech SEN research group: DPA Contest v2. http://www.
dpacontest.org/v2/

31. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif.
Intell. 70(1–2), 119–165 (1994)

32. Wang, D., Mao, K., Ng, G.W.: Convolutional neural networks and multimodal
fusion for text aided image classification. In: 2017 20th International Conference
on Information Fusion, Fusion, pp. 1–7, July 2017. https://doi.org/10.23919/ICIF.
2017.8009768

33. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 1

34. Xie, G.S., Zhang, X.Y., Yan, S., Liu, C.L.: Hybrid CNN and dictionary-based
models for scene recognition and domain adaptation. ArXiv e-prints, January 2016

35. Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of
points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing,
S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 200–214. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21966-0 15

https://doi.org/10.1007/11967668_16
https://eprint.iacr.org/2018/004
https://doi.org/10.1109/ISVDAT.2014.6881059
https://doi.org/10.1109/ISVDAT.2014.6881059
https://doi.org/10.1007/11545262_3
http://arxiv.org/abs/1611.00847
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
http://www.dpacontest.org/v2/
http://www.dpacontest.org/v2/
https://doi.org/10.23919/ICIF.2017.8009768
https://doi.org/10.23919/ICIF.2017.8009768
https://doi.org/10.1007/978-3-662-48324-4_1
https://doi.org/10.1007/978-3-319-21966-0_15

	Profiled Power Analysis Attacks Using Convolutional Neural Networks with Domain Knowledge
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Profiled Side-Channel Analysis
	2.2 Neural Networks and Deep Learning

	3 Convolutional Neural Networks
	3.1 Core Constructions
	3.2 Principal Architecture
	3.3 CNNs with Domain Knowledge Neurons

	4 Experiments
	4.1 Baseline
	4.2 Methodology
	4.3 Results for Unprotected Hardware Implementation
	4.4 Results for Protected Software Implementation

	5 Conclusion
	A Network Parameters
	References

