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Abstract The Hartree-Fock equation is a key effective equation of quantum
physics. We review the standard derivation of this equation and its properties
and present some recent results on its natural extensions – the density functional,
Bogolubov-de Gennes and Hartree-Fock-Bogolubov equations. This paper is based
on a talk given at ISAAC2017.

1 Introduction

The Hartree-Fock equation (HFE) is a (if not the) key effective equation of quantum
physics. It plays a role similar to that of the Boltzmann equation in classical physics.
It gives a fairly accurate and yet sufficiently simple description of large (and not so
large) systems of quantum particles. The trade-off here is the high dimension for
nonlinearity: while the n−particle Schrödinger equation

ih̄
∂Ψ

∂t
= HnΨ (1)

is a linear equation in 3n+1 variables, the Hartree-Fock one is a nonlinear one in 3+
1 variables. Here h̄ is the Planck constant divided by 2π and Hn is the Schrödinger
operator or (quantum) Hamiltonian of the n−particle system, it is given in (14)
below.

The HFE involves an orthonormal system of n functions, {ψi}, on R
3, or the

projection operator γ := ∑
i |ψi〉〈ψi | acting on L2(R3), and can be written in the

latter case as

ih̄
∂γ

∂t
= [hγ , γ ] (2)
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where hγ := h + v ∗ ργ + ex(γ ), with h a one-particle Schrödinger operator (say

h := − h̄2

2m
Δ+V (x), where V (x) is an external potential), ργ (x, t) := γ (x, x, t) =

∑
i |ψi(x)|2 and ex(γ ) (“exchange term”) is the operator with the integral kernel

ex(γ )(x, y) := −v(x − y)γ (x, y) (3)

= −
∑

i

ψi(x)v(x − y)ψ̄i (y). (4)

(Here and in what follows, A(x, y) stands for the integral kernel of an operator
A.) Furthermore, to deal with quantum statistics (where the number of particles is
not fixed but is a quantum observable), (2) is extended to arbitrary non-negative,
trace class operator γ on L2(R3) satisfying γ ≤ 1 (expressing the Pauli exclusion
principle). This describes fermions. For bosons, one drops the exchange term ex(γ )

and the condition γ ≤ 1.
Replacing ex(γ ) given above by a local function xc(ργ ) of the function

ργ (x, t) := γ (x, x, t) leads to the Kohn-Sham equation underlying the density
functional theory (DFT) which is exceptionally effective in the computations in
Quantum Chemistry and in particular, of the electronic structure of matter.

It was discovered by Bardeen, Cooper and Schrieffer for fermions and by
Bogolubov, for bosons, that for quantum fluids (superconductors and superfluids,
respectively)

– the HFE falls short
– there are natural generalizations of the HFE describing these phenomena.

It turns out that this generalization is mathematically very natural and was
overlooked in the mathematics literature, though the framework for it existed.

To explain how this generalization arises, we go back to the HFE and present
its alternative derivation. We just indicate main steps; for details, see [3] and for
background, [9, 36].

In abstract formulation, which applies also to statistical mechanics and quantum
field theory, the states are defined as positive linear (‘expectation’) functionals on a
C∗ algebra, A , elements of which are called observables, and the evolution of states
is given by the von Neumann-Landau equation

ih̄∂tωt (A) = ωt ([A,H ]) , ∀A ∈ A , (5)

where H is a quantum Hamiltonian which is affiliated with A .
Technically, one takes for A , an algebra of bounded operators (namely the Weyl

algebra, W) on the fermionic/bosonic Fock space, which for spinless particles is
written as

F :=
∞∑

0

#©n
1L2(Rd ), d = 1, 2, 3, (6)
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where #© stands either for the wedge product, ∧, or symmetric product, �. For
a many-body system, the quantum Hamiltonian H on Fock space, F is given by
H := ⊕∞

0 Hn, with the n−particle Schrödinger operators Hn defined in (14) below.
If one introduces annihilation and creation operators, ψ(x) and ψ∗(x) on F , which
map the n-particle sector in (6) into (n − 1)- and (n + 1)-sectors, respectively, then
H is written in terms of these operators as

H =
∫

dx ψ∗(x)hψ(x) + 1

2

∫

dxdy v(x − y)ψ∗(x)ψ∗(y)ψ(x)ψ(y) , (7)

with h a one-particle Schrödinger operator acting on the variable x and v a pair
potential of the particle interaction (see (14) below).

We can think about the algebra of observables as generalized by (unbounded)
operators ψ(x) and ψ∗(x). The Hartree-Fock approximation is obtained by restrict-
ing the evolution to the states, ϕ, determined by the expectation

γ (x, y) := ϕ[ψ∗(y) ψ(x)], (8)

provided ϕ[ψ(x)] = 0, in the following way. Let ψ#(x) stands for either ψ(x) or
ψ∗(x). We require that ϕ[ψ#(x1) . . . ψ#(xk)] to be zero if the number of ψ∗’s and
ψ are not equal and is expressed in terms of sums of products of ϕ[ψ∗(xi) ψ(xj )]
according to the Wick theorem (see [9]), exactly as for the Gaussian processes in
probability; such states are called the quasifree states.1

However, the property of being quasifree is not preserved by the dynamics (5)
and the main question here is how to project the true quantum evolution onto the
class of quasifree states. Following [3], we do this by restricting the evolution,

ih̄∂tϕt (A) = ϕt([A,H ]) (9)

to observables A, which are at most quadratic in the creation and annihilation
operators. Then we arrive at a closed, self-consistent dynamics for ϕt . When
expressed in terms of the operator γ with the integral kernel γ (x, y), it gives exactly
the Hartree-Fock equation, (2).

The point here is that states determined by the expectations (8) are not the most
general quasifree states. The most general quasifree states ϕ determine and are
determined by expectations of all possible pairs of ψ̂�(x) := ψ�(x) − ϕ(ψ(x)):

{
γ (x, y) := ϕ[ψ̂∗(y) ψ̂(x)],
α(x, y) := ϕ[ψ̂(x) ψ̂(y)]. (10)

1For application of the quasifree states in the classical kinetic theory see [46].
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Mathematically, these are exactly the states discovered by Bardeen, Cooper and
Schrieffer for fermions and by Bogolubov, for bosons, and for which the former
received and the latter should have received the Nobel prize.

Now, let γ and α denote the operators with the integral kernels γ (x, y) and
α(x, y). After peeling off the spin components, definition (10) implies that

0 ≤ γ = γ ∗ (≤ 1) and α∗ = ᾱ, (11)

where σ̄ = CσC with C being the complex conjugation and the condition γ ≤ 1
applies only to fermions (as was mentioned above, it is an expression of the Pauli
exclusion principle).

The operator γ can be considered as a one-particle density operator (matrix) of
the system, so that ργ (x) := γ (x, x) is the particle density. The operator α gives
the particle pair coherence (α(x, y) is a two-particle wave function). (For confined
systems, γ and α are trace class and Hilbert-Schmidt operators, respectively, with
Trγ = ∫

γ (x, x)dx < ∞ giving the particle number, while for thermodynamic
systems, they are only locally so.)

Following [3], we define self-consistent approximation as the restriction of the
many-body dynamics to quasifree states. More precisely, we map the solution ωt

of (5), with an initial state ω0, into the family ϕt of quasifree states satisfying

ih̄∂tϕt (A) = ϕt([A,H ]) (12)

for all observables A, which are at most quadratic in the creation and annihilation
operators. As the initial condition, ϕ0, for (12) we take the ‘quasifree projection’ of
ω0. We call this map the nonlinear quasifree approximation of equation (5).

We expect ϕt to be a good approximation of ωt , if ω0 is close to the manifold of
quasifree states.

The BdG equations give an equivalent formulation of the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity.

Evaluating (12) for monomials A ∈ {ψ(x),ψ∗(x)ψ(y), ψ(x)ψ(y)}, yields a
system of coupled nonlinear PDE’s for (φ, γ, α) where φ(x) := ϕ(ψ(x)) and γ

and α are defined in (10). For the standard many-body hamiltonian, (7), these give
the (time-dependent) Hartree-Fock-Bogolubov (HFB) or Bogolubov-de Gennes
(BdG) equations, depending on whether we deal with bosons or fermions (see (99),
(100) and (101) or (108), (109) and (110) below). In the latter case, one takes
φ(x, t) := ϕt(ψ(x)) = 0. As was mentioned above, the HFB equaitons describes
Bose-Einstein condensation and superfluidity while the BdG equations describes
superconductivity, the remarkable quantum phenomena.

HFB and BdG equations provide a more faithful description of quantum systems
going beyond the Gross-Pitaevski (i.e. the nonlinear Schrödinger) and Ginzburg-
Landau equations, which can be derived from them in certain regimes. While the
latter equations accumulated quite a substantial literature (see e.g. [16, 19, 54, 55]
and [53] for recent books and a review), the research on the former ones is just
beginning.

∗ ∗ ∗ ∗ ∗∗
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There are many fundamental problems about the HFB and the BdG equations
which are completely open. Generally, there are three types of questions one would
like to ask about an evolution equation:

• Derivation;
• Well-posedness;
• Special solutions (say, stationary solutions or traveling waves) and their stability.

Some rigorous results on the derivation of the Hartree-Fock-Bogolubov (HFB)
equations can be found in [34, 40, 48] (see also [6, 7, 30–32, 52] for earlier
results and references). The well-posedness (or existence) for the time-dependent
HFB equations for confined systems (see above) was proven in [4]. The well-
posedness theory for the time-dependent Bogolubov-de Gennes (BdG) equations
is developed in [5]. For thermodynamics systems (see above), it is open. Some
important stationary solutions of the BdG and HFB equations were found in [22, 37]
and [3, 49, 50], respectively.

In this contribution, we recall the standard derivation and properties of the HF
(and H) equations and discuss recent work on the Kohn-Sham (KS), HF, BdG
and HFB equations [3, 22, 23]. To fix ideas, we concentrate mostly on the BdG
equations.

There is a considerable physics literature on the subject. As for rigorous
works, the three fundamental contributions to the subject, [2, 33, 37], deal with
foundational issues (relation to quasifree states and quadratic hamiltonians on the
Fock space and the general variational problem), with the critical temperature and
the superconducting solutions and with the derivation of the Ginzburg-Landau
equations respectively. For more references, and discussion see some recent papers
[3, 5, 22, 23] and reviews [38, 39]. The object of these and other works on the
subject is the time-independent theory. The results we discuss are complementary
to this work.

2 Hartree and Gross-Pitaevski Equations

2.1 Origin and Properties

In what follows we use the units in which the (normalized) Planck constant h̄ and
the speed of light c are both equal to 1 and the typical particle mass is set to 1/2.
With this agreement, the evolution of quantum n-particle system is given by the
Schrödinger equation

i
∂Ψ

∂t
= HnΨ. (13)

Here Hn is the Schrödinger operator or Hamiltonian of the physical system. For the
system of n identical particles (say, electrons or atoms) of mass 1/2, interacting with
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each other and moving in an external potential V the Hamiltonian is

Hn :=
n∑

i=1

hxi + 1

2

∑

i �=j

v(xi − xj ), (14)

where hx = −Δx + V (x) and v is the interaction potential. For spinless
fermions/bosons, it acts on the state space, which in the spinless case can be written
as

#©n
1L

2(Rd ), d = 1, 2, 3.

The Schrödinger equation is an equation, (13), in dn+1 variables, x1, . . . , xn and
t . Even for a few particles it is prohibitively difficult to solve. Hence it is important
to have manageable approximations.

One such an approximation, which has a nice unifying theme and connects to a
large areas of physics and mathematics, is the self-consistent (or mean-field) one. In
it one approximates solutions of n-particle Schrödinger equations by products of n

one-particle functions (i.e. functions of d + 1 variables) appropriately symmetrized.
This results in a single nonlinear equation in d+1 variables, or several coupled such
equations. The trade-off here is the number of dimensions for the nonlinearity. This
method is especially effective when the number of particles, n, is sufficiently large.

We give a heuristic derivation of the self-consistent approximation for the
Schrödinger equation above. (See [36] for details and references to rigorous results.)
First, we observe

Proposition 1 The Schrödinger equation is the Euler-Lagrange equation for sta-
tionary points of the action functional

S(Ψ ) :=
∫

{ − Im〈Ψ, ∂tΨ 〉 − 〈Ψ,HnΨ 〉}dt, (15)

Now, for bosons, we consider the the action functional (15) on the space (not
linear!)

{Ψ := ⊗n
1ψ|ψ ∈ H 1(R3)}, (16)

where (⊗n
1ψ) is the function of 3n+1 variables defined by (⊗n

1ψ)(x1, . . . , xn, t) :=
ψ(x1, t) . . . ψ(xn, t). For fermions, we take

{Ψ := ∧n
1ψj : ψi ∈ H 1(R3) ∀i = 1, . . . , n} (17)

Here (∧n
1ψj )(x1, . . . , xn, t) := det[ψi(xj , t)] is the determinant of the n×n matrix

[ψi(xj , t)], called the Slater determinant.
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We begin with bosons. We have the following elementary result:

Proposition 2 Let ‖ψ‖2 = n − 1 ≈ n and SH (ψ) := n−1
n

S(⊗n
1ψ) (‘H’ stands for

the Hartree). Then we have

SH (ψ) =
∫ ∫

{ − Im〈ψ, ∂tψ〉 − |∇ψ|2 − V |ψ|2

− 1

2
|ψ|2v ∗ |ψ|2}dxdt. (18)

We see that the quadratic terms on the r.h.s. of (18) are of the order O(n), while the
quartic ones, are O(vn2) The regime in which these terms are of the same order,
O(n2), i.e. for which, v = O(1/n) is called the mean-field regime.

The Euler-Lagrange equation for stationary points of the action functional (18)
considered on the first set of functions is

i
∂ψ

∂t
= (h + v ∗ |ψ|2)ψ, (19)

with the normalization ‖ψ‖2 = n − 1 ≈ n. This nonlinear evolution equation is
called the Hartree equation (HE).

If the inter-particle interaction, v, is significant only at very short distances (one
says that v is very short range, which technically can be quantified by assuming
that the “particle scattering length” a is small), one replaces v(x) → 4πaδ(x) and
Equation (19) becomes

i
∂ψ

∂t
= hψ + κ |ψ|2ψ, (20)

where κ := 4πa (with the normalization ‖ψ‖2 = n). This equation is called
the Gross-Pitaevski equation (GPE) or the nonlinear Schrödinger equation. It is
derived using the Gross-Pitaevski approximation to the original quantum problem
for a system of n bosons. The Gross-Pitaevski equation is widely used in the theory
of superfluidity, and in the theory of Bose-Einstein condensation (see [36, 41] and
references therein).

Proofs of the local and global existence for (19) and (20) can be found in [19, 21,
55].

2.1.1 Properties of the Hartree and Gross-Pitaevski Equations

We say that the map T on a space of solution is a symmetry of an equation iff the
fact that ψ is a solution of the equation implies that T ψ is also a solution. It is
straightforward to prove the following
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Proposition 3 The Hartree and Gross-Pitaevski equations have the following
symmetries

1. the time-translations, ψ(x, t) → ψ(x, t + s), s ∈ R,

2. the gauge transformations,

ψ(x, t) → eiαψ(x, t), α ∈ R,

3. for V = 0, the spatial translations, ψ(x, t) → ψ(x + y, t), y ∈ R
3,

4. for V = 0, the Galilean transformations, v ∈ R
3,

ψ(x, t) → ei( 1
2 v·x− v2t

4 )ψ(x − vt, t),

5. for V spherically symmetric, the spatial rotations, ψ(x, t) → ψ(Rx, t), R ∈
O(3),

As the result of the time-translational and the gauge symmetries, the energy and
the number of particles functionals

E(ψ) :=
∫ {

|∇ψ|2 + V |ψ|2 + G(|ψ|2)
}

dx, (21)

where G(|ψ|2) := 1
2 |ψ|2v ∗ |ψ|2 for HE and G(|ψ|2) := 1

2κ |ψ|4 for GPE, and

N(ψ) :=
∫

|ψ|2dx,

are independent of time, t . Moreover, for V = 0, the field momentum,

P(ψ) :=
∫

ψ̄(x, t)(−i∇x)ψ(x, t)dx,

and, for V spherically symmetric, the field angular momentum,

L(ψ) :=
∫

ψ̄(x, t)(x ∧ (−i∇x))ψ(x, t)dx,

are conserved. These conservation laws impose constraints on the dynamics leading
to qualitative understanding of possible scenarios and are used in the proofs of the
global existence, existence and stability of stationary solutions and traveling waves;
for definitions and a review see [36].

We also note that HE and GPE are Hamiltonian systems (see Section 19.1 of
[36]).
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2.2 Particles Coupled to the Electromagnetic Field

We start with the action

S(ψ) =
∫ ∫

{−Im〈ψ, ∂tψ〉 (22)

− |∇ψ|2 − V |ψ|2 − G(|ψ|2)}dxdt, (23)

where G(|ψ|2) is given after (21), and use the principle of minimal coupling in
which one replaces the usual derivatives ∂t and ∇ by covariant ones, ∂tφ = ∂t + ieφ

and ∇a = ∇ − iea, where φ and a are the electric and magnetic potentials and e is
the electric charge of ψ , and adds the action,

SEM(a, φ) :=
∫ ∫ {

|∂t a + ∇φ|2 − | curla|2
}

dxdt,

of the the electro-magnetic field (for the latter, see e.g. [36], Sections 19.1.1
and 19.6). Then, assuming the external potential V = 0, the total action becomes

S(ψ, a, φ) :=
∫ ∫

{ − Im〈ψ, ∂tφψ〉 − |∇aψ|2 − G(|ψ|2)}dxdt

+ SEM(a, φ). (24)

for a triple (ψ, a, φ) : Rd → C × R
d × R, of complex and real functions and a

vector field. The Euler-Lagrange equations for this action are given by

i
∂ψ

∂t
= haφψ + g(|ψ|2)ψ, (25a)

−∂t (∂ta + ∇φ) = curl∗ curl a − Im(ψ̄∇aψ), (25b)

− div(∂t a + ∇φ) = e|ψ|2, (25c)

where haφ := −Δa +eφ+V , with Δa = ∇2
a , the covariant Laplacian, g(s) = G′(s)

and the vector quantity J (x) := Im(ψ̄∇aψ) is the electric current, while |ψ|2 is the
charge density (remember we omit the charge of the particle), so that the second and
third equations are Ampère’s and Gauss law part of the Maxwell equations.

Moreover, curl∗ is the L2−adjoint of curl, so that for d = 3, we have curl∗ = curl
and for d = 2, curl a := ∂1a2 − ∂2a1 is a scalar, and for a scalar function, f (x),
curl∗ f = (∂2f,−∂1f ) is a vector.

It is straightforward to prove that (25) are the Euler-Lagrange equations for
action (24). Now, in addition to translation and rotation invariance (if V =
0), equations (25) are invariant under the local gauge transformations: for any
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sufficiently regular function χ : R2 × R → R,

T
gauge
χ : (ψ(x, t), a(x, t), φ(x, t))

�→ (eiχ(x,t)ψ(x, t), a(x, t) + ∇xχ(x, t), φ(x, t) − ∂tχ(x, t)). (26)

Using this gauge invariance, we can choose χ so that a and/or φ satisfy certain
additional conditions. This is called gauge fixing. For instance, we can choose χ

so that div a = 0 (the Coulomb gauge), or φ satisfies φ = 0 (the temporal gauge).
Both conditions break gauge invariance. The gauge fixing which preserves the gauge
invariance is the Lorentz (or radiation) gauge

div a + ∂tφ = 0.

Note that in the Coulomb gauge, div a = 0, Eq. (27b) becomes the familiar Poisson
equation, −Δφ = e|ψ|2.

Neglecting in (25) the magnetic field produced by changing charge distribution
(and the electric field), we arrive at the Schrödinger-Poisson system

i
∂ψ

∂t
= hφψ + g(|ψ|2)ψ, (27a)

− Δφ = e|ψ|2, (27b)

where hφ := −Δ + eφ + V

One can derive (25) from the many-body Schrödinger equation coupled to the
quantized electromagnetic field.

3 The (Generalized) Hartree-Fock Equations

3.1 Formulation and Properties

The Euler-Lagrange equation for stationary points of the action functional (15)
considered on the Hartree-Fock states, (17), is a system of nonlinear, coupled
evolution equations

i
∂ψj

∂t
= (h + v ∗

∑

i

|ψi |2)ψj −
∑

i

(v ∗ ψiψ̄j )ψi, (28)

where, recall, h := −Δ + V , for the unknowns ψ1, . . . , ψn. This system plays the
same role for fermions as the Hartree equation does for bosons. Equation (28) is
called the Hartree-Fock equations (HFE).
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Properties of HFE The Hartree-Fock equations are

1. invariant under the time-translations and gauge transformations, and, for V = 0,
the spatial translations, ψj (x) → ψj (x + y), y ∈ R, and the Galilean
transformations, v ∈ R

3, and, for V spherically symmetric, the rotations.
2. invariant under time and space independent unitary transformations of

{ψ1, . . . , ψn}.
3. a Hamiltonian system (see Sections 24.6 and 24.7 of [36]).

Again, similarly to HE, as the result of the time-translational and the gauge
symmetries, the energy and the number of particles functionals

E(ψ) :=
∫

{ ∑

i

(|∇ψi |2 + V |ψi |2) + 1

2
(
∑

i

|ψi |2)v ∗ (
∑

i

|ψi |2)

− 1

2

∫

v(x − y)|
∑

i

ψi(x)ψi(y)|2dy
}
dx, (29)

N(ψ) :=
∑

i

∫

R3
|ψi |2dx (30)

are conserved, similarly, for linear and angular momenta. Moreover, HFE conserve
the inner products, 〈ψi,ψj 〉, ∀i, j . For a rigorous theory, see [8, 20, 42, 44, 45, 47].

The item (2) above shows that the natural unknown for HFE is the subspace
spanned by {ψi}, or the corresponding projection γ := ∑

i |ψi〉〈ψi |. HFE can be
rewritten as an equation for γ :

i
∂γ

∂t
= [hγ , γ ] (31)

where hγ := h + v ∗ ργ + ex(γ ), with ργ (x) := γ (x, x) = ∑
i |ψi(x)|2 and ex(γ )

is the operator with the integral kernel

ex(γ )(x, y) := −v(x − y)γ (x, y) = −
∑

i

ψ̄i(x)v(x − y)ψi(y). (32)

Recall that A(x, y) stands for the integral kernel of an operator A.
This can be extended to arbitrary non-negative density operators γ satisfying (for

fermions) γ ≤ 1, and leads to a new class of nonlinear differential equations. (The
properties 0 ≤ γ and γ ≤ 1 as well as all eigenvalues of γ as conserved under the
evolution.)
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Finally, note that the energy and the number of particles in the new formulation
is given by

E(γ ) := Tr((h + 1

2
v ∗ ργ )γ ) + Ex(γ ), (33)

N(γ ) := Trγ =
∫

ργ , (34)

where, recall, h := −Δ+V , ργ (x) := γ (x, x) and Ex(γ ) := − 1
2 Tr(γ v�γ ), where

v�γ is the operator with the integral kernel v(x − y)γ (x, y). Note that

Tr((v ∗ ργ )γ ) =
∫

ργ v ∗ ργ dx =
∫ ∫

ργ (x)v(x − y)ργ (y)dxdy,

Tr(γ v�γ ) =
∫ ∫

v(x − y)|γ (x, y)|2dxdy.

It is straightforward to show that that equations (28), (29) and (30) can be rewritten
as (31), (32), (33) and (34), respectively.

Note that the HE can be also formulated with γ being a rank one projection
times n and extended to operators γ with no constraint on the size. In this case, the
exchange terms ex(γ ) and Ex(γ ) should be omitted from the definition of hγ and
the energy.

γ is called the (one-particle) density operator and γ (x, x) (or γ (x, x, t)) is
interpreted as the one-particle density, so that Trγ = ∫

γ (x, x)dx is the total
number of particles. It should satisfy

0 ≤ γ = γ ∗ (≤ 1) (35)

where the second inequality is required only for fermions. The HF flow preserves
these properties.

3.1.1 Exchange Energy Term

We extend Eq. (31) by allowing different exchange terms in the definition of hγ ,
rather than just (32). Specifically, we let the exchange energy term, ex(γ ), to take
the following forms:

– ex(γ ) := 0 for the Hartree (or reduced Hartree-Fock, if γ ≤ 1) model,
– ex(γ ) := −v� γ for the Hartree-Fock case and
– ex(γ ) is a local function, ex(γ ) = xc(ργ ), of the function ργ (x) := γ (x, x),

say, coming from Ex(ρ) = −c
∫

ρ4/3, in the density functional theory (DFT).

We call (31) with a general exchange energy term, ex(γ ), the generalized
Hartree-Fock equation (gHFE).
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3.2 Static gHF Equations

Clearly, γ , is a static solution to (31) iff γ solves the equation

[hγ , γ ] = 0. (36)

For any reasonable function f and μ ∈ R, solutions of the equation

γ = f (β(hγ − μ)), (37)

solves (36). Under certain conditions, the converse is also true. (The reason for
introducing the parameters β = 1/T ,μ > 0 (the inverse temperature and chemical
potential) will become clear later.)

Under certain conditions on f satisfied by our choice below, the chemical
potential μ is determined by the condition that Trγ = n.

The physical function f is selected by either a thermodynamic limit (Gibbs
states) or by a contact with a reservoir (or imposing the maximum entropy
principle). For fermions, it is given by the Fermi-Dirac distribution

f (λ) = (eλ + 1)−1, (38)

and for bosons, by the Bose-Einstein one

f (λ) = (eλ − 1)−1. (39)

(One can also consider the Boltzmann distribution f (λ) = e−2λ.) Inverting the
function f and letting f −1 =: s′, we rewrite the stationary gHFE as

hγ,μ − β−1s′(γ ) = 0, (40)

Here, recall, hγ,μ := hγ − μ = −Δ + V + ex(γ ) − μ and 0 < β ≤ ∞ (inverse
temperature) and μ ≥ 0 (chemical potential). It follows from the equations s′ =
f −1 and (38) that, up to a constant, the function s is given by

s(λ) = −(λ ln λ + (1 − λ) ln(1 − λ)), (41)

for fermions, and by

s(λ) = −(λ ln λ − (1 + λ) ln(1 + λ)), (42)

for bosons, so that for fermions, we have

s′(λ) = − ln
λ

1 − λ
. (43)
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3.3 Coupling to the Electromagnetic Field

We couple the gHFE to the electromagnetic field. We assume that the particles are
carry the unit charge density e = −1, so that the charge of density is −ργ .

As before, we use the principle of minimal coupling assuming the inter-particle
potentials and external potentials are of the electromagnetic nature. This gives the
system of self-consistent equations for γ and the vector and scalar potentials a and
φ:

i∂tγ = [hφ,a,γ , γ ], (44)

− div(∂ta + ∇φ) = 4π(κ − ργ ), (45)

−∂t (∂ta + ∇φ) = curl∗ curl a − j (γ, a), (46)

where κ(x) is an external (positive) charge distribution, j (γ, a) is the current given
by j (γ, a)(x) := −4π[−i∇a, γ ]+(x, x), with [A,B]+ := AB + BA,

hφ,a,γ = −Δa − φ + ex(γ ). (47)

Since e = −1, we have that ∇a = ∇ + ia and Δa = ∇2
a . We call (44), (45), (46)

and (47) the gHFem equations.
We will discuss symmetries of this system in a more general context later on.

Here we only note briefly that, in addition to the rigid motion symmetries, it has the
gauge symmetry which did not make its appearance so far and which plays a central
role in quantum physics.

As above, the energy and the number of particles are conserved and are given by

E(γ, a, φ) := Tr(haγ ) + Ex(γ ) + Eem(a, φ), (48)

N(γ ) := Trγ =
∫

ργ , (49)

where ha := −Δa and Eem(a, φ) is the energy of the the electro-magnetic field,
given by

Eem(a, φ) := 1

8π

∫ {
|∂ta + ∇φ|2 + | curl a|2

}
dx. (50)

The conservation of N is obvious. To prove the conservation of E, we use the
definition j := −4πdaTr

(
(−Δa)γ

)
and the relation dEx = ex, to compute

∂t (Tr(haγ ) + Ex(γ )) = Tr(ha,γ γ̇ ) − 1

4π

∫

j ȧ (51)
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where ha,γ = −Δa + ex(γ ). By (44) and ha,γ = hφ,a,γ +φ, we have Tr(ha,γ γ̇ ) =
Tr(φγ̇ ) = ∫

φρ̇γ , this gives

∂t (Tr(haγ ) + Ex(γ )) =
∫

φρ̇γ − 1

4π

∫

j ȧ. (52)

Next, using that E = −ȧ − ∇φ, we compute

∂tEem(a, φ) = 1

4π

∫
[ − (ȧ + ∇φ) · Ė + curl∗ curl a · ȧ]

dx. (53)

Combining the last two relations and and integrating by parts gives

∂tE(γ, a, φ) = 1

4π

∫
(
φ(4πρ̇γ + div Ė)

− (Ė + j − curl∗ curl a)ȧ
)
. (54)

Now, using (45) and (46) (div E = 4π(κ − ργ ), and Ė = curl∗ curl a − j (γ, a))
yields ∂tE(γ, a, φ) = 0. �

Above, we assumed the external magnetic field is zero.
To describe crystals we take κ to be either periodic (crystals) or uniform (jellium).
If κ and ργ are L -periodic, then integrating (45) over a fundamental cell, Ω , of

the lattice L , we arrive at the solvability condition (the charge conservation law)

∫

Ω

ργ =
∫

Ω

κ. (55)

3.4 Static gHFem Equations

It is easy to see that (γ, a, φ) is a static solution to (44), (45) and (46) if and
generically only if (γ, a, φ) solves the equations

γ = f (β(hφ,a,γ − μ)), (56)

Δφ = 4π(κ − ργ ), (57)

curl∗ curl a = j (γ, a), (58)

where, recall, hφ,a,γ := −Δa − φ + ex(γ ) and f is a sufficiently regular function
f . Physically relevant f are given by either (38) or (39), depending on whether the
particles in question are fermions or bosons. (Remember that the unit charge of γ is
e = −1.)

To this we add the solvability condition (55), which determines the chemical
potential μ.
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3.4.1 Free Energy

The static gHF equations (56), (57) and (58) arise as the Euler-Lagrange equations
for the free energy functional

Fβ(γ, a) := E(γ, a) − β−1S(γ ) − μN(γ ), (59)

where S(γ ) = −Tr(γ ln γ + (1 − γ ) ln(1 − γ )) is the entropy, N(γ ) := Trγ is the
number of particles and E(γ, a) is the static part of energy (48), with φ expressed
in terms of ργ by solving the Poisson equation (57) for φ,

E(γ, a) = Tr
(
(−Δa)γ

) + 1

2

∫

(κ − ργ )4π(−Δ)−1(κ − ργ )dx

+ 1

8π

∫

dx| curla(x)|2 + Ex(γ ). (60)

This, not quite trivial, fact is proven in [22]. (For a formal statement in a more
general situation see Theorem 4 below.)

We demonstrate informally that (56), (57) and (58) are the Euler-Lagrange
equations for (59). By the definitions of E(γ, a),Ex(γ ) and S(γ ), we have

dγ E(γ, a)ξ = Tr(hγ ξ) (61)

and

dγ S(γ ) = Tr(s(γ )ξ), (62)

which implies (56) with φ given by (57). Next, using the definition ja :=
−4πdaTr

(
(−Δa)γ

)
, we find

daE(γ, a)α = 1

4π

∫
(
ja − curl∗ curl a

)
α, (63)

which yields (58).

3.4.2 Electrostatics

We describe the important case of electrostatics here, i.e. the time-independent case
with a = 0. In this case, Eqs. (56), (57) and (58) become

γ = f (β(hφ,γ − μ)), (64)

Δφ = 4π(κ − ργ ), (65)
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where hφ,γ := −Δ − φ + ex(γ ), which after solving Eq. (57) for φ, gives

γ = f (β(hγ − μ)), (66)

where hγ := −Δ − φργ + ex(γ ), with φρ = Δ−14π(κ − ρ). To this we add the
solvability condition (55), which determines the chemical potential μ. Moreover,
we associate with the charge density, κ − ρ, the potential

φρ = 4π(−Δ)−1(κ − ρ), (67)

satisfying the Poisson equation (65).
The energy and free energy for (66) are given by

E(γ ) := Tr((−Δ)γ ) (68)

+ 1

2

∫

(κ − ργ )(x)4π(−Δ)−1(κ − ργ )(x)dx + Ex(γ ), (69)

Fβ(γ ) := E(γ ) − β−1S(γ ) − μN(γ ). (70)

4 Density Functional Theory

The starting point of the (time-dependent) density functional theory (DFT) are the
equations (44), (45) and (46) but with the exchange term ex(γ ) is taken to be of
the form xc(ργ ), where xc(λ) is a local function combining contributions of the
exchange and correlation energy. For the former one usually take the expression
−cρ4/3, going back to Dirac, and the latter is found empirically. This simple but
profound modification opens an incredible computational potential of the theory.

We concentrate on the simplest case of electrostatics. In this case Eq. (66)
becomes

γ = f (β(hργ − μ)), (71)

where f is given by (38) and, with φρ = (−Δ)−14π(κ − ρ) =: v ∗ (κ − ρ),

hρ := −Δ − φρ + xc(ρ). (72)

Equation (71) is an extension of the key equation of the DFT – the Kohn-Shan
equation – to positive temperature T = 1/β > 0. The energy and free energy
for (71) are given by

E(γ ) := Tr((−Δ)γ ) + 1

2

∫

(ργ − κ)v ∗ (ργ − κ) + Xc(ργ ), (73)
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Fβ(γ ) := E(γ ) − β−1S(γ ) − μN(γ ). (74)

Let den be the map from operators, A, into functions ρA(x) = den[A](x) :=
A(x, x) with A(x, y) being generalized kernel of A (‘den’ stands for ‘density’).
Taking the diagonal of (71), we arrive at the following equation for ρ

ρ = den[f (β(hρ − μ))]. (75)

Equation (75) gives an equivalent formulation of the Kohn-Sham equation (71).
For κ (and ρ) L -periodic, we add to equation (75) the charge conservation law
(cf. (55)), which determines the chemical potential μ,

∫

Ω

ρ =
∫

Ω

κ, (76)

where Ω is a fundamental cell of the lattice L .
Conversely, starting from (75) and (76), we define the potential φ =

(−Δ)−14π(κ − ρ) produced by the charge distribution κ − ρ. Then φ satisfies

− Δφ = 4π(κ − ρ). (77)

Note that because of the minimal coupling, there is no (pure) DFT theory when
the system in question is coupled to the magnetic field.

4.1 Crystals

Here one deals with the electrostatics, (64), or, in the DFT context, (71) (or (75)).
for an ideal crystal, one assumes that κ = κper is periodic w.r. to some lattice L ,
representing an L periodic charge distribution of crystal ions. An example of such
an κper is

κper(x) =
∑

l∈L
κa(x − l) . (78)

where κa denotes an ionic (‘atomic’) potential.
The simplest special case of periodic κ is κ constant. Such a system is called the

jellium. For κ = κjel constant, (75) has the solution (ρjel = κjel, μjel). Indeed, (76)
reduces to ρjel = κjel and (75) to one equation for μ, which has a unique solution
for μ near μjel [23].

The existence (without uniqueness) of a certain periodic, trace class solution
to equation (71) (or (75)) with certain class of density terms xc is obtained in
[1] via variation techniques. (See [17, 18] for earlier results for the Hartree and
Hartree-Fock equations. We present a somewhat different proof of the latter result
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in Sect. 7.) The next result proven in [23], establishes, under more restrictive
conditions, uniqueness and quantitative bounds needed for the next result.

Let Ω be a fundamental cell of the lattice L and |Ω | denote its area. Denote by
Hs

per(R
d) the locally Sobolev space of L -periodic functions with the inner product

given by that of Hs(Ω). We have:

Theorem 1 (Ideal crystal) Let T > 0, d = 2 or 3, β = 1/T be sufficiently large
and |Ω | be sufficiently small. We assume that
1. κper is theL−periodic background charge distribution s.t.

(a) κper ∈ Hs
per for s ≥ 2 and||κper||Hs is sufficiently small;

(b) κjel = 1
|Ω|

∫
Ω κper and κ ′

per = κper − κjel satisfy

|xc(κjel)| <
κ2

jel

w2
d−1

and κ ′
per ∈ Hs

per for s ≥ 2, where wd is the volume of the

d-sphere;

2. xc ∈ Ws,∞ for s ≥ 2 and ‖xc‖Ws,∞ is sufficiently small.

Then the Kohn-Sham equation (75) has a unique solution (ρper, μper) ∈ Hs
per(R

d)×
R+ satisfying

‖ρper − κper‖Hs � ‖κ ′
per‖Hs

per
, (79)

|μper − μjel| � ‖κ ′
per‖Hs

per
. (80)

where (ρjel = κjel, μjel) is a solution to (75) with κ = κjel.

Proof (Idea of proof of Theorem 1) We write (75) as a fixed point problem

ρ = Φ(ρ,μ), Φ(ρ,μ) := den[f (β(hρ − μ))]. (81)

To this we add the charge conservation law (76) with Ω a fundamental cell of L .
To handle the constraint (76), we let P denote the projection onto constants,

Pf := 1
|Ω|

∫
Ω f , and let P̄ = 1 − P and split (81) into two equations

ρ′ = PΦ(ρ′ + ρ′′, μ), (82)

ρ′′ = P̄Φ(ρ′ + ρ′′, μ). (83)

where ρ′ := Pρ = 1
|Ω|

∫
Ω

ρ and ρ′′ := P̄ ρ = ρ − ρ′. By the constraint (76),

we have ρ′ = 1
|Ω|

∫
Ω

κ . Hence (82) and (83) are equations for μ and ρ′′. We
first solve (83) for ρ′′ by a fixed point theorem and then (82) for μ, by an implicit
function argument.

A central open problem here is to determine whether the (locally) free energy
minimizing solution breaks spontaneously symmetry or not. The spontaneous sym-
metry breaking means that ργ has lower (coarser) symmetry than κ (‘spontaneous
symmetry breaking’).
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4.2 Macroscopic Perturbations

A key problem in solid state physics is derivation of an effective, macroscopic
equations for crystals from microscopic ones. In the full generality this problem
is far from our reach. However one can reasonably hope to derive such equations
starting from the DFT microscopic theory.

We consider macroscopic perturbations (say, local deformations) of ideal crystals
and the dielectric response to them. At the first step, one would like to prove
existence of solutions under local deformation of crystals. The appropriate spaces
for our analysis are the homogenous Sobolev spaces:

Ḣ s(R3) =
{

f : ‖f ‖2
Ḣ s :=

∫

|p|2s |f̂ |2(p) < ∞
}

. (84)

We note that Ḣ s and Ḣ−s are dual spaces under the usual L2(R3) pairing 〈·, ·〉 and
that Ḣ s , unlike Hs , contains only s-order derivative in its norm.

We state some of the assumptions used below. To begin with we assume d = 3.

[A1] (regularity of κ)

κ = κper + κ ′, where

κper is L -periodic and satisfies

κper ∈ H 2
per(R)3

and κ ′ ∈ (H 2 ∩ H−2)(R3),

[A2] (regularity of xc)

xc ∈ C4(R+) together with its derivatives

is bounded near the origin as

|xc(λ)| < ελ for ε small.

Since κ ′ is not periodic, constraint (76) does not apply here. Let (ρper, μper)

be the periodic solution to the Kohn-Sham equation (75), with the L−periodic
background charge density κper given in Theorem 1. The next result shows that the
periodic solutions of Theorem 1 are stable under local perturbations.

Theorem 2 (Stability under local perturbations) Let d = 3 and the constraints
of Theorem 1 be obeyed and assume [A1] and [A2]. In addition, let ‖κ‖H 2∩H−2 � 1
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and ‖κ ′‖H 2 � 1. Then the Kohn-Sham equation (75), with κ = κper + κ ′ and
μ = μper, has a unique solution ρ satisfying

ρ = ρper + ρ′ with ρ′ ∈ (H 2 ∩ H−2)(R3) and (85)

‖ρ′‖H 2∩H−2 � ‖κ ′‖H 2∩H−2 . (86)

Theorem 2 is proven in [23]. Similar results for T = 1/β = 0 were proven in
[1, 11, 12, 15, 17] (see [14, 39] for very nice reviews).

Dielectric response We consider Eq. (75) in the macroscopic variables at 1 <<

β < ∞. Let Lδ := δL be a microscopic crystalline lattice (on the microscopic
scale 1) with a fundamental domain Ωδ centered at the origin. Let κδ

per be
Lδ−periodic microscopic charge distribution of the form

κδ
per(x) = δ−dκper(δ

−1x) (87)

where κper is a L−periodic function on R
d . Note that under this scaling, the L1-

norm is preserved.
We consider a macroscopically perturbed background charge distribution (writ-

ten in the macroscopic coordinate x)

κδ(x) = κδ
per(x) + κ ′(x), (88)

where κ ′(x) ∈ L2(Rd ) is a small local perturbation living on the macroscopic
scale (1), producing macroscopically deformed crystal. To study the macroscopic
behavior, we rescale the Kohn-Sham equations (75) to obtain

ρδ = den[fFD(β(hφδ − μ)], (89)

where hφδ = −δ2Δ − δφδ(x) with the potential φδ given by

φδ := (−Δ)−14π(κδ − ρδ) . (90)

Given κδ
per, Theorem 8 implies that (89) has a Lδ-periodic solution ρδ

per =
δ−3ρper(δ

−1x), with associated potential φδ
per = δ−1φper(δ

−1x). We list additional
assumptions needed for the next and key result.

Let hper = −Δ − φper. Let ξ(R3) denote the size of the spectral gap of hper at μ

on L2(R3) and ξ(Ω) denote the size of the spectral gap of hper at μ on L2(Ω) with
periodic boundary condition.

[A3] (spectral gap condition)

ξ := ξ(R3) − 5

6
ξ(Ω) > 0.
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[A4] (scaling condition)

δ � 1 and β ≥ Cξ−1 ln(1/δ) for C large.

We now present the main result of [23] on the derivation of the effective Poisson
equation:

Theorem 3 Suppose that d = 3 and fix a solution ρper as above. Let assumptions
[A1]–[A4] hold. Then the rescaled Kohn-Sham equation (89), with background
charge distribution defined in (88) and μ = μper, has a unique solution ρδ in
L2

per + Ḣ−1 + Ḣ−2 with associated potential φδ of the form

φδ = φδ
per + φ0 + φrem,1 + φrem,2, (91)

where φδ
per is the potential associated to the periodic solution ρδ

per, φrem,i , i = 1, 2,
obey the estimates

‖φrem,1‖Ḣ 1(R3) � δ1/2 and ‖φrem,2‖L2(R3) � δ (92)

and φ0 satisfies the equation

− div ε0∇φ0 = κ ′ (93)

with a real positive 3 × 3 matrix, ε0, given in (94), (95), (96) and (97) below.

A similar result for T = 1/β = 0 was proven in [13, 14] (see also [27–29]).

Remark 1

1. We note that in general ξ(R3) ≤ ξ(Ω). One sees this by passing to Bloch-Floquet
decomposition of hper and noting that ξ(R3) is the inf of all spectral gaps of the
fiber decomposed operators on L2(Ω).

2. The number 5
6 comes from Hardy’s inequality. In dimension d = 3, Hardy’s

inequality is ‖f ‖L6(R3) � ‖∇f ‖L2(R3). We note that if p = 6, then its conjugate

is q = 6
5 .

3. The constant C appearing in [A4] can be taken to be any number C > 100.
4. The 3 × 3 matrix ε0 in (93) is of the form

ε0 =13×3 + ε′
0, (94)

ε′
0 = 1

|Ω |TrL2(Ω)

∮

r2
per(z)(−i∇)rper(z)(−i∇)rper(z) (95)

− 1

|Ω |‖ρ1‖2
Ḣ−1(Ω;C3)

, (96)
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where rper(z) = (z − hper)
−1, hper = −Δ − φper + xc(ρper), and

ρ1 = 2χR3\Ω∗(−i∇) den
∮

r2
per(z)(−i∇)rper(z) . (97)

Here χQ denotes a characteristic function of the set Q and Ω∗ stands for a
fundamental cell of the reciprocal lattice.

5 Hartree-Fock-Bogoliubov Equations

For appropriate spaces, it is shown in [3] that, for the Hamiltonian H given in
Eq. (7), ϕt satisfies (12) if and only if the triple (φ, γ, α) of 1st - and 2nd -order
truncated expectations of ϕt , defined by (cf. (10))

⎧
⎪⎪⎨

⎪⎪⎩

φ(x, t) := ϕt(ψ(x)),

γ (x, y, t) := ϕt [ψ∗(y) ψ(x)] − ϕt [ψ∗(y)] ϕ[ψ(x)],
α(x, y, t) := ϕt [ψ(x) ψ(y)] − ϕ[ψ(x)] ϕt [ψ(y)] ,

(98)

satisfies the time-dependent Hartree-Fock-Bogoliubov equations

i∂tφ =h(γ )φ + |φ|2φ + k(α)φ̄ , (99)

i∂tγ =[h(γ φ), γ ]− + [k(αφ), α]− , (100)

i∂tα =[h(γ φ), α]+ + [k(αφ), γ ]+
+ k(αφ), (101)

where the subindex t is not displayed, [A1, A2]± = A1A
T/∗
2 ± A2A

T/∗
1 , γ φ :=

γ + |φ〉〈φ| and αφ := α + |φ〉〈φ̄|, and

h(γ ) = h + v ∗ d(γ ) + v � γ , (102)

k(α) = v � α , d(α)(x) := α(x, x). (103)

In these equations, v � α is the operator with the integral kernel v � α (x; y) := v(x−
y)α(x; y).

Here, φ describes the Bose-Einstein condensed atoms, γ , thermal atomic cloud
and σ , the superfluid component of the atomic gas.

For the pair potential v(x − y) = gδ(x − y), the HFB equations in a somewhat
different form have first appeared in the physics literature; see [26, 35, 51] and, for
further discussion, [3, 4].

Note that if we drop the third terms in (99) and (100), then we arrive at,
essentially, the Gross-Pitaevski and Hartree equations, respectively. If we drop the
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last term on the r.h.s. of (101), then equations (99), (100) and (101) have solutions
of the form (φ, 0, 0) and (0, γ , 0), where φ and γ solve the Gross-Pitaevski and
Hartree equations, i∂tφt = hφt + |φt |2φt and i∂tγt = [h(γt ), γt ]−, respectively.
The last term on the r.h.s. of (101) prevents the 100% condensation.

Equations (99), (100) and (101), with the last term on the r.h.s. of (101) dropped,
form the no quantum depletion model. Equations (99) and (100), with α = 0, are
called the two-gas model.

Given appropriate spaces, here are some key properties of (99), (100) and (101)
at a glance [3, 4]:

(A) Conservation of the total particle number: If ϕt solves Eq. (12) then the number
of particles,

N (φt , γt , σt ) := ϕt(N) , (104)

where N is the particle-number operator, is conserved.
(B) Existence and conservation of the energy: If ϕt solves (12) then the energy

E (μ(ϕt)) := ϕt(H) (105)

is conserved. Moreover, E is given explicitly by the expression

E (φ, γ, α) = Tr[h(γ φ) + b[|φ〉〈φ|]γ + 1

2
b[γ ]γ ]

+ 1

2

∫

v(x − y)|αφ(x, y)|2dxdy . (106)

(C) Positivity preservation property: If Γ = ( γ α
ᾱ 1+γ̄

) ≥ 0 at t = 0, then this holds
for all times.

(D) Global well-posedness of the HFB equations: If the pair potential v is in the
Sobolev space Wp,1, with p > d , and satisfies v(x) = v(−x) and the initial
condition (φ0, γ0, α0) is in a certain mixed functional – operator space and
satisfies

( γ0 α0
ᾱ0 1+γ̄0

) ≥ 0, then the HBF equations (99), (100) and (101) have a
unique global solution in the same space.

6 Bogoliubov-de Gennes Equations

6.1 Formulation

We assume for simplicity that the external potential is zero, V = 0. Since the
Bogoliubov-de Gennes (BdG) equations describe the phenomenon of superconduc-
tivity, they are naturally coupled to the electromagnetic field. We describe the latter
by the vector and scalar potentials a and φ.
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It is convenient to organize the operators γ and α (see (10)) into the self-adjoint
matrix-operator

η :=
(

γ α

α∗ 1 − γ̄

)

. (107)

Assuming γ carries electric charge in units of −1 (i.e. the charge density is −ργ ,
the time-dependent BdG equations can be written as (see e.g. [22, 24, 25])

i∂tη = [Λ(η, a), η], (108)

with Λ(η, a) = ( hγa v�α

v�ᾱ −hγa

)
, where v(x) is a pair potential, the operator v � α is

defined through the integral kernels as v � α (x; y) := v(x − y)α(x; y), and

hγa := ha + v ∗ ργ − v � γ , ργ (x) := γ (x; x). (109)

Above ha = −Δa and the terms v ∗ ργ and −v � γ describe the self-interaction
and exchange energies. Equation (108) is coupled to the Ampère’s law part of the
Maxwell equations

−∂t (∂ta + ∇φ) = curl∗ curl a − j (γ, a), (110)

where φ is the scalar potential and j (γ, a) is the superconducting current, given by

j (γ, a)(x) := [−i∇a, γ ]+(x, x).

Here, recall, [A,B]+ := AB + BA.
Finally, recall that γ and α satisfy (11). In fact, one has the stronger property

0 ≤ η = η∗ ≤ 1. (111)

Remarks

(1) In general, ha might contain also an external potential V (x), due to the
impurities.

(2) For α = 0, Eq. (108) becomes the time-dependent Hartree-Fock equation (44)
for γ . Thus the HFE is the special diagonal case of the BdG equations.

(3) We may assume that the physical space is either Rd or a finite box in R
d and

γ and α are gauge periodic operators trace-class and Hilbert-Schmidt operators
w.r. to trace per volume. For a detailed discussion of spaces see [22].

(4) One should be able to derive (108) and (110) from hamiltonian (7) coupled to
the quantized electro-magnetic filed.

Connection with the BCS theory Equation (108) can be reformulated as an
equation on the Fock space involving an effective quadratic hamiltonian (see [3]
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for the bosonic version). These are the effective BCS equations and the effective
BCS hamiltonian (see [24, 25, 38]).

6.2 Symmetries

The equations (108), (109) and (110) are invariant under the gauge transformations
and, if the external potential V is zero, also under translations and rotations, defined
as

T
gauge
χ : (γ, α, a, φ) �→ (eiχγ e−iχ , eiχαeiχ , a + ∇χ, φ − ∂tχ), (112)

for any sufficiently regular function χ : Rd → R, and

T trans
h : (γ, α, a, φ) �→ (UhγU−1

h ,UhαU−1
h ,Uha,Uhφ), (113)

for any h ∈ R
d ,

T rot
ρ : (γ, α, a, φ) �→ (UργU−1

ρ , UραU−1
ρ , ρUρa,Uρφ), (114)

for any ρ ∈ O(d). Here Uh and Uρ are the standard translation and rotation
transforms Uh : f (x) �→ f (x + h) and Uρ : f (x) �→ f (ρ−1x). In terms of η,
say the gauge transformation, T gauge

χ , could be written as

η → T̂
gauge
χ η(T̂

gauge
χ )−1, where T̂

gauge
χ =

(
eiχ 0
0 e−iχ

)

. (115)

Notice the difference in action of this transformation on the diagonal and off-
diagonal elements of η.

The invariance under the gauge transformations can be proven by using the
relation

T̂
gauge
χ g′(η)(T̂

gauge
χ )−1 = g′(T̂ gauge

χ η(T̂
gauge
χ )−1),

proven by expanding g′(η) (or g#(βHηa)), and the gauge covariance of Λ(η, a):

(T̂
gauge
χ )−1(Λ(T̂

gauge
χ η, a)) = Λ(η, a). (116)

The gauge symmetry is not a physical one, but rather an invariance of the solution
space (or the covariance of the equations) under ‘reparametrizations’. Therefore the
natural objects are gauge-equivalent classes of solutions. This leads to the notion of
gauge or magnetic translations (mt, below) and gauge or magnetic rotations. The
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former are given by the transformations

Tbs : (η, a) → (T
gauge
χs )−1T trans

s (η, a), (117)

for any s ∈ R
d , where χs(x) := x · ab(s), where ab(x) is the vector potential with

the constant magnetic field, curl ab = b. The invariance under these transformations
will be called the magnetic translation (mt) symmetry. The latter is given by the
transformations

Tbρ : (η, a) → (T
gauge
χρ )−1T rot

ρ (η, a), (118)

for ρ ∈ O(d). We remark that in general Tbs and Tbρ are only projective
representations of L and O(d), respectively.

Finally, the equations (108), (109) and (110) are invariant under the transforma-
tions (see [2])

η → 1 − η and η → −J ∗ηJ (the particle-hole symmetry).

Here J :=
(

0 1
−1 0

)

. The second relation follows from (the particle-hole symmetry)

J ∗ΛJ = −Λ̄. (119)

The form (107) of the matrix operator η is characterized by the relation

J ∗ηJ = 1 − η̄. (120)

By the above, the evolution preserves this relation, i.e. if an initial condition has this
property, then so does the solution.

6.3 Conservation Laws

The Bogolubov-de Gennes equations (108), (109) and (110) form a hamiltonian
system with the conserved energy functional

E(η, a) = TrΩ
(
haγ

) + 1

2
TrΩ

(
(v ∗ ργ )γ

) − 1

2
TrΩ

(
(v�γ )γ

)
(121)

+ 1

2
TrΩ

(
α∗(v�α)

) + 1

2

∫

Ω

dx| curla(x)|2. (122)

where Ω is either R
d or a fundamental cell of a macroscopic lattice in R

d (see
Sect. 6.6).
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The energy E(η, a) can be derived from the total quantum hamiltonian, Htot,
of the many body system coupled to the quantum electromagnetic field, through
quasifree reduction as E(η, a) := ϕ(Htot), where ϕ is a quasifree state in question
(see (10) and [3] or [38]). Its conservation law is related to the conservation of
the total energy ϕ(Htot). (The combinatorial coefficients of each term result from
restriction to SU(2) invariant states and peeling of spin variables (cf. [38]).)

Conservation of (121)–(122) can be also proven directly similarly to the proof of
the conservation law of (48).

6.4 Stationary Bogoliubov-de Gennes Equations

We consider stationary, rather than static, solutions to (108) of the form

ηt := T̂
gauge
χ η, (123)

with η and χ̇ ≡ μ independent of t and a independent of t and φ = 0. We have

Proposition 4 Equation (123), with η and χ̇ ≡ μ independent of t , is a solution
to (108) iff η solves the equation

[Ληa, η] = 0, (124)

where Ληa ≡ Ληaμ := Λ(η, a) − μS, with S :=
(

1 0
0 −1

)

, and is given explicitly

Ληa :=
(

hγa − μ v�α

v�α∗ −h̄γ a + μ

)

, (125)

with hγa := −Δa + v ∗ ργ − v�γ and, recall, v�α is an operator with the integral
kernel v(x − y)α(x, y).

Proof Plugging (123) into (108) and using that for χ independent of x,

∂tηt = iχ̇ T̂
gauge
χ [S, η]

and (116), we obtain

− χ̇[S, η] = [Λ(η, a), η]. (126)

Since χ̇ ≡ μ, the latter equation can be rewritten as (124).

For any reasonable function f , solutions of the equation

η = f (βΛηa), (127)
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solve (124) and therefore give stationary solutions of (108). Under certain condi-
tions, the converse is also true.

The physical function f is selected by either a thermodynamic limit (Gibbs
states) or by a contact with a reservoir, or imposing the maximum entropy principle.
It is given by the Fermi-Dirac distribution (38), i.e.

f (h) = (1 + eh)−1. (128)

Inverting the function f , one can rewrite (127) as βΛηa = f −1(η). Let f −1 =:
s′. Then the static Bogoliubov-de Gennes equations can be written as

Ληa − β−1s′(η) = 0, (129)

curl∗ curl a − j (γ, a) = 0. (130)

Here 0 < β ≤ ∞ (inverse temperature) and s(η) := −(η ln η + (1 − η) ln(1 − η))

(see (41)).

Remarks

(1) One can express these equations in terms of eigenfunctions of the operator Ληa ,
which is the form appearing in physics literature (see [2, 3]).

(2) If we drop the direct v ∗ ργ and exchange self-interaction −v�γ , then the
operator hγaμ and therefore Ληa are independent of γ and consequently
Eq. (127) defines γ in terms of α and a:

ηβa = f (βΛαa), where Λαa := Ληa

∣
∣
γ=0. (131)

(3) For (127) to give η of the form (107), the function f (h) should satisfy the
conditions

f (h̄) = f (h) and f (−h) = 1 − f (h). (132)

The function f (h) given in (128) satisfies these conditions. From now on, we
assume f (h) has explicit form (128).

6.5 Free Energy

The stationary Bogoliubov-de Gennes equations (129) and (130) arise as the Euler-
Lagrange equations for the free energy functional

Fβ(η, a) := E(η, a) − β−1S1(η) − μN(η), (133)

where S(η) = Trs(η) is the entropy, N(η) := Trγ is the number of particles,
and E(η, a) is the energy functional given in (121)–(122) with η and a time-
independent.
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It is shown in [22] that on carefully chosen spaces

(a) The free energy functional Fβ is well defined;
(b) Fβ is continuously (Gâteaux) differentiable;
(c) If 0 < η < 1 and (η, a) is even in the sense of [22], Eq. (1.17), then critical

points of Fβ satisfy the BdG stationary equations (129) and (130);
(d) Minimizers of Fβ are its critical points.

Now, we define the partial gradients ∂ηFβ(η, a) and ∂aFβ(η, a) by
dηFβ(η, a)η′ = Tr(η′∂ηFβ(η, a)) and daFβ(η, a)a′ = ∫

a′ · ∂aFβ(η, a),
respectively. (Though the expression for Fβ(η, a) is often formal, ∂ηFβ(η, a)

and ∂aFβ(η, a) could be well-defined on appropriate spaces.)

Theorem 4 Minimizers of the free energy Fβ(η, a) are critical points of Fβ(η, a),
i.e. they satisfy the Euler-Lagrange equations

∂ηFβ(η, a) = 0 and ∂aFβ(η, a) = 0, (134)

for some β and μ (the latter are determined by fixing S(η) and Tr(γ )). The Gâteaux
derivatives, ∂ηFβ(η, a) and ∂aFβ(η, a), are given by

∂ηFβ(η, a) = Ληa − β−1g′(η), (135)

and

∂aFβ(η, a) := curl∗ curl a − j (γ, a), (136)

where, recall, j (γ, a)(x) := [−i∇a, γ ]+(x, x), with [A,B]+ := AB + BA.
Consequently, the equations (134) can be rewritten as (129) and (130).

For the translation invariant case, the corresponding result is proven in [37]. In
general case, but with a = 0 (which is immaterial here), the fact that BdG is
the Euler-Lagrange equation of BCS was used in [33], but seems with no proof
provided.

By (134), (135) and (136), we can write the equations (129) and (130) as

F ′
β(η, a) = 0, (137)

where F ′
β(η, a) = (∂ηFβ(η, a), ∂aFβ(η, a)).

Remarks

(1) Due to the symmetry (120), S(η) = Trs(η) = −T rη ln η, with s(λ) given
in (41).

(2) Fβ(η, a) is a Helmholtz free energy. This energy depends on the temperature
and the average magnetic field, b = 1

|Q|
∫
Q curl a (for a sample occupying a

finite domain Q), in the sample, as thermodynamic parameters. Alternatively,
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one can consider the free energy depending on the temperature and an applied
magnetic field, h. For a sample occupying a finite domain Q, this leads (through
the Legendre transform) to the Gibbs free energy

GβQ(η, a) := FβQ(η, a) − ΦQh,

where ΦQ = b|Q| = ∫
Q

curl a is the total magnetic flux through the sample.
The parameters b or h do not enter the equations (129) and (130) explicitly.

6.6 Ground/Gibbs States

We are looking for stationary states which minimize the free energy per unit volume.
More precisely, with some license, we say that (η∗, a∗) is a ground/Gibbs state
(depending on whether β = ∞ or β < 0), if there is a macroscopic lattice L macro,
s.t. (η∗, a∗) satisfies

• T trans
s (η, a) = T̂

gauge
χs (η, a), ∀ s ∈ L macro and for some function χ· : L macro ×

R
d → R,

for some lattice L macro ⊂ R
d with macroscopic fundamental cell Ωmacro, and

(η∗, a∗) minimizes FβΩmacro(η, a) among states having the above property. This is
equivalent to considering the equations on a large twisted torus.

In what follows, we will deal with β < ∞, i.e. with the Gibbs states only.
In general, equations (129) and (130) have the following stationary solutions

which are candidates for the Gibbs state:

1. Normal state: (η∗, 0), with α∗ = 0.
2. Superconducting state: (η∗, 0), with α∗ �= 0.
3. Mixed state: (η∗, a∗), with α∗ �= 0 and a∗ �= 0.

One expects that the Gibbs state has the maximal possible symmetry. If the
external fields are zero, then the equations are magnetically translationally invariant.
Thus, one expects that the Gibbs state is magnetically translational invariant.

We have the following general result

Proposition 5 ([22]) If η is mt-invariant, then α = 0 (i.e. the state (η, a) is
normal).

In the opposite direction we have

Conjecture 5 For β < ∞ sufficiently small, a Gibbs, normal state is mt-invariant
and therefore unique.

A stronger form of this conjecture is

Conjecture 6 A Gibbs, normal state is mt-invariant and therefore unique.
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6.7 Symmetry Breaking

Theorem 7 ([22]) Let d = 2. Suppose that b > 0 and assume that the interaction
potential v ≤ − C|x|−κ, κ < 2. Then ∃0 < β ′′

c (b) ≤ β ′
c(b) < ∞ s.t.

• If β < β ′′
c (b), then any Gibbs state is normal;

• If β > β ′
c(b), then the ground/Gibbs state is a mixed state.

b′
c b′′

c

T ′
c = T ′′

c

T ′′
c

T ′
c

HHSS

Phase Transition

Normal (MT Invariant?)

Mixed States
(breaks MT-Symmetry)

bc2(T = 0)

Flux Density b

Temperature T

In view of Proposition 5 and Conjecture 5 above, this result suggests that under
the stated conditions and as the temperature is lowered, the symmetry of the Gibbs
state is broken spontaneously.

The corresponding result for b = 0 was proved in [37]. In this case, there are
no mixed states and the ‘mixed state’ in the statement should be replaced by the
‘superconducting state’. Consequently, there are no symmetry breaking in this case.

6.8 Stability

To formulate the next result, we need some definitions. Recall that F ′
β(η, a) is the

gradient of Fβ(η, a) in the metric

〈(η′, a′), (ξ ′, c′)〉 := Tr((η′)∗ξ ′) +
∫

a′ · c′.
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Consequently, the Gâteaux derivative dF ′
β(η, a) is the Hessian of Fβ(η, a) at (η, a)

and therefore is formally symmetric. It can be shown that it is self-adjoint.
Let u = (η, a). We say that a solution u∗ to (137) is (linearly or energetically)

stable iff the linearization dF ′
β(u∗) of the map F ′

T (u) (i.e. the hessian, F ′′
T (u∗), of

the functional FT (u)) at u∗ is non-negative, i.e.

dF ′
β(u∗) ≥ 0,

and unstable otherwise.
Note that the stability implies the energy minimization property locally in space

(i.e. on a sufficiently large twisted torus).
We also consider a weaker notion of stability – the stability w.r. to generation of

the superconducting α-component, which we call the α-stability.

Proposition 6 ([22]) Let b > 0. The mt invariant (normal) state is α-stable for
β < β ′′

c (b) and, if v(r) < −|r|−κ with κ < 2, unstable for β > β ′
c(b).

6.8.1 Normal States

For b = 0 we can choose a = 0 and the magnetic translation invariance becomes
the usual translation invariance. In this case, if we drop the direct and exchange
self-interactions from hγaμ, then, as was mentioned above, the normal state is given
by (131), with a = 0. If the direct and exchange self-interactions are present, then
the existence of the normal states is established in [10].

These are normal translationally invariant states. For b �= 0, the simplest normal
states are the magnetically translation (mt-) invariant ones. The existence of the mt-
invariant normal states for b �= 0 is proven in [22]. They are of the form (η =
ηβ,b, a = ab), where ab(x) is the magnetic potential with the constant magnetic
field b (curl ab = b) and (cf. (131))

ηβb :=
(

γβb 0
0 1 − γ̄βb

)

, (138)

with γβb a solution to the equation

γ = s�(βhγ,ab),

with s� := (s′)−1. (For s(x) = −(x ln x + (1 − x) ln(1 − x)), we have s�(h) =
(
eh + 1

)−1
and therefore γβb solves the equation γ =

(
eβhγ,ab + 1

)−1
.)



34 I. Chenn and I. M. Sigal

6.8.2 Superconducting States

The existence of superconducting, translationally invariant solutions is proven in
[37] (see this paper and [38] for the references to earlier results and [22], for a
somewhat different approach).

6.8.3 Mixed States

For the mixed states, in the cylinder geometry, which means effectively d = 2, there
is the following specific possibility:

• Vortex lattices: For a mesoscopic lattice L (i.e. much finer that L macro), the state
(η, a) satisfies T trans

s (η, a) = T̂
gauge
χs (η, a), for every s ∈ L meso and for some

maps χs : L × R
2 → R.

The map χs : L × R
2 → R satisfies the co-cycle conditions,

χs+t (x) − χs(x + t) − χt (x) ∈ 2πZ, ∀s, t ∈ L , (139)

and are called the summands of automorphy (see [53] for a relevant discussion).
(The map eiχ : L × R

2 → U(1), where χ(x, s) ≡ χs(x) is called the factor of
automorphy.)

Excitations of the ground state are given by magnetic vortices, which are defined
by the condition

• T rot
ρ (η, a) = T̂

gauge
gρ

(η, a) for every ρ ∈ O(2) and some functions gρ : O(2) ×
R

2 → R.

The existence of vortex lattices is proven in [22]). One might be able to prove
the existence of vortices by making lattices coarser (or b → 0) in the vortex lattice
solutions.

6.8.4 Magnetic Flux Quantization

Denote by ΩL a fundamental cell of L . One has the following results

(a) Magnetic vortices: 1
2π

∫
R2 curl a = deg g ∈ Z;

(b) Vortex lattices: 1
2π

∫
ΩL

curl a = c1(χ) ∈ Z.

Here deg g is the degree (winding number) of the map eig : O(2) → U(1) (which
is map of a circle into itself, here we assume that g(ρ) ≡ gρ is independent of
x) and c1(χ) is the first Chern number associated to the summand of automorphy
χ : L × R

2 → R (see [53]).
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7 Existence of Periodic Solutions by the Variational
Technique

Let d = 2 or 3. An operator A on L2(Rd) is said to be (L−) periodic iff UsAU∗
s =

A, ∀s ∈ L , where Us is the translation operator by s ∈ R
d . In what follows for any

periodic operator A, the trace is understood as the trace per volume

TrA := TrL2(R3)χΩAχΩ (140)

where χΩ is the indicator function on a fundamental domain Ω of L . Let L2
per(R

d )

denote the local L2 space of L -periodic functions with the inner product of L2(Ω).
We define the spaces

I s,p = {γ ∈ B(L2
per(R

d)) : ‖γ ‖s,p := ‖MsγMs‖p < ∞}, (141)

where M = √−Δ and ‖ · ‖p is the usual Schatten tracial p-norm. Set

I
s,p

0 =I s,p ∩ {Tr γ = Z} ∩ {0 ≤ γ = γ ∗ ≤ 1}
∩ {‖(−Δ)−1/2(ργ − κ)‖L2(Ω) < ∞} (142)

In this section we use the variational approach and the fact that (71) (or (75)) is
the Euler-Lagrange equations for free energy (74) to prove the following (see [22])

Theorem 8 Let β < ∞. Let κ = κper is L−periodic (an ideal crystal) and
Xc assume is smooth bounded below, and C1 on with Xc′ bounded. Then there
exists μ ∈ R such that the KS equation (71) on I

1,1
0 have an L−periodic, energy

minimizing solution γ satisfying
∫
Ω

γ (x, x) = ∫
Ω

κ .

Since we minimize the free energy for Trγ constant, we drop the term −μTrγ
from (74) to arrive at the free energy functional to be minimized

Fβ(γ ) =Tr((−Δ)γ ) + 1

2
〈(ργ − κ), (−Δ)−1(ργ − κ)〉L2(Ω)

+
∫

Ω

Xc(ργ ) − β−1S(γ ) . (143)

Moreover, recall ργ (x) = γ (x, x) and Xc′(s) = xc(s) and

S(γ ) = Tr s(γ ), s(x) = −(x ln(x) + (1 − x) ln(1 − x)) . (144)

We set Fβ(γ ) = ∞ if any of the terms is not defined.

Theorem 9 (Main Result) Under the conditions of Theorem 8, Fβ(γ ) has a

minimizer on the set I 1,1
0 . Moreover, this minimizer satisfies KS equation (71).
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We prove this theorem in a series of steps. We will use standard minimization
techniques to prove that Fβ(γ ) is coercive and weakly lower semi-continuous, and
I

1,1
0 weakly closed.

Part 1: coercivity

Lemma 1 Assume that Tr γ = Z. We have the lower bound

Fβ(γ ) ≥1

2
Tr((−Δγ ) + 1

2
〈(ρ − κ), (−Δ)−1(ρ − κ)〉 − C . (145)

for some constant C.

Proof Recall that fFD(λ) = (
eλ + 1

)−1
. First observe that 1

2 Tr(−Δγ ) − β−1S(γ )

with Tr γ = Z has minimizer

γ = f (β(−1

2
Δ − μ)) (146)

for a suitable Lagrangian multiplier, μ, from Tr γ = Z. Evaluating 1
2 Tr(−Δγ ) −

β−1S(γ ) at this minimizer gives some constant, say, C1.
Recalling definition (143) and using that Ex is bounded below, say by C2,

gives (145).

Part 2: Convergence We follow the ideas of [18]. By Part 1, we note that each term
on the r.h.s. of (145) is either positive or constant. Thus, Fβ is bounded below. Let
γn be a minimizing sequence of Fβ(γ ). Then we see that ‖γn‖I 1,1 = Tr(−Δ)γn and
‖∇−1ργn‖L2(Ω) are uniformly bounded. We look for a limit of the sequence (γn).
The non-abelian Hölder inequality show that

‖γn‖I 0,2 ≤ ‖γn‖∞‖γn‖I 0,1 ≤ Z < ∞ (147)

is bounded. Hence, upto a subsequence, the kernels γn(x, y) are in L2
per (R×R) (the

space of L -periodic under the action (x, y) → (x + s, y + s), s ∈ L ), locally L2

functions on (R2 × R
2) and converges weakly to some γ ′

0(x, y) ∈ L2
per (R

2 × R
2).

We extend γ ′
0(x, y) to all of R

2 × R
2 by periodicity. Let γ ′

0 denote the operator
whose kernel is γ ′

0(x, y). Clearly, γn ⇀ γ ′
0 weakly in I 0,2.

Now, we show that γ ′
0 ∈ I

1,1
0 . That is, γ ′

0 ∈ I 1,1 and Tr(γ ′
0) = Z, (γ ′

0)
∗ = γ ′

0,
and 0 ≤ γ ′

0 ≤ 1. Using the Bloch-Floquet decomposition, we see that

∫

Ω∗
dξ̂ TrL2(Ω)[(1 − Δξ)

1/2(γn)ξ (1 − Δξ)
1/2] (148)

=
∫

Ω∗
dξ̂ TrL2(Ω)[(1 − Δξ)γn] (149)

=Tr(1 − Δ)γn < ∞ . (150)
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where the second line follows by expanding the traces on L2(Ω) in an orthonormal
basis of eigenfunctions of −Δξ and the fact 0 ≤ (γn)ξ . This shows that (1 −
Δξ)

1/2(γn)ξ (1 − Δξ)
1/2 is trace class (hence HS) for almost every ξ ∈ Ω∗. It

follows that the full operator (1 − Δ)1/2γn(1 − Δ)1/2 is HS in trace per volume
norm and whose trace is equal to (150). Hence a weak limit exists and necessarily
is (1 − Δ)1/2γ ′

0(1 − Δ)1/2. We see that

Z = lim
n→∞ Tr(γn) (151)

= lim
n→∞ Tr((1 − Δ)1/2γn(1 − Δ)1/2(1 − Δ)−1) = Tr(γ ′

0) (152)

since 1 − Δ is HS (in trace-per-volume norm) for d = 2, 3. The fact γ ′
0 ∈ I

1,1
0

is proved by using a compactness argument pointwise in the fiber decomposition
through a Bloch-Floquet argument similar to one used in (148), (149) and (150).
Note that the fact γ ′

0 = γ ′∗
0 and the bound 0 ≤ γ ′

0 ≤ 1 is preserved by weak HS (per
volume) convergence.

Finally, we show that
√

ρn ∈ H 1(Ω) and converges to some ρ′′
0 ∈ H 1(Ω)

weakly. Let ϕλ(ξ, x) denote the eigenvectors of γξ with eigenvalue λ in its Bloch-
Floquet-Zack decomposition. Since the map f �→ ∫

Ω
|∇√

f |2 is convex, we see
that

∫

Ω

|∇√
ρ(x)|2dx =

∫

Ω

∣
∣
∣
∣
∣
∇

(∫

Ω∗
dξ

∑
λξ |ϕξ(x)|2

)1/2
∣
∣
∣
∣
∣

2

dx (153)

�
∫

Ω

∫

Ω∗
dxdξ̂

∑
λξ |∇|ϕλξ (ξ, x)||2 (154)

�
∫

Ω

∫

Ω∗
dxdξ̂

∑
λξ |∇ϕλξ (ξ, x)|2 (155)

=Tr(−Δγ ) (156)

This shows that
√

ρn are bounded in H 1(Ω) and thus converges weakly, in H 1 to√
ρ′′

0 ∈ H 1(Ω). Compactness of H 1(Ω) in L2(Ω) shows that
√

ρn converges to
√

ρ′′
0 in L2, hence ρn → ρ′′

0 in L1(Ω). It follows that for any smooth bounded

periodic function f

〈ρ′′
0 , f 〉 = lim

n→∞〈ρn, f 〉 = lim
n→∞ Trγnf (157)

= lim
n→∞ Tr(γ ′

0f ) (158)

=〈ρ′
0, f 〉 (159)
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Thus, we denote the common limit as γ0 := ρ′
0 = ρ′′

0 and ρ0 := den[γ0]. We
summarize the types of convergences here:

(1 − Δ)1/2γn(1 − Δ)1/2 ⇀ (1 − Δ)1/2γ0(1 − Δ)1/2 weakly in I 0,2 (160)
√

ρn ⇀
√

ρ0 in H 1(Ω) (161)

ρn − κ → ρ0 − κ in H−1(Ω) (162)

for some γ0 ∈ I
1,1
0 and ρ0 := den[γ0]. The last line follows by compact embedding

theorem on Ω .

Part 3: Weak lower semi-continuity

Lemma 2 The functional Fβ is weakly lower semi-continuous with respect to
convergence (160), (161) and (162).

Proof We study the functional Fβ(γ ) term by term. For the first term on the r.h.s.
of (143), it satisfies Tr(hγ ) = ‖γ ‖I 1,1 and is linear, it is ‖ · ‖I 1,1 -weakly lower semi-
continuous. The Coulumb term 〈(κ −ργ ), (−Δ)−1(κ −ργ )〉 is quadratic and easily
seen to be Ḣ−1(Ω)-weakly lower semi-continuous. The exchange-correlation term
is weakly lower semi-continuous by (161) (which implies that Xc(ρn) → Xc(ρ0)

a.e.) and Fatou’s lemma.
Thus, we study the term −β−1S(γ ). We use an idea from [43] which allows

to reduce the problem to a finite-dimensional one. To the latter end, we recall that
S(γ ) = Tr(s(γ )) for s(x) = −x ln x. In Bloch-Floquet decomposition, this term is

−S(γn) = −
∫

Ω∗
dξ̂ S((γn)ξ ) = −

∫

Ω∗
dξ̂ Tr(s((γn)ξ )) (163)

where s(x) = 1
2 (−x ln(x) − (1 − x) ln(1 − x)). We define the relative entrop of A

and B to be

S(A|B) := Tr(s(A|B)), s(A|B) := A(ln(A) − ln(B)) . (164)

Then we see that

S(A) = S(B) − S(A|B) − Tr[(A − B) ln(B)] . (165)

Using this formula, writing A = (γn)ξ and B = (γ∗)ξ =
(

C

1+eβ
√−Δ

)

ξ
where C is

chosen so that Tr(g∗) = Z,

−S(γn) =
∫

Ω∗
dξ̂ (−1)S((γ∗)ξ ) + Tr((γn)ξ − (γ∗)ξ ln(γ∗)ξ ) (166)

+ S((γn)ξ |(γ∗)ξ ) (167)
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We note that ln((γ∗)ξ ) � 1 + √−βΔξ and |S(γ∗)| < ∞. By (160) and linearity
(hence convexity), (166) converges in the limit to −S(γ∗) + Tr((γ0 − γ∗) ln(γ∗).
So it suffices that we control the last term (167). We improve convergence for a.e.
ξ . By considering

√
(γn)ξ and dropping to a subsequence, (148) shows that (1 −

Δξ)
1/2

√
(γn)ξ converges weakly in HS norm for almost every ξ ∈ Ω∗. Similarly,

∫

Ω∗
dξ̂ TrL2(Ω)[

√
(γn)ξ (1 − Δξ)

√
(γn)ξ ] (168)

=
∫

Ω∗
dξ̂ TrL2(Ω)[(1 − Δξ)γn] (169)

=Tr(1 − Δ)γn < ∞ (170)

by expanding the trace using an orthonormal basis of (γn)ξ . Thus, weak convergence
is also obtained for

√
(γn)ξ (1 − Δξ)

1/2. Regarding
√

(γn)ξ as an kernel in L2(Ω ×
Ω), and since Ω is compact, we may assume that (γn)ξ → (γ0)ξ in HS norm for
almost every ξ ∈ Ω∗. Now, by [43], we can write

S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γn)ξ )

= sup
λ∈(0,1)

Tr(sλ((γn)ξ |(γ∗)ξ )) (171)

where sλ(x)(A|B) = λ−1(s(λA + (1 − x)B) − λs(A) − (1 − λ)s(B)). Moreover,
sλ(A|B) ≥ 0 for any A,B since the entropy function s is concave. Hence, we may
write

S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γn)ξ )

= sup
λ∈(0,1)

sup
P

Tr(P sλ((γn)ξ |(γ∗)ξ )) (172)

where the supP is taken over all finite rank projections P . It follows that for any λ

sufficiently small and any finite rank projection P ,

S((γn)ξ |(γ∗)ξ ) + Tr((γ∗)ξ − (γn)ξ ) ≥ Tr(P sλ((γn)ξ |(γ∗)ξ )) (173)

Taking n → ∞, since P is finite rank and (γn)ξ → (γ0)ξ in HS norm (hence
operator norm) for almost every ξ ∈ Ω∗,

lim inf
n→∞ S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γ0)ξ )

≥ Tr(P sλ((γ0)ξ |(γ∗)ξ )) (174)
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Now taking lim supλ→0+ and supP , we see that

lim inf
n→∞ S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γ0)ξ )

≥ Tr(s((γ0)ξ |(γ∗)ξ )) . (175)

The proof is complete by Fatou’s Lemma applied to the integral
∫
Ω∗ dξ̂ and the fact

∫

dξ̂Tr((γ∗)ξ − (γ0)ξ ) = Tr(γ∗) − Tr(γ0) = 0 . (176)

Proof of Theorem 9: Existence of Minimizer. With the results above, the proof is
standard. Let (γn) ∈ I

1,1
0 be a minimizing sequence for F . Lemma 1 shows that Fβ

is coercive. Hence ‖γn‖(1) is bounded uniformly in n. By Sobolev-type embedding
theorems, (γn) converges strongly in I

s,1
0 for any s < 1. Moreover, together with

the Banach-Alaoglu theorem, the latter implies that (γn) converges weakly in I
1,1
0 .

Hence, denoting the limit by γ0, we see that, by Lemma 2, Fβ is lower semi-
continuous:

lim inf
n→∞ Fβ(γn) ≥ Fβ(γ0). (177)

Hence, γ0 is indeed a minimizer. To show that minimizer satisfies the gHF equation,
we start with some lemmas.

Lemma 3 Let γ ∈ I
1,1
0 be such that s(γ ) := −(γ ln γ + (1−γ ) ln(1−γ )) is trace

class and γ ′ satisfy

Trγ ′ = 0 and (γ ′)2 � (γ (1 − γ ))2 . (178)

Then,Fβ(γ ) is Gâteaux differentiable at γ with respect to variations γ ′ and

dγFβ(γ )g′ = dγ Fβ(γ )γ ′ = Tr[(hφ − β−1s′(γ ))γ ′] . (179)

Proof We consider first the variation in I
1,1
0 of the form γ + εγ ′ for ε > 0 small.

Note that if γ ′ satisfies (178), then for ε small enough, γ + εγ ′ ∈ I
1,1
0 . Let

dγ Fβ(γ, a)γ ′ := ∂εFβ(γ + εγ ′, a) |ε=0, if the r.h.s. exists. From (133) and (121)
and the assumption that Xc′ is bounded, we see that

dγ Fβ(γ, a)γ ′ = Tr(hφγ ′) − β−1dS(γ )γ ′, (180)

where −Δφ = 4π(κ − ρ) provided dS(γ )γ ′ := ∂εS(γ + εγ ′) |ε=0 exists.
Differentiability of S is proved in the next lemma.

Lemma 4 Let γ ∈ I
1,1
0 be such that s(γ ) := −(γ ln γ + (1−γ ) ln(1−γ )) is trace

class and γ ′ satisfy the second condition in (178). Then S is Gâteaux differentiable
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and its derivative is given by

dS(γ )γ ′ = Tr(s′(γ )γ ′). (181)

Proof For simplicity, we will only consider the case s(λ) = −λ ln(λ) as the full
case is similar. Denote γ ′′ := γ + εγ ′. We write

S(γ ′′) − S(γ ) = −Tr(γ (ln γ ′′ − ln γ )

+ εγ ′(ln γ ′′ − ln γ ) + εγ ′ ln γ ) (182)

=: A + B − εTr(γ ′ ln γ ). (183)

Using the formula ln a − ln b = ∫ ∞
0 [(b + t)−1 − (a + t)−1]dt and the second

resolvent equation, we compute

A := − Tr(γ (γ ′′ − ln γ )) = −Tr
∫ ∞

0
{γ [(γ + t)−1 − (γ ′′ + t)−1]}dt

= − Tr
∫ ∞

0
{γ (γ + t)−1εγ ′(γ ′′ + t)−1}dt

= − Tr

(∫ ∞

0
{γ (γ + t)−1εγ ′(γ + t)−1}dt

−
∫ ∞

0
{γ (γ + t)−1εγ ′(γ + t)−1εγ ′(γ ′′ + t)−1}dt

)

. (184)

Similarly, we have

B := − Tr(εγ ′(ln γ ′′ − ln γ )) (185)

= − Tr
∫ ∞

0
{εγ ′[(γ + t)−1 − (γ ′′ + t)−1]}dt

= − Tr
∫ ∞

0
{εγ ′(γ + t)−1εγ ′(γ ′′ + t)−1}dt. (186)

Combining the last two relations with (183), we find

S(γ + εγ ′) − S(γ ) = εS1 + ε2R2 (187)

S1 := −Trγ ′ ln γ − Tr
∫ ∞

0
{γ (γ + t)−1γ ′(γ + t)−1}dt (188)

R2 := −Tr
∫ ∞

0
{γ (γ + t)−1γ ′(γ + t)−1γ ′(γ ′′ + t)−1

− γ ′(γ + t)−1γ ′(γ ′′ + t)−1}dt (189)
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The estimates below show that the integrals on the r.h.s. converge. We can compute
the integral

Tr
∫ ∞

0
{γ (γ + t)−1γ ′(γ + t)−1}dt (190)

=Tr
∫ ∞

0
{γ (γ + t)−2γ ′}dt = Trγ ′ (191)

in the expression for S1. Moreover, using γ (γ + t)−1 − 1 = −t (γ + t)−1, we can
rewrite the expression for R2. Together, we obtain

S1 :=Tr{γ ′ ln γ + γ ′}, (192)

R2 :=Tr
∫ ∞

0
{t (γ + t)−1γ ′(γ + t)−1γ ′(γ ′′ + t)−1}dt. (193)

Using (γ ′)2 � (γ (1 − γ ))2 and γ is trace class, we see that (192) is well defined
and finte. To demonstrate the convergence in (193), we estimate the integrand on
the r.h.s. of (193). we can formally write

(γ + t)−1γ ′(γ + t)−1γ ′(γ ′′ + t)−1 (194)

=(γ + t)−1γ ′(γ + t)−1γ ′(γ + t)−1
∑

n≥0

εn[−γ ′(γ + t)−1]n . (195)

Since γ ′ and γ are bounded. We see that

t‖(γ + t)−1γ ′(γ + t)−1γ ′(γ + t)−1εn[−γ ′(γ + t)−1]n‖I 0,1 (196)

≤εnt‖(γ + t)−1‖∞‖γ ′(γ + t)−1γ ′(γ + t)−1‖I 0,1‖γ ′(γ + t)−1‖n∞ (197)

≤εn‖γ ′(γ + t)−1γ ′(γ + t)−1‖I 0,1‖γ ′(γ + t)−1‖n∞ (198)

Thus, if ε < 1
2‖γ ′(γ + t)−1‖−1∞ for all t ∈ [0,∞) and

∫ ∞
0 ‖γ ′(γ + t)−1γ ′(γ +

t)−1‖I 0,1dt < ∞, then we have convergence. By the condition in (178) on γ ′, we
have

‖γ ′(γ + t)−1‖∞ ≤ ‖γ (1 − γ )(γ + t)−1‖∞ ≤ ‖η(η + t)−1‖∞

where ηγ (1 − γ ). Since 0 ≤ γ ≤ 1, so does η. Hence

‖γ ′(γ + t)−1‖∞ ≤ 1
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Next,

‖γ ′(γ + t)−1γ ′(γ + t)−1‖I 0,1

≤ ‖γ ′(γ + t)−1‖I 2‖γ ′(γ + t)−1‖I 0,2 (199)

Now, we show that (199) is L2(dt). By the condition in (178) on γ ′, we have

‖γ ′(γ + t)−1‖I 2 ≤ ‖γ (1 − γ )(γ + t)−1‖I 2 ≤ ‖η(η + t)−1‖I 2 ,

where η := γ (1 − γ ). Thus,

‖γ ′(γ + t)−1‖I 2 � Tr(η2(t + η)−2) =
∫

Ω∗
dη̂ Tr(η2

ξ (t + ηξ )
−2)

Let μξ,n be the eigenvalues of the operator ηξ := γξ (1 − γξ ). Then we have

‖ηξ (ηξ + t)−1‖2
I 2 =

∑

n

μ2
ξ,n(μξ,n + t)−2, (200)

and therefore
∫ ∞

0
‖ηξ (ηξ + t)−1‖2

I 2dt =
∫ ∞

0

∑

n

μ2
ξ,n(μξ,n + t)−2dt

=
∑

n

μξ,n = Trηξ . (201)

Since γ (1 − γ ) is a trace class operator, this proves the claim and, with it, the
convergence of the integral in (193).

To sum up, we proved the expansion (187) with S1 given by (192), which is
the same as (181), and R2 bounded. In particular, this implies that S is C1 and its
derivative is given by (181).

And finally, we have the following:

Lemma 5 Suppose that γ is a minimizer of Fβ on I
1,1
0 , then 0 < γ < 1.

Proof We prove that γ cannot have eigenvalues 0 and 1 simultaneously. The case
where only 0 or only 1 is an eigenvalue is treated similarly. If not, decomposing into
Bloch-Floquet decomposition γξ , we see that γξ has a kernel for a subset, S0 ⊂ Ω∗,
and eigenspace of 1 on S1 ⊂ Ω∗, both of positive measure. For λ = 0, 1, let Pλ,ξ

denote the projection onto the λ-eigenvector for each ξ ∈ S in a way such that Pλ,ξ

is measurable in ξ . Let

P =
∫

Ω∗
dξ̂f (ξ)(P0,ξ − P1,ξ ) . (202)
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where f (ξ) ≥ 0 is chosen so that TrP = 0. Since 0 ≤ γ ≤ 1, it is not hard to sees
that P satisfies (178). Following the proof of Lemmas 3 and 4, we compute

Fβ(γ + εP ) − Fβ(γ ) (203)

=β−1
∫

Ω∗
dξ̂(εf (ξ)) ln(εf (ξ))P0,ξ (204)

+ (1 − εf (ξ)) ln(1 − εf (ξ))P1,ξ ) + O(ε) (205)

By choosing f (x) = |S1||S0|χS0 + |S0||S1|χS1 , for example, we note that the first term is of
order O(ε ln ε) � O(ε) and negative. This contradicts minimality of γ .

Proof (Proof of Theorem 9: Solution to KS equation (71)) By the minimizer
existence part of Theorem 9, let γ0 ∈ I

1,1
0 denote the minimizer of the free energy

Fβ . For notational convenience let A := dγF (γ0). We show that A is multiple of
the identity. Let

v0 := γ0(1 − γ0)

∫

Ω∗
dξ̂ 1, (206)

and let

v := γ0(1 − γ0)

∫

Ω∗
dξ̂uξ (207)

where uξ ∈ L2
ξ (Ω) is an arbitrary elements of the fiber space in the Bloch-Floquet

decomposition and ‖uξ‖2 is uniformly bounded upto a null set in Ω∗ and v is
orthogonal to v0. By Lemma 5, we see that 0 < γ0 < 1. This shows that γ (1 − γ )

is a (possibly unbounded) bijection. Hence the linear space spanned by all such v’s
is dense in L2(R3). Let

γ ′ = Pv − ‖v‖2
2

‖v0‖2
2

Pv0 . (208)

where Px is the orthogonal projection onto x. Then we note that γ ′ satisfies the
condition (178). Hence, by minimality of γ0, Lemma 3 shows that

Tr(Aγ ′) ≥ 0 . (209)

We note that if γ ′ satisfies condition (178), so does −γ ′. It follows that

Tr(Aγ ′) = 0 . (210)
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It follows that

0 =
∫

Ω∗
dξ̂ Tr(Aξg

′
ξ ) (211)

=
∫

Ω∗
dξ̂ Tr(Aξ (Pv)ξ ) − ‖v‖2

2

‖v0‖2
2

Tr(Aξ (P0)ξ ) (212)

=〈v,Av〉 − ‖v‖2
2

‖v0‖2
2

〈v0, Av0〉 . (213)

Let x̂ = x/‖x‖, then we see that

〈v̂, Av̂〉 = 〈v̂0, Av̂0〉 (214)

for all v orthogonal to v0 of the form (207). Since the space of v0 and all such v’s
are dense, we conclude that A is a multiple of the identity, which we denote by μ.
This shows that

0 = A − μ = dγF (γ0) − μ1 = hA,μ,φ − β−1s′(γ0) . (215)

The case for daFβ(γ0) = 0 is much easier. Its proof is standard and can be found,
for example, in [22].

Finally, to see that μ ∈ R, we simply note that μ1 = hφ − β−1s′(γ0) is
symmetric.
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