
Trends in Mathematics

Marcello D’Abbicco
Marcelo Rempel Ebert
Vladimir Georgiev
Tohru Ozawa
Editors

New Tools 
for Nonlinear 
PDEs and 
Application





Trends in Mathematics

Trends in Mathematics is a series devoted to the publication of volumes arising from
conferences and lecture series focusing on a particular topic from any area of
mathematics. Its aim is to make current developments available to the community as
rapidly as possible without compromise to quality and to archive these for reference.

Proposals for volumes can be submitted using the Online Book Project Submission
Form at our website www.birkhauser-science.com.

Material submitted for publication must be screened and prepared as follows:

All contributions should undergo a reviewing process similar to that carried out by
journals and be checked for correct use of language which, as a rule, is English.
Articles without proofs, or which do not contain any significantly new results,
should be rejected. High quality survey papers, however, are welcome.

We expect the organizers to deliver manuscripts in a form that is essentially ready
for direct reproduction. Any version of TEX is acceptable, but the entire collection
of files must be in one particular dialect of TEX and unified according to simple
instructions available from Birkhäuser.

Furthermore, in order to guarantee the timely appearance of the proceedings it is
essential that the final version of the entire material be submitted no later than one
year after the conference.

More information about this series at http://www.springer.com/series/4961

http://www.birkhauser-science.com
http://www.springer.com/series/4961


Marcello D’Abbicco • Marcelo Rempel Ebert •
Vladimir Georgiev • Tohru Ozawa
Editors

New Tools for Nonlinear
PDEs and Application



Editors
Marcello D’Abbicco
Mathematics
University of Bari
Bari, Italy

Marcelo Rempel Ebert
Department of Computing and Mathematics
University of São Paulo
Ribeirão Preto, São Paulo, Brazil

Vladimir Georgiev
Department of Mathematics
University of Pisa
Pisa, Italy

Tohru Ozawa
Department of Applied Physics
Waseda University
Tokyo, Japan

ISSN 2297-0215 ISSN 2297-024X (electronic)
Trends in Mathematics
ISBN 978-3-030-10936-3 ISBN 978-3-030-10937-0 (eBook)
https://doi.org/10.1007/978-3-030-10937-0

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-10937-0
http://www.birkhauser-science.com


Preface

The theory of evolution partial differential equations (PDEs) has made considerable
strides in the last several years. This rapid development was driven on by the
connections between this theory and other fields of the mathematics, e.g., the har-
monic analysis, and by its strong ties to problems from mathematical physics. This
volume includes 13 papers highlighting recent results in mathematics, and focusing
on nonlinear PDEs and their applications. Readers will find, e.g., contributions on
the qualitative properties of solutions of linear and nonlinear evolution models, as
well as results concerning well-posedness, asymptotic profiles of solutions, blow-up
behavior, and the influence of low regular coefficients.

We employed a strict blind review process, in the course of which each
contribution was evaluated by two anonymous referees. The papers provide a broad
range of ideas and include detailed proofs of their results.

Most of the contributors attended the sessions “Recent progress in evolution
equations” and “Nonlinear PDEs” during the 11th ISAAC congress, which was held
in Växjö, Sweden, in 2017. Some speakers were invited to deliver their talks during
a joint day of these two sessions. Though the event is what initially provided the
idea of creating a special volume of selected research papers, the present volume is
not merely a collection of proceedings, but a stand-alone project gathering original
contributions from active researchers on the latest trends in nonlinear evolution
PDEs.

The International Society for Analysis, its Applications and Computation
(ISAAC) has organized the biennial ISAAC congress at venues around the globe
since 1997. The 2017 congress continued the successful series of meetings:
in Delaware, USA (1997), Fukuoka, Japan (1999), Berlin, Germany (2001),
Toronto, Canada (2003), Catania, Italy (2005), Ankara, Turkey (2007), London,
UK (2009), Moscow, Russia (2011), Krakow, Poland (2013), Macau, China
(2015). ISAAC is home to nearly 300 members from all regions of the world,

v
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as well as eight special interest groups focusing on different areas of analysis and
computation.

Bari, Italy Marcello D’Abbicco
Ribeirão Preto, São Paulo, Brazil Marcelo Rempel Ebert
Pisa, Italy Vladimir Georgiev
Tokyo, Japan Tohru Ozawa
November 2018
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On Effective PDEs of Quantum Physics

Ilias Chenn and I. M. Sigal

Abstract The Hartree-Fock equation is a key effective equation of quantum
physics. We review the standard derivation of this equation and its properties
and present some recent results on its natural extensions – the density functional,
Bogolubov-de Gennes and Hartree-Fock-Bogolubov equations. This paper is based
on a talk given at ISAAC2017.

1 Introduction

The Hartree-Fock equation (HFE) is a (if not the) key effective equation of quantum
physics. It plays a role similar to that of the Boltzmann equation in classical physics.
It gives a fairly accurate and yet sufficiently simple description of large (and not so
large) systems of quantum particles. The trade-off here is the high dimension for
nonlinearity: while the n−particle Schrödinger equation

ih̄
∂Ψ

∂t
= HnΨ (1)

is a linear equation in 3n+1 variables, the Hartree-Fock one is a nonlinear one in 3+
1 variables. Here h̄ is the Planck constant divided by 2π and Hn is the Schrödinger
operator or (quantum) Hamiltonian of the n−particle system, it is given in (14)
below.

The HFE involves an orthonormal system of n functions, {ψi}, on R
3, or the

projection operator γ := ∑
i |ψi〉〈ψi | acting on L2(R3), and can be written in the

latter case as

ih̄
∂γ

∂t
= [hγ , γ ] (2)
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2 I. Chenn and I. M. Sigal

where hγ := h + v ∗ ργ + ex(γ ), with h a one-particle Schrödinger operator (say

h := − h̄2

2mΔ+V (x), where V (x) is an external potential), ργ (x, t) := γ (x, x, t) =
∑

i |ψi(x)|2 and ex(γ ) (“exchange term”) is the operator with the integral kernel

ex(γ )(x, y) := −v(x − y)γ (x, y) (3)

= −
∑

i

ψi(x)v(x − y)ψ̄i (y). (4)

(Here and in what follows, A(x, y) stands for the integral kernel of an operator
A.) Furthermore, to deal with quantum statistics (where the number of particles is
not fixed but is a quantum observable), (2) is extended to arbitrary non-negative,
trace class operator γ on L2(R3) satisfying γ ≤ 1 (expressing the Pauli exclusion
principle). This describes fermions. For bosons, one drops the exchange term ex(γ )

and the condition γ ≤ 1.
Replacing ex(γ ) given above by a local function xc(ργ ) of the function

ργ (x, t) := γ (x, x, t) leads to the Kohn-Sham equation underlying the density
functional theory (DFT) which is exceptionally effective in the computations in
Quantum Chemistry and in particular, of the electronic structure of matter.

It was discovered by Bardeen, Cooper and Schrieffer for fermions and by
Bogolubov, for bosons, that for quantum fluids (superconductors and superfluids,
respectively)

– the HFE falls short
– there are natural generalizations of the HFE describing these phenomena.

It turns out that this generalization is mathematically very natural and was
overlooked in the mathematics literature, though the framework for it existed.

To explain how this generalization arises, we go back to the HFE and present
its alternative derivation. We just indicate main steps; for details, see [3] and for
background, [9, 36].

In abstract formulation, which applies also to statistical mechanics and quantum
field theory, the states are defined as positive linear (‘expectation’) functionals on a
C∗ algebra,A , elements of which are called observables, and the evolution of states
is given by the von Neumann-Landau equation

ih̄∂tωt (A) = ωt ([A,H ]) , ∀A ∈ A , (5)

whereH is a quantum Hamiltonian which is affiliated with A .
Technically, one takes forA , an algebra of bounded operators (namely the Weyl

algebra, W) on the fermionic/bosonic Fock space, which for spinless particles is
written as

F :=
∞∑

0

#©n
1L

2(Rd ), d = 1, 2, 3, (6)
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where #© stands either for the wedge product, ∧, or symmetric product, �. For
a many-body system, the quantum Hamiltonian H on Fock space, F is given by
H := ⊕∞

0 Hn, with the n−particle Schrödinger operatorsHn defined in (14) below.
If one introduces annihilation and creation operators,ψ(x) and ψ∗(x) onF , which
map the n-particle sector in (6) into (n − 1)- and (n+ 1)-sectors, respectively, then
H is written in terms of these operators as

H =
∫

dx ψ∗(x)hψ(x) + 1

2

∫

dxdy v(x − y)ψ∗(x)ψ∗(y)ψ(x)ψ(y) , (7)

with h a one-particle Schrödinger operator acting on the variable x and v a pair
potential of the particle interaction (see (14) below).

We can think about the algebra of observables as generalized by (unbounded)
operatorsψ(x) and ψ∗(x). The Hartree-Fock approximation is obtained by restrict-
ing the evolution to the states, ϕ, determined by the expectation

γ (x, y) := ϕ[ψ∗(y) ψ(x)], (8)

provided ϕ[ψ(x)] = 0, in the following way. Let ψ#(x) stands for either ψ(x) or
ψ∗(x). We require that ϕ[ψ#(x1) . . . ψ#(xk)] to be zero if the number of ψ∗’s and
ψ are not equal and is expressed in terms of sums of products of ϕ[ψ∗(xi) ψ(xj )]
according to the Wick theorem (see [9]), exactly as for the Gaussian processes in
probability; such states are called the quasifree states.1

However, the property of being quasifree is not preserved by the dynamics (5)
and the main question here is how to project the true quantum evolution onto the
class of quasifree states. Following [3], we do this by restricting the evolution,

ih̄∂tϕt (A) = ϕt([A,H ]) (9)

to observables A, which are at most quadratic in the creation and annihilation
operators. Then we arrive at a closed, self-consistent dynamics for ϕt . When
expressed in terms of the operator γ with the integral kernel γ (x, y), it gives exactly
the Hartree-Fock equation, (2).

The point here is that states determined by the expectations (8) are not the most
general quasifree states. The most general quasifree states ϕ determine and are
determined by expectations of all possible pairs of ψ̂�(x) := ψ�(x)− ϕ(ψ(x)):

{
γ (x, y) := ϕ[ψ̂∗(y) ψ̂(x)],
α(x, y) := ϕ[ψ̂(x) ψ̂(y)]. (10)

1For application of the quasifree states in the classical kinetic theory see [46].



4 I. Chenn and I. M. Sigal

Mathematically, these are exactly the states discovered by Bardeen, Cooper and
Schrieffer for fermions and by Bogolubov, for bosons, and for which the former
received and the latter should have received the Nobel prize.

Now, let γ and α denote the operators with the integral kernels γ (x, y) and
α(x, y). After peeling off the spin components, definition (10) implies that

0 ≤ γ = γ ∗ (≤ 1) and α∗ = ᾱ, (11)

where σ̄ = CσC with C being the complex conjugation and the condition γ ≤ 1
applies only to fermions (as was mentioned above, it is an expression of the Pauli
exclusion principle).

The operator γ can be considered as a one-particle density operator (matrix) of
the system, so that ργ (x) := γ (x, x) is the particle density. The operator α gives
the particle pair coherence (α(x, y) is a two-particle wave function). (For confined
systems, γ and α are trace class and Hilbert-Schmidt operators, respectively, with
Trγ = ∫

γ (x, x)dx < ∞ giving the particle number, while for thermodynamic
systems, they are only locally so.)

Following [3], we define self-consistent approximation as the restriction of the
many-body dynamics to quasifree states. More precisely, we map the solution ωt

of (5), with an initial state ω0, into the family ϕt of quasifree states satisfying

ih̄∂tϕt (A) = ϕt([A,H ]) (12)

for all observables A, which are at most quadratic in the creation and annihilation
operators. As the initial condition, ϕ0, for (12) we take the ‘quasifree projection’ of
ω0. We call this map the nonlinear quasifree approximation of equation (5).

We expect ϕt to be a good approximation of ωt , if ω0 is close to the manifold of
quasifree states.

The BdG equations give an equivalent formulation of the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity.

Evaluating (12) for monomials A ∈ {ψ(x),ψ∗(x)ψ(y), ψ(x)ψ(y)}, yields a
system of coupled nonlinear PDE’s for (φ, γ, α) where φ(x) := ϕ(ψ(x)) and γ

and α are defined in (10). For the standard many-body hamiltonian, (7), these give
the (time-dependent) Hartree-Fock-Bogolubov (HFB) or Bogolubov-de Gennes
(BdG) equations, depending on whether we deal with bosons or fermions (see (99),
(100) and (101) or (108), (109) and (110) below). In the latter case, one takes
φ(x, t) := ϕt(ψ(x)) = 0. As was mentioned above, the HFB equaitons describes
Bose-Einstein condensation and superfluidity while the BdG equations describes
superconductivity, the remarkable quantum phenomena.

HFB and BdG equations provide a more faithful description of quantum systems
going beyond the Gross-Pitaevski (i.e. the nonlinear Schrödinger) and Ginzburg-
Landau equations, which can be derived from them in certain regimes. While the
latter equations accumulated quite a substantial literature (see e.g. [16, 19, 54, 55]
and [53] for recent books and a review), the research on the former ones is just
beginning.

∗ ∗ ∗ ∗ ∗∗
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There are many fundamental problems about the HFB and the BdG equations
which are completely open. Generally, there are three types of questions one would
like to ask about an evolution equation:

• Derivation;
• Well-posedness;
• Special solutions (say, stationary solutions or traveling waves) and their stability.

Some rigorous results on the derivation of the Hartree-Fock-Bogolubov (HFB)
equations can be found in [34, 40, 48] (see also [6, 7, 30–32, 52] for earlier
results and references). The well-posedness (or existence) for the time-dependent
HFB equations for confined systems (see above) was proven in [4]. The well-
posedness theory for the time-dependent Bogolubov-de Gennes (BdG) equations
is developed in [5]. For thermodynamics systems (see above), it is open. Some
important stationary solutions of the BdG and HFB equations were found in [22, 37]
and [3, 49, 50], respectively.

In this contribution, we recall the standard derivation and properties of the HF
(and H) equations and discuss recent work on the Kohn-Sham (KS), HF, BdG
and HFB equations [3, 22, 23]. To fix ideas, we concentrate mostly on the BdG
equations.

There is a considerable physics literature on the subject. As for rigorous
works, the three fundamental contributions to the subject, [2, 33, 37], deal with
foundational issues (relation to quasifree states and quadratic hamiltonians on the
Fock space and the general variational problem), with the critical temperature and
the superconducting solutions and with the derivation of the Ginzburg-Landau
equations respectively. For more references, and discussion see some recent papers
[3, 5, 22, 23] and reviews [38, 39]. The object of these and other works on the
subject is the time-independent theory. The results we discuss are complementary
to this work.

2 Hartree and Gross-Pitaevski Equations

2.1 Origin and Properties

In what follows we use the units in which the (normalized) Planck constant h̄ and
the speed of light c are both equal to 1 and the typical particle mass is set to 1/2.
With this agreement, the evolution of quantum n-particle system is given by the
Schrödinger equation

i
∂Ψ

∂t
= HnΨ. (13)

HereHn is the Schrödinger operator or Hamiltonian of the physical system. For the
system of n identical particles (say, electrons or atoms) of mass 1/2, interacting with
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each other and moving in an external potential V the Hamiltonian is

Hn :=
n∑

i=1

hxi +
1

2

∑

i �=j

v(xi − xj ), (14)

where hx = −Δx + V (x) and v is the interaction potential. For spinless
fermions/bosons, it acts on the state space, which in the spinless case can be written
as

#©n
1L

2(Rd ), d = 1, 2, 3.

The Schrödinger equation is an equation, (13), in dn+1 variables, x1, . . . , xn and
t . Even for a few particles it is prohibitively difficult to solve. Hence it is important
to have manageable approximations.

One such an approximation, which has a nice unifying theme and connects to a
large areas of physics and mathematics, is the self-consistent (or mean-field) one. In
it one approximates solutions of n-particle Schrödinger equations by products of n
one-particle functions (i.e. functions of d + 1 variables) appropriately symmetrized.
This results in a single nonlinear equation in d+1 variables, or several coupled such
equations. The trade-off here is the number of dimensions for the nonlinearity. This
method is especially effective when the number of particles, n, is sufficiently large.

We give a heuristic derivation of the self-consistent approximation for the
Schrödinger equation above. (See [36] for details and references to rigorous results.)
First, we observe

Proposition 1 The Schrödinger equation is the Euler-Lagrange equation for sta-
tionary points of the action functional

S(Ψ ) :=
∫

{ − Im〈Ψ, ∂tΨ 〉 − 〈Ψ,HnΨ 〉}dt, (15)

Now, for bosons, we consider the the action functional (15) on the space (not
linear!)

{Ψ := ⊗n
1ψ|ψ ∈ H 1(R3)}, (16)

where (⊗n
1ψ) is the function of 3n+1 variables defined by (⊗n

1ψ)(x1, . . . , xn, t) :=
ψ(x1, t) . . . ψ(xn, t). For fermions, we take

{Ψ := ∧n
1ψj : ψi ∈ H 1(R3) ∀i = 1, . . . , n} (17)

Here (∧n
1ψj )(x1, . . . , xn, t) := det[ψi(xj , t)] is the determinant of the n×n matrix

[ψi(xj , t)], called the Slater determinant.
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We begin with bosons. We have the following elementary result:

Proposition 2 Let ‖ψ‖2 = n − 1 ≈ n and SH (ψ) := n−1
n

S(⊗n
1ψ) (‘H’ stands for

the Hartree). Then we have

SH (ψ) =
∫ ∫

{ − Im〈ψ, ∂tψ〉 − |∇ψ|2 − V |ψ|2

− 1

2
|ψ|2v ∗ |ψ|2}

dxdt. (18)

We see that the quadratic terms on the r.h.s. of (18) are of the orderO(n), while the
quartic ones, are O(vn2) The regime in which these terms are of the same order,
O(n2), i.e. for which, v = O(1/n) is called the mean-field regime.

The Euler-Lagrange equation for stationary points of the action functional (18)
considered on the first set of functions is

i
∂ψ

∂t
= (h+ v ∗ |ψ|2)ψ, (19)

with the normalization ‖ψ‖2 = n − 1 ≈ n. This nonlinear evolution equation is
called the Hartree equation (HE).

If the inter-particle interaction, v, is significant only at very short distances (one
says that v is very short range, which technically can be quantified by assuming
that the “particle scattering length” a is small), one replaces v(x) → 4πaδ(x) and
Equation (19) becomes

i
∂ψ

∂t
= hψ + κ |ψ|2ψ, (20)

where κ := 4πa (with the normalization ‖ψ‖2 = n). This equation is called
the Gross-Pitaevski equation (GPE) or the nonlinear Schrödinger equation. It is
derived using the Gross-Pitaevski approximation to the original quantum problem
for a system of n bosons. The Gross-Pitaevski equation is widely used in the theory
of superfluidity, and in the theory of Bose-Einstein condensation (see [36, 41] and
references therein).

Proofs of the local and global existence for (19) and (20) can be found in [19, 21,
55].

2.1.1 Properties of the Hartree and Gross-Pitaevski Equations

We say that the map T on a space of solution is a symmetry of an equation iff the
fact that ψ is a solution of the equation implies that T ψ is also a solution. It is
straightforward to prove the following
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Proposition 3 The Hartree and Gross-Pitaevski equations have the following
symmetries

1. the time-translations, ψ(x, t) → ψ(x, t + s), s ∈ R,

2. the gauge transformations,

ψ(x, t) → eiαψ(x, t), α ∈ R,

3. for V = 0, the spatial translations, ψ(x, t) → ψ(x + y, t), y ∈ R
3,

4. for V = 0, the Galilean transformations, v ∈ R
3,

ψ(x, t) → ei(
1
2 v·x− v2t

4 )ψ(x − vt, t),

5. for V spherically symmetric, the spatial rotations, ψ(x, t) → ψ(Rx, t), R ∈
O(3),

As the result of the time-translational and the gauge symmetries, the energy and
the number of particles functionals

E(ψ) :=
∫ {

|∇ψ|2 + V |ψ|2 + G(|ψ|2)
}
dx, (21)

whereG(|ψ|2) := 1
2 |ψ|2v ∗ |ψ|2 for HE and G(|ψ|2) := 1

2κ |ψ|4 for GPE, and

N(ψ) :=
∫

|ψ|2dx,

are independent of time, t . Moreover, for V = 0, the field momentum,

P(ψ) :=
∫

ψ̄(x, t)(−i∇x)ψ(x, t)dx,

and, for V spherically symmetric, the field angular momentum,

L(ψ) :=
∫

ψ̄(x, t)(x ∧ (−i∇x))ψ(x, t)dx,

are conserved. These conservation laws impose constraints on the dynamics leading
to qualitative understanding of possible scenarios and are used in the proofs of the
global existence, existence and stability of stationary solutions and traveling waves;
for definitions and a review see [36].

We also note that HE and GPE are Hamiltonian systems (see Section 19.1 of
[36]).
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2.2 Particles Coupled to the Electromagnetic Field

We start with the action

S(ψ) =
∫ ∫

{−Im〈ψ, ∂tψ〉 (22)

− |∇ψ|2 − V |ψ|2 − G(|ψ|2)}dxdt, (23)

where G(|ψ|2) is given after (21), and use the principle of minimal coupling in
which one replaces the usual derivatives ∂t and ∇ by covariant ones, ∂tφ = ∂t + ieφ

and ∇a = ∇ − iea, where φ and a are the electric and magnetic potentials and e is
the electric charge of ψ , and adds the action,

SEM(a, φ) :=
∫ ∫ {

|∂t a + ∇φ|2 − | curla|2
}
dxdt,

of the the electro-magnetic field (for the latter, see e.g. [36], Sections 19.1.1
and 19.6). Then, assuming the external potential V = 0, the total action becomes

S(ψ, a, φ) :=
∫ ∫

{ − Im〈ψ, ∂tφψ〉 − |∇aψ|2 − G(|ψ|2)}dxdt

+ SEM(a, φ). (24)

for a triple (ψ, a, φ) : Rd → C × R
d × R, of complex and real functions and a

vector field. The Euler-Lagrange equations for this action are given by

i
∂ψ

∂t
= haφψ + g(|ψ|2)ψ, (25a)

−∂t (∂ta +∇φ) = curl∗ curl a − Im(ψ̄∇aψ), (25b)

− div(∂t a +∇φ) = e|ψ|2, (25c)

where haφ := −Δa+eφ+V , withΔa = ∇2
a , the covariant Laplacian, g(s) = G′(s)

and the vector quantity J (x) := Im(ψ̄∇aψ) is the electric current, while |ψ|2 is the
charge density (remember we omit the charge of the particle), so that the second and
third equations are Ampère’s and Gauss law part of the Maxwell equations.

Moreover, curl∗ is theL2−adjoint of curl, so that for d = 3, we have curl∗ = curl
and for d = 2, curl a := ∂1a2 − ∂2a1 is a scalar, and for a scalar function, f (x),
curl∗ f = (∂2f,−∂1f ) is a vector.

It is straightforward to prove that (25) are the Euler-Lagrange equations for
action (24). Now, in addition to translation and rotation invariance (if V =
0), equations (25) are invariant under the local gauge transformations: for any
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sufficiently regular function χ : R2 × R → R,

T
gauge
χ : (ψ(x, t), a(x, t), φ(x, t))

�→ (eiχ(x,t)ψ(x, t), a(x, t) +∇xχ(x, t), φ(x, t) − ∂tχ(x, t)). (26)

Using this gauge invariance, we can choose χ so that a and/or φ satisfy certain
additional conditions. This is called gauge fixing. For instance, we can choose χ

so that div a = 0 (the Coulomb gauge), or φ satisfies φ = 0 (the temporal gauge).
Both conditions break gauge invariance. The gauge fixing which preserves the gauge
invariance is the Lorentz (or radiation) gauge

div a + ∂tφ = 0.

Note that in the Coulomb gauge, div a = 0, Eq. (27b) becomes the familiar Poisson
equation,−Δφ = e|ψ|2.

Neglecting in (25) the magnetic field produced by changing charge distribution
(and the electric field), we arrive at the Schrödinger-Poisson system

i
∂ψ

∂t
= hφψ + g(|ψ|2)ψ, (27a)

− Δφ = e|ψ|2, (27b)

where hφ := −Δ + eφ + V

One can derive (25) from the many-body Schrödinger equation coupled to the
quantized electromagnetic field.

3 The (Generalized) Hartree-Fock Equations

3.1 Formulation and Properties

The Euler-Lagrange equation for stationary points of the action functional (15)
considered on the Hartree-Fock states, (17), is a system of nonlinear, coupled
evolution equations

i
∂ψj

∂t
= (h + v ∗

∑

i

|ψi |2)ψj −
∑

i

(v ∗ ψiψ̄j )ψi, (28)

where, recall, h := −Δ + V , for the unknowns ψ1, . . . , ψn. This system plays the
same role for fermions as the Hartree equation does for bosons. Equation (28) is
called the Hartree-Fock equations (HFE).
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Properties of HFE The Hartree-Fock equations are

1. invariant under the time-translations and gauge transformations, and, for V = 0,
the spatial translations, ψj (x) → ψj (x + y), y ∈ R, and the Galilean
transformations, v ∈ R

3, and, for V spherically symmetric, the rotations.
2. invariant under time and space independent unitary transformations of

{ψ1, . . . , ψn}.
3. a Hamiltonian system (see Sections 24.6 and 24.7 of [36]).

Again, similarly to HE, as the result of the time-translational and the gauge
symmetries, the energy and the number of particles functionals

E(ψ) :=
∫

{ ∑

i

(|∇ψi |2 + V |ψi |2) + 1

2
(
∑

i

|ψi |2)v ∗ (
∑

i

|ψi |2)

− 1

2

∫

v(x − y)|
∑

i

ψi(x)ψi(y)|2dy
}
dx, (29)

N(ψ) :=
∑

i

∫

R3
|ψi |2dx (30)

are conserved, similarly, for linear and angular momenta. Moreover, HFE conserve
the inner products, 〈ψi,ψj 〉, ∀i, j . For a rigorous theory, see [8, 20, 42, 44, 45, 47].

The item (2) above shows that the natural unknown for HFE is the subspace
spanned by {ψi}, or the corresponding projection γ := ∑

i |ψi〉〈ψi |. HFE can be
rewritten as an equation for γ :

i
∂γ

∂t
= [hγ , γ ] (31)

where hγ := h+ v ∗ ργ + ex(γ ), with ργ (x) := γ (x, x) = ∑
i |ψi(x)|2 and ex(γ )

is the operator with the integral kernel

ex(γ )(x, y) := −v(x − y)γ (x, y) = −
∑

i

ψ̄i(x)v(x − y)ψi(y). (32)

Recall that A(x, y) stands for the integral kernel of an operator A.
This can be extended to arbitrary non-negative density operators γ satisfying (for

fermions) γ ≤ 1, and leads to a new class of nonlinear differential equations. (The
properties 0 ≤ γ and γ ≤ 1 as well as all eigenvalues of γ as conserved under the
evolution.)
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Finally, note that the energy and the number of particles in the new formulation
is given by

E(γ ) := Tr((h+ 1

2
v ∗ ργ )γ ) + Ex(γ ), (33)

N(γ ) := Trγ =
∫

ργ , (34)

where, recall, h := −Δ+V , ργ (x) := γ (x, x) and Ex(γ ) := − 1
2Tr(γ v�γ ), where

v�γ is the operator with the integral kernel v(x − y)γ (x, y). Note that

Tr((v ∗ ργ )γ ) =
∫

ργ v ∗ ργ dx =
∫ ∫

ργ (x)v(x − y)ργ (y)dxdy,

Tr(γ v�γ ) =
∫ ∫

v(x − y)|γ (x, y)|2dxdy.

It is straightforward to show that that equations (28), (29) and (30) can be rewritten
as (31), (32), (33) and (34), respectively.

Note that the HE can be also formulated with γ being a rank one projection
times n and extended to operators γ with no constraint on the size. In this case, the
exchange terms ex(γ ) and Ex(γ ) should be omitted from the definition of hγ and
the energy.

γ is called the (one-particle) density operator and γ (x, x) (or γ (x, x, t)) is
interpreted as the one-particle density, so that Trγ = ∫

γ (x, x)dx is the total
number of particles. It should satisfy

0 ≤ γ = γ ∗ (≤ 1) (35)

where the second inequality is required only for fermions. The HF flow preserves
these properties.

3.1.1 Exchange Energy Term

We extend Eq. (31) by allowing different exchange terms in the definition of hγ ,
rather than just (32). Specifically, we let the exchange energy term, ex(γ ), to take
the following forms:

– ex(γ ) := 0 for the Hartree (or reduced Hartree-Fock, if γ ≤ 1) model,
– ex(γ ) := −v� γ for the Hartree-Fock case and
– ex(γ ) is a local function, ex(γ ) = xc(ργ ), of the function ργ (x) := γ (x, x),

say, coming from Ex(ρ) = −c
∫
ρ4/3, in the density functional theory (DFT).

We call (31) with a general exchange energy term, ex(γ ), the generalized
Hartree-Fock equation (gHFE).
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3.2 Static gHF Equations

Clearly, γ , is a static solution to (31) iff γ solves the equation

[hγ , γ ] = 0. (36)

For any reasonable function f and μ ∈ R, solutions of the equation

γ = f (β(hγ − μ)), (37)

solves (36). Under certain conditions, the converse is also true. (The reason for
introducing the parameters β = 1/T ,μ > 0 (the inverse temperature and chemical
potential) will become clear later.)

Under certain conditions on f satisfied by our choice below, the chemical
potential μ is determined by the condition that Trγ = n.

The physical function f is selected by either a thermodynamic limit (Gibbs
states) or by a contact with a reservoir (or imposing the maximum entropy
principle). For fermions, it is given by the Fermi-Dirac distribution

f (λ) = (eλ + 1)−1, (38)

and for bosons, by the Bose-Einstein one

f (λ) = (eλ − 1)−1. (39)

(One can also consider the Boltzmann distribution f (λ) = e−2λ.) Inverting the
function f and letting f−1 =: s′, we rewrite the stationary gHFE as

hγ,μ − β−1s′(γ ) = 0, (40)

Here, recall, hγ,μ := hγ − μ = −Δ + V + ex(γ ) − μ and 0 < β ≤ ∞ (inverse
temperature) and μ ≥ 0 (chemical potential). It follows from the equations s′ =
f−1 and (38) that, up to a constant, the function s is given by

s(λ) = −(λ ln λ + (1− λ) ln(1− λ)), (41)

for fermions, and by

s(λ) = −(λ ln λ − (1+ λ) ln(1+ λ)), (42)

for bosons, so that for fermions, we have

s′(λ) = − ln
λ

1− λ
. (43)
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3.3 Coupling to the Electromagnetic Field

We couple the gHFE to the electromagnetic field. We assume that the particles are
carry the unit charge density e = −1, so that the charge of density is −ργ .

As before, we use the principle of minimal coupling assuming the inter-particle
potentials and external potentials are of the electromagnetic nature. This gives the
system of self-consistent equations for γ and the vector and scalar potentials a and
φ:

i∂tγ = [hφ,a,γ , γ ], (44)

− div(∂ta +∇φ) = 4π(κ − ργ ), (45)

−∂t (∂ta +∇φ) = curl∗ curl a − j (γ, a), (46)

where κ(x) is an external (positive) charge distribution, j (γ, a) is the current given
by j (γ, a)(x) := −4π[−i∇a, γ ]+(x, x), with [A,B]+ := AB + BA,

hφ,a,γ = −Δa − φ + ex(γ ). (47)

Since e = −1, we have that ∇a = ∇ + ia and Δa = ∇2
a . We call (44), (45), (46)

and (47) the gHFem equations.
We will discuss symmetries of this system in a more general context later on.

Here we only note briefly that, in addition to the rigid motion symmetries, it has the
gauge symmetry which did not make its appearance so far and which plays a central
role in quantum physics.

As above, the energy and the number of particles are conserved and are given by

E(γ, a, φ) := Tr(haγ ) + Ex(γ )+ Eem(a, φ), (48)

N(γ ) := Trγ =
∫

ργ , (49)

where ha := −Δa and Eem(a, φ) is the energy of the the electro-magnetic field,
given by

Eem(a, φ) := 1

8π

∫ {
|∂ta +∇φ|2 + | curl a|2

}
dx. (50)

The conservation of N is obvious. To prove the conservation of E, we use the
definition j := −4πdaTr

(
(−Δa)γ

)
and the relation dEx = ex, to compute

∂t (Tr(haγ )+ Ex(γ )) = Tr(ha,γ γ̇ ) − 1

4π

∫

j ȧ (51)
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where ha,γ = −Δa + ex(γ ). By (44) and ha,γ = hφ,a,γ +φ, we have Tr(ha,γ γ̇ ) =
Tr(φγ̇ ) = ∫

φρ̇γ , this gives

∂t (Tr(haγ )+ Ex(γ )) =
∫

φρ̇γ − 1

4π

∫

j ȧ. (52)

Next, using that E = −ȧ −∇φ, we compute

∂tEem(a, φ) = 1

4π

∫
[ − (ȧ +∇φ) · Ė + curl∗ curl a · ȧ]

dx. (53)

Combining the last two relations and and integrating by parts gives

∂tE(γ, a, φ) = 1

4π

∫
(
φ(4πρ̇γ + div Ė)

− (Ė + j − curl∗ curl a)ȧ
)
. (54)

Now, using (45) and (46) (divE = 4π(κ − ργ ), and Ė = curl∗ curl a − j (γ, a))
yields ∂tE(γ, a, φ) = 0. �

Above, we assumed the external magnetic field is zero.
To describe crystals we take κ to be either periodic (crystals) or uniform (jellium).
If κ and ργ are L -periodic, then integrating (45) over a fundamental cell, Ω , of

the lattice L , we arrive at the solvability condition (the charge conservation law)

∫

Ω

ργ =
∫

Ω

κ. (55)

3.4 Static gHFem Equations

It is easy to see that (γ, a, φ) is a static solution to (44), (45) and (46) if and
generically only if (γ, a, φ) solves the equations

γ = f (β(hφ,a,γ − μ)), (56)

Δφ = 4π(κ − ργ ), (57)

curl∗ curl a = j (γ, a), (58)

where, recall, hφ,a,γ := −Δa − φ + ex(γ ) and f is a sufficiently regular function
f . Physically relevant f are given by either (38) or (39), depending on whether the
particles in question are fermions or bosons. (Remember that the unit charge of γ is
e = −1.)

To this we add the solvability condition (55), which determines the chemical
potential μ.
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3.4.1 Free Energy

The static gHF equations (56), (57) and (58) arise as the Euler-Lagrange equations
for the free energy functional

Fβ(γ, a) := E(γ, a)− β−1S(γ ) − μN(γ ), (59)

where S(γ ) = −Tr(γ ln γ + (1− γ ) ln(1− γ )) is the entropy,N(γ ) := Trγ is the
number of particles and E(γ, a) is the static part of energy (48), with φ expressed
in terms of ργ by solving the Poisson equation (57) for φ,

E(γ, a) = Tr
(
(−Δa)γ

) + 1

2

∫

(κ − ργ )4π(−Δ)−1(κ − ργ )dx

+ 1

8π

∫

dx| curla(x)|2 + Ex(γ ). (60)

This, not quite trivial, fact is proven in [22]. (For a formal statement in a more
general situation see Theorem 4 below.)

We demonstrate informally that (56), (57) and (58) are the Euler-Lagrange
equations for (59). By the definitions of E(γ, a),Ex(γ ) and S(γ ), we have

dγE(γ, a)ξ = Tr(hγ ξ) (61)

and

dγ S(γ ) = Tr(s(γ )ξ), (62)

which implies (56) with φ given by (57). Next, using the definition ja :=
−4πdaTr

(
(−Δa)γ

)
, we find

daE(γ, a)α = 1

4π

∫
(
ja − curl∗ curl a

)
α, (63)

which yields (58).

3.4.2 Electrostatics

We describe the important case of electrostatics here, i.e. the time-independent case
with a = 0. In this case, Eqs. (56), (57) and (58) become

γ = f (β(hφ,γ − μ)), (64)

Δφ = 4π(κ − ργ ), (65)
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where hφ,γ := −Δ − φ + ex(γ ), which after solving Eq. (57) for φ, gives

γ = f (β(hγ − μ)), (66)

where hγ := −Δ − φργ + ex(γ ), with φρ = Δ−14π(κ − ρ). To this we add the
solvability condition (55), which determines the chemical potential μ. Moreover,
we associate with the charge density, κ − ρ, the potential

φρ = 4π(−Δ)−1(κ − ρ), (67)

satisfying the Poisson equation (65).
The energy and free energy for (66) are given by

E(γ ) := Tr((−Δ)γ ) (68)

+ 1

2

∫

(κ − ργ )(x)4π(−Δ)−1(κ − ργ )(x)dx + Ex(γ ), (69)

Fβ(γ ) := E(γ )− β−1S(γ )− μN(γ ). (70)

4 Density Functional Theory

The starting point of the (time-dependent) density functional theory (DFT) are the
equations (44), (45) and (46) but with the exchange term ex(γ ) is taken to be of
the form xc(ργ ), where xc(λ) is a local function combining contributions of the
exchange and correlation energy. For the former one usually take the expression
−cρ4/3, going back to Dirac, and the latter is found empirically. This simple but
profound modification opens an incredible computational potential of the theory.

We concentrate on the simplest case of electrostatics. In this case Eq. (66)
becomes

γ = f (β(hργ − μ)), (71)

where f is given by (38) and, with φρ = (−Δ)−14π(κ − ρ) =: v ∗ (κ − ρ),

hρ := −Δ − φρ + xc(ρ). (72)

Equation (71) is an extension of the key equation of the DFT – the Kohn-Shan
equation – to positive temperature T = 1/β > 0. The energy and free energy
for (71) are given by

E(γ ) := Tr((−Δ)γ )+ 1

2

∫

(ργ − κ)v ∗ (ργ − κ)+ Xc(ργ ), (73)
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Fβ(γ ) := E(γ ) − β−1S(γ )− μN(γ ). (74)

Let den be the map from operators, A, into functions ρA(x) = den[A](x) :=
A(x, x) with A(x, y) being generalized kernel of A (‘den’ stands for ‘density’).
Taking the diagonal of (71), we arrive at the following equation for ρ

ρ = den[f (β(hρ − μ))]. (75)

Equation (75) gives an equivalent formulation of the Kohn-Sham equation (71).
For κ (and ρ) L -periodic, we add to equation (75) the charge conservation law
(cf. (55)), which determines the chemical potential μ,

∫

Ω

ρ =
∫

Ω

κ, (76)

whereΩ is a fundamental cell of the latticeL .
Conversely, starting from (75) and (76), we define the potential φ =

(−Δ)−14π(κ − ρ) produced by the charge distribution κ − ρ. Then φ satisfies

− Δφ = 4π(κ − ρ). (77)

Note that because of the minimal coupling, there is no (pure) DFT theory when
the system in question is coupled to the magnetic field.

4.1 Crystals

Here one deals with the electrostatics, (64), or, in the DFT context, (71) (or (75)).
for an ideal crystal, one assumes that κ = κper is periodic w.r. to some lattice L ,
representing an L periodic charge distribution of crystal ions. An example of such
an κper is

κper(x) =
∑

l∈L
κa(x − l) . (78)

where κa denotes an ionic (‘atomic’) potential.
The simplest special case of periodic κ is κ constant. Such a system is called the

jellium. For κ = κjel constant, (75) has the solution (ρjel = κjel, μjel). Indeed, (76)
reduces to ρjel = κjel and (75) to one equation for μ, which has a unique solution
for μ near μjel [23].

The existence (without uniqueness) of a certain periodic, trace class solution
to equation (71) (or (75)) with certain class of density terms xc is obtained in
[1] via variation techniques. (See [17, 18] for earlier results for the Hartree and
Hartree-Fock equations. We present a somewhat different proof of the latter result
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in Sect. 7.) The next result proven in [23], establishes, under more restrictive
conditions, uniqueness and quantitative bounds needed for the next result.

Let Ω be a fundamental cell of the lattice L and |Ω | denote its area. Denote by
Hs

per(R
d) the locally Sobolev space ofL -periodic functions with the inner product

given by that of Hs(Ω). We have:

Theorem 1 (Ideal crystal) Let T > 0, d = 2 or 3, β = 1/T be sufficiently large
and |Ω | be sufficiently small. We assume that
1. κper is theL−periodic background charge distribution s.t.

(a) κper ∈ Hs
per for s ≥ 2 and||κper||Hs is sufficiently small;

(b) κjel = 1
|Ω|

∫
Ω κper and κ ′

per = κper − κjel satisfy

|xc(κjel)| < κ2jel

w2
d−1

and κ ′
per ∈ Hs

per for s ≥ 2, where wd is the volume of the

d-sphere;

2. xc ∈ Ws,∞ for s ≥ 2 and ‖xc‖Ws,∞ is sufficiently small.

Then the Kohn-Sham equation (75) has a unique solution (ρper, μper) ∈ Hs
per(R

d)×
R+ satisfying

‖ρper − κper‖Hs � ‖κ ′
per‖Hs

per
, (79)

|μper − μjel| � ‖κ ′
per‖Hs

per
. (80)

where (ρjel = κjel, μjel) is a solution to (75) with κ = κjel.

Proof (Idea of proof of Theorem 1)We write (75) as a fixed point problem

ρ = Φ(ρ,μ), Φ(ρ,μ) := den[f (β(hρ − μ))]. (81)

To this we add the charge conservation law (76) with Ω a fundamental cell ofL .
To handle the constraint (76), we let P denote the projection onto constants,

Pf := 1
|Ω|

∫
Ω f , and let P̄ = 1− P and split (81) into two equations

ρ′ = PΦ(ρ′ + ρ′′, μ), (82)

ρ′′ = P̄Φ(ρ′ + ρ′′, μ). (83)

where ρ′ := Pρ = 1
|Ω|

∫
Ω

ρ and ρ′′ := P̄ ρ = ρ − ρ′. By the constraint (76),

we have ρ′ = 1
|Ω|

∫
Ω

κ . Hence (82) and (83) are equations for μ and ρ′′. We
first solve (83) for ρ′′ by a fixed point theorem and then (82) for μ, by an implicit
function argument.

A central open problem here is to determine whether the (locally) free energy
minimizing solution breaks spontaneously symmetry or not. The spontaneous sym-
metry breaking means that ργ has lower (coarser) symmetry than κ (‘spontaneous
symmetry breaking’).
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4.2 Macroscopic Perturbations

A key problem in solid state physics is derivation of an effective, macroscopic
equations for crystals from microscopic ones. In the full generality this problem
is far from our reach. However one can reasonably hope to derive such equations
starting from the DFT microscopic theory.

We consider macroscopic perturbations (say, local deformations) of ideal crystals
and the dielectric response to them. At the first step, one would like to prove
existence of solutions under local deformation of crystals. The appropriate spaces
for our analysis are the homogenous Sobolev spaces:

Ḣ s(R3) =
{

f : ‖f ‖2
Ḣ s :=

∫

|p|2s |f̂ |2(p) < ∞
}

. (84)

We note that Ḣ s and Ḣ−s are dual spaces under the usual L2(R3) pairing 〈·, ·〉 and
that Ḣ s , unlike Hs , contains only s-order derivative in its norm.

We state some of the assumptions used below. To begin with we assume d = 3.

[A1] (regularity of κ)

κ = κper + κ ′, where

κper isL -periodic and satisfies

κper ∈ H 2
per(R)3

and κ ′ ∈ (H 2 ∩ H−2)(R3),

[A2] (regularity of xc)

xc ∈ C4(R+) together with its derivatives

is bounded near the origin as

|xc(λ)| < ελ for ε small.

Since κ ′ is not periodic, constraint (76) does not apply here. Let (ρper, μper)

be the periodic solution to the Kohn-Sham equation (75), with the L−periodic
background charge density κper given in Theorem 1. The next result shows that the
periodic solutions of Theorem 1 are stable under local perturbations.

Theorem 2 (Stability under local perturbations) Let d = 3 and the constraints
of Theorem 1 be obeyed and assume [A1] and [A2]. In addition, let ‖κ‖H 2∩H−2 � 1
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and ‖κ ′‖H 2 � 1. Then the Kohn-Sham equation (75), with κ = κper + κ ′ and
μ = μper, has a unique solution ρ satisfying

ρ = ρper + ρ′ with ρ′ ∈ (H 2 ∩H−2)(R3) and (85)

‖ρ′‖H 2∩H−2 � ‖κ ′‖H 2∩H−2 . (86)

Theorem 2 is proven in [23]. Similar results for T = 1/β = 0 were proven in
[1, 11, 12, 15, 17] (see [14, 39] for very nice reviews).

Dielectric response We consider Eq. (75) in the macroscopic variables at 1 <<

β < ∞. Let Lδ := δL be a microscopic crystalline lattice (on the microscopic
scale 1) with a fundamental domain Ωδ centered at the origin. Let κδ

per be
Lδ−periodic microscopic charge distribution of the form

κδ
per(x) = δ−dκper(δ

−1x) (87)

where κper is a L−periodic function on R
d . Note that under this scaling, the L1-

norm is preserved.
We consider a macroscopically perturbed background charge distribution (writ-

ten in the macroscopic coordinate x)

κδ(x) = κδ
per(x)+ κ ′(x), (88)

where κ ′(x) ∈ L2(Rd ) is a small local perturbation living on the macroscopic
scale (1), producing macroscopically deformed crystal. To study the macroscopic
behavior, we rescale the Kohn-Sham equations (75) to obtain

ρδ = den[fFD(β(hφδ − μ)], (89)

where hφδ = −δ2Δ − δφδ(x) with the potential φδ given by

φδ := (−Δ)−14π(κδ − ρδ) . (90)

Given κδ
per, Theorem 8 implies that (89) has a Lδ-periodic solution ρδ

per =
δ−3ρper(δ

−1x), with associated potential φδ
per = δ−1φper(δ

−1x). We list additional
assumptions needed for the next and key result.

Let hper = −Δ − φper. Let ξ(R3) denote the size of the spectral gap of hper at μ
on L2(R3) and ξ(Ω) denote the size of the spectral gap of hper at μ on L2(Ω) with
periodic boundary condition.

[A3] (spectral gap condition)

ξ := ξ(R3)− 5

6
ξ(Ω) > 0.
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[A4] (scaling condition)

δ � 1 and β ≥ Cξ−1 ln(1/δ) for C large.

We now present the main result of [23] on the derivation of the effective Poisson
equation:

Theorem 3 Suppose that d = 3 and fix a solution ρper as above. Let assumptions
[A1]–[A4] hold. Then the rescaled Kohn-Sham equation (89), with background
charge distribution defined in (88) and μ = μper, has a unique solution ρδ in
L2
per + Ḣ−1 + Ḣ−2 with associated potential φδ of the form

φδ = φδ
per + φ0 + φrem,1 + φrem,2, (91)

where φδ
per is the potential associated to the periodic solution ρδ

per, φrem,i , i = 1, 2,
obey the estimates

‖φrem,1‖Ḣ 1(R3) � δ1/2 and ‖φrem,2‖L2(R3) � δ (92)

and φ0 satisfies the equation

− div ε0∇φ0 = κ ′ (93)

with a real positive 3× 3 matrix, ε0, given in (94), (95), (96) and (97) below.

A similar result for T = 1/β = 0 was proven in [13, 14] (see also [27–29]).

Remark 1

1. We note that in general ξ(R3) ≤ ξ(Ω). One sees this by passing to Bloch-Floquet
decomposition of hper and noting that ξ(R3) is the inf of all spectral gaps of the
fiber decomposed operators on L2(Ω).

2. The number 5
6 comes from Hardy’s inequality. In dimension d = 3, Hardy’s

inequality is ‖f ‖L6(R3) � ‖∇f ‖L2(R3). We note that if p = 6, then its conjugate

is q = 6
5 .

3. The constant C appearing in [A4] can be taken to be any number C > 100.
4. The 3× 3 matrix ε0 in (93) is of the form

ε0 =13×3 + ε′0, (94)

ε′0 = 1

|Ω |TrL2(Ω)

∮

r2per(z)(−i∇)rper(z)(−i∇)rper(z) (95)

− 1

|Ω |‖ρ1‖
2
Ḣ−1(Ω;C3)

, (96)
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where rper(z) = (z − hper)
−1, hper = −Δ − φper + xc(ρper), and

ρ1 = 2χR3\Ω∗(−i∇) den
∮

r2per(z)(−i∇)rper(z) . (97)

Here χQ denotes a characteristic function of the set Q and Ω∗ stands for a
fundamental cell of the reciprocal lattice.

5 Hartree-Fock-Bogoliubov Equations

For appropriate spaces, it is shown in [3] that, for the Hamiltonian H given in
Eq. (7), ϕt satisfies (12) if and only if the triple (φ, γ, α) of 1st - and 2nd -order
truncated expectations of ϕt , defined by (cf. (10))

⎧
⎪⎪⎨

⎪⎪⎩

φ(x, t) := ϕt(ψ(x)),

γ (x, y, t) := ϕt [ψ∗(y) ψ(x)] − ϕt [ψ∗(y)] ϕ[ψ(x)],
α(x, y, t) := ϕt [ψ(x)ψ(y)] − ϕ[ψ(x)] ϕt [ψ(y)] ,

(98)

satisfies the time-dependent Hartree-Fock-Bogoliubov equations

i∂tφ =h(γ )φ + |φ|2φ + k(α)φ̄ , (99)

i∂tγ =[h(γ φ), γ ]− + [k(αφ), α]− , (100)

i∂tα =[h(γ φ), α]+ + [k(αφ), γ ]+
+ k(αφ), (101)

where the subindex t is not displayed, [A1, A2]± = A1A
T/∗
2 ± A2A

T/∗
1 , γ φ :=

γ + |φ〉〈φ| and αφ := α + |φ〉〈φ̄|, and

h(γ ) = h + v ∗ d(γ )+ v � γ , (102)

k(α) = v � α , d(α)(x) := α(x, x). (103)

In these equations, v � α is the operator with the integral kernel v � α (x; y) := v(x−
y)α(x; y).

Here, φ describes the Bose-Einstein condensed atoms, γ , thermal atomic cloud
and σ , the superfluid component of the atomic gas.

For the pair potential v(x − y) = gδ(x − y), the HFB equations in a somewhat
different form have first appeared in the physics literature; see [26, 35, 51] and, for
further discussion, [3, 4].

Note that if we drop the third terms in (99) and (100), then we arrive at,
essentially, the Gross-Pitaevski and Hartree equations, respectively. If we drop the



24 I. Chenn and I. M. Sigal

last term on the r.h.s. of (101), then equations (99), (100) and (101) have solutions
of the form (φ, 0, 0) and (0, γ , 0), where φ and γ solve the Gross-Pitaevski and
Hartree equations, i∂tφt = hφt + |φt |2φt and i∂tγt = [h(γt ), γt ]−, respectively.
The last term on the r.h.s. of (101) prevents the 100% condensation.

Equations (99), (100) and (101), with the last term on the r.h.s. of (101) dropped,
form the no quantum depletion model. Equations (99) and (100), with α = 0, are
called the two-gas model.

Given appropriate spaces, here are some key properties of (99), (100) and (101)
at a glance [3, 4]:

(A) Conservation of the total particle number: If ϕt solves Eq. (12) then the number
of particles,

N (φt , γt , σt ) := ϕt(N) , (104)

where N is the particle-number operator, is conserved.
(B) Existence and conservation of the energy: If ϕt solves (12) then the energy

E (μ(ϕt)) := ϕt(H) (105)

is conserved. Moreover, E is given explicitly by the expression

E (φ, γ, α) = Tr[h(γ φ)+ b[|φ〉〈φ|]γ + 1

2
b[γ ]γ ]

+ 1

2

∫

v(x − y)|αφ(x, y)|2dxdy . (106)

(C) Positivity preservation property: If Γ = ( γ α
ᾱ 1+γ̄

) ≥ 0 at t = 0, then this holds
for all times.

(D) Global well-posedness of the HFB equations: If the pair potential v is in the
Sobolev space Wp,1, with p > d , and satisfies v(x) = v(−x) and the initial
condition (φ0, γ0, α0) is in a certain mixed functional – operator space and
satisfies

( γ0 α0
ᾱ0 1+γ̄0

) ≥ 0, then the HBF equations (99), (100) and (101) have a
unique global solution in the same space.

6 Bogoliubov-de Gennes Equations

6.1 Formulation

We assume for simplicity that the external potential is zero, V = 0. Since the
Bogoliubov-de Gennes (BdG) equations describe the phenomenon of superconduc-
tivity, they are naturally coupled to the electromagnetic field. We describe the latter
by the vector and scalar potentials a and φ.
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It is convenient to organize the operators γ and α (see (10)) into the self-adjoint
matrix-operator

η :=
(

γ α

α∗ 1− γ̄

)

. (107)

Assuming γ carries electric charge in units of −1 (i.e. the charge density is −ργ ,
the time-dependent BdG equations can be written as (see e.g. [22, 24, 25])

i∂tη = [Λ(η, a), η], (108)

with Λ(η, a) = ( hγa v�α

v�ᾱ −hγa

)
, where v(x) is a pair potential, the operator v � α is

defined through the integral kernels as v � α (x; y) := v(x − y)α(x; y), and

hγa := ha + v ∗ ργ − v � γ , ργ (x) := γ (x; x). (109)

Above ha = −Δa and the terms v ∗ ργ and −v � γ describe the self-interaction
and exchange energies. Equation (108) is coupled to the Ampère’s law part of the
Maxwell equations

−∂t (∂ta +∇φ) = curl∗ curl a − j (γ, a), (110)

where φ is the scalar potential and j (γ, a) is the superconducting current, given by

j (γ, a)(x) := [−i∇a, γ ]+(x, x).

Here, recall, [A,B]+ := AB + BA.
Finally, recall that γ and α satisfy (11). In fact, one has the stronger property

0 ≤ η = η∗ ≤ 1. (111)

Remarks

(1) In general, ha might contain also an external potential V (x), due to the
impurities.

(2) For α = 0, Eq. (108) becomes the time-dependent Hartree-Fock equation (44)
for γ . Thus the HFE is the special diagonal case of the BdG equations.

(3) We may assume that the physical space is either Rd or a finite box in R
d and

γ and α are gauge periodic operators trace-class and Hilbert-Schmidt operators
w.r. to trace per volume. For a detailed discussion of spaces see [22].

(4) One should be able to derive (108) and (110) from hamiltonian (7) coupled to
the quantized electro-magnetic filed.

Connection with the BCS theory Equation (108) can be reformulated as an
equation on the Fock space involving an effective quadratic hamiltonian (see [3]
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for the bosonic version). These are the effective BCS equations and the effective
BCS hamiltonian (see [24, 25, 38]).

6.2 Symmetries

The equations (108), (109) and (110) are invariant under the gauge transformations
and, if the external potential V is zero, also under translations and rotations, defined
as

T
gauge
χ : (γ, α, a, φ) �→ (eiχγ e−iχ , eiχαeiχ , a +∇χ, φ − ∂tχ), (112)

for any sufficiently regular function χ : Rd → R, and

T trans
h : (γ, α, a, φ) �→ (UhγU−1

h ,UhαU
−1
h ,Uha,Uhφ), (113)

for any h ∈ R
d ,

T rot
ρ : (γ, α, a, φ) �→ (UργU−1

ρ , UραU
−1
ρ , ρUρa,Uρφ), (114)

for any ρ ∈ O(d). Here Uh and Uρ are the standard translation and rotation
transforms Uh : f (x) �→ f (x + h) and Uρ : f (x) �→ f (ρ−1x). In terms of η,
say the gauge transformation, T gauge

χ , could be written as

η → T̂
gauge
χ η(T̂

gauge
χ )−1, where T̂

gauge
χ =

(
eiχ 0
0 e−iχ

)

. (115)

Notice the difference in action of this transformation on the diagonal and off-
diagonal elements of η.

The invariance under the gauge transformations can be proven by using the
relation

T̂
gauge
χ g′(η)(T̂ gauge

χ )−1 = g′(T̂ gauge
χ η(T̂

gauge
χ )−1),

proven by expanding g′(η) (or g#(βHηa)), and the gauge covariance of Λ(η, a):

(T̂
gauge
χ )−1(Λ(T̂

gauge
χ η, a)) = Λ(η, a). (116)

The gauge symmetry is not a physical one, but rather an invariance of the solution
space (or the covariance of the equations) under ‘reparametrizations’. Therefore the
natural objects are gauge-equivalent classes of solutions. This leads to the notion of
gauge or magnetic translations (mt, below) and gauge or magnetic rotations. The
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former are given by the transformations

Tbs : (η, a) → (T
gauge
χs )−1T trans

s (η, a), (117)

for any s ∈ R
d , where χs(x) := x · ab(s), where ab(x) is the vector potential with

the constant magnetic field, curl ab = b. The invariance under these transformations
will be called the magnetic translation (mt) symmetry. The latter is given by the
transformations

Tbρ : (η, a) → (T
gauge
χρ )−1T rot

ρ (η, a), (118)

for ρ ∈ O(d). We remark that in general Tbs and Tbρ are only projective
representations ofL and O(d), respectively.

Finally, the equations (108), (109) and (110) are invariant under the transforma-
tions (see [2])

η → 1− η and η → −J ∗ηJ (the particle-hole symmetry).

Here J :=
(

0 1
−1 0

)

. The second relation follows from (the particle-hole symmetry)

J ∗ΛJ = −Λ̄. (119)

The form (107) of the matrix operator η is characterized by the relation

J ∗ηJ = 1− η̄. (120)

By the above, the evolution preserves this relation, i.e. if an initial condition has this
property, then so does the solution.

6.3 Conservation Laws

The Bogolubov-de Gennes equations (108), (109) and (110) form a hamiltonian
system with the conserved energy functional

E(η, a) = TrΩ
(
haγ

) + 1

2
TrΩ

(
(v ∗ ργ )γ

) − 1

2
TrΩ

(
(v�γ )γ

)
(121)

+ 1

2
TrΩ

(
α∗(v�α)

) + 1

2

∫

Ω

dx| curla(x)|2. (122)

where Ω is either Rd or a fundamental cell of a macroscopic lattice in R
d (see

Sect. 6.6).
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The energy E(η, a) can be derived from the total quantum hamiltonian, Htot,
of the many body system coupled to the quantum electromagnetic field, through
quasifree reduction as E(η, a) := ϕ(Htot), where ϕ is a quasifree state in question
(see (10) and [3] or [38]). Its conservation law is related to the conservation of
the total energy ϕ(Htot). (The combinatorial coefficients of each term result from
restriction to SU(2) invariant states and peeling of spin variables (cf. [38]).)

Conservation of (121)–(122) can be also proven directly similarly to the proof of
the conservation law of (48).

6.4 Stationary Bogoliubov-de Gennes Equations

We consider stationary, rather than static, solutions to (108) of the form

ηt := T̂
gauge
χ η, (123)

with η and χ̇ ≡ μ independent of t and a independent of t and φ = 0. We have

Proposition 4 Equation (123), with η and χ̇ ≡ μ independent of t , is a solution
to (108) iff η solves the equation

[Ληa, η] = 0, (124)

where Ληa ≡ Ληaμ := Λ(η, a)− μS, with S :=
(
1 0
0 −1

)

, and is given explicitly

Ληa :=
(
hγa − μ v�α

v�α∗ −h̄γ a + μ

)

, (125)

with hγa := −Δa + v ∗ ργ − v�γ and, recall, v�α is an operator with the integral
kernel v(x − y)α(x, y).

Proof Plugging (123) into (108) and using that for χ independent of x,

∂tηt = iχ̇ T̂
gauge
χ [S, η]

and (116), we obtain

− χ̇[S, η] = [Λ(η, a), η]. (126)

Since χ̇ ≡ μ, the latter equation can be rewritten as (124).

For any reasonable function f , solutions of the equation

η = f (βΛηa), (127)
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solve (124) and therefore give stationary solutions of (108). Under certain condi-
tions, the converse is also true.

The physical function f is selected by either a thermodynamic limit (Gibbs
states) or by a contact with a reservoir, or imposing the maximum entropy principle.
It is given by the Fermi-Dirac distribution (38), i.e.

f (h) = (1+ eh)−1. (128)

Inverting the function f , one can rewrite (127) as βΛηa = f−1(η). Let f−1 =:
s′. Then the static Bogoliubov-de Gennes equations can be written as

Ληa − β−1s′(η) = 0, (129)

curl∗ curl a − j (γ, a) = 0. (130)

Here 0 < β ≤ ∞ (inverse temperature) and s(η) := −(η ln η + (1 − η) ln(1 − η))

(see (41)).

Remarks

(1) One can express these equations in terms of eigenfunctions of the operatorΛηa ,
which is the form appearing in physics literature (see [2, 3]).

(2) If we drop the direct v ∗ ργ and exchange self-interaction −v�γ , then the
operator hγaμ and therefore Ληa are independent of γ and consequently
Eq. (127) defines γ in terms of α and a:

ηβa = f (βΛαa), where Λαa := Ληa

∣
∣
γ=0. (131)

(3) For (127) to give η of the form (107), the function f (h) should satisfy the
conditions

f (h̄) = f (h) and f (−h) = 1− f (h). (132)

The function f (h) given in (128) satisfies these conditions. From now on, we
assume f (h) has explicit form (128).

6.5 Free Energy

The stationary Bogoliubov-de Gennes equations (129) and (130) arise as the Euler-
Lagrange equations for the free energy functional

Fβ(η, a) := E(η, a)− β−1S1(η)− μN(η), (133)

where S(η) = Trs(η) is the entropy, N(η) := Trγ is the number of particles,
and E(η, a) is the energy functional given in (121)–(122) with η and a time-
independent.
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It is shown in [22] that on carefully chosen spaces

(a) The free energy functional Fβ is well defined;
(b) Fβ is continuously (Gâteaux) differentiable;
(c) If 0 < η < 1 and (η, a) is even in the sense of [22], Eq. (1.17), then critical

points of Fβ satisfy the BdG stationary equations (129) and (130);
(d) Minimizers of Fβ are its critical points.

Now, we define the partial gradients ∂ηFβ(η, a) and ∂aFβ(η, a) by
dηFβ(η, a)η

′ = Tr(η′∂ηFβ(η, a)) and daFβ(η, a)a
′ = ∫

a′ · ∂aFβ(η, a),
respectively. (Though the expression for Fβ(η, a) is often formal, ∂ηFβ(η, a)

and ∂aFβ(η, a) could be well-defined on appropriate spaces.)

Theorem 4 Minimizers of the free energy Fβ(η, a) are critical points of Fβ(η, a),
i.e. they satisfy the Euler-Lagrange equations

∂ηFβ(η, a) = 0 and ∂aFβ(η, a) = 0, (134)

for some β and μ (the latter are determined by fixing S(η) and Tr(γ )). The Gâteaux
derivatives, ∂ηFβ(η, a) and ∂aFβ(η, a), are given by

∂ηFβ(η, a) = Ληa − β−1g′(η), (135)

and

∂aFβ(η, a) := curl∗ curl a − j (γ, a), (136)

where, recall, j (γ, a)(x) := [−i∇a, γ ]+(x, x), with [A,B]+ := AB + BA.
Consequently, the equations (134) can be rewritten as (129) and (130).

For the translation invariant case, the corresponding result is proven in [37]. In
general case, but with a = 0 (which is immaterial here), the fact that BdG is
the Euler-Lagrange equation of BCS was used in [33], but seems with no proof
provided.

By (134), (135) and (136), we can write the equations (129) and (130) as

F ′
β(η, a) = 0, (137)

where F ′
β(η, a) = (∂ηFβ(η, a), ∂aFβ(η, a)).

Remarks

(1) Due to the symmetry (120), S(η) = Trs(η) = −T rη ln η, with s(λ) given
in (41).

(2) Fβ(η, a) is a Helmholtz free energy. This energy depends on the temperature
and the average magnetic field, b = 1

|Q|
∫
Q curl a (for a sample occupying a

finite domain Q), in the sample, as thermodynamic parameters. Alternatively,
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one can consider the free energy depending on the temperature and an applied
magnetic field, h. For a sample occupying a finite domainQ, this leads (through
the Legendre transform) to the Gibbs free energy

GβQ(η, a) := FβQ(η, a)− ΦQh,

where ΦQ = b|Q| = ∫
Q
curl a is the total magnetic flux through the sample.

The parameters b or h do not enter the equations (129) and (130) explicitly.

6.6 Ground/Gibbs States

We are looking for stationary states which minimize the free energy per unit volume.
More precisely, with some license, we say that (η∗, a∗) is a ground/Gibbs state
(depending on whether β = ∞ or β < 0), if there is a macroscopic lattice L macro,
s.t. (η∗, a∗) satisfies

• T trans
s (η, a) = T̂

gauge
χs (η, a), ∀ s ∈ L macro and for some function χ· : L macro ×

R
d → R,

for some lattice L macro ⊂ R
d with macroscopic fundamental cell Ωmacro, and

(η∗, a∗) minimizes FβΩmacro(η, a) among states having the above property. This is
equivalent to considering the equations on a large twisted torus.

In what follows, we will deal with β < ∞, i.e. with the Gibbs states only.
In general, equations (129) and (130) have the following stationary solutions

which are candidates for the Gibbs state:

1. Normal state: (η∗, 0), with α∗ = 0.
2. Superconducting state: (η∗, 0), with α∗ �= 0.
3. Mixed state: (η∗, a∗), with α∗ �= 0 and a∗ �= 0.

One expects that the Gibbs state has the maximal possible symmetry. If the
external fields are zero, then the equations are magnetically translationally invariant.
Thus, one expects that the Gibbs state is magnetically translational invariant.

We have the following general result

Proposition 5 ([22]) If η is mt-invariant, then α = 0 (i.e. the state (η, a) is
normal).

In the opposite direction we have

Conjecture 5 For β < ∞ sufficiently small, a Gibbs, normal state is mt-invariant
and therefore unique.

A stronger form of this conjecture is

Conjecture 6 A Gibbs, normal state is mt-invariant and therefore unique.
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6.7 Symmetry Breaking

Theorem 7 ([22]) Let d = 2. Suppose that b > 0 and assume that the interaction
potential v ≤ −C|x|−κ, κ < 2. Then ∃0 < β ′′

c (b) ≤ β ′
c(b) < ∞ s.t.

• If β < β ′′
c (b), then any Gibbs state is normal;

• If β > β ′
c(b), then the ground/Gibbs state is a mixed state.

b′
c b′′

c

T ′
c = T ′′

c

T ′′
c

T ′
c

HHSS

Phase Transition

Normal (MT Invariant?)

Mixed States
(breaks MT-Symmetry)

bc2(T = 0)

Flux Density b

Temperature T

In view of Proposition 5 and Conjecture 5 above, this result suggests that under
the stated conditions and as the temperature is lowered, the symmetry of the Gibbs
state is broken spontaneously.

The corresponding result for b = 0 was proved in [37]. In this case, there are
no mixed states and the ‘mixed state’ in the statement should be replaced by the
‘superconducting state’. Consequently, there are no symmetry breaking in this case.

6.8 Stability

To formulate the next result, we need some definitions. Recall that F ′
β(η, a) is the

gradient of Fβ(η, a) in the metric

〈(η′, a′), (ξ ′, c′)〉 := Tr((η′)∗ξ ′)+
∫

a′ · c′.
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Consequently, the Gâteaux derivative dF ′
β(η, a) is the Hessian of Fβ(η, a) at (η, a)

and therefore is formally symmetric. It can be shown that it is self-adjoint.
Let u = (η, a). We say that a solution u∗ to (137) is (linearly or energetically)

stable iff the linearization dF ′
β(u∗) of the map F ′

T (u) (i.e. the hessian, F
′′
T (u∗), of

the functional FT (u)) at u∗ is non-negative, i.e.

dF ′
β(u∗) ≥ 0,

and unstable otherwise.
Note that the stability implies the energy minimization property locally in space

(i.e. on a sufficiently large twisted torus).
We also consider a weaker notion of stability – the stability w.r. to generation of

the superconducting α-component, which we call the α-stability.

Proposition 6 ([22]) Let b > 0. The mt invariant (normal) state is α-stable for
β < β ′′

c (b) and, if v(r) < −|r|−κ with κ < 2, unstable for β > β ′
c(b).

6.8.1 Normal States

For b = 0 we can choose a = 0 and the magnetic translation invariance becomes
the usual translation invariance. In this case, if we drop the direct and exchange
self-interactions from hγaμ, then, as was mentioned above, the normal state is given
by (131), with a = 0. If the direct and exchange self-interactions are present, then
the existence of the normal states is established in [10].

These are normal translationally invariant states. For b �= 0, the simplest normal
states are the magnetically translation (mt-) invariant ones. The existence of the mt-
invariant normal states for b �= 0 is proven in [22]. They are of the form (η =
ηβ,b, a = ab), where ab(x) is the magnetic potential with the constant magnetic
field b (curl ab = b) and (cf. (131))

ηβb :=
(
γβb 0
0 1− γ̄βb

)

, (138)

with γβb a solution to the equation

γ = s�(βhγ,ab),

with s� := (s′)−1. (For s(x) = −(x ln x + (1 − x) ln(1 − x)), we have s�(h) =
(
eh + 1

)−1
and therefore γβb solves the equation γ =

(
eβhγ,ab + 1

)−1
.)
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6.8.2 Superconducting States

The existence of superconducting, translationally invariant solutions is proven in
[37] (see this paper and [38] for the references to earlier results and [22], for a
somewhat different approach).

6.8.3 Mixed States

For the mixed states, in the cylinder geometry, which means effectively d = 2, there
is the following specific possibility:

• Vortex lattices: For a mesoscopic latticeL (i.e. much finer thatL macro), the state
(η, a) satisfies T trans

s (η, a) = T̂
gauge
χs (η, a), for every s ∈ L meso and for some

maps χs : L ×R
2 → R.

The map χs : L × R
2 → R satisfies the co-cycle conditions,

χs+t (x)− χs(x + t) − χt (x) ∈ 2πZ, ∀s, t ∈ L , (139)

and are called the summands of automorphy (see [53] for a relevant discussion).
(The map eiχ : L × R

2 → U(1), where χ(x, s) ≡ χs(x) is called the factor of
automorphy.)

Excitations of the ground state are given by magnetic vortices, which are defined
by the condition

• T rot
ρ (η, a) = T̂

gauge
gρ (η, a) for every ρ ∈ O(2) and some functions gρ : O(2) ×

R
2 → R.

The existence of vortex lattices is proven in [22]). One might be able to prove
the existence of vortices by making lattices coarser (or b → 0) in the vortex lattice
solutions.

6.8.4 Magnetic Flux Quantization

Denote by ΩL a fundamental cell ofL . One has the following results

(a) Magnetic vortices: 1
2π

∫
R2 curl a = degg ∈ Z;

(b) Vortex lattices: 1
2π

∫
ΩL

curl a = c1(χ) ∈ Z.

Here deg g is the degree (winding number) of the map eig : O(2) → U(1) (which
is map of a circle into itself, here we assume that g(ρ) ≡ gρ is independent of
x) and c1(χ) is the first Chern number associated to the summand of automorphy
χ : L ×R

2 → R (see [53]).
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7 Existence of Periodic Solutions by the Variational
Technique

Let d = 2 or 3. An operatorA on L2(Rd) is said to be (L−) periodic iff UsAU∗
s =

A, ∀s ∈ L , where Us is the translation operator by s ∈ R
d . In what follows for any

periodic operator A, the trace is understood as the trace per volume

TrA := TrL2(R3)χΩAχΩ (140)

where χΩ is the indicator function on a fundamental domainΩ ofL . Let L2
per(R

d )

denote the local L2 space ofL -periodic functions with the inner product of L2(Ω).
We define the spaces

I s,p = {γ ∈ B(L2
per(R

d)) : ‖γ ‖s,p := ‖MsγMs‖p < ∞}, (141)

whereM = √−Δ and ‖ · ‖p is the usual Schatten tracial p-norm. Set

I
s,p

0 =I s,p ∩ {Tr γ = Z} ∩ {0 ≤ γ = γ ∗ ≤ 1}
∩ {‖(−Δ)−1/2(ργ − κ)‖L2(Ω) < ∞} (142)

In this section we use the variational approach and the fact that (71) (or (75)) is
the Euler-Lagrange equations for free energy (74) to prove the following (see [22])

Theorem 8 Let β < ∞. Let κ = κper is L−periodic (an ideal crystal) and
Xc assume is smooth bounded below, and C1 on with Xc′ bounded. Then there
exists μ ∈ R such that the KS equation (71) on I

1,1
0 have an L−periodic, energy

minimizing solution γ satisfying
∫
Ω

γ (x, x) = ∫
Ω

κ .

Since we minimize the free energy for Trγ constant, we drop the term −μTrγ
from (74) to arrive at the free energy functional to be minimized

Fβ(γ ) =Tr((−Δ)γ )+ 1

2
〈(ργ − κ), (−Δ)−1(ργ − κ)〉L2(Ω)

+
∫

Ω

Xc(ργ ) − β−1S(γ ) . (143)

Moreover, recall ργ (x) = γ (x, x) and Xc′(s) = xc(s) and

S(γ ) = Tr s(γ ), s(x) = −(x ln(x)+ (1− x) ln(1− x)) . (144)

We set Fβ(γ ) = ∞ if any of the terms is not defined.

Theorem 9 (Main Result) Under the conditions of Theorem 8, Fβ(γ ) has a

minimizer on the set I 1,10 . Moreover, this minimizer satisfies KS equation (71).
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We prove this theorem in a series of steps. We will use standard minimization
techniques to prove that Fβ(γ ) is coercive and weakly lower semi-continuous, and
I
1,1
0 weakly closed.

Part 1: coercivity

Lemma 1 Assume that Tr γ = Z. We have the lower bound

Fβ(γ ) ≥1

2
Tr((−Δγ )+ 1

2
〈(ρ − κ), (−Δ)−1(ρ − κ)〉 − C . (145)

for some constant C.

Proof Recall that fFD(λ) = (
eλ + 1

)−1
. First observe that 1

2Tr(−Δγ )− β−1S(γ )

with Tr γ = Z has minimizer

γ = f (β(−1

2
Δ − μ)) (146)

for a suitable Lagrangian multiplier, μ, from Tr γ = Z. Evaluating 1
2Tr(−Δγ ) −

β−1S(γ ) at this minimizer gives some constant, say, C1.
Recalling definition (143) and using that Ex is bounded below, say by C2,

gives (145).

Part 2: Convergence We follow the ideas of [18]. By Part 1, we note that each term
on the r.h.s. of (145) is either positive or constant. Thus, Fβ is bounded below. Let
γn be a minimizing sequence ofFβ(γ ). Then we see that ‖γn‖I 1,1 = Tr(−Δ)γn and
‖∇−1ργn‖L2(Ω) are uniformly bounded. We look for a limit of the sequence (γn).
The non-abelian Hölder inequality show that

‖γn‖I 0,2 ≤ ‖γn‖∞‖γn‖I 0,1 ≤ Z < ∞ (147)

is bounded. Hence, upto a subsequence, the kernels γn(x, y) are in L2
per (R×R) (the

space of L -periodic under the action (x, y) → (x + s, y + s), s ∈ L ), locally L2

functions on (R2 × R
2) and converges weakly to some γ ′

0(x, y) ∈ L2
per (R

2 × R
2).

We extend γ ′
0(x, y) to all of R2 × R

2 by periodicity. Let γ ′
0 denote the operator

whose kernel is γ ′
0(x, y). Clearly, γn ⇀ γ ′

0 weakly in I 0,2.

Now, we show that γ ′
0 ∈ I

1,1
0 . That is, γ ′

0 ∈ I 1,1 and Tr(γ ′
0) = Z, (γ ′

0)
∗ = γ ′

0,
and 0 ≤ γ ′

0 ≤ 1. Using the Bloch-Floquet decomposition, we see that

∫

Ω∗
dξ̂ TrL2(Ω)[(1− Δξ)

1/2(γn)ξ (1− Δξ)
1/2] (148)

=
∫

Ω∗
dξ̂ TrL2(Ω)[(1− Δξ)γn] (149)

=Tr(1− Δ)γn < ∞ . (150)
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where the second line follows by expanding the traces on L2(Ω) in an orthonormal
basis of eigenfunctions of −Δξ and the fact 0 ≤ (γn)ξ . This shows that (1 −
Δξ)

1/2(γn)ξ (1 − Δξ)
1/2 is trace class (hence HS) for almost every ξ ∈ Ω∗. It

follows that the full operator (1 − Δ)1/2γn(1 − Δ)1/2 is HS in trace per volume
norm and whose trace is equal to (150). Hence a weak limit exists and necessarily
is (1− Δ)1/2γ ′

0(1− Δ)1/2. We see that

Z = lim
n→∞Tr(γn) (151)

= lim
n→∞Tr((1− Δ)1/2γn(1− Δ)1/2(1− Δ)−1) = Tr(γ ′

0) (152)

since 1 − Δ is HS (in trace-per-volume norm) for d = 2, 3. The fact γ ′
0 ∈ I

1,1
0

is proved by using a compactness argument pointwise in the fiber decomposition
through a Bloch-Floquet argument similar to one used in (148), (149) and (150).
Note that the fact γ ′

0 = γ ′∗
0 and the bound 0 ≤ γ ′

0 ≤ 1 is preserved by weak HS (per
volume) convergence.

Finally, we show that
√
ρn ∈ H 1(Ω) and converges to some ρ′′

0 ∈ H 1(Ω)

weakly. Let ϕλ(ξ, x) denote the eigenvectors of γξ with eigenvalue λ in its Bloch-
Floquet-Zack decomposition. Since the map f �→ ∫

Ω
|∇√

f |2 is convex, we see
that

∫

Ω

|∇√
ρ(x)|2dx =

∫

Ω

∣
∣
∣
∣
∣
∇

(∫

Ω∗
dξ

∑
λξ |ϕξ(x)|2

)1/2
∣
∣
∣
∣
∣

2

dx (153)

�
∫

Ω

∫

Ω∗
dxdξ̂

∑
λξ |∇|ϕλξ (ξ, x)||2 (154)

�
∫

Ω

∫

Ω∗
dxdξ̂

∑
λξ |∇ϕλξ (ξ, x)|2 (155)

=Tr(−Δγ ) (156)

This shows that
√
ρn are bounded in H 1(Ω) and thus converges weakly, in H 1 to√

ρ′′
0 ∈ H 1(Ω). Compactness of H 1(Ω) in L2(Ω) shows that

√
ρn converges to

√
ρ′′
0 in L2, hence ρn → ρ′′

0 in L1(Ω). It follows that for any smooth bounded

periodic function f

〈ρ′′
0 , f 〉 = lim

n→∞〈ρn, f 〉 = lim
n→∞Trγnf (157)

= lim
n→∞Tr(γ ′

0f ) (158)

=〈ρ′
0, f 〉 (159)
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Thus, we denote the common limit as γ0 := ρ′
0 = ρ′′

0 and ρ0 := den[γ0]. We
summarize the types of convergences here:

(1− Δ)1/2γn(1− Δ)1/2 ⇀ (1− Δ)1/2γ0(1− Δ)1/2 weakly in I 0,2 (160)
√
ρn ⇀

√
ρ0 in H 1(Ω) (161)

ρn − κ → ρ0 − κ in H−1(Ω) (162)

for some γ0 ∈ I
1,1
0 and ρ0 := den[γ0]. The last line follows by compact embedding

theorem on Ω .

Part 3: Weak lower semi-continuity

Lemma 2 The functional Fβ is weakly lower semi-continuous with respect to
convergence (160), (161) and (162).

Proof We study the functional Fβ(γ ) term by term. For the first term on the r.h.s.
of (143), it satisfies Tr(hγ ) = ‖γ ‖I 1,1 and is linear, it is ‖ · ‖I 1,1 -weakly lower semi-
continuous. The Coulumb term 〈(κ −ργ ), (−Δ)−1(κ −ργ )〉 is quadratic and easily
seen to be Ḣ−1(Ω)-weakly lower semi-continuous. The exchange-correlation term
is weakly lower semi-continuous by (161) (which implies that Xc(ρn) → Xc(ρ0)

a.e.) and Fatou’s lemma.
Thus, we study the term −β−1S(γ ). We use an idea from [43] which allows

to reduce the problem to a finite-dimensional one. To the latter end, we recall that
S(γ ) = Tr(s(γ )) for s(x) = −x ln x. In Bloch-Floquet decomposition, this term is

−S(γn) = −
∫

Ω∗
dξ̂ S((γn)ξ ) = −

∫

Ω∗
dξ̂ Tr(s((γn)ξ )) (163)

where s(x) = 1
2 (−x ln(x)− (1 − x) ln(1 − x)). We define the relative entrop of A

and B to be

S(A|B) := Tr(s(A|B)), s(A|B) := A(ln(A)− ln(B)) . (164)

Then we see that

S(A) = S(B) − S(A|B)− Tr[(A − B) ln(B)] . (165)

Using this formula, writing A = (γn)ξ and B = (γ∗)ξ =
(

C

1+eβ
√−Δ

)

ξ
where C is

chosen so that Tr(g∗) = Z,

−S(γn) =
∫

Ω∗
dξ̂ (−1)S((γ∗)ξ )+ Tr((γn)ξ − (γ∗)ξ ln(γ∗)ξ ) (166)

+ S((γn)ξ |(γ∗)ξ ) (167)
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We note that ln((γ∗)ξ ) � 1 + √−βΔξ and |S(γ∗)| < ∞. By (160) and linearity
(hence convexity), (166) converges in the limit to −S(γ∗) + Tr((γ0 − γ∗) ln(γ∗).
So it suffices that we control the last term (167). We improve convergence for a.e.
ξ . By considering

√
(γn)ξ and dropping to a subsequence, (148) shows that (1 −

Δξ)
1/2

√
(γn)ξ converges weakly in HS norm for almost every ξ ∈ Ω∗. Similarly,

∫

Ω∗
dξ̂ TrL2(Ω)[

√
(γn)ξ (1− Δξ)

√
(γn)ξ ] (168)

=
∫

Ω∗
dξ̂ TrL2(Ω)[(1− Δξ)γn] (169)

=Tr(1− Δ)γn < ∞ (170)

by expanding the trace using an orthonormal basis of (γn)ξ . Thus, weak convergence
is also obtained for

√
(γn)ξ (1−Δξ)

1/2. Regarding
√
(γn)ξ as an kernel in L2(Ω ×

Ω), and since Ω is compact, we may assume that (γn)ξ → (γ0)ξ in HS norm for
almost every ξ ∈ Ω∗. Now, by [43], we can write

S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γn)ξ )

= sup
λ∈(0,1)

Tr(sλ((γn)ξ |(γ∗)ξ )) (171)

where sλ(x)(A|B) = λ−1(s(λA + (1 − x)B) − λs(A) − (1 − λ)s(B)). Moreover,
sλ(A|B) ≥ 0 for any A,B since the entropy function s is concave. Hence, we may
write

S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γn)ξ )

= sup
λ∈(0,1)

sup
P

Tr(P sλ((γn)ξ |(γ∗)ξ )) (172)

where the supP is taken over all finite rank projections P . It follows that for any λ

sufficiently small and any finite rank projection P ,

S((γn)ξ |(γ∗)ξ ) + Tr((γ∗)ξ − (γn)ξ ) ≥ Tr(P sλ((γn)ξ |(γ∗)ξ )) (173)

Taking n → ∞, since P is finite rank and (γn)ξ → (γ0)ξ in HS norm (hence
operator norm) for almost every ξ ∈ Ω∗,

lim inf
n→∞ S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γ0)ξ )

≥ Tr(P sλ((γ0)ξ |(γ∗)ξ )) (174)
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Now taking lim supλ→0+ and supP , we see that

lim inf
n→∞ S((γn)ξ |(γ∗)ξ )+Tr((γ∗)ξ − (γ0)ξ )

≥ Tr(s((γ0)ξ |(γ∗)ξ )) . (175)

The proof is complete by Fatou’s Lemma applied to the integral
∫
Ω∗ dξ̂ and the fact

∫

dξ̂Tr((γ∗)ξ − (γ0)ξ ) = Tr(γ∗)− Tr(γ0) = 0 . (176)

Proof of Theorem 9: Existence of Minimizer. With the results above, the proof is
standard. Let (γn) ∈ I

1,1
0 be a minimizing sequence forF . Lemma 1 shows thatFβ

is coercive. Hence ‖γn‖(1) is bounded uniformly in n. By Sobolev-type embedding
theorems, (γn) converges strongly in I

s,1
0 for any s < 1. Moreover, together with

the Banach-Alaoglu theorem, the latter implies that (γn) converges weakly in I
1,1
0 .

Hence, denoting the limit by γ0, we see that, by Lemma 2, Fβ is lower semi-
continuous:

lim inf
n→∞ Fβ(γn) ≥ Fβ(γ0). (177)

Hence, γ0 is indeed a minimizer. To show that minimizer satisfies the gHF equation,
we start with some lemmas.

Lemma 3 Let γ ∈ I
1,1
0 be such that s(γ ) := −(γ ln γ + (1−γ ) ln(1−γ )) is trace

class and γ ′ satisfy

Trγ ′ = 0 and (γ ′)2 � (γ (1− γ ))2 . (178)

Then,Fβ(γ ) is Gâteaux differentiable at γ with respect to variations γ ′ and

dγFβ(γ )g′ = dγFβ(γ )γ ′ = Tr[(hφ − β−1s′(γ ))γ ′] . (179)

Proof We consider first the variation in I
1,1
0 of the form γ + εγ ′ for ε > 0 small.

Note that if γ ′ satisfies (178), then for ε small enough, γ + εγ ′ ∈ I
1,1
0 . Let

dγFβ(γ, a)γ
′ := ∂εFβ(γ + εγ ′, a) |ε=0, if the r.h.s. exists. From (133) and (121)

and the assumption that Xc′ is bounded, we see that

dγ Fβ(γ, a)γ
′ = Tr(hφγ

′)− β−1dS(γ )γ ′, (180)

where −Δφ = 4π(κ − ρ) provided dS(γ )γ ′ := ∂εS(γ + εγ ′) |ε=0 exists.
Differentiability of S is proved in the next lemma.

Lemma 4 Let γ ∈ I
1,1
0 be such that s(γ ) := −(γ ln γ + (1−γ ) ln(1−γ )) is trace

class and γ ′ satisfy the second condition in (178). Then S is Gâteaux differentiable
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and its derivative is given by

dS(γ )γ ′ = Tr(s′(γ )γ ′). (181)

Proof For simplicity, we will only consider the case s(λ) = −λ ln(λ) as the full
case is similar. Denote γ ′′ := γ + εγ ′. We write

S(γ ′′)− S(γ ) = −Tr(γ (ln γ ′′ − ln γ )

+ εγ ′(ln γ ′′ − ln γ ) + εγ ′ ln γ ) (182)

=: A + B − εTr(γ ′ ln γ ). (183)

Using the formula ln a − ln b = ∫ ∞
0 [(b + t)−1 − (a + t)−1]dt and the second

resolvent equation, we compute

A := − Tr(γ (γ ′′ − ln γ )) = −Tr
∫ ∞

0
{γ [(γ + t)−1 − (γ ′′ + t)−1]}dt

=− Tr
∫ ∞

0
{γ (γ + t)−1εγ ′(γ ′′ + t)−1}dt

=− Tr

(∫ ∞

0
{γ (γ + t)−1εγ ′(γ + t)−1}dt

−
∫ ∞

0
{γ (γ + t)−1εγ ′(γ + t)−1εγ ′(γ ′′ + t)−1}dt

)

. (184)

Similarly, we have

B := − Tr(εγ ′(ln γ ′′ − ln γ )) (185)

=− Tr
∫ ∞

0
{εγ ′[(γ + t)−1 − (γ ′′ + t)−1]}dt

=− Tr
∫ ∞

0
{εγ ′(γ + t)−1εγ ′(γ ′′ + t)−1}dt. (186)

Combining the last two relations with (183), we find

S(γ + εγ ′) − S(γ ) = εS1 + ε2R2 (187)

S1 := −Trγ ′ ln γ − Tr
∫ ∞

0
{γ (γ + t)−1γ ′(γ + t)−1}dt (188)

R2 := −Tr
∫ ∞

0
{γ (γ + t)−1γ ′(γ + t)−1γ ′(γ ′′ + t)−1

− γ ′(γ + t)−1γ ′(γ ′′ + t)−1}dt (189)
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The estimates below show that the integrals on the r.h.s. converge. We can compute
the integral

Tr
∫ ∞

0
{γ (γ + t)−1γ ′(γ + t)−1}dt (190)

=Tr
∫ ∞

0
{γ (γ + t)−2γ ′}dt = Trγ ′ (191)

in the expression for S1. Moreover, using γ (γ + t)−1 − 1 = −t (γ + t)−1, we can
rewrite the expression for R2. Together, we obtain

S1 :=Tr{γ ′ ln γ + γ ′}, (192)

R2 :=Tr
∫ ∞

0
{t (γ + t)−1γ ′(γ + t)−1γ ′(γ ′′ + t)−1}dt. (193)

Using (γ ′)2 � (γ (1 − γ ))2 and γ is trace class, we see that (192) is well defined
and finte. To demonstrate the convergence in (193), we estimate the integrand on
the r.h.s. of (193). we can formally write

(γ + t)−1γ ′(γ + t)−1γ ′(γ ′′ + t)−1 (194)

=(γ + t)−1γ ′(γ + t)−1γ ′(γ + t)−1
∑

n≥0

εn[−γ ′(γ + t)−1]n . (195)

Since γ ′ and γ are bounded. We see that

t‖(γ + t)−1γ ′(γ + t)−1γ ′(γ + t)−1εn[−γ ′(γ + t)−1]n‖I 0,1 (196)

≤εnt‖(γ + t)−1‖∞‖γ ′(γ + t)−1γ ′(γ + t)−1‖I 0,1‖γ ′(γ + t)−1‖n∞ (197)

≤εn‖γ ′(γ + t)−1γ ′(γ + t)−1‖I 0,1‖γ ′(γ + t)−1‖n∞ (198)

Thus, if ε < 1
2‖γ ′(γ + t)−1‖−1∞ for all t ∈ [0,∞) and

∫ ∞
0 ‖γ ′(γ + t)−1γ ′(γ +

t)−1‖I 0,1dt < ∞, then we have convergence. By the condition in (178) on γ ′, we
have

‖γ ′(γ + t)−1‖∞ ≤ ‖γ (1− γ )(γ + t)−1‖∞ ≤ ‖η(η + t)−1‖∞
where ηγ (1− γ ). Since 0 ≤ γ ≤ 1, so does η. Hence

‖γ ′(γ + t)−1‖∞ ≤ 1
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Next,

‖γ ′(γ + t)−1γ ′(γ + t)−1‖I 0,1
≤ ‖γ ′(γ + t)−1‖I 2‖γ ′(γ + t)−1‖I 0,2 (199)

Now, we show that (199) is L2(dt). By the condition in (178) on γ ′, we have

‖γ ′(γ + t)−1‖I 2 ≤ ‖γ (1− γ )(γ + t)−1‖I 2 ≤ ‖η(η + t)−1‖I 2 ,

where η := γ (1− γ ). Thus,

‖γ ′(γ + t)−1‖I 2 � Tr(η2(t + η)−2) =
∫

Ω∗
dη̂ Tr(η2ξ (t + ηξ )

−2)

Let μξ,n be the eigenvalues of the operator ηξ := γξ (1− γξ ). Then we have

‖ηξ (ηξ + t)−1‖2
I 2

=
∑

n

μ2
ξ,n(μξ,n + t)−2, (200)

and therefore
∫ ∞

0
‖ηξ (ηξ + t)−1‖2

I 2
dt =

∫ ∞

0

∑

n

μ2
ξ,n(μξ,n + t)−2dt

=
∑

n

μξ,n = Trηξ . (201)

Since γ (1 − γ ) is a trace class operator, this proves the claim and, with it, the
convergence of the integral in (193).

To sum up, we proved the expansion (187) with S1 given by (192), which is
the same as (181), and R2 bounded. In particular, this implies that S is C1 and its
derivative is given by (181).

And finally, we have the following:

Lemma 5 Suppose that γ is a minimizer of Fβ on I
1,1
0 , then 0 < γ < 1.

Proof We prove that γ cannot have eigenvalues 0 and 1 simultaneously. The case
where only 0 or only 1 is an eigenvalue is treated similarly. If not, decomposing into
Bloch-Floquet decomposition γξ , we see that γξ has a kernel for a subset, S0 ⊂ Ω∗,
and eigenspace of 1 on S1 ⊂ Ω∗, both of positive measure. For λ = 0, 1, let Pλ,ξ

denote the projection onto the λ-eigenvector for each ξ ∈ S in a way such that Pλ,ξ

is measurable in ξ . Let

P =
∫

Ω∗
dξ̂f (ξ)(P0,ξ − P1,ξ ) . (202)
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where f (ξ) ≥ 0 is chosen so that TrP = 0. Since 0 ≤ γ ≤ 1, it is not hard to sees
that P satisfies (178). Following the proof of Lemmas 3 and 4, we compute

Fβ(γ + εP ) −Fβ(γ ) (203)

=β−1
∫

Ω∗
dξ̂(εf (ξ)) ln(εf (ξ))P0,ξ (204)

+ (1− εf (ξ)) ln(1− εf (ξ))P1,ξ )+ O(ε) (205)

By choosing f (x) = |S1||S0|χS0 + |S0||S1|χS1 , for example, we note that the first term is of
order O(ε ln ε) � O(ε) and negative. This contradicts minimality of γ .

Proof (Proof of Theorem 9: Solution to KS equation (71)) By the minimizer
existence part of Theorem 9, let γ0 ∈ I

1,1
0 denote the minimizer of the free energy

Fβ . For notational convenience let A := dγF (γ0). We show that A is multiple of
the identity. Let

v0 := γ0(1− γ0)

∫

Ω∗
dξ̂ 1, (206)

and let

v := γ0(1− γ0)

∫

Ω∗
dξ̂uξ (207)

where uξ ∈ L2
ξ (Ω) is an arbitrary elements of the fiber space in the Bloch-Floquet

decomposition and ‖uξ‖2 is uniformly bounded upto a null set in Ω∗ and v is
orthogonal to v0. By Lemma 5, we see that 0 < γ0 < 1. This shows that γ (1 − γ )

is a (possibly unbounded) bijection. Hence the linear space spanned by all such v’s
is dense in L2(R3). Let

γ ′ = Pv − ‖v‖22
‖v0‖22

Pv0 . (208)

where Px is the orthogonal projection onto x. Then we note that γ ′ satisfies the
condition (178). Hence, by minimality of γ0, Lemma 3 shows that

Tr(Aγ ′) ≥ 0 . (209)

We note that if γ ′ satisfies condition (178), so does−γ ′. It follows that

Tr(Aγ ′) = 0 . (210)
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It follows that

0 =
∫

Ω∗
dξ̂ Tr(Aξg

′
ξ ) (211)

=
∫

Ω∗
dξ̂ Tr(Aξ (Pv)ξ )− ‖v‖22

‖v0‖22
Tr(Aξ (P0)ξ ) (212)

=〈v,Av〉 − ‖v‖22
‖v0‖22

〈v0, Av0〉 . (213)

Let x̂ = x/‖x‖, then we see that

〈v̂, Av̂〉 = 〈v̂0, Av̂0〉 (214)

for all v orthogonal to v0 of the form (207). Since the space of v0 and all such v’s
are dense, we conclude that A is a multiple of the identity, which we denote by μ.
This shows that

0 = A − μ = dγF (γ0)− μ1 = hA,μ,φ − β−1s′(γ0) . (215)

The case for daFβ(γ0) = 0 is much easier. Its proof is standard and can be found,
for example, in [22].

Finally, to see that μ ∈ R, we simply note that μ1 = hφ − β−1s′(γ0) is
symmetric.
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Critical Exponents for Differential
Inequalities with Riemann-Liouville
and Caputo Fractional Derivatives

Marcello D’Abbicco

Abstract We find the critical exponents for global in time solutions to differential
inequalities with power nonlinearities, supplemented by an initial data condition.
The operator for which the differential inequality is studied contains a Caputo or
Riemann-Liouville time derivative of fractional order and a sum of homogeneous
spatial partial differential operators. In the special case of a fractional diffusive
equation, the obtained critical exponents are sharp. In particular, global existence of
small data solutions to the fractional diffusive equation with Caputo and Riemann-
Liouville time derivative of order in (0, 1) and in (1, 2), holds for supercritical
powers. The existence result for the superdiffusive case (α ∈ (1, 2)), which
interpolates a semilinear heat equation and a semilinear wave equation, was recently
obtained in the general setting by the author and his collaborators. We use a simple
representation of Mittag-Leffler functions to show that global existence of small
data solutions for supercritical powers also holds for to the subdiffusive equation
with Caputo and Riemann-Liouville time derivative (α ∈ (0, 1)).

1 Introduction

We consider the fractional differential inequalities

CDα
0+u+ A(x, ∂x)u ≥ |u|p, t ≥ 0, x ∈ R

n, (1)

and

RLDα
0+u+ A(x, ∂x)u ≥ |u|p, t ≥ 0, x ∈ R

n, (2)
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where α ∈ R+ \ N, p > 1, and CDα
0+ and RLDα

0+ respectively denote the Caputo
and the Riemann-Liouville (forward) fractional derivatives of order α, with starting
time 0.

We assume that

A(x, ∂x) =
∑

1≤|β|≤m

aβ(x) ∂
β
x , (3)

is a differential operator of order m ≥ 1, with aβ smooth in R
n \ {0} and

homogeneous of degree rβ < |β|, that is,

∀β, ∃rβ < |β| : ∀x �= 0, aβ(x) = |x|rβaβ(x/|x|). (4)

The differential operator A(x, ∂x) is homogeneous of degree h if |β| − rβ = h,
for any β. In the general case, we will denote by h the lowest degree of the
homogeneous terms aβ∂

β
x (see later, definition (13)).

Moreover, we assume that

∀β : ∂β
x aβ(x) = 0. (5)

Thanks to condition (5), the adjoint operatorA∗(x, ∂x) contains no zero order terms
(see later, Definition 1).

The study of differential inequalities for evolution equations in the space-time
is inspired by the study of differential inequalities in the space R

n (see, for
instance, [2]). In particular, the method of the test function used to prove differential
inequalities in space can be adapted to operators in the space time [0,∞) × R

n

(see, in particular, [6], for general variable coefficients operators). The technique
employed to study differential inequalities is often sharp even when applied to
the corresponding equality, replacing the inequality Lu ≥ |u|p by the equa-
tion Lu = |u|p. That is, for several models (for instance, heat equations, damped
wave equations, and related systems) the counterpart of a nonexistence result
for a differential inequality (or a system of differential inequalities) in some
range for power nonlinearities, is given by the existence result for differential
equations (or system of differential equations), out of the previous range for power
nonlinearities.

Here and in the following, we set κ = �α = −!−α", the smallest integer
which is greater or equal than α. For any β > 0, the (forward) Riemann-Liouville
fractional integral of order β is given by

J
β
0+f (t) = 1

Γ (β)

∫ t

0
(t − s)β−1 f (s) ds,
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for any t > 0. For any α ∈ R+ \ N, the (forward) Caputo and Riemann-Liouville
fractional derivatives of order α > 0, are given by the expressions

CDα
0+f (t) = J κ−α

0+
(
∂κ
t f

)
(t), (6)

RLDα
0+f (t) = ∂κ

t

(
J κ−α
0+ f

)
(t), (7)

for any t > 0. We remark that, due to α �∈ N, the definition of Caputo fractional
derivative given in (6) is equivalent to the more general one (see Theorem 2.1
in [11]):

CDα
0+f (t) = RLDα

0+f̃ (t), f̃ (t) = f (t)−
κ−1∑

j=0

f (j)(0)

j ! tj .

At t = 0, the previous definitions are intended as the limit:

CDα
0+f (0) = lim

t→0

CDα
0+f (t), (8)

RLDα
0+f (0) = lim

t→0

RLDα
0+f (t), (9)

J
β

0+f (0) = lim
t→0

J
β

0+f (t). (10)

We supplement the inequalities with an initial condition, respectively,

∂κ−1
t u(0, x) = uκ−1(x), (11)

for (1), and

RLDα−1
0+ u(0, x) = uα−1(x), (12)

for (2) (initial condition (12) is intended in the sense of (9)). In initial condition (12)
we formally set

RLD
α−1
0+ u(0, x) = J 1−α

0+ u(0, x),

when α ∈ (0, 1) (in the sense of (10)).
We derive a necessary condition on the exponent p in (1) and, respectively, (2),

which has to be satisfied to have global in time solutions, provided that suitable sign
assumptions are verified by the initial data defined in (11) and, respectively, (12).
For the ease of reading, we postpone the definition of global (weak) solution to
Sect. 2.
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Theorem 1 Let α ∈ R+\N. Assume thatA(x, ∂x) verifies (4) and (5), and fix h > 0
as

h = min
aβ �=0

(|β| − rβ). (13)

Assume that there exists a non-trivial global weak solution u to (2) (in the sense of
Definition 4), with

uα−1 ≥ 0, or uα−1 ∈ L1 with
∫

Rn

uα−1(x) dx > 0, (14)

where uα−1 is the initial condition in (12). Then

n > h

(

1− 1

α

)

,

and p > p̃(n, α), where

p̃(n, α) = 1+ h

n − h(1− 1/α)
. (15)

Assume that there exists a global weak solution u to (2) (in the sense of Definition 4),
and that there exist ε > 0, R > 0, such that

uα−1(x) ≥ ε |x|−θ , ∀|x| ≥ R, (16)

for some θ ∈ (−∞, n), where uα−1 is the initial condition in (12). Then

θ > h

(

1− 1

α

)

,

and p > p̃(θ, α), where

p̃(θ, α) = 1+ h

θ − h(1− 1/α)
. (17)

We remark that the critical exponent in (15) for problem (2) was the same under
both the assumption uα−1 ≥ 0 and

∫
Rn uα−1 dx > 0. Namely, the result remain

valid even if uα−1 = 0 (and the solution is non trivial, which implies α > 1). On the
other hand, for problem (1), the stronger sign assumption on the initial data uκ−1
brings the benefit of a larger critical exponent.

Theorem 2 Let α ∈ R+ \ N and set κ = �α . Assume that A(x, ∂x) verifies (4)
and (5), and fix h > 0 as in (13).
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Assume that there exists a non-trivial global weak solution u to (1) (in the sense
of Definition 3), with

uκ−1 ≥ 0, (18)

where uκ−1 is the initial condition in (11). Then

n > h

(

1− 1

α

)

,

and p > p̃(n, α), where p̃(n, α) is given by (15).
Assume that there exists a global weak solution u to (1) (in the sense of

Definition 3), with

uκ−1 ∈ L1,

∫

Rn

uκ−1(x) dx > 0, (19)

where uκ−1 is the initial condition in (11). Then

n >
h(κ − 1)

α
,

and p ≥ p̄(n, α), where

p̄(n, α) = 1+ h

n − h(κ − 1)/α
. (20)

Assume that there exists a global weak solution u to (1) (in the sense of Definition 3),
and there exist ε > 0, R > 0, such that

uκ−1(x) ≥ ε |x|−θ , ∀|x| ≥ R, (21)

for some θ ∈ (−∞, n), then

θ >
h(κ − 1)

α
,

and p > p̄(θ, α), where

p̄(θ, α) = 1+ h

θ − h(�α − 1)/α
. (22)

Remark 1 It is clear that

p̄(θ, α) > p̃(θ, α),

for any α ∈ R+ \N, and for any θ ≤ n.
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The critical exponents in Theorems 1 and 2 have a special interest, in view of the
fact that for α ∈ (0, 1) and for α ∈ (1, 2), we can provide examples of Cauchy-type
problems with power nonlinearity |u|p, for which global small data solutions exist
in the supercritical range of p.

Indeed, in the limit case α = 1, both the critical exponents in (15) and (20)
tend to 1 + h/n. For integer, even, values of h, this latter is Fujita exponent for the
diffusive equation (see, in particular, [10])

ut + (−Δ)h/2u = |u|p, t ≥ 0.

In [7, 8], it has been shown that global solutions to the Cauchy-type problem

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+u+ (−Δ)h/2u = |u|p, t ≥ 0,

u(0, x) = u0(x),

ut (0, x) = u1(x),

(23)

for α ∈ (1, 2), exist, for any p ≥ p̄(n, α), if initial data are assumed to be small
in L1. Moreover, if the second data u1 vanishes, then global small data solutions
exist for any p > p̃(n, α).

Similarly, global solutions to the Cauchy-type problem

⎧
⎪⎪⎨

⎪⎪⎩

RLDα
0+u + (−Δ)h/2u = |u|p, t ≥ 0,

J 2−α
0+ u(0, x) = 0,

RLD
α−1
0+ u(0, x) = uα−1(x),

(24)

for α ∈ (1, 2), exist, for any p > p̃(n, α). Here the initial condition is intended in
the sense of (9).

Moreover, global solutions to (23) exist assuming small data in Lm, with m ∈
(1, 2], if p > p̄(n/m, α), and if p > p̃(n/m, α) when u1 vanishes, and global
solutions to (24) exist assuming small data in Lm, with m ∈ (1, 2], if p >

p̃(n/m, α).
The previous results show that the exponents p̃(n, α) and p̄(n, α), in Theorems 1

and 2 are sharp for α ∈ (1, 2). Indeed, Theorems 1 and 2 are valid, in particular, if
the equality is verified in (2) and (1), and for the constant coefficients, homogeneous,
operator A = (−Δ)h/2, with h even integer.

The next statements will also prove the sharpness of the exponent p̄(n, α) in
Theorem 2 and of the exponent p̃(n, α) in Theorem 1 for α ∈ (0, 1). For the sake
of brevity, we fix h = 2 and we only consider L1 smallness of the initial data.

Theorem 3 Let α ∈ (0, 1), n ≥ 1, and

p ≥ p̄(n)
.= 1+ 2

n
= p̄(n, α).
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Moreover, let p < 1 + 2/(n − 2), if n ≥ 3. Then there exists ε > 0 such that for
any u0 ∈ A = L1 ∩ Lp, with

‖u0‖A = ‖u0‖L1 + ‖u0‖Lp ≤ ε,

there exists a unique solution u ∈ C ([0,∞), Lp) to the Cauchy-type problem

{
CDα

0+u − Δu = |u|p, t ≥ 0,

u(0, x) = u0(x).
(25)

Moreover, the solution verifies the following long time decay estimate

‖u(t, ·)‖Lp ≤ C (1+ t)
− nα

2

(
1− 1

p

)

‖u0‖A , (26)

for any t ≥ 0, and for some C > 0, independent of u0.

Remark 2 For α ∈ (0, 1), the critical exponent p̄(n) = 1 + 2/n in Theorem 3 is
the same critical exponent for the heat equation. However, in the critical case p =
1 + 2/n, we have the existence of global small data solutions for the subdiffusive
equation, whereas finite time blow-up holds for the heat equation.

Before stating the corresponding result with the Riemann-Liouville fractional
derivative, we need to introduce the following space. For any γ ∈ (0, 1), we
define Cγ (I,X), where I = [0, T ] or I = [0, T ), and X is a functional space,
as the space of functions f (t, x) such that tγ f (t, ·) ∈ C (I,X).

Theorem 4 Let α ∈ (0, 1), n ≥ 1, and

p > p̃(n, α) = 1+ 2

n+ 2(1/α − 1)
.

Moreover, let p < 1 + 2/(n − 2), if n ≥ 3, and assume the following restriction
on p:

(
1

α
− 1

)

(p − 1)+ n

2

(

1− 1

p

)

≤ 1. (27)

Then there exists ε > 0 such that for any uα−1 ∈ A = L1 ∩ L∞, with

‖uα−1‖A = ‖uα−1‖L1 + ‖uα−1‖L∞ ≤ ε,

there exists a unique solution u ∈ C1−α([0,∞), Lp) to the Cauchy-type problem

{
RLDα

0+u− Δu = |u|p, t ≥ 0,

J 1−α
0+ u(0, x) = uα−1(x).

(28)
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Moreover, the solution verifies the following long-time decay estimates

‖u(t, ·)‖Lp ≤ C tα−1 (1+ t)
− nα

2

(
1− 1

p

)

‖uα−1‖A , (29)

for any t > 0, and for some C > 0, independent of uα−1. In (28), the initial
condition is intended in the sense of (10).

Remark 3 Condition (27) will be used to control the singular behavior of the power
nonlinearity at t = 0. We remark that the range of powers p > p̃(n, α) which
satisfy (27) is not empty. Indeed, p̃(n, α) is the solution of the equation

(
1

α
− 1

)

(p̃ − 1)+ n

2
(p̃ − 1) = 1.

Condition (27) may also be written as a second order inequality in p:

(
1

α
− 1

)

(p − 1)p + n

2
(p − 1) ≤ p.

The equations in problems (23), (24), (25) and (28), are generally called fractional
diffusive equations. To distinguish among the cases α ∈ (1, 2) or α ∈ (0, 1), we
may say that the equations in (23), (24) are superdiffusive equations, and that the
equations in (28) and in (25) are subdiffusive equations, to mean that the fractional
order of these equations is above, or below, the order 1 of the classical diffusive
equation (heat equation).

Global existence of small data solutions to the fractional subdiffusive equation in
integral form

u(t, x) = u(0, x)+
∫ t

0
|u(τ, x)|p−1u(τ, x) dτ + J α

0+Δu(t, x), (30)

with α ∈ (0, 1) and p > 1 + 2/(nα), have been recently studied in [1]. The
main difference between this model and ours is that a classical integral of order 1
is applied to the power nonlinearity in (30), whereas only a fractional integral of
order α is applied to the power nonlinearity in the integral formulation of (25).
Indeed, applying J α

0+ to both sides of (25), we get the integral formulation of (25):

u(t, x)− u(0, x) =
∫ t

0
ut (τ, x) dτ = J 1

0+u(t, x) = J α
0+(Δu+ |u|p).

The problem to find critical exponents for the differential inequalities (1) and (2), or
for the Cauchy-type problem associated, has some analogy with the problem to find
critical exponents for partial differential equations with nonlinear memory of power
nonlinearities. In particular, in [3], the authors proved that the critical exponent for
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the Cauchy problem

{
ut − Δu = J

γ

0+|u(t, x)|p, t > 0, x ∈ R
n,

u(0, x) = u0(x),

is given by

max

{

p̂(n, α) ,
1

1− α

}

, p̂(n, α) = 1+ 2(1+ α)

n − 2α
. (31)

Namely, small data global solutions exist for p > max{p̂(n, α), 1/(1 − α)}, and
any solution blows up in finite time if 1 < p ≤ max{p̂(n, α), 1/(1 − α)}, provided
that u0 ≥ 0 is non-trivial. The same critical exponent remains valid for damped
waves with nonlinear memory (see [4])

⎧
⎪⎪⎨

⎪⎪⎩

utt + ut − Δu = J
γ

0+|u(t, x)|p, t > 0, x ∈ R
n,

u(0, x) = u0(x),

ut (0, x) = u1(x),

and a modified version of this critical exponent comes into play for waves with
fractional damping (−Δ)δut and nonlinear memory [5]. The result in [3] has also
a special interest, since it provides an example of Cauchy problem, for which the
critical exponents is not the one predicted by scaling arguments. For problems (1)
and (2), the critical exponent is the one predicted by scaling arguments, in general.

Remark 4 The critical exponent p̃(n, α) obtained in Theorem 1 for (2) with
initial condition (12), under the assumption (14), is given by scaling arguments,
when A(x, ∂x) is homogeneous (or quasi-homogeneous, as in [9]). The same
happens for the critical exponent p̄(n, α) obtained in Theorem 2 for (1) with initial
condition (11), under the assumption (19).

Indeed, ifA(x, ∂x) is homogeneousof degree h, given a solution u to the equation

in (2) or in (1), the function λ
h

p−1 u(λ
h
α t, λx) is a solution to (2) or to (1) for any

λ ∈ (0,+∞). We notice that

RLDα−1
0+

(
u(λ

h
α t, λx)

)∣
∣
t=0 = λ

h(α−1)
α uα−1(λx),

∂κ−1
t

(
u(λ

h
α t, λx)

)∣
∣
t=0 = λ

h(κ−1)
α uκ−1(λx),

and

‖λ h
p−1 ϕ(λ·)‖Lq = λ

h
p−1− n

q ‖ϕ‖Lq ,



58 M. D’Abbicco

with ϕ = uα−1, uκ−1. Therefore, the scaling exponent for (2) with initial condi-
tion (12), that is, the solution to

h(α − 1)

α
+ h

p − 1
− n

q
= 0,

is

qsc = n(p − 1)

h

α

(α − 1)(p − 1)+ α
.

Indeed, the critical exponent p̃(n, α) is the solution to qsc = 1.
On the other hand, the scaling exponent for (1) with initial condition (11), that

is, the solution to

h(κ − 1)

α
+ h

p − 1
− n

q
= 0,

is

qsc = n(p − 1)

h

α

(κ − 1)(p − 1)+ α
.

Indeed, the critical exponent p̄(n, α) is the solution to qsc = 1.
If one replaces assumption (19) by (18), then Theorem 2 only gives the critical

exponent p̃(n, α). This latter is, indeed, the critical exponent obtained for α ∈ (1, 2)

and A = (−Δ)
h
2 , when u1 = 0 and u0(x) ∈ L1 (see (23)). However, this critical

exponent is not given by scaling arguments.

1.1 Notation

In the following, we write f1 � f2 when there exists C > 0 such that f1 ≤ Cf2.
We write f1 ≈ f2 when f1 � f2 and f2 � f1.

2 Global Weak Solutions

To deal with weak solutions, we shall investigate how integration by parts work with
respect to both the space and time variable.
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Definition 1 For a given operatorA(x, ∂x), as in (3), its adjoint operator is obtained
by

A∗(x, ∂x)f (x) =
∑

1≤|β|≤m

(−1)|β|∂β
x

(
aβ(x) f (x)

)

=
∑

1≤|β|≤m

(−1)|β|
∑

γ≤β

(
β

γ

)
(
∂
β−γ
x aβ(x)

)
∂
γ
x f (x)

=
∑

|γ |≤m

bγ (x) ∂
γ
x f (x),

where

bγ =
∑

β≥γ

|β|≤m

(
β

γ

)

∂
β−γ
x aβ(x).

In particular, if condition (5) holds for A(x, ∂x), then b0 = 0 in A∗(x, ∂x).
We provide some examples of operators, for which conditions (4) and (5) are

valid.

Example 1 If

A = A(∂x) =
∑

1≤|β|≤m

aβ∂
β
x ,

is an operator with constant coefficients, then condition (5) trivially holds, h in (13)
is given by

h = min{|β| : aβ �= 0},

and A∗(∂x) = A(−∂x).

Example 2 If

A(x, ∂x) = |x|2Δ2,

then condition (5) trivially holds, h = 2 in (13), and

A∗(x, ∂x) = Δ(|x|2Δ + 4x · ∇ + 2n)

= (|x|2Δ + 4x · ∇ + 2n)Δ + (4x · ∇ + 2n)Δ + 8Δ

= A + 8x · ∇Δ + 4(n + 2)Δ.
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Example 3 If

A(x, ∂x) = x21∂
4
x1

− ∂2x2,

then condition (5) trivially holds, h = 2 in (13), and

A∗(x, ∂x) = A + 8x1∂3x1 + 12∂2x1 .

Example 4 Let us consider

A = √|x2|∂x1 +
√|x1| x2∂2x2 + x−2

1 ∂x1∂x2 .

Then condition (5) holds, h = 1/2 in (13), and

A∗ = A + 2(
√|x1| − x−3

1 )∂x2 .

Remark 5 We notice that, for any λ > 0, it holds

aβ(x) ∂
β
x

(
f (λx)

) = λ|β|−rβ (aβ ∂β
x f )(λx),

for any sufficiently smooth f . Namely, setting

Aβ = aβ(x)∂
β
x

we have

Aβ(f (λx)) = λ|β|−rβ (Aβf )(λx).

By homogeneity,

A∗
β(f (λx)) = λ|β|−rβ (A∗

βf )(λx).

The proof of this property in the more general setting of quasi-homogeneous oper-
ators L(x, y, ∂x, ∂y), and the application of the test function method to Liouville
problemswith these operators, can be found in [9]. A generalization of the definition
of quasi-homogeneous operators and the application of the test function method to
Liouville and Cauchy problems for these operators, is given in [6]. The statements in
this paper may be conveniently improved using the definition of quasi-homogeneous
operator, but our interest is more focused to study the influence of the fractional
derivatives in time on a differential inequality in the space time [0,∞)×R

n.
As a consequence of (13) and Definition 1, we derive

Aβ(f (λx)) = O(λh), A∗
β(f (λx)) = O(λh),

as λ → 0.
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In order to give our definition of weak solution to problem (1) with initial
condition (11) and to problem (2) with initial condition (12), we need the backward
in time analogous of the fractional integration, and Caputo and Riemann-Liouville
derivatives.

Definition 2 For any β > 0 and T ∈ (−∞,+∞], we define the (backward)
Riemann-Liouville fractional integral of order β,

J
β
T−f (t) = 1

Γ (β)

∫ T

t

(s − t)β−1 f (s) ds,

for any t ∈ (−∞, T ). Then, we define

CDα
T−f (t) = J κ−α

T−
(
(−∂t )

κf
)
(t), (32)

RLDα
T−f (t) = (−∂t )

κ
(
J κ−α
T− f

)
(t), (33)

for any t ∈ (−∞, T ), the (backward) Caputo and Riemann-Liouville fractional
derivatives of order α > 0.

Remark 6 We considered the possibility to take T = +∞ in Definition 2
(see (2.2.2) in [11]), but trough this paper we will always consider compactly
supported functions. We remark that if suppf ⊂ (−∞, T1), for some T1 < T ,
then obviously

J
1−γ

T− f (t) = J
1−γ

T1− f (t),

in particular, the fractional integrals and derivatives of functions compactly sup-
ported in [0, b) are zero for any t ∈ [b, T ). For this reason, we choose T = +∞ to
avoid to fix, time by time, a sufficiently large T such that f is compactly supported
in [0, T ).

Definition 3 We say that u ∈ L
p
loc(R+ × R

n) is a global weak solution to (1) if for

any test function ϕ ∈ C
max{κ,m}
c (R+ × R

n), it holds

∫ ∞

0

∫

Rn

u(t, x) (RLDα∞− + A∗(x, ∂x))ϕ(t, x) dx dt

−
∫

Rn

(∂κ−1
t u(0, x)) (J κ−α∞− ϕ)(0, x) dx

−
κ−2∑

j=0

∫

Rn

(∂
j
t u(0, x)) (

RLD
α−1−j

∞− ϕ)(0, x) dx

≥
∫ ∞

0

∫

Rn

|u(t, x)|p ϕ(t, x) dx dt.



62 M. D’Abbicco

Definition 4 We say that u ∈ L
p
loc(R+ × R

n) is a global weak solution to (2) if for

any test function ϕ ∈ C
max{κ,m}
c (R+ × R

n) it holds

∫ ∞

0

∫

Rn

u(t, x) (CDα∞− + A∗(x, ∂x))ϕ(t, x) dx dt

−
κ−2∑

j=0

∫

Rn

(RLD
α−1−j

0+ u)(0, x) (−∂t)
jϕ(0, x) dx

−
∫

Rn

(J κ−α
0+ u)(0, x) (−∂t)

κ−1ϕ(0, x) dx

≥
∫ ∞

0

∫

Rn

|u(t, x)|p ϕ(t, x) dx dt.

In order to motivate the definition of global weak solution to (1) and (2) given in
Definitions 3 and 4, we will employ the following fractional integration by parts
result.

Lemma 1 (Lemma 2.7 in [11]) Let b > 0, f ∈ Lp1([0, b]), g ∈ Lp2([0, b]), and
eitherp1, p2 ≥ 1with 1/p1+1/p2 < 1+β, or p1, p2 > 1 and 1/p1+1/p2 = 1+β.
Then we have the following:

∫ b

0
(J

β

0+f )(t) g(t) dt =
∫ b

0
f (t) J

β
b−g(t) dt. (34)

We are now ready to show that classical solutions to (1) are weak solutions,
according to Definition 3.

Proposition 1 Let u ∈ Cmax{κ,m}(R+ × R
n) be a classical solution to (1). Then u

is a global (weak) solution to (1), according to Definition 3.

Proof Let ϕ ∈ Cmax{κ,m}
c (R+ × R

n). We fix b > 0 such that ϕ is supported
in [0, b)× R

n.
After multiplying Eq. (1) by ϕ and integrating over R+ ×R

n, we get

∫ ∞

0

∫

Rn

(CDα
0+ u(t, x))ϕ(t, x) dx dt

+
∫ ∞

0

∫

Rn

(
A(x, ∂x)u(t, x)

)
ϕ(t, x) dx dt

≥
∫ ∞

0

∫

Rn

|u(t, x)|pϕ(t, x) dx dt.
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By Definition 1, we may write

∫ ∞

0

∫

Rn

(
A(x, ∂x)u(t, x)

)
ϕ(t, x) dx dt

=
∫ ∞

0

∫

Rn

u(t, x)
(
A∗(x, ∂x)ϕ(t, x)

)
dx dt.

On the other hand, recalling the definition of Caputo fractional derivative (6), we
have

∫ ∞

0

∫

Rn

(CDα
0+ u(t, x))ϕ(t, x) dx dt

=
∫ ∞

0

∫

Rn

(J κ−α
0+ (∂κ

t u(t, x)))ϕ(t, x) dx dt.

Being ϕ supported in [0, b)×R
n, due to the fact that ∂κ

t u and ϕ are continuous, we
may apply first fractional integration by parts (34) and then classical integration by
parts, to obtain:

∫ ∞

0

∫

Rn

(J κ−α
0+ (∂κ

t u(t, x)))ϕ(t, x) dx dt

=
∫ b

0

∫

Rn

(J κ−α
0+ (∂κ

t u(t, x)))ϕ(t, x) dx dt

=
∫ b

0

∫

Rn

(∂κ
t u(t, x))(J

κ−α
b− ϕ(t, x)) dx dt

=
∫ ∞

0

∫

Rn

(∂κ
t u(t, x))(J

κ−α∞− ϕ(t, x)) dx dt

=
∫ ∞

0

∫

Rn

u(t, x)((−∂t )
κ(J κ−α∞− ϕ(t, x))) dx dt

−
κ−1∑

j=0

∫

Rn

(∂
j
t u(0, x))((−∂t)

κ−1−j (J κ−α∞− ϕ(0, x))) dx.

The proof follows, noticing that

(−∂t )
κ−1−j (J κ−α∞− f ) = (−∂t )

κ−1−j (J
(κ−1−j)−(α−1−j)
∞− f ) = RLD

α−1−j

∞− f,

for any j = 0, . . . , κ − 2, according to (33), due to�α − 1 − j = �α − 1 − j =
κ − 1− j .
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Similarly, we may show that classical solutions to (2) are weak solutions, according
to Definition 4.

Proposition 2 Let u ∈ Cmax{κ,m}(R+ × R
n) be a classical solution to (2). Then u

is a global (weak) solution to (2), according to Definition 4.

Proof Let ϕ ∈ C
max{κ,m}
c (R+ × R

n). We fix b > 0 such that ϕ is supported
in [0, b)× R

n.
After multiplying Eq. (2) by ϕ, integrating over R+ × R

n and employing
Definition 1, we get

∫ ∞

0

∫

Rn

(RLDα
0+ u(t, x))ϕ(t, x) dx dt

+
∫ ∞

0

∫

Rn

u(t, x)
(
A∗(x, ∂x)ϕ(t, x)

)
dx dt

≥
∫ ∞

0

∫

Rn

|u(t, x)|pϕ(t, x) dx dt.

Recalling the definition of Riemann-Liouville fractional derivative (7) and using
classical integration by parts, we obtain

∫ ∞

0

∫

Rn

(RLDα
0+ u(t, x))ϕ(t, x) dx dt

=
∫ ∞

0

∫

Rn

(∂κ
t (J

κ−α
0+ u(t, x)))ϕ(t, x) dx dt

=
∫ ∞

0

∫

Rn

(J κ−α
0+ u(t, x))((−∂t )

κϕ(t, x)) dx dt

−
κ−1∑

j=0

∫

Rn

(∂
j
t (J

κ−α
0+ u))(0, x)((−∂t)

κ−1−jϕ(0, x)) dx dt.

Being ϕ supported in [0, b)×R
n, due to the fact that u and ∂κ

t ϕ are continuous, we
may apply fractional integration by parts (34), obtaining

∫ ∞

0

∫

Rn

(J κ−α
0+ u(t, x))((−∂t)

κϕ(t, x)) dx dt

=
∫ b

0

∫

Rn

(J κ−α
0+ u(t, x))((−∂t )

κϕ(t, x)) dx dt

=
∫ b

0

∫

Rn

u(t, x)(J κ−α
b− ((−∂t )

κϕ(t, x))) dx dt

=
∫ ∞

0

∫

Rn

u(t, x)(J κ−α∞− ((−∂t )
κϕ(t, x))) dx dt.
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The proof follows by noticing that

∂
j
t (J

κ−α
0+ u(0, x)) = RLD

α+j−κ
u(0, x),

according to (7), and that

J κ−α∞− ((−∂t )
κϕ(t, x)) = CDα∞−ϕ(t, x),

according to (32).

3 A Suitable Test Function

According to Definitions 3 and 4, we need, in general, κ initial conditions to
supplement Eqs. (1) and (2). Namely, to get a Cauchy-type problem, we have to
assign the initial values

u(0, x), ∂κ−1
t u(0, x),

if we consider Eq. (1), and the initial values

J κ−α
0+ u(0, x), RLD

α+1−κ
u(0, x), . . . , RLD

α−1
u(0, x),

if we consider Eq. (2).
However, in order to derive a nonexistence result which is independent of the

first κ − 1 initial conditions, we may choose a suitable test function ϕ(t, x). For
problem (2), the task is trivial, as in the case of Cauchy problems for operators with
integer derivatives in time.

Remark 7 Let u ∈ L
p
loc(R+ × R

n) be a global weak solution to (2), supplemented

by (12). Let ϕ ∈ C
max{κ,m}
c (R+ × R

n) be a test function, with ϕ(t, x) independent
of t in a neighborhood of the line {t = 0}. Then it holds

∫ ∞

0

∫

Rn

u(t, x) (CDα∞− + A∗(x, ∂x))ϕ(t, x) dx dt

−
∫

Rn

uα−1(x) ϕ(0, x) dx

≥
∫ ∞

0

∫

Rn

|u(t, x)|p ϕ(t, x) dx dt,

as a consequence of ∂
j
t ϕ(0, x) = 0, for any j = 1, . . . , κ − 1. In the previous

inequality, the only initial condition appearing is the one assigned in (12).
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In order to obtain the analogous of Remark 7, we shall find a test function ϕ(t, x),
such that

RLD
α−1−j

∞− ϕ(0, x) = 0, j = 0, . . . , κ − 2.

Moreover, we want a nonnegative test function ϕ(t, x).

Lemma 2 Let � ≥ 1 and g ∈ C �([0,∞)), positive, non-increasing, with suppg =
[0, 1], be such that

g(t) = c0(1− t)�+1, in a left neighborhood of t = 1, (35)

for some c0 > 0. Let γ ∈ (0, 1). Then

f (t) = RLDγ
∞−g(t) = CDγ

∞−g(t)

verifies f ∈ C �−1([0,∞)), is supported in [0, 1], is nonnegative, and

J
γ
∞−f (t) = g(t). (36)

Proof Due to the fact that supp g = [0, 1], it holds

RLDγ
∞−g(t) =

{
RLDγ

1−g(t) if t ≤ 1,

0 if t > 1,

CDγ
∞−g(t) =

{
CDγ

1−g(t) if t ≤ 1,

0 if t > 1.

Due to the fact that g(1) = 0, we get

RLDγ

1−g(t) = CDγ

1−g(t), t ∈ [0, 1).

As a consequence of (35), we obtain (see (2.1.19) in [11])

RLDγ

1−g(t) = Γ (�+ 2)

Γ (�+ 2− γ )
c0 (1− t)�+1−γ ,

in a left neighborhood of t = 1. In particular, CDγ

1−g(1) = RLDγ

1−g(1) = 0 (as
usual, the values in t = 1 are intended as the limits as t → 1, see also (8), (9)). It
follows that f is well-defined, it belongs to f ∈ C �−1([0,∞)) and it is supported
in [0, 1]. We notice that

f (t) = CDγ

1−g(t) = −J
1−γ

1− g′(t),



Critical Exponents for Differential Inequalities with Fractional Derivatives 67

and so it is nonnegative, being g′(t) nonpositive. Equality (36) follows by (see
also (2.4.43) in [11])

J
γ

1−f (t) = −J
γ

1−J
1−γ

1− g′(t) = −
∫ 1

t

g′(s) ds = g(t) − g(1) = g(t).

Remark 8 Let g be as in Lemma 2, with � − 1 ≥ max{κ,m}. Moreover, assume
that g is constant in a right neighborhood of t = 0, and set f as in Lemma 2,
with γ = κ − α. Let ψ ∈ Cmax{κ,m}

c (Rn), nonnegative. Then ϕ(t, x) = f (t) ψ(x)

is a nonnegative test function for which Definition 3 applies.
Let u ∈ L

p

loc(R+ × R
n) be a global weak solution to (1), supplemented by (11).

Then it holds
∫ ∞

0

∫

Rn

u(t, x) (RLDα∞− + A∗(x, ∂x))ϕ(t, x) dx dt

−
∫

Rn

uκ−1(x) (J
κ−α∞− ϕ)(0, x) dx

≥
∫ ∞

0

∫

Rn

|u(t, x)|p ϕ(t, x) dx dt,

as a consequence of

RLD
α+1−κ

∞− f (0) = g′(0) = 0, . . . , RLD
α−1
∞−f (0) = g(κ−1)(0) = 0,

and

J κ−α∞− f (0) = g(0).

In the previous inequality, the only initial condition appearing is the one assigned
in (11).

4 Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof (Theorem 1) Let u be a global nontrivial weak solution to (2), with initial
condition (12), in the sense of Definition 4. Assume that (14) holds.

For any R ≥ 1 and T ≥ 1, we fix

ϕ(t, x) = f (t/T )ψ(x/R),
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where f ∈ C
max{κ,m}
c ([0,∞)), is a suitable, nonnegative, test function, constant

in [0, 1/2], with supp f ⊂ [0, 1], and ψ ∈ C∞
c (Rn) is a suitable, nonnegative, test

function, constant in B1/2 = {x ∈ R
n : |x| ≤ 1/2}, with suppψ ⊂ B1 = {x ∈

R
n : |x| ≤ 1}.
According to Remark 7, it follows that

IR,T =
∫ ∞

0

∫

Rn

|u(t, x)|p f (t/T )ψ(x/R) dx dt

≤
∫ ∞

0

∫

Rn

u(t, x) (CDα∞− + A∗(x, ∂x))f (t/T )ψ(x/R) dx dt

−
∫

Rn

uα−1(x) ϕ(0, x) dx

=
∫ ∞

0

∫

Rn

u(t, x) (CDα∞−f (t/T )) ψ(x/R) dx dt

+
∫ ∞

0

∫

Rn

u(t, x) f (t/T ) (A∗(x, ∂x)ψ(x/R)) dx dt

− f (0)
∫

Rn

uα−1(x) ψ(x/R) dx.

We notice that IR,T is nonnegative, since f andψ are nonnegative.By homogeneity,
we obtain

CDα∞−f (t/T ) = T −α (CDα∞−f )(t/T ),

so that, by Hölder’s inequality, we derive

∫ ∞

0

∫

Rn

|u(t, x)| |(CDα∞−f (t/T ))|ψ(x/R) dx dt

= T −α

∫ ∞

0

∫

Rn

|u(t, x)| |(CDα∞−f )(t/T )|ψ(x/R) dx dt

� T −α I
1
p

R,T

( ∫ ∞

0

∫

Rn

|(CDα∞−f )(t/T )|p′
f (t/T )

− p′
p ψ(x/R) dx dt

) 1
p′

� T −α I
1
p

R,T (Rn T )
1
p′ ,

provided that

|(CDα∞−f )| f− 1
p ≤ C, (37)

for some C > 0. We notice that, in the last inequality, we used that f (t/T ) is
supported in [0, T ], that ψ(x/R) is supported in BR(0). In order to obtain (37),
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it is sufficient to ask that f (t) > 0 in [0, 1), with f (t) = c0(1 − t)�, in a left
neighborhood of t = 1, for some c0 > 0, for a sufficiently large � ≥ max{κ,m}.
Indeed, for any fixed ε > 0, condition (37) trivially holds in [0, 1 − ε], since f is
continuous and positive. On the other hand, in [1− ε, 1] it holds

|(CDα∞−f )(t)| (f (t))
− 1

p � (1+ t)
�−α− �

p ,

so that it is sufficient to take � ≥ α/(1− 1/p) to derive (37).
For any |β| ≤ m and γ ≤ β, let us set

cβ,γ = ∂
β−γ
x aβ(x).

We notice that cβ,γ is homogeneous of degree rβ − |β| + |γ |, since aβ is
homogeneous of degree rβ . Then it holds

A∗
β(ψ(x/R)) = ∂β

x (aβ(x) ψ(x/R))

=
∑

γ≤β

(
β

γ

)

(∂
β−γ
x aβ(x)) ∂

γ
x (ψ(x/R))

=
∑

γ≤β

(
β

γ

)

R−|γ | cβ,γ (x) (∂γ
x ψ)(x/R)

=
∑

γ≤β

(
β

γ

)

Rrβ−|β| cβ,γ (x/R) (∂
γ
x ψ)(x/R)

= Rrβ−|β| ∑

γ≤β

(
β

γ

)

(cβ,γ ∂
γ
x ψ)(x/R)

= Rrβ−|β| (A∗
βψ)(x/R).

We also notice that, as a consequence of (5), (A∗
βψ)(x) vanishes in a neighborhood

of the origin, since ψ is constant in a neighborhood of the origin.
By Hölder’s inequality, and by using (13), we may now obtain

∫ ∞

0

∫

Rn

|u(t, x)| f (t/T ) |A∗(x, ∂x)ψ(x/R)| dx dt

� I
1
p

R,T

( ∫ ∞

0

∫

Rn

f (t/T ) |A∗(x, ∂x)ψ(x/R)|p′
ψ(x/R)

− p′
p dx dt

) 1
p′

� I
1
p

R,T R−h (Rn T )
1
p′ ,
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provided that

|A∗
βψ(x)|ψ− 1

p ≤ C,

for any |β| ≤ m, for some C > 0. For a suitable function ψ , the above condition
holds, as a consequence of the fact that the coefficients ofA∗

β are smooth away from

the origin. For instance, if ψ = ψ̃�, with ψ̃ ∈ C∞
c and sufficiently large �.

As a consequence of (14), there exists a sufficiently large R̄ such that

− f (0)
∫

Rn

uα−1(x) ψ(x/R) dx ≤ 0, ∀R ≥ R̄. (38)

Summarizing, we proved that

IR,T � I
1
p

R,T (T −α + R−h) (Rn T )
1
p′ ,

for R ≥ R̄. In the following we fix R = R(T ) = T α/h, so that T −α = R−h, and

IR(T ),T � I
1
p

R(T ),T T
−α+ 1+nα/h

p′ . (39)

As a consequence,

IR(T ),T � T −αp′+1+ nα
h .

Assume, by contradiction, that

−αp′ + 1+ nα

h
< 0,

that is, p < p̃(n, α), where p̃(n, α) is as in (15). Due to

f (0) ψ(0)
∫ T/2

0

∫

BR(T )/2(0)
|u(t, x)|p dx dt ≤ IR(T ),T � T −αp′+1+ nα

h ,

taking the limit as T → ∞, we deduce that

f (0) ψ(0)
∫ ∞

0

∫

Rn

|u(t, x)|p dx dt ≤ 0.

i.e., u = 0. Now let us consider the critical case p = p̃(n, α). In this case, we only
get that IR(T ),T is bounded by (39). That is, taking the limit as T → ∞, we obtain
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that u ∈ Lp . On the other hand, taking into account that

(CDα∞−f )(t/T ) = 0, ∀t ∈ [0, T /2),

A∗(x, ∂x)ψ(x/R) = 0, ∀x ∈ BR/2,

we may refine estimate (39) to derive

IR(T ),T �
( ∫

Gc
T

|u(t, x)|p f (t/T )ψ(x/R) dx dt
) 1

p
,

where G(T ) = [0, T /2] × BR/2 and Gc
T = ([0,∞) × R

n) \ GT . Due to the fact
that u ∈ Lp and GT ↗ [0,∞) × R

n, we obtain that the right-hand side in the
previous inequality vanishes as T → ∞. That is, proceeding as before, we deduce
that u = 0.

Therefore, u is trivial if p ≤ p̃(n, α). This concludes the proof.
If we replace (14) by (16), then we may replace (38) by

− f (0)
∫

Rn

uα−1(x) ψ(x/R) dx

≤ −f (0)
∫

BR/2

uα−1(x) dx

≤ −ε C Rn−θ , ∀R ≥ R̄,

for some C > 0. As a consequence, we may refine (39) into

IR(T ),T � I
1
p

R,T T
−α+ 1+nα/h

p′ − εT
(n−θ)α

h .

By Young inequality, we derive

IR(T ),T � T −αp′+1+ nα
h − εT

(n−θ)α
h .

For any fixed ε > 0, the right-hand side is negative, for sufficiently large R, if

−αp′ + 1+ θα

h
< 0,

that is, if p < p̃(θ, α), where p̃(θ, α) is as in (17). This concludes the proof.
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5 Proof of Theorem 2

We are now ready to prove Theorem 2.

Proof (Theorem 2) Let u be a global nontrivial weak solution to (1), with initial
condition (11), in the sense of Definition 3. Assume that (18) holds.

For any R ≥ 1 and T ≥ 1, we fix

ϕ(t, x) = f (t/T )ψ(x/R),

where ψ ∈ C∞
c (Rn) is a suitable, nonnegative, test function, constant in B1/2 =

{x ∈ R
n : |x| ≤ 1/2}, with suppψ ⊂ B1 = {x ∈ R

n : |x| ≤ 1}, as in the proof
of Theorem 1. On the other hand, we choose f as in Lemma 2 and Remark 8. More
precisely, we fix g ∈ C �([0,∞)), positive, non-increasing, with supp g = [0, 1],
and constant in [0, 1/2], be such that (35) holds, that is,

g(t) = c0(1− t)�+1, in a left neighborhood of t = 1,

for some c0 > 0. Then we put

f (t) = RLDκ−α∞− g(t).

According to Remark 8, it follows that

IR,T =
∫ ∞

0

∫

Rn

|u(t, x)|p ϕ(t, x) dx dt

≤
∫ ∞

0

∫

Rn

u(t, x) (RLDα∞− + A∗(x, ∂x))ϕ(t, x) dx dt

−
∫

Rn

uκ−1(x) (J
κ−α∞− ϕ)(0, x) dx

=
∫ ∞

0

∫

Rn

u(t, x) RLDα∞−(f (t/T ))ψ(x/R) dx dt

+
∫ ∞

0

∫

Rn

u(t, x) f (t/T )A∗(x, ∂x))(ψ(x/R)) dx dt

− g(0) T κ−α

∫

Rn

uκ−1(x) ψ(x/R) dx.

Here we used that, by homogeneity, it holds

(J κ−α∞− (f (t/T )))|t=0 = T κ−α(J κ−α∞− f )(t/T )|t=0

= T κ−αg(t/T )|t=0.
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By homogeneity, we also obtain

RLDα∞−(f (t/T )) = T −α (RLDα∞−f )(t/T ),

so that, by Hölder’s inequality, we derive

∫ ∞

0

∫

Rn

|u(t, x)| |(RLDα∞−f (t/T ))|ψ(x/R) dx dt

= T −α

∫ ∞

0

∫

Rn

|u(t, x)| |(RLDα∞−f )(t/T )|ψ(x/R) dx dt

� T −α I
1
p

R,T

( ∫ ∞

0

∫

Rn

|(RLDα∞−f )(t/T )|p′
f (t/T )

− p′
p ψ(x/R) dx dt

) 1
p′

� T −α I
1
p

R,T (Rn T )
1
p′ ,

provided that

|(RLDα∞−f )| f− 1
p ≤ C, (40)

for some C > 0. We notice that, in the last inequality, we used that f (t/T ) is
supported in [0, T ] and that ψ(x/R) is supported in BR(0). In order to obtain (40),
it is sufficient to take a sufficiently large � ≥ max{κ,m}. Indeed, for any sufficiently
small, fixed ε > 0, condition (40) trivially holds in [0, 1− ε], since f is continuous
and positive. On the other hand, in [1− ε, 1] it holds

f (t) = c0
Γ (� + 2)

Γ (� + 2− (κ − α))
(1− t)�+1−(κ−α),

so that

|(RLDα∞−f )(t)| (f (t))
− 1

p � (1+ t)
�+1−κ− �+α+1−κ

p ,

and it is sufficient to take � ≥ κ − 1+ α/(p − 1) to derive (40).
Proceeding as in the proof of Theorem 1, we derive once again

∫ ∞

0

∫

Rn

|u(t, x)| f (t/T ) |A∗(x, ∂x)ψ(x/R)| dx dt

� I
1
p

R,T R−h (Rn T )
1
p′ .

We set R = R(T ) = T α/h, so that T −α = R−h, as in the proof of Theorem 1.
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We now distinguish the three cases, according to which data assumption we take
among (18), (19) or (21).

Let us assume (18). In this case, we can only deduce that

−g(0) T κ−α

∫

Rn

uκ−1(x) ψ(x/R) dx ≤ 0,

so that we derive (39), as in the proof of Theorem 1. Therefore, repeating the steps in
the proof of Theorem 1, we find again that u is trivial if p ≤ p̃(n, α). This concludes
the proof.

Now let us assume (19). In this case, there exists a sufficiently large R̄, such that

−g(0) T κ−α

∫

Rn

uκ−1(x) ψ(x/R) dx ≤ −ε T κ−α, ∀R ≥ R̄,

where

ε = 1

2
g(0)

∫

Rn

uκ−1(x) dx.

As a consequence, we may refine (39) into

IR(T ),T � I
1
p

R,T T
−α+ 1+nα/h

p′ − εT κ−α.

By Young inequality, we derive

IR(T ),T � T −αp′+1+ nα
h − εT κ−α.

For any fixed ε > 0, the right-hand side is negative, for sufficiently large R, if

−αp′ + 1+ nα

h
< κ − α,

that is, if p < p̄(n, α), where p̄(n, α) is as in (20). This concludes the proof.
Finally, let us assume (21). In this case, we may estimate

− g(0) T κ−α

∫

Rn

uκ−1(x) ψ(x/R) dx

≤ −g(0) T κ−α

∫

BR/2

uκ−1(x) dx

≤ −ε C T κ−α Rn−θ , ∀R ≥ R̄,
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for some C > 0. As a consequence, we may refine (39) into

IR(T ),T � I
1
p

R,T T
−α+ 1+nα/h

p′ − εT κ−α+ (n−θ)α
h .

By Young inequality, we derive

IR(T ),T � T −αp′+1+ nα
h − εT

κ−α+(n−θ)α
h .

For any fixed ε > 0, the right-hand side is negative, for sufficiently large R, if

−αp′ + 1+ θα

h
< κ − α,

that is, if p < p̄(θ, α), where p̄(θ, α) is as in (22). This concludes the proof.

6 Decay Estimates for the Fractional Subdiffusive Equation

Let us consider the Cauchy-type problem of fractional order α ∈ (0, 1) with
Riemann-Liouville derivative

{
RLDα

0+y − λy = f (t), t ≥ 0,

J 1−α
0+ y(0) = yα−1,

(41)

and with Caputo derivative

{
CDα

0+y − λy = f (t), t ≥ 0

y(0) = y0.
(42)

where λ ∈ R. If f is sufficiently smooth, then the solutions to these problems are
given (see Examples 4.1 and 4.9 in [11]), respectively, by:

y(t) = yα−1 t
α−1 Eα,α(λt

α)+
∫ t

0
(t − s)α−1 Eα,α(λ(t − s)α)f (s) ds, (43)

y(t) = y0 Eα,1(λt
α) +

∫ t

0
(t − s)α−1 Eα,α(λ(t − s)α)f (s) ds. (44)

Here Eα,β is Mittag-Leffler function [12], described by its analytic expression

Eα,β(z) =
∞∑

j=0

zj

Γ (β + j/α)
.
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In particular, if f ∈ C1−α , that is, t1−αf (t) is continuous, then the solution to (41)
may be constructed in the space C α

1−α , that is, y and RLDα
0+y are both in C1−α. On

the other hand, if f is continuous, then the solution to (42) may be constructed in
the space C α,0, that is, y and CDα

0+y are both continuous.
For α ∈ (0, 1) and |arg z| ∈ (απ, π], the Mittag-Leffler functionEα,β(z) may be

represented by (see Theorem 1.1.2 in [13]):

Eα,β(z) = 1

απ

∫ ∞

0

τ sin(βπ) − z sin(π(β − α))

gα(τ, z)
τ

1−β
α e−τ

1
α
dτ, (45)

where

gα(τ, z) = τ 2 − 2τz cos(απ) + z2 . (46)

Let us define the convolution operator

Kα,β(t, ·) ∗(x) ϕ(x) = tα−1 F−1(
Eα,β(−tα|ξ |2)ϕ̂(ξ)), (47)

whereF denotes the Fourier transform with respect to x, and ϕ̂ = Fϕ. Then, as a
consequence of (43) and (44), we derive that u is a solution to (28) or, respectively,
to (25), if, and only if,

u(t, x) = tα−1 Kα,α(t, ·) ∗(x) uα−1(x)

+
∫ t

0
(t − s)α−1 Kα,α(t − s, ·) ∗(x) |u(s, ·)|p(x)ds, (48)

or, respectively,

u(t, x) = Kα,1(t, ·) ∗(x) u0(x)

+
∫ t

0
(t − s)α−1 Kα,α(t − s, ·) ∗(x) |u(s, ·)|p(x)ds, (49)

for any t ∈ (0, T ), in a suitable space.
In order to prove Theorems 4 and 3, we will rely on the following.

Lemma 3 Let α ∈ (0, 1). Then there exists δ ∈ (0, 1) such that we have the
following pointwise estimate:

|Kα,α(1, x)| ≤ C

⎧
⎪⎪⎨

⎪⎪⎩

(1+ |x|)−n−δ if n ≤ 3,

|x|−δ (1+ |x|)−4 if n = 4,

|x|−(n−4) (1+ |x|)−4−δ if n ≥ 5,

(50)
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|Kα,1(1, x)| ≤ C

⎧
⎪⎪⎨

⎪⎪⎩

(1+ |x|)−1 if n = 1,

|x|−δ (1+ |x|)−2+δ if n = 2,

|x|−(n−2) (1+ |x|)−2 if n ≥ 3.

(51)

As a consequence of Lemma 3 and of the scale invariance of Kα,β , we immediately
derive the following.

Corollary 1 Let α ∈ (0, 1) and t > 0. Then Kα,α(t, ·) ∈ L1 ∩ L∞ if n ≤ 3 and

Kα,α(t, ·) ∈ L1 ∩ Lp, ∀1 ≤ p < 1+ 4

n − 4
, (52)

if n ≥ 4. On the other hand,Kα,1(t, ·) ∈ Lr ∩ L∞, for any r > 1, if n = 1 and

Kα,1(t, ·) ∈ Lr ∩ Lp, ∀1 < r < p < 1+ 2

n − 2
, (53)

if n ≥ 2. Moreover,

‖Kα,β(t, ·)‖Lq = t
− nα

2

(
1− 1

q

)

‖Kα,β(1, ·)‖Lq ,

for any t > 0 and admissible q .

By Young inequality, we immediately obtain the following result.

Corollary 2 Let Kα,β as in (47), with β = α, 1, and 1 ≤ p ≤ q ≤ ∞. Assume that

n

(
1

p
− 1

q

)

< 4,

if β = α, or

0 < n

(
1

p
− 1

q

)

< 2,

if β = 1. Then

‖Kα,β(t, ·) ∗(x) ϕ‖Lq ≤ C t
− nα

2

(
1
p− 1

q

)

‖ϕ‖Lp, (54)

where C > 0 is independent of ϕ.

Estimate (54) has been proved in [1, Lemma 1] for β = 1, without relying on the
representation of Mittag-Leffler functions in (45).
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In Corollary 1, we cannot prove that Kα,α and Kα,1 are in the endpoint spaces,
as a consequence of the estimates in (50) and (51). That is, we cannot prove that
Kα,α(t, ·) ∈ L

n
n−4 , when n ≥ 4, that Kα,1(t, ·) ∈ L

n
n−2 , when n ≥ 2, and

that Kα,1(t, ·) ∈ L1, for any n ≥ 1.
However, by Hardy-Littlewood-Sobolev theorem, we may extend Corollary 2 to

cover the endpoints, if we restrict to 1 < p ≤ q < ∞.

Corollary 3 Let Kα,β as in (47), with β = α, 1, and 1 < p ≤ q < ∞. Assume that

n

(
1

p
− 1

q

)

≤ 4,

if β = α, or

n

(
1

p
− 1

q

)

≤ 2,

if β = 1. Then (54) holds, where C > 0 is independent of ϕ.

6.1 Proof of Lemma 3

We are now ready to prove Lemma 3.

Proof (Lemma 3) Thanks to the integral representation (45), we may write

Kα,α(1, x) = sin(απ)

α(2π)nπ

∫

Rn

eixξ
∫ ∞

0

τ
1
α

gα(τ,−|ξ |2) e−τ
1
α
dτ dξ

Kα,1(1, x) = sin(π(1− α))

α(2π)nπ

∫

Rn

eixξ
∫ ∞

0

|ξ |2
gα(τ,−|ξ |2) e−τ

1
α
dτ dξ

As a consequence of

gα(τ,−|ξ |2) = τ 2 + 2τ |ξ |2 cos(απ) + |ξ |4 ≥ c(τ 2 + |ξ |4), (55)

where c = 1− cos(απ), we immediately derive that

|Kα,α(1, x)| �
∫

Rn

∫ ∞

0

τ
1
α

τ 2 + |ξ |4 e−τ
1
α
dτ dξ.
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In particular,Kα,α ∈ L∞ if n = 1, 2, 3. Indeed, it is sufficient to estimate

∫ ∞

0

τ
1
α

τ 2 + |ξ |4 e−τ
1
α
dτ ≤

∫ ∞

0
τ

1
α
−2 e−τ

1
α
dτ < ∞,

for |ξ | ≤ 1, and

∫ ∞

0

τ
1
α

τ 2 + |ξ |4 e−τ
1
α
dτ ≤ |ξ |−4

∫ ∞

0
τ

1
α e−τ

1
α
dτ = C|ξ |−4,

for |ξ | ≥ 1. Similarly, we derive that

|Kα,1(1, x)| �
∫

Rn

∫ ∞

0

|ξ |2
τ 2 + |ξ |4 e−τ

1
α
dτ dξ,

in particular, Kα,1 ∈ L∞ if n = 1. Indeed, it is sufficient to use the change of
variable τ = |ξ |2σ to estimate

∫ ∞

0

|ξ |2
τ 2 + |ξ |4 e−τ

1
α
dτ ≤

∫ ∞

0

|ξ |2
τ 2 + |ξ |4 dτ

=
∫ ∞

0

1

σ 2 + 1
dσ = π

2
,

for |ξ | ≤ 1, and

∫ ∞

0

|ξ |2
τ 2 + |ξ |4 e−τ

1
α
dτ ≤ |ξ |−2

∫ ∞

0
e−τ

1
α
dτ = C|ξ |−2,

for |ξ | ≥ 1.
It is easy to check that

∣
∣
∣∂

γ
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |−|γ |(τ + |ξ |2)−2, ∀γ ∈ N

n, (56)

thanks to (55). If γ �= 0, we may refine estimate (56) to

∣
∣
∣∂

γ
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−|γ |(τ + |ξ |2)−3, ∀|γ | ≥ 1. (57)

More in general, if 2k + 1 ≤ |γ | for some k ∈ N, then we may refine estimate (57)
to

∣
∣
∣∂

γ
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2(k+1)−|γ |(τ + |ξ |2)−(k+3),
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but estimates (56) and (57) will be sufficient for us. Indeed,

∂ξj

( 1

gα(τ,−|ξ |2)
)
= −2ξj (cos(πα)τ + 2|ξ |2)

(gα(τ,−|ξ |2))2 ,

∂ξj ∂ξk

( 1

gα(τ,−|ξ |2)
)
= −2δkj (cos(πα)τ + 2|ξ |2)+ 4ξj ξk

(gα(τ,−|ξ |2))2

+ 2
4ξj ξk(cos(πα)τ + 2|ξ |2)2

(gα(τ,−|ξ |2))3 ,

and so on. To derive the desired estimate, it is sufficient to notice that

| cos(πα)|τ + 2|ξ |2 � τ + |ξ |2,
(gα(τ,−|ξ |2))−1 � (τ + |ξ |2)−2,

as a consequence of (55). As a consequence of (56) and (55), we derive

∣
∣
∣∂

γ
ξ

( |ξ |2
gα(τ,−|ξ |2)

)∣
∣
∣ � |ξ |2−|γ |(τ + |ξ |2)−2, ∀γ ∈ N

n, (58)

for any γ . Moreover, if 1+ 2k ≤ |γ | for some k ∈ N, then we may estimate

∣
∣
∣∂

γ
ξ

( |ξ |2
gα(τ,−|ξ |2)

)∣
∣
∣ � |ξ |2(k+1)−|γ |(τ + |ξ |2)−(k+2),

but estimate (58) will be sufficient for us.
Thanks to the identity

eixξ =
n∑

j=1

xj

i|x|2
∂

∂ξj
eix·ξ , (59)

for any m ∈ N, we may integrate by parts m times Kα,α and Kα,1, obtaining:

|Kα,α(1, x)| � |x|−m
∑

|γ |=m

∣
∣
∣

∫

Rn

eixξ
∫ ∞

0

(
∂
γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ

∣
∣
∣

|Kα,1(1, x)| � |x|−m
∑

|γ |=m

∣
∣
∣

∫

Rn

eixξ
∫ ∞

0

(
∂
γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dξ

∣
∣
∣

Let us consider first Kα,α . For any fixed γ with |γ | = m, we split the integral into
two parts, {|ξ | ≤ |x|−1} and {|ξ | ≥ |x|−1}, and we perform one additional step of
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integration by parts in this latter:

∫

Rn

eixξ
∫ ∞

0

(
∂
γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ

=
∫

|ξ |≤|x|−1
eixξ

∫ ∞

0

(
∂
γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ

+
∫

|ξ |≥|x|−1
eixξ

∫ ∞

0

(
∂
γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ

= I0 + I1 + I∞,

where

I0 =
∫

|ξ |≤|x|−1
eixξ

∫ ∞

0

(
∂
γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ,

I1 =
n∑

j=1

xj

i|x|2
∫

|ξ |=|x|−1
eixξ

∫ ∞

0

(
∂
γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dS,

I∞ = −
n∑

j=1

xj

i|x|2
∫

|ξ |≥|x|−1
eixξ

∫ ∞

0

(
∂ξj ∂

γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ.

Moreover, we may perform one additional step of integration by parts in I∞, that is,
I∞ = J2 + J∞, where

J2 =
n∑

j,k=1

xjxk

|x|4
∫

|ξ |=|x|−1
eixξ

∫ ∞

0

(
∂ξj ∂

γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dS,

J∞ = −
n∑

j,k=1

xjxk

|x|4
∫

|ξ |≥|x|−1
eixξ

∫ ∞

0

(
∂ξk ∂ξj ∂

γ
ξ

1

gα(τ,−|ξ |2)
)
τ

1
α e−τ

1
α
dτ dξ.

We claim that we may estimate

|Kα,1(1, x)| � |x|−(n−4), ∀|x| ≤ 1, n ≥ 5 (60)

and, for any δ ∈ (0, 1), we may estimate

|Kα,1(1, x)| � |x|−δ, ∀|x| ≤ 1, if n = 4. (61)

By the fact thatKα,α ∈ L∞ if n = 1, 2, 3, and by claims (60) and (61), we conclude
estimate (50) for |x| ≤ 1.
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To prove claim (60), we fix m = n−5. Thanks to (56) with |γ | = n−5, we may
use

∣
∣
∣∂

γ
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |−(n−5)(τ + |ξ |2)−2 ≤ |ξ |−n+1,

to estimate

|I0| �
∫

|ξ |≤|x|−1
|ξ |−n+1

∫ ∞

0
τ

1
α e−τ

1
α
dτ dξ � |x|−1,

and

|I1| � |x|−1
∫

|ξ |=|x|−1
|ξ |−n+1

∫ ∞

0
τ

1
α e−τ

1
α
dτ dS = C|x|−1.

Similarly, setting γ1 = γ +ej , so that ∂ξj ∂
γ
ξ = ∂

γ1
ξ , thanks to (56) with |γ1| = n−4,

we may use

∣
∣
∣∂

γ1
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |−(n−4)(τ + |ξ |2)−2 ≤ |ξ |−n,

to estimate

|J2| � |x|−2
∫

|ξ |=|x|−1
|ξ |−n

∫ ∞

0
τ

1
α e−τ

1
α
dτ dS = C|x|−1.

Finally, setting γ2 = γ + ej + ek, so that ∂ξk ∂ξj ∂
γ
ξ = ∂

γ2
ξ , thanks to (56) with |γ2| =

n − 3, we may use

∣
∣
∣∂

γ2
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |−(n−3)(τ + |ξ |2)−2 ≤ |ξ |−n−1,

to estimate

|J∞| � |x|−2
∫

|ξ |≥|x|−1
|ξ |−n−1

∫ ∞

0
τ

1
α e−τ

1
α
dτ dS � |x|−1.

This proves (60). In space dimension n = 4, we shall fix γ = 0, since we cannot
take |γ | = n − 5 = −1. However, for any small δ ∈ (0, 1), thanks to (55), we may
use

1

gα(τ,−|ξ |2) � (τ + |ξ |2)−2 � τ− δ
2 |ξ |−4+δ,
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to estimate

|I0| �
∫

|ξ |≤|x|−1
|ξ |−4+δ

∫ ∞

0
τ− δ

2+ 1
α e−τ

1
α
dτ dξ � |x|−δ,

and

|I1| � |x|−1
∫

|ξ |=|x|−1
|ξ |−4+δ

∫ ∞

0
τ− δ

2+ 1
α e−τ

1
α
dτ dS = C|x|−δ.

On the other hand, setting γ1 = ej , so that ∂ξj = ∂
γ1
ξ , thanks to (56) with |γ1| = 1,

we may use

∣
∣
∣∂ξj

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |−1(τ + |ξ |2)−2 ≤ |ξ |−5,

to estimate

|I∞| � |x|−1
∫

|ξ |≥|x|−1
|ξ |−5

∫ ∞

0
τ

1
α e−τ

1
α
dτ dS ≤ C.

This proves (61).
We now claim that, for a sufficiently small δ ∈ (0, 1), we may estimate

|Kα,1(1, x)| � |x|−n−δ, ∀|x| ≥ 1, n ≥ 1. (62)

By claim (62), we conclude estimate (50) for |x| ≥ 1.
To prove our claim, we fix m = n. By (57) with |γ | = n, we use

∣
∣
∣∂

γ
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−n(τ + |ξ |2)−3 � τ−2− δ

2 |ξ |−n+δ,

where we assume δ/2 < 1/α − 1, to estimate

|I0| �
∫

|ξ |≤|x|−1
|ξ |−n+δ

∫ ∞

0
τ

1
α −2− δ

2 e−τ
1
α
dτ dξ � |x|−δ.

and

|I1| � |x|−1
∫

|ξ |=|x|−1
|ξ |−n+δ

∫ ∞

0
τ

1
α−2− δ

2 e−τ
1
α
dτ dS = C|x|−δ.
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On the other hand, setting γ1 = γ + ej , so that ∂ξj ∂
γ
ξ = ∂

γ1
ξ , by (57) with |γ1| =

n + 1, we use

∣
∣
∣∂

γ1
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−(n+1)(τ + |ξ |2)−3 � τ−2− δ

2 |ξ |−n−1+δ,

to estimate

|I∞| � |x|−1
∫

|ξ |≥|x|−1
|ξ |−n−1+δ

∫ ∞

0
τ

1
α−2− δ

2 e−τ
1
α
dτ dS � |x|−δ.

Summarizing, we proved estimate (50) for Kα,α .
We now consider Kα,1. For any fixed γ with |γ | = m, we split the integral into

two parts, {|ξ | ≤ |x|−1} and {|ξ | ≥ |x|−1}, and we perform one additional step of
integration by parts in this latter, so that

∫

Rn

eixξ
∫ ∞

0

(
∂
γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dξ = I0 + I1 + I∞,

where

I0 =
∫

|ξ |≤|x|−1
eixξ

∫ ∞

0

(
∂
γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dξ,

I1 =
n∑

j=1

xj

i|x|2
∫

|ξ |=|x|−1
eixξ

∫ ∞

0

(
∂
γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dS,

I∞ =
n∑

j=1

xj

i|x|2
∫

|ξ |≥|x|−1
eixξ

∫ ∞

0

(
∂ξj ∂

γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dξ.

Moreover, we may perform one additional step of integration by parts in I∞, that is,
I∞ = J2 + J∞, where

J2 =
n∑

j,k=1

xjxk

|x|4
∫

|ξ |=|x|−1
eixξ

∫ ∞

0

(
∂ξj ∂

γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dS,

J∞ = −
n∑

j,k=1

xjxk

|x|4
∫

|ξ |≥|x|−1
eixξ

∫ ∞

0

(
∂ξk ∂ξj ∂

γ
ξ

|ξ |2
gα(τ,−|ξ |2)

)
e−τ

1
α
dτ dξ.

We claim that we may estimate

|Kα,1(1, x)| � |x|−(n−2), ∀|x| ≤ 1, n ≥ 3, (63)
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and that, for any small δ ∈ (0, 1), we may estimate

|Kα,1(1, x)| � |x|−δ, ∀|x| ≤ 1, if n = 2. (64)

By the fact that Kα,1 ∈ L∞ if n = 1, and by claims (63) and (64), we conclude
estimate (51) for |x| ≤ 1.

To prove claim (63), we fix m = n − 3. By (58) with |γ | = n − 3, we use

∣
∣
∣∂

γ
ξ

( |ξ |2
gα(τ,−|ξ |2)

)∣
∣
∣ � |ξ |2−(n−3)(τ + |ξ |2)−2 � |ξ |−n+1,

to estimate

|I0| �
∫

|ξ |≤|x|−1
|ξ |−n+1

∫ ∞

0
e−τ

1
α
dτ dξ � |x|−1.

and

|I1| � |x|−1
∫

|ξ |=|x|−1
|ξ |−n+1

∫ ∞

0
e−τ

1
α
dτ dS = C|x|−1.

Similarly, setting γ1 = γ +ej , so that ∂ξj ∂
γ
ξ = ∂

γ1
ξ , thanks to (58) with |γ1| = n−2,

we may use

∣
∣
∣∂

γ1
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−(n−2)(τ + |ξ |2)−2 ≤ |ξ |−n,

to estimate

|J2| � |x|−2
∫

|ξ |=|x|−1
|ξ |−n

∫ ∞

0
e−τ

1
α
dτ dS = C|x|−1.

Finally, setting γ2 = γ + ej + ek, so that ∂ξk ∂ξj ∂
γ
ξ = ∂

γ2
ξ , thanks to (58) with |γ2| =

n − 1, we may use

∣
∣
∣∂

γ2
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−(n−1)(τ + |ξ |2)−2 ≤ |ξ |−n+1,

to estimate

|J∞| � |x|−2
∫

|ξ |≥|x|−1
|ξ |−n+1

∫ ∞

0
e−τ

1
α
dτ dS � |x|−1.

This proves (63). In space dimension n = 2, we shall fix γ = 0, since we cannot
take |γ | = n − 3 = −1. However, for any small δ ∈ (0, 1), thanks to (55), we
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may use

|ξ |2
gα(τ,−|ξ |2) � |ξ |2(τ + |ξ |2)−2 � τ− δ

2 |ξ |−2+δ,

to estimate

|I0| �
∫

|ξ |≤|x|−1
|ξ |−2+δ

∫ ∞

0
τ− δ

2 e−τ
1
α
dτ dξ � |x|−δ,

and

|I1| � |x|−1
∫

|ξ |=|x|−1
|ξ |−2+δ

∫ ∞

0
τ− δ

2 e−τ
1
α
dτ dS = C|x|−δ.

On the other hand, setting γ1 = ej , so that ∂ξj = ∂
γ1
ξ , thanks to (58) with |γ1| = 1,

we may use

∣
∣
∣∂ξj

( |ξ |2
gα(τ,−|ξ |2)

)∣
∣
∣ � |ξ |(τ + |ξ |2)−2 ≤ |ξ |−3,

to estimate

|I∞| � |x|−1
∫

|ξ |≥|x|−1
|ξ |−3

∫ ∞

0
e−τ

1
α
dτ dS ≤ C.

This proves (64).
We now claim that we may estimate

|Kα,1(1, x)| � |x|−n, ∀|x| ≥ 1. (65)

By claim (65), we conclude estimate (51) for |x| ≥ 1.
To prove our claim, we fix m = n − 1. By (58) with |γ | = n− 1, we get

∣
∣
∣∂

γ
ξ

( |ξ |2
gα(τ,−|ξ |2)

)∣
∣
∣ � |ξ |2−(n−1)(τ + |ξ |2)−2.

We now use the change of variable τ = |ξ |2σ to estimate

|I0| �
∫

|ξ |≤|x|−1
|ξ |−(n−1)

∫ ∞

0

|ξ |2
(τ + |ξ |2)2 dτ dξ

=
∫

|ξ |≤|x|−1
|ξ |−(n−1)

∫ ∞

0

1

(σ + 1)2
dσ dξ � |x|−1,
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and

|I1| � |x|−1
∫

|ξ |=|x|−1
|ξ |−(n−1)

∫ ∞

0

1

(σ + 1)2
dσ dS = C|x|−1.

Similarly, setting γ1 = γ + ej , so that ∂ξj ∂
γ
ξ = ∂

γ1
ξ , thanks to (58) with |γ1| = n,

we may use

∣
∣
∣∂

γ1
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−n(τ + |ξ |2)−2,

and the change of variable τ = |ξ |2σ to estimate

|J2| � |x|−2
∫

|ξ |=|x|−1
|ξ |−n

∫ ∞

0

1

(σ + 1)2
dσ dS = C|x|−1.

Finally, setting γ2 = γ + ej + ek, so that ∂ξk ∂ξj ∂
γ
ξ = ∂

γ2
ξ , thanks to (58) with |γ2| =

n + 1, we may use

∣
∣
∣∂

γ2
ξ

( 1

gα(τ,−|ξ |2)
)∣

∣
∣ � |ξ |2−(n+1)(τ + |ξ |2)−2,

and the change of variable τ = |ξ |2σ to estimate

|J∞| � |x|−2
∫

|ξ |≥|x|−1
|ξ |−n+1

∫ ∞

0

1

(σ + 1)2
dσ dS � |x|−1.

This proves (65).
Summarizing, we proved estimate (51) for Kα,1. This concludes the proof.

6.2 Decay Estimates

Thanks to Corollary 2 and 3, we are in the position to prove the following.

Lemma 4 Let α ∈ (0, 1), n ≥ 1 and p ∈ (1,∞], with p < 1+ 2/(n− 2) if n ≥ 2.
Assume that u0 ∈ L1 ∩ Lp and f (t, ·) ∈ L1 for any t > 0, and that

‖f (t, ·)‖L1 ≤ A (1+ t)−η,

for any t ≥ 0, for some A > 0 and η ∈ R. Then the solution to

{
CDα

0+u− Δu = f (t, x), t > 0, x ∈ R
n,

u(0, x) = u0(x),
(66)
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verifies the following estimate

‖u(t, ·)‖Lp ≤ C(1+ t)
− nα

2

(
1− 1

p

)
(‖u0‖L1 + ‖u0‖Lp

)

+ CA (1+ t)
α−1− nα

2

(
1− 1

q

)

×

⎧
⎪⎪⎨

⎪⎪⎩

1 if η > 1,

log(e + t) if η = 1,

(1+ t)1−η if η < 1,

(67)

for any t ≥ 0, for some C > 0, independent of u0.

Lemma 4 allows us to use a contraction argument, which leads to the global
existence of small data solutions to (25) stated in Theorem 3.

Proof The proof is a direct consequence of Corollary 2 and (48). On the one hand,

‖Kα,1(t, ·) ∗(x) u0‖Lp � ‖u0‖Lp,

for small t ∈ (0, 1]. On the other hand, since n(1 − 1/p) < 2 as a consequence
of p < 1+ 2/(n − 2) if n ≥ 2, we get

‖Kα,1(t, ·) ∗(x) u0‖Lp � t
− nα

2

(
1− 1

p

)

‖u0‖L1,

for large t ≥ 1. Moreover, we may estimate
∫ t

0
(t − s)α−1‖Kα,α(t − s, ·) ∗(x) f (s, ·)‖Lp ds

�
∫ t

0
(t − s)

α
(
1− n

2

(
1− 1

p

))
−1‖f (s, ·)‖L1 ds

� A

∫ t

0
(t − s)

α
(
1− n

2

(
1− 1

p

))
−1

(1+ s)−η ds.

The proof follows by noticing that

α − nα

2

(

1− 1

p

)

= α

(

1− n

2

(

1− 1

p

))

> 0,

thanks to p < 1+ 2/(n − 2) if n ≥ 2, and by relying on the following well-known
result:

∀a ∈ (0, 1) :
∫ t

0
(t − s)−a(1+ s)−b ds ≈

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)−a if b > 1,

(1+ t)−a log(e + t) if b = 1,

(1+ t)1−a−b if b < 1.

(68)
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The corresponding result for the problem with Riemann-Liouville fractional deriva-
tive has to take into account of the singularity tα−1 at t = 0.

Lemma 5 Let α ∈ (0, 1), n ≥ 1 and p ∈ [1,∞], with p < 1+ 2/(n− 2) if n ≥ 2.
Assume that uα−1 ∈ L1 ∩ Lp and f (t, ·) ∈ L1 for any t > 0, and that

‖f (t, ·)‖L1 ≤ A t−b (1+ t)−η,

for any t > 0, for some A > 0, b ∈ [0, 1) and η ∈ R. Then the solution to

{
RLDα

0+u− Δu = f (t, x), t > 0, x ∈ R
n,

J 1−α
0+ u(0, x) = uα−1(x),

(69)

verifies the following estimate

t1−α‖u(t, ·)‖Lp ≤ C(1+ t)
− nα

2

(
1− 1

p

)
(‖uα−1‖L1 + ‖uα−1‖Lp

)

+ CA t
1−b− nα

2

(
1− 1

p

)

×

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)b−1 if η > 1− b,

(1+ t)−η log(e + t) if η = 1− b,

(1+ t)−η if η < 1− b,

(70)

for any t > 0, for some C > 0, independent of uα−1.

Remark 9 For

b + nα

2

(

1− 1

p

)

≤ 1, (71)

if p > 1, or b ∈ (0, 1) if p = 1, then the term t
1−b− nα

2

(
1− 1

p

)

is not singular. In
particular, if η > 1− b, from (70) we derive:

t1−α‖u(t, ·)‖Lp ≤ C(1+ t)
− nα

2

(
1− 1

p

)
(‖uα−1‖L1 + ‖uα−1‖Lp + A

)
(72)

Lemma 5 and, more precisely, Remark 9, allow us to use a contraction argument in
the space C1−α([0,∞)), which leads to the global existence of small data solutions
to (28) stated in Theorem 4.

To prove Lemma 5, we need to modify the integral estimate given in (68).
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Lemma 6 Let c ∈ R. Then we have the following:

∀a, b ∈ (0, 1) : Ia,b,c(t) ≈ t1−a−b ×

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)b−1 if b + c > 1,

(1+ t)−c log(e + t) if b + c = 1,

(1+ t)−c if b + c < 1,

(73)

where we set

Ia,b,c(t) =
∫ t

0
(t − s)−a s−b (1+ s)−c ds.

Estimate (73) is the singular analogous of (68). Its proof is straight-forward, but we
include it for the ease of reading.

Proof First of all, we notice that

Ia,b,c(t) =
∫ t

t/2
(t − s)−a s−b (1+ s)−c ds +

∫ t/2

0
(t − s)−a s−b (1+ s)−c ds

≈ t−b (1+ t)−c

∫ t

t/2
(t − s)−a ds + t−a

∫ t/2

0
s−b (1+ s)−c ds.

It is immediate to obtain

t−b (1+ t)−c

∫ t

t/2
(t − s)−a ds ≈ t1−a−b (1+ t)−c.

In particular, this estimate is not worse than the estimate in (73).
When we consider the second integral, we distinguish two cases. If t ≥ 2, then

we may estimate

t−a

∫ t/2

0
s−b (1+ s)−c ds

= t−a

∫ 1

0
s−b (1+ s)−c ds + t−a

∫ t/2

1
s−b (1+ s)−c ds

≈ t−a

∫ 1

0
s−b ds + t−a

∫ t/2

1
(1+ s)−b−c ds.

Due to b < 1, we obtain

t−a

∫ 1

0
s−b ds ≈ t−a .
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On the other hand,

t−a

∫ t/2

1
(1+ s)−b−c ds ≈ t−a ×

⎧
⎪⎪⎨

⎪⎪⎩

1 if b + c > 1,

log(e + t) if b + c = 1,

(1+ t)1−b−c if b + c < 1.

This concludes the proof of (73), for any t ≥ 2. Now let t ∈ (0, 2). Then we may
estimate

t−a

∫ t/2

0
s−b (1+ s)−c ds ≈ t−a

∫ t/2

0
s−b ds ≈ t1−a−b.

This concludes the proof of (73), for t ∈ (0, 2).

We may now immediately prove Lemma 5.

Proof (Lemma 5) The proof is a direct consequence of Corollary 2 and (48). On the
one hand,

‖Kα,α(t, ·) ∗(x) uα−1‖Lp � ‖uα−1‖Lp,

for small t ∈ (0, 1]. On the other hand,

‖Kα,α(t, ·) ∗(x) uα−1‖Lp � t
− nα

2

(
1− 1

p

)

‖uα−1‖L1,

for large t ≥ 1. Moreover, we may estimate

∫ t

0
(t − s)α−1‖Kα,α(t − s, ·) ∗(x) f (s, ·)‖Lp ds

�
∫ t

0
(t − s)

α
(
1− n

2

(
1− 1

p

))
−1‖f (s, ·)‖L1 ds

� A

∫ t

0
(t − s)

α
(
1− n

2

(
1− 1

p

))
−1

s−b(1+ s)−η ds.

We notice, as in the proof of Lemma 4, that

α − nα

2

(

1− 1

p

)

= α

(

1− n

2

(

1− 1

p

))

> 0,

as a consequence of p < 1+ 2/(n− 2) if n ≥ 2. Applying (73) with c = η and

a = 1− α

(

1− n

2

(

1− 1

p

))

,

we conclude the proof.
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6.3 Proof of Theorems 3 and 4

We are now ready to prove Theorems 3 and 4.
To employ our contraction argument, for any T > 0 we define the Banach

space X0 = C ([0, T ], Lp) equipped with the norm

‖u‖X0 = sup
t≥0

(1+ t)
nα
2

(
1− 1

p

)

‖u(t, ·)‖Lp ,

and the Banach space X1−α = C1−α([0, T ], Lp) (see Theorem 3.1.1 in [11] for
the contraction argument for ordinary fractional differential equations in the space
C1−α([0, T ])) equipped with the norm

‖u‖X1−α = sup
t≥0

t1−α (1+ t)
nα
2

(
1− 1

p

)

‖u(t, ·)‖Lp .

A function u in X0, is a solution to (25) if, and only if,

u(t, x) = ϕ0(t, x)+ Fu(t, x), (74)

for any t > 0, a.e. in x, where

ϕ0(t, x) = Kα,1(t, ·) ∗(x) u0(x),

Fu(t, x) =
∫ t

0
(t − s)α−1 Kα,α(t − s, ·) ∗(x) |u(s, ·)|p ds.

Similarly, a function u in X1−α , is a solution to (28) if, and only if,

u(t, x) = ϕ1−α(t, x)+ Fu(t, x), (75)

for any t > 0, a.e. in x, where

ϕ1−α(t, x) = tα−1 Kα,α(t, ·) ∗(x) u0(x).

As a consequence of Lemmas 4 and 5, we know that ϕ0 ∈ X0 and ϕ1−α ∈ X1−α ,
with

‖ϕ0‖X0 ≤ C ‖u0‖A , (76)

‖ϕ1−α‖X1−α ≤ C ‖uα−1‖A , (77)
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where C > 0 is independent of T > 0. We also claim that

‖Fu‖X ≤ C‖u‖pX , (78)

‖Fu − Fv‖X ≤ C‖u − v‖X
(‖u‖p−1

X + ‖v‖p−1
X

)
, (79)

for any u, v ∈ X, where X stays for X0 or X1−α, and C > 0 is independent of T >

0.
By standard fixed point arguments, (76), (77), (78) and (79) lead to the existence

of a unique solution u ∈ X0 to (74) or u ∈ X1−α to (75), respectively, for sufficiently
small data. Since the constants in (76), (77), (78) and (79) are independent of T >

0, the solution can be globally prolonged. By the definition of the norms of the
spaces X0 and X1−α , we derive decay estimates (26) and (29).

Therefore, to prove Theorems 3 and 4, it remains to prove (78) and (79).

Proof (Theorem 3)We prove (78). We apply (67) with f (t, x) = |u(t, x)|p, so that

‖f (t, ·)‖L1 = ‖u(t, ·)‖pLp � (1+ t)−
nα
2 (p−1) ‖u‖pX0

,

and we get:

‖Nu(t, ·)‖Lp � A (1+ t)
α−1− nα

2

(
1− 1

p

)

×

⎧
⎪⎪⎨

⎪⎪⎩

1 if nα(p − 1)/2 > 1,

log(e + t) if nα(p − 1)/2 > 1,

(1+ t)1− nα
2 (p−1) if nα(p − 1)/2 < 1,

(80)

where A = ‖u‖pX0
. Using p ≥ p̄(n, α) = 1 + 2/n, that is, n(p − 1)/2 ≥ 1, we

obtain

‖Nu(t, ·)‖Lp � (1+ t)
− nα

2

(
1− 1

p

)

‖u‖pX0
,

that is, we proved (78). Now we prove (79). We apply (67) with f (t, x) =
|u(t, x)|p − |v(t, x)|p. Due to

|u|p − |v|p � |u− v|(|u|p−1 + |v|p−1)
,

by Hölder inequality,

‖f (t, ·)‖L1 ≤ ‖(u − v)(t, ·)‖Lp ‖|u(t, ·)|p−1 + |v(t, ·)|p−1‖
L

p
p−1

� ‖(u − v)(t, ·)‖Lp

(‖u(t, ·)‖p−1
Lp + ‖v(t, ·)‖p−1

Lp

)

� (1+ t)
− nα

2

(
1− 1

p

)

‖u − v‖X0

(‖u‖p−1
X0

+ ‖v‖p−1
X0

)
.
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Then we get (80) with

A = ‖u− v‖X0

(‖u‖p−1
X0

+ ‖v‖p−1
X0

)
,

and this proves (79), by virtue of p ≥ p̄(n, α) = 1+2/n. This concludes the proof.

Proof (Theorem 4)We prove (78). We want to apply (70) with f (t, x) = |u(t, x)|p,
so that

‖f (t, ·)‖L1 = ‖u(t, ·)‖pLp � t(α−1)p (1+ t)−
nα
2 (p−1) ‖u‖pX0

.

Setting b = (1 − α)p, we see that (71) holds, as a consequence of (27). Moreover,
setting η = nα(p − 1)/2, we can see that b + η > 1 if, and only if, p > p̃(n, α).

Therefore, by (72), we derive:

‖Nu(t, ·)‖Lp � A tα−1 (1+ t)
− nα

2

(
1− 1

p

)

,

where A = ‖u‖pX0
. That is, we proved (78). To prove (79), we proceed as in the

proof of Theorem 3. This concludes the proof.
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Weakly Coupled Systems of Semilinear
Effectively Damped Waves with Different
Time-Dependent Coefficients
in the Dissipation Terms and Different
Power Nonlinearities

Abdelhamid Mohammed Djaouti and Michael Reissig

Abstract We study the global existence of small data solutions to the Cauchy
problem for the coupled system of semilinear damped wave equations with different
effective dissipation terms and different exponents of power nonlinearities. The data
are supposed to belong to different classes of regularity.We will show the interaction
of the exponents p and q on the one hand and on the other hand the interaction of
the dissipation terms b1(t)ut and b2(t)vt .

1 Introduction

Let us consider the following Cauchy problem for a weakly coupled system of
classical semilinear damped wave equations

utt − Δu + ut = |v|p, u(0, x) = u0(x), ut (0, x) = u1(x),

vtt − Δv + vt = |u|q, v(0, x) = v0(x), vt (0, x) = v1(x),
(1)

where t ∈ [0,∞), x ∈ R
n. Recently, K. Nishihara and Y. Wakasugi studied in [11]

the Cauchy problem (1). Using the weighted energy method they found the critical
exponents for any space dimension. In particular, if the inequality

max{p; q} + 1

pq − 1
<

n

2
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is satisfied, then for suitable given small data there exists a global (in time) solution
which satisfies some decay estimates. On the contrary, if this condition is not
satisfied, then every Sobolev solution to given initial data having positive average
value does not exist globally (in time).

In [10], our main concern is to study the Cauchy problem for a weakly coupled
system of semilinear effectively damped waves with time-dependent coefficient in
the dissipation term. The model we have in mind is

utt − Δu+ b(t)ut = |v|p, u(0, x) = u0(x), ut (0, x) = u1(x),

vtt − Δv + b(t)vt = |u|q, v(0, x) = v0(x), vt (0, x) = v1(x).

In this paper we explained the interaction of the exponents p and q , the influence of
the additional regularity parameterm ∈ [1, 2), and the regularity parameter s on the
global (in time) existence of small data solutions.

In the present paper we allow different coefficients in the dissipation terms. We
restrict ourselves to the special structure b1(t)ut and b2(t)vt , where

b1(t) = 1

(1+ t)r1
and b2(t) = 1

(1+ t)r2

with exponents

r1, r2 ∈ (−1, 1).

Therefore, we are concerned with the following model:

utt − Δu+ 1
(1+t )r1

ut = |v|p, u(0, x) = u0(x), ut (0, x) = u1(x),

vtt − Δv + 1
(1+t )r2

vt = |u|q, v(0, x) = v0(x), vt (0, x) = v1(x).
(2)

Additionally to the influence of the parameters which we have described above, we
take into account the interaction of the parameters r1 and r2 on the global (in time)
existence of small data solutions. It turns out that instead of the exponents p and q

we introduce (hint of M. D’Abbicco) the parameters p̃ and q̃ depending on r1, r2
and m which allow to describe the interaction in an effective way.

1.1 Notations

We introduce for s > 0 and m ∈ [1, 2) the function space
Am,s := (H s ∩ Lm) × (Hmax{s−1;0} ∩ Lm)

with the norm

‖(u, v)‖Am,s
:= ‖u‖Hs + ‖u‖Lm + ‖v‖Hmax{s−1;0} + ‖v‖Lm.
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We denote by B(t, τ ) the primitive of 1/b(t) which vanishes at t = τ, that is,

B(t, τ ) =
∫ t

τ

1

b(r)
dr = B(t, 0) − B(τ, 0).

The dissipation term b(t)ut is called effective if b = b(t) satisfies the following
properties introduced by J. Wirth in [15] and [16]:

• b is a positive and monotonic function with tb(t) → ∞ as t → ∞,
• ((1+ t)2b(t))−1 ∈ L1(0,∞),
• b ∈ C 3[0,∞) and |b(k)(t)| � b(t)

(1+t )k
for k = 1, 2, 3,

• 1
b

/∈ L1(0,∞) and there exists a constant a ∈ [0, 1) such that

tb′(t) ≤ ab(t).

In [3], the authors showed that both coefficients b1(t) = 1
(1+t )r1

and b2(t) = 1
(1+t )r2

generate for r1, r2 ∈ (−1, 1) effective dissipation terms b1(t)ut and b2(t)vt . The
corresponding primitives B1 = B1(t, τ ) and B2 = B2(t, τ ) satisfy the following
lemma (definition as above with b1 = b1(r) and b2 = b2(r)).

Lemma 1.1 The primitive B(t, τ ) satisfies the following properties:

B(t, τ ) ≈ B(t, 0) for all τ ∈
[
0,

t

2

]
,

B(τ, 0) ≈ B(t, 0) for all τ ∈
[ t

2
, t

]
,

∫ t

t
2

1

b(τ)

(
1+ B(t, τ )

)− j
2−l

dτ � (1+ B(t, 0))1−
j
2−l log (1+ B(t, 0))l,

where j + l = 0, 1

In order to use Duhamels principle we need the following results in the proofs of
our main results.

Theorem 1.2 The Sobolev solutions to the Cauchy problem

utt − Δu+ b(t)ut = 0, u(0, x) = u0(x), ut (0, x) = u1(x)

satisfy the following estimates:
for low regular data (0 < s < 1):

‖u(t, ·)‖L2 �
(
1+ B(t, 0)

)− n
2

(
1
m
− 1

2

)

‖(u0, u1)‖Am,s
,

‖|D|su(t, ·)‖L2 �
(
1+ B(t, 0)

)− n
2

(
1
m− 1

2

)
− s

2 ‖(u0, u1)‖Am,s
;
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for data from the energy space (s = 1):

‖∇j ∂l
t u(t, ·)‖L2 � (b(t))−l

(
1+ B(t, 0)

)− n
2

(
1
m
− 1

2

)
− j

2−l‖(u0, u1)‖Am,1 ,

where j + l ≤ 1;
for high regular data (s > 1):

‖u(t, ·)‖L2 �
(
1+ B(t, 0)

)− n
2

(
1
m
− 1

2

)

‖(u0, u1)‖Am,s
,

‖ut (t, ·)‖L2 � b(t)−1(
1+ B(t, 0)

)− n
2

(
1
m− 1

2

)
−1‖(u0, u1)‖Am,s

,

‖|D|su(t, ·)‖L2 �
(
1+ B(t, 0)

)− n
2

(
1
m− 1

2

)
− s

2 ‖(u0, u1)‖Am,s
,

‖|D|s−1ut (t, ·)‖L2 � b(t)−1(
1+ B(t, 0)

)− n
2

(
1
m
− 1

2

)
− s−1

2 −1‖(u0, u1)‖Am,s
.

Proof The proof of this theorem can be concluded from [15] and [16].

Theorem 1.3 The Sobolev solutions to the parameter-dependent family of Cauchy
problems

vtt − Δv + b(t)vt = 0, v(τ, x) = 0, vt (τ, x) = v1(x)

satisfy the following estimates:

for low regular data (0 < s < 1):

‖v(t, ·)‖L2 � b(τ)−1(1+ B(t, τ )
)− n

2

(
1
m− 1

2

)

‖v1‖L2∩Lm,

‖|D|sv(t, ·)‖L2 � b(τ)−1(1+ B(t, τ )
)− n

2

(
1
m− 1

2

)
− s

2 ‖v1‖L2∩Lm; (3)

for data from the energy space (s = 1):

‖∇j ∂t v(t, ·)‖L2 � b(t)−1b(τ)−l
(
1+ B(t, τ )

)− n
2

(
1
m− 1

2

)
− j

2−l‖v1‖L2∩Lm,

where j + l ≤ 1;

for high regular data (s > 1):

‖v(t, ·)‖L2 � b(τ)−1(
1+ B(t, τ)

)− n
2

(
1
m− 1

2

)

‖v1‖Hs−1∩Lm,

‖vt (t, ·)‖L2 � b(τ)−1b(t)−1(
1+ B(t, τ)

)− n
2

(
1
m
− 1

2

)
−1‖v1‖Hs−1∩Lm,
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‖|D|sv(t, ·)‖L2 � b(τ)−1(
1+ B(t, τ)

)− n
2

(
1
m− 1

2

)
− s

2 ‖v1‖Hs−1∩Lm,

‖|D|s−1vt (t, ·)‖L2 � b(τ)−1b(t)−1(
1+ B(t, τ)

)− n
2

(
1
m− 1

2

)
− s−1

2 −1‖v1‖Hs−1∩Lm. (4)

Proof The proof of this theorem can be concluded from [3].

2 Main Results

We study the Cauchy problem (2) in several cases with respect to the regularity of
the data. Therefore, we introduce the following classification of regularity:

low regular data, data from energy space, data from Sobolev spaces with suitable
regularity and, finally, large regular data.

2.1 Low Regular Data

In this section we are interested in the system (2), where the data are taken from the
Sobolev space Hs(Rn) for s ∈ [0, 1), with the same additional regularity Lm(Rn).
We remark immediately that pFuj,m(n) := 1 + 2m

n
> s which means that the

regularity parameter has a weak influence on the admissible range for p̃ = p̃r1,r2

and q̃ = q̃r1,r2 . Therefore, we compare in our statements the modified exponents
p̃r1,r2 and q̃r1,r2 with the modified Fujita exponent pFuj,m(n).

Theorem 2.1 Let n ≤ 4s
2−m

, n < max
{ 2sm
m−s

; 2m(2−s)
2−m

}
, r1, r2 ∈ (−1, 1),m ∈ [1, 2)

and s ∈ (0, 1). The data (u0, u1), (v0, v1) are assumed to belong to Am,s × Am,s .
Moreover, let the modified exponents satisfy

min{p̃r1,r2; q̃r1,r2} < pFuj,m(n) < max{p̃r1,r2; q̃r1,r2}, (5)

n

2
> m

( max{p̃r1,r2; q̃r1,r2} + γ

min{p̃r1,r2; q̃r1,r2} ×max{p̃r1,r2; q̃r1,r2} − 1+ (min{p̃r1,r2; q̃r1,r2} − 1)δ

)
,

(6)

where

q̃r1,r2 = 1+ r1

1+ r2
(q − 1)+ 1, p̃r1,r2 = 1+ r2

1+ r1
(p − 1)+ 1,



102 A. Mohammed Djaouti and M. Reissig

and

γ = 1+ r1

1+ r2
, δ = r1 − r2

1+ r2
if p̃r1,r2 < q̃r1,r2,

γ = 1+ r2

1+ r1
, δ = r2 − r1

1+ r1
if q̃r1,r2 < p̃r1,r1 .

The exponents p and q of the power nonlinearities satisfy

⎧
⎨

⎩

2
m

≤ min{p; q} ≤ max{p; q} < ∞ if n = 1 and s ∈ [ 12 , 1),
2
m

< min{p; q} ≤ max{p; q} ≤ pGN,s (1) if n = 1 and s ∈ (0, 1
2 ),

2
m

< min{p; q} ≤ max{p; q} ≤ pGN,s (n) if n ≥ 2,
(7)

where pGN,s (n) := n
n−2s .

Then, there exists a constant ε0 such that if

‖(u0, u1)‖Am,s
+ ‖(v0, v1)‖Am,s

≤ ε0,

then there exists a uniquely determined global (in time) Sobolev solution to (2) in
(C ([0,∞),H s(Rn)))2. Furthermore, the solution satisfies the following estimates:

‖u(t, ·)‖L2(Rn)

�
(
1+ B1(t, 0)

)− n
2

(
1
m
− 1

2

)
+[γn,m(p̃r1,r2 )]+(‖(u0, u1)‖Am,s + ‖(v0, v1)‖Am,s

)
,

‖|D|su(t, ·)‖L2(Rn)

�
(
1+ B1(t, 0)

)− n
2

(
1
m
− 1

2

)
− s

2+[γn,m(p̃r1,r2 )]+(‖(u0, u1)‖Am,s + ‖(v0, v1)‖Am,s

)
,

‖v(t, ·)‖L2(Rn)

�
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)
+[γn,m(q̃r1,r2 )]+(‖(u0, u1)‖Am,s + ‖(v0, v1)‖Am,s

)
,

‖|D|sv(t, ·)‖L2(Rn)

�
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)
− s

2+[γn,m(p̃r1,r2 )]+(‖(u0, u1)‖Am,s + ‖(v0, v1)‖Am,s

)
,

where

γn,m(p̃r1,r2) = − n

2m
(p̃r1,r2 − 1)+ 1 or γn,m(q̃r1,r2) = − n

2m
(q̃r1,r2 − 1)+ 1

represents the loss of decay in comparison with the corresponding decay estimates
for the solution u or v to the linear Cauchy problem with vanishing right hand-side.
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Remark 2.2 If we have p̃r1,r2 = pFuj,m(n) < q̃r1,r2 in condition (5), then we obtain
a small loss of decay γn,m(p̃r1,r2) = ε for arbitrarily small positive ε. This small
loss of decay is generated by a log term appearing in the step when we control the
nonlinear term of u, in particular, the integral over [ t2 , t].
Example 2.3 Let us assume n = 2. We choose the additional regularity m = 3

2
and the regularity parameter s = 9

10 . Then we get 2
m

= 4
3 , pFuj, 32

(2) = 5
2 and

p
GN, 9

10
= 10. If we take p = 19

10 ∈
[
4
3 , 10

]
and q = 49

9 ∈
[
4
3 , 10

]
, then for

1+r1
1+r2

= 9
10 we get

p̃ = 2 < pFuj, 32
(2) < 5 = q̃.

The modified exponents p̃ and q̃ satisfy condition (6). Moreover, the solution
satisfies the following estimates:

‖u(t, ·)‖L2(Rn) � (1+ t)
1
6
(‖(u0, u1)‖A 3

2 , 9
10

+ ‖(v0, v1)‖A 3
2 , 9

10

)
,

‖|D|su(t, ·)‖L2(Rn) � (1+ t)−
17
60

(‖(u0, u1)‖A 3
2 , 9

10

+ ‖(v0, v1)‖A 3
2 , 9

10

)
,

‖v(t, ·)‖L2(Rn) � (1+ t)−
1
6
(‖(u0, u1)‖A 3

2 , 9
10

+ ‖(v0, v1)‖A 3
2 , 9

10

)
,

‖|D|sv(t, ·)‖L2(Rn) � (1+ t)−
37
60

(‖(u0, u1)‖A 3
2 , 9

10

+ ‖(v0, v1)‖A 3
2 , 9

10

)
.

Remark 2.4 If we assume instead of (5) that both modified exponents are larger
than pFuj,m(n), i.e.,

max{p̃r1,r2; q̃r1,r2,m} > pFuj,m(n), (8)

then we can prove a similar result to Theorem 2.1 but without a loss of decay.
Moreover, it is possible to assume that one of the exponents p or q is smaller than
pFuj,m(n) without any loss of decay in the solution, which is impossible in the
case that the coefficients of the dissipation terms coincide. The following example
explains this effect.

Example 2.5 Let us choose the dimension n = 1. The coefficients of the dissipation

terms are b1(t) = (1 + t)− 1
2 and b2(t) = (1 + t)

1
2 . The data (u0, u1), (v0, v1) are

supposed to belong toA 3
2 ,

1
2
×A 3

2 ,
1
2
. Then admissible values for the exponentsp and

q to guarantee the global (in time) existence of small data solutions can be chosen
as follows:

4

3
≤ p = 8

3
< p

Fuj, 32
(1) = 4 and q = 13 ≥ 4

3
.
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Here we obtain as modified exponents p̃ = 6 and q̃ = 5 which satisfy the
condition (8). The solution satisfies the following decay estimates:

‖u(t, ·)‖L2(Rn) �
(
1+ t

)− 1
24

(‖(u0, u1)‖A 3
2 , 12

+ ‖(v0, v1)‖A 3
2 , 12

)
,

‖|D|su(t, ·)‖L2(Rn) �
(
1+ t

)− 1
6
(‖(u0, u1)‖A 3

2 , 12

+ ‖(v0, v1)‖A 3
2 , 12

)
,

‖v(t, ·)‖L2(Rn) �
(
1+ t

)− 1
8
(‖(u0, u1)‖A 3

2 , 12

+ ‖(v0, v1)‖A 3
2 , 12

)
,

‖|D|sv(t, ·)‖L2(Rn) �
(
1+ t

)− 1
2
(‖(u0, u1)‖A 3

2 , 12

+ ‖(v0, v1)‖A 3
2 , 12

)
.

2.2 Data from Energy Space

Similarly to the case of low regular data we may treat the limit case of Theorem 2.1,
that is, the data (u0, u1), (v0, v1) are supposed to belong toAm,1×Am,1. Therefore,
we can prove a global (in time) existence result of small data energy solutions. But,
now the data has a larger regularity which allows to define energy solutions and to
introduce the norms ‖ut (τ, ·)‖L2(Rn) and ‖vt (τ, ·)‖L2(Rn) in the solution spaceX(t).
We include also in this case the additional regularity parameter m in the definition
of the modified exponents p̃ = p̃r1,r2,m or q̃ = q̃r1,r2,m of the power nonlinearities.
We distinguish between several cases with respect to the values of r1 and r2 on the
one hand and the order relation between p̃ = p̃r1,r2,m and q̃ = q̃r1,r2,m on the other
hand. The cases we have in mind are the followings:

• r1 < r2 and p̃ < q̃,
• r1 > r2 and p̃ < q̃,
• r1 < r2 and p̃ > q̃,
• r1 > r2 and p̃ > q̃.

In the following theorem we will present the results for the first case.

Theorem 2.6 Let n < 2m2

2−m
, n ≤ 2m

m−1 , 0 < r1 < r2 < 1, and m ∈ [1, 2). The data
(u0, u1), (v0, v1) are assumed to belong to Am,1 × Am,1. Moreover, the modified
exponents satisfy

p̃r1,r2 < pFuj,m(n) < q̃r1,r2,m

and

n

2
> m

( q̃r1,r2,m + 1+ m
2

(
r1−r2
1+r2

)

p̃r1,r2 q̃r1,r2,m − 1+ m
2 (p̃ − 1)

(
r1−r2
1+r2

)
)
, (9)
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where

q̃ = q̃r1,r2,m = 1+ r1

1+ r2

(
q − m

2

)
+ m

2
, p̃ = p̃r1,r2 = 1+ r2

1+ r1
(p − 1)+ 1.

The exponents p and q of the power nonlinearities satisfy

2
m

≤ min{p; q} ≤ max{p; q} < ∞ if n ≤ 2,
2
m

≤ min{p; q} ≤ max{p; q} ≤ pGN(n) if n > 2.

Then, there exists a constant ε0 such that if

‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1 ≤ ε0,

then there exists a uniquely determined global (in time) energy solution to (2) in

(
C ([0,∞),H 1(Rn)) ∩ C 1([0,∞), L2(Rn))

)2
.

Furthermore, the solution satisfies the following estimates:

‖u(t, ·)‖L2(Rn) �
(
1+ B1(t, 0)

)− n
2

(
1
m− 1

2

)
+γn,m(p̃r1,r2 )

×(‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1

)
,

‖∇u(t, ·)‖L2(Rn) �
(
1+ B1(t, 0)

)− n
2

(
1
m− 1

2

)
− 1

2+γn,m(p̃r1,r2 )

×(‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1

)
,

‖ut (t, ·)‖L2(Rn) � b1(t)
−1(

1+ B1(t, 0)
)− n

2

(
1
m
− 1

2

)
−1+γn,m(p̃r1,r2 )

×(‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1

)
,

‖v(t, ·)‖L2(Rn) �
(
1+ B2(t, 0)

)− n
2

(
1
m− 1

2

)

×(‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1

)
,

‖∇v(t, ·)‖L2(Rn) �
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)
− 1

2

×(‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1

)
.

‖vt (t, ·)‖L2(Rn) � b2(t)
−1(

1+ B2(t, 0)
)− n

2

(
1
m− 1

2

)
−1

×(‖(u0, u1)‖Am,1 + ‖(v0, v1)‖Am,1

)
,
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where

γn,m(p̃r1,r2) = − n

2m
(p̃ − 1)+ 1

represent the loss of decay in comparison with the corresponding decay estimates
for the solution u of the linear Cauchy problem with vanishing right hand-side.

Example 2.7 Let us choose n = 2 in Theorem 2.6. If we choose the additional
regularitym = 7

4 , then we obtain
2
m

= 8
7 and pFuj, 74

(2) = 11
4 . Finally, for p = 3

2 ∈
[
8
7 ,∞

)
, q = 20 ∈

[
8
7 ,∞

)
and 1+r1

1+r2
= 1

2 we get

p̃ = 2 < pFuj, 74
(2) <

167

16
= q̃.

Moreover, the modified exponents p̃ and q̃ satisfy condition (9).

We summarize our results for all cases with respect to r1, r2, p̃ and q̃ in the following
table:

p̃ < pFuj,m(n) < q̃ q̃ < pFuj,m(n) < p̃

r1 < r2 Loss of decay in the estimate for u Loss of decay in the estimate for v

q̃ = q̃r1,r2,m γn,m(p̃) = − n
2m(p̃ − 1) + 1 γn,m(q̃) = − n

2m(q̃ − 1) + 1+ ε

p̃ = p̃r1,r2 interaction condition interaction condition

n
2 > m

(
q̃+1+m

2

(
r1−r2
1+r2

)

p̃q̃−1+m
2 (p̃−1)

(
r1−r2
1+r2

)
)

n
2 > m

(
p̃+ 1+r2

1+r1

p̃q̃− 1+r2
1+r1

+q̃
(

r2−r1
1+r1

)
)

r2 < r1 Loss of decay in the estimate for u Loss of decay in the estimate for v

q̃ = q̃r1,r2 γn,m(p̃) = − n
2m(p̃ − 1) + 1+ ε γn,m(q̃) = − n

2m(q̃ − 1) + 1

p̃ = p̃r1,r2,m interaction condition interaction condition

n
2 > m

(
q̃+ 1+r1

1+r2

p̃q̃− 1+r1
1+r2

+p̃
(

r1−r2
1+r2

)
)

n
2 > m

(
p̃+1+m

2

(
r2−r1
1+r1

)

p̃q̃−1+m
2 (q̃−1)

(
r2−r1
1+r1

)
)

Remark 2.4 remains still true in the case that the data are chosen from the energy
space.

2.3 Data from Sobolev Spaces with Suitable Regularity

In this case we assume that the data have a suitable larger regularity with an
additional regularity Lm(Rn), m ∈ [1, 2). In this section we shall use a general-
ized (fractional) Gagliardo-Nirenberg inequality used in the papers [7] and [13].
Furthermore, we shall use a fractional Leibniz rule and a fractional chain rule which
are explained in Propositions A.2 and A.3 from the Appendix.
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Theorem 2.8 Let n ≥ 4, s1, s2 ∈ [3, n
2 + 1], 0 < s2 − s1 < 1, �s1 �= �s2 ,

and −1 < r1 < r2 < 1. The data (u0, u1), (v0, v1) are supposed to belong to
Am,s1 ×Am,s2 with m ∈ [1, 2). Furthermore, we require

q̃ >
2m

n

( s2 + 1

2

)
+ 1, (10)

where q̃ = q̃r1,r2,m = 1+r1
1+r2

(
q − m

2

) + m
2 . The exponents p and q of the power

nonlinearities satisfy the conditions

�s1 < p, �s2 < q if n ≤ 2s1,
�s1 < p, �s2 < q ≤ 1+ 2

n−2s1
if 2s1 < n ≤ 2s2,

�s1 < p ≤ 1+ 2
n−2s2

, �s2 < q ≤ 1+ 2
n−2s1

if n > 2s2.
(11)

Then, there exists a constant ε0 such that if

‖(u0, u1)‖Am,s1
+ ‖(v0, v1)‖Am,s2

≤ ε0,

then there exists a uniquely determined globally (in time) energy solution to (2) in

(
C

([0,∞),H s1(Rn)
) ∩ C 1([0,∞),H s1−1(Rn)

))

×
(
C

([0,∞),H s2(Rn)
) ∩ C 1([0,∞),H s2−1(Rn)

))
.

Furthermore, the solution satisfies the estimates

‖u(t, ·)‖L2(Rn) �
(
1+ B1(t, 0)

)− n
2

(
1
m
− 1

2

)

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s1u(t, ·)‖L2(Rn) �
(
1+ B1(t, 0)

)− n
2

(
1
m− 1

2

)
− s1

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖ut (t, ·)‖L2(Rn) � b1(t)
−1(

1+ B1(t, 0)
)− n

2

(
1
m− 1

2

)
−1

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s1−1ut (t, ·)‖L2(Rn) � b1(t)
−1(

1+ B1(t, 0)
)− n

2

(
1
m− 1

2

)
−1− s1−1

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,
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‖v(t, ·)‖L2(Rn) �
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s2v(t, ·)‖L2(Rn) �
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)
− s2

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖vt (t, ·)‖L2(Rn) � b2(t)
−1(

1+ B2(t, 0)
)− n

2

(
1
m
− 1

2

)
−1

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s2−1vt (t, ·)‖L2(Rn) � b2(t)
−1(

1+ B2(t, 0)
)− n

2

(
1
m
− 1

2

)
−1− s2−1

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
.

Example 2.9 Let us choose the dimension n = 6. The coefficients of the dissipation

terms are b1(t) = (1 + t)− 1
2 and b2(t) = (1 + t)

1
2 . The data (u0, u1), (v0, v1) are

supposed to belong toA1,3×A1,4. Then admissible values for the exponents p and
q to guarantee the global (in time) existence of small data solutions can be chosen
as follows:

p = 4 > �3 = 3, and q = 5 > �4 = 4.

Here we obtain as modified exponent q̃ = 2 which satisfies the condition (10).

Remark 2.10 If we suppose in Theorem 2.8 the assumption −1 < r2 < r1 < 1,
then we replace condition (10) by the following condition:

p̃ >
2m

n

( s1 + 1

2

)
+ 1,

where p̃ = p̃r1,r2,m = 1+r1
1+r2

(
p − m

2

) + m
2 .

2.4 Large Regular Data

This case has been classified to benefit from embedding in L∞(Rn), where the data
are supposed to have a high regularity.
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Theorem 2.11 Let n ≥ 4, (u0, u1), (v0, v1) ∈ Am,s1 × Am,s2 , m ∈ [1, 2), s2 >

s1 > n
2 + 1, and −1 < r1 < r2 < 1. Moreover, let

p > s1, q > s̃2, q̃ ≥ 2m

n

( s2 + 1

2

)
+ 1,

where

s̃2 ∈ (s1, s1 + 1), s̃2 ≤ s2, q̃ = q̃r1,r2,m = 1+ r1

1+ r2

(
q − m

2

)
+ m

2
.

Then, there exists a constant ε0 such that if

‖(u0, u1)‖Am,s1
+ ‖(v0, v1)‖Am,s2

≤ ε0,

then there exists a uniquely determined globally (in time) energy solution to (2) in

(
C

([0,∞),H s1(Rn)
) ∩ C 1([0,∞),H s1−1(Rn)

))

×
(
C

([0,∞),H s̃2(Rn)
) ∩ C 1([0, t],H s̃2−1(Rn)

))
.

Furthermore, the solution satisfies the following estimates:

‖u(t, ·)‖L2(Rn) �
(
1+ B1(t, 0)

)− n
2

(
1
m− 1

2

)

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s1u(t, ·)‖L2(Rn) �
(
1+ B1(t, 0)

)− n
2

(
1
m− 1

2

)
− s1

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖ut (t, ·)‖L2(Rn) � b1(t)
−1(

1+ B1(t, 0)
)− n

2

(
1
m− 1

2

)
−1

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s1−1ut (t, ·)‖L2(Rn) � b1(t)
−1(

1+ B1(t, 0)
)− n

2

(
1
m− 1

2

)
−1− s1−1

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖v(t, ·)‖L2(Rn) �
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,
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‖|D|s̃2v(t, ·)‖L2(Rn) �
(
1+ B2(t, 0)

)− n
2

(
1
m
− 1

2

)
− s̃2

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖vt (t, ·)‖L2(Rn) � b2(t)
−1(

1+ B2(t, 0)
)− n

2

(
1
m− 1

2

)
−1

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
,

‖|D|s̃2−1vt (t, ·)‖L2(Rn) � b2(t)
−1(

1+ B2(t, 0)
)− n

2

(
1
m− 1

2

)
−1− s̃2−1

2

×
(
‖(u0, u1)‖Am,s1

+ ‖(v0, v1)‖Am,s2

)
.

Example 2.12 Let us consider the model from Example 2.9. If we choose data
(u0, u1), (v0, v1) from A1,5 × A1, 112

, then the admissible range for the exponents

p, q and q̃ to guarantee the global (in time) existence of small data solutions can be
chosen as follows:

p > 5, q >
11

2
, q̃ >

25

22
.

3 Philosophy of Our Approach

We define the norm of the solution space X(t) by

‖(u, v)‖X(t) = sup
τ∈[0,t ]

{
M1(τ, u) + M2(τ, v)

}
,

where we shall choose M(τ, u) and M(τ, v) with respect to the goals of each
theorem.

Let N be the mapping on X(t) which is defined by

N : (u, v) ∈ X(t) → N(u, v) = (
uln + unl, vln + vnl

)
,

where

uln(t, x) := E1,0(t, 0, x) ∗(x) u0(x)+ E1,1(t, 0, x) ∗(x) u1(x),

unl(t, x) :=
∫ t

0
E1,1(t, τ, x) ∗(x) |v(τ, x)|pdτ,

vln(t, x) := E2,0(t, 0, x) ∗(x) v0(x)+ E2,1(t, 0, x) ∗(x) v1(x),

vnl(t, x) :=
∫ t

0
E2,1(t, τ, x) ∗(x) |u(τ, x)|qdτ.
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Our aim is to prove the following inequalities which imply among other things the
global (in time) existence of small data solutions:

‖N(u, v)‖X(t) � ‖(u0, u1)‖Am,s1
+ ‖(v0, v1)‖Am,s2

+ ‖(u, v)‖pX(t) + ‖(u, v)‖qX(t),

(12)

‖N(u, v) − N(ũ, ṽ)‖X(t) � ‖(u, v) − (ũ, ṽ)‖X(t)

×(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t) + ‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
.

(13)

We can immediately obtain from the introduced norm of the solution spaceX(t) the
following inequality:

‖(uln, vln)‖X(t) � ‖(u0, u1)‖Am,s1
+ ‖(v0, v1)‖Am,s2

.

This inequality implies (12) with the following estimate which we shall prove
separately for each case:

‖(unl , vnl)‖X(t) � ‖(u, v)‖pX(t) + ‖(u, v)‖qX(t). (14)

Summarizing, we will prove for each case the inequalities (14) and (13).

3.1 Proof of Theorem 2.1

For s1 = s2 = s and without loss of generality we assume p̃r1,r2 < pFuj,m(n) <

q̃r1,r2 . Let us choose

M1(τ, u) = (1+ B1(τ, 0))
n
2

(
1
m− 1

2

)
−γn,m(p̃r1,r2 )‖u(τ, ·)‖L2(Rn)

+(1+ B1(τ, 0))
n
2

(
1
m− 1

2

)
+ s

2−γn,m(p̃r1,r2 )‖|D|su(τ, ·)‖L2(Rn),

M2(τ, v) = (1+ B2(τ, 0))
n
2

(
1
m− 1

2

)

‖v(τ, ·)‖L2(Rn)

+(1+ B2(τ, 0))
n
2

(
1
m− 1

2

)
+ s

2 ‖|D|sv(τ, ·)‖L2(Rn).

Lemma 3.1 Using the Gagliardo-Nirenberg inequality we get for 0 ≤ τ ≤ t the
estimates

‖|v(τ, ·)|p‖L2 � (1+ B2(τ, 0))−
n
2mp+ n

4 ‖(u, v)‖pX(t), (15)

‖|v(τ, ·)|p‖Lm � (1+ B2(τ, 0))−
n
2mp+ n

2m ‖(u, v)‖pX(t), (16)

‖|u(τ, ·)|q‖L2 � (1+ B1(τ, 0))
− n

2mq+ n
4+γn,m(p̃r1,r2 )q‖(u, v)‖qX(t), (17)
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‖|u(τ, ·)|q‖Lm � (1+ B1(τ, 0))−
n
2mq+ n

2m+γn,m(p̃r1,r2 )q‖(u, v)‖qX(t), (18)
∥
∥|v(τ, ·)|p − |ṽ(τ, ·)|p∥

∥
L2 � (1+ B2(τ, 0))−

n
2mp+ n

4 (19)

×‖v − ṽ‖X(t)

(‖v‖p−1
X(t) + ‖ṽ‖p−1

X(t)

)
,

∥
∥|v(τ, ·)|p − |ṽ(τ, ·)|p∥

∥
Lm � (1+ B2(τ, 0))

− n
2mp+ n

2m (20)

×‖v − ṽ‖X(t)

(‖v‖p−1
X(t) + ‖ṽ‖p−1

X(t)

)
,

∥
∥|u(τ, ·)|q − |ũ(τ, ·)|q∥

∥
L2 � (1+ B1(τ, 0))

− n
2mq+ n

4+γn,m(p̃r1,r2 )q (21)

×‖u − ũ‖X(t)

(‖u‖q−1
X(t) + ‖ũ‖q−1

X(t)

)
,

∥
∥|u(τ, ·)|q − |ũ(τ, ·)|q∥

∥
Lm � (1+ B1(τ, 0))−

n
2mq+ n

2m+γn,m(p̃r1,r2 )q (22)

×‖u − ũ‖X(t)

(‖u‖q−1
X(t) + ‖ũ‖q−1

X(t)

)
,

provided that the condition (7) is satisfied.

Proof Let us prove (16). Using the Gagliardo-Nirenberg inequality we obtain

∥
∥|v(τ, x)|p∥

∥
Lm(Rn)

=
( ∫

Rn
|v(τ, x)|mpdx

) 1
mp

p = ‖v(τ, ·)‖p
Lmp(Rn)

� ‖v(τ, ·)‖(1−θ)p

L2(Rn)
‖|D|s v(τ, ·)‖θp

L2(Rn)
,

where we choose

θ = n

s

(1

2
− 1

mp

)
∈ [0, 1]

due to condition (7) for p. By using for 0 ≤ τ ≤ t the definition of the norm of the
solution space X(t) we get

‖v(τ, ·)‖pLmp(Rn) � (1+ B2(τ, 0))
(1−θ)p

(
− n

2

(
1
m
− 1

2

))
+θp

(
− n

2

(
1
m
− 1

2

)
− s

2

)

‖(u, v)‖pX(t).

Then

‖v(τ, ·)‖pLmp(Rn) � (1+ B2(τ, 0))−
n
2mp+ n

2m ‖(u, v)‖pX(t).

In the same way we can prove (18). After setting m = 2 we conclude (15) and (17).
For (20), we get after using Hölder’s inequality

∥
∥|v(τ, x)|p − |ṽ(τ, x)|p∥

∥
Lm(Rn)

�
∥
∥v(τ, ·) − ṽ(τ, ·)∥∥

Lmp(Rn)

(‖v(τ, ·)‖p−1
Lmp(Rn) + ‖ṽ(τ, ·)‖p−1

Lmp(Rn)

)
.
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By using the definition of the norm of the solution space X(t) and after applying
the classical Gagliardo-Nirenberg inequality to estimate the norms

∥
∥v(τ, ·) −

ṽ(τ, ·)∥∥
Lmp(Rn)

, ‖v(τ, ·)‖p−1
Lmp(Rn) and ‖ṽ(τ, ·)‖p−1

Lmp(Rn) as we did for (16) we obtain
for 0 ≤ τ ≤ t the desired estimates. Following the same ideas we obtain (22).
Finally, by setting m = 2 one may conclude (19) and (21).

We come back to the proof of Theorem 2.1. To estimate the nonlinear part we
begin with unl . Let us begin to estimate the norm

∥
∥|D|sunl(t, ·)∥∥

L2 . Using the
estimates (15), (16) and the estimate (3) of Theorem 1.3 we get

‖|D|sunl(t, ·)‖L2(Rn)

�
∫ t

0
b1(τ )

−1(1+ B1(t, τ ))
− n

2

(
1
m
− 1

2

)
− s

2 ‖|v(τ, ·)|p‖Lm(Rn)∩L2(Rn)dτ

� ‖(u, v)‖pX(t)

∫ t
2

0
b1(τ )

−1(1+ B1(t, τ ))
− n

2

(
1
m
− 1

2

)
− s

2

×(1+ B1(τ, 0))−
n
2m (p̃r1,r2−1)dτ

+‖(u, v)‖pX(t)

∫ t

t
2

b1(τ )
−1(1+ B1(t, τ ))

− n
2

(
1
m− 1

2

)
− s

2

×(1+ B1(τ, 0))
− n

2m (p̃r1,r2−1)dτ

� ‖(u, v)‖p
X(t)

(1+ B1(t, 0))
− n

2

(
1
m− 1

2

)
− s

2

×
∫ t

2

0
b1(τ )

−1(1+ B1(τ, 0))−
n
2m(p̃r1,r2−1)dτ

+‖(u, v)‖pX(t)(1+ B1(t, 0))−
n
2m (p̃r1,r2−1)

×
∫ t

t
2

b1(τ )
−1(1+ B1(t, τ ))

− n
2

(
1
m− 1

2

)
− s

2 dτ.

If τ ∈ [0, t
2 ], then

∫ t
2

0
b1(τ )

−1(1+ B1(τ, 0))−
n
2m (p̃r1,r2−1)dτ � (1+ B1(t, 0))γn,m(p̃r1,r2 ).

If τ ∈ [ t2 , t] and −n
2

( 1
m

− 1
2

) − s
2 > −1 which is equivalent to n < 2m(2−s)

2−m
, then

∫ t

t
2

b1(τ )
−1(1+ B1(t, τ ))

− n
2

(
1
m− 1

2

)
− s

2 dτ � (1+ B1(t, 0))
− n

2

(
1
m− 1

2

)
− s

2+1
.
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Consequently, we get

‖|D|sunl(t, ·)‖L2(Rn) � ‖(u, v)‖pX(t)(1+B1(t, 0))
− n

2

(
1
m
− 1

2

)
− s

2+γn,m(p̃r1,r2 ). (23)

In the same way we obtain

‖unl(t, ·)‖L2(Rn) � ‖(u, v)‖pX(t)(1+ B1(t, 0))
− n

2

(
1
m
− 1

2

)
+γn,m(p̃r1,r2 ). (24)

On the other hand, for vnl by using the estimates (17), (18) and the estimate (3) of
Theorem 1.3 we obtain

‖|D|svnl(t, ·)‖L2(Rn)

�
∫ t

0
b2(τ )

−1(1+ B2(t, τ ))
− n

2

(
1
m
− 1

2

)
− s

2 ‖|u(τ, ·)|q‖Lm(Rn)∩L2(Rn)dτ

� ‖(u, v)‖qX(t)

∫ t
2

0
b2(τ )

−1(1+ B2(t, τ ))
− n

2

(
1
m
− 1

2

)
− s

2

×(1+ B2(τ, 0))
− n

2m (q̃r1,r2−1)+γn,m(p̃r1,r2 )q
(
1+r1
1+r2

)

dτ

+‖(u, v)‖q
X(t)

∫ t

t
2

b2(τ )
−1(1+ B2(t, τ ))

− n
2

(
1
m− 1

2

)
− s

2

×(1+ B2(τ, 0))
− n

2m (q̃r1,r2−1)+γn,m(p̃r1,r2 )q
(
1+r1
1+r2

)

dτ.

If τ ∈ [0, t
2 ], then we have

∫ t
2

0
b2(τ)

−1(1+ B2(t, τ))
− n

2

(
1
m− 1

2

)
− s

2

×(1+ B2(τ, 0))
− n

2m (q̃r1,r2−1)+γn,m(p̃r1,r2 )q
(
1+r1
1+r2

)

dτ � (1 + B2(t, 0))
− n

2

(
1
m− 1

2

)
− s

2 ,

where we used

− n

2m
(q̃r1,r2 − 1)+ γn,m(p̃r1,r2)q

(1+ r1

1+ r2

)
+ 1 < 0
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which is equivalent to (6) after taking account of p̃r1,r2 < q̃r1,r2 . If τ ∈ [ t2 , t], then
we have

∫ t

t
2

b2(τ )
−1(1+ B2(t, τ ))

− n
2

(
1
m
− 1

2

)
− s

2

×(1+ B2(τ, 0))
− n

2m (q̃r1,r2−1)+γn,m(p̃r1,r2 )q
(
1+r1
1+r2

)

dτ

� (1+ B2(t, 0))
− n

2m (q̃r1,r2−1)+γn,m(p̃r1,r2 )q
(
1+r1
1+r2

)

×
∫ t

t
2

b2(τ )
−1(1+ B2(t, τ ))

− n
2

(
1
m− 1

2

)
− s

2 dτ

� (1+ B2(t, 0))
− n

2

(
1
m− 1

2

)
− s

2 ,

where we used again

− n

2m
(q̃r1,r2 − 1)+ γn,m(p̃)q

(1+ r1

1+ r2

)
+ 1 < 0.

Consequently, we have

‖|D|svnl(t, ·)‖L2(Rn) � ‖(u, v)‖qX(t)(1+ B2(t, 0))
− n

2

(
1
m− 1

2

)
− s

2 . (25)

In the same way we may conclude

‖vnl(t, ·)‖L2(Rn) � ‖(u, v)‖qX(t)(1+ B2(t, 0))
− n

2

(
1
m− 1

2

)

. (26)

Finally, from (23) to (26) we get (14).
Now we prove (13). Let us assume that (u, v) and (ũ, ũ) are two vector-functions

belonging to X(t). Then we have

N(u, v) − N(ũ, ṽ) =
( ∫ t

0 E1,1(t, τ, x) ∗(x)
(|v(τ, x)|p − |ṽ(τ, x)|p)

dτ,
∫ t

0 E2,1(t, τ, x) ∗(x)
(|u(τ, x)|p − |ũ(τ, x)|p)

dτ
)
.

(27)

Analogously to (23)–(26) by using (19)–(22) we may conclude

∥
∥
∥|D|s ∫ t

0 E1,1(t, τ, x) ∗(x)
(|v(τ, x)|p − |ṽ(τ, x)|p)

dτ

∥
∥
∥
L2(Rn)

� (1+ B1(t, 0))
− n

2

(
1
m− 1

2

)
− s

2+γn,m(p̃r1,r2 )

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t)

)
,

(28)
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∥
∥
∥

∫ t

0 E1,1(t, τ, x) ∗(x)
(|v(τ, x)|p − |ṽ(τ, x)|p)

dτ

∥
∥
∥
L2(Rn)

� (1+ B1(t, 0))
− n

2

(
1
m− 1

2

)
+γn,m(p̃r1,r2 )

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t)

+ ‖(ũ, ṽ)‖p−1
X(t)

)
,

(29)

∥
∥
∥|D|s ∫ t

0 E2,1(t, τ, x) ∗(x)
(|u(τ, x)|q − |ũ(τ, x)|q)

dτ

∥
∥
∥
L2(Rn)

� (1+ B2(t, 0))
− n

2

(
1
m− 1

2

)
− s

2

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
,

(30)

∥
∥
∥

∫ t

0 E2,1(t, τ, x) ∗(x)
(|u(τ, x)|q − |ũ(τ, x)|q)

dτ

∥
∥
∥
L2(Rn)

� (1+ B2(t, 0))
− n

2

(
1
m
− 1

2

)

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
.

(31)

In this way we complete the proof.

3.2 Proof of Theorem 2.6

We can prove this theorem by following the same steps used in the proof of
Theorem 2.1, after setting s1 = s2 = 1. But in this case we define a modified
solution space X(t), with additional terms formed by suitable norms of ut and vt ,
namely

X(t) =
{

(u, v) ∈
(
C ([0, t],H 1(Rn)) ∩ C 1([0, t], L2(Rn))

)2
}

with the norm

M1(τ, u) = (1+ B1(τ, 0))
n
2

(
1
m− 1

2

)
−γn,m(p̃r1,r2 )‖u(τ, ·)‖L2(Rn)

+(1+ B1(τ, 0))
n
2

(
1
m
− 1

2

)
+ 1

2−γn,m(p̃r1,r2 )‖∇u(τ, ·)‖L2(Rn)

+b1(τ )(1+ B1(τ, 0))
n
2

(
1
m− 1

2

)
+1−γn,m(p̃r1,r2 )‖ut (τ, ·)‖L2(Rn),

M2(τ, v) = (1+ B2(τ, 0))
n
2

(
1
m
− 1

2

)

‖v(τ, ·)‖L2(Rn)

+(1+ B2(τ, 0))
n
2

(
1
m− 1

2

)
+ 1

2 ‖∇v(τ, ·)‖L2(Rn)

+b2(τ )(1+ B2(τ, 0))
n
2

(
1
m
− 1

2

)
+1‖vt (τ, ·)‖L2(Rn).
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From the proof of Theorem 2.1 we can conclude (23)–(26) for s = 1. Analogously,
we can prove the following estimates for

∥
∥unl

t (t, ·)∥∥
L2(Rn)

and
∥
∥vnl

t (t, ·)∥∥
L2(Rn)

:

∥
∥unl

t (t, ·)∥∥
L2(Rn)

� ‖(u, v)‖pX(t)b1(t)
−1(1+ B1(t, 0))

− n
2

(
1
m− 1

2

)
−1+γn,m(p̃r1,r2 ), (32)

∥
∥vnl

t (t, ·)∥∥
L2(Rn)

� ‖(u, v)‖p
X(t)

b2(t)
−1(1+ B2(t, 0))

− n
2

(
1
m− 1

2

)
−1

, (33)

where we use condition (9). Finally, from (32) and (33) together with (23)–(26) for
s = 1 we conclude (14).

To prove (13), we conclude the estimates (28)–(31) for s = 1 and, similarly,
to (32) and (33) we prove

∥
∥
∥∂t

∫ t

0
E1,1(t, τ, x) ∗(x)

(|v(τ, x)|p − |ṽ(τ, x)|p)
dτ

∥
∥
∥
L2(Rn)

� b1(t)
−1(1+ B1(t, 0))

− n
2

(
1
m− 1

2

)
−1+γn,m(p̃r1,r2 )

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t)

)
,

∥
∥
∥∂t

∫ t

0
E2,1(t, τ, x) ∗(x)

(|u(τ, x)|p − |ũ(τ, x)|p)
dτ

∥
∥
∥
L2(Rn)

� b2(t)
−1(1+ B2(t, 0))

− n
2

(
1
m
− 1

2

)
−1

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t)

)
.

The proof is completed.

3.3 Proof of Theorem 2.8

Let us define the space of solutionsX(t) by

X(t) =
{
(u, v) ∈

[
C ([0, t],H s1(Rn)) ∩ C 1([0, t],H s1−1(Rn))

]

×
[
C ([0, t],H s2(Rn)) ∩ C 1([0, t],H s2−1(Rn))

]}
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with the norm

M1(τ, u) = (
1+ B1(τ, 0)

) n
2

(
1
m
− 1

2

)

‖u(τ, ·)‖L2(Rn)

+b1(τ )
(
1+ B1(τ, 0)

) n
2

(
1
m− 1

2

)
+1‖ut (τ, ·)‖L2(Rn)

+b1(τ )
(
1+ B1(τ, 0)

) n
2

(
1
m
− 1

2

)
+ s1−1

2 +1‖|D|s1−1ut (τ, ·)‖L2(Rn)

+(
1+ B1(τ, 0)

) n
2

(
1
m− 1

2

)
+ s1

2 ‖|D|s1u(τ, ·)‖L2(Rn),

and

M2(τ, v) = (
1+ B2(τ, 0)

) n
2

(
1
m
− 1

2

)

‖v(τ, ·)‖L2(Rn)

+b2(τ )
(
1+ B2(τ, 0)

) n
2

(
1
m− 1

2

)
+1‖vt (τ, ·)‖L2(Rn)

+b2(τ )
(
1+ B2(τ, 0)

) n
2

(
1
m
− 1

2

)
+ s2−1

2 +1‖|D|s2−1vt (τ, ·)‖L2(Rn)

+(
1+ B2(τ, 0)

) n
2

(
1
m− 1

2

)
+ s2

2 ‖|D|s2v(τ, ·)‖L2(Rn).

Lemma 3.2 Under the assumptions of Theorem 2.8 and the choice of the above
introduced norms, the following inequalities hold for 0 ≤ τ ≤ t:

‖|v(τ, ·)|p‖Ḣ s1−1 � (1+ B2(τ, 0))−
n
2mp+ n

4− s2−1
2 ‖(u, v)‖pX(t), (34)

‖|u(τ, ·)|q‖Ḣ s2−1 � (1+ B1(τ, 0))−
n
2mq+ n

4− s1−1
2 ‖(u, v)‖qX(t), (35)

‖|v(τ, ·)|p − |ṽ(τ, ·)|p‖Ḣ s1−1 � (1+ B2(τ, 0))−
n
2mp+ n

4− s2−1
2

×M2(t, v − ṽ)
(
‖(u, v)‖p−1

X(t) + ‖(ũ, ṽ)‖p−1
X(t)

)
,

(36)

‖|u(τ, ·)|q − |ũ(τ, ·)|q‖Ḣ s2−1 � (1+ B1(τ, 0))−
n
2mq+ n

4− s1−1
2

×M1(t, u− ũ)
(
‖(u, v)‖q−1

X(t) + ‖(ũ, ṽ)‖q−1
X(t)

)
.

(37)

Proof Let us begin with (34). Taking into consideration the Propositions A.1
and A.3, in particular, formula (48) wemay conclude for p > �s1−1 and 0 ≤ τ ≤ t

the following estimate:

‖|v(τ, ·)|p‖Ḣ s1−1

�
∥
∥v(τ, ·)∥∥p−1

Lq1

∥
∥|D|s1−1(τ, ·)∥∥

Lq2
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�
∥
∥v(τ, ·)∥∥(p−1)(1−θ1)

L2

∥
∥|D|s2v(τ, ·)∥∥(p−1)θ1

L2

∥
∥v(τ, ·)∥∥1−θ2

L2

∥
∥|D|s2v(τ, ·)∥∥θ2

L2

� (1+ B2(τ, 0))
− n

2mp+ n
4− s2−1

2 ‖(u, v)‖pX(t),

where

p − 1

q1
+ 1

q2
= 1

2
, θ1 = n

s

(1

2
− 1

q1

)
∈ [0, 1], θ2 = n

s2

(1

2
− 1

q2

)
+ s1 − 1

s2
∈

[ s1 − 1

s2
, 1

]
.

To satisfy the last conditions for the parameters θ1 and θ2 we choose q2 = 2n
n−2 and

q1 = n(p − 1). This choice implies the condition

1+ 2

n
≤ p ≤ 1+ 2

n − 2s2
.

Consequently, we obtain (34). Analogously, we can prove (35).
Now we prove (36). Using the fractional Leibniz rule from Proposition A.2 we

get

∥
∥|v(τ, ·)|p − |ṽ(τ, ·)|p∥

∥
Ḣ s1−1

�
∫ 1

0

∥
∥|D|s1−1

{
(v − ṽ)(v − r(v − ṽ))|v − r(v − ṽ)|p−2

} ∥
∥
L2dr

�
∫ 1

0

∥
∥|D|s1−1(v − ṽ)

∥
∥
Lq1

∥
∥(v − r(v − ṽ))|v − r(v − ṽ)|p−2

∥
∥
Lq2dr

+
∫ 1

0

∥
∥v − ṽ

∥
∥
Lq3

∥
∥|D|s1−1[

(v − r(v − ṽ))|v − r(v − ṽ)|p−2]∥
∥
Lq4dr,

where

1

2
= 1

q1
+ 1

q2
= 1

q3
+ 1

q4
.

For the first integral we use the classical Gagliardo-Nirenberg inequality and obtain
for 0 ≤ τ ≤ t the estimates

∥
∥|D|s1−1(v − ṽ)

∥
∥
Lq1

�
∥
∥v − ṽ

∥
∥1−θ1
L2

∥
∥|D|s2(v − ṽ)

∥
∥θ1
L2 � (1+ B2(τ, 0))

− n
2m− s2−1

2 + n
2q1

∥
∥v − ṽ

∥
∥
X(t)

,
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and

∥
∥(v − r(v − ṽ))|v − r(v − ṽ)|p−2

∥
∥
Lq2

�
∥
∥v − r(v − ṽ)

∥
∥(1−θ2)(p−1)
L2

∥
∥|D|s2 (v − r(v − ṽ))

∥
∥θ2(p−1)
L2

� (1+ B2(τ, 0))
− n

2m (p−1)+ n
2q2

∥
∥v − r(v − ṽ)

∥
∥p−1
X(t)

for

θ1 = n

s2

(1

2
− 1

q1
+ s1 − 1

n

)
∈

[s1 − 1

s2
, 1

]
, θ2 = n

s2

(1

2
− 1

q2(p − 1)

)
∈ [0, 1]

which is satisfied from condition (11) after choosing q1 = 2n
n−2 and q2 = n.

To estimate the first norm in the second integral we use again the Gagliardo-
Nirenberg inequality. In this way we obtain

∥
∥v − ṽ

∥
∥
Lq3 �

∥
∥v − ṽ

∥
∥1−θ3
L2

∥
∥|D|s2(v − ṽ)

∥
∥θ3
L2 � (1+ B2(τ, 0))

− n
2m+ n

2q3
∥
∥v − ṽ

∥
∥
X(t)

,

where

θ3 = n

s2

(1

2
− 1

q3

)
∈ [0, 1].

To estimate the second norm we use the fractional chain rule from Proposition A.3
for p − 1 > �s1 − 1 . Then we get

∥
∥|D|s1−1[

(v − r(v − ṽ))|v − r(v − ṽ)|p−2]∥
∥
Lq4

� ‖v − r(v − ṽ)‖p−2
Lq5 ‖|D|s1−1(v − r(v − ṽ))‖Lq6 ,

where

1

q4
= p − 2

q5
+ 1

q6
.

Using the Gagliardo-Nirenberg inequality to estimate the last two norms we get

‖v − r(v − ṽ)‖p−2
Lq5 � ‖v − r(v − ṽ)‖(p−2)(1−θ5)

L2 ‖|D|s2(v − r(v − ṽ))‖(p−2)θ5
L2

� (1+ B2(τ, 0))
− n

2m (p−2)+ n
2q5

(p−2)∥∥v − r(v − ṽ)
∥
∥p−2
X(t)

,
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and

‖|D|s1−1(v − r(v − ṽ))‖Lq6 � ‖v − r(v − ṽ)‖1−θ6
L2 ‖|D|s2(v − r(v − ṽ))‖θ6

L2

� (1+ B2(τ, 0))
− n

2m+ n
2q6

− s2−1
2

∥
∥v − r(v − ṽ)

∥
∥
X(t)

for

θ5 = n

s2

(1

2
− 1

q5

)
∈ [0, 1], θ6 = n

s2

(1

2
− 1

q6

)
+ s1 − 1

s2
∈

[ s1 − 1

s2
, 1

]
.

One possibility to choose the parameters q3, q4, q5 and q6 satisfying the last
conditions is

q3 = n(p − 1), q4 = 2n(p − 1)

n(p − 1)− 2
, q5 = n(p − 1), q6 = 2n

n − 2
.

This choice implies the condition

1+ 2

n
≤ p ≤ 1+ 2

n− 2s2

which follows from (11). Consequently, we get (36). Analogously, we can
prove (37).

Let us come back to the proof of Theorem 2.8. We have from the estimate (4) of
Theorem 1.3

‖|D|s1−1unl
t (t, ·)‖L2(Rn)

�
∫ t

0
b1(τ )

−1b1(t)
−1(1+ B1(t, τ ))

− n
2

(
1
m− 1

2

)
− s1−1

2 −1

×‖|v(τ, ·)|p‖Lm(Rn)∩L2(Rn)∩Ḣ s1−1(Rn)dτ

� ‖(u, v)‖pX(t)b1(t)
−1(1+ B1(t, 0))

− n
2

(
1
m− 1

2

)
− s1−1

2 −1
,

where we use the estimates (15), (16), (34) and

p̃ := p̃r1,r2 = 1+ r2

1+ r1
(p − 1)+ 1 >

2m

n

( s1 + 1

2

)
+ 1

from (11), in particular,

p̃ > p > �s1 >
2m

n

( s1 + 1

2

)
+ 1 for n ≥ 4, s1 > 3 and r1 < r2.
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Consequently, we obtain

‖|D|s1−1unl
t (t, ·)‖L2(Rn) � ‖(u, v)‖pX(t)b1(t)

−1(1+ B1(t, 0))
− n

2

(
1
m
− 1

2

)
− s1−1

2 −1
. (38)

In a similar way we derive the estimates

‖unl(t, ·)‖L2(Rn) � ‖(u, v)‖p
X(t)

(1+ B1(t, 0))
− n

2

(
1
m− 1

2

)

, (39)

‖unl
t (t, ·)‖L2(Rn) � ‖(u, v)‖pX(t)b1(t)

−1(1+ B1(t, 0))
− n

2

(
1
m
− 1

2

)
−1

, (40)

‖|D|s1unl(t, ·)‖L2(Rn) � ‖(u, v)‖pX(t)(1+ B1(t, 0))
− n

2

(
1
m− 1

2

)
− s1

2 . (41)

Following the same ideas to estimate ‖|D|s1−1unl
t (t, ·)‖L2(Rn), one can arrive at the

following estimates:

‖|D|s2−1vnl
t (t, ·)‖L2(Rn)

� ‖(u, v)‖q
X(t)

b2(t)
−1(1+ B2(t, 0))

− n
2

(
1
m− 1

2

)
− s2−1

2 −1
,

(42)

‖vnl(t, ·)‖L2(Rn) � ‖(u, v)‖qX(t)(1+ B2(t, 0))
− n

2

(
1
m− 1

2

)

, (43)

‖vnl
t (t, ·)‖L2(Rn) � ‖(u, v)‖qX(t)b2(t)

−1(1+ B2(t, 0))
− n

2

(
1
m
− 1

2

)
−1

, (44)

‖|D|s2vnl(t, ·)‖L2(Rn) � ‖(u, v)‖qX(t)(1+ B2(t, 0))
− n

2

(
1
m− 1

2

)
− s2

2 . (45)

But now we need the condition (10). This condition is not included in the condition
q > �s2 because of q > q̃ for r1 < r2.

Finally, from (38) to (45) we conclude (14).
To prove (13), we use (19)–(22) with (36), (37) in (27), to get in a similar way

to (38)–(45) the following estimates:

∥
∥
∥|D|s1−1∂t

∫ t

0
E1,1(t, τ, x) ∗(x)

(|v(τ, x)|p − |ṽ(τ, x)|p)
dτ

∥
∥
∥
L2(Rn)

� b1(t)
−1(1+ B1(t, 0))

− n
2

(
1
m
− 1

2

)
− s1−1

2 −1

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t)

)
,

∥
∥
∥

∫ t

0
E1,1(t, τ, x) ∗(x)

(|v(τ, x)|p − |ṽ(τ, x)|p)
dτ

∥
∥
∥
L2(Rn)

� (1+ B1(t, 0))
− n

2

(
1
m− 1

2

)

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t)

)
,
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∥
∥
∥∂t

∫ t

0
E1,1(t, τ, x) ∗(x)

(|v(τ, x)|p − |ṽ(τ, x)|p)
dτ

∥
∥
∥
L2(Rn)

� b1(t)
−1(1+ B1(t, 0))

− n
2

(
1
m− 1

2

)
−1

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t) + ‖(ũ, ṽ)‖p−1

X(t)

)
,

∥
∥
∥|D|s1

∫ t

0
E1,1(t, τ, x) ∗(x)

(|v(τ, x)|p − |ṽ(τ, x)|p)
dτ

∥
∥
∥
L2(Rn)

� (1+ B1(t, 0))
− n

2

(
1
m− 1

2

)
− s1

2

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖p−1
X(t)

+ ‖(ũ, ṽ)‖p−1
X(t)

)
,

∥
∥
∥

∫ t

0
E2,1(t, τ, x) ∗(x)

(|u(τ, x)|q − |ũ(τ, x)|q)
dτ

∥
∥
∥
L2(Rn)

� (1+ B2(t, 0))
− n

2

(
1
m− 1

2

)

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
,

∥
∥
∥∂t

∫ t

0
E2,1(t, τ, x) ∗(x)

(|u(τ, x)|q − |ũ(τ, x)|q)
dτ

∥
∥
∥
L2(Rn)

� b2(t)
−1(1+ B2(t, 0))

− n
2

(
1
m
− 1

2

)
−1

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
,

∥
∥
∥|D|s2−1∂t

∫ t

0
E2,1(t, τ, x) ∗(x)

(|u(τ, x)|q − |ũ(τ, x)|q)
dτ

∥
∥
∥
L2(Rn)

� b2(t)
−1(1+ B2(t, 0))

− n
2

(
1
m− 1

2

)
− s2−1

2 −1

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
,

∥
∥
∥|D|s2

∫ t

0
E2,1(t, τ, x) ∗(x)

(|u(τ, x)|q − |ũ(τ, x)|q)
dτ

∥
∥
∥
L2(Rn)

� (1+ B2(t, 0))
− n

2

(
1
m− 1

2

)
− s2

2

×‖(u, v) − (ũ, ṽ)‖X(t)

(‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
.

In this way the proof is completed.
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3.4 Proof of Theorem 2.11

To prove this theorem we choose the same norm of the solution space which is used
in the proof of Theorem 2.8 with s̃2 instead of s2. Then we obtain the following
lemma.

Lemma 3.3 The following inequalities hold for 0 ≤ τ ≤ t:

‖|v(τ, ·)|p‖Ḣ s1−1(Rn) � (1+ B2(τ, 0))
− n

2

(
1
m− 1

2

)
p− s1−1

2 − s∗
2 (p−1)‖(u, v)‖pX(t),

||u(τ, ·)|q‖Ḣ s̃2−1(Rn) � (1+ B1(τ, 0))
− n

2

(
1
m− 1

2

)
q− s̃2−1

2 − s∗
2 (q−1)‖(u, v)‖qX(t),

∥
∥|v(τ, ·)|p − |ṽ(τ, ·)|p∥

∥
Ḣ s1−1(Rn)

� (1+ B2(τ, 0))−
n
2mp+ n

4 (p−1)− s1−1
2 − s∗

2 (p−1)

×‖(u, v) − (ũ, ṽ)‖X(t)

(
‖(u, v)‖p−1

X(t) + ‖(ũ, ṽ)‖p−1
X(t)

)
,

∥
∥|u(τ, ·)|q − |ũ(τ, ·)|q∥

∥
Ḣ s̃2−1(Rn)

� (1+ B1(τ, 0))
− n

2mq+ n
4 (q−1)− s̃2−1

2 − s∗
2 (q−1)

×‖(u, v) − (ũ, ṽ)‖X(t)

(
‖(u, v)‖p−1

X(t) + ‖(ũ, ṽ)‖p−1
X(t)

)
,

where we used p > s1, q > s̃2 and s∗ from Lemma A.6.

The proof of this lemma can be obtained by using the introduced norm of solution
space X(t) and the rules for fractional powers from Corollary A.5 and Lemma A.6.
We follow the same steps of the proof of Theorem 2.8, but now by using the
estimates from Lemma 3.3. Taking into consideration these estimates, we get (38)
to (45), for s̃2 instead of s2 under the following conditions:

1. − n
2mp̃ + n

4 − (
1− m

2

)
r2−r1
1+r1

< −n
2

( 1
m

− 1
2

) − s1−1
2 − 1 which is satisfied due to

the condition p > s1,
2. − n

2mq̃ + n
4 < −n

2

( 1
m

− 1
2

) − s1−1
2 − 1 which is equivalent to q̃ ≥ 2m

n

(
s2+1
2

) + 1
supposed in the statement of the theorem.

In this way we can complete the proof.

4 Concluding Remarks

In this section we sketch possible generalizations of the results of this paper. Let us
choose the time-dependent coefficients b1 = b1(t) and b2 = b2(t) in such a way
that the dissipation terms b1(t)ut and b2(t)vt become effective and the following
condition is satisfied:

B2(t, 0) ≈ B1(t, 0)α, (46)
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where α is a positive real number. It is clear that (46) covers a larger class of effective
dissipation terms comparing with those are treated in the previous sections of this
paper.

Example 4.1 The following coefficients are effective and satisfy condition (46):

1. b1(t) = μ1
(1+t )r1

, b2(t) = μ2
(1+t )r2

for some μ1, μ2 > 0 and r1, r2 ∈ (−1, 1),

where α = 1+r2
1+r1

,

2. b1(t) = μ1
(1+t )r1

(log(cr1,γ1 + t))γ1, b2(t) = μ2
(1+t )r2

(log(cr2,γ2 + t))γ2 for some

μ1, μ2 > 0, γ1, γ2 > 0 and α = 1+r2
1+r1

= γ2
γ1
,

3. b1(t)= μ1
(1+t )r1(log(cr1,γ1+t ))γ1

, b2(t)= μ2
(1+t )r2 (log(cr2,γ2+t ))γ2

for some μ1, μ1 > 0,

γ1, γ1 > 0 and α = 1+r2
1+r1

= γ2
γ1
,

where cr1,γ1 and cr1,γ1 are sufficiently large positive constants.

Using the new class of dissipation terms we summarize generalizations of the first
two cases of regularity of data in the following tables:

Low regular data

p̃ < pFuj,m(n) < q̃ q̃ < pFuj,m(n) < p̃

Loss of decay in the estimate for u Loss of decay in the estimate for v

γn,m(p̃) = − n
2m(p̃ − 1) + 1 γn,m(q̃) = − n

2m(q̃ − 1) + 1

interaction condition interaction condition
n
2 > m

(
q̃+ 1

α

p̃q̃−1+(p̃−1) 1−α
α

)
n
2 > m

(
p̃+α

p̃q̃−1+(q̃−1)(α−1)

)

Data from the energy space

s = 1 p̃ < pFuj,m(n) < q̃ q̃ < pFuj,m(n) < p̃

r1 < r2 Loss of decay in the estimate for u Loss of decay in the estimate for v

q̃ = q̃m γn,m(p̃) = − n
2m(p̃ − 1) + 1 γn,m(q̃) = − n

2m(q̃ − 1) + 1+ ε

p̃ = p̃ interaction condition interaction condition

n
2 > m

( q̃+1+m
2

(
α−1
α

)

p̃q̃−1+ m
2 (p̃−1)

(
α−1
α

)
)

n
2 > m

(
p̃+α

p̃q̃−α+q̃(α−1)

)

r2 < r1 Loss of decay in the estimate for u Loss of decay in the estimate for v

q̃ = q̃ γn,m(p̃) = − n
2m(p̃ − 1) + 1+ ε γn,m(q̃) = − n

2m(q̃ − 1) + 1

p̃ = p̃m interaction condition interaction condition
n
2 > m

(
q̃+ 1

α

p̃q̃− 1
α
+p̃

(
α−1
α

)

)
n
2 > m

(
p̃+1+m

2 (α−1)
p̃q̃−1+ m

2 (q̃−1)(α−1)

)

where

q̃m = 1
α

(
q − m

2

) + m
2 , q̃m=2 = q̃ = 1

α
(q − 1)+ 1,

p̃m = α
(
p − m

2

) + m
2 , p̃m=2 = p̃ = α (p − 1)+ 1.

(47)
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We can present possible generalizations of the last two theorems, too, by using the
modified exponents of power nonlinearities (47) and dissipation terms satisfying
condition (46).

Appendix

In the Appendix we collect some background material which is helpful and
important for our approach. Most of these tools are from the theory of harmonic
analysis and function spaces. In particular, these tools allow us to estimate power
nonlinearities in different scales of function spaces.

Proposition A.1 Let 1 < p,p0, p1 < ∞, σ > 0 and s ∈ [0, σ ). Then it holds
the following fractional Gagliardo-Nirenberg inequality for all u ∈ Lp0(Rn) ∩
Ḣ σ

p1
(Rn) :

‖u‖Ḣ s
p(R

n) � ‖u‖(1−θ)

Lp0 (Rn)
‖u‖θ

Ḣ σ
p1

(Rn)
, (48)

where θ = θs,σ :=
1
p0

− 1
p+ s

n

1
p0

− 1
p1

+ σ
n

and s
σ

≤ θ ≤ 1.

Proof For the proof see [7] and [1, 4–6, 8, 9].

Proposition A.2 Let us assume s > 0 and 1 ≤ r ≤ ∞, 1 < p1, p2, q1, q2 ≤ ∞
satisfying the following relation

1

r
= 1

p1
+ 1

p2
= 1

q1
+ 1

q2
.

Then the following fractional Leibniz rule holds:

‖|D|s (fg)‖Lr (Rn) � ‖|D|sf ‖Lp1 (Rn)‖g‖Lp2 (Rn) + ‖f ‖Lq1 (Rn)‖|D|sg‖Lq2 (Rn)

(49)

for all f ∈ Ḣ s
p1
(Rn) ∩ Lq1(Rn) and g ∈ Ḣ s

q2
(Rn) ∩ Lp2(Rn).

For more details concerning fractional Leibniz rules see [4].

Proposition A.3 Let us choose s > 0, p > �s and 1 < r, r1, r2 < ∞ satisfying

1

r
= p − 1

r1
+ 1

r2
.
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Let us denote by F(u) one of the functions |u|p,±|u|p−1u. Then it holds the
following fractional chain rule:

‖|D|sF (u)‖Lr(Rn) � ‖u‖p−1
Lr1 (Rn)

‖|D|su‖Lr2 (Rn). (50)

Proof For the proof see [12].

Proposition A.4 Let p > 1 and u ∈ Hs
m(Rn), where s ∈ (

n
m
, p

)
. Then the

following estimates hold:

‖|u|p‖Hs
m(Rn) � ‖u‖Hs

m(Rn)‖u‖p−1
L∞(Rn),

‖u|u|p−1‖Hs
m(Rn) � ‖u‖Hs

m(Rn)‖u‖p−1
L∞(Rn).

Proof For the proof see [14].

We can derive from Proposition A.4 the following corollary.

Corollary A.5 Under the assumptions of Proposition A.4 it holds:

‖|u|p‖Ḣ s
m(Rn) � ‖u‖Ḣ s

m(Rn)‖u‖p−1
L∞(Rn),

‖u|u|p−1‖Ḣ s
m(Rn) � ‖u‖Ḣ s

m(Rn)‖u‖p−1
L∞(Rn).

Proof For the proof see [13].

Lemma A.6 Let 0 < 2s∗ < n < 2s. Then for any function f ∈ Ḣ s∗(Rn)∩Ḣ s(Rn)

one has

‖f ‖L∞(Rn) ≤ ‖f ‖Ḣ s∗ (Rn) + ‖f ‖Ḣ s (Rn).

Proof For the proof see [2].

References

1. F. Christ, M. Weinstein, Dispersion of small-amplitude solutions of the generalized Korteweg-
de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

2. M. D’Abbicco, The threshold of effective damping for semilinear wave equations. Math. Meth.
Appl. Sci. 38, 1032–1045 (2015)

3. M. D’Abbicco, S. Lucente, M. Reissig, Semi-linear wave equations with effective damping.
Chin. Ann. Math. 34B(3), 345–380 (2013)

4. L. Grafakos, Classical and Modern Fourier Analysis (Prentice Hall, Upper Saddle River, 2004)
5. L. Grafakos, S. Oh, The Kato Ponce inequality. Commun. Partial Differ. Equ. 39(6), 1128–

1157 (2014)



128 A. Mohammed Djaouti and M. Reissig

6. A. Gulisashvili, M. Kon, Exact smoothing properties of Schrödinger semigroups. Am. J. Math.
118, 1215–1248 (1996)

7. H. Hajaiej, L. Molinet, T. Ozawa, B. Wang, Necessary and sufficient conditions for the
fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized
boson equations. Harmon. Anal. Nonlinear Partial Differ. Equ. B26, 159–175 (2011)

8. T. Kato, G. Ponce, Well-posedness and scattering results for the generalized Korteweg-de Vries
equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

9. C.E. Kenig, G. Ponce, L. Vega, Commutator estimates and the Euler and Navier Stokes
equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

10. A. Mohammed Djaouti, M. Reissig, Weakly coupled systems of semilinear effectively damped
waves with time-dependent coefficient, different power nonlinearities and different regularity
of the data. Nonlinear Anal. 175, 28–55 (2018)

11. K. Nishihara, Y. Wakasugi, Critical exponant for the Cauchy problem to the weakly coupled
wave system. Nonlinear Anal. 108, 249–259 (2014)

12. A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant
time-dependent mass and dissipation, II. Math. Nachr. 291(11–12), 1859–1892 (2018)

13. D.T. Pham, M. Kainane Mezadek, M. Reissig, Global existence for semilinear structurally
damped σ−evolution models. J. Math. Anal. Appl. 431, 569–596 (2015)

14. T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear
Partial Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications
(Walter de Gruyter & Co., Berlin, 1996)

15. J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipa-
tion. Ph.D. thesis, TU Bergakademie Freiberg (2004)

16. J. Wirth, Wave equations with time-dependent dissipation II, Effective dissipation. J. Differ.
Equ. 232, 74–103 (2007)



Incompressible Limits for
Generalisations to Symmetrisable
Systems

Michael Dreher

Abstract We shortly review the incompressible limit of the barotropic Euler system
of gas dynamics, also known as low Mach number limit, and the quasineutral limit
of a simplified Euler–Poisson system. Then we develop a general pseudodifferential
framework which is able to cover both examples, called generalised symmetrisable
systems. This framework can also handle incompressible limits. As an application,
we then discuss a barotropic Euler–Poisson system.

1 Introduction

Let us recall some standard results on symmetric hyperbolic systems: we consider

A0(t, x)∂tU(t, x)+ A(t, x,Dx)U(t, x) = F(t, x), (t, x) ∈ (0,∞)×R
n, (1)

U(0, x) = U0(x), x ∈ R
n, (2)

where U(t, x) ∈ C
N is the vector-valued unknown function and

A(t, x,Dx) =
n∑

k=1

Ak(t, x)Dxle , D = 1

i
∇, i2 = −1,

with Ak(t, x) being matrices from C
N×N , for k = 0, 1, . . . , n. The matrix A0 is

assumed hermitian, A0 = A∗
0, and bounded positive definite: there is some δ > 0

such that for all (t, x), we have δIN ≤ A0(t, x) ≤ δ−1IN . Then the expression

〈A0V ,W 〉 :=
∫

Rn

(A0(t, x)V (t, x)) · W(t, x) dx

is (for all t) a symmetric positive definite bilinear form in L2(Rn,CN).
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We write A∗ for the L2 adjoint differential operator to A and obtain (assuming U

to be a smooth solution to (1)) the estimate

∂t 〈A0U,U〉 = 〈
((∂tA0) − (A + A∗))U,U

〉 + 2%〈F,U〉 (3)

≤ const 〈A0U,U〉 + 〈A0F,F 〉

if A + A∗ is a zeroth order differential operator with bounded coefficients (which
is the definition of (1) being a symmetric hyperbolic system), with some constant
that only depends on δ, ‖∂tA0‖L∞ and

∥
∥∂jAj

∥
∥
L∞ . Having found such an a priori

estimate in differential form, the Gronwall lemma can be applied, leading to a theory
of well-posedness of the Cauchy problem in the usual way, even in a quasilinear
setting, compare the classical results in [5].

The purpose of this article is to pursue the following questions:

Question 1 what happens if A0 (and possibly A) are replaced by matrix pseudo-
differential operators of unspecified order, for instance

A0 =
(−& 0

0 IN−1

)

.

Question 2 is there a general framework for performing incompressible limits,
assuming well-prepared initial data?

For first order pseudodifferential systems of symmetrisable hyperbolic type, sin-
gular perturbations that lead to incompressible limits have been studied in [3], and
we will extend those results to matrix pseudodifferential operators of unspecified
order.

1.1 An Example: The Incompressible Limit for the Euler
System

The barotropic Euler system of gas dynamics reads (after a suitable scaling)

∂tρ + div(ρu) = 0,

∂tu+ (u · ∇)u+ Λ2

ρ
∇p(ρ) = 0,

for (t, x) ∈ (0,∞) × R
3, with gas density ρ(t, x), vectorial gas velocity u(t, x),

and pressure p(ρ) = cργ for some constants c > 0 and γ ≥ 1. The first equation
describes the conservation of mass, the second equation describes the balance of
momentum. This system becomes incompressible when we perform the limit Λ →
∞ which can be seen when we follow the approach of [6, 7]. We also mention [8].
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Let ρ̂ > 0 be a constant reference value for the density and set p̂ := p(ρ̂). We
introduce

U :=
(
Λ(p − p̂)

u

)

and let ρ0, u0, U0 denote the initial values at time t = 0. Then we have the
symmetric hyperbolic system

(
1
γp

0

0 ρI3

) ⎛

⎝∂t +
3∑

j=1

uj ∂j

⎞

⎠U + Λ

(
0 div
∇ 03×3

)

U = 0, (4)

A0 =
(

1
γp

0

0 ρI3

)

, A(t, x,Dx) = A0(u · ∇)+ Λ

(
0 div
∇ 0

)

,

A + A∗ = −
3∑

j=1

∂j (A0uj ),

and in particular, A + A∗ does not depend on the huge singular parameter Λ.
Assuming that ρ (and hence p) is bounded from above and below by positive
constants, we then obtain the estimate (3) with some constant independent ofΛ (and
F ≡ 0 obviously). We require the initial data to be well-prepared, which means (as
a first condition) that the initial energy 〈A0U,U〉(t = 0) is bounded uniformly for
Λ → ∞, which yields p0 = p̂ + O(Λ−1), and then we get uniform estimates for
‖U(t, ·)‖L2(R3) on some time interval. Higher order estimates can be deduced after
differentiating (4):

A0(∂t + u · ∇)∂αU + Λ

(
0 div
∇ 0

)

∂αU

= Fα

(
{∂βU, Λ−1∂γ ∂tU : |β| ≤ |α|, |γ | ≤ |α| − 1}

)
,

with α ∈ N
3
0, and the factor Λ−1 originates when we apply at least one spatial

derivative to A0. Note that Fα depends on the highest order derivatives ∂βU

with |β| = |α| only linearly. Then we substitute (4) into Fα and find uniform
in Λ estimates of higher order derivatives, leading to a time interval [0, T ] of
existence that does not depend on Λ. To perform the incompressible limit, we
take one time derivative of (4) and assume 〈A0∂tU, ∂tU〉(t = 0) to be uniformly
bounded (second condition of the initial data being well-prepared), which amounts
to p0 = p̂+O(Λ−2) and div(u0) = O(Λ−1). Then uniform inΛ estimates of ∂tU in
L2(R3) follow, and compactness arguments give us a sub-sequence that converges
in C([0, T ], L2(BR)) with BR being a ball of radius R. A Cantor diagonal trick
for increasing R then ensures the existence of a sub-sequence with convergence in
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C([0, T ], L2loc(R3)), and the limit (ρ∞,u∞) then is a sufficiently regular solution
to the incompressible Euler equations

ρ∞ = ρ̂, divu∞ = 0, ∂tu∞ + (u∞ · ∇)u∞ + ∇π = 0,

for some unknown scalar pressure π . Classical solutions to this system are unique,
and therefore the complete sequence (ρ,u) converges in a local Sobolev space
C([0, T ],H s

loc(R
3)) to the limit (ρ∞,u∞), not just a sub-sequence.

1.2 An Example: The Quasineutral Limit for the
Euler–Poisson System

Under certain assumptions, the electron transport in a crystal lattice can be described
by the system

∂tρ + div(ρu) = 0,

∂tu+ (u · ∇)u+ 1

ρ
∇p + ∇Φ = 0,

−λ2 & Φ = ρ − 1,

for (t, x) ∈ (0,∞) × R
3, with electron density ρ(t, x), electron velocity u(t, x),

a certain pressure p of the electron gas, and an unknown electric potential Φ(t, x).
The Poisson equation tells us that this electric potential is being generated by the
electrons (with negative charge and density ρ) and the immobile ions in the lattice
(with positive charge and density 1). The parameter λ is called Debye length, and
we are interested in the limit λ → 0. Then formally ρ ≡ 1, hence the device is
locally of neutral charge, explaining the name of the limit. Initial data ρ0 and u0
are being prescribed at t = 0, which are bounded in certain norms, and ρ0 is in
a neighbourhood of 1. The existence of smooth solutions has been established for
instance in [1] and [4]. Concerning the quasineutral limit, we refer to [10] and [12].

In this paper we will re-establish the quasineutral limit in a more general way.
For sake of simplicity, assume a constant pressure p. Then we introduce

U :=
(
q

u

)

, q := λΦ

and obtain the system

(−& 0
0 I3

)

∂tU +
(−div(u& ·) 0

0 u · ∇
)

U + 1

λ

(
0 div
∇ 03×3

)

U = 0. (5)
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The claim of this article is that this system can be called a generalisation to a
symmetrisable system. To see this, we put

A0 :=
(−& 0

0 I3

)

, A(t, x,Dx) =
(−div(u& ·) 0

0 u · ∇
)

+ 1

λ

(
0 div
∇ 0

)

and observe that A0 is positive semidefinite,

〈A0U,U〉 = ‖∇q‖2
L2

+ ‖u‖2
L2

,

with some kernel consisting of constant functions q . The matrix operator A has a
third order term in the upper left corner, but A + A∗ almost cancels in the sense of

2%〈AW,W 〉 = −2%
∫

(∇u) : (∇w0 ⊗ ∇w0) dx +
∫

(divu)(|∇w0|2 − |w|2) dx,

for W = (w0,w)' and real-valued u. Note that w0 always appears as ∇w0, and
therefore %〈AW,W 〉 can be estimated by 〈A0W,W 〉, assuming natural bounds of
derivatives of u. The existence of solutions U can be established using the methods
of [1] and [4], we only need uniformly in λ estimates of various norms ofU in order
to perform the limit of λ → 0, and these estimates can be obtained in the same way
as in Sect. 1.1.

2 Assumptions and Main Results

We consider the problem

A0(U)∂tU(t, x)+A1(U)U(t, x)+ 1

ε
LU(t, x) = 0, (t, x) ∈ (0,∞)× R

n, (6)

U(0, x) = U0(x), x ∈ R
n, (7)

with A0, A1 and L being matrix pseudodifferential operators of size N × N . The
coefficients of A0 and A1 may depend on the solution U in a certain way specified
below. Currently, we make no assumptions on the orders of these operators.

LetS (Rn,CN) be the Schwartz space of smooth functions with rapid decay, and
S ′(Rn,CN) be its topological dual space, consisting of temperate distributions.

Property 1 (Dependence ofA0 andA1 onU ) There is a pseudodifferential operator
π0 : S ′(Rn,CN) → S ′(Rn,CM) with pseudodifferential symbol only depending
on ξ such that A0 and A1 (which are possibly in divergence form) depend smoothly
on π0U , with values π0U ∈ B, whereB is an open subset ofRM . There is no other
dependence of A0 and A1 on U . The operators A0 and A1 can depend on ε, but all
estimates of their mapping properties are uniform in ε ∈ (0, 1).
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When we wish to emphasise the dependence ofA0 orA1 on ε, we writeA0(U ; ε)
or A1(U ; ε), otherwise we just write A0(U) and A1(U).

Remark 1 For (4), we have n = 3, N = M = n + 1 and π0 = IN . The set B is
given by U ∈ (− 1

2 p̂, 1
2 p̂) × R

n, and Λ−1 ∈ (0, 1) figures as the singular parameter
ε. The operator A0 depends on ε via p = p̂ + εu1.

Remark 2 For (5), we have n = 3, N = n + 1, M = 2n, and, with ∇ as column,

π0 =
(∇ 0
0 In

)

. (8)

The operator A0 does not depend on U at all, and A1 only depends on U via u,

A1(U) =
(−div(u& ·) 0

0 u · ∇
)

= π∗
0 ◦

(
u⊗ div 0

0 u · ∇
)

◦π0, U =
(
q

u

)

. (9)

For sake of completeness, we mention that

L =
(
0 div
∇ 0

)

= π∗
0 ◦

(
0 −In

In 0

)

◦ π0. (10)

Property 2 (The order reducing operator π0) The pseudodifferential operator π0
has the following property: For every s ∈ N, the set

Hs
π :=

{
V ∈ S ′(Rn,CN) : π0V ∈ Hs(Rn,CM)

}

is a Hilbert space when we equip it with the norm ‖V ‖Hs
π

:= ‖π0V ‖Hs(Rn). Here
and in the sequel we tacitly identify V ∈ S ′ with its equivalence class V + ker π0.

The set Hs
π characterises to which functions V the operators A0 and A1 can

be meaningfully applied. We need to define some more sets of functions: U
describes which functionsU can be substituted into A0(U) and A1(U). And finally,
Ms0,s1,s∗(T ) is a set in which the solution U to (6) is expected to live.

Definition 1 We choose s∞ := �n+1
2  , takeB from Property 1 and define a set

U = {
U ∈ Hs∞

π : (π0U)(x) ∈ B for all x ∈ R
n
}
.

For some numbers s0, s1, s∗ ∈ N with s0 ≥ s1 > s∗ > s∞, and for positive real
numbers T , M0, we define

Ms0,s1,s∗(T ) :=
{
U ∈ C([0, T ],U ) : ∂

j
t U ∈ C([0, T ],H sj

π ), j = 0, 1,

sup
[0,T ]

‖(π0U)(t, ·)‖Hs∗ ≤ M0

}
.
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Having introduced these sets, we now list the assumptions on the operators A0, A1,
L. The constantsC with subscripts appearing below do neither depend on ε ∈ (0, 1)
nor on T , but onM0. The constants δ+, δ− only depend on the setB ⊂ R

M , nothing
else.

Property 3 (Mapping properties) The operators A0, A1, L map between Sobolev
spaces as follows. There is some d ∈ N and some Cm (depending on s) such that

∥
∥Aj(U)V

∥
∥
Hs ≤ Cm(1+ ‖π0U‖Hs+d ) ‖π0V ‖Hs+d , j = 0, 1, s ≥ s∗,

‖LV ‖Hs ≤ Cm ‖π0V ‖Hs+d , s ≥ 0,

for all V ∈ Hs+d
π and all U ∈ Ms0,s1,s∗(T ) with U(t, ·) ∈ Hs+d

π . We also have

∣
∣
〈
Dα(A1(U)V ),W

〉∣
∣ ≤ Cm ‖π0V ‖Hs∞+d ‖π0W‖L2 , |α| ≤ s∞,

for all (V ,W) ∈ H
s∗
π × H 0

π .

Property 4 (Bilinear forms) For each U ∈ U , the operatorA0(U) and the real part
of A1(U) generate bilinear forms a0(·, ·), a1(·, ·) in the sense of

〈A0(U)V ,W 〉 = a0(π0V, π0W) = a0(π0W,π0V ), for all V,W ∈ H 0
π ,

2%〈A1(U)V , V 〉 = a1(π0V, π0V ), for all V ∈ Hd
π .

There are positive δ−, δ+ such that, for all U ∈ Ms0,s1,s∗(T ) and all V , W ∈ L2,

δ− ‖V ‖2
L2

≤ a0(V , V ), |a0(V ,W)| ≤ 1

δ+
‖V ‖L2 ‖W‖L2 .

Moreover, the form a1 and a similar form generated by L are bounded by some
constant Cf in the following sense: for all U ∈ Ms0,s1,s∗(T ), we have the estimates

|a1(V , V )| ≤ Cf ‖V ‖2
L2

, for all V ∈ L2,

|〈A1(U)V ,W 〉| ≤ Cf ‖π0V ‖Hd ‖π0W‖L2 , for all (V ,W) ∈ Hd
π × H 0

π ,

|〈LV ,W 〉| ≤ Cf ‖π0V ‖Hd ‖π0W‖L2 , for all (V ,W) ∈ Hd
π × H 0

π .

Property 5 The pseudodifferential symbol of the operator L does neither depend
on t nor on x, hence L commutes with every scalar constant coefficient pseudodif-
ferential operator. Moreover, L is anti-selfadjoint: L+ L∗ = 0.

Remark 3 The operators π0 and π∗
0 can be seen as order-reducing operators, and

then A0 is selfadjoint, when conjugated with π0. Moreover, A1 and L are “anti-
selfadjoint plus bounded, when conjugated with π0”. This concept can be called
generalised hyperbolicity. It should be noted though that the form estimate of a1
in case of (5) follows from the representation (9) of A1 not immediately, but after
repeated integration by parts.
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Property 6 (Regularity of the dependence of A0 and A1 on U and ε) For each U ∈
Ms0,s1,s∗(T ), the operator ∂tA0(U) generates a hermitian bilinear form a0,t in the
sense of

〈(∂tA0(U))V ,W 〉 = a0,t (π0V, π0W) = a0,t (π0W,π0V ), for all V,W ∈ H 0
π .

This form a0,t is bounded: there is some C0,t such that, for all U ∈ Ms0,s1,s∗(T ),

∣
∣a0,t (V ,W)

∣
∣ ≤ εC0,t ‖π0∂tU‖Hs∞ ‖V ‖L2 ‖W‖L2 , for all V,W ∈ L2. (11)

We also have
∣
∣
∣〈A0(U ; ε)V ,W 〉 −

〈
A0(Ǔ ; ε̌)V ,W

〉∣
∣
∣

≤ C0,t

(
max(ε, ε̌)

∥
∥
∥π0(U − Ǔ)

∥
∥
∥
Hs∞ + |ε − ε̌|

)
‖π0V ‖L2 ‖π0W‖L2 ,

for all ε, ε̌ ∈ [0, 1], all U , Ǔ ∈ Ms0,s1,s∗(T ) and all V , W ∈ H 0
π .

There is some C1,t and some Cμ such that we have, for all U ∈ Ms0,s1,s∗(T ),

|〈(∂tA1(U))V ,W 〉| ≤ C1,t ‖π0∂tU‖L2 ‖π0V ‖Hs∞+d ‖π0W‖L2 (12)

+Cμε ‖π0∂tU‖L2 ‖π0V ‖Hs∞+d ‖π0W‖Hμ ,

for all (V ,W) ∈ H
s∞+d
π ×H

μ
π . We also require

∣
∣
∣〈A1(U ; ε)V ,W 〉 −

〈
A1(Ǔ ; ε̌)V ,W

〉∣
∣
∣ (13)

≤ C1,t

( ∥
∥
∥π0(U − Ǔ)

∥
∥
∥
Hs∞+d−1(Rn)

+ |ε − ε̌|
)
‖π0V ‖Hs∞+d ‖π0W‖Hμ ,

for all ε, ε̌ ∈ [0, 1], all U , Ǔ ∈ Ms0,s1,s∗(T ) and all (V ,W) ∈ Hd
π ×H

μ
π .

The dependence of A1(U) on U can be estimated locally, which means: there is
some μ ∈ N0 (with μ < s∞) and a dense subsetH of L2((0, T ),H

μ
π ) such that for

each W ∈ H there is some positive R with

∫ T

t=0

∣
∣
∣〈A1(U ; ε)V ,W 〉(t) −

〈
A1(Ǔ ; ε̌)V ,W

〉
(t)

∣
∣
∣ dt (14)

≤ C1,t

( ∥
∥
∥π0(U − Ǔ)

∥
∥
∥
L∞((0,T ),Cd−1(BR(0)))

+ |ε − ε̌|
)
×

×‖π0V ‖L2((0,T ),Hs∞+d ) ‖π0W‖L2((0,T ),Hμ)

+ Cμ|ε − ε̌|1/2 max(ε, ε̌)1/2 ‖π0V ‖L2((0,T ),Hs∞+d ) ‖π0W‖L2((0,T ),Hμ)

for all ε, ε̌ ∈ [0, 1], all U , Ǔ ∈ Ms0,s1,s∗(T ) and all V ∈ L2((0, T ),H
s∞+d
π ).
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Remark 4 Some comments are in order. The mysterious μ in (12) is not needed
when all the spatial derivatives in 〈(∂tA1(U))V ,W 〉 can by arranged (using
integration by parts) in such a way that no derivative lands on π0∂tU or π0W . This
would be the optimal situation, which we enjoy for (4) and (5), but we will not be
so lucky for the application in Sect. 5, when a perturbing higher order operator of
small norm appears, which will come from the requirement of having A1 and L in
symmetric/antisymmetric form.

We also note that the condition of a localisable dependence will be necessary
because A0 and A1 will be pseudodifferential operators, hence non-local.

Next we make assumptions on howA0 and A1 commute with spatial derivatives.

Property 7 (Commutation relations for A0) There is some C0,c,0 such that, for all
α ∈ N0 with |α| ≤ s0 and all U ∈ Ms0,s1,s∗(T ), we have

∣
∣
〈[A0(U),Dα]V ,W

〉∣
∣

≤ εC0,c,0
(‖π0U‖Hs∞+1 ‖π0V ‖H |α|−1 + ‖π0U‖H |α| ‖π0V ‖Hs∞

) ‖π0W‖L2 ,

for all V ∈ H
|α|−1
π ∩ H

s∞
π and all W ∈ H 0

π .
For all α ∈ N

n
0, there are zero-th order operators B0αβ with

[
A0(U),Dα

] =
∑

β<α

B0αβ(U)Dβ ◦ A0(U),

and they are (jointly with A1 and L) bounded as follows: there are constants C0,c,1
and C0,c,L such that for all α with |α| ≤ s∗ and all U ∈ Ms0,s1,s∗(T ), we have

∣
∣
〈
B0αβ(U)Dβ(A1(U)V ),DαV

〉∣
∣ ≤ εC0,c,1 ‖π0V ‖2Hs∗ , for all V ∈ Hs∗

π ,

∣
∣
〈
B0αβ(U)DβLV ,DαV

〉∣
∣ ≤ εC0,c,L ‖π0V ‖2Hs∗ , for all V ∈ Hs∗

π .

Remark 5 For (4), A0 is a strictly positive definite matrix. Then B0αβ is being
obtained when at least one derivative lands onA0(U), and ∂A0

∂U
= O(ε). And for (5),

A0 has constant coefficients, hence all its commutators vanish anyway.

Property 8 (Commutation relation for A1) There is a positive constant C1,c such
that for all U ∈ Ms0,s1,s∗(T ) and V ∈ H

s∗
π , we have

∣
∣
〈[A1(U),Dα]V ,DαV

〉∣
∣ ≤ C1,c ‖π0V ‖2Hs∗ , |α| ≤ s∗.

Remark 6 It is easy to check that these inequalities hold for (4). And in case of (5),
we recall (9) and that the operators π∗

0 , π0 commute with every derivative ∂t and
Dα .
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The following is a common feature of first-order quasilinear symmetric and
symmetrisable hyperbolic systems: the solution can only blow up if its C1 norm
explodes, and we will make a very similar assumption in this paper.

Property 9 (Local existence and persistence of solutions) There are integers s0, s1
and s∗ with s0 ≥ s1 ≥ s∗ + d , s∗ > n

2 + 1, which have the following property:
for every compact set K ⊂ B and for each U0 ∈ U with (π0U0)(x) ∈ K for
all x, there is some positive number T and a unique solution U ∈ C([0, T ),U )

with π0∂
j
t U ∈ C([0, T ),H sj (Rn)) (j = 0, 1) to the Cauchy problem (6), (7).

And if, for one such initial function U0, the norm sup[0,T ) ‖π0U(t, ·)‖Hs∗ remains

bounded, then this solution U can be extended beyond T in the sense of π0∂
j
t U ∈

C([0, T + γ ],H sj ) for some positive γ and j = 0, 1.

Theorem 1 (Uniform existence interval) We assume Property 1 through Prop-
erty 9 and suppose additionally that s∗ ≥ s∞ + max(1, d). Then for each compact
subset K of B and for each positive real number M0, some positive real number
T exists with the following property: for each ε ∈ (0, 1) and for each U0 ∈ H

s0
π

with ‖π0U0‖Hs∗ ≤ δ+δ−
2 M0 and (π0U0)(x) ∈ K for all x ∈ R

n, there is a solution
U ∈ Ms0,s1,s∗(T ) to (6), (7).

In particular, the life-span T of the solution U has a lower bound that does not
depend on ε.

Theorem 2 (Incompressible Limit) Under the conditions of Theorem 1, let the
family {Uε

0 : 0 < ε < 1} be initial data with Uε
0 ∈ H

s0
π ,

∥
∥π0U

ε
0

∥
∥
Hs∗ ≤ δ+δ−

2 M0 and
(π0U

ε
0 )(x) ∈ K for all x and all ε. Let Uε ∈ Ms0,s1,s∗(T ) be the unique solution

to (6) with initial data Uε
0 , provided by Theorem 1. Suppose the uniform bound

∥
∥π0∂tU

ε(0, ·)∥∥
L2

≤ C, 0 < ε < 1. (15)

Then the following holds.

(a) The item LUε , when interpreted as an element of the dual space (H 0
π)

′,
converges to zero for ε → 0 in the sense of

sup
{
|〈LUε, ϕ

〉| : ϕ ∈ H 0
π , ‖π0ϕ‖L2 ≤ 1

}
≤ Cε, 0 ≤ t ≤ T , 0 < ε < 1.

(16)

Further, as ε goes to zero, the sequence (Uε)ε→0 contains a subsequence
(which we do not relabel) which converges to a limit U∗ in the following sense:

π0U
ε ⇀ π0U

∗ in L2((0, T ),H s∗(Rn)), (17)

π0∂tU
ε ⇀ π0∂tU

∗ in L2((0, T ) ×R
n), (18)

π0U
ε → π0U

∗ in C([0, T ], Cd−1(BR(0))), (19)

for all balls BR(0) ⊂ R
n.
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(b) The limit U∗ solves

A0(U
∗; 0)∂tU∗ + A1(U

∗; 0)U∗ + R = 0 (20)

as an identity in L2((0, T ), (H
μ
π )′), with some R ∈ L2((0, T ), (H

μ
π )′ ∩

range (L)), and μ from Property 6.
(c) If the operator L can be decomposed as L = π∗

0 ◦ L̃ with some pseudodifferen-
tial operator L̃, then a sufficient condition for (15) is

∥
∥
∥L̃Uε

0

∥
∥
∥
L2

≤ Cε, 0 < ε < 1.

Remark 7 The solution Uε has a certain life span Tε before its regularity breaks
down. One may wonder what can be said about the limit of Tε for ε approach-
ing zero. Assuming we had shown a strong convergence of π0U

ε to π0U
∗ in

C([0, T ], L2(Rn)), a natural conjecture would be that Tε converges to the life
span of strong solutions to (20). We know that usually strong solutions to the
incompressible Euler equation blow up in finite time, hence we expect the same
for (20).

3 The Uniform Existence Interval

In this section, we prove Theorem 1.
Let U0 be given. By Property 9, there is some positive Tε and a solution U ∈

C([0, Tε),U ) to (6), (7) with π0∂
j
t U ∈ C([0, Tε),H

sj ), and we can assume that
sup[0,Tε)

‖π0U(t, ·)‖Hs∗ ≤ M0 by decreasing Tε if needed.
In the following, we will construct some time interval (independent of ε) on

which the Hs∗ norm of π0U stays bounded (uniformly in ε). By the persistence
criterion, the Hs0 life-span of the solution then has a uniform lower bound, proving
the claim.

We begin with an estimate of ‖π0∂tU(t, ·)‖Hs∞ , for t ∈ (0, Tε). We choose α

with |α| ≤ s∞ and apply Dα to (6):

A0(U)∂tD
αU + Dα(A1(U)U) + 1

ε
LDαU = [

A0(U),Dα
]
∂tU,

and then we can estimate

δ−
∥
∥π0∂tD

αU
∥
∥2
L2

≤ 〈
A0(U)∂tD

αU, ∂tD
αU

〉

= −〈
Dα(A1(U)U), ∂tD

αU
〉−1

ε

〈
LDαU, ∂tD

αU
〉+〈[A0(U),Dα]∂tU, ∂tD

αU
〉
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≤ Cm ‖π0U‖Hs∞+d

∥
∥π0∂tD

αU
∥
∥
L2

+ Cf

ε

∥
∥π0D

αU
∥
∥
Hd

∥
∥π0∂tD

αU
∥
∥
L2

+εC0,c,0 ‖π0∂tU‖Hs∞
∥
∥π0∂tD

αU
∥
∥
L2

≤ C

ε
‖π0U‖Hs∞+d ‖π0∂tU‖Hs∞ + εC ‖π0∂tU‖2Hs∞ .

We now sum up over all α with |α| ≤ s∞ and get, at least for small ε,

‖π0∂tU(t, ·)‖Hs∞ ≤ CM0

ε
, 0 < t < Tε. (21)

Then the estimate (11) of the bilinear form a0,t from Property 6 becomes

∣
∣a0,t (V ,W)

∣
∣ ≤ C̃0,t ‖V ‖L2 ‖W‖L2 , V ,W ∈ L2.

Next we choose some α with |α| ≤ s∗. Recalling Property 3 and that s∗ ≤ s1 − d ≤
s0 − d we observe that Dα can be applied to each of the items A0∂tU , A1U , LU

of (6), hence we find

A0(U)∂tD
αU + A1(U)DαU + 1

ε
LDαU

= [
A0(U),Dα

]
∂tU + [

A1(U),Dα
]
U =: Fα,0 + Fα,1,

and we deduce that

∂t
〈
A0(U)DαU,DαU

〉 = 〈
(∂tA0(U))DαU,DαU

〉 + 2%〈
A0(U)∂tD

αU,DαU
〉

= a0,t (π0D
αU,π0D

αU)− a1(π0D
αU,π0D

αU) − 2

ε
%〈

LDαU,DαU
〉

+2%〈
Fα,0 + Fα,1,D

αU
〉

≤ C̃0,t + Cf

δ−
〈
A0(U)DαU,DαU

〉 + 2%〈
Fα,0 + Fα,1,D

αU
〉
.

Now we can estimate the right-hand side like this:

∣
∣
〈
Fα,0,D

αU
〉∣
∣ ≤

∑

β<α

∣
∣
〈
B0αβD

β(A0(U)∂tU),DαU
〉∣
∣

≤
∑

β<α

∣
∣
〈
B0αβD

β(A1(U)U),DαU
〉∣
∣ + 2

ε

∑

β<α

∣
∣
〈
B0αβD

βLU,DαU
〉∣
∣

≤ CεC0,c,1 ‖π0U‖2Hs∗ + CC0,c,L ‖π0U‖2Hs∗ ,
∣
∣
〈
Fα,1,D

αU
〉∣
∣ = ∣

∣
〈[A1(U),Dα]U,DαU

〉∣
∣ ≤ C1,c ‖π0U‖2

H |α| .
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By a Plancherel argument, this results in

∂t
〈
A0(U)DαU,DαU

〉 ≤ C ‖π0U‖2Hs∗ ≤ C
∑

|β|≤s∗

∥
∥π0D

βU
∥
∥2
L2

≤ C
∑

|β|≤s∗

〈
A0(U)DβU,DβU

〉
,

and now Gronwall’s Lemma can be applied (after summing over α),

∑

|α|≤s∗

〈
A0(U)DαU,DαU

〉
(t) ≤ exp(Ct)

∑

|α|≤s∗

〈
A0(U)DαU,DαU

〉
(0),

for all 0 ≤ t < Tε , with a constant C that does not depend on ε. We estimate the
form a0(·, ·) from above and below,

∑

|α|≤s∗

∥
∥π0D

αU(t)
∥
∥2
L2

≤ exp(Ct)

δ+δ−

∑

|α|≤s∗

∥
∥π0D

αU(0)
∥
∥2
L2

≤ exp(Ct)

δ+δ−
· δ+δ−

2
M0,

for all 0 ≤ t < Tε . That is a (uniform in ε) growth estimate of the solution, which
concludes the proof of Theorem 1.

4 The Incompressible Limit

Now we present the proof of Theorem 2, beginning with part (a). The idea is to take
a time derivative of (6), but we have some trouble to explain what ∂2t U

ε should be
(remember that A0 need not be invertible). To this end, we define the forward shift
τhW(t) := W(t + h), for any real positive number h and any function W(t). The
time t is now restricted to the interval (0, T − h). Subtracting equation (6) from τh
(6) then yields

A0(U
ε)∂t

(
τhU

ε − Uε
) + A1(U

ε)
(
τhU

ε − Uε
) + 1

ε
L

(
τhU

ε − Uε
)

= −(
τhA0(U

ε)− A0(U
ε)

)
∂t τhU

ε − (
τhA1(U

ε) − A1(U
ε)

)
τhU

ε.

We introduce the abbreviation Vh := h−1(τhU
ε − Uε), and it follows that

∂t
〈
A0(U

ε)Vh, Vh

〉 = a0,t (π0Vh, π0Vh)− a1(π0Vh, π0Vh)

−2%
〈
h−1(τhA0(U

ε) − A0(U
ε))∂t τhU

ε, Vh

〉

−2%
〈
h−1(τhA1(U

ε) − A1(U
ε))τhU

ε, Vh

〉
.
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We have assumed Uε ∈ Ms0,s1,s∗(T ), which yields ∂tπ0U
ε ∈ C([0, T ],H s1), and

therefore the right-hand side has a limit for h → 0, and then it follows that

∂t
〈
A0(U

ε)∂tU
ε, ∂tU

ε
〉 = a0,t (π0∂tU

ε, π0∂tU
ε)− a1(π0∂tU

ε, π0∂tU
ε)

−2%〈
(∂tA0(U

ε))∂tU
ε, ∂tU

ε
〉 − 2%〈

(∂tA1(U
ε))Uε, ∂tU

ε
〉

≤ C
〈
A0(U

ε)∂tU
ε, ∂tU

ε
〉 + 2εC0,t

∥
∥π0∂tU

ε
∥
∥
Hs∞

∥
∥π0∂tU

ε
∥
∥
L2

∥
∥π0∂tU

ε
∥
∥
L2

+2C1,t
∥
∥π0∂tU

ε
∥
∥
L2

∥
∥π0U

ε
∥
∥
Hs∞+d

∥
∥π0∂tU

ε
∥
∥
L2

+2Cμε
∥
∥π0∂tU

ε
∥
∥
L2

∥
∥π0U

ε
∥
∥
Hs∞+d

∥
∥π0∂tU

ε
∥
∥
Hμ

owing to Property 6, in particular (12). We recall (21), ‖π0U
ε‖Hs∞+d ≤

‖π0U
ε‖Hs∗ ≤ M0, and complex interpolation:

∥
∥π0∂tU

ε
∥
∥
Hμ ≤ C

∥
∥π0∂tU

ε
∥
∥1− μ

s∞
L2

∥
∥π0∂tU

ε
∥
∥

μ
s∞
Hs∞ ≤ C

∥
∥π0∂tU

ε
∥
∥θ

L2
εθ−1,

with θ = 1− μ
s∞ ∈ (0, 1]. From this we observe that y(t) := 〈A0(U

ε)∂tU
ε, ∂tU

ε〉(t)
satisfies the inequality

y ′(t) ≤ C(y(t) + εθyθ (t)), 0 < t < T .

We may replace yθ by y1/p with p ∈ N and 1
p

≤ θ , changing C if needed. By
integration we then have

0 ≤ y(t) ≤ y(0)+
∫ t

s=0
c1

(
y(s)+ εθy

1
p (s)

)
ds, 0 ≤ t ≤ T ,

for some positive c1. Then the Inequality of Bihari [2] and LaSalle [9] reveals

y(t) ≤ G−1(G(y(0))+ c1t
)
,

with G−1 being the inverse function to G, and

G(z) :=
∫ z

ζ=0

dζ

ζ + εθ ζ 1/p
= p

p − 1
ln

⎛

⎝1+ z
p−1
p

εθ

⎞

⎠ .

We find G−1(Z) ≤ εθp/(p−1) exp(Z), hence

y(t) ≤
(

εθ + (y(0))
p−1
p

) p
p−1

ec1t .

We now apply (15) and get the uniform estimates

∥
∥π0U

ε
∥
∥
C([0,T ],Hs∗ ) ≤ C,

∥
∥∂tπ0U

ε
∥
∥
C([0,T ],L2) ≤ C, (22)



Incompressible Limits for Generalisations to Symmetrisable Systems 143

and the weak convergences (17) and (18) then follow from boundedness in Hilbert
spaces. Choose some positive R. Then, by Lions-Aubin-Dubinskii compactness
arguments, a subsequence of {Uε}ε→0 converges in C([0, T ], Cd−1(BR(0))) to
U∗. We choose some larger R and get a smaller subsequence. We repeat this step
indefinitely and apply a Cantor diagonal argument. This gives (19).

And the strong (H 0
π)

′ convergence (16) of the full sequence {LUε}ε→0 to zero
follows when we test (6) with ϕ ∈ H 0

π :

∣
∣
〈
LUε, ϕ

〉∣
∣ ≤ ε

∣
∣
〈
A0(U

ε)∂tU
ε, ϕ

〉∣
∣ + ε

∣
∣
〈
A1(U

ε)Uε, ϕ
〉∣
∣

≤ εδ−1+
∥
∥π0∂tU

ε
∥
∥
L2

‖π0ϕ‖L2 + εCf

∥
∥π0U

ε
∥
∥
Hd ‖π0ϕ‖L2 .

Part (b) is demonstrated as follows.
Take some W ∈ H , as in Property 6. We begin with

∣
∣
∣
∣

∫ T

t=0

〈
A0(U

ε; ε)∂tUε,W
〉
(t) − 〈

A0(U
∗; 0)∂tU∗,W

〉
(t) dt

∣
∣
∣
∣ ≤ I1 + |I2|,

I1 :=
∫ T

t=0

∣
∣
〈
A0(U

ε; ε)∂tUε,W
〉
(t) − 〈

A0(U
∗; 0)∂tUε,W

〉
(t)

∣
∣ dt,

I2 :=
∫ T

t=0

〈
A0(U

∗; 0)∂tUε,W
〉
(t) − 〈

A0(U
∗; 0)∂tU∗,W

〉
(t) dt,

and by Property 6, Property 4 we can estimate

I1 ≤ C0,tT ε
∥
∥π0(U

ε − U∗)
∥
∥
L∞([0,T ],H s∞ )

∥
∥π0∂tU

ε
∥
∥
L2((0,T )×Rn)

‖π0W‖L2((0,T )×Rn) ,

|I2| ≤ √
T Cf

∥
∥π0(∂tU

ε − ∂tU
∗)

∥
∥
L2((0,T )×Rn)

‖π0W‖L2((0,T )×Rn) .

We immediately see limε→0 I1 = 0, and I2 (understood as a mapping that sends
π0(∂tU

ε − ∂tU
∗) to I2 ∈ C) is a bounded linear functional on L2((0, T )×R

n). By
the Riesz representation theorem and (18), we then also have limε→0 I2 = 0. Now
we put

Tε(W) :=
∫ T

t=0

〈
A0(U

ε; ε)∂tUε,W
〉
(t) dt, 0 < ε < 1,

as a mapping from L2((0, T ),H
μ
π ) into C. Owing to Property 4 and (22), we have

estimates |Tε(W)| ≤ C ‖W‖L2((0,T ),H
μ
π ) that are uniform in ε. The above bounds

on I1 and I2 tell us

lim
ε→0

Tε(W) =
∫ T

t=0

〈
A0(U

∗; 0)∂tU∗,W
〉
(t) dt, for all W ∈ H . (23)
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From Property 2 we knowH
μ
π to be a Hilbert space, and then also L2((0, T ),H

μ
π ) is

a Hilbert space. The Banach–Steinhaus Theorem then guarantees the convergence
in (23) for all W ∈ L2((0, T ),H

μ
π ).

With very similar arguments, we can also show, for all W ∈ L2((0, T ),H
μ
π ),

lim
ε→0

∫ T

t=0

〈
A1(U

ε; ε)Uε,W
〉
(t) dt =

∫ T

t=0

〈
A1(U

∗; 0)U∗,W
〉
(t) dt,

which completes the proof of part (b).
To prove part (c), we estimate

δ−
∥
∥π0∂tU

ε
∥
∥2
L2

≤ 〈
A0(U

ε)∂tU
ε, ∂tU

ε
〉

= −〈
A1(U

ε)Uε, ∂tU
ε
〉 − 1

ε

〈
π∗
0 L̃Uε, ∂tU

ε
〉

≤ Cf

∥
∥π0U

ε
∥
∥
Hd

∥
∥π0∂tU

ε
∥
∥
L2

+ 1

ε

∥
∥
∥L̃Uε

∥
∥
∥
L2

∥
∥π0∂tU

ε
∥
∥
L2

,

and now it suffices to evaluate this inequality at t = 0. The proof of Theorem 2 is
complete.

5 An Application

Now we consider the Euler–Poisson system

∂tρ + div(ρu) = 0,

∂tu+ (u · ∇)u+ 1

ρ
∇p(ρ) +∇Φ = 0,

−λ2 &Φ = ρ − 1

with some non-trivial pressure p(ρ) = ρ2. The claim is that the general framework
above, which culminates in Theorems 1 and 2, can be applied to this situation.
We have chosen this version of the pressure p(ρ) instead of some more general
p(ρ) = ργ in order to avoid heavy use of pseudodifferential techniques. In the
current situation, we can write

1

ρ
∇p(ρ) +∇Φ = ∇

(
1− 2λ2&

)
Φ,

and 1 − 2λ2& is a nice invertible elliptic operator with constant coefficients. We
introduce

Ũ =
(
q

u

)

, q = λΦ,
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and then it follows that

(−& 0
0 I

)

∂t Ũ +
(−div(u& ·) 0

0 u · ∇
)

Ũ + 1

λ

(
0 div

(1− 2λ2&)∇ 0

)

Ũ = 0,

and the third matrix in this equation is the singular perturbation, which is not yet
anti-selfadjoint. To repair this, we define an operator

m :=
√

1− 2λ2&

as a Fourier multiplier, and put M := diag(m, I), and U := MŨ . Noting that M
commutes with all derivatives ∂t and Dα , we find (after applyingM from the left)

(−& 0
0 I

)

∂tU + M

(−div(u& ·) 0
0 u · ∇

)

M−1U + 1

λ

(
0 mdiv

m∇ 0

)

U = 0,

and we will write this equation as A0∂tU + MÃ1(U)M−1U + λ−1LU = 0. We
also put A1 := MÃ1M

−1.
Before we begin to check the various assumptions of the general framework,

we have a look at the main idea—to estimate the time derivative of the expression
〈A0U,U〉—from the perspective of physics. The mentioned expression equals

〈A0U,U〉 =
〈
A0MŨ,MŨ

〉
=

〈
A0Ũ ,M2Ũ

〉

=
∫

Rn

(−& q)(1− 2λ2&)q + |u|2 dx =
∫

Rn

|∇q|2 + 2λ2(&q)2 + |u|2 dx

= λ2
∫

Rn

|∇Φ|2 dx + 2
∫

Rn

(ρ − 1)2 dx +
∫

Rn

|u|2 dx,

and we recall that the physical energy is the conserved quantity

E (t) = λ2

2

∫

Rn

|∇Φ|2 dx +
∫

Rn

H(ρ) dx +
∫

Rn

ρ

2
|u|2 dx,

with H(ρ) as the enthalpy, defined by H ′(ρ) = h(ρ) and h′(ρ) = 1
ρ
p′(ρ). Then

we see that the expression 〈A0U,U〉 almost equals the physical energy, the only
difference appearing in the contribution of the kinetic energy (with 1 instead of ρ).
From this observation we conclude that our approach of massively symmetrising
the system (at the expense of introducing pseudodifferential operators) has its
motivation on the grounds of physics.

Now we verify the assumptions. Concerning Property 1, we have π0 as in (8).
The operator A0 does not depend itself on π0U or ε = λ, and A1 depends on u
which are the lower components of π0U . FurtherB = R

n, and the operatorsM and
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div appearing in A1 are “outer derivatives”. In that sense, A1 is a pseudodifferential
operator in divergence form, and A1 does not in itself depend on derivatives of u.
More on that below.

Property 2 requires

Hs
π := {(v0, v) ∈ S ′(Rn,Cn+1) : ∇v0 ∈ Hs(Rn,Cn), v ∈ Hs(Rn,Cn)}

to be Hilbert spaces, which follows fromChapter 5 of [11]. The kernel of π0 contains
constant functions in the upper components and zero in the lower components.

To check Property 3, we first calculate

1+√
2λ|ξ |√
2

≤ m(ξ) =
√

1+ 2λ2|ξ |2 ≤ 1+√
2λ|ξ |,

and therefore

C−1 (‖φ‖Hs + λ ‖∇φ‖Hs

) ≤ ‖mφ‖Hs ≤ C
(‖φ‖Hs + λ ‖∇φ‖Hs

)

After recalling (10), we then immediately get ‖LV ‖Hs ≤ C ‖π0V ‖Hs+2 , hence
d = 2. We also see ‖A0V ‖Hs ≤ C ‖π0V ‖Hs+1 , because of A0 = π∗

0 ◦ π0. And
concerning A1, we have s ≥ s∗ > s∞, which turns all appearing Sobolev spaces
into algebras, hence

‖A1(U)V ‖Hs =
∥
∥
∥MÃ1(U)M−1V

∥
∥
∥
Hs

≤ C
(∥

∥
∥mdiv(u&m−1v0)

∥
∥
∥
Hs

+ ‖(u · ∇)v‖Hs

)

≤ C
(∥

∥
∥um−1 & v0

∥
∥
∥
Hs+1

+ λ

∥
∥
∥um−1 & v0

∥
∥
∥
Hs+2

+ ‖u‖Hs ‖v‖Hs+1

)

≤ C ‖u‖Hs+2

(‖∇v0‖Hs+2 + ‖v‖Hs+1

)
.

We come to Property 4. The bilinear form a0 on L2(Rn,CM) is obviously

a0(V ,W) =
∫

Rn

VW dx,

hence δ− = δ+ = 1. We also have |〈LV ,W 〉| ≤ ‖π0V ‖L2 ‖π0W‖L2 , by (10). And
to calculate 〈A1(U)V ,W 〉 for V , W ∈ Hd

π , we put Ṽ = M−1V , W̃ = M−1W and
get

〈A1(U)V ,W 〉 =
〈
Ã1(U)Ṽ ,M2W̃

〉

=
∫

Rn

(−div(u& ṽ0))(1− 2λ2&)w̃0 + ((u · ∇)v)w dx
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=
∫

Rn

(u& ṽ0)∇w̃0 dx+2λ2
∫

Rn

(div(u& ṽ0))& w̃0 dx+
∫

Rn

((u · ∇)v)w dx

=
∫

Rn

(

u
&
m

v0

) ∇
m

w0 + 2

(

div

(

u
λ&
m

v0

))
λ&
m

w0 + ((u · ∇)v)w dx.

Note that U ∈ Ms0,s1,s∗(T ) enforces u to have real values. Then

a1(π0V, π0V ) = 〈A1(U)V , V 〉 + 〈V,A1(U)V 〉
=

∫

Rn

(u& ṽ0)∇ṽ0 + (u& ṽ0)∇ṽ0 + ((u · ∇)v)v+ ((u · ∇)v)v

+2λ2(div(u& ṽ0))& ṽ0 + 2λ2(div(u& ṽ0)) & ṽ0 dx

= −
∑

j,k

∫

Rn

(∂kuj ) · 2%((∂kṽ0)(∂j ṽ0)) + uj∂j |∂kṽ0|2 + (∂j uj )|vk|2

+2λ2uj∂j | & ṽ0|2 dx

= −2
∫

Rn

(∇u) : %((∇ṽ0)⊗ (∇ṽ0)) dx

+
∫

Rn

(divu)
(
|∇ṽ0|2 − |v|2 + 2|λ& ṽ0|2

)
dx,

and now it suffices to add ‖λ & ṽ0‖L2 = ∥
∥λm−1 & v0

∥
∥
L2

≤ C ‖∇v0‖L2 .
Property 5 and the statements of Property 6 that relate to A0 are obviously

satisfied. To show (12), we write

|〈∂tA1(U)V ,W 〉| ≤
∫

Rn

|ut |
∣
∣
∣
∣
&
m

v0

∣
∣
∣
∣

∣
∣
∣
∣
1

m
∇w0

∣
∣
∣
∣ dx + 2

∫

Rn

|ut |
∣
∣
∣
∣
&
m

v0

∣
∣
∣
∣

∣
∣
∣
∣
λ2&
m

∇w0

∣
∣
∣
∣ dx

+C

∫

Rn

|ut | |∇v| |w| dx,

and estimate
∥
∥&m−1v0

∥
∥
L∞ ≤ C ‖∇v0‖Hs∞+1 , ‖∇v‖L∞ ≤ C ‖v‖Hs∞+1 ,∥

∥m−1∇w0
∥
∥
L2

≤ C ‖∇w0‖L2 . By Plancherel, we have

∥
∥
∥
∥
λ2&
m

∇w0

∥
∥
∥
∥

2

L2
=

∫

Rn

(
λ2|ξ |3

√
1+ 2λ2|ξ |2 |ŵ0(ξ)|

)2

dξ ≤
∫

Rn

(
λ|ξ |2|ŵ0(ξ)|

)2
dξ

≤ Cλ2 ‖∇w0‖2H 1 ,

from which we get (12) with μ = 1.
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To prove (13) and (14), we begin with

〈A1(U ; λ)V ,W 〉 −
〈
A1(Ǔ ; λ̌)V ,W

〉
=

∫

Rn

(

(u− ǔ)
&
m

v0

) ∇
m

w0 dx (24)

+
∫

Rn

(

u
(&
m

− &
m̌

)

v0

) ∇
m

w0 −
(

div

(

ǔ
&
m̌

v0

)) (
1

m
− 1

m̌

)

w0 dx

+2
∫

Rn

(

div

(

(u− ǔ)
&
m

v0

))
λ2&
m

w0 dx

+2
∫

Rn

(

div

(

ǔλ
(&
m

− &
m̌

)

v0

))
λ&
m

w0

+2
∫

Rn

(

div

(

ǔ
&
m̌

v0

)) (
λ2

m
− λ̌2

m̌

)

&w0 dx +
∫

Rn

(((
u− ǔ

) · ∇)
v
)
w dx,

and now we estimate like this for the proof of (13): the terms |u− ǔ|, |div(u− ǔ)|,
|ǔ| and |div(ǔ)| always receive the L∞(Rn) norm. Further,

∥
∥
∥
∥∇

&
m

v0

∥
∥
∥
∥
L2

≤ C ‖∇v0‖Hd ,

∣
∣
∣
∣

λ

m(ξ)
− λ

m̌(ξ)

∣
∣
∣
∣ =

2
∣
∣
∣λ̌2 − λ2

∣
∣
∣ λ|ξ |2

(m̌(ξ) + m(ξ))m(ξ)m̌(ξ)
≤ C|λ − λ̌|,

∣
∣
∣
∣

1

m(ξ)
− 1

m̌(ξ)

∣
∣
∣
∣ ≤ C|λ− λ̌||ξ |,

∥
∥
∥
∥∇λ

(&
m

− &
m̌

)

v0

∥
∥
∥
∥
L2

≤ C|λ− λ̌| ‖∇v0‖Hd ,

∥
∥
∥
∥
λ&
m

w0

∥
∥
∥
∥
L2

≤ C ‖∇w0‖L2 ,
∣
∣
∣
∣
∣

λ2|ξ |2
m(ξ)

− λ̌2|ξ |2
m̌(ξ)

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣

λ2

m(ξ)
− λ2

m̌(ξ)

∣
∣
∣
∣ |ξ |2 + |λ2 − λ̌2|

m̌(ξ)
|ξ |2

≤ C|λ− λ̌||ξ |, provided λ̌ > λ,

and then it can be concluded that
∣
∣
∣〈A1(U ; λ)V ,W 〉 −

〈
A1(Ǔ ; λ̌)V ,W

〉∣
∣
∣

≤ C
(∥

∥u− ǔ
∥
∥
Cd−1(Rn)

+ |λ− λ̌|
)
‖∇v0‖Hd ‖∇w0‖L2 ,
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as desired. And now it remains to show (14). We choose

H = {
W ∈ C([0, T ], C∞

0 (Rn)) : ∃R > 1 with suppW ⊂ [0, T ] × BR−1(0)
}
,

and we note that R may depend on W , but is uniform in t ∈ [0, T ]. Then we split
all terms 1

m
∇w0 appearing in (24) as

1

m
∇w0 = ∇w0 + 1− m

m
∇w0,

∥
∥
∥
∥
1− m

m
∇w0

∥
∥
∥
∥
Hs

≤ Cλ ‖∇w0‖Hs+1 ,

and we also make use of
∣
∣
∣
∣

1

m(χ)
− 1

m̌(ξ)

∣
∣
∣
∣ ≤ C|λ − λ̌||ξ | ≤ C

√

|λ − λ̌|
√

max(λ, λ̌)|ξ |,

and so on. The appearing products of the type “(u − ǔ)∇w0” are being estimated
as

∥
∥u− ǔ

∥
∥
C([0,T ],BR(0)) ‖∇w0‖L2 . In contrast, the products of the type “(u −

ǔ) 1−m
m

∇w0” then are estimated as (‖u‖L∞(Rn) +
∥
∥ǔ

∥
∥
L∞)λ ‖∇w0‖Hμ with μ = 1.

Property 7 is empty. The first estimate of Property 8 follows from

∣
∣
〈
Dα(A1(U)V ),W

〉∣
∣ ≤

∫

Rn

∣
∣
∣
∣D

α

(

u
&m

v0

)∣
∣
∣
∣

∣
∣
∣
∣
∇
m

w0

∣
∣
∣
∣ dx

+2
∫

Rn

∣
∣
∣
∣divD

α

(

u
λ&
m

v0

)∣
∣
∣
∣

∣
∣
∣
∣
λ&
m

w0

∣
∣
∣
∣ dx +

∫

Rn

∣
∣Dα(u · ∇)v

∣
∣ |w| dx,

and noting that |α| ≤ s∞ ≤ s∗ − d , ‖u‖Hs∗ ≤ M0.
And the second estimate of Property 8 can be obtained from

〈[A1(U),Dα]V ,DαV
〉 =

∫

Rn

(
[
u,Dα

] &
m

v0

) ∇
m

Dαv0 dx

+2
∫

Rn

(

div

(

[u,Dα]λ&
m

v0

))
λ&
m

Dαv0 dx +
∫

Rn

(([u,Dα] · ∇)
v
)
Dαv dx.

And the Euler–Poisson system also has Property 9, because this is a sym-
metrisable hyperbolic system for the unknown functions (ρ,u), with a nonlocal
lower order term hidden in ∇Φ. The local existence of solutions to symmetrisable
hyperbolic systems is a classical fact, and we also know that they persist as long as
the C1 norm of (ρ,u) remains bounded, compare [5]. The charge density ρ being
bounded in C1 corresponds to∇Φ being bounded in C2, because of ρ = 1−λ2&Φ,
and therefore we have the boundedness of ∇Φ in Hs∞+2 as a part of the sufficient
conditions for a persistence of a smooth solution. Note that d = 2 in this Section,
and s∗ ≥ s∞ + d has been our assumption.

Therefore we have shown that the barotropic Euler–Poisson system possesses all
the Properties 1–9, and then the Theorems 1 and 2 can be applied, ensuring the local
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existence of solutions Uε with uniform existence interval, and their incompressible
limit for ε → 0, which in our case is a quasineutral limit.

Next we determine the limit system. We start with the uniform (in t and λ)
estimates for

∥
∥π0U

λ
∥
∥
H 1 :

C ≥ ∥
∥π0U

λ
∥
∥2
H 1 ≥ ∥

∥mλ∇Φλ
∥
∥2
H 1 =

∫

R
n
ξ

∣
∣
∣(1+ |ξ |2)1/2m(ξ)λξΦ̂λ(t, ξ)

∣
∣
∣
2
dξ

=
∫

R
n
ξ

(1+ |ξ |2)
(
1+ 2λ2|ξ |2

)
λ2|ξ |2

∣
∣
∣Φ̂λ(t, ξ)

∣
∣
∣
2
dξ

≥
∫

R
n
ξ

∣
∣
∣λ|ξ |2Φ̂λ(t, ξ)

∣
∣
∣
2
dξ = ∥

∥λ &Φλ(t, ·)∥∥2
L2

,

and then the Poisson equation implies
∥
∥ρλ − 1

∥
∥
L2

≤ Cλ. Hence ρ∗ ≡ 1, and the
limit velocity u∗ belongs to L2((0, T ),H s∗(Rn)), with ∂tu∗ ∈ L2((0, T ) × R

n).
From the limit of the mass conservation equations we then find divu∗ = 0 in
distributional sense. To determine the differential equation for u∗, we recall the
identity

A0(U
∗; 0)∂tU∗ + A1(U

∗; 0)U∗ + R = 0,

in the sense of L2((0, T ), (H 1
π )

′), with some R ∈ L2((0, T ), (H 1
π)

′ ∩ range(L)). We
drop the top component of this equation and obtain

∂tu∗ + (u∗ · ∇)u∗ + r = 0,

with r ∈ L2((0, T ), (H 1)′ ∩ range(∇)), which then can be improved to r = ∇P ∈
L2((0, T )× R

n), from the already known regularity of u∗.

6 Concluding Remarks

We have presented a general pseudodifferential framework that allows to handle
the low Mach number limit for Euler systems of gas dynamics as well as the
quasineutral limit for Euler–Poisson systems. The approach is based on the newly
introduced concept of generalised symmetrisable systems, which have as main
novel feature matrix (pseudo)differentiable operators of a priori unspecified orders.
Generalisations to symmetrisable systems with a viscous part can be done quite
naturally. The incompressible limit is being shown for sufficiently strong solutions
with well-prepared initial data. Further generalisations to other systems (for instance
of quantum hydrodynamic type) or to less regular solutions will be part of
forthcoming publications.
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The Critical Exponent for Evolution
Models with Power Non-linearity

Marcelo Rempel Ebert and Linniker Monteiro Lourenço

Abstract In this note we derive Lr − Lq estimates for the solutions to the Cauchy
problem

utt + (−Δ)σu = 0 , t ≥ 0, x ∈ R
n, u(0, x) = 0, ut (0, x) = g(x),

with σ > 1. Moreover, we derived the critical index pc(n) for the existence of
global in time small data solutions to the associated semilinear Cauchy problem
with power nonlinearity |u|p, p > 1.

1 Introduction

Let us consider the Cauchy problem for the evolution equation,

{
utt + (−Δ)σu = 0 , t ≥ 0, x ∈ R

n

u(0, x) = f (x), ut (0, x) = g(x).
(1)

It is a σ -evolution operator in the sense of Petrowsky, since its principal symbol
τ 2 − |ξ |2σ has only real and distinct roots τ = ±|ξ |σ for all ξ �= 0. The
Cauchy problem (1) is Hs(Rn) well-posed, that is, for s ≥ σ , to given data
f ∈ Hs(Rn) and g ∈ Hs−σ (Rn), there exists a uniquely determined energy solution
u ∈ C([0, T ],H s(Rn)) ∩ C1([0, T ],H s−σ (Rn)).
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The study of the long-time asymptotics of the solution and, more in general, the
study of long-time behavior of suitable energies, has been a topic of interest in the
recent years. For the wave equation, the estimates in [9] and [12] imply that the
solution to the Cauchy problem (1), with σ = 1 and f ≡ 0, satisfies the Lr − Lq

estimates

‖u(t, ·)‖Lq ≤ C t
1−n

(
1
r
− 1

q

)

‖g‖Lr

uniformly for any t > 0, if, and only if, the point ( 1
r
, 1
q
) belongs to the closed

triangle with vertices

P1 = ( 1
2 + 1

n+1 ,
1
2 − 1

n+1

)
, P2 = ( 1

2 − 1
n−1 ,

1
2 − 1

n−1

)
,

and P3 = ( 1
2 + 1

n−1 ,
1
2 + 1

n−1

)
.

In the case n = 1 or n = 2 we define P2 = (0, 0) and P3 = (1, 1).
The case σ = 2 in (1) is an important model in the literature, it is known as

Germain-Lagrange operator, as well as beam operator and plate operator in the case
of space dimension n = 1 and n = 2, respectively. The linear beam operator inherits
some but not all properties from Schrödinger operator. In particular, we do not have
the mass conservation law, since in the beam equation the coefficients are real. On
the other hand, the functional representation of the solution contains oscillations like
it happens for the wave operator. However, the Germain-Lagrange operator is not
Kovalesvkian and we do not have the finite speed of propagation [3]. In textbook
[5] the reader may found non-singular Lr − Lq estimates in the dual line for the
solutions to (1) in the case σ = 2, and also the influence of lower order terms in
these estimates was considered.

If f �= 0 in (1), one may not expect Lq − Lq estimates for q �= 2 for solutions
to the wave and Germain-Lagrange equation, neither for solutions to the Cauchy
problem for the Schrödinger equation.

The first goal in this paper is to determine (Theorem 2.1), for σ > 1 and f ≡ 0
in (1), the range for 1 ≤ r ≤ q ≤ ∞ for which Lr − Lq estimates holds. Then, by
homogeneity, it follows

‖u(t, ·)‖Lq ≤ C t
1− n

σ

(
1
r
− 1

q

)

‖g||Lr (Rn), ∀t > 0.

One may find a partial answer to this problem in [7] for a more general class of
multipliers ma,b, localized at high frequencies in the phase space, where it was
proved a characterization for ma,b be a multiplier in Hardy spaces. Hence, to prove
Theorem 2.1 it would be sufficient to prove estimates at low frequencies for the
associated multipliers, however for the completeness of paper, in Proposition 3.4
we present an elementary proof also at high frequencies.

The application of linear estimates is a very useful tool to the study global
existence of small data solutions for semilinear problems. Much has been devoted
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to the case of the equation

{
utt + (−Δ)σu = |u|p , t ≥ 0, x ∈ R

n

u(0, x) = f (x), ut (0, x) = g(x),
(2)

with p > 1 and σ > 1. If the data in the initial condition u(0, x) = f (x) is small,
then |u|p becomes small for large p. For this reason one is often able to prove such
a global (in time) existence result only for some p > pc(n).

For the wave equation, the critical exponent pc(n) for the Cauchy problem (2)
with σ = 1 is the positive root of

(n − 1)p2 − (n + 1)p − 2 = 0.

This critical exponent is called the Strauss exponent [11]. By critical exponent we
mean that suitable global small data solutions exist in the supercritical case, whereas
global solutions cannot exist, under suitable sign assumption on the data, in the
critical and subcritical cases.

If we consider the Cauchy problem (2) with σ = 2, under a standard scaling
argument used for nonlinear dispersive equations, we derive that sp

.= n
2− 4

p−1 is the

critical index in the Sobolev space Ḣ s(Rn), namely, one may expect that if s > sp,
then the Cauchy problem (2) is well-posed in Hs(Rn), at least locally, whereas it
is not well-posed for s < sp. In [1] the authors derived Strichartz estimates for
the solutions to the linear problem and proved the existence of small data global
solutions to the Cauchy problem (2) in Besov spaces Ḃ

sp
2,q(R

n)(1 ≤ q < ∞) for

any n ≥ 1 and p > 1 + 8
n
, or in Besov spaces Bs

2,q(R
n), s > sp, for p > 1 + 8

n

for n ≥ 4, and for p > 5 in the case n = 3. We refer to [13] for an ill-posedness
result in the case 0 < s < sp. If we look for energy solutions C([0, T ],H 2(Rn)) ∩
C1([0, T ], L2(Rn)), then we have to assume n

2 − 4
p−1 < 2 and it appears an upper

bounded for p, that is, p < n+4
n−4 for n > 4 (see Remark 10).

According to Duhamel’s principle, the restriction on p to derive the existence of
small data global solutions to (2) is related to an integrability condition depending
only on the kernel of the second data, whereas the regularity condition is related
to the first initial data f . Since the question about regularity condition follows by
scaling argument, for simplicity, throughout this paper we assume f ≡ 0 in (2), but
under additional regularity on f (see Remark 5) one can still have the same results.

The second goal of this paper is to show that, using the derived linear estimates
(Theorem 2.1) in the Lq(Rn) basis, with q �= 2, the critical exponent pc(n) for the
existence of global in time small data solutions to

{
utt + (−Δ)σu = |u|p , t ≥ 0, x ∈ R

n

u(0, x) = 0, ut (0, x) = g(x),
(3)
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with p > 1 and σ > 1, is given by

pc(n)
.= 1+ 2σ

[n− σ ]+ . (4)

From Theorems 2.2 and 2.4 we conclude that pc(n) is really the critical exponent
for integer σ > 1, with σ < n ≤ 2σ , however, in the case n > 2σ , we may have a
gap between the non-existence result Theorem 2.4 and the existence result given by
Theorem 2.3.

It is interesting to compare the Cauchy problem (3) with the structurally damped
semi-linear evolution equations

{
utt + 2μ(−Δ)δut + (−Δ)σu = |u|p, t ≥ 0, x ∈ R

n,

(u, ut )(0, x) = (f, g)(x).
(5)

In [2] the authors proved that for σ ≥ 2δ

p0
.= 1+ 2σ

[n − 2δ]+ , (6)

is the critical exponent for global in time small data energy solutions. It is clear
that (6) coincide with (4) for σ = 2δ and it is better for σ > 2δ, i.e., in this case the
dissipative term (−Δ)δut improves the critical exponent. For σ < 2δ the dissipation
in (5) is less effective than for σ = 2δ, so we may conjecture that in this case the
critical exponent is also given by (4).

1.1 Notation

Throughout this paper, we use the following.

Notation 1 Let f, g : Ω ⊂ R
n → R be two strictly positive functions. If there

exists a constant C > 0 such that f (y) ≤ Cg(y) (resp. f (y) ≥ Cg(y)) for all y ∈
Ω , then we write f � g (resp. f � g).

Notation 2 Let χ ∈ C∞
c (Rn) be a cut-off nonnegative functions satisfying

χ(ξ) = 1 if |ξ | ≤ 1

2
, χ(ξ) = 0 if |ξ | ≥ 1 and χ(ξ) ∈ [0, 1].

Notation 3 We denote f̂ = Ff , the Fourier transform of a function f with respect
to the x variable. For b ≥ 0, we denote by (−Δ)bf = F−1(|ξ |2bf̂ ), the possibly
fractional Laplace operator.
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Notation 4 By L
q
p = L

q
p(R

n) we denote the space of tempered distributions T

satisfying the estimate

‖T ∗ f ‖Lq ≤ C‖f ‖Lp

for all f in the Schwartz space S(Rn) with a constant C which is independent of f .
The set of Fourier transforms T̂ of distributions T ∈ L

q
p is denoted by M

q
p =

M
q
p(R

n). The elements in M
q
p are called multipliers of type (p, q). We define in

M
q
p(R

n) the following norm

‖m‖Mq
p
:= sup{‖F−1(mF(f ))‖q : f ∈ S , ‖f ‖p = 1}. (7)

In the case p = q , we denoteM
p
p by Mp.

2 Main Results

The following linear estimates plays a fundamental role in order to prove local and
global in time existence results to the Cauchy problem (3).

Theorem 2.1 Let σ > 1. If f ≡ 0 and g ∈ Lr , then the solution u to the Cauchy
problem (1) satisfies the following estimate

‖u(t, ·)‖Lq � t
1− n

σ

(
1
r
− 1

q

)

‖g||Lr(Rn), ∀t > 0, (8)

for all 1 < r ≤ q < ∞, with 1
r
+ 1

q
≤ 1 and 1−σ

r
− 1

q
≤ σ

(
1
n
− 1

2

)
or 1

r
+ 1

q
≥ 1

and 1
r
+ σ−1

q
≤ σ

(
1
n
+ 1

2

)
.

Remark 1 If σ > 2n
n+2 , for r = 1 + δ, with δ > 0 sufficiently small, (8) is true for

all q̃ ≤ q < ∞, with q̃ given by

1

q̃

.= 1

σ − 1

(

σ

(
1

n
+ 1

2

)

− 1

)

. (9)

For 2σ = n we get q̃ = 2, whereas q̃ < 2 for 2σ > n and q̃ > 2 for 2σ < n.
Moreover, if

√
2n < 2σ < n, then q̃ < 2n

n−2σ

Remark 2 The restriction r > 1 in Theorem 2.1 is due to the applications
of Mikhlin-Hörmander multiplier theorem in the proof at the low frequencies
estimates. However, thanks to Theorem 4.1 in [7] we have (1−χ(ξ)) sin(|ξ |σ )

|ξ |σ ∈ M
q
1

for q̃ < q ≤ ∞, whereas using Hausdorff - Young’s inequality we conclude
χ(ξ) sin(|ξ |σ )

|ξ |σ ∈ M
q

1 for 2 ≤ q ≤ ∞. Therefore, if σ > 2n
n+2 , (8) is also true for

r = 1 and q̃ < q ≤ ∞ if n ≥ 2σ or for 2 ≤ q ≤ ∞ if 2σ > n (Fig. 1).
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Fig. 1 Lr − Lq estimates

It remains as an open problem to decide if (8) is true in the case 2σ > n for r = 1
and q̃ < q < 2.

Remark 3 From Theorem A.4 of Appendix we conclude that (8) is not true for
1−σ
r

− 1
q
> σ

(
1
n
− 1

2

)
and for 1

r
+ σ−1

q
> σ

(
1
n
+ 1

2

)
.

Remark 4 If 1− n
σ

(
1
r
− 1

q

)
≥ 0 the singularity in (8) disappears. The intersection

between the lines

1

q
= 1

r
− σ

n
and

1− σ

r
− 1

q
= σ

(
1

n
− 1

2

)

is the point (r, q) = (2, 2n
n−2σ ). Let A

.=]1, 2] × [
q̃,∞) for 2σ ≥ n and A

.=
]1, 2] ×

[
q̃, 2n

n−2σ

]
for

√
2n < 2σ < n (see Fig. 2). Hence, if σ > 2n

n+2 , g ∈
L1(Rn)∩L2(Rn) and q ≥ r , for all (r, q) ∈ A , there exists r̄ ∈ (1, 2] such that (8)
implies in

‖u(t, ·)‖Lq �

⎧
⎨

⎩

‖g‖Lr̄ ≤ ‖g‖L1∩L2, t ∈ [0, 1)
(1+ t)

1− n
σ

(
1
r
− 1

q

)

‖g‖Lr∩L2, t ∈ [1,∞).

In particular, for any ε > 0, there exists δ > 0 such that

‖u(t, ·)‖Lq � (1+ t)
1− n

σ

(
1− 1

q

)
+ε‖g‖L1+δ∩L2, t ∈ [0,∞), (10)

for all q ≥ q̃ if 2σ ≥ n or for all q̃ ≤ q ≤ 2n
n−2σ if 2σ < n.
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Fig. 2 n > 2σ >
√
2n





Remark 5 As it was explained in the introduction, if f �= 0 and q �= 2, one may
not expect Lq − Lq estimates for solutions to the Cauchy problem (1). However,
following the proof of Theorem 2.1, under additional regularity for f we can
conclude the estimate

‖u(t, ·)‖Lq ≤ ct
n
σ
( 1
q
− 1

r
)
(
‖f ‖Lr + t‖|D|σ f ‖Lr + t‖g‖Lr

)
, (11)

for all 1 < r ≤ q < ∞, with 1
r
+ 1

q
≥ 1 and 1

r
+ σ−1

q
≤ σ

(
1
2 + 1

n

)
or 1

r
+ 1

q
≤ 1 and

1−σ
r

− 1
q

≤ σ
(
1
n
− 1

2

)
. Here |D|σ denotes the pseudodifferential operator having

the symbol |ξ |σ . Moreover, if g ≡ 0, in order to avoid singular estimates at t = 0
in (11), we may assume that f ∈ Hσ,q(Rn)( the Sobolev space of fractional order),
to conclude

‖u(t, ·)‖Lq ≤ C(1+ t)‖f ‖Hσ,q

for all t ≥ 0 and q > 1 such that 1
2 − 1

n
≤ 1

q
≤ 1

2 + 1
n
. Therefore, for any ε > 0,

there exists δ > 0 such that if

(f, g) ∈ D
.= (Hσ,1+δ(Rn) ∩ H

σ, 2n
[n−2]+ (Rn))× (L1(Rn) ∩ L2(Rn)),

thanks to q̃ ≥ 2n
n+2 and using Remark 4, we may conclude that the solution to (1)

satisfies

‖u(t, ·)‖Lq ≤ C (1+ t)
1− n

σ

(
1− 1

q

)
+ε ‖(f, g)||D , ∀t ≥ 0,

for all q̃ ≤ q ≤ 2n
[n−2]+ .
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Due to Remark 4, it will be convenient to split the analysis of the semilinear
problem (3) in two cases, for 2σ ≥ n and for 2σ < n.

We first give a definition of weak solution to (3).

Definition 1 Let q > 1. We say that u ∈ L
q
loc([0,∞) × R

n) is a global weak
solution to (3), if, for any test function F ∈ C∞

c ([0,∞)×R
n), it holds:

I =
∫ ∞

0

∫

Rn

u(t, x)
(
Ftt (t, x)+ (−Δ)σF(t, x)

)
dxdt −

∫

Rn

g(x) F (0, x) dx,

(12)

where

I =
∫ ∞

0

∫

Rn

|u(t, x)|pF (t, x) dxdt.

Let T > 0. We say that u ∈ L
q
loc([0, T ] × R

n) is a local weak solution to (3),
if (12) is verified for the test functions as above, under the additional assumption
that suppF ⊂ [0, T ] ×R

n.

Theorem 2.2 Let n ≥ 2, 1 < σ < n ≤ 2σ and pc(n) < p < ∞. Then there exists
a constant ε > 0 such that for all g ∈ D

.= L1(Rn) ∩ L2(Rn) with

||g||D .= ‖g‖L1 + ‖g‖L2 < ε,

there exists a unique weak solution u ∈ L∞([0,∞), Lq̃(Rn) ∩ Lq1(Rn)) to (3) for
any q1 > 2p. Moreover, there exists a δ̄ > 0 such that for any δ ∈ (0, δ̄) the solution
satisfies the following estimates

‖u(t, ·)‖Lq ≤ C (1+ t)
1− n

σ

(
1

1+δ − 1
q

)

‖g||D , ∀t ≥ 0, (13)

for all q̃ ≤ q ≤ q1.

Remark 6 In the statement of Theorem 2.2 it is sufficient to assume g ∈ L1+δ(Rn)∩
L2(Rn), with δ > 0 sufficiently small. If g ∈ L1(Rn), taking into account
Remark 2, we may use L1 − Lq estimates, with q ≥ 2, and derive that the solution
u ∈ L∞([0,∞), L2(Rn) ∩ Lq1(Rn)), with δ = 0 in (13). Moreover, using the
embedding of H 1(Rn) ↪→ Lq(Rn) for 2 ≤ q ≤ 2n

n−2 , one may conclude that

u ∈ C0([0,∞), L2(Rn) ∩ Lq(Rn)) for 2 ≤ q ≤ 2n
n−2 .

Remark 7 If (f, g) ∈ D
.= (Hσ,1+δ(Rn)∩Hσ, 2n

n−2 (Rn))×(L1(Rn)∩L2(Rn)), under
the assumption of Theorem 2.2, by replacing ‖g||D by ‖(f, g)||D and applying
the linear estimates stated in Remark 5, one may conclude the existence of a

unique global weak solution u ∈ L∞([0,∞), Lq̃(Rn) ∩ L
2n
n−2 (Rn)) to the Cauchy

problem (3) and it satisfies (13) for all q̃ ≤ q ≤ 2n
n−2 .



The Critical Exponent for Evolution Models with Power Non-linearity 161

In the case n > 2σ , in general we can not arrive in the critical index. However,
we are able to derive a result where the lower order bound for p depends on a
parameter r̄ and we arrive at pc(n) if we can take r̄ = 1. Now, instead to use L1+δ−
Lq̃ estimates as in the proof of Theorem 2.2, we shall use Lr+δ − Lq estimates,

with (r, q) on the line segment with end points
(
1, 1

q̃

)
and

(
n+2
2n , n+2

2n

)
given by

Theorem 2.1, i.e.

1

q(r)
= 1

σ − 1

(

σ

(
1

n
+ 1

2

)

− 1

r

)

. (14)

Remark 8 If n > 2σ , the assumption 1 ≤ r ≤ r�
.= 2n

n+2σ implies that q(r) given
by (14) satisfies q(r�) = 2 ≤ q ≤ q̃ = q(1). Note that n+rσ

n−rσ
is an increasing

function on r and q(r�)

r�
≤ pc(n) ≤ n+r�σ

n−r�σ
, hence there exists 0 < r0 ≤ r� such that

q(r0)

r0
= n + r0σ

n − r0σ
. (15)

Remark 9 Thanks to q(r)
r

≤ n+rσ
n−rσ

< n+2σ
n−2σ for r ≥ r̄

.= max{1, r0}, we conclude
that q(r) < r n+2σ

n−2σ ≤ r� n+2σ
n−2σ = 2n

n−2σ . Hence, if g ∈ L1(Rn) ∩ L2(Rn), for all

(r, q) ∈ A
.=]r̄, 2] ×

[
q(r̄), 2n

n−2σ

)
(Fig. 3), there exists r̃ ∈ (1, 2] such that (8)

implies in

‖u(t, ·)‖Lq �

⎧
⎨

⎩

‖g‖Lr̃ ≤ ‖g‖L1∩L2, t ∈ [0, 1)
(1+ t)

1− n
σ

(
1
r
− 1

q

)

‖g‖Lr∩L2, t ∈ [1,∞).

In particular, for any ε > 0, there exists δ > 0 such that

‖u(t, ·)‖Lq � (1+ t)
1− n

σ

(
1− 1

q

)
+ε‖g‖L1+δ∩L2, t ∈ [0,∞). (16)

Due to the last remark we are able to derive the next result without any restriction
on the space dimension.

Theorem 2.3 Let 2n
n+2 < σ < n

2 ,
n+r̄σ
n−r̄σ

< p < n+2σ
n−2σ , with r̄

.= max{1, r0} and r0

satisfying (15). Then there exists ε > 0 such that for all g ∈ D
.= L1(Rn)∩L2(Rn)

with

||g||D .= ‖g‖L1 + ‖g‖L2 < ε,

there exists a unique weak solution u ∈ L∞([0,∞), Lq(r̄)(Rn)∩L
2n

n−2σ (Rn)) to (3),
with q(r̄) satisfying (14). Moreover, there exists a δ̄ > 0 such that for any δ ∈ (0, δ̄)
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Fig. 3 Region A





the solution satisfies the following estimates

‖u(t, ·)‖Lq ≤ C (1+ t)
1− n

σ

(
1

r̄+δ− 1
q

)

‖g||D , ∀t ≥ 0,

for all q(r̄) ≤ q ≤ 2n
n−2σ .

Remark 10 The conclusions of Theorem 2.3 is still true if we take max{1, r0} ≤
r̄ ≤ r�. For instance, if we chose r̄ = r�, then q(r̄) = 2 and a lower bounded
for p is given by p > 1 + 4σ

n
. In particular, for σ = 2 we recover the condition

1+ 8
n
< p < n+4

n−4 obtained by [1] for n > 4.

Remark 11 From the scale argument, smallness of ‖g‖
L

n(p−1)
σ (p+1)

is a necessary

condition to have global existence to (3). Indeed, if u is a solution to (3), then

λhu(λt, λ
1
σ x) , with h

.= 2

p − 1
,

is a solution to the equation in (3) for any λ > 0, with initial velocity λh+1g(λ
1
σ x).

We have

λh+1‖g(λ 1
σ ·)‖Lq = λ

h+1− n
σq ‖g‖Lq ,

so that the Lq norm is invariant if, and only if, h + 1 = n
σq

. Hence, we find q =
n(p−1)
σ (p+1) . The assumption g ∈ D implies g ∈ L

n(p−1)
σ (p+1) , thanks to

1 <
n(p − 1)

σ (p + 1)
≤ 2 ⇔ pc(n) < p ≤ 1+ 4σ

[n− 2σ ]+ .
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Remark 12 If (f, g) ∈ D
.= (Hσ,1+δ(Rn) ∩ Hσ, 2n

n−2 (Rn)) × (L1(Rn) ∩ L2(Rn)),
under the assumption of Theorem 2.3, by replacing ‖g||D by ‖(f, g)||D and
applying the linear estimates stated in Remark 5, one may conclude the existence of

a unique global weak solution u ∈ L∞([0,∞), Lq̃(Rn)∩L
2n
n−2 (Rn)) to the Cauchy

problem (2) and it satisfies (13) for all q̃ ≤ q ≤ 2n
n−2 . However, in order that the

range for q is not empty we have to assume 2σ ≥ n+2
2 .

According to Definition 2.2 in [4], an operator L(t, x, ∂t , ∂x) is quasi-homogeneous
of type (h, d1, d2), if, for any λ > 0, (t, x), (τ, ξ) ∈ R1+n it holds

L(λ−d1 t, λ−d2x, λd1τ, λd2ξ) = λhL(t, x, τ, ξ).

If σ > 1 is an integer, then the operator L = ∂2t + (−Δ)σ is quasi-homogeneous of
type (2, 1, σ−1). Hence, the application of Theorem 2.1 in [4] gives the following
nonexistence of global weak solution for any 1 < p ≤ n+σ

[n−σ ]+ :

Theorem 2.4 (Theorem 2.1 of [4]) Let σ > 1 be an integer. If 1 < p ≤ n+σ
[n−σ ]+ ,

then there exists no global in time nontrivial weak solution to (3).

Now we present two sample models, to which our results applies:

Example 1 Let us consider the semilinear plate equation

utt + Δ2u = |u|p.

We find global existence of small data solutions to space dimension n = 3, 4 if
p > n+2

n−2 = pc(n) (Theorem 2.2). For space dimension n > 5 we can not arrive in

the critical index, but we can derive a global existence result for all 1+ 8
n
< p < n+4

n−4
(Theorem 2.3 and Remark 10).

In general, global weak solutions cannot exist for space dimension n = 1, 2 and
for space dimension n ≥ 3 and 1 < p ≤ n+2

n−2 (Theorem 2.4).

Example 2 Let us consider the third-order evolution equation

utt − Δ3u = |u|p.

We find global existence of small data solutions in space dimension n = 4, 5, 6
if p > n+3

n−3 = pc(n) (Theorem 2.4), for space dimension n = 7 if p > pc(7)
(Theorem 2.3). For space dimension n ≥ 8 we can not arrive in the critical index,
but we can derive a global existence result for all 1+ 12

n
< p < n+6

n−6 (Theorem 2.3
and Remark 10).

In general, global weak solutions cannot exist for space dimension n = 1, 2, 3
and for space dimension n ≥ 4 and 1 < p ≤ n+3

n−3 (Theorem 2.4).



164 M. R. Ebert and L. M. Lourenço

3 The Linear Estimates

After applying the Fourier transform, the solution to (1) can be written as

u(t, x) = F−1
ξ→x

( ei|ξ |σ t + e−i|ξ |σ t

2
F(f )(ξ)

)
+ F−1

ξ→x

((
ei|ξ |σ t − e−i|ξ |σ t

) 1

2i|ξ |σ F(g)(ξ)
)

or

u(t, x) = F−1
ξ→x

(
cos(t|ξ |σ )F(f )(ξ)

)
+ F−1

ξ→x

(
sin(t|ξ |σ ) 1

|ξ |σ F(g)(ξ)
)
.

In the following we will only consider the case f ≡ 0, but under additional
regularity on f we may write

F−1
ξ→x

(
cos(t |ξ |σ )F(f )(ξ)

)

=F−1
ξ→x

(
χ(t |ξ |σ ) cos(t |ξ |σ )F(f )(ξ)

)
+ F−1

ξ→x

((
1− χ(t |ξ |σ ))e

i|ξ |σ t + e−i|ξ |σ t

2|ξ |σ |ξ |σF(f )(ξ)
)

=F−1
ξ→x

(
χ(t |ξ |σ ) cos(t |ξ |σ )F(f )(ξ)

)
+ F−1

ξ→x

((
1− χ(t |ξ |σ ))e

i|ξ |σ t + e−i|ξ |σ t

2|ξ |σ F(|D|σ f )(ξ)
)
,

and following as in the case f ≡ 0, one may derive Lr −Lq estimates for solutions
to (1) (see Remark 5).

By homogeneity, it is sufficient to prove (8) for t = 1. In order to do it, we
will divide the phase space at low and high-frequencies. Let us first derive low-
frequencies estimates:

Proposition 3.1 For 1 < p ≤ 2 ≤ q < ∞ and 0 ≤ r ≤ n
(
1
p
− 1

q

)
, we have

m(ξ) := χ(ξ)e±i|ξ |σ

|ξ |r ∈ M
q
p. (17)

Proof Let us first consider the case r > 0. In this case we have

meas{ξ ∈ R
n : |m(ξ)| ≥ l} ≤ meas{ξ ∈ R

n : |ξ | ≤ l−
1
r } ≤ Cl−

n
r (18)

and l− n
r ≤ l−b for l ≥ 1, where ( 1

p
− 1

q
) = 1

b
. If 0 < l < 1, {ξ ∈ R

n : |m(ξ)| ≥
l} ⊂ {ξ ∈ R

n : |ξ | ≤ 1}, then

meas{ξ ∈ R
n : |m(ξ)| ≥ l} ≤ Cl−b, (19)

Therefore, applying Theorem A.2 the result is concluded for r > 0.
For r = 0 and l > 1 we have that meas{ξ ∈ R

n : |g(ξ)| ≥ l} = 0, hence (19)
holds for all b > 0, and again the conclusion follows from Theorem A.2.
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By using that sin(|ξ |σ )
|ξ |σ is a bounded function, similar to the case r = 0 in

Proposition 3.1, one may conclude the following result:

Proposition 3.2 For 1 < p ≤ 2 ≤ q < ∞, we have

χ(ξ) sin(|ξ |σ )
|ξ |σ ∈ M

q
p. (20)

As a consequence of the Mikhlin-Hörmander multiplier theorem we have:

Proposition 3.3 For all 1 < q < ∞ we have

m(ξ) := χ(ξ) sin(|ξ |σ )
|ξ |σ ∈ M

q
q . (21)

Proof For all multi-indice α and ξ �= 0 we have

|∂α|ξ |−σ | ≤ Cα|ξ |−σ−|α|

and for all 0 < |ξ | ≤ R

|∂α sin(|ξ |σ )| ≤ Cα,R|ξ |σ−|α|.

Hence, for all 0 < |ξ | ≤ R

∣
∣
∣
∣∂

α sin(|ξ |σ )
|ξ |σ

∣
∣
∣
∣ ≤ Cα

∑

β+γ=α

|∂β sin(|ξ |σ )||∂γ |ξ |−σ | ≤ Cα,R|ξ |−|α|.

Thanks to m(ξ) = sin(|ξ |σ )
|ξ |σ for small frequencies, we conclude that

|∂αm(ξ)| ≤ Cα,R|ξ |−|α|,

for all multi-indice α and the proof follows by using Theorem A.1.

Now, by following an idea used in [10] to derive Lq − Lq estimates for a class of
multipliers including the one from Schrödinger equation, but now we interpolate
the point p = q = 1 with points from the conjugate line (see Fig. 4) we present an
elementary proof of high frequencies estimates for the class of symbols considered
in [7], on a region of the phase space described by Theorem 2.1, excluding the lines

1

p
+ a − 1

q
= b

n
+ a

2
,

1− a

p
− 1

q
= b

n
− a

2
, p ≤ q (22)

for which we refer to [7], where the author derived such estimates in Hardy spaces
Hp(R), 0 < p < ∞.
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Fig. 4 High frequencies
estimates

Proposition 3.4 Let us consider Fourier multiplier

ma,b(ξ) = (1− χ(ξ))ei|ξ |a

|ξ |b , ξ ∈ R
n, a > 0, a �= 1, b ∈ R,

where χ is as in Notation 2. Let 1 < p ≤ q . If 1
p
+ 1

q
≥ 1 and 1

p
+ a−1

q
< b

n
+ a

2 ,

then ma,b ∈ M
q
p . The same conclusion is true if

1
p
+ 1

q
≤ 1 and 1−a

p
− 1

q
< b

n
− a

2 .

Proof By using duality argument, it is sufficient to prove Proposition 3.4 for 1
p
+

1
q
≥ 1. Let φ ∈ C∞

c (Rn) supported {ξ : 1
2 ≤ |ξ | ≤ 2} and φk(ξ)

.= φ(2−k|ξ |), with
k an integer. By using Plancherel’s theorem we have

‖φk · ma,b‖M2
2
≤ C2−kb. (23)

Now, put 2−kξ
.= η, and since (1 − χ(ξ))

φk(ξ)

|ξ |b = φk(ξ)

|ξ |b for |ξ | ≥ 1 and k ≥ 1, by
using Littman’s lemma we conclude

∥
∥
∥F−1

ξ→x

(
e±i|ξ |a φk(ξ)

|ξ |b
)∥

∥
∥
L∞(Rn)

= 2k(n−b)
∥
∥
∥F−1

η→x

(
e±i2ka |η|σ φ(η)

|η|b
)∥

∥
∥
L∞(Rn)

≤ C2k(n−b)(1+ 2ka)−
n
2 ,

for all k ≥ 1. Hence, take into account that χ(ξ)φk(ξ) = 0 for k ≤ 0, Young’s
Inequality implies

∥
∥
∥F−1

ξ→x

(
ma,b(ξ)φk(ξ)F(f )

)∥
∥
∥
L∞(Rn)

≤ C2k(n−b−a n
2 )‖f ‖L1(Rn), (24)



The Critical Exponent for Evolution Models with Power Non-linearity 167

for all integer k, or equivalent,

‖φk · ma,b‖M∞
1

≤ C2k(n−b−a n
2 ). (25)

As a consequence of (23), (25) and the Riesz-Thorin interpolation theorem we get

‖φk ·ma,b‖Mq0
p0

≤ C2
k

(
−b+( 1

p0
− 1

2 )(n(2−a))

)

(26)

for 1
p0

+ 1
q0

= 1.
In order to derive an estimate for ‖φk · ma,b‖M1

1
, one may prove the following

estimates

‖DMφk ·ma,b‖L2 ≤ CM2k(−b+M(a−1)+ n
2 ) (27)

and applying the Berstein’s inequality (Proposition A.1) for M > n
2 we get

‖φk · ma,b‖M1 ≤ ‖φk · ma,b‖(1−
n
2M )

L2 ‖DM
(
φk ·ma,b

) ‖
n
2M
L2 ≤ C2ka(

n
2− b

a ). (28)

Using (26) and (28) and Riesz-Thorin interpolation theorem we conclude that

‖φk ·ma,b‖Mq
p
≤ C2

k

(
−b+( 1

p0
− 1

2 )(n(2−a))

)
(1−θ)

2ka(
n
2− b

σ
)θ = C2

kn

(
1
p
+ a−1

q
−

(
a
2+ b

n

))

,

where 0 < θ < 1, with 1
p

= 1−θ
p0

+ θ and 1
q
= 1−θ

q0
+ θ .

Therefore, for large frequencies and for fixed k0, using the dyadic decomposition
we conclude the estimate

‖ma,b‖Mq
p
≤ C

∑

k≥k0

‖φk ·ma,b‖Mq
p
,

which is convergent if 1
p
+ a−1

q
− (

a
2 + b

n

)
< 0 and the proof is concluded.

Proof (Theorem 2.1) Interpolating Propositions 3.2 and 3.3, for small frequencies
we conclude that χ(ξ) sin(|ξ |σ )

|ξ |σ ∈ M
q
r for all 1 < r ≤ q < ∞.

For large frequencies, applying Proposition 3.4 for a = b = σ , we conclude that
(1−χ(ξ)) sin(|ξ |σ )

|ξ |σ ∈ M
q
r , with 1 < r ≤ q , if 1

r
+ 1

q
≤ 1 and 1−σ

r
− 1

q
< σ

(
1
n
− 1

2

)
or

if 1
r
+ 1

q
≥ 1 and 1

r
+ σ−1

q
< σ

(
1
n
+ 1

2

)
. The estimates in the segment lines given

by (22) are a consequence of Theorem A.4.
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4 Applications to Semilinear Evolution Equations

According to Duhamel’s principle, a solution to (3) satisfies the nonlinear integral
equation

u(t, x) = K1(t, x) ∗(x) g(x) + Nu(t, x),

whereK1(t, x) ∗(x) g(x) is the solutions of the Cauchy problem (1) with f ≡ 0 and

Nu(t, x) =
∫ t

0
K1(t − s, x) ∗ |u(s, x)|pds.

Motivated by the derived linear estimates, we choose the spaces for solutionsX(T )

and data D . For any u ∈ X(T ) we define

P : u ∈ X(T ) → Pu(t, x) := K1(t, x) ∗(x) g(x)+ Nu(t, x). (29)

Then we show that the following estimates are satisfied:

‖Pu‖X(T ) ≤ C0 ‖g‖D + C1(t)‖u‖pX(T ),

‖Pu − Pv‖X(T ) ≤ C2(t)‖u − v‖X(T )

(‖u‖p−1
X(T )

+ ‖v‖p−1
X(T )

)
,

for t ∈ [0,∞) with nonnegative constants C0, C1(t) and C2(t). The estimates for
the image Pu allow us to apply Banach’s fixed point theorem. In this way we get
simultaneously a unique solution to Pu = u locally in time for large data and
globally in time for small data.

In this section we will use the following well-known result (see for instance [2]):

Lemma 1 Let α < 1 < β. Then it holds

∫ t

0
(t − s)−α (1+ s)−β ds � (1+ t)−α. (30)

4.1 Local and Global Existence in the Case 2σ ≥ n

Let us first prove the following local in time existence result for large data and for
all p ≥ 1:

Proposition 4.1 Let σ > 1, 2σ ≥ n, 1 ≤ p < ∞ and q1 > 2p. For R > 0, there
exists 0 < T < 1 such that for all g ∈ D

.= Lq̃(Rn) ∩ L2(Rn), with

||g||D .= ‖g‖Lq̃ + ‖g‖L2 < R,



The Critical Exponent for Evolution Models with Power Non-linearity 169

there exists a unique local in time weak solution u ∈ L∞([0, T ], Lq̃(Rn)∩Lq1(Rn))

to (3).

Proof Let us define for q1 ≥ q̃ the Banach space

X(T ) = {u ∈ L∞([0, T ], Lq̃(Rn)) ∩ Lq1(Rn)) : ‖u‖X(T ) < ∞},

with the norm

‖u‖X(T ) = ess sup
0≤t≤T

(
‖u(t, ·)‖Lq1 + ‖u(t, ·)‖Lq̃

)
.

Thanks to the derived estimate in Theorem 2.1, the linear part K1(t, x) ∗(x) g(x) of
the solution is in X(T ), and for all 0 ≤ t ≤ T < 1 we have

‖K1(t, ·) ∗(x) g‖X(T ) ≤ CT 1− n
2σ ‖g||D .

By using Minkowski integral inequality and Theorem 2.1 for admissible pairs
(q, q̃), with q = q̃ and q = q1, it holds

‖Nu(t, ·)‖Lq �
∫ t

0
(t − s)

1− n
σ

(
1
q̃
− 1

q

)

‖|u(s, ·)|p‖Lq̃ ds �
∫ t

0
(t − s)

1− n
σ

(
1
q̃
− 1

q

)

‖u(s, ·)‖p
Lpq̃ ds

�
∫ t

0
(t − s)

1− n
σ

(
1
q̃
− 1

q

)

ds‖u‖p
X(T )

� T
2− n

σ

(
1
q̃
− 1

q

)

‖u‖p
X(T )

,

for any u ∈ X(T ), where in the third inequality we used that q̃ ≤ pq̃ ≤ q1 and in

the last one that 2− n
σ

(
1
q̃
− 1

q

)
> 0 for q = q̃ e q = q1.

Hence, it follows

‖Pu‖X(T ) ≤ CT 1− n
2σ ‖g‖D + C1T

2− n
σ

(
1
q̃
− 1

q1

)

‖u‖pX(T ).

This leads to Pu ∈ L∞([0, T ], Lq̃ (Rn)∩Lq1(Rn)) and, if 0 < T < 1 is sufficiently
small, P maps balls of X(T ) into balls of X(T ).

Moreover, thanks to the Mean Value theorem we have

||u|p − |v|p| ≤ C0|u− v|(|u|p−1 + |v|p−1)
,

and using Hölder’s inequality we get

‖|u|p − |v|p‖Lr ≤ C0‖u − v‖Lrp

(‖u‖p−1
Lrp + ‖v‖p−1

Lrp

)
.

Now, following as done to estimate ‖Nu(t, ·)‖Lq , we conclude that

‖Pu−Pv‖X(T ) = ‖Nu−Nv‖X(T ) � T
2− n

σ

(
1
q̃
− 1

q

)

‖u−v‖X(T )

(‖u‖p−1
X(T )+‖v‖p−1

X(T )

)
.
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Therefore, if 0 < T < 1 is sufficiently small, the existence of a unique local weak
solution follows by contraction argument.

Now, under the additional assumption that g ∈ L1(Rn) and ||g||D is small, for
p > pc(n) we are able to prove that the local solution derived in Proposition 4.1
may be extended globally in time:

Proof (of Theorem 2.2) Let δ > 0 sufficiently small such that 1 + δ ≤ q̃ < q1 and
define

X(T ) = {u ∈ L∞([0, T ], Lq̃(Rn) ∩ Lq1(Rn)) : ‖u‖X(T ) < ∞},

with the norm

‖u‖X(T ) = ess sup
0≤t≤T

(

(1+ t )
n
σ

(
1

1+δ
− 1

q̃

)
−1‖u(t, ·)‖Lq̃ + (1+ t )

n
σ

(
1

1+δ
− 1

q1

)
−1‖u(t, ·)‖Lq1

)

.

For any u, v ∈ X(T ), the operator P given by (29) satisfies

‖Pu‖X(T ) ≤ C0 ‖g‖D + C‖u‖pX(T ) (31)

‖Pu − Pv‖X(T ) ≤ C1‖u − v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
. (32)

By using the derived linear estimates, we prove (31), but we omit the proof of (32),
since it is analogous to the proof of (31).

Thanks to estimate (16), we have

‖K1(t, x) ∗(x) g‖X(T ) ≤ C0‖g||D .

By using Minkowski integral inequality and Theorem 2.1 it holds for q ≥ q̃

‖Nu(t, ·)‖Lq �
∫ t

0
‖K1(t−s, ·)∗|u(s, ·)|p‖Lq ds �

∫ t

0
(t−s)

1− n
σ

(
1

1+δ
− 1

q

)

‖|u(s, ·)|p‖L1+δ ds.

Moreover, thanks to the assumption pc(n) < p <
q1
2 and q̃ ≤ 2 < pc(n), there

exists δ̄ > 0 such that q̃ < p(1 + δ) < q1 and β
.= β(δ) > 1 for all δ ∈ (0, δ̄),

where

β
.= p

(
n

σ(1+ δ)

(

1− 1

p

)

− 1

)

. (33)

Hence

‖|u(s, ·)|p‖L1+δ = ‖u(s, ·)‖p
Lp(1+δ) � (1+ s)−β‖u‖pX(T ),
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and using that 1− n
σ

(
1

1+δ
− 1

q

)
> −1 for 2σ ≥ n, Lemma 1 yields

‖Nu(t, ·)‖Lq �
∫ t

0
(t − s)

1− n
σ

(
1

1+δ
− 1

q

)

(1+ s)−βds‖u‖pX(T )

� (1+ t)
1− n

σ

(
1

1+δ− 1
q

)

‖u‖p
X(T )

.

We conclude (31) by choosing q = q̃ and q = q1 in the last estimate.
This leads to Pu ∈ L∞([0, T ], Lq̃(Rn) ∩ Lq1(Rn)). Moreover, the operator P

maps balls of X(T ) into balls of X(T ) for small data in D and, the existence of a
unique global in time weak solution u follows from estimates (31) and (32). Indeed,
taking the recurrence sequence u(−1) = 0, u(j) = P(u(j−1)) for j = 0, 1, 2, · · · ,
we apply (31) with small ‖g‖D < ε, and we inductively see that

‖u(j)‖X(T ) ≤ 2C0ε, j = 0, 1, 2, · · · . (34)

Here, we remark that we have u(0) = P(u(−1)) = K1(t, x)∗(x) g(x) ∈ X(T ) thanks
to (16).

After checking the uniform estimate (34), we use (32) to find

‖u(j+1) − u(j)‖X(T ) ≤ 2−1‖u(j) − u(j−1)‖X(T ) . (35)

From (35), we inductively obtain ‖u(j) − u(j−1)‖X(T ) ≤ C2−j , so that {u(j)} is a
Cauchy sequence in X(T ) and the limit function u satisfies ‖u‖X(T ) ≤ 2C0ε,
P(u) = u and, using again (31), we conclude that ‖u‖X(T ) ≤ C0 ‖g‖D .

Moreover, u also satisfies (13). Indeed, for any q̃ ≤ q ≤ q1, by interpolation we
get

‖u(t, ·)‖Lq � ‖u(t, ·)‖θ
Lq̃‖u(t, ·)‖(1−θ)

Lq1

� (1+ t)−α‖u‖X � (1+ t)−α‖g‖D ,

with 1
q
= θ

q̃
+ (1−θ)

q1
and

α
.=

(
n

σ

(
1

(1+ δ)
− 1

q

)

− 1

)

.

This concludes the proof.
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4.2 Local and Global Existence in the Case n > 2σ

FromRemark 4 we understood that in the case n > 2σ , in order to have non-singular
Lr − Lq estimates for the solutions to (1), an upper bound for q appears and this
produce some additional difficulties to derive existence results to the semilinear
problem (3).

In the case n > 2σ , we have q̃ > 2, so we will replace in Proposition 4.1 q̃ by
the smaller q such that Lq −Lq linear estimate holds, i.e., q = 2n

n+2 and, in order to
control the singular behaviour of the linear estimates it appears an upper bounded
for q1.

Proposition 4.2 Let 2 < 2σ < n and 2n
n+2 ≤ q0 ≤ 2 ≤ q1 < 2n

n−2σ . Then,
for R > 0 and for all 1 ≤ p ≤ q1

q0
, there exists 0 < T < 1 such that for all

g ∈ D
.= Lq0(Rn) ∩ L2(Rn), with

||g||D .= ‖g‖Lq0 + ‖g‖L2 < R,

there exists a unique local in time weak solution u ∈ L∞([0, T ], Lq0(Rn) ∩
Lq1(Rn)) to (3).

Proof Let us define for q1 ≥ q̃ the Banach space

Z(T ) = {u ∈ L∞([0, T ], Lq0(Rn)) ∩ Lq1(Rn)) : ‖u‖Z(T ) < ∞},

with the norm

‖u‖Z(T ) = ess sup
0≤t≤T

(‖u(t, ·)‖Lq0 + ‖u(t, ·)‖Lq1

)
.

Thanks to the derived estimate in Theorem 2.1, the linear part K1(t, x) ∗(x) g(x) of
the solution is in Z(T ), and for any 0 ≤ t ≤ T < 1 we have

‖K1(t, ·) ∗(x) g‖Z(T ) = ess sup
0≤t≤T

(‖K1(t, ·) ∗(x) g‖Lq0 + ‖K1(t, ·) ∗(x) g‖Lq1

)

≤ C1T ‖g||Lq0 + C2T
1− n

σ

(
1
2− 1

q1

)

‖g||L2 ≤ CT
1− n

σ

(
1
2− 1

q1

)

‖g||D .

Here, 1− n
σ

(
1
2 − 1

q1

)
> 0 thanks to q1 < 2n

n−2σ .

By using Minkowski integral inequality and Theorem 2.1 for admissible pairs
(q, q0), with q = q0 and q = q1, it holds

‖Nu(t, ·)‖Lq �
∫ t

0
(t − s)

1− n
σ

(
1
q0

− 1
q

)

‖|u(s, ·)|p‖Lq0 ds �
∫ t

0
(t − s)

1− n
σ

(
1
q0

− 1
q

)

‖u(s, ·)‖p
Lpq0 ds

�
∫ t

0
(t − s)

1− n
σ

(
1
q0

− 1
q

)

ds‖u‖p
Z(T )

� T
2− n

σ

(
1
q0

− 1
q

)

‖u‖p
Z(T )

,
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for any u ∈ Z(T ), where in the third inequality we used that q0 ≤ pq0 ≤ q1 and in

the last one that 2− n
σ

(
1
q0

− 1
q1

)
> 0 thanks to q1 ≤ 2n

n−2σ <
nq0[n−2σq0]+ .

Hence, it follows

‖Pu‖Z(T ) ≤ CT
1− n

σ

(
1
2− 1

q1

)

‖g‖D + C1T
2− n

σ

(
1
q0

− 1
q1

)

‖u‖pZ(T ).

This leads to Pu ∈ L∞([0, T ], Lq0(Rn)∩Lq1(Rn)) and, if 0 < T < 1 is sufficiently
small, P maps balls of Z(T ) into balls of Z(T ).

Now, following as done to estimate ‖Nu(t, ·)‖q , we conclude that

‖Pu−Pv‖Z(T ) = ‖Nu−Nv‖Z(T ) � T
2− n

σ

(
1
q0

− 1
q

)

‖u−v‖X(T )

(‖u‖p−1
Z(T )+‖v‖p−1

Z(T )

)
.

Therefore, if 0 < T < 1 is sufficiently small, the existence of a unique local weak
solution follows by contraction argument.

If we fix q0 = 2 in Proposition 4.2, by changing the argument in the proof of
Proposition 4.2, we can relax the bounded from above to p, to obtain in the next
result the existence of a unique local weak solution to (3), that under additional
hypotheses, can be extended globally (see Theorem 2.3 with q̄ = 2):

Proposition 4.3 Let 2 < 2σ < n, 2 ≤ q1 < 2n
n−2σ and 1 ≤ p ≤ 1 + 4σ

n−2σ . Then

for R > 0, there exists 0 < T < 1 such that for all g ∈ L2(Rn), with ‖g‖L2 < R,
there exists a unique local in time weak solution u ∈ L∞([0, T ], L2(Rn)∩Lq1(Rn))

to (3).

Proof If 1 ≤ p < 1 + 2σ
n
, we may apply Proposition 4.2 with q0 = 2, but if

1 + 2σ
n

≤ p ≤ 1 + 4σ
n−2σ , to estimate ‖Nu(t, ·)‖Lq we shall use Lr� − Lq linear

estimates, with r� = 2n
n+2σ + ε ∈ (1, 2), with ε > 0 sufficiently small. Applying

Theorem 2.1 for admissible pairs (q, r�), with q = 2 and q = 2n
n−2σ , it holds

‖Nu(t, ·)‖Lq �
∫ t

0
(t − s)

1− n
σ

(
1
r�

− 1
q

)

‖|u(s, ·)|p‖
Lr� ds �

∫ t

0
(t − s)

1− n
σ

(
1
r�

− 1
q

)

‖u(s, ·)‖p
Lpr�

ds

�
∫ t

0
(t − s)

1− n
σ

(
1
r�

− 1
q

)

ds‖u‖pZ(T ) � T
2− n

σ

(
1
r�

− 1
q

)

‖u‖pZ(T ),

for any u ∈ Z(T ), where we use that 2 ≤ pr� ≤ 2n
n−2σ and 2− n

σ

(
1
r�

− 1
q

)
> 0.

Proof (of Theorem 2.3) Let δ > 0 sufficiently small such that 1 + δ ≤ q̄ < q1
.=

2n
n−2σ and define

X(T ) = {u ∈ L∞([0, T ], Lq̄(Rn) ∩ Lq1(Rn)) : ‖u‖X(T ) < ∞},
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with the norm

‖u‖X(T ) = ess sup
0≤t≤T

(

(1+ t)
n
σ

(
1

r̄+δ
− 1

q̄

)
−1‖u(t, ·)‖Lq̄ + (1+ t)

n
σ

(
1

r̄+δ
− 1

q1

)
−1‖u(t, ·)‖Lq1

)

.

If n > 2σ , we may have that 1 − n
σ

(
1

r̄+δ
− 1

q

)
< −1 for q̄ ≤ q ≤ q1, so we can

use Lr̄+δ − Lq estimates only for t ∈ [0, t/2], whereas for t ∈ [t/2, t] we shall use
Lr

�
ε − Lq estimates, with r

�
ε = 2n

n+2σ + ε ∈ (1, 2), with ε > 0 sufficiently small

such that pr�ε ≤ q1. From now on we write just r� instead r
�
ε . For t ≥ 2 we split the

integral as

‖Nu(t, ·)‖Lq �
∫ t/2
0 (t − s)

1− n
σ

(
1

r̄+δ
− 1

q

)

‖|u(s, ·)|p‖Lr̄+δ ds

+ ∫ t

t/2(t − s)
1− n

σ

(
1
r�

− 1
q

)

‖|u(s, ·)|p‖
Lr� ds.

Using that r̄ < r� and q̄ < pr̄ , we conclude that q̄ < p(r̄ + δ) ≤ pr� ≤ q1 for
δ > 0 sufficiently small. Hence, it follows by interpolation

‖u(s, ·)‖p
Lpr�

� (1+ t)
p

(
1− n

σ

(
1

r̄+δ̄
− 1

pr�

))

‖u‖pX(T ).

and

‖u(s, ·)‖p
Lp(r̄+δ) � (1+ s)−β‖u‖p

X(T )
.

where

β := p

(
n

σ(r̄ + δ)

(

1− 1

p

)

− 1

)

.

Duo to p > n+r̄σ
n−r̄σ

and n+r̄σ
n−r̄σ

be an increasing function on r̄ , there exists a δ̄ > 0

such that p > n+(r̄+δ)σ
n−(r̄+δ)σ

> n+r̄σ
n−r̄σ

for all 0 < δ < δ̄. This implies that β > 1 and

∫ t/2

0
(t − s)

1− n
σ

(
1

r̄+δ
− 1

q

)

‖|u(s, ·)|p‖Lr̄+δ ds � t
1− n

σ

(
1

r̄+δ
− 1

q

) ∫ t/2

0
(1+ s)−βds‖u‖pX(T )

� t
1− n

σ

(
1

r̄+δ− 1
q

)

‖u‖p
X(T )

.
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Now, thanks to 1− n
σ

(
1
r�

− 1
q

)
> −1 we have

∫ t

t/2
(t − s)

1− n
σ

(
1
r�

− 1
q

)

‖|u(s, ·)|p‖
Lr� ds � (1+ t)

p
(
1− n

σ

(
1

r̄+δ − 1
pr�

)) ∫ t

t/2
(t − s)

1− n
σ

(
1
r�

− 1
q

)

ds‖u‖pX(T )

� (1+ t)
p

(
1− n

σ

(
1

r̄+δ − 1
pr�

))
+2− n

σ

(
1
r�

− 1
q

)

‖u‖pX(T ),

Using again that p > n+r̄σ
n−r̄σ

we conclude that

p

(

1− n

σ

(
1

r̄ + δ
− 1

pr�

))

+ 2− n

σ

(
1

r�
− 1

q

)

≤ 1− n

σ

(
1

r̄ + δ
− 1

q

)

and therefore

‖Nu(t, ·)‖Lq � (1+ t)
1− n

σ

(
1

r̄+δ
− 1

q

)

‖u‖pX(T ).

For t ∈ [0, 2], it is sufficient to use Lr� − Lq estimate, namely,

∫ t

0
‖K1(t − s, ·) ∗ |u(s, ·)|p‖Lq ds �

∫ t

0
(t − s)

1− n
σ

(
1
r�

− 1
q

)

‖|u(s, ·)|p‖
Lr� ds

�
∫ t

0
(t − s)

1− n
σ

(
1
r�

− 1
q

)

(1+ s)−βds‖u‖pX(T )

�
∫ t

0
(t − s)

1− n
σ

(
1
r�

− 1
q

)

ds‖u‖pX(T )

� t
2− n

σ

(
1
r�

− 1
q

)

‖u‖pXδ(T ) � ‖u‖pX(T ).

This concludes the proof.
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Appendix

In the Appendix we list results of Harmonic Analysis.
The first ingredient is the celebrated Mikhlin-Hörmander multiplier theorem:

Theorem A.1 Let 1 < p < ∞ and k = max {[n(1/p − 1/2)] + 1, [n/2] + 1}.
Suppose that m ∈ C k(Rn\ {0}) and

∣
∣
∣∂

β
ξ m(ξ)

∣
∣
∣ ≤ C |ξ |−|β|, |β| ≤ k.

Then m ∈ Mp
.= M

p
p .

The next result is about translation invariant operators in Lp = Lp(Rn) spaces
(see [6]).

Theorem A.2 Let f be a measurable function. Moreover, we suppose the following
relation with suitable positive constants C and b ∈ (1,∞):

meas {ξ ∈ R
n : |f (ξ)| ≥ l} ≤ Cl−b.

Then f ∈ M
q
p if 1 < p ≤ 2 ≤ q < ∞ and 1

p
− 1

q
= 1

b
.

In [10] one can find the following result, that is useful tool to derive Lq − Lq

estimates.

Proposition A.1 (Berstein’s inequality) Let N > n
2 . If f,D

Nf ∈ L2, then there
exists a constant C > 0 such that

‖f ‖M1 ≤ C‖f ‖1−
n
2N

L2 ‖DNf ‖
n
2N
L2 .

In [8] one can find the following result, well known as Littman’s lemma, that is a
very useful tool to derive Lr − Lq estimates on the dual line.

Theorem A.3 Let us consider for τ ≥ τ0, τ0 is a large positive number, the
oscillating integral

F−1
η→x

(
e−iτp(η)v(η)

)
.

The amplitude function v = v(η) is supposed to belong to C∞
0 (Rn) with support

in {η ∈ R
n : |η| ∈ [ 12 , 2]}. The function p = p(η) is C∞ in a neighborhood of

the support of v. Moreover, the rank of the Hessian Hp(η) is supposed to satisfy
the assumption rankHp(η) ≥ k on the support of v. Then the following L∞ − L∞
estimate holds:

∥
∥F−1

η→x

(
e−iτp(η)v(η)

)‖L∞(Rn
x)

≤ C(1+ τ )−
k
2

∑

|α|≤L

‖Dα
η v(η)‖L∞(Rn

η)
,

where L is a suitable entire number.
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The next result about singular Fourier multipliers is due to Miyachi (see Theo-
rem 4.1 in [7]):

Theorem A.4 Let us consider Fourier multiplier

ma,b(ξ) = (1− χ(ξ))ei|ξ |a

|ξ |b , ξ ∈ R
n, a > 0, a �= 1, b ∈ R,

where χ is as in Notation 2. If 1 < p ≤ q , then m ∈ M
q
p if, and only if, 1

p
+ 1

q
≤ 1

and 1−a
p

− 1
q
≤ b

n
− a

2 or 1
p
+ 1

q
≥ 1 and 1

p
− 1−a

q
≤ b

n
+ a

2 . Moreover,m ∈ M
q
1 if,

and only if, 1− 1−a
q

< b
n
+ a

2 .
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Blow-Up or Global Existence
for the Fractional Ginzburg-Landau
Equation in Multi-dimensional Case

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, and Tohru Ozawa

Abstract The aim of this work is to give a complete picture concerning the
asymptotic behaviour of the solutions to fractional Ginzburg-Landau equation. In
previous works, we have shown global well-posedness for the past interval in the
case where spatial dimension is less than or equal to 3. Moreover, we have also
shown blow-up of solutions for the future interval in one dimensional case. In this
work, we summarise the asymptotic behaviour in the case where spatial dimension
is less than or equal to 3 by proving blow-up of solutions for a future time interval
in multidimensional case. The result is obtained via ODE argument by exploiting a
new weighted commutator estimate.
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1 Introduction

In this paper, we consider the following complex Ginzburg – Landau (CGL)
equation in a future time interval

{
i∂tu+ Du = i|u|p−1u, t ∈ [0, T ), T > 0, x ∈ R

n,

u(0, x) = u0(x), x ∈ R
n,

(1)

where u is a complex valued unknown function, p > 1, and D = (−Δ)1/2. The
choice of D is closely connected with the recent attempts to develop fractional
quantum mechanical approach (see [23]).

We shall observe some new interesting phenomena. On one hand, if we take a
future time interval as in (1), then we shall obtain a blow-up result. If, instead, we
take past time interval (−T , 0], T > 0 in the place of the future time interval, then
global small data existence for (1) can be proved and therefore we have a similarity
to a diffusion type process.

Before giving the main results on the local and global well-posedness for (1), we
introduce some notations. For a Banach space X and 1 ≤ p ≤ ∞ let Lp(Rn;X)

be a X-valued Lebesgue space of p-th power. We abbreviateLp(Rn;C) as Lp(Rn).
For f, g ∈ L2(Rn), we define the inner product as

〈f, g〉L2(Rn) =
∫

Rn

f (x)g(x)dx.

For s ∈ R, let Hs(Rn) be the usual inhomogeneous Sobolev space defined as
Hs(Rn) = (1 − Δ)−s/2L2(Rn). Let Ḣ s(Rn) be the usual homogeneous Sobolev
space defined as Ḣ s(Rn) = (−Δ)−s/2L2(Rn). Hs

rad(R
n) is the restriction to radial

functions of Hs(Rn). Lip refers to space of Lipschitz functions on euclidean space.
For f, g : A ⊆ R

n → [0,∞), f � g means that there exists C > 0 such that
for any a ∈ A f (a) ≤ Cg(a). Given two Banach spaces X,Y , Y ↪→ X means
that Y ⊂ X with continuous embedding. Moreover, we say that a Cauchy problem
is locally well-posed forward in time in X, if for any X-valued initial data, there
exists T > 0 and a Banach space Y ↪→ C([0, T ];X) such that there exists a unique
solution to the Cauchy problem in Y and ‖un − u‖Y → 0 as ‖u0,n − u0‖X → 0,
where un and u are solutions for the Cauchy problem for initial data u0 and u0,n,
respectively (the last property goes under the name of continuous dependence on the
initial data). We also say that a Cauchy problem is globally well-posed forward in
time in X if the Cauchy problem is locally well-posed for any T > 0. Moreover, we
also say that a Cauchy problem is globally well-posed in X with sufficiently small
data, if we have the property above for sufficiently small data with respect to the
X-norm.

Let us notice that Eq. (1) is invariant under the scale transformation

uλ(t, x) = λ1/(p−1)u(λt, λx)
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with λ > 0. Then

‖u0,λ‖Ḣ s (Rn) = λ1/(p−1)+s−n/2‖u0‖Ḣ s (Rn)

and with

s = sn,p := n/2 − 1/(p − 1) < n/2,

Ḣ s norm of initial data is also invariant, for this sn,p is called scale critical exponent.
We also call pn,s = 1+ 2/(n− 2s) the Hs(Rn) scaling critical power. For any s, in
the scaling subcritical case where p < pn,s or s > sn,p, (1) is expected to have local
solution for anyHs(Rn) initial data on the analogy of scaling invariant Schrödinger
equation. For instance, we refer the reader to [4–6, 16, 17]. However, with power
type nonlinearity without gauge invariance, semirelativistic equations could be not
locally well-posed even in scaling subcritical case, see [10].

Here we recall local well-posedness results. It is worth mentioning that Borgna
and Rial [2] showed that in one dimensional case, CGL equation with cubic
nonlinearity is locally well-posed in Hs(R) with s > 1/2. They constructed local
solutions by a contraction argument based on the unitarity of the propagator and
the Sobolev embedding Hs(R) ↪→ L∞(R). Similarly, local solutions may be
constructed in the case where uniform control of solutions holds, namely, inHs(Rn)

with s > n/2. On the other hand, for fixed p, sn,p < n/2; therefore, the local well-
posedness of (1) is expected in wider Sobolev spaces. Indeed, we have the following
results that can be established using the approach in [12]:

Proposition 1 ([12]) Let n = 2. For p > 1 and 3/4 < s < p < p2,s , the Cauchy
problem (1) is locally well-posed in Hs(R2).

Proposition 2 ([12]) Let n ≥ 3 and u0 be radial. For 1 < p < pn,1 = 1 + 2
n−2 ,

the Cauchy problem (1) is locally well-posed in H 1
rad(R

n).

Proposition 3 ([12]) Let n = 3 and u0 be radial. For p = p3,1 = 3, the Cauchy
problem (1) is locally well-posed in H 1

rad(R
3) with sufficiently small H 1

rad(R
3) data.

Remark 1 In Proposition 3, since the local existence result is based on a priori
estimate of type

‖u‖X1
rad(0,T ) ≤ C0 + C1‖u‖4X1

rad(0,T )

with C1 which is independent of T , we restrict well-posedness to the small initial
data.

We recall that in three dimensional case, p = p3,1 = 3 is a critical value in
view of the result in [18]. However, the result in [18] treats non-gauge invariant
nonlinearities having constant sign, for which the test function method works. The
question of the existence of local and global solutions for n ≥ 3 and p ≥ 1+2/(n−
2) seems, at the best of our knowledge, still open.
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Proposition 1 may be justified by a Strichartz estimate introduced by Nakamura
and Ozawa in [26] or Ginibre and Velo [14]. We remark that they introduced
the estimate to study Klein-Gordon equation and it was sufficient to consider
Klein-Gordon equation in scaling subcritical case (see Lemma 1 below). On the
other hand, for (1), local solutions cannot be constructed based on their Strichartz
estimates in general subcritical case. Therefore, in order to consider the well-
posedness in H 1(Rn) for n ≥ 3, we put radial assumption and apply another
Strichartz estimate introduced in [1] by the third author, Bellazzini and Visciglia.
For details, see Sect. 2.

Next, we review the known blow-up result. In [11], the authors studied the blow-
up of solutions to (1) in one dimensional case, by an ordinary differential equation
(ODE) argument. In order to review their argument, we define a function space
hL2(Rn) by

hL2(Rn) = {f : mesurable and ‖1
h
f ‖L2(Rn) < ∞},

where h is a mesurable function. In their argument, an ordinary differential
inequality (ODI) for the hL2(R) norm of solutions with some h are shown. In
particular, we have the following:

Proposition 4 Let h be a Lipschitz function satisfying 1/h ∈ L∞(R) ∩ L2(R) and

∥
∥
∥
∥

1

h(·)
∫

R

〈· − y〉−2h(y)f (y)dy

∥
∥
∥
∥
L2(R)

≤ C‖f ‖L2(R). (2)

Let u0 ∈ L2(R) satisfy

‖1
h
u0‖L2(R) ≥ C

1
p−1
1 ‖1

h
‖L2(R), (3)

whereC1 = ‖1/h·[D,h]‖L2(R)→L2(R). If there is a solution u ∈ C([0, T ); hL2(R))

to (1), then

‖ 1
h
u(t)‖L2(R) ≥ e−C1t/2

(

‖ 1
h
u0‖−p+1

L2(R)
+ C−1

1 ‖ 1
h
‖−p+1
L2(R)

{
e−C1(p−1)t/2 − 1

})− 1
p−1

.

(4)

Therefore, the lifespan is estimated by

T ≤ − 2

p − 1
C−1
1 log

(

1− C1‖1
h
‖p−1
L2(R)

‖1
h
u0‖−p+1

L2(R)

)

.

Moreover, by scaling argument, the following statement is shown.
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Corollary 1 ([11, Corollary 1]) If p < 3, then any solutions to (1) with non trivial
L2(R) initial data cannot stay in L2(R) globally.

Remark 2 In the Corollary above, p < 3 stands for the condition in one dimen-
sional case of the Fujita exponent generally defined in R

n by pF := 1 + 2/n (see
also Corollary 2). Then the assumption of Corollary 1 is rewritten by p < pF .
Under this assumption, by scaling h, (3) holds for any non trivial L2(R) initial data
u0.

Remark 3 Condition (2) was required to guarantee the commutator estimate:

‖[D,h]f ‖L2(R) ≤ C‖f ‖L2(R), ∀f ∈ L2(R). (5)

We remark that Lenzmann and Schikorra [24, Theorem 6.1] showed that (5) holds
for any Lipschitz function h, therefore, the assumption (2) can be omitted.

The commutator estimate (5) implies blow-up for solutions to (1) in the following
manner. Let v(t, x) = u(t, x)/h(x), where u is a solution to (1). Then, a straight
computation shows that v satisfies

i∂tv + Dv + 1

h
[D,h]v = i

1

h
∂tu+ 1

h
Du

= i
1

h
|u|p−1u

= i|h|p−1|v|p−1v. (6)

Therefore,

d

dt
‖v(t)‖2

L2(R)
= 2Re〈v(t), ∂t v(t)〉L2(R)

= −2Im〈v(t), i∂t v(t)〉L2(R)

= −2Im〈v(t),−Dv(t) − 1

h
[D, h]v(t) + i|h|p−1|v(t)|p−1v(t)〉L2(R)

= 2‖|h|(p−1)/(p+1)v(t)‖p+1
Lp+1(R)

+ 2Im〈v(t), 1
h
[D, h]v(t)〉L2(R).

(7)

By the Hölder inequality,

‖v(t)‖L2(R) ≤ ‖1
h
‖(p−1)/(p+1)
L2(R)

‖|h|(p−1)/(p+1)v(t)‖Lp+1(R),
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which together with (7) implies

d

dt
‖v(t)‖2

L2(R)
≥ ‖1

h
‖−p+1
L2(R)

‖v(t)‖p+1
L2(R)

− ‖1
h
[D,h]‖L2(R)→L2(R)‖v(t)‖2L2(R)

.

(8)

Estimate (8) and Lemma 7 in Sect. 3 imply that if (3) holds and

‖1
h

· [D,h]‖L2(R)→L2(R) < ∞, (9)

then ‖v(t)‖L2(R) = ‖u(t)/h‖L2(R) blows up at a finite time. Therefore, if there
exists 1/h ∈ L2(R) satisfying (9), then the argument above works and blow-up of
solutions to (1) is shown. In [11], (9) was shown by the boundedness assumption
of 1/h and (5). We remark that (5) holds in more general situation; for example, in
multidimensional case. We also remark that in [9] a generalization of (5) taking the
form

‖[(−A )1/2, h]‖L2(Rn)→L2(Rn) ≤ C‖h‖Ḃ1∞,1

is shown, where Ḃ1∞,1 is the standard homogeneous Besov space and

A := −∇ · A∇ + V.

Here A is a smooth positive-definite n × n matrix and the real-valued potential V
satisfies some weak integrability conditions. On the other hand, h ∈ Lip is a natural
condition for (5). However, there exists some Lipschitz function h satisfying 1/h ∈
L2(Rn) only when n = 1. This means, we cannot consider blow-up phenomena in
multi dimensional case based on (5).

In this paper, we show (9) with polynomial weights which are not Lipschitz in
general. In particular, we show the following estimate:

Proposition 5 Let n ≥ 1 and n/2 < q < n/2 + 1. Then 〈·〉−q [D, 〈·〉q ] is bounded
operator on L2(Rn), where 〈·〉 = (1+ |x|2)1/2.
Remark 4 Obviously, if n ≥ 1 and n/2 < q < n/2 + 1, then 〈·〉−q ∈ L2(Rn).
Moreover, only when n = 1, q can be 1.

Then, we have the following blow-up statement:

Proposition 6 Let n ≥ 1 and n/2 < q < n/2+ 1. Let u0 ∈ 〈·〉qL2(Rn) satisfy

‖〈x〉−qu0‖L2(Rn) ≥ C
1

p−1
2 ‖〈x〉−q‖L2(Rn), (10)

where

C2 = ‖〈·〉−q [D, 〈·〉q ]‖L2(Rn)→L2(Rn).
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If there is a solution u ∈ C([0, T ); 〈·〉qL2(Rn)) to (1), then

‖〈·〉−qu(t)‖L2(Rn) (11)

≥ e−C2t/2
(
‖〈·〉−qu0‖−p+1

L2(Rn)
+ C−1

2 ‖〈·〉−q‖−p+1
L2(Rn)

{
e−(p−1)C2t/2 − 1

})− 1
p−1

.

Therefore, the lifespan is estimated by

T ≤ − 2

p − 1
C−1
2 log

(
1− C2‖〈·〉−q‖p−1

L2(Rn)
‖〈·〉−qu0‖−p+1

L2(Rn)

)
. (12)

Corollary 2 Let n ≥ 1. If p < pF := 1 + 2/n, then any solutions to (1) with non
trivial L2(Rn) initial data cannot exist globally.

Remark 5 As Remark 2, under the condition, p < pF , by scaling h, (10) holds for
any non trivial L2(Rn) data.

In [11], so as to show (5), higher frequency part ofD is handled by the Coifman-
Meyer estimate and lower frequency part is estimated by (2). We remark that (5)
is regarded as a Kato-Ponce inequality. For related subjects, we refer the reader to
[15, 19, 20, 25] and we remark that Fourier multiplier argument plays a critical role
in these references. On the other hand, it seems not easy to obtain (9) based on a
Fourier multiplier argument because of the weight function. Therefore, we show
Proposition 5 by using the following representation of the commutator:

([D, 〈·〉q ]f )(x) = C · P.V.

∫

Rn

(〈x〉q − 〈x + y〉q)f (x + y)

|y|n+1 dy, (13)

where P.V . stands for Principal Value (for detail, we refer the reader to [8]).
Combining (13) and the Calderón-Zygmund theory, we show (9) with non-Lipschitz
weight functions.

Our next step is to study the global existence result for negative times of the
following Cauchy problem:

{
i∂tu+ Du = i|u|p−1u, t ∈ (−T , 0], T > 0, x ∈ R

n,

u(0, x) = u0(x), x ∈ R
n.

(14)

Making the change of variables t → −t , we reduce this problem to the future time
interval for the Cauchy problem

{
i∂tu− Du = −i|u|p−1u, t ∈ [0, T ), T > 0, x ∈ R

n,

u(0, x) = u0(x), x ∈ R
n.

(15)
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At least formally, (15) may be rewritten in the following integral equation:

u(t) = U(−t)u0 −
∫ t

0
U(−t + t ′)|u(t ′)|p−1u(t ′)dt ′, (16)

where U(t) = eitD.
Then, Propositions 1, 2, and 3 are valid for (15). Moreover, for (16), we can

obtain the following a priori estimates that we include for completeness but detailed
proofs can be found in [12].

Proposition 7 ([12]) Let n ∈ N and p > 1. Let u0 ∈ L2(Rn) and T > 0. Let u ∈
L∞(0, T ;L2(Rn))∩Lp(0, T ;L2p(Rn)) be a solution to the integral equation (16)
for the initial data u0. Then, for any t1, t2 with 0 < t1 < t2 < T ,

‖u(t2)‖2L2(Rn)
+ 2‖u‖p+1

Lp+1(t1,t2;Lp+1(Rn))
= ‖u(t1)‖2L2(Rn)

.

Proposition 8 ([12]) Let n ∈ N and p > 1. Let u0 ∈ H 1(Rn) and T > 0.
Let u ∈ L∞(0, T ;H 1(Rn)) ∩ Lp−1(0, T ;L∞(Rn)) be a solution to the integral
equation (16) for the initial data u0. Then, for any t1, t2 with 0 ≤ t1 < t2 ≤ T ,

‖∇u(t2)‖2L2(Rn)
+ 2‖|u| p−1

2 ∇u‖2
L2(t1,t2;L2(Rn))

+ p − 1

2
‖|u| p−3

2 ∇|u|2‖2
L2(t1,t2;L2(Rn))

= ‖∇u(t1)‖2L2(Rn)
. (17)

Proposition 9 ([12]) Let n = 1, 2, p > 1, n/2 < s < min{2, p}, and T > 0.
Let u0 ∈ Hs(Rn) and u ∈ L∞(0, T ;Hs(Rn)) ∩ L2(0, T ;L∞(Rn)) be a solution
to (16) for the initial data u0. Then for any t1, t2 with 0 < t1 < t2 < T ,

‖u(t2)‖2Ḣ s (Rn)
≤ ‖u(t1)‖2Ḣ s (Rn)

+ C

∫ t2

t1

‖u(t)‖p−1
L∞(Rn)‖u(t)‖2Ḣ s (Rn)

dt.

Proposition 10 ([12]) Let 1 ≤ n ≤ 3, u0 ∈ H 2(Rn) and T > 0. Let u ∈
C((0, T );H 2(Rn) ∩ L∞(Rn)) be a solution to the integral equation (16) for the
initial data u0. Then, for any t1, t2 with 0 < t1 < t2 < T ,

‖u(t2)‖2Ḣ 2(Rn)
+ 2

n∑

j,k=1

∫ t2

t1

‖u(t)∂j ∂ku(t)‖2L2(Rn)
dt

≤ ‖u(t1)‖2Ḣ 2(Rn)
+ 2n2(n + 1)

∫ t2

t1

‖u(t)‖4−n

Ḣ 1(Rn)
‖u(t)‖n

Ḣ 2(Rn)
dt. (18)
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Therefore, for (14) we have the following:

Proposition 11 Under the conditions of Propositions 1, 2, and 3, (14) is globally
well-posed.

This paper is composed as follows. In Sect. 2, we show local well-posedness
of (1) by means of Strichartz estimates of [1, 14, 26]. In Sect. 3, blow-up for (1) is
shown with a weighted commutator estimate. In Sect. 4, a priori estimates for (14)
are shown by a direct approach leading to the global well-posedness results.

2 Local Well-Posedness of (1)

This section is devoted to the proof of the local well-posedness for the Cauchy
problem of (1), where u0(x) = u(0, x) is considered as initial datum. The proof is
essentially the same as [12] but for the reader’s convenience, we give a proof for
Propositions 1, 2, and 3. Here we consider the corresponding integral equation:

u(t) = Φ(u)(t) = U(t)u0 +
∫ t

0
U(t − t ′)|u(t ′)|p−1u(t ′)dt ′. (19)

where U(t) = eitD.

2.1 Two Dimensional Case

In two dimensional case, the local well-posedness may be obtained by the following
Strichartz estimates:

Lemma 1 ([26, Lemma 2.1], [14, Remark 3.2]) Let (q1, r1) and (q2, r2) satisfy

1

rj
= 1

2
− 2

qj
, 2 ≤ rj ≤ ∞, 4 ≤ qj ≤ ∞

for j = 1, 2. Then for s ∈ R,

‖U(t)φ‖
Lq1 (0,T ;Bs− 3

q1
r1 (R2))

� ‖φ‖Hs(R2),

∥
∥
∥
∥

∫ t

0
U(t − t ′)h(t ′)dt ′

∥
∥
∥
∥
Lq1 (0,T ;Bs− 3

q1
r1 (R2))

� ‖h‖
L

q′2 (0,T ;Bs+ 3
q2

r′2
(R2))

,

where Bs
p(R

2) = Bs
p,2(R

2) is the usual inhomogeneous Besov space.
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Lemma 2 ([12, Lemma 3.2]) Let r > 2, and T > 0. If

s >
3

4
+ 1

2r
,

then B
s− 3

2 (
1
2− 1

r
)

r (R2) ↪→ L∞(R2).

We can now proceed with the proof of Proposition 1.

Proof (Proof of Proposition 1) At first we fix 3/4 < s < p < p2,s . Let (q1, r1)
satisfy the conditions of Lemma 1, Lemma 2 and q1 > p − 1. We remark
that such a pair exists under the assumption s < p < p2,s . Let Xs(0, T ) =
L∞(0, T ;Hs(R2)) ∩ Lq1(0, T ;Bs−3/q1

r1 (R2)). Then, for a fixed T ,

‖Φ(u)‖Xs(0,T ) ≤ ‖u0‖Hs(R2) + C‖|u|p−1u‖L1(0,T ;Hs(R2))

≤ ‖u0‖Hs(R2) + CT 1−(p−1)/q1‖u‖pXs(0,T ), (20)

and

‖Φ(u) − Φ(v)‖Xs (0,T )

≤ C‖|u|p−1u− |v|p−1v‖L1(0,T ;Hs(R2))

≤ CT 1−(p−1)/q1(‖u‖Xs(0,T ) + ‖v‖Xs (0,T ))
p−1‖u − v‖Xs (0,T )

+ CT 1−(p−1)/q1(‖u‖Xs(0,T ) + ‖v‖Xs (0,T ))
max(1,p−1)‖u − v‖min{1,p−1}

Xs (0,T ) .

This means that if T is sufficiently small, then Φ is a map from

BXs(0,T )(2‖u0‖Hs(R2)) :=
{
f ∈ Xs(0, T ) | ‖f ‖Xs(0,T ) ≤ 2‖u0‖Hs(R2)

}
.

into itself. Moreover, if p ≥ 2, Φ is a contraction map in Xs(0, T ). If p < 2, Φ
may not be a contraction map on Xs(0, T ) for any T > 0. On the other hand, it is
not difficult to see that

‖Φ(u) − Φ(v)‖L∞(0,T ;L2(R2))

� T 1−(p−1)/q1(‖u‖Xs(0,T ) + ‖v‖Xs(0,T ))
p−1‖u − v‖L∞(0,T ;L2(R2)). (21)

Therefore (20) and (21) imply that if u1 ∈ BXs(0,T )(2‖u0‖Hs(R2)) and uk =
Φ(uk−1) for k ≥ 2, then there exists u∗ = limk→∞ uk in L∞(0, T ;L2(R2)).
Since Φ(uk) → Φ(u∗) in L∞(0, T ;L2(R2)) as k → ∞, u∗ is a solution of (19).
Moreover, since Xs(0, T ) ↪→ L∞(0, T ;Hs(R2)), u∗ is also in L∞(0, T ;Hs(R2)),
which and (20) imply

u∗ ∈ Lq1(0, T ;Bs− 3
q1

r1 (R2)).
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If s > 1, by the Gagliardo-Nirenberg inequality, for some 0 < θ < 1,

‖u − v‖L∞(0,T ;L∞(R2)) � ‖u − v‖θ
L∞(0,T ;L2(R2))

‖u − v‖1−θ

L∞(0,T ;Hs(R2))

and therefore the solution map depends continuously on the initial data in Hs(R2).
In the case where s ≤ 1, by (21), the solution map depends continuously on the
initial data in L2(R2). We define s3, s4 > 0 so that they satisfy the following:

max

{
3

4
+ 1

2r1
, s4 − 3

4
(p − 1)

}

< s3 < s4 < min

{

s, s3 + 3

4

}

,

r3 = 3

2

(

s3 − s4 + 3

4

)−1

,

and q3 = 3
s4−s3

, where (q3, r3) satisfy the condition of Lemma 1. Let u and v be
solutions of (1) for initial data u0 and v0, respectively. Then by Lemma 1,

‖u− v‖
Lq1 (0,T ;Bs3− 3

q1
r1 (R2))

≤ ‖u0 − v0‖Hs3 (R2) + C‖|u|p−1u − |v|p−1v‖
L

q′3 (0,T ;Bs4
r′3

(R2))
. (22)

For zj ∈ C with j = 1, 2, 3, 4, with w1 = z2 − z1 and w2 = z4 − z3,

|z4|p−1z4 − |z3|p−1z3 − |z2|p−1z2 + |z1|p−1z1

= p + 1

2

∫ 1

0
|z3 + θw2|p−1dθw2 − p + 1

2

∫ 1

0
|z1 + θw1|p−1dθw1

+ p − 1

2

∫ 1

0
|z3 + θw2|p−3(z3 + θw2)

2dθw2

− p − 1

2

∫ 1

0
|z1 + θw1|p−3(z1 + θw1)

2dθw1.

Then a direct computation implies that

∣
∣|z4|p−1z4 − |z3|p−1z3 − |z2|p−1z2 + |z1|p−1z1

∣
∣

� (|z3|p−1 + |z4|p−1)|w2 − w1|

+ p + 1

p
|w1||z3 − z1|p−1 + 1

p
|w1||z4 − z2|p−1 + (|z3|p−1 + |z4|p−1)|w2 − w1|

+ |w1||z3 − z1|p−1 + |w1||z4 − z2|p−1.
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Therefore,

∥
∥
∥|u(t, · + h)|p−1u(t, · + h)− |v(t, · + h)|p−1v(t, · + h)

−|u(t)|p−1u(t) + |v(t)|p−1v(t)

∥
∥
∥
L

r′3 (R2)

=
∥
∥
∥|u(t, · + h)|p−1u(t, · + h)− |u(t)|p−1u(t)

− |v(t, · + h)|p−1v(t, · + h) + |v(t)|p−1v(t)

∥
∥
∥
L

r′3 (R2)

≤ 4‖u(t)‖p−1

L

2r3(p−1)
r3−2 (R2)

‖u(t, · + h) − v(t, · + h)− u(t) + v(t)‖L2(R2)

+ 2(p + 2)

p
‖v(t, · + h)− v(t)‖L2(R2)‖u(t) − v(t)‖p−1

L

2r3(p−1)
r3−2 (R2)

,

and this means

‖|u|p−1u− |v|p−1v‖
L

q′3 (0,T ;Bs4
r′3

(R2))

� ‖‖u‖p−1

L

2r3(p−1)
r3−2 (R2)

‖u − v‖Hs4 (R2) + ‖v‖Hs4 (R2)‖u − v‖p−1

L

2r3(p−1)
r3−2 (R2)

‖
L

q′3 (0,T )

≤ ‖‖u‖p−1− r3−2
r3

L∞(R2)
‖u‖

r3−2
r3

L2(R2)
‖u − v‖Hs4 (R2)‖Lq′3 (0,T )

+ ‖‖v‖Hs4 (R2)‖u− v‖p−1− r3−2
r3

L∞(R2)
‖u− v‖

r3−2
r3

L2(R2)
‖
L

q′3 (0,T )

≤ ‖u‖p−1− r3−2
r3

L
q′3(p−1− r3−2

r3
)
(0,T ;L∞(R2))

‖u‖
r3−2
r3

L∞(0,T ;L2(R2))
‖u− v‖L∞(0,T ;Hs4 (R2))

+ ‖v‖L∞(0,T ;Hs4 (R2))‖u − v‖p−1− r3−2
r3

L
q′3(p−1− r3−2

r3
)
(0,T ;L∞(R2))

‖u − v‖
r3−2
r3

L∞(0,T ;L2(R2))

≤ ‖u‖p−1− r3−2
r3

Lq1 (0,T ;L∞(R2))
‖u‖

r3−2
r3

L∞(0,T ;L2(R2))
‖u− v‖L∞(0,T ;Hs4 (R2))

+ ‖v‖L∞(0,T ;Hs4 (R2))‖u − v‖p−1− r3−2
r3

Lq1 (0,T ;L∞(R2))
‖u − v‖

r3−2
r3

L∞(0,T ;L2(R2))
,

where q1, q3 > 4 > q ′
3 > q ′

3

(
p − 1− r3−2

r3

)
. This and (22) imply that

u → v in Lq1(0, T ;Bs3− 3
q1

r1 (R2)) as u0 → v0 in Hs(R2) because u → v in
(L∞(0, T ;L2(R2))) and u, v are uniformly bounded in (L∞(0, T ;Hs(R2))) as
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u0 → v0 in Hs(R2). Moreover,

‖u − v‖L∞(0,T ;Hs(R2))

� ‖u0 − v0‖Hs(R2) + (‖u0‖Hs(R2) + ‖v0‖Hs(R2))‖u − v‖p−1
Lp−1(0,T ;L∞(R2))

� ‖u0 − v0‖Hs(R2) + (‖u0‖Hs(R2) + ‖v0‖Hs(R2))‖u − v‖p−1

Lq1 (0,T ;Bs3− 3
q1

r1 (R2))

.

Therefore, the solution map is also continuously dependent in L∞(0, T ;Hs(R2)).

2.2 The Case n ≥ 3: Local H 1 Existence Result

In the case where n ≥ 3, the Strichartz estimate Lemma 1 doesn’t seem sufficient
to obtain a uniform control of solutions in the H 1(R3) setting. So here, we consider
radial data and use the following Strauss lemma.

Lemma 3 ([28, Theorems 1,2], [7, Proposition 1]) Let n ≥ 2 and let 1/2 < s <

n/2. Then for a radial function f

‖| · | n2−sf ‖L∞(Rn) � ‖f ‖Ḣ s
rad(R

n).

Since solutions are not uniformly controlled at the origin by the Strauss lemma
above, we apply the following weighted Strichartz estimate:

Lemma 4 ([1, Propositions 2.2 and 2.3]) Let n ∈ N. Let δ > 0 and [x]δ =
|x|1−δ + |x|1+δ. The for any q1 ∈ [2,∞] and q2 ∈ (2,∞],

‖[x]−1/q1
δ U(t)f ‖Lq1 (R;L2(Rn)) � ‖f ‖L2(Rn),

∥
∥
∥
∥[x]−1/q1

δ

∫ t

0
U(t − t ′)F (t ′)dt ′

∥
∥
∥
∥
Lq1 (0,T ;L2(Rn))

� ‖[x]1/q2δ F‖
L

q′2 (0,T ;L2(Rn))
.

We can now prove Proposition 2.

Proof (Proof of Proposition 2) By using the uniform H 1(Rn) control obtained
in (17), we reduce the proof to the local well-posedness in H 1(Rn). Let δ > 0,
1/2 < s < 1, and 2 < q1, q2 < ∞ satisfy

−(p − 1)
(n

2
− s

)
+ 1− δ

q2
= −1− δ

q1
. (23)
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We remark that there exist δ, q1, q2, s if 1 < p < 1+ 2/(n − 2) since,

(p − 1)
(n

2
− s

)
< 1 -⇒ p < 1+ 2

n− 2s
< 1+ 2

n − 2
.

We define the norm Y 1(T ) as

‖u‖Y 1(T ) = ‖u‖L∞(0,T ;H 1
rad(R

n))

+
∥
∥
∥[x]−1/q1

δ u

∥
∥
∥
Lq1 (0,T ;L2

rad(R
n))

+
∥
∥
∥[x]−1/q1

δ ∇u

∥
∥
∥
Lq1 (0,T ;L2

rad(R
n))

.

Let ψ ∈ S (Rn; [0, 1]) be radial and satisfy

ψ(x) =
{
1 if |x| ≤ 1,

0 if |x| ≥ 2.
(24)

Then by Lemmas 3 and 4 and (23),

‖Φ(u)‖Y 1(T )

� ‖u0‖H 1
rad(R

n) +
∥
∥
∥
∥

∫ t

0
U(t − t ′)

(
ψ|u(t ′)|p−1u(t ′)

)
dt ′

∥
∥
∥
∥
Y 1(T )

+
∥
∥
∥
∥

∫ t

0
U(t − t ′)

(
(1− ψ)|u(t ′)|p−1u(t ′)

)
dt ′

∥
∥
∥
∥
Y 1(T )

� ‖u0‖H 1
rad(R

n)

+ ‖|x|−(p−1)( n
2−s)+ 1−δ

q2 ||x| n2−su|p−1u‖
L

q′2 (0,T ;L2
rad(|x|≤2))

+ ‖|x|−(p−1)( n
2−s)+ 1−δ

q2 ||x| n2−su|p−1∇u‖
L

q′2 (0,T ;L2
rad(|x|≤2))

+ ‖|u|p−1u‖L1(0,T ;L2
rad(|x|>1)) + ‖∇(|u|p−1u)‖L1(0,T ;L2

rad(|x|>1))

� ‖u0‖H 1
rad(R

n) + T
1− 1

q1
− 1

q2 ‖u‖p
Y 1(T )

and therefore for some T and R, Φ is a map from BY 1(T )(R) into itself. Moreover,

‖Φ(u) − Φ(v)‖Y 1(T )

� ‖|x|− 1−δ
q1 (||x| n2−su|p−1 − ||x| n2−sv|p−1)(|∇u| + |u|)‖

L
q′2 (0,T ;L2

rad(|x|≤2))

+ ‖|x|− 1−δ
q1 ||x| n2−sv|p−1(|∇(u− v)| + |u− v|)‖

L
q′2 (0,T ;L2

rad(|x|≤2))
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+ ‖(||x| n2−su|p−1 − ||x| n2−sv|p−1)|x|− 1+δ
q1 (|∇u| + |u|)‖L1(0,T ;L2

rad(|x|>1))

+ ‖||x| n2−sv|p−1|x|− 1+δ
q1 (|∇(u− v)| + |u− v|)‖L1(0,T ;L2

rad(|x|>1)). (25)

Then for p ≥ 2, Φ is a contraction map on BY 1(T )(R). Similarly, for 1 < p < 2,
we define the auxiliary norm Y 0(T ) as

‖u‖Y 0(T ) := ‖u‖L∞(0,T ;L2
rad(R

n)) + ‖[x]−1/q1
δ u‖Lq1 (0,T ;L2

rad(R
n)).

Then for 1 < p < 2,

‖(Φ(u)− Φ(v))‖Y 0(T )

�
∥
∥
∥
∥[x]−1/q1

δ

(∣
∣
∣|x| n2−sv

∣
∣
∣ +

∣
∣
∣|x| n2−sv

∣
∣
∣
)p−1 |u− v|

∥
∥
∥
∥
L

q′2 (0,T ;L2
rad(|x|≤2))

+
∥
∥
∥
∥

(∣
∣
∣|x| n2−sv

∣
∣
∣ +

∣
∣
∣|x| n2−sv

∣
∣
∣
)p−1 |u− v|

∥
∥
∥
∥
L1(0,T ;L2

rad(|x|>1))

� T
1− 1

q1
− 1

q2 (‖u‖Y 1(T ) + ‖v‖Y 1(T ))
p−1‖u− v‖Y 0(T ).

ThereforeΦ is a contractionmap on Y 0(T ) for some T andR, which implies that (1)
posses a unique solution in Y 1(T ). Moreover, by Lemma 3 and (25), with some
0 < θ < 1, for solutions u and v of (4) for initial data u0 and v0, respectively,

‖u − v‖Y 1(T )

� ‖u0 − v0‖H 1
rad(R

n) + T
1− 1

q1
− 1

q2 (‖u‖Y 1(T ) + ‖v‖Y 1(T ))
p−1‖u − v‖Y 1(T )

+ T
1− 1

q1
− 1

q2 (‖u‖Y 1(T ) + ‖v‖Y 1(T ))

∥
∥
∥|x| n2−s(u − v)

∥
∥
∥
p−1

L∞(0,T ;L∞
rad(R

n))

� ‖u0 − v0‖H 1
rad(R

n) + T
1− 1

q1
− 1

q2 (‖u‖Y 1(T ) + ‖v‖Y 1(T ))
p−1‖u − v‖Y 1(T )

+ T (‖u‖Y 1(T ) + ‖v‖Y 1(T )) ‖u− v‖p−1
Y 1(T )

and therefore ‖u − v‖Y 1(T ) → 0 as ‖u0 − v0‖H 1
rad(R

n) → 0.
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2.3 Three Dimensional Case, Small H 1 Data Solutions
for p = 3

In the three dimensional scaling critical case, the weighted Strichartz estimate
Lemma 4 doesn’t seem sufficient to control solutions uniformly. So here, we
transform (1) into the corresponding wave equation.

The Cauchy problem (1) with initial data u(0) = u0 is rewritten as the following:

�u = i(−i∂t + D)|u|p−1u

= i
p + 1

2
|u|p−1(Du − i|u|p−1u)

− i
p − 1

2
|u|p−3u2(Du − i|u|p−1u)+ iD(|u|p−1u)

= i

(

D(|u|p−1u) + p + 1

2
|u|p−1Du − p − 1

2
|u|p−3u2Du

)

+ p|u|2p−2u

=: Fp(u).

Then the corresponding integral equation is the following:

u(t) = cos(tD)u0 + sin(tD)

D
(iDu0 + |u0|p−1u0) (26)

+
∫ t

0

sin((t − t ′)D)

D
Fp(u)(t

′)dt ′.

For any radially symmetric function f , we define f̃ as f̃ (|x|) = f (x). Then for any
radial data, (26) is rewritten as

ũ(t) = ∂tJ [u0](t) + J [iDu0 + |u0|p−1u0](t) +
∫ t

0
J [Fp(u)(t

′)](t − t ′)dt ′

(27)

where

J [f ](t, r) = 1

2r

∫ r+t

|r−t |
λf̃ (λ)dλ.

This transformation is justified as follows:

Lemma 5 ([12, Lemma 3.5]) Let 1 < p ≤ 3 and u0 ∈ H 1
rad(R

3) and u ∈
C(0, T ;H 1

rad(R
3)) be the solution of (16). Then u is also the solution of (27).

To obtain the uniform control, we use the estimates below regarding J . For any
f : [0,∞) → C, we define A[f ] : R → C as A[f ](λ) = f (|λ|). See also [21].
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Lemma 6 ([12, Lemma 3.6]) Let f : [0,∞) → C. Then

∥
∥
∥
∥
1

2·
∫ ·+t

|·−t |
f (λ)dλ

∥
∥
∥
∥
L∞(0,∞)

≤ M[A[f ]](t),

where M is the Hardy-Littlewood-Maximal operator defined by

M[h](x) = sup
r>0

1

2r

∫

|x−y|<r

|h(y)|dy

for h : R → C.

Corollary 3 ([12, Corollary 3.7]) Let f : R3 → C be radial. Then

‖J [f ]‖L2(0,T ;L∞(R3)) ≤ C‖f ‖L2
rad(R

3).

Corollary 4 ([12, Corollary 3.8]) Let h : [0,∞)×R
3 → C be radial. Then

∥
∥
∥
∥

∫ t

0
J [h(t ′)](t − t ′)dt ′

∥
∥
∥
∥
L2(0,T ;L∞(0,∞))

≤ C‖h‖L1(0,T ;L2
rad(R

3)).

Corollary 5 (Hardy, [12, Corollary 3.9]) Let f ∈ C1([0,∞);C). Then

∥
∥
∥
∥
d

dt

(
1

2r

∫ r+t

|r−t |
λf (λ)dλ

)∥
∥
∥
∥
L2(0,∞;L∞(0,∞))

≤ C‖rf ′‖L2(0,∞).

Proof Let g be even extension of f .

d

dt

(
1

2r

∫ r+t

|r−t |
λf (λ)dλ

)

= (r + t)f (r + t) − (t − r)f (|r − t|)
2r

= (r + t)f (r + t) − (t − r)g(t − r)

2r

= 1

2r

∫ r

−r

{g(t + τ )+ (t + τ )g′(t + τ )}dτ.

Then
∥
∥
∥
∥
d

dt

(
1

2r

∫ r+t

|r−t |
λf (λ)dλ

)∥
∥
∥
∥
L2(0,∞;L∞(0,∞))

≤ ‖M[g]‖L2(R) + ‖M[·g′]‖L2(R).

(28)

Therefore, (28) and the following Hardy estimate([22, (0.2)]) imply Corollary 5:

‖g‖L2(R) � ‖ · g′‖L2(R).
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We can now give the proof of Proposition 3.

Proof (Proof of Proposition 3) Let

X1
rad(0, T ) = L∞(0, T ;H 1

rad(R
3)) ∩ L2(0, T ;L∞

rad(R
3)).

For 0 < T < 1 and p = 3, By Corollaries 3, 4, 5, and the Hölder and Gagliardo-
Nirenberg inequalities imply that, if initial data u0 sufficiently small, then Φ maps
BX1

rad(0,T )(R) into itself with some T and R. Since

|F3(u)− F3(v)|
=

∣
∣
∣i

(
D(|u|2u) − 2|u|2Du − u2Du

)
+ 3|u|4u

− i
(
D(|v|2v) − 2|v|2Dv − v2Dv

)
− 3|v|4v

∣
∣
∣

� |D(|u|2u − |v|2v)| + |u|2|D(u − v)|
+

(∣
∣
∣|u|2 − |v|2

∣
∣
∣ +

∣
∣
∣u2 − v2

∣
∣
∣
)
|Dv| +

∣
∣
∣|u|4u− |v|4v

∣
∣
∣ ,

we have

‖F3(u)− F3(v)‖L1(0,T ;L2
rad(R

3))

� (‖u‖X1
rad(0,T ) + ‖v‖X1

rad(0,T ))
2‖u − v‖X1

rad(0,T )

+ (‖u‖X1
rad(0,T ) + ‖v‖X1

rad(0,T ))
4‖u − v‖X1

rad(0,T ).

This means Φ is a contraction map on BX1
rad(0,T )(R) for sufficiently small u0.

3 Blow-Up for (1)

At first, we recall the following ODE argument:

Lemma 7 ([11, Lemma 2.1]) Let C1, C2 > 0 and q > 1. If f ∈ C1([0, T );R)

satisfies f (0) > 0 and

f ′ + C1f = C2f
q on [0, T ) for some T > 0,

then

f (t) = e−C1t
(
f (0)−(q−1) + C−1

1 C2e
−C1(q−1)t − C−1

1 C2

)− 1
q−1

.

Moreover, if f (0) > C
1

q−1
1 C

− 1
q−1

2 , then T < − 1
C1(q−1) log(1− C1C

−1
2 f (0)−q+1).
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Next, we recall Calderón-Zygmund argument. We call K , a mesurable function
on Rn, Calderón-Zygmund (CZ) kernel if K satisfies

|K(x)| ≤ |x|−n, |∇K(x)| ≤ |x|−n+1,

∫

ε<|x|<R

K(x) = 0, 0 < ∀ε < ∀R.

Then CZ kernel is known to give a Lp(Rn) bounded operator as follows:

Lemma 8 ([3, Theorem 1]) Let K be a CZ kernel. Then for 1 < p < ∞, there
exists a positive constant C such that

∥
∥
∥
∥P.V.

∫

Rn

K(x − y)f (y)dy

∥
∥
∥
∥
Lp(Rn)

≤ C‖f ‖Lp(Rn)

for any f ∈ Lp(Rn).

Now we are in position to show Proposition 5.

Proof Thanks to Lemma 7, it is enough to show

∥
∥〈·〉−q [D, 〈·〉q ]∥∥

L2(Rn)→L2(Rn)
< ∞.

At first, We divide the operator into the following two pieces:

〈x〉−q [(−Δ)1/2, 〈x〉q ] = CT1 + CT2,

where ψ is a cut-off function defined by (24).

T1(f )(x) = 〈x〉−q

∫

Rn

(1− ψ(y))(〈x〉q − 〈x + y〉q)
|y|n+1 f (x + y)dy,

T2(f )(x) = 〈x〉−q P.V.

∫

Rn

ψ(y)(〈x〉q − 〈x + y〉q)
|y|n+1

f (x + y)dy.

In order to estimate T1 by dividing into two pieces:

T1 = T3 + T4,

where

T3(f )(x) = 〈x〉−q

∫

|x|≤|y|
(1− ψ(y))(〈x〉q − 〈x + y〉q)

|y|n+1
f (x + y)dy,

T4(f )(x) = 〈x〉−q

∫

|x|≥|y|
(1− ψ(y))(〈x〉q − 〈x + y〉q)

|y|n+1 f (x + y)dy.
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By the Hölder and Young inequalities,

‖T3(f )‖L2(Rn)

≤ (1+ 2q)

∥
∥
∥
∥〈x〉−q

∫

|x|≤|y|
〈y〉q(1− ψ(y))

|y|n+1
f (x + y)dy

∥
∥
∥
∥
L2(Rn)

≤ (1+ 2q)‖〈·〉−q‖L2(Rn)

∥
∥
∥
∥

∫

Rn

〈y〉q (1− ψ(y))

|y|n+1
f (x + y)dy

∥
∥
∥
∥
L∞(Rn)

≤ (1+ 2q)‖〈·〉−q‖L2(Rn)‖〈·〉q | · |−n−1(1− ψ)‖L2(Rn)‖f ‖L2(Rn).

Similarly by the Young inequality,

‖T4(f )‖L2(Rn) ≤ (1+ 2q)

∥
∥
∥
∥

∫

Rn

1− ψ(y)

|y|n+1
|f (x + y)|dy

∥
∥
∥
∥
L2(Rn)

≤ (1+ 2q)‖| · |−n−1(1− ψ)‖L1(Rn)‖f ‖L2(Rn).

Next, in order to estimate T2, we recall that

〈x + y〉q = 〈x〉q + q

2
〈x〉q−2(|x + y|2 − |x|2) + R1(x, y),

= 〈x〉q + q〈x〉q−2x · y + R2(x, y), (29)

where R2(x, y) = R1(x, y)+ q〈x〉q−2|y|2/2 and

R1(x, y) = q(q − 2)

22

∫ |x+y|2

|x|2
(1+ ρ)q/2−2(|x + y|2 − ρ)dρ.

By combining (13) and (29), we have

T2 = −qT5 − T6,

where

T5(f )(x) = x

〈x〉2 · P.V.

∫

Rn

yψ(y)

|y|n+1 f (x + y)dy,

T6(f )(x) = 1

〈x〉q P.V.

∫

Rn

R2(x, y)ψ(y)

|y|n+1 f (x + y)dy.

It is easy to see that K(y) = y|y|−n−1ψ(y) is a CZ kernel. Therefore

‖T5(f )‖L2(Rn) ≤
∥
∥
∥
∥P.V.

∫

Rn

yψ(y)

|y|n+1 f (· + y)dy

∥
∥
∥
∥
L2(Rn)

≤ C‖f ‖L2(Rn).
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Moreover, since

|y|−n−1|R1(x, y)| ≤ (〈x〉q−2 + 〈x + y〉q−2)(|x + y|2 − |x|2)2|y|−n−1

≤ (〈x〉q−2 + 〈x + y〉q−2)(|x + y| + |x|)2|y|−n+1,

by the Young inequality,

‖T6(f )‖L2(Rn) ≤ C

∥
∥
∥
∥

∫

Rn

ψ(y)

|y|n−1
f (x + y)dy

∥
∥
∥
∥
L2(Rn)

≤ ‖| · |−n+1ψ‖L1(Rn)‖f ‖L2(Rn).

4 A Priori Estimates

This last section is devoted to the proofs of Propositions 7, 8, 9, 10, and 11.
The proofs are essentially the same in [12], but we report them here for sake of
completeness.

Proof (Proof of Proposition 7) The proposition follows from a standard argument,
so we omit the proof.

Proof (Proof of Proposition 8) The proposition follows from a standard argument,
so we omit the proof.

Proof (Proof of Proposition 9) Here we give a direct proof based on the integral
equation by using the method in [27].

‖u(t2)‖2Ḣ s (Rn)

= ‖u(t1)‖2Ḣ s (Rn)
− 2Re

∫ t2

t1

〈Ds(|u(t)|p−1u(t)),Dsu(t)〉L2(Rn)dt

≤ ‖u(t1)‖2Ḣ s (Rn)
+ 2

∫ t2

t1

‖Ds(|u(t)|p−1u(t))‖L2(Rn)‖u(t)‖Ḣ s (Rn)dt

≤ ‖u(t1)‖2Ḣ s (Rn)
+ C

∫ t2

t1

‖u(t)‖p−1
L∞(Rn)

‖u(t)‖2
Ḣ s (Rn)

dt,

where we used the nonlinear estimate

‖|f |p−1f ‖Ḣ s (Rn) � ‖f ‖p−1
L∞(Rn)‖f ‖Ḣ s (Rn)

(see [13, Lemma 3.4]).
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Proof (Proof of Proposition 10) Since |u|2u ∈ C((0, T );H 2(Rn)), the following
calculation is justified by the Plancherel identity:

‖u(t2)‖2Ḣ 2(Rn)

= ‖u(t1)‖2Ḣ 2(Rn)
− 2Re

∫ t2

t1

〈
Δ|u(t)|2u(t),Δu(t)

〉

L2(Rn)
dt

= ‖u(t1)‖2Ḣ 2(Rn)
− 2Re

n∑

j,k=1

∫ t2

t1

〈
|u(t)|2∂j ∂ku(t), ∂j ∂ku(t)

〉

L2(Rn)
dt

− 4Re
n∑

j,k=1

∫ t2

t1

〈
∂ku(t)∂j |u(t)|2, ∂j ∂ku(t)

〉

L2(Rn)
dt

− 2Re
n∑

j,k=1

∫ t2

t1

〈
∂j ∂k|u(t)|2, u(t)∂j ∂ku(t)

〉

L2(Rn)
dt

= ‖u(t1)‖2Ḣ 2(Rn)
− 2

n∑

j,k=1

∫ t2

t1

‖u(t)∂j ∂ku(t)‖2L2(Rn)
dt

+ 2
n∑

j,k=1

∫ t2

t1

〈
∂2j |u(t)|2, |∂ku(t)|2

〉

L2(Rn)
dt

−
n∑

j,k=1

∫ t2

t1

〈
∂j ∂k|u(t)|2, ∂j ∂k|u(t)|2 − 2Re(∂ju(t)∂ku(t))

〉

L2(Rn)
dt.

By the Hölder,Young, and Sobolev inequalities,

‖u(t2)‖2Ḣ 2(Rn)

≤ ‖u(t1)‖2Ḣ 2(Rn)
− 2

n∑

j,k=1

∫ t2

t1

‖u(t)∂j ∂ku(t)‖2L2(Rn)
dt

+ 2n2
n∑

k=1

∫ t2

t1

‖∂ku(t)‖4L4(Rn)
dt + 2

n∑

j,k=1

∫ t2

t1

‖∂j u(t)‖2L4(Rn)
‖∂ku(t)‖2L4(Rn)

dt

≤ ‖u(t1)‖2Ḣ 2(Rn)
− 2

n∑

j,k=1

∫ t2

t1

‖u(t)∂j ∂ku(t)‖2L2(Rn)
dt

+ 2n2(n + 1)
∫ t2

t1

‖u(t)‖4−n

Ḣ 1(Rn)
‖u(t)‖n

Ḣ 2(Rn)
dt.

We can now conclude the paper by showing Proposition 11.
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Proof (Proof of Proposition 11) When s = 1 and when s = 2 and p = 3, a priori
estimates shows the global well-posedness by the blow-up alternative argument.
Here we consider the case where p = 3 and 1 < s < 2. Let [a] be the floor function
of a. Let T1 = min{1, T0}. By using the H 1 a priori estimate, for any t > 0,

‖u‖L4(0,t;L∞(R2)) ≤
[t/T1]+1∑

k=0

‖u‖L4(kT1,(k+1)T1;L∞(R2))

≤
[t/T1]+1∑

k=0

‖u‖X1(kT1,(k+1)T1)

≤ 2T −1
1 (1+ t)‖u0‖H 1(R2).

Then by using Proposition 10,

‖u(t)‖2
Ḣ s (R2)

� ‖u0‖2Hs(R2)
+

∫ t

0
‖u(t ′)‖2L∞(Rn)‖u(t ′)‖2Ḣ s (R2)

dt

� ‖u0‖2Hs(R2)
+ ‖u(t ′)‖2

L4(0,t;L∞(R2))
‖u‖2

L4(0,t;Ḣ s(R2))

� ‖u0‖2Hs(R2)
+ ‖u0‖2H 1(R2)

(1+ t)2‖u‖2
L4(0,t;Ḣ s(R2))

.

This shows

‖u(t)‖4
Ḣ s (R2)

� ‖u0‖4Hs(R2)
+ ‖u0‖4H 1(R2)

(1+ t)4‖u‖4
L4(0,t;Ḣ s(R2))

.

Therefore Gronwall inequality imply the global well-posedness in Hs(R2).
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Semilinear Damped Klein-Gordon
Models with Time-Dependent
Coefficients

Giovanni Girardi

Abstract We consider the following Cauchy problem for a wave equation with
time-dependent damping term b(t)ut and mass term m(t)2u, and a power nonlin-
earity |u|p:

{
utt − Δu+ b(t)ut + m2(t)u = |u|p, t ≥ 0, x ∈ R

n,

u(0, x) = f (x), ut (0, x) = g(x).

We discuss how the interplay between an effective time-dependent damping term
and a time-dependent mass term influences the decay rate of the solution to the
corresponding linear Cauchy problem, in the case in which the damping term is
dominated by the mass term, i.e. lim inf

t→∞ (m(t)/b(t)) > 1/4.

Then we use the obtained estimates of solutions to linear Cauchy problems to
prove that a unique global in-time energy solution to the Cauchy problem with
power nonlinearity |u|p at the right-hand side of the equation exists for any p > 1,
assuming small data in the energy space (f, g) ∈ H 1 × L2.

1 Introduction

In this paper, we look for global (in time) small data energy solutions to the Cauchy
problem

{
utt − Δu+ b(t)ut + m2(t)u = h(u), t ≥ 0, x ∈ R

n,

u(0, x) = f (x), ut (0, x) = g(x),
(1)

G. Girardi (�)
Department of Mathematics, University of Bari, Bari, Italy
e-mail: giovanni.girardi@uniba.it

© Springer Nature Switzerland AG 2019
M. D’Abbicco et al. (eds.), New Tools for Nonlinear PDEs and Application,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-10937-0_7

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10937-0_7&domain=pdf
mailto:giovanni.girardi@uniba.it
https://doi.org/10.1007/978-3-030-10937-0_7


204 G. Girardi

where b(t)ut and m(t)2u, with b(t), m(t) > 0, respectively represent a damping
and a mass term, and the power nonlinearity h(u) verifies

h(0) = 0, |h(u) − h(v)| � |u − v| (|u| + |v|)p−1 (2)

for a given p > 1, for instance, h(u) = |u|p. In particular, we consider
the case in which the damping term is dominated by the mass term, i.e.
lim inf
t→∞ (m(t)/b(t)) > 1/4.

In order to do that, we derive suitable estimates for solutions to the corresponding
linear Cauchy problem

{
utt − Δu + b(t)ut + m2(t)u = 0, t ≥ 0, x ∈ R

n,

u(0, x) = f (x), ut (0, x) = g(x),
(3)

and we apply a contraction argument to construct the solution to (1).
In [1, 6], the model without mass

{
utt − Δu + b(t)ut = |u|p, t ≥ 0, x ∈ R

n,

u(0, x) = f (x), ut (0, x) = g(x),
(4)

has been considered, and it has been proved that the critical exponent for global (in
time) small data energy solutions to (4) remains the same as for the Cauchy problem
with b = 1 (see [11, 14, 16, 19, 22, 26]), that is 1 + 2/n. Here the assumption
of effectiveness of the damping term was essential to derive suitable estimates for
solutions to the corresponding linear Cauchy problem

{
utt − Δu+ b(t)ut = 0, t ≥ 0, x ∈ R

n,

u(0, x) = f (x), ut (0, x) = g(x).
(5)

In particular, global existence holds for p > 1+2/n if initial data are assumed to be
small in exponentially weighted energy spaces. In the subcritical and critical range,
1 < p ≤ 1 + 2/n, no global in time small data Sobolev solutions exist, under a
suitable sign assumption [4] for the data. If smallness of the data is assumed only in
the standard energy space H 1 × L2 and in L1, then the same result holds in space
dimension n = 1, 2. If also the additional L1 smallness is dropped, then the critical
exponent becomes 1+ 4/n.

In this paper, by effectiveness of the damping term we mean that for a suitable
large class of damping coefficients b(t), the estimates obtained for (5) are the same
obtained for the solution to the corresponding Cauchy problem for the heat equation

{
b(t)vt − Δv = 0, t ≥ 0, x ∈ R

n,

v(0, x) = ϕ(x),
(6)
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for suitable initial data ϕ = ϕ(f, g, b) (see [25]). In the case of polynomial
shape b(t) = μ(1 + t)k , the damping is effective if k ∈ (−1, 1] (see [18, 20, 24]
for the corresponding global existence result), and partially effective if k = −1,
according to which μ and which estimate are considered.

In fact, in this latter case b(t) = μ(1+ t)−1, the critical exponent of global small
data solutions to (4) remains 1 + 2/n if the positive coefficient μ is sufficiently
large [2, 23], whereas it seems to increase to max{pS(n + μ), 1 + 2/n}, as μ

becomes smaller with respect to the space dimension, as conjectured in [5, 7] (see
also [12, 17]), where pS is the Strauss exponent for the semilinear undamped wave
equation [10, 15, 21]. The overdamping case b(t) = μ(1+ t)k, with k > 1 has been
studied in [13]; in that case the authors prove the global (in time) existence of small
data energy solutions for all p > 1.

In [8] the same Cauchy problem (1) is considered, in the case in which the
damping term is effective and it dominates the mass term, i.e. m(t) = o(b(t))

as t → ∞. Here, we show that under a simple condition on the interaction
between b(t) andm(t), and assuming only small initial data in the energy space, one
may find a scale of critical exponents, which continuously move from 1+ 4/n to 1,
as the mass becomes more influent, with respect to the damping term. In particular,
in that case for any small initial data (f, g) ∈ H 1 × L2 we obtain the following
estimate for the solution to the non linear Cauchy problem (1):

‖u(t, ·)‖L2 ≤ C γ (t) ‖(f, g)‖H 1×L2,

where we define

γ (t) = exp

(

−
∫ t

0

m2(τ )

b(τ )
dτ

)

. (7)

Thus, the decreasing function γ = γ (t) in (7) represents the influence on the
estimates of the mass term with respect to the damping term.

On the other hand, it is well-known that global small data solutions to the Cauchy
problem for the damped Klein-Gordon equation

{
utt − Δu + ut + u = h(u), t ≥ 0, x ∈ R

n,

u(0, x) = f (x), ut (0, x) = g(x),
(8)

exist for any p > 1 (see [3] for more results), that is, the interplay of a damping term
and a mass term may lead to an improvement in the critical exponent of (1). This
interaction has been recently studied in the scale invariant case, b(t) = μ1(1+ t)−1

and m(t) = μ2(1+ t)−1 in [9].



206 G. Girardi

The main purpose of this paper is to complete the study of Cauchy problems
associated to the wave equation with damping term and mass term, by considering
the case in which the influence of the mass term dominates the influence of the
damping term, i.e. lim inf

t→∞ (m(t)/b(t)) > 1/4.

Under this hypothesis, assuming the effectiveness of the damping term b(t)ut , we
obtain an exponential decay rate for the solution to the linear Cauchy problem (3)
and so we are able to prove global existence (in time) of small data solutions to the
Cauchy problem (1) for any p > 1. Our result generalizes the already known results
for the Cauchy problem (8) with constant coefficients b(t) = m(t) ≡ 1.

The scheme of the paper is the following:

• in Sect. 2 we present the main results for the Cauchy problems (1) and (3);
• in Sect. 3 we derive estimates for solutions of the associated linear Cauchy

problem (Theorem 1);
• in Sect. 4 we prove our result for the global in time existence of small data

solutions (Theorems 2).

2 Main Results

We assume that the following assumption is satisfied for b = b(t).

Hypothesis 2.1 We assume that b ∈ C 1, with b(t) > 0, is monotone and it holds:

∣
∣b′(t)

∣
∣ = o(b(t)2), as t → ∞. (9)

As a consequence of (9), we derive

tb(t) → ∞, as t → ∞. (10)

Hypothesis 2.1 means that the damping term b(t)ut is effective according to the
definition given in [25]. In particular, also the overdamping case can be considered,
that is, the case in which 1/b(t) is integrable.

The fundamental assumption is that the influence of the mass term dominates the
influence of the damping term in the equation, so that the presence of the damping
has a minor influence on the profile of the solution, which is mainly determined by
the appearance of the mass term on the wave equation.

Hypothesis 2.2 We assume that m ∈ C 1, with m(t) > 0, is monotone and it has
controlled oscillations:

∣
∣m′(t)

∣
∣ ≤ C

m(t)

1+ t
, (11)
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and that

lim inf
t→∞

m(t)

b(t)
>

1

4
. (12)

Example 1 An example of monotonous coefficient function with oscillations
allowed by (11) is given by:

m(t) = (1+ t)k
(
1+ sin t

1+ t

)
,

for k > 0.

Remark 1 The hypothesis of monotonicity can be avoided assuming that the
coefficientm = m(t) behaves like a monotonic shape function (see [25]).

Example 2 An example of nonmonotonous coefficient function allowed by (11) is
given by

m(t) =
(
2+ cos(log(e + t))

1+ t

)
(1+ t)k

for k > −1.

Remark 2 Assumption (12) is only of technical nature in order to simplify the proof,
but we expect to obtain an exponential decay rate for the solution to the Cauchy
problem (1), also with a weaker assumption. In fact, in the case m(t) = a · b(t)
with a > 0, it is easy to prove that the solution to our Cauchy problem (1) has an
exponential decay rate for each a > 0.

Furthermore, in [8], we proved that the solution to our Cauchy problem (1)
satisfies the following estimate

‖u(t, ·)‖L2 ≤ C exp

(

−
∫ t

0

m2(τ )

b(τ )
dτ

)

‖(f, g)‖H 1×L2,

in the case in which the mass term is dominated by the damping term; thus, we
expect that the assumption lim inft→∞ m/b > δ for some δ > 0 is sufficient to
obtain an exponential decay rate, in the case in which the damping term is dominated
by the mass term.

Assuming initial data in the energy spaceH 1(Rn)×L2(Rn), we derive the following
decay estimates for the solution to the linear Cauchy problem (3).
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Theorem 1 Let n ≥ 1. Let us assume that b = b(t) satisfies Hypothesis 2.1 and
m = m(t) satisfies Hypothesis 2.2. Then, there exists δ > 0 such that the solution
u = u(t, x) to the Cauchy problem (3) satisfies the following estimates:

‖u(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

0
b(τ)dτ

)
‖(f, g)‖H 1×L2, (13)

‖∇u(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

0
b(τ)dτ

)
‖(f, g)‖H 1×L2, (14)

‖∂tu(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

0
b(τ)dτ

)
‖(f, g)‖H 1×L2, (15)

where the constant C > 0 does not depend on the data.

Under our assumptions on b = b(t) and m = m(t) we are able to prove the global
(in time) existence of small data solutions for any p > 1. Moreover we obtain
the required estimates for the solutions to the semilinear Cauchy problem. Thus,
we conclude that {|u|p, p > 1} is not the correct scale to observe blow-up if we
consider an effective dissipation and a dominating effective mass.

By considering small initial data in the energy space H 1(Rn)×L2(Rn), we may
state the following result.

Theorem 2 Let n ≥ 1 and assume that b = b(t) satisfies Hypothesis 2.1 and
m = m(t) satisfies Hypothesis 2.2. Then, for any p > 1 and p ≤ 1 + 2/(n − 2) if
n ≥ 3, there exists ε0 such that for any initial data (f, g) ∈ H 1 × L2 with

‖(f, g)‖H 1×L2 ≤ ε0,

there exists a unique energy solution u = u(t, x) of Cauchy problem (1) in
C([0,∞),H 1) ∩ C1([0,∞), L2). Moreover, there exists δ > 0 such that this
solution satisfies the following estimates:

‖u(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

0
b(τ)dτ

)
‖(f, g)‖H 1×L2, (16)

‖∇u(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

0
b(τ)dτ

)
‖(f, g)‖H 1×L2, (17)

‖∂tu(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

0
b(τ)dτ

)
‖(f, g)‖H 1×L2, (18)

where C does not depend on the initial data.

The estimates (16), (17), and (18) are consistent with the estimates (13), (14),
and (15) for solutions to the linear Cauchy problem (3).

Remark 3 For the same Cauchy problem (1) without the mass term, the global
existence for small data solution for each p > 1 has been proved in [13], in
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the overdamping case. Thus, in this case the presence of the mass term gives no
influence to the critical exponent, but it produces an exponential decay rate for the
solution to the non linear Cauchy problem (1).

Instead, in the case in which 1/b(t) is not integrable we proved (see [8]) that the
critical exponent moves from 1 + 4/n to 1 as the mass becomes more influential.
Thus, we already expected to have the global existence of small data solutions for
each p > 1, in the case in which the mass term dominates the damping term.

2.1 Examples

The easiest class of coefficients b(t) and m(t) which can be considered are of
polynomial type.

Example 3 Let

b(t) = μ(1+ t)k, m(t) = ν(1+ t)�,

for some μ, ν > 0 and k, � ∈ R.
Then, Hypothesis 2.1 holds if, and only if, k ∈ (−1,+∞). On the other hand,

Hypothesis 2.2 holds if, and only if, � > k or � = k and ν > (1/4)μ.

Example 4 Let

b(t) = μ(1+ t)k (log(e + t))a, m(t) = ν(1+ t)� (log(e + t))b,

for some μ, � > 0, and k, �, a, b ∈ R.
Then, Hypothesis 2.1 holds if, and only if, either k ∈ (−1,+∞), or k = −1

and a > 0. On the other hand, Hypothesis 2.2 holds if, and only if, either � > k,
or � = k and b ≥ a with ν > (1/4)μ if b = a.

3 Decay Estimates for Solutions to Linear Cauchy Problems

In order to prove Theorem 2, we plan to apply Duhamel’s principle. However, due
to the presence of time-dependent coefficients, the equation in (3) is not invariant by
time translations. Having this in mind, we derive decay estimates for the solution to
a family of parameter-dependent Cauchy problems

{
utt − Δu+ b(t)ut + m2(t)u = 0, t ≥ s,

u(s, x) = f (s, x), ut (s, x) = g(s, x),
(19)
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where s ≥ 0, obtaining decay rates which depend on both t and s. At s = 0, we will
obtain the estimates for solutions of the linear Cauchy problem, stated in Theorem 1.
On the other hand, for any s > 0 we may assume f (s, ·) = 0, and we prove the
following result.

Lemma 1 Let b = b(t) satisfy Hypothesis 2.1 and m = m(t) satisfy Hypothe-
sis 2.2. Let f (s, ·) = 0 and g(s, ·) ∈ L2(Rn). Then, there exists δ > 0 such that the
solution u = u(t, x) to the Cauchy problem (19) satisfies the following estimates for
t ≥ s ≥ 0:

‖u(t, ·)‖L2 ≤ C
1

m(s)
exp

(
− δ

∫ t

s

b(τ )dτ
)
‖g(s, ·)‖L2, (20)

‖∇u(t, ·)‖L2 ≤ C exp
(
− δ

∫ t

s

b(τ )dτ
)
‖g(s, ·)‖L2, (21)

‖∂tu(t, ·)‖L2(Rn) ≤ C exp
(
− δ

∫ t

s

b(τ )dτ
)
‖g(s, ·)‖L2, (22)

where C does not depend on s and on the data.

Following the approach in [25], we transform our Cauchy problem (3) with
dissipation and mass terms in a Cauchy problem with time dependent mass. By
applying the Fourier transform, we obtain

ût t + |ξ |2û + b(t)ût + m2(t)û = 0.

Let

v̂(t, ξ) := λ(t)û(t, ξ), λ(t) := exp
(1

2

∫ t

0
b(τ)dτ

)
.

The function v̂ solves

v̂t t + M(t, ξ)v̂ = 0, (23)

where

M(t, ξ) = |ξ |2 − 1

4
b2(t) − 1

2
b′(t) + m2(t). (24)

We notice that, in particular,

v̂(0, ξ) = f̂ (ξ), v̂t (0, ξ) = b(0)

2
f̂ (ξ) + ĝ(ξ).
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Let us introduce the symbol

〈ξ〉m(t) =
√

|ξ |2 + m(t)2.

We introduce the micro-energy V = (〈ξ〉m(t)v̂,Dt v̂)
T . Since Dt = 1

i
∂t we obtain

that V satisfies the system of first order

DtV = A(t, ξ)V =
⎡

⎣
(

0 〈ξ〉m(t)

〈ξ〉m(t) 0

)

+
⎛

⎝
Dt 〈ξ 〉m(t)

〈ξ 〉m(t)
0

− b(t)2+2b′(t)
4〈ξ 〉m(t)

0

⎞

⎠

⎤

⎦V. (25)

We prove the following result.

Lemma 2 The fundamental solution E = E (t, s, ξ) to the system (25) satisfies the
following estimates for each t ≥ s ≥ 0 and ξ ∈ R

n:

‖E (t, s, ξ)‖ �
( 〈ξ〉m(t)

〈ξ〉m(s)

)± 1
2

exp
(∫ t

s

cb(τ )dτ
)
,

where c < 1
2 , and ± stays for + or, respectively, for − if m = m(t) is increasing or,

respectively, decreasing.

Proof We introduce

P =
(
1 −1
1 1

)

, P−1 = 1

2

(
1 1
−1 1

)

,

and we set V (0) := P−1V . Thus, we arrive at the system

DtV
(0) = [D(t, ξ) + R(t, ξ)]V (0),

where

D(t, ξ) =
(〈ξ〉m(t) 0

0 −〈ξ〉m(t)

)

;

R(t, ξ) = 1

2

Dt 〈ξ〉m(t)

〈ξ〉m(t)

(
1 −1
−1 1

)

− b2(t) + 2b′(t)
8〈ξ〉m(t)

(
1 −1
1 −1

)

.

For a sufficiently large t0 > 0, due to Hypothesis (9) and (12), there exists c < 1
2

such that for each τ > t0 it holds:

∣
∣
∣
∣
b2(τ )+ 2b′(τ )

8m(τ)

∣
∣
∣
∣ < cb(τ).
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Therefore, using 〈ξ〉m(t) > m(t) we get

∫ t

s

b2(τ )

8〈ξ〉m(τ)

dτ +
∫ t

s

|b′(τ )|
4〈ξ〉m(τ)

dτ <

∫ t

s

cb(τ )dτ.

This concludes the proof for s ≥ t0. For t ≤ t0, it is clear that E = E (t, s, ξ) is
bounded, so that the proof of the lemma follows by combining the two cases.

3.1 Proof of Theorem 1 and Lemma 1

To prove Theorem 1 and Lemma 1, we first notice that the solution to (19) verifies
the pointwise estimates

|û(t, ξ)| � λ(s)

λ(t)

‖E (t, s, ξ)‖
〈ξ〉m(t)

(〈ξ〉m(s)|f̂ (s, ξ)| + |ĝ(s, ξ)|),

|ût (t, ξ)| � λ(s)

λ(t)
‖E (t, s, ξ)‖ (〈ξ〉m(s)|f̂ (s, ξ)| + |ĝ(s, ξ)|).

In the second estimate, we used ût = (λ(s)/λ(t))(v̂t − (b(t)/2) v̂), and the property
b(t) < 〈ξ〉m(t) for t > t0 sufficiently large.
It is straight-forward to prove the following lemma:

Lemma 3 Let k ∈ R. Then, for each ε > 0, for all t ≥ s ≥ 0 it holds

(
m(s)

m(t)

)k

�
(
λ(t)

λ(s)

)ε

. (26)

Proof Notice that (26) is trivially satisfied if k m′(t) > 0.
Let us consider the case k m′(t) < 0. It holds

(
m(s)

m(t)

)k

= exp
(
− k

∫ t

s

m′(τ )
m(τ)

dτ
)
.

Thus, it is sufficient to prove that there exists t0 > 0 such that for each τ > t0 it
holds

−k
m′(τ )
m(τ)

≤ ε

2
b(τ).

But this is true for t0 sufficiently large, due to hypothesis (11) and the property
tb(t) → ∞.
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By Lemma 2, using (26), we get the following pointwise estimates for the solution

|û(t, ξ)| �
(
λ(s)

λ(t)

)δ (
|f̂ (s, ξ)| + 1

〈ξ〉m(s)

|ĝ(s, ξ)|
)
,

|ût (t, ξ)| �
(
λ(s)

λ(t)

)δ

(〈ξ〉m(s)|f̂ (s, ξ)| + |ĝ(s, ξ)|),

for some δ > 0.
The proofs of Theorem 1 and Lemma 1 follow immediately. In particular,

we notice 〈ξ〉m(s) > m(s) and, respectively |ξ | < 〈ξ〉m(s), to prove (20) and,
respectively (21).

4 Proof of Theorem 2

A function u = u(t, x) solves the Cauchy problem (1) in a suitable spaceX = X(T )

of Sobolev solutions if and only if

u(t, x) = u lin (t, x)+ (Nu)(t, x),

where u lin is the solution to the Cauchy problem (3), and

Nu(t, x) =
∫ t

0
Φ(t, s, ·) ∗(x) h(u(s, ·))(x)ds,

inX, where byΦ(t, s, ·)∗(x)h(u(s, ·))(x) is the solution to the Cauchy problem (19)
with f = 0 and g(s, ·) = h(u(s, ·)).

To prove Theorem 2, we will rely on a standard contraction argument in the solu-
tion space {C 1([0, T ),H 1) × C ([0, T ), L2)}T>0, equipped with a suitable norm,
defined accordingly to the decay estimates for the solutions to the corresponding
linear Cauchy problems with vanishing right-hand side obtained in Theorem 1.

For any T > 0, we define the Banach spaces

X0(T ) = C([0, T ],H 1), X(T ) = X0(T ) ∩ C1([0, T ], L2).

We will fix a suitable norm on X(T ) such that

‖u lin ‖X(T ) ≤ C‖(f, g)‖H 1×L2 . (27)
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Then, we will prove that

‖Nu‖X(T ) ≤ C‖u‖pX0(T ), (28)

‖Nu − Nv‖X(T ) ≤ C‖u− v‖X(T )

(‖u‖p−1
X0(T ) + ‖v‖p−1

X0(T )

)
, (29)

with a constant C > 0, independent of T . From condition (28) it follows that N
maps X0(T ) into X(T ).

Due to the inequalities (28) and (29), we can apply the Banach’s fixed point
theorem to prove that there exists a uniquely determined solution to Cauchy
problem (1), in X(T ), provided that ‖(f, g)‖H 1×L2 in (27) is sufficiently small.
Since the constants in (27), (28), and (29) do not depend on T , the solution is global
(in time).

To prove Theorem 2, we equip X0(T ) and X(T ) with the norms

‖u‖X0(T ) := sup
0≤τ≤T

λ(τ )2δ[‖u(τ, ·)‖L2 + ‖∇u(τ, ·)‖L2],

‖u‖X(T ) := sup
0≤τ≤T

λ(τ )2δ[‖u(τ, ·)‖L2 + ‖∇u(τ, ·)‖L2 + ‖uτ (τ, ·)‖L2],

where δ is given by Theorem 1.
By Theorem 1, we conclude (27). As a consequence of Gagliardo-Nirenberg

inequality, any function u ∈ X0(T ) verifies the inequality

‖u(τ, ·)‖Lq ≤ C λ(τ)−2δ ‖u‖X0(T ), (30)

for any τ ∈ [0, T ], for any q ∈ [2,∞) if n = 1, 2 and for any q ∈ [2, 2n/(n − 2)]
if n ≥ 3.

Let j, � = 0, 1 with j + � ≤ 1. Then

∥
∥
∥∇j ∂�

t Nu(t, ·)
∥
∥
∥
L2

≤
∫ t

0

∥
∥
∥∇j ∂�

t Φ(t, s, ·) ∗(x) h(u(s, ·))
∥
∥
∥
L2

ds.

By Lemma 1, we get

∥
∥
∥∇j ∂�

t Nu(t, ·)
∥
∥
∥
L2

≤ C

∫ t

0

1

m(s)1−j−�

(
λ(s)

λ(t)

)2δ

‖h(u(s, ·))‖L2ds. (31)

Using |h(u)| � |u|p and (30), noticing that 2p ≤ 2n/(n − 2) if n ≥ 3, we may
estimate

‖h(u(s, ·))‖L2 � ‖u(s, ·)‖p
L2p � λ(s)−2δp‖u‖pX0(T ). (32)
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Thus, using condition (12), we can estimate the right-hand side of (31) as follows:

‖u‖pX0(t)

1

λ(t)2δ

∫ t

0

λ(s)2δ(1−p)

b(s)1−j−�
ds

� ‖u‖pX0(t)

1

λ(t)2δ

∫ t

0
b(s) exp

(
− c

∫ s

0
b(τ)dτ

)
ds,

for some constant c > 0.We obtain the integrability by using the change of variables
r = ∫ s

0 b(τ)dτ .
Let c > 0. The last inequality follows by integrating the following estimate:

−δ(p − 1)b(s)− (2− j − �)
b′(s)
b(s)

≤ −cb(s).

This is equivalent to

(c − δ(p − 1))b(s)2 ≤ (2− j − �)b′(s).

This inequality becomes trivial, for c sufficiently small, if b = b(t) is an increasing
function. If b = b(t) is a decreasing function, then this inequality follows, for c

small enough, by taking account of the condition
∣
∣b′(t)

∣
∣ ∼ o(b(t)2). This concludes

the proof of the estimate (28).
We proceed similarly to prove (29). In particular, we replace (32) by

‖h(u(s, ·)) − h(v(s, ·))‖L2 �
∥
∥
∥|u(s, ·)− v(s, ·)| (|u(s, ·)|p−1 + |v(s, ·)|p−1)

∥
∥
∥
L2

� ‖u(s, ·)− v(s, ·)‖L2p

∥
∥
∥|u(s, ·)|p−1 + |v(s, ·)|p−1

∥
∥
∥
L2p′

� λ(s)−2δp‖u − v‖X0(T )

(‖u‖p−1
X0(T ) + ‖v‖p−1

X0(T )

)
.

This concludes the proof.
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Wave-Like Blow-Up for Semilinear Wave
Equations with Scattering Damping
and Negative Mass Term

Ning-An Lai, Nico Michele Schiavone, and Hiroyuki Takamura

Abstract In this paper we establish blow-up results and lifespan estimates for
semilinear wave equations with scattering damping and negative mass term for
subcritical power, which are the same as that of the corresponding problem without
mass term, and also the same as that of the corresponding problem without both
damping and mass term. For this purpose, we have to use the comparison argument
twice, due to the damping and mass term, in additional to a key multiplier. Finally,
we get the desired results by an iteration argument.

1 Introduction

In this paper, we consider the Cauchy problem for semilinear wave equations with
scattering damping and negative mass term

⎧
⎨

⎩

utt − Δu+ μ1

(1+ t)β
ut − μ2

(1+ t)α+1 u = |u|p, in Rn × [0, T ),

u(x, 0) = εf (x), ut (x, 0) = εg(x), x ∈ Rn,

(1)

where μ1, μ2 > 0, α > 1, β > 1, n ∈ N and ε > 0 is a “small” parameter.
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We call the term μ1ut/(1 + t)β (β > 1) scattering damping, due to the reason
that the solution of the following Cauchy problem

⎧
⎪⎨

⎪⎩

u0t t − Δu0 + μ

(1+ t)β
u0t = 0, in Rn × [0,∞),

u0(x, 0) = u1(x), u0t (x, 0) = u2(x), x ∈ Rn,

(2)

scatters to that of the free wave equation when β > 1 and t → ∞. In fact, according
to the works of Wirth [22–24], we may classify the damping for different values of
β into four cases, as shown in the next table.

Range of β Classification

β ∈ (−∞,−1) Overdamping

β ∈ [−1, 1) Effective

β = 1
Scaling invariant

if μ ∈ (0, 1) ⇒ non-effective

β ∈ (1,∞) Scattering

If we come to the nonlinear problem with power nonlinearity, thus

⎧
⎨

⎩

utt − Δu+ μ

(1+ t)β
ut = |u|p, in Rn × [0,∞),

u(x, 0) = u1(x), ut (x, 0) = u2(x), x ∈ Rn,

(3)

we want to determine the long time behaviour of the solution according to the
different value of p, n and even μ. Ikeda and Wakasugi [9] proved global existence
for (3) for all p > 1 when β < −1. For β ∈ [−1, 1), due to the work [3, 5–
7, 11, 13, 21, 26], we know that problem (3) admits a critical power pF (n) :=
1 + 2/n (Fujita power), which means that for p ∈ (1, pF (n)] the solution will
blow up in a finite time, while for p ∈ (pF (n),∞) we have global existence.
Obviously, in this case the critical is exactly the same as that of the Cauchy problem
of semilinear heat equation

ut − Δu = |u|p,

and so we call it admits “heat-like” behaviour.
For the case β = 1 in (3), we say that the damping is scale invariant, due to the

reason that the equation in the corresponding linear problem (2) is invariant under
the following scaling transformation

ũ0(x, t) := u0(σx, σ (1+ t) − 1), σ > 0.
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It is a bit sophisticated for the scale invariant nonlinear problem (3), since the size
of the positive constant μ will also have an effect on the long time behaviour of the
solution. Generally speaking, according to the known results [1, 2, 4, 8, 12, 18–20],
it is believed that if μ is large enough, then the critical power is related to the Fujita
power, while if μ is relatively small, then the critical power is related to the Strauss
power, i.e. pS(n), which is denoted to be the positive root of the following quadratic
equation

γ (p, n) := 2+ (n + 1)p − (n− 1)p2 = 0,

and which is also the critical power of the small data Cauchy problem of the
semilinear wave equation

utt − Δu = |u|p.

It means that for relatively small μ we have “wave-like” behaviour. Unfortunately,
we are not clear of the exact threshold determined by the valueμ between the “heat-
like” and “wave-like” phenomenon till now.

For the scattering case (β > 1), one expects that problem (3) admits the long
time behaviour as that of the corresponding problem without damping. In [10], Lai
and Takamura obtained the blow-up results for

1 < p <

{
pS(n) for n ≥ 2,

∞ for n = 1

and the upper bound of the lifespan estimate

T ≤ Cε−2p(p−1)/γ (p,n).

What is more, when n = 1, 2 and

∫

Rn

g(x)dx �= 0,

they established an improved upper bound of the lifespan for 1 < p < 2, n = 2 and
p > 1, n = 1. However, it remains to determine the exact critical power for (3) with
β > 1.

Recently, the small data Cauchy problem for semilinear wave equation with
scale-invariant damping and mass and power non-linearity, i.e.,

⎧
⎪⎨

⎪⎩

utt − Δu+ μ1

1+ t
ut + μ2

2

(1+ t)2
u = |u|p, in Rn × [0,∞),

u(x, 0) = u1(x), ut (x, 0) = u2(x), x ∈ Rn,

(4)
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attracts more and more attention. Denote

δ := (μ1 − 1)2 − 4μ2
2. (5)

Then in [14] and [15] a blow-up result was established for

1 < p ≤ pF

(

n + μ1 − 1− √
δ

2

)

assuming δ ≥ 0, by using two different approaches. Furthermore, in [14] they
improved the result for δ = 1 to

1 < p ≤ max
{
pS(n + μ1), pF

(
n + μ1

2
− 1

)}
.

Recently, Palmieri and Reissig [16] generalized the blow-up result for n ≥ 1 and
δ ∈ (0, 1] to the following power:

⎧
⎪⎪⎨

⎪⎪⎩

p < pμ1,μ2(n) := max
{
pS(n+ μ1), pF

(
n + μ1

2 −
√
δ
2

)}
,

p = pμ1,μ2(n) = pF

(
n+ μ1

2 −
√
δ
2

)
,

p = pμ1,μ2(n) = pS(n+ μ1), for n = 2.

We note that a transform by v := (1+ t)μ1/2u changes the equation in (4) into

vtt − Δv + 1− δ

4(1+ t)2
v = |v|p

(1+ t)μ1(p−1)/2
,

so that the assumption of δ ∈ (0, 1] implies the non-negativeness of the mass term
in this equation.

In this paper, we are going to study the small data Cauchy problem of semilinear
wave equations with power nonlinearity, scattering damping and mass term with
negative sign, thus, problem (1). Blow-up results and lifespan estimates will be
established for 1 < p < pS(n), which are the same as that in the work [10]. We
could say that we experience a double phenomenonof scattering, due to the damping
term and the mass term. For the proof, we will borrow the idea from [10], by
introducing a key multiplier to absorb the damping term and establishing an iteration
frame. However, we have to deal with the mass term. Due to the negative sign, we
use a comparison argument to eliminate the effect from the mass term. Although
the calculations in this work hold for any mass exponent α ∈ R, we suppose that
it satisfies α > 1 because otherwise we have shorter lifespan estimates due to the
effect of the negative mass term. This analysis will appear in our forthcoming paper.
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2 Main Result

Before the statement of our main results, we first denote the energy and weak
solutions of problem (1).

Definition 1 We say that u is an energy solution of (1) over [0, T ) if

u ∈ C([0, T ),H 1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩ C((0, T ), L
p
loc(R

n)) (6)

satisfies u(x, 0) = εf (x) in H 1(Rn) and ut (x, 0) = εg(x) in L2(Rn), and

∫

Rn

ut (x, t)φ(x, t)dx −
∫

Rn

εg(x)φ(x, 0)dx

+
∫ t

0
ds

∫

Rn

{−ut(x, s)φt (x, s) +∇u(x, s) · ∇φ(x, s)} dx

+
∫ t

0
ds

∫

Rn

μ1

(1+ s)β
ut (x, s)φ(x, s)dx −

∫ t

0
ds

∫

Rn

μ2

(1 + s)α+1
u(x, s)φ(x, s)dx

=
∫ t

0
ds

∫

Rn

|u(x, s)|pφ(x, s)dx

(7)

with any test function φ ∈ C∞
0 (Rn × [0, T )) and for any t ∈ [0, T ).

Employing the integration by parts in the above equality and letting t → T , we
got the definition of the weak solution of (1), that is

∫

Rn×[0,T )

u(x, s)

{

φtt (x, s)− Δφ(x, s)− ∂

∂s

(
μ1

(1+ s)β
φ(x, s)

)

− μ2

(1+ s)α+1 φ(x, s)

}

dxds

=
∫

Rn

μ1εf (x)φ(x, 0)dx −
∫

Rn

εf (x)φt (x, 0)dx +
∫

Rn

εg(x)φ(x, 0)dx

+
∫

Rn×[0,T )

|u(x, s)|pφ(x, s)dxds.

(8)

Definition 2 As in the introduction, set

γ (p, n) := 2+ (n + 1)p − (n− 1)p2

and, for n ≥ 2, define pS(n) the positive root of the quadratic equation γ (p, n) = 0,
the so-called Strauss exponent, that is

pS(n) = n+ 1+ √
n2 + 10n− 7

2(n− 1)
.
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Note that if n = 1, then γ (p, 1) = 2+ 2p and we can set pS(1) := +∞.

Now we announce our main results.

Theorem 1 Let n = 1 and p > 1, or n ≥ 2 and 1 < p < pS(n). Assume that both
f ∈ H 1(Rn) and g ∈ L2(Rn) are non-negative, and at least one of them does not
vanish identically. Suppose that u is an energy solution of (1) on [0, T ) that satisfies

suppu ⊂ {(x, t) ∈ Rn × [0,∞) : |x| ≤ t + R} (9)

with some R ≥ 1. Then, there exists a constant ε0 = ε0(f, g, n, p,μ1, β,R) > 0
which is independent of μ2, such that T has to satisfy

T ≤ Cε−2p(p−1)/γ (p,n) (10)

for 0 < ε ≤ ε0, where C is a positive constant independent of ε.

In low dimensions (n = 1, 2), with some additional hypothesis, we may have
improvements on the lifespan estimates as follows.

Theorem 2 Let n = 2 and 1 < p < 2. Assume that both f ∈ H 1(R2) and g ∈
L2(R2) are non-negative and that g does not vanish identically. Then the lifespan
estimate (10) is replaced by

T ≤ Cε−(p−1)/(3−p). (11)

Theorem 3 Let n = 1 and p > 1. Assume that both f ∈ H 1(R1) and g ∈
L2(R1) are non-negative and that g does not vanish identically. Then the lifespan
estimate (10) is replaced by

T ≤ Cε−(p−1)/2. (12)

Theorem 4 Let n = p = 2. Suppose that α ≤ β and

μ2 ≥

⎧
⎪⎨

⎪⎩

βμ1
2 if α = β,

βμ1
2

β−1
2β−α−1

(

4
μ2
1

μ2

β−α
β−1

) β−α
2β−α−1

if α < β.
(13)

Assume that f ≡ 0 and g ∈ C2(R2) is non-negative and does not vanish identically.
Suppose also that u is a classical solution of (1) on [0, T ) with the support
property (9). Then, T satisfies

T ≤ Ca(ε) (14)

where a = a(ε) is a number satisfying

a2ε2 log(1+ a) = 1. (15)
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Remark 1 In Theorem 1, we require that at least one of the initial data does
not vanish identically, which is weaker than that in the corresponding result
(Theorem 2.1) in [10].

Remark 2 Observe that:

• Equation (11) is stronger than (10) by the fact that 1 < p < 2 is equivalent to

p − 1

3− p
<

2p(p − 1)

γ (p, 2)
;

• Equation (12) is stronger than (10) by the fact that p > 1 is equivalent to

p − 1

2
<

2p(p − 1)

γ (p, 1)
;

• Equation (14) is stronger than (10) by the fact that when n = p = 2

a(ε) < ε−1 = ε−2·2(2−1)/γ (2,2)

for sufficiently small ε.

3 Lower Bound for Derivative of the Functional

Following the idea in [10], we introduce the multiplier

m(t) := exp

(

μ1
(1+ t)1−β

1− β

)

. (16)

Clearly

1 ≥ m(t) ≥ m(0) > 0 for t ≥ 0. (17)

Moreover, let us define the functional

F0(t) :=
∫

Rn

u(x, t)dx,

then

F0(0) = ε

∫

Rn

f (x)dx, F ′
0(0) = ε

∫

Rn

g(x)dx

are non-negative due to the hypothesis of positiveness on the initial data. Our final
target is to establish a lower bound for F0(t).
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Let us start finding the lower bound of the derivative of the functional, i.e., F ′
0(t).

Due to (9), choosing the test function φ = φ(x, s) in (7) to satisfy φ ≡ 1 in {(x, s) ∈
Rn × [0, t] : |x| ≤ s + R}, we get

∫

Rn

ut (x, t)dx −
∫

Rn

ut (x, 0)dx +
∫ t

0
ds

∫

Rn

μ1

(1+ s)β
ut (x, s)dx

=
∫ t

0

∫

Rn

μ2

(1+ s)α+1 u(x, s)dx +
∫ t

0
ds

∫

Rn

|u(x, s)|pdx,

which yields by taking derivative with respect to t

F ′′
0 (t) +

μ1

(1+ t)β
F ′
0(t) =

μ2

(1+ t)α+1F0(t) +
∫

Rn

|u(x, t)|pdx. (18)

Here we note that (18) can be established by regularity assumption on the solution.
Multiplying both sides of (18) with m(t) yields

{
m(t)F ′

0(t)
}′ = m(t)

μ2

(1 + t)α+1
F0(t) + m(t)

∫

Rn

|u(x, t)|pdx. (19)

Integrating the above equality over [0, t] we get

F ′
0(t) =

m(0)

m(t)
F ′
0(0)+

1

m(t)

∫ t

0
m(s)

μ2

(1+ s)α+1F0(s)ds

+ 1

m(t)

∫ t

0
m(s)ds

∫

Rn

|u(x, s)|pdx.
(20)

To get the lower bound for F ′
0, we need the positiveness of F0, and this can be

obtained by a comparison argument. However, since we assume that at least one of
the initial data does not vanish identically, we have to consider the following two
cases.

Case 1: f ≥ 0( �≡ 0), g ≥ 0. This means that F0(0) > 0, F ′
0(0) ≥ 0. By the

continuity of F0, it is positive at least for small time. Suppose that t0 is the smallest
zero point of F0, such that F0 > 0 in [0, t0). Then, integrating (20) over this interval
we have

0 = F0(t0) = F0(0)+ m(0)F ′
0(0)

∫ t0

0

ds

m(s)

+
∫ t0

0

ds

m(s)

∫ s

0
m(r)

μ2

(1+ r)α+1F0(r)dr

+
∫ t0

0

ds

m(s)

∫ s

0
m(r)dr

∫

Rn

|u(x, r)|pdx > 0,

which leads to a contradiction, and hence F(t) is positive all the time.



Wave-Like Blow-Up for Semilinear Wave Equations 225

Case 2: f ≥ 0, g ≥ 0( �≡ 0). This imply that F0(0) ≥ 0, F ′
0(0) > 0. We apply the

same argument as in the first case to F ′
0. Suppose that t0 is the smallest zero point of

F ′
0, such that F

′
0 is positive on the interval [0, t0). Therefore F0 is strictly monotone

increasing on the same interval, and hence positive due to F0(0) ≥ 0. Letting t = t0
in (20), we again come to a contradiction. Therefore F ′

0 is always strictly positive,
and hence F0(t) > 0 holds for all t > 0.

Coming back to (20), using the positivity of F0, the boundedness of m(t) and
that F ′

0(0) ≥ 0, we obtain the lower bound for F ′
0 as

F ′
0(t) ≥ m(0)

∫ t

0

∫

Rn

|u(x, s)|pdxds for t ≥ 0. (21)

4 Lower Bound for the Weighted Functional

Set

F1(t) :=
∫

Rn

u(x, t)ψ1(x, t)dx,

where ψ1 is the test function introduced by Yordanov and Zhang [25]

ψ1(x, t) := e−tφ1(x), φ1(x) :=
⎧
⎨

⎩

∫

Sn−1
ex·ωdSω for n ≥ 2,

ex + e−x for n = 1.

Lemma 1 (Inequality (2.5) of Yordanov and Zhang [25])

∫

|x|≤t+R

[ψ1(x, t)]
p/(p−1) dx ≤ C(1 + t)(n−1){1−p/(2(p−1))}, (22)

where C1 = C1(n, p,R) > 0.

Next we aim to establish the lower bound for F1. From the definition of energy
solution (7), we have that

d

dt

∫

Rn

ut (x, t)φ(x, t)dx +
∫

Rn

{−ut (x, t)φt (x, t) − u(x, t)Δφ(x, t)} dx

+
∫

Rn

μ1

(1+ t)β
ut (x, t)φ(x, t)dx −

∫

Rn

μ2

(1+ t)α+1 u(x, t)φ(x, t)dx

=
∫

Rn

|u(x, t)|pφ(x, t)dx.



226 N.-A. Lai et al.

Multiplying both sides of the above equality with m(t) yields

d

dt

{

m(t)

∫

Rn

ut (x, t)φ(x, t)dx

}

+ m(t)

∫

Rn

{−ut (x, t)φt (x, t) − u(x, t)Δφ(x, t)} dx

= m(t)

∫

Rn

μ2

(1+ t)α+1 u(x, t)φ(x, t)dx + m(t)

∫

Rn

|u(x, t)|pφ(x, t)dx,

integrating which over [0, t] yields

m(t)

∫

Rn

ut (x, t)φ(x, t)dx − m(0)ε
∫

Rn

g(x)φ(x, 0)dx

−
∫ t

0
ds

∫

Rn

m(s)ut (x, s)φt (x, s)dx −
∫ t

0
ds

∫

Rn

m(s)u(x, s)Δφ(x, s)dx

=
∫ t

0
ds

∫

Rn

m(s)
μ2

(1+ s)α+1 u(x, s)φ(x, s)dx

+
∫ t

0
ds

∫

Rn

m(s)|u(x, s)|pφ(x, s)dx.

Integrating by parts the first term in the second line of the above equality, we have

m(t)

∫

Rn

ut (x, t)φ(x, t)dx − m(0)ε
∫

Rn

g(x)φ(x, 0)dx

− m(t)

∫

Rn

u(x, t)φt (x, t)dx + m(0)ε
∫

Rn

f (x)φt (x, 0)dx

+
∫ t

0
ds

∫

Rn

m(s)
μ1

(1+ s)β
u(x, s)φt (x, s)dx

+
∫ t

0
ds

∫

Rn

m(s)u(x, s)φtt (x, s)dx −
∫ t

0
ds

∫

Rn

m(s)u(x, s)Δφ(x, s)dx

=
∫ t

0
ds

∫

Rn

m(s)
μ2

(1+ s)α+1 u(x, s)φ(x, s)dx

+
∫ t

0
ds

∫

Rn

m(s)|u(x, s)|pφ(x, s)dx.

(23)

Setting

φ(x, t) = ψ1(x, t) = e−tφ1(x) on suppu,
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then we have

φt = −φ, φtt = Δφ on suppu.

Hence we obtain from (23)

m(t){F ′
1(t) + 2F1(t)} = m(0)ε

∫

Rn

{f (x)+ g(x)}φ1(x)dx

+
∫ t

0
m(s)

{
μ1

(1+ s)β
+ μ2

(1+ s)α+1

}

F1(s)ds

+
∫ t

0
ds

∫

Rn

m(s)|u(x, s)|pdx,

which implies

F ′
1(t)+ 2F1(t) ≥ m(0)

m(t)
Cf,gε + 1

m(t)

∫ t

0
m(s)

{
μ1

(1+ s)β
+ μ2

(1+ s)α+1

}

F1(s)ds

≥ m(0)Cf,gε +
∫ t

0
m(s)

{
μ1

(1+ s)β
+ μ2

(1+ s)α+1

}

F1(s)ds, (24)

where

Cf,g :=
∫

Rn

{f (x)+ g(x)}φ1(x)dx > 0.

Integrating the above inequality over [0, t] after a multiplication with e2t , we get

e2tF1(t) ≥ F1(0)+ m(0)Cf,gε

∫ t

0
e2sds

+
∫ t

0
e2sds

∫ s

0
m(r)

{
μ1

(1+ r)β
+ μ2

(1+ r)α+1

}

F1(r)dr.

(25)

Applying a comparison argument, we have that F1(t) > 0 for t > 0. Again, we
should consider two cases due to the hypothesis on the data.

Case 1: f ≥ 0( �≡ 0), g ≥ 0. In this case F1(0) = Cf,0ε > 0. The continuity of
F1 yields that F1(t) > 0 for small t > 0. If there is the nearest zero point t0 to t = 0
of F1, then (25) gives a contradiction at t0.

Case 2: f ≥ 0, g ≥ 0( �≡ 0). If f �≡ 0, we are in the previous case. If f ≡ 0, then
F1(0) = 0, F ′

1(0) = C0,gε > 0. By the continuity of F ′
1, we have that F

′
1 is strictly

positive for small t , hence there exists some t1 > 0 such that F ′
1 > 0 over [0, t1].

Then F1 is strictly monotone increasing on this interval, and then strictly positive on
(0, t1]. Now, suppose by contradiction that t2(> t1) is the smallest zero point of F1,
and so F1 > 0 on (0, t2). Then we claim that F ′

1(t2) ≤ 0. If not, by continuity, F ′
1
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is strictly positive in a small interval (t3, t2] for some time t3 satisfying 0 < t3 < t2.
This implies that F1 is strictly monotone increasing on (t3, t2] and then negative due
to the fact that F1(t2) = 0, a contradiction. We then verify the claim (F ′

1(t2) ≤ 0).
Letting t = t2 in the inequality (24), noting the fact that F1(t2) = 0, F ′

1(t2) ≤ 0 and
F1 ≥ 0 on [0, t2], we come to a contradiction. And we show that F1 > 0 for t > 0
also in this case.

Therefore, coming back to (25), we may ignore the last term, and then we have

e2tF1(t) ≥ F1(0)+ m(0)Cf,gε

∫ t

0
e2sds ≥ 1

2
m(0)Cf,gε(e

2t − 1),

from which, finally, we get the lower bound of F1(t) in the form

F1(t) >
1− e−2

2
m(0)Cf,gε for t ≥ 1. (26)

Remark 3 Note that we have to cut off the time because f can vanish and so F1(0)
can be equal to 0, due to our assumption on the data. If f is not identically equal to
zero, then the lower bound of F1, i.e. (26), holds for all t ≥ 0.

5 Lower Bound for the Functional

By Hölder inequality and using the compact support of the solution (9), we have

∫

Rn

|u(x, t)|pdx ≥ C2(1+ t)−n(p−1)|F0(t)|p for t ≥ 0, (27)

whereC2 = C2(n, p,R) > 0. Plugging this inequality into (21) and then integrating
it over [0, t], we have

F0(t) ≥ C3

∫ t

0
ds

∫ s

0
(1+ r)−n(p−1)F0(r)

pdr for t ≥ 0, (28)

where C3 := C2m(0) > 0.
Moreover, by Hölder inequality, Lemma 1 and estimate (26), we get

∫

Rn

|u(x, t)|pdx ≥
(∫

Rn

|ψ1(x, t)|p/(p−1)dx

)1−p

|F1(t)|p

≥ C
1−p

1

(
1− e−2

2
m(0)Cf,g

)p

εp(1+ t)(n−1)(1−p/2) for t ≥ 1.
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Plugging this inequality into (21) we have

F ′
0(t) ≥ C4ε

p

∫ t

1
(1+ s)(n−1)(1−p/2)ds for t ≥ 1, (29)

where

C4 := m(0)C1−p

1

(
1− e−2

2
m(0)Cf,g

)p

> 0.

Integrating (29) over [1, t], we obtain

F0(t) ≥ C4ε
p

∫ t

1
ds

∫ s

1
(1+ r)(n−1)(1−p/2)dr

≥ C4ε
p(1+ t)−(n−1)p/2

∫ t

1
ds

∫ s

1
(r − 1)n−1dr

= C4

n(n + 1)
εp(1+ t)−(n−1)p/2(t − 1)n+1 for t ≥ 1.

(30)

6 Iteration Argument

Now we come to the iteration argument to get the upper bound of the lifespan
estimates. First we make the ansatz that F0(t) satisfies

F0(t) ≥ Dj (1+ t)−aj (t − 1)bj for t ≥ 1, j = 1, 2, 3, . . . (31)

with positive constantsDj , aj , bj , which will be determined later. Due to (30), note
that (31) is true when j = 1 with

D1 = C4

n(n + 1)
εp, a1 = (n − 1)

p

2
, b1 = n + 1. (32)

Plugging (31) into (28), we have

F0(t) ≥ C3D
p
j

∫ t

1
ds

∫ s

1
(1+ r)−n(p−1)−paj (r − 1)pbj dr

≥ C3D
p
j (1+ t)−n(p−1)−paj

∫ t

1
ds

∫ s

1
(r − 1)pbj dr

≥ C3D
p
j

(pbj + 2)2
(1+ t)−n(p−1)−paj (t − 1)pbj+2 for t ≥ 1.
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So we can define the sequences {Dj }j∈N, {aj }j∈N, {bj }j∈N by

Dj+1 ≥ C3D
p

j

(pbj + 2)2
, aj+1 = paj + n(p − 1), bj+1 = pbj + 2 (33)

to establish

F0(t) ≥ Dj+1(1+ t)−aj+1 (t − 1)bj+1 for t ≥ 1.

It follows from (32) and (33) that for j = 1, 2, 3, . . .

aj = pj−1
(
(n− 1)

p

2
+ n

)
− n, bj = pj−1

(

n + 1+ 2

p − 1

)

− 2

p − 1
.

Employing the inequality

bj+1 = pbj + 2 ≤ pj

(

n + 1+ 2

p − 1

)

in (33), we have

Dj+1 ≥ C5
D

p
j

p2j , (34)

where

C5 := C3
(

n + 1+ 2

p − 1

)2
> 0.

From (34) it holds that

logDj ≥ p logDj−1 − 2(j − 1) logp + logC5

≥ p2 logDj−2 − 2
(
p(j − 2)+ (j − 1)

)
logp + (p + 1) logC5

≥ · · ·

≥ pj−1 logD1 −
j−1∑

k=1

2pk−1(j − k) logp +
j−1∑

k=1

pk−1 logC5

= pj−1

⎛

⎝logD1 −
j−1∑

k=1

2k logp − logC5

pk

⎞

⎠ ,
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which yields that

Dj ≥ exp
{
pj−1 (

logD1 − Sp(j)
)}

,

where

Sp(j) :=
j−1∑

k=1

2k logp − logC5

pk
.

We know that
∑∞

k=0 x
k = 1/(1 − x) and

∑∞
k=1 kx

k = x/(1 − x)2 when |x| < 1.
Then

Sp(∞) := lim
j→∞ Sp(j) = log{Cp/(1−p)

5 p2p/(1−p)2}.

Moreover Sp(j) is a sequence definitively increasing with j . Hence we obtain that

Dj ≥ exp
{
pj−1 (

logD1 − Sp(∞)
)}

, for j sufficiently large.

Turning back to (31), we have

F0(t) ≥ (1+ t)n(t − 1)−2/(p−1) exp
(
pj−1J (t)

)
for t ≥ 1, (35)

where

J (t) =−
(

(n− 1)
p

2
+ n

)

log(1+ t) +
(

n+ 1+ 2

p − 1

)

log(t − 1)

+ logD1 − Sp(∞).

For t ≥ 2, by the definition of J (t), we have

J (t) ≥−
(

(n − 1)
p

2
+ n

)

log(2t)+
(

n+ 1+ 2

p − 1

)

log

(
t

2

)

+ logD1 − Sp(∞)

= γ (p, n)

2(p − 1)
log t + logD1 −

(

(n − 1)
p

2
+ 2n+ 1+ 2

p − 1

)

log 2− Sp(∞)

= log
(
tγ (p,n)/{2(p−1)}D1

) − C6,

where

C6 :=
(

(n − 1)
p

2
+ 2n+ 1+ 2

p − 1

)

log 2+ Sp(∞).
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Thus, if

t > C7ε
−2p(p−1)/γ (p,n)

with

C7 :=
(n(n + 1)eC6+1

C4

)2(p−1)/γ (p,n)

> 0,

then we get J (t) > 1, and this in turn gives that F0(t) → ∞ by letting j → ∞
in (35). Since we assume that t ≥ 2 in the above iteration argument, we require

0 < ε ≤ ε0 :=
(
C7

2

) γ (p,n)
2p(p−1)

.

Therefore we get the desired upper bound,

T ≤ C7ε
−2p(p−1)/γ (p,n)

for 0 < ε ≤ ε0, and hence we finish the proof of Theorem 1.

7 Proof for Theorems 2 and 3

To prove the theorems in low dimensions, we proceed similarly as for Theorem 1,
but we change the first step of the iteration argument to get the desired improvement.

From (20), using (17) and noting that F0 is positive, we have

F ′
0(t) ≥

m(0)

m(t)
F ′
0(0) ≥ C8ε,

where

C8 := m(0)
∫

Rn

g(x)dx > 0

due to the assumption on g. The above inequality implies that

F0(t) ≥ C8εt for t ≥ 0. (36)

By (27) and (36), we have

∫

R2
|u(x, t)|pdx ≥ C9ε

p(1+ t)−n(p−1)tp, (37)
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with C9 := C2C
p
8 > 0. Plugging (37) into (21) and integrating it over [0, t] we

come to

F0(t) ≥ m(0)C9ε
p

∫ t

0
ds

∫ s

0
(1+ r)−n(p−1)rpdr

≥ m(0)C9ε
p(1+ t)−n(p−1)

∫ t

0
ds

∫ s

0
rpdr

= C10ε
p(1+ t)−n(p−1)tp+2 for t ≥ 0

(38)

with

C10 := m(0)C9

(p + 1)(p + 2)
> 0.

Remark 4 Note that the inequality (38) improves the lower bound of (30) for n = 2
and 1 < p < 2, and for n = 1 and p > 1. Hence we may establish the improved
lifespan estimate as stated in Theorems 2 and 3.

In a similar way as in the last section, we define our iteration sequences,
{D̃j }, {̃aj }, {̃bj }, such that

F0(t) ≥ D̃j (1+ t)−ãj t b̃j for t ≥ 0 and j = 1, 2, 3, . . . (39)

with positive constants, D̃j , ãj , b̃j , and

D̃1 = C10ε
p, ã1 = n(p − 1), b̃1 = p + 2.

Combining (28) and (39), we have

F0(t) ≥ C3D̃
p
j

∫ t

0
ds

∫ s

0
(1+ r)−n(p−1)−pãj rpb̃j dr

≥ C3D̃
p
j

(pb̃j + 2)2
(1+ t)−n(p−1)−pãj tpb̃j+2 for t ≥ 0.

So the sequences satisfy

ãj+1 = pãj + n(p − 1),

b̃j+1 = pb̃j + 2,

D̃j+1 ≥ C3D̃
p
j

(pb̃j + 2)2
,
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which means that

ãj = npj − n,

b̃j = p + 1

p − 1
pj − 2

p − 1
,

D̃j+1 ≥ C11
D̃

p

j

p2j
,

where C11 := C3(p − 1)2/[p(p + 1)]2, from which we get

log D̃j ≥ pj−1

⎛

⎝log D̃1 −
j−1∑

k=1

2k logp − logC11

pk

⎞

⎠ .

Then proceeding as above we have

F0(t) ≥ D̃j (1+ t)n−npj

tp
j (p+1)/(p−1)−2/(p−1)

≥ (1+ t)nt−2/(p−1) exp
(
pj−1J̃ (t)

)
,

where

J̃ (t) := −np log(1+ t) +
(

p
p + 1

p − 1

)

log t + log D̃1 − S̃p(∞)

and

S̃p(∞) = log{Cp/(1−p)

11 p2p/(1−p)2}.

Estimating J̃ (t) for t ≥ 1 we get

J̃ (t) ≥ −np log(2t)+
(

p
p + 1

p − 1

)

log t + log D̃1 − S̃p(∞)

= γ (p, n) − 2

p − 1
log t + log D̃1 − S̃p(∞)− np log 2,

and then we obtain that

J̃ (t) ≥ log
(
t(γ (p,n)−2)/(p−1)D̃1

)
− C12 for t ≥ 1,
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where C12 := S̃p(∞)+ np log 2. In particular,

γ (p, n) − 2 =
{
p(3 − p) if n = 2,

2p if n = 1.

By the definition of D̃1, proceeding in the same way as that in the previous section,
we get the lifespan estimate in Theorem 2 when n = 2, and the lifespan estimate in
Theorem 3 when n = 1.

8 Proof for Theorem 4

Let us come back to our initial equation (1), with n = p = 2. In this case we
introduce another multiplier

λ(t) := exp

(
μ1

2

(1+ t)1−β

1− β

)

, (40)

which yields

λ′(t) = μ1

2(1+ t)β
λ(t)

and

λ′′(t) =
(

μ2
1

4(1+ t)2β
− βμ1

2(1+ t)β+1

)

λ(t).

Introducing a new unknown function by

w(x, t) := λ(t)u(x, t),

then it is easy to get

wt = μ1

2(1+ t)β
λu + λut

and

wtt = μ2
1

4(1+ t)2β
λu − βμ1

2(1+ t)β+1 λu + μ1

(1+ t)β
λut + λutt .
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With this in hand the equation (1) can be transformed to

{
wtt − Δw = Qw + λ−1|w|2
w(x, 0) = 0, wt (x, 0) = λ(0)εg(x)

(41)

where

Q = Q(t) := μ2
1

4(1+ t)2β
− βμ1

2(1+ t)β+1 + μ2

(1+ t)α+1 .

A key property of the function Q is its positivity. Indeed, we can write this
function as Q = Q̃/(1+ t)β+1, where

Q̃ = Q̃(t) := μ2
1

4(1+ t)β−1 − βμ1

2
+ μ2

(1+ t)α−β
,

and so it is enough to check the positivity of Q̃. If α = β, then Q̃ is strictly
decreasing to μ2−βμ1/2, that is positive by our assumption. If α < β, than we can
easily find the minimum t0 of Q̃, that is

t0 = −1+
(

μ2
1(β − 1)

4μ2(β − α)

) 1
2β−α−1

,

and verify that the condition in (13) is equivalent to Q̃(t0) ≥ 0.

Remark 5 Observe that:

• when α < β, the condition (13) can be replaced by the more strong but easier
condition

μ2 ≥ μ2
1

4

β − 1

β − α
,

that is equivalent to ask that t0 ≤ 0, so that Q̃ is increasing and positive for t > 0;
• when α > β, Q̃ is strictly decreasing to −βμ1/2 < 0, and then we have no

chance to achieve the positivity of this function for all the time.

Remark 6 We can rewrite the function Q also as

Q(t) = 1

4(1+ t)2

[(
μ1

(1+ t)β−1 − β

)2

+ 4μ2

(1+ t)α−1 − β2

]

,

which implies some connection with the definition (5) of δ in the scale invariant
case (β = 1) with positive mass and α = 1.
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Now, it is well-known that our integral equation is of the form

w(x, t) = λ(0)ε

2π

∫

|x−y|≤t

g(y)
√
t2 − |x − y|2dy

+ 1

2π

∫ t

0
dτ

∫

|x−y|≤t−τ

Q(τ)w(y, τ ) + λ−1(τ )|w(y, τ )|2
√
(t − τ )2 − |x − y|2 dy.

(42)

Before we can move forward, we need the positivity of the solution.

Lemma 2 Under the assumption of Theorem 4, the solution w of (41) is positive.

Proof Let w̃ = w̃(x, t) be the classical solution of the Cauchy problem

{
w̃t t − Δw̃ = Q|w̃| + λ−1|w̃|2, in Rn × [0,∞),

w̃(x, 0) = 0, w̃t (x, 0) = λ(0)εg(x), x ∈ Rn.

It is clear from the analogous of (42) for w̃ that this function is positive, and then
satisfies the system (41). But u is the unique solution of (1), and so w = λu is the
unique solution of (41). Then w ≡ w̃ ≥ 0.

By Lemma 2, we can neglect the second term on the right-hand side of (42).
Using the relation |y| ≤ R, |x| ≤ t +R due to the support property in the first term
on the right-hand side, from which the inequalities

t − |x − y| ≤ t − ||x| − |y|| ≤ t − |x| + R for |x| ≥ R,

t + |x − y| ≤ t + |x| + R ≤ 2(t + R),

we obtain that

w(x, t) ≥ λ(0)ε

2
√
2π

√
t + R

√
t − |x| + R

∫

|x−y|≤t

g(y)dy for |x| ≥ R.

If we assume |x| + R ≤ t , which implies |x − y| ≤ t for |y| ≤ R, we get

∫

|x−y|≤t

g(y)dy = ‖g‖L1(R2) ,

and then we obtain

w(x, t) ≥ λ(0) ‖g‖L1(R2)

2
√
2π

√
t + R

√
t − |x| + R

ε for R ≤ |x| ≤ t − R. (43)
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Defining the functional

W(t) :=
∫

R2
w(x, t)dx,

we reach to

W ′′(t) = Q(t)W(t) + λ−1(t)

∫

R2
|w(x, t)|2dx.

Noting that W is also positive by Lemma 2 (or by the fact that W = λF ), then we
have

W ′′(t) ≥ λ−1(t)

∫

R2
|w(x, t)|2dx ≥

∫

R≤|x|≤t−R

|w(x, t)|2dx for t ≥ 2R,

where we used the fact that λ−1(t) > 1. Plugging (43) into the right-hand side of
the above inequality, we have

W ′′(t) ≥
λ(0)2 ‖g‖2

L1(R2)

8π2(t + R)
ε2

∫

R≤|x|≤t−R

1

t − |x| + R
dx,

which yields

W ′′(t) ≥
λ(0)2 ‖g‖2

L1(R2)

4π(t + R)
ε2

∫ t−R

R

r

t − r + R
dr for t ≥ 2R.

Then, the rest of the demonstration is exactly the same as that of Theorem 4.1 in
[17], and we omit the details here.

Remark 7 We want to emphasize that the results stated in our four Theorems are
still true if we have no damping term, that is if μ1 = 0. In fact, a key point in
our proofs was to introduce multipliers to absorb this term. If μ1 = 0, then m ≡
λ ≡ 1 and the demonstrations proceed analogously. In this case we do not need any
additional condition on μ2 in Theorem 4, but it is enough to ask μ2 > 0.
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4D Semilinear Weakly Hyperbolic Wave
Equations

Sandra Lucente

Abstract In this paper we exploit the 4Dimensional weakly hyperbolic equation

utt − a(t)Δu = −b(t)|u|p−1u .

We establish a global existence of radial solutions in a subcritical range of p. This
range depends on the zero of a(t) and b(t). In particular we deal with a(t) = |t −
t0|λ1 and b(t) = |t − t0|λ2 with λ1, λ2 ≥ 0. In the case λ1 = 2 the radial assumption
can be omitted.

1 Introduction

In the last decades many efforts have been done for describing existence and
properties of the solutions of wave-type equations with time-variable coefficients.
In particular the decay properties of linear wave-type equations with time-variable
coefficients and the existence for small data solution of semilinear corresponding
equations have been analyzed in many aspects (see [6] and the contained refer-
ences). On the contrary few results concern the semilinear case with large data. In
this paper we add another step in this direction.

We consider the global existence result for the following Cauchy problem

⎧
⎨

⎩

utt − |t0 − t|λ1Δu = −|t0 − t|λ2 |u|p−1u, (t, x) ∈ R+ × R
4

u(0, x) = u0(x), x ∈ R
4

∂tu(0, x) = u1(x), x ∈ R
4

(1)
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with t0 > 0, λ1, λ2 ≥ 0, p > 1. According to the heuristic argument contained in
[15], the critical exponent of this equation with large data is attended to be

pc(λ1, λ2, n) = 1+ 4( λ22 + 1)

n(λ12 + 1)− 2
. (2)

For n = 4, this means

pc(λ1, λ2, 4) = 1+ λ2 + 2

λ1 + 1
.

In particular for λ1 = 0 one has

pc(0, λ2, 4) = 3+ λ2.

In turn for λ2 = 0 this gives the classical exponent

pc(0, 0, 4) = 3.

The case λ1 = λ2 = 0 has a long history: starting from 1961 with p < pc(0, 0, 3) =
5 studied by Jörgens in [11], this result was extended in higher dimensions twenty
years later by Brenner and von Whal in [1]. While reading this paper, we see that
energy estimates is enough to treat the case n = 3, while for n ≥ 4 the Lp − Lq

estimates with p �= q seems necessary.
The critical case p = pc(0, 0, 3) = 5 was treated in small data context by Rauch

[18]. Struwe in [22] and [23] considered radial data, and finally Grillakis [9, 10]
removed such assumption. The critical case in higher dimensions can be found in
[12] and [21]. Again to consider the high dimensions, it is necessary to use the
Lp − Lq estimates. An exception is given by the result of Kim Lee [14] where the
case n = 4 is related only by energy method.

For the supercritical 3D case, some sufficient conditions in term of the Sobolev
norm of the solution have been given by Kenig and Merle in [13].

Coming back to (1), with λ2 = 0, we recall that the weakly hyperbolic semilinear
results started from the paper [4] where Jorgens’s theorem is generalized. The
critical three-dimensional case p = pc(λ1, λ2, 3) has been studied in [7] and [15]
with a smallness assumption on the initial data. In some sense, in these papers,
Rauch’s result has been extended. In [16] such smallness assumption is removed
and the radial case is considered. Concerning other dimensions we can quote [5] for
the case n = 1, 2, though the in 2D case the exponent do not reach the conjectured
critical case. In Galstian’s paper [8], one can find some results in one dimension.

To the best of our knowledge, in the weakly hyperbolic setting and higher
dimension few results are known. Some non-existence results for utt − |t|λΔu =
f (u), requires wrong sign nonlinear term (see [3] and [2]). Concerning global
existence, one needs Strichartz estimates for Grushin type operator like ∂tt − t�Δ.
These are known only for � ∈ N and t → ∞ (see Reissig [19] and Yagdjian [24]).
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On the contrary, while studying (1), we take not-integer λ1 and t → t0. In [17] the
toy model λ1 = 2, λ2 = 4 and p = 2 is considered. In the present paper, we enlarge
the ranges of these parameters still remaining in the subcritical case but we pay a
radial assumption. In a forthcoming paper we will consider the more delicate critical
small data case.

Theorem 1 Let (u0, u1) ∈ C∞(R4) × C∞(R4) radial compactly supported
function. Let T > 0. There exists a unique radial solution u ∈ C2([0, T ] × R

4)

for the Cauchy Problem (1) provided

2 ≤ p < 1+ λ2 + 2

λ1 + 1
≤ 3 (3)

provided

λ1 − 1 < λ2 ≤ 2λ1 . (4)

In order to emphasize where the radial assumption comes into play, we will not
consider radial solution until Sect. 3.4. Then in Sect. 4 we will explain how the radial
assumption can be omitted if λ1 = 2.

1.1 Notation

We write A � B if there exists a positive constant C such that A(y) ≤ CB(y) for
all y in the intersection of the domains of A and B.
Let 〈ξ〉 := √

1+ |ξ |2. For fractional Sobolev spaces, we use the norm

‖f ‖Hs(R4) = ‖〈ξ〉s û‖L2(R4) = ‖〈D〉s û‖L2(R4) .

2 Preliminary Results

In [5], one can find a direct proof of the local existence and uniqueness for

utt − a(t)Δu = f (t, x, u)

with a(t) ≥ 0 a continuous piecewise C2 function with zero of finite order. By
Remark 2.2 of [5] we see that this equation obeys to the finite speed of propagation
property, though we cannot have strong Huyghens principle. In particular the
solution is compactly supported in space variable.
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Let T > 0. If T ∈ [0, t0[, and t ∈ [0, T ], then we have

a(t) := (t0 − t)λ1 > 0 , b(t) := (t0 − t)λ2 > 0.

In particular the equation in (1) is strictly hyperbolic in [0, T ] and classical theory
applies. From semilinear point of view we need a critical or subcritical strictly
hyperbolic assumption, this means p ≤ 3. Since in (4) we put

λ2 ≤ 2λ1 ,

this condition is satisfied. According to [1], we see that there exists a unique solution
u ∈ C2([0, T ] × R

4). Suppose we can prolong this solution up to T = t0, then the
strictly hyperbolic argument leads to the solution in any subinterval [t0, T1] with
T1 > 0.

In order to prove Theorem 1, it remains to consider the case T = t0. In particular
it is enough to prove that for any x ∈ R

4 we have

lim
t→t−0

|u(t, x)| < +∞ . (5)

2.1 Energy Estimates

It worthy to mention that in [0, t0], the functions a(t) and b(t) decrease. Let us
denote the energy density of the solution to

utt (t, x)− (t0 − t)λ1Δu(t, x) = −(t0 − t)λ2 |u(t, x)|p−1u(t, x) (6)

by means of

e(u)(t, x) = 1

2
|ut (t, x)|2 + (t0 − t)λ1

|∇u(t, x)|2
2

+ (t0 − t)λ2
|u(t, x)|p+1

p + 1
. (7)

Multiplying by ut the Eq. (6), one gets

∂t e(u)−(t0−t)λ1div(ut∇u) = −λ1(t0−t)λ1−1 |∇u|2
2

−λ2(t0−t)λ2−1 |u|p+1

p + 1
(8)

with negative right side. For the energy we write

E(u)(t) =
∫

R4
e(u)(t, x)dx .
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We denote the initial energy by

E0 := E(u)(0) =
∫

R4
e(u)(0, x)dx .

After integration by parts from (8), we deduce E(u)(t) − E(u)(0) ≤ 0 that is

E(u)(t) ≤ E0 ∀ t ∈ [0, t0]. (9)

Combining this information with the Sobolev embedding theorem

Hs(R4) ↪→ L∞(R4) , s > 2 ,

the aim (5) reduces to find a continuous function C(t) defined on [0, t0] such that

||u(t, ·)||Hs
x (R

4) ≤ C(t) with s > 2. (10)

Let us introduce the s-energy:

Es(t) = 1

2
||ut (t, ·)||2Hs

x (R
4)

+ 1

2
(t0 − t)λ1 ||∇u(t, ·)||2

Hs
x (R

4)
+ 1

2
||u(t, ·)||2

Hs
x (R

4)
.

Deriving in time, commutingΔ with 〈D〉s , the formal operator calculus gives

E′
s (t) = −1

2
λ1(t0 − t)λ1−1||∇u(t, ·)||2

Hs
x (R

4)

+
∫

R4
〈D〉sut

(
〈D〉su− (t0 − t)λ2〈D〉s (|u|p−1u)

)
dx

and finally

E′
s(t) ≤ ||∂tu(t, ·)||Hs

x (R
4)

(
||u(t, ·)||Hs

x (R
4) + (t0 − t)λ2 |||u(t, ·)|p−1u(t, ·)||Hs

x (R
4)

)
.

By using a standard approximation argument, this inequality holds for the solution
of (1). Let us recall the Moser type inequality

|||f |p−1f ||Hs(Rn) ≤ C ||f ||Hs(Rn)||f ||p−1
L∞(Rn).

which holds for s > 0 if

p is integer or s < p or s < p + 1/2 if s is integer .

This can be seen in [20]. This gives the restriction

p ≥ 2 .
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Suppose that we are able to find that, for all t ∈ [0, t0[ and x ∈ R
4, it holds

|u(t, x)| � (t0 − t)−β for β <
λ2 + 1

p − 1
and p ≥ 2 , (11)

then we get

E′
s(t) � Es(t)(1+ (t0 − t)λ2(t0 − t)−β(p−1)) .

By the Gronwall’s lemma, we conclude

||u(t, ·)||2
Hs

x (R
4)

≤ Es(t) � Es(0)et−t0e
− (t0−t)λ2−β(p−1)+1

λ2−β(p−1)+1 .

This relation implies (10) and hence (5). Our aim is now the pointwise estimate (11).

2.2 The Liouville Transformation

We associate to a(t) = (t0 − t)λ1 the function φ which satisfies

{
φ′(S) = a(φ(S))−1/2 S ∈ [0, T0),
φ(0) = 0,

with

T0 =
∫ t0

0
a(s)1/2 d s = tΛ0

Λ
with Λ = λ1 + 2

2
.

Hence

φ(T ) = t0 − (Λ(T0 − T ))
1
Λ , (12)

or equivalently

(t0 − φ(T )) = (Λ(T0 − T ))
1
Λ . (13)

In particular

φ′(T ) = (Λ(T0 − T ))
1−Λ
Λ = (Λ(T0 − T ))

− λ1
λ1+2 (14)
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and

a(φ(T )) = (Λ(T0 − T ))−2 1−Λ
Λ = (Λ(T0 − T ))

2λ1
λ1+2 . (15)

Following [15], we can check that if u solves (1) in [0, t0), then the function

w(T , x) = (φ′(T ))−1/2u(φ(T ), x)

= a(φ(T ))1/4u(φ(T ), x) (16)

= (Λ(T0 − T ))
λ1

2(λ1+2) u(φ(T ), x),

defined in [0, T0), solves the equation

wTT − Δw = −
(
Λ2 − 1

4Λ2 (T0 − T )−2w + (Λ(T0 − T ))−
α(λ1,λ2,p)

Λ |w|p−1w

)

, (17)

where

α(λ1, λ2, p) = 3+ p

4
λ1 − λ2 .

Concerning the initial data, we have

w(0, x) = t
λ1
4

0 u0(x) , (18)

∂tw(0, x) = −λ1

4
t
− λ1

4 −1
0 u0(x)+ t

− λ1
4

0 u1(x). (19)

Moreover, starting from (11), our aim is to prove that for any (T , x) ∈ [0, T0[×R
4,

it holds

|w(T , x)| � (φ′(T ))−1/2(t0 − φ(T ))−β .

Recalling (13) and (14), given p ≥ 2, we reduce the proof of Theorem 1 to find

β <
λ2 + 1

p − 1
, (20)

such that

|w(T , x)| � (T0 − T )
− 4β−λ1

2(λ1+2) . (21)
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2.3 Representation Formula

In order to have a representation formula of the solution (17) with initial
data (18), (19), we use the notation of [14]. Let us fix x ∈ R

4 and put

y = x − x.

Defined

[w] = [w](T , y) = w(T − |y|, y + x) ,

one has

∇[w] = [∇w] − [∂T w] y

|y| ,
∂T [w] = [∂T w] ,
∇[∂T w] = [∇∂T w] − [∂2T T w] y

|y| .

We can deduce that

Δ[w] = [Δw] − 2[∇∂T w] · y

|y| + [∂2T T w] − 3

|y| [∂T w]

= [Δw] − 2∇[∂T w] · y

|y| − [∂2T T w] − 3

|y| [∂T w] .

It follows

Δ[w] + 2∇[∂T w] · y

|y| +
3

|y| [∂T w] = [Δw] − [∂2T T w] .

As conclusion

∇ ·
{

1

|y|2 [∇w] + y

|y|3 [∂T w] + 2
y

|y|4 [w]
}

= [Δw]
|y|2 − [∂2T T w]

|y|2 − 1

|y|3 [∂T w] .

Integrating on a D domain, by using (17), we have

∫

D

∇ ·
{

1

|y|2 [∇w] + y

|y|3 [∂T w] + 2
y

|y|4 [w]
}

dy

=
∫

D

− 1

|y|3 [∂T w] + 1

|y|2
Λ2 − 1

4Λ2 [(T0 − T )−2w] d y

+
∫

D

1

|y|2
[

(Λ(T0 − T ))−
α(λ1 ,λ2,p)

Λ |w|p−1w

]

d y.



4D Semilinear Weakly Hyperbolic Wave Equations 249

Let us fix z = (T , x) ∈ [0, T0[×R
4 and 0 < ε < T . In what follows we consider

D = {ε ≤ |x − x| ≤ T } .

Being y = x − x, rewriting the integral identity in T = T , by divergence theorem
we have

∫

|y|=T

1

|y|2
{

y

|y| · ∇w(0, y + x)+ ∂tw(0, y + x)+ 2

|y|w(0, y + x)

}

dσy

=
∫

|y|=ε

1

|y|2
{

y

|y| · ∇w(T − ε, y + x)+ ∂T w(T − ε, y + x) + 2

|y|w(T − ε, y + x)

}

dσy

+
∫

ε≤|y|≤T

1

|y|2
{

− 1

|y|∂T w(T − |y|, y + x̄)

}

dy

+
∫

ε≤|y|≤T

1

|y|2
{
Λ2 − 1

4Λ2
(T0 − T + |y|)−2w(T − |y|, y + x)

}

dy

+
∫

ε≤|y|≤T

1

|y|2
(
Λ(T0 − T + |y|))−

α(λ1 ,λ2,p)
Λ |w(T − |y|, x)|p−1w(T − |y|, y + x)dy

For ε → 0 we obtain

∫

|y|=ε

1

|y|2
{

y

|y| · ∇w + ∂T w + 2

|y|w(

}

(T − ε, y + x)dσy

=
∫

|z|=1

ε3

ε2

{

z · ∇w + ∂tw + 2

ε
w

}

(T − ε, x + εz)dσz → 2ω4w(T , x)

Here ω4 = 2π2 is the measure of the unit sphere in R4. We can conclude

w(T , x) = wD(x) + wL(T , x)+ wM(T , x) + wN(T , x) ,

where

wD(T , x) = 1

4π2

∫

|y|=T

t
λ1
4

0
y

|y|3 · ∇u0(y + x) + 2

|y|3 t
λ1
4

0 u0(y + x)dσy

+ 1

4π2

∫

|y|=T

−λ1

4
t
− λ1

4 −1
0

u0(y + x)

|y|2 + t
− λ1

4
0 u1(y + x)dσy ;

the linear part is given by

wL(T , x) = 1

4π2

∫

|y|≤T

1

|y|3 ∂T w(T − |y|, y + x)dy

= 1

4π2
√
2

∫ T

0

∫

|x−x|=T−R

(T − R)−3∂Rw(R, x)dσxdR ;
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the mass term with time-singular coefficient is

wM(T , x) = − Λ2 − 1

16Λ2π2

∫

|y|≤T

1

|y|2 (T0 − T + |y|)−2w(T − |y|, y + x)dy

= − Λ2 − 1

16Λ2π2
√
2

∫ T

0

∫

|x−x|=T−R

(T0 − R)−2(T − R)−2w(R, x)dσxdR ;

the nonlinear part is

wN(T , x) =

= −1

4π2

∫

|y|≤T

1

|y|2
(
Λ(T0 − T + |y|))−

α(λ1,λ2 ,p)
Λ (|w|p−1w)(T − |y|, y + x)dy

= −1

4π2
√
2

∫ T

0

∫

|x−x|=T−R
(Λ(T0 − R))−

α(λ1 ,λ2 ,p)
Λ (T − R)−2(|w|p−1w)(R, x)dσxdR .

3 Proof of Theorem 1

The main idea is to use Euler integral equation, see [4].

Lemma 1 Let γ > 0 and δ > 1. Fixed r0 > t > 0, we considered the integral
equation

y(t) = γ + δ(δ − 1)
∫ t

0
(t − s)(r0 − s)−2y(s)ds .

For any and t ∈ (0, r0), its solution satisfies

y(t) ≤ C(γ, δ, r0)(r0 − t)1−δ .

The proof of this Lemma is not difficult: formally we derive the Euler ODE from
the integral expression:

y ′′(t) = δ(δ − 1)(r0 − t)−2y(t)

with y(0) = γ and y ′(0) = 0 and t ∈ (0, r0).
In order to prove (21)–(20), we set

μ(R) := sup
[0,R]×R4

|w(S, x)|.

and prove that

μ(T ) ≤ C1(T )+ C2

∫ T

0
(T − R)(T0 − R)−2μ(R) d R (22)
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for a positive function C1(T ) bounded for T̄ → T0, and suitable C2 > 0
independent of T̄ . Once we establish this, we have

μ(T ) � (T0 − T )1−δ , δ = 1+√
1+ 4C2

2
.

In order to gain (21), we need one of the following conditions on C2 > 0:

0 ≤
√
1+ 4C2 − 1

2
≤ 4β − λ1

2(λ2 + 1)
≤ 1 (23)

or

0 ≤
√
1+ 4C2 − 1

2
≤ 1 ≤ 4β − λ1

2(λ2 + 1)
. (24)

or

1 ≤
√
1+ 4C2 − 1

2
≤ 4β − λ1

2(λ2 + 1)
, (25)

with β < λ2+1
p−1 .

3.1 The Estimate for the Initial Term

The estimate

wD(x) ≤ CD , (26)

is trivial and gives the constant function on [0, T0] with value CD > 0 independent
on T̄ .

3.2 The Estimate for the Mass Term

Directly we have

|wM(T , x)| ≤ Λ2 − 1

8Λ2
√
2

∫ T

0
(T0 − R)−2(T − R)μ(R)dR , (27)

with

CM := Λ2 − 1

8Λ2
√
2
.

This value will be important in the estimate of C2.
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3.3 Estimates for the Nonlinear Part

Let us start with Hölder inequality:

|wN(T , x)| ≤ (28)

≤ 1

4π2
√
2

∫ T

0

∫

|x−x|=T−R

(Λ(T0 − R))−
α(λ1 ,λ2,p)

Λ (T − R)−2|w(R, x)|pdσxdR

≤ (2π2)
2

p+1

4π2
√
2

μ(T )

(∫ T

0
(T − R)3−(p+1) (Λ(T0 − R))m1 dR

) 2
p+1

× (29)

×
(∫ T

0

∫

|x−x|=T−R

(Λ(T0 − R))m2 |w(R, x)|p+1dσxdR

) p−1
p+1

,

where

m1
2

p + 1
+ m2

p − 1

p + 1
= −α(λ1, λ2, p)

Λ
= 4λ2 − λ1(p + 3)

2(λ1 + 2)
. (30)

By energy estimates we will control the last factor.
Let us introduce some notations. Fixed t1, t2, t ∈ [0, t], we put

K
t1
t2
(z) =

{
z = (t, x) ∈ [t1, t2] ×R

4 | |x − x| ≤ φ−1(t)− φ−1(t)
}

,

Kt1(z) = Kt
t1
(z) , K(z) = Kt

0(z)

M
t1
t2
(z) =

{
z = (t, x) ∈ [t1, t2] ×R

4 | |x − x| = φ−1(t)− φ−1(t)
}

,

M(z) = Mt
0(z) ,

D(t : z) = {x ∈ R
4| z = (t, x) ∈ K(z)} .

Due to (12), for t = t0, we have

K(t0, x) =
{

z = (t, x) ∈ [0, t0] ×R
4
∣
∣
∣
∣ |x − x| ≤ (t0 − t)Λ

Λ

}

,

M(t0, x) =
{

z = (t, x) ∈ [0, t0] ×R
4
∣
∣
∣
∣ |x − x| = (t0 − t)Λ

Λ

}

.

Recalling (7), we write the localized energy

E(u : D(t : z)) =
∫

D(t :z)
e(u)(t, x)dx .
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The energy flux is given by

dz(u)(t, x) = 1

2

∣
∣
∣
∣∂tu(t, x)− (t0 − t)

λ1
2

x − x

|x − x| · ∇u(t, x)

∣
∣
∣
∣

2

+(t0−t)λ2
|u(t, x)|p+1

p + 1
.

Lemma 2 Fixed z = (t, x) ∈ [0, t0]×R
4, let u ∈ C2(Kt

0(z)) be the solution of (1).
For any 0 ≤ t1 < t2 < t ≤ t0, it holds

E(u : D(t1 : z)) = E(u : D(t2 : z)) +
∫

M
t2
t1
(z)

dz(u)
√
1+ (t0 − t)−λ1

do

+
∫

K
t2
t1
(z)

λ1

2
(t0 − t)λ1−1|∇u|2 + λ2(t0 − t)λ2−1 |u|p+1

p + 1
dxdt . (31)

Proof We integrate (7) on K
t2
t1
(z). By divergence theorem, we have

∫

D(t2:z)
e(u)dx −

∫

D(t1:z)
e(u)dx +

∫

M
t2
t1
(z)

e(u)ntdo =
∫

K
t2
t1
(z)

∂t e(u)dz

=
∫

K
t2
t1
(z)

(t0 − t)λ1(∇ut∇u + Δu)dxdt −
∫

K
t2
t1
(z)

λ1(t0 − t)λ1−1 |∇u|2
2

dxdt

−
∫

K
t2
t1
(z)

λ2(t0 − t)λ2−1 |u|p+1

p + 1
dxdt .

Hence

E(u : D(t1 : z)) = E(u : D(t2 : z))+
∫

M
t2
t1
(z)

e(u)nt − (t0 − t)λ1ut∇u · nx do

+
∫

K
t2
t1
(z)

λ1

2
(t0 − t)λ1−1|∇u|2 + λ2(t0 − t)λ2−1 |u|p+1

p + 1
dxdt .

The outward normal to this cone is given by

n(t, x) = 1
√
1+ (φ′(φ−1(t)))2

(

1, φ′(φ−1(t))
x − x

|x − x|
)

= 1
√
1+ (t0 − t)−λ1

(

1, (t0 − t)−
λ1
2

x − x

|x − x|
)

.
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It follows that

√
1+ (t0 − t)−λ1

(
e(u)nt − (t0 − t)λ1∂tu∇u · nx

)

= 1

2
|∂tu|2 + (t0 − t)λ1

|∇u|2
2

+ (t0 − t)λ2
|u|p+1

p + 1
− (t0 − t)

λ1
2 ∂tu∇u · x − x

|x − x|
= dz(u)(t, x) .

We get the thesis. 01
Being λ1, λ2 ≥ 0, recalling that the equation is defocusing, from this lemma we
deduce that t ∈ [0, t[→ E(u : D(t : z)) is a decreasing function. By using (9) we
conclude

E(u : D(t : z)) ≤ E0 for any t ∈ [0, t], t ∈ [0, t0] .

Moreover

∫ φ−1(t2)

φ−1(t1)

∫

|x−x|=φ−1(t)−R
dz(u)(φ(R), x)dσxdR =

∫

M
t2
t1
(z)

dz(u)√
1+ (t0 − t)−λ1

do ≤ E0 .

In particular

∫ φ−1(t2)

φ−1(t1)

∫

|x−x|=φ−1(t)−R

(t0 − φ(R))λ2 |u(φ(R), x)|p+1dσxdR ≤ (p + 1)E0 .

In terms of T1, T2, T ∈ [0, T0] and w(R, x) this means

∫ T2

T1

∫

|x−x|=T−R

(Λ(T0 − R))
4λ2−λ1(p+1)

2(λ1+2) |w(R, x)|p+1dσxdR ≤ (p + 1)E0 .

This suggest to take in (29)

m2 = 4λ2 − λ1(p + 1)

2(λ1 + 2)
, m1 = 2λ2 − λ1(p + 1)

λ1 + 2

obtaining

|wN(T , x)| ≤ μ(T )

2
√
2

(
p + 1

2π2 E0

) p−1
p+1

(∫ T

0
(T − R)2−p (Λ(T0 − R))m1 dR

) 2
p+1

.

The convergence of

∫ T

0
(T − R)2−p (Λ(T0 − R))m1 dR
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for T̄ → T0 require exactly

2− p + m1 > −1 ⇔ p < pc.

In particular given 0 < ε < 1 there exists T̄ε > 0 such that, splitting the integral
domain in (28) as [0, T̄ ] = [0, T̄ε] ∪ [T̄ε, T̄ ], we can estimate

|wN(T , x)| ≤ Cε(Tε)+ εμ(T ) . (32)

This means

Cε(Tε) = (μ(Tε))
p

2
√
2

∫ T ε

0
(Λ(T0 − R))−

α(λ1,λ2 ,p)
Λ (T0 − R)dR ,

and

1

2
√
2

(
p + 1

2π2 E0

) p−1
p+1

(∫ T

T̄ε

(T − R)2−p (Λ(T0 − R))m1 dR

) 2
p+1

< ε .

In the last quantity no singularity appears; we will absorb this constant in C1(T ).

3.4 The Estimate for the Linear Term

First we change variable setting, we put

ξ(R, z) = x̄ + (T̄ − R)z .

Let ∂rad = z
|z| · ∇z, since |z| = 1 it follows

(∂Rw)(R, ξ(R, z)) = ∂R(w(R, ξ(R, z))) − (∂radw)(R, ξ(R, z)) .

We have

wL(T , x) = 1

4π2
√
2

∫ T̄

0

∫

|z|=1

(∂Rw)(R, ξ(R, z))

(T̄ − R)3
(T̄ − R)3 dσz dR

= 1

4π2
√
2

∫ T̄

0

∫

|z|=1
∂R(w(R, ξ(R, z))) d σz dR

− 1

4π2
√
2

∫ T̄

0

∫

|z|=1
∂radw(R, ξ(R, z))dσz dR := I + II.
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Changing order of integration, since ξ(T̄ , z) = x̄, we get

|I | ≤ 1

4π2
√
2

∫

|z|=1
w(T̄ , x̄)dσz+ 1

4π2
√
2

∫

|z|=1
w(0, T̄ z+x̄)dσz ≤ μ(T̄ )

2
√
2
+μ(0)

2
√
2
.

In order to estimate II the radial assumption comes into play.
First we notice that, being u0, u1 radial initial data, since the equation is invariant

with respect to the space rotations, the uniqueness result implies that the local
solution is radial in the space variable.

Once we prove that the only possible blow-up point is into the origin, then (11)
is trivially satisfied for any x �= 0. We shall prove this in Lemma 3. Hence we deal
only with II when x̄ = 0 and we can rewrite

II = 1

4π2
√
2

∫ T̄

0

∫

|z|=1
∂radw(R, (T̄ − R)z)dσzdR

= 1

4π2
√
2

∫ T̄

0
(T̄ − R)−1

∫

|z|=1
∂rad(w(R, (T̄ − R)|z|))dσzdR

In particular we can use the estimate

∫

|z|≤1
∂radg(z) dz ≤ nwn‖g‖L∞(|z|≤1) ,

which holds for any radial function g and n ≥ 1. We arrive at

|II| ≤ 2√
2

∫ T̄

0
(T̄ − R)−1μ(R)dR .

Fixed ε > 0, considered Tε > 0 as in (29), can take Tε < T2 < T̄ such that

|II| ≤ 2√
2
μ(T2) ln

(

1+ T2

T̄ − T2

)

+ 2√
2

∫ T̄

T2

(T̄ − R)(T0 − R)−2μ(R)dR .

As a conclusion we have

|wL(T̄ , 0)| ≤ 1

2
√
2
μ(T̄ ) + (33)

+ CL(T2, T̄ ) + 1

2
√
2

∫ T̄

0
(T̄ − R)(T0 − R)−2μ(R)dR ,
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with

CL(T2, T̄ ) = μ(0)

2
√
2
+ ln

(

1+ T2

T̄ − T2

)

μ(T2) .

It remains to prove the following lemma

Lemma 3 If x̄ ∈ R
4 such that

lim
t→t0

|u(t, x̄)| = +∞ (34)

then x̄ = 0.

Proof From (34) we deduce that for any M > 1 there exists 0 < tM < t0 such that
for any s ∈ [tM, t0) it holds

|u(s, x̄)| ≥ M .

Due to the continuity of the local solution we can find R(s) > 0 such that

|u(s, x)| ≥ M |x − x̄| ≤ R(s) .

Let

RM = min

{
tΛ0

2ΛΛ
, sup
s∈[tM,t0)

R(s)

}

.

It follows that

∫

|x−x̄|≤ (t0−s)Λ

Λ

|u(s, x)|p+1dx ≥ 2π2(t0 − s)4Λ

Λ4

for any s ≥ max{tM, t0/2}.
Assume by absurd that x̄ �= 0. Given K ∈ N we can choose tK ≥ 0 and K

distinct elements x1, . . . , xK ∈ R
4 such that

|xh| = |x̄| h = 1, . . . ,K

D(t : zk) ∩ D(t : zh) = ∅ h �= k, zh = (t0, xh), t ∈ [tK, t0) .

For any h ∈ N we can recursively associate M(h) > 0 such that th ≥
max{th−1, tM(h−1)} and

M(h)p+1

p + 1

2π2(t0 − th)
4Λ+λ2

Λ4 ≥ 1 .
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We have

K ≤
K∑

h=1

(t0 − th)
λ2

∫

|x−x̄|≤ (t0−th)
Λ

Λ

|u(th, x)|p+1

p + 1
dx

By using the decreasing property of the local energy, having in mind (9), we
conclude

K ≤
K∑

h=1

(t0 − t1)
λ2

∫

|x−xh|≤ (t0−t1)
Λ

Λ

|u(t1, x)|p+1

p + 1
dx

≤
∫

∪K
h=1D(t1:zh)

e(u)(t1)dx ≤ E(u)(t1) ≤ E0.

For K → ∞ we find the contradiction. 01

3.5 Proof of Theorem 1, Conclusion

Summarizing (26), (27), (32), (33), for any fixed T̄ < T0 and 0 < ε < 1 there exist
T2 > Tε > 0 such that

(

1− ε − 1

2
√
2

)

μ(T̄ ) ≤ CD + CL(T2, T̄ )+ Cε(Tε)+

+
(
Λ2 − 1

8Λ2
√
2
+ 2√

2

) ∫ T

0
(T0 − R)−2(T − R)μ(R)dR .

This means that (22) is satisfied with

C1(ε, T̄ ) = 2
√
2(CD + CN(Tε)+ CL(T2, T̄ ))/(2

√
2− 1− ε) ,

C2(ε) = Λ2 − 1

4Λ2(2
√
2− 1− ε)

+ 2√
2
.

We see that C1(ε, T̄ ) is continuous for T̄ in a neighborhood of T̄0.
Let us fix 0 < ε < 2

√
2 − 2. We gain 2

√
2 − 1 − ε ≥ 1 and C2(ε) ≤ 2 − 2√

2
.

Hence (25) is excluded. Distinguishing the case

4β − λ1

λ2 + 1
≤ 2 or

4β − λ1

λ2 + 1
≥ 2

we see that one between (23), (24) is satisfied. This conclude the proof.
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4 Remark, for the Speciale Case λ1 = 2

The radial assumption only comes in the estimate of II in Sect. 3.4. We see that

|II| ≤ 1

4π2
√
2

∫ T̄

0
a(φ(R))

1
4

∫

|z|=1
z · ∇u(φ(R), x̄ + (T̄ − R)z)dσzdR

≤ 1

4π2
√
2

(∫ T̄

0

∫

|z|=1
a(φ(R))−

1
2 dσzdR

)1/2

×

×
(∫ T̄

0

∫

|z|=1
a(φ(R))|∇u|2(φ(R), x̄ + (T̄ − R)z)dσzdR

)1/2

≤ 1

4π2E
1
2
0

(

2π2
∫ T̄

0
(2(T̄ − R))−

1
2 dR

) 1
2

.

Hence

|wL(T̄ , x̄)| ≤ μ(T̄ )

2
√
2

+ CL (35)

with CL depending on the initial data, and this leads directly to the conclusion of
the proof of Theorem 1, as in Sect. 3.5.

For λ1 �= 2 we cannot apply such argument since only in this case the
transformation ξ(R, z) and the Liouville transformation correlate:

a(φ(T )) = (2(T0 − T ))

hence

a(φ(R))∂radw(R, x̄ + (T0 − R)z) = = (2(T0 − R)5/4∂radu(φ(R), x̄ + (T0 − R)z)

= a(φ(T ))1/4∂rad(u(φ(R), x̄ + (T0 − R)z)).

In particular we prove the following extension of the result contained in [17].

Theorem 2 Let (u0, u1) ∈ C∞(R4) × C∞(R4) compactly supported function.
Let T > 0. There exists a unique solution u ∈ C2([0, T ] × R

4) for the Cauchy
Problem (1) provided

λ1 = 2, 1 < λ2 ≤ 4, 2 ≤ p <
λ2 + 5

3
. (36)
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In addition, we believe that also in critical case, with this approach, radial
assumption will be necessary. In particular for λ1 = λ2 = 0 and p = 3 the proof
contained in [14] seems not complete in the estimate the linear term, that is where
the radial assumption is here used.
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Smoothing and Strichartz Estimates
to Perturbed Magnetic Klein-Gordon
Equations in Exterior Domain and Some
Applications

Kiyoshi Mochizuki and Sojiro Murai

Abstract This paper is based on the talk of the first author at ISAAC Congress
2017 at Växjö, Sweden. We deal with the smoothing and Strichartz estimates to
magnetic Klein-Gordon equations with time-dependent perturbations in exterior
domain. Also, the smoothing estimates are applied to establish a scattering of
solutions for small perturbations.

1 Introduction and Main Results

Let Ω be an exterior domain in Rn (n ≥ 2) with smooth boundary ∂Ω which is
star-shaped with respect to the origin 0 (the case Ω = Rn is not excluded when
n ≥ 3). We consider in Ω the Klein-Gordon equation

∂2t w − Δbw + m2w + β0(x, t)∂tw + β(x, t) · ∇w + c(x, t)w = 0 (1)

with Dirichlet boundary condition

w(x, t) = 0, (x, t) ∈ ∂Ω × R, (2)

K. Mochizuki (�)
Chuo University, Kasuga, Bunkyo-ku, Tokyo, Japan

Tokyo Metropolitan University (emeritus), Hachioji, Japan
e-mail: mochizuk@math.chuo-u.ac.jp

S. Murai
Tokyo Metropolitan College of Industrial Technology, Tokyo, Japan
e-mail: murai@metro-cit.ac.jp

© Springer Nature Switzerland AG 2019
M. D’Abbicco et al. (eds.), New Tools for Nonlinear PDEs and Application,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-10937-0_10

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10937-0_10&domain=pdf
mailto:mochizuk@math.chuo-u.ac.jp
mailto:murai@metro-cit.ac.jp
https://doi.org/10.1007/978-3-030-10937-0_10


264 K. Mochizuki and S. Murai

where i = √−1, ∂t = ∂/∂t , Δb is the magnetic Laplacian

Δb = ∇b · ∇b =
n∑

j=1

(∂j + ibj (x))
2

with ∂j = ∂/∂xj , m is a positive constant, bj (x) (j = 1, · · · , n) are real-valued
smooth functions of x ∈ Rn, and β0(x, t), β(x, t) = (β1(x, t), · · · , βn(x, t)) and
c(x, t) are complex-valued smooth functions of (x, t) ∈ Rn × R.

The functions b(x) = (b1(x), · · · , bn(x)) represents a magnetic potential. Thus,
the magnetic field is defined by its rotation ∇ × b(x) = {∂jbk(x) − ∂kbj (x)}j<k .
We require

|∇ × b(x)| ≤ ε0(1+ [r])−2, r = |x|. (A1)

Here ε0 is a small positive constant and

[r] =
{
r, when n ≥ 3
r(1+ log r/r0), when n = 2

for a fixed r0 > 0 satisfying ∂Ω ⊂ {x; |x| > r0}. For the coefficients of the
perturbation term, we require the following:

|βj (x, t)|, |∇βj (x, t)|, |c(x, t)| ≤ ε1(1+[r])−2+η(t) (j = 0, 1, · · · , n), (A2)

where ε1 is a small positive constant and η(t) is a positive L1-function of t ∈ R.
Equation (1) is rewritten in the system to the pair {w,wt } (wt = ∂tw):

∂t

(
w

wt

)

=
(

0 1
Δb − m2 0

) (
w

wt

)

−
(

0 0
β(x, t) · ∇ + c(x, t) β0(x, t)

) (
w

wt

)

.

It is considered in the energy space H = H 1
b,D × L2, where L2 = L2(Ω) is the

usual L2-space with inner-product and norm

(f, g) =
∫

Ω

f (x)g(x)dx, ‖f ‖ = √
(f, f ),

and H 1
b,D is the completion of C∞

0 (Ω) with norm

‖f ‖2
H 1

b,D

=
∫

Ω

{|∇bf (x)|2 + |f (x)|2}dx
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(in case b ≡ 0 we simply write H 1
D for H 1

0,D). The norm ofH is then defined by

‖{f1, f2}‖2H = 1

2
{‖f1‖2H 1

b,D

+ ‖f2‖2}. (3)

We define the operatorM inH by

M = i

(
0 1

Δb − m2 0

)

,

with domain

D(M) =
{
f = {f1, f2} ∈ [H 2

loc ∩ H 1
b,D] ×H 1

b,D;Δbf1 ∈ L2
}
. (4)

Then it forms a self–adjoint operator in H , and (1), (2) is represented as

i∂tu = Mu+ V (t)u inH , (5)

where u = {w,wt } and

V (t) = −i

(
0 0

β(x, t) · ∇ + c(x, t) β0(x, t)

)

.

Moreover, by use of the unitary group of operators {e−itM; t ∈ R} in H , (5)
with initial data u(0) = f = {f1, f2} ∈ H reduces to the integral equation

u(t) = e−itMf − i

∫ t

0
e−i(t−τ )MV (τ)u(τ )dτ. (6)

Let X be the weighted energy space

X =
{

f (x) = {f1(x), f2(x)};

‖f ‖2X = 1

2

∫

Ω

(1+ [r]2)−1{|∇bf1|2 + m2|f1|2 + |f2|2}dx < ∞
}

. (7)

For an interval I ⊂ R and a Banach space W , we denote by L
p
t (I ;W) (p ≥ 1), the

space of all W -valued functions h(t) satisfying

‖h‖Lp
t (I ;W) =

( ∫

I

‖h(t)‖pW dt

)1/p

< ∞.
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Similarly,C(I ;W) denotes the space of allW -valued continuous functions of t ∈ I .
In case I = R we simply write L

p
t W for Lp

t (R;W). Further, we denote by B(W)

the space of bounded operators on W .
Our results for smoothing properties and scattering are summarized in the

following three theorems.

Theorem 1 Assume (A1) with small ε0. Then there exists C0 > 0 such that for
each h(t) ∈ L2(R±;X′) and f ∈ H , we have

∥
∥
∥
∥

∫ t

0
e−i(t−τ )Mh(τ)dτ

∥
∥
∥
∥

2

L2
t X

≤ C2
0‖h‖2L2

t X
′ , (8)

∥
∥
∥
∥

∫ t

0
eiτMh(τ)dτ

∥
∥
∥
∥

2

L∞
t H

≤ 2C0‖h‖2L2
t X

′ , (9)

‖e−itMf ‖2
L2

t X
≤ 2C0‖f ‖2H . (10)

Theorem 2 Assume (A1) and (A2) with small ε0 and ε1. Then for each f ∈ H
there exists a unique solution u(t) ∈ C(R;H ) to the integral equation (6).
Let U(t, s), s, t ∈ R±, be the evolution operator which maps u(s) to u(t) =
U(t, s)u(s). Then there exists C1 > 0 such that

‖U(·, s)g‖2
L2

t X
≤ C1‖g‖2H . (11)

Theorem 3 Under the same conditions as above, we have

(i) {U(t, s)}t,s∈R is a family of uniformly bounded operators inH :

sup
t,s∈R

‖U(t, s)‖B(H ) = CU < ∞.

(ii) For every s ∈ R±, there exits the strong limit

Z±(s) = s − lim
t→±∞ e−i(−t+s)MU(t, s).

(iii) The operator Z± = Z±(0) satisfies

w − lim
s→±∞Z±U(0, s)e−isM = I (weak limit).

(iv) If ε1 is chosen smaller also to satisfy ε1 max{1,m−1}√2C0C1 < 1, then Z± :
H −→ H is a bijection onH . Thus, the scattering operator S = Z+(Z−)−1

is well defined and also gives a bijection onH .
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Next, we consider Strichartz estimates to the restricted problemwithΔb replaced
by the usual Laplacian Δ:

∂2t w − Δw + m2w + β0(x, t)∂tw + β(x, t) · ∇w + c(x, t)w = 0 in Ω (12)

with boundary condition (2), requiring the following conditions on the complex
coefficients:

|βj (x, t)|, |∇βj (x, t)|, |c(x, t)| ≤ ε2(1+ r)−2(1+δ) (j = 0, 1, · · · , n), (A3)

where ε2 > 0 is a small constants and 0 < δ < 1.
We mean by ΔD the Laplacian acting in Ω with Dirichlet boundary conditions.

So, in the following Δ is restricted to the Laplacian acting in the whole Rn.
Moreover, for the sake of simplicity we write

H =
√
−ΔD + m2, H0 =

√
−Δ + m2.

Note that the solution w(t) of (12), (2) with initial data f = {f1, f2} ∈ H
verifies the integral equation

w(t) = cos(tH)f1+H−1 sin(tH)f2+
∫ t

0
H−1 sin((t−τ )H)[Vw]2(τ )dτ, (13)

where

[Vw]2(x, t) = β0(x, t)∂tw + β(x, t) · ∇w + c(x, t)w. (14)

The Strichartz estimate for w(t) is then given by the following:

Theorem 4 Let (p, q) be Schrödinger admissible, i.e.,

2

p
+ n

q
= n

2
, 2 < p ≤ ∞, 2 ≤ q ≤ 2n

n − 2
, q �= ∞,

and let σ = n

(
1

2
− 1

q

)

. Then there exists C2 > 0 such that

‖e−itH g‖Lp
t L

q ≤ C2‖g‖Hσ . (15)

Thus, under (A3) we have

‖Hw‖Lp
t L

q + ‖wt‖L2
t L

q ≤ C3{‖f1‖Hσ+1
D

+ ‖f2‖Hσ
D
}. (16)
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Remark 1 In case Ω = Rn, n ≥ 2, the following Strichartz estimate is proved in
D’Ancona-Fanelli [3] (see also Marshall- Straus-Wainger [6]):

‖e−itH0g‖Lp
t L

q ≤ C2‖g‖Hγ , (17)

where γ = n + 2

2

(
1

2
− 1

q

)

. The estimate similar to (16) with σ replaced by γ

is proved in Mochizuki [7] when Ω = Rn with n ≥ 3. So, the loss σ seems
unnecessarily large when n ≥ 3. It should be improved in a natural way.

Estimate (15) will be proved in §5. Then number σ appears there when (17) is
modified to the case of exterior domain.

The proof of the first 3 theorems are set up based on Mochizuki-Murai [10]. The
existence of the additional term b(x, t) ·∇w in (1) causes no serious difficulties (see
[7]).

2 Proof of Theorem 1

Theorem 1 represents smoothing properties of the Klein-Gordon evolution e−itM .
As is well known (e.g., Reed-Simon [12]), this theorem is derived from the uniform
resolvent estimates for the operatorM:

Proposition 1 For κ ∈ C\R putR(κ) = (M − κ)−1. If ε0 in (A1) is chosen small
enough, then there exists C0 > 0 such that

sup
κ∈C\R

‖R(κ)f ‖X ≤ C0‖f ‖X′ ,

for each f ∈ X′, where X′ is the dual space of X with respect toH .

For the magnetic Laplacian L = −Δb in L2 with domain

D(L) = {u(x) ∈ L2 ∩ H 2
loc(Ω); −Δbu ∈ L2 and u|∂Ω = 0}

and κ ∈ C+, put Rm(κ2) = (L + m2 − κ2)−1. Then we have

R(κ) =
(

κ i

i(Δb − m2) κ

)

Rm(κ2),

and it follows that

|(R(κ)f, g)H | = 1

2

[
|(∇b{κRm(κ2)f1 + iRm(κ2)f2},∇bg1)

+(m2{κRm(κ2)f1 + iRm(κ2)f2}, g1)
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+({i(Δb − m2)Rm(κ2)f1 + κRm(κ2)f2}, g2)|
]

(18)

≤ 1

2

[
{|κ |‖ξ∇b(Rm(κ2)f1)‖ + ‖ξ∇bRm(κ2)f2‖}‖ξ−1∇bg1‖

+m2{|κ |‖ξRm(κ2)f1‖ + ‖ξRm(κ2)f2‖}‖ξ−1g1‖
+{‖ξΔb(Rm(κ2)f1)‖ + m2‖ξRm(κ2)f1‖ + |κ |‖ξRm(κ2)f2‖}‖ξ−1g2‖

]
.

Thus, for the proof of Proposition 1, necessary estimates of Rm(κ2) are summa-
rized in the following lemma:

Lemma 1 We put ξ(r) = (1+ [r])−1. Then there exists C > 0 such that

(1+ |κ |)‖ξRm(κ2)f ‖ + ‖ξ∇b(Rm(κ2)f )‖ ≤ C‖ξ−1f ‖, (19)

‖ξΔb(Rm(κ2)f )‖ ≤ C{‖ξ−1∇bf ‖ + ‖ξ−1f ‖}, (20)

|κ |‖ξ∇(Rm(κ2)f )‖ ≤ C{‖ξ−1∇bf ‖ + ‖ξ−1f ‖} (21)

for each κ ∈ C+ and f satisfying ξ−1f , ξ−1∇bf ∈ L2.

Proof The estimate (19) is already proved (see Mochizuki [8, 9] for n ≥ 3 and
Mochizuki-Nakazawa [11] for n = 2).

To show (20) we start from the equation

ξΔb(Rm(κ2)g) = Δb(ξRm(κ2)g) − 2∇b · {(∇ξ)Rm(κ2)g} + (Δξ)Rm(κ2)g.

Put f = (∇ξ)Rm(κ2)g. Then since f|∂Ω = 0, we have

|(∇b · f, h)| = |(f,−∇bh)| ≤ ‖f‖‖h‖Ḣ 1
b
,

where Ḣ 1
b is the completion of C∞

0 (Ω) with respect to the norm ‖∇bh‖. Let Ḣ−1
b

denote the dual space of Ḣ 1
b . Then we have ‖∇b · f‖

Ḣ−1
b

≤ ‖f‖, and hence

‖ξΔb(Rm(κ2)g)‖
Ḣ−1

b

≤ ‖Δb(ξRm(κ2)g)‖
Ḣ−1

b
+ 2‖(∇ξ)Rm(κ2)g‖ + ‖(Δξ)Rm(κ2)g‖

Ḣ−1
b

Here, since

Δb(ξRm(κ2)g) = ∇b · {(∇ξ)Rm(κ2)g + ξ∇b(Rm(κ2)g)}
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and |∇ξ | ≤ C|ξ |, it follows from (19) that

‖Δb(ξRm(κ2)g)‖
Ḣ−1

b
≤ ‖(∇ξ)Rm(κ2)g‖ + ‖ξ∇b(Rm(κ2)g)‖ ≤ C‖ξ−1g‖.

On the other hand, noting |Δξ | ≤ C[r]−1ξ , we can use the Hardy inequality

∫ [n − 2]2|f |2
4[r]2 dxt ≤

∫

|x̃ · ∇bf |2dx (22)

(see [8, 10]), where x̃ = x/|x|, and [n − 2] = n − 2 when n ≥ 3, and = 1 when
n = 2, to obtain

‖(Δξ)Rm(κ2)g‖
Ḣ−1

b
≤ C‖ξRm(κ2)g‖ ≤ C‖ξ−1g‖.

In fact

|((Δξ)Rm(κ2)g, f )|

≤ |([r](Δξ)Rm(κ2)g, [r]−1f )| ≤ C‖ξRm(κ2)g‖‖f ‖Ḣ 1
b
.

These lead us to the inequality

‖ξΔb(Rm(κ2)g)‖
Ḣ−1

b
≤ C‖ξ−1g‖.

The estimate (20) then follows since we have

|(Δb(Rm(κ2)f, g))| = |(Rm(κ2)Δbf, g)| = |(ξ−1f, ξΔb(Rm(κ2)g))|

≤ C‖ξ−1f ‖Ḣ 1
b
‖ξ−1g‖.

Next note that

κ2Rm(κ2)f = −f − (Δb − m2)Rm(κ2)f.

Then the use of (19) and (20) shows

‖ξ(Δb − m2)Rm(κ2)f ‖ ≤ C{‖ξ−1∇bf ‖ + ‖ξ−1f ‖}.

Since ‖ξf ‖ ≤ ‖ξ−1f ‖, this proves

|κ |2‖ξRm(κ2)f ‖ ≤ C{‖ξ−1∇bf ‖ + ‖ξ−1f ‖}. (23)
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By use of (23), (19) and (20) we have

|κ |2‖ξ∇b(Rm(κ2)f )‖2

= −|κ |2({ξΔb(Rm(κ2)f )+ 2∇ξ · ∇b(Rm(κ2)f )}, ξRm(κ2)f )

≤ {‖ξΔb(Rm(κ2)f )‖ + 2‖∇ξ · ∇b(Rm(κ2)f )‖}|κ |2‖ξRm(κ2)f ‖

≤ C{‖ξ−1∇bf ‖ + ‖ξ−1f ‖}{‖ξ−1∇bf ‖ + ‖ξ−1f ‖}.

which proves (21).

3 Proof of Theorem 2

First note that the perturbation V (t) satisfies the following

Lemma 2 Under (A2) we have

|(V (t)u, v)H | ≤ η̃(t)‖u‖H ‖v‖H + ε̃1‖u‖X‖v‖X,

where η̃(t) = max{1,m−1}η(t), ε̃1 = max{1,m−1}ε1.
In fact

|(V (t)u, v)H | = 1

2

∣
∣
∣
∣

∫

Ω

{b(x, t) · ∇u1 + c(x, t)u1 + b0(x, t)u2}v2dx
∣
∣
∣
∣

≤ 1

2

∫

Ω

(η(t) + ε1(1+ [r])−2){|∇u1| + |u1| + |u2|}|v2|dx

≤ max{1,m−1}{η(t)‖u‖H ‖v‖H + ε1‖u‖X‖v‖X}.

With this lemma we consider the integral equation (6) when t > 0.
For 0 ≤ s ≤ T ≤ ∞ let Is = [s, T ]. We do not exclude T = ∞ and write

Rs = [s,∞). Let Y (Is) be the space of functions v(t) ∈ BC(Is;H ) ∩ L2
t (Is;X)

(BC means the space of bounded continuous functions) such that

‖v‖Y (Is ) = sup
t∈Is

‖v(t)‖H + ‖v‖L2(Is;X) < ∞. (24)

We put

Φsv(t) =
∫ t

s

e−i(t−s)MV (s)v(s)ds, v(t) ∈ Y (Is).
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Then by use of Theorem 1 and Lemma 2 we can prove the

Lemma 3 Φs ∈ B(Y (Is )) and we have

sup
t∈Is

‖Φsv(t)‖H ≤ ‖η̃‖L1(Is)
sup
t∈Is

‖v(t)‖H + ε̃1
√
2C0‖v‖L2(Is;X), (25)

‖Φsv‖L2(Is;X) ≤ 2
√
2C0‖η̃‖L1(Is)

sup
t∈Is

‖v(t)‖H + 3ε̃1C0‖v‖L2(Is;X). (26)

Now, since η̃(t) ∈ L1(R+), we can choose 0 < δ ≤ 1 and σ > 0 to satisfy

(1+ 2
√
2C0)‖η̃‖L1(Is)

< 1 (27)

if |Is | = |T − s| ≤ δ or Is = Rs with s ≥ σ . So, if ε1 is chosen small enough to
satisfy ε̃1(2

√
2C0 + 3C0) < 1, then it follows from (24), (25) and (26) that

‖Φsv‖Y (Is ) ≤ max{(1+ 2
√
2C0)‖η̃‖L1(Is )

, ε̃1(2
√
2C0 + 3C0)}‖v‖Y (Is )

< ‖v‖Y (Is ). (28)

Note also that u0(t) = e−i(t−s)Mf satisfies

‖u0‖Y (Is) ≤ (1+ √
2C0)‖f ‖H .

Then the successive approximation method is applied to obtain

Lemma 4 For each fixed Is satisfying (27), the integral equation

u(t) = e−i(t−s)Mf − i

∫ t

s

e−i(t−τ )MV (τ)u(τ )dτ (29)

has a solution u(t) ∈ Y (Is) and it satisfies

‖u‖Y (Is ) = sup
t∈Is

‖u(t)‖H + ‖u‖L2(Is;X) ≤ Cδ,σ‖f ‖H (30)

for some Cδ,σ > 0 independent of f .

Proof (Proof of Theorem 2) For δ and σ given in (27) we choose integerN to satisfy
Nδ ≥ σ , and divide R+ into N + 1 subintervals

Isj = [sj , sj+1] (j = 0, 1, · · · , N − 1), and IsN = RsN ,

where sj = jδ (j = 0, 1, · · · , N).
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Then by Lemma 4 the solution of (29) with f = u(sj ) is constructed in each
interval Isj , and by putting together, a global solution of (6) is obtained. Moreover,
the above argument and (30) imply assertion (11) to hold with C1 = (N + 1)CN

δ,σ .
The uniqueness of solutions in C(R;H ) follows from the inequality

‖Φ0v(t)‖H ≤
∣
∣
∣
∣

∫ t

0
‖V (τ)v(τ )‖H dτ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ t

0
{η̃(τ )+ ε̃1}‖v(τ )‖H dτ

∣
∣
∣
∣.

If v(t) satisfies (6) with f = 0, then this implies

d

dt

[

e−
∫ t
0 {η̃(τ )+ε̃1}dτ

∫ t

0
{η̃(τ ) + ε̃1}‖v(τ )‖H dτ

]

≤ 0.

Integrating both sides, we conclude that ‖v(t)‖H = 0 in R+.

4 Proof of Theorem 3

We put u(t, s) = U(t, s)f , u0(t − s) = e−i(t−s)Mf0. Then we have from (6)

(u(t, s), u0(t − s))H = (f, f0)H − i

∫ t

s

(V (τ )u(τ, s), u0(τ − s))H dτ.

In the right side we apply the inequality of Lemma 3. It then follows from (10)
and (11) that for any σ , t ∈ R+,

|(u(t, s), u0(t − s))H − (u(σ, s), u0(σ − s))H |

≤
∣
∣
∣
∣

∫ t

σ

η̃(τ )‖u(τ, s)‖H ‖u0(τ − s)‖H dτ

∣
∣
∣
∣

+ε̃1

∣
∣
∣
∣

∫ t

σ

‖u(τ, s)‖2Xdτ

∣
∣
∣
∣

1/2∣∣
∣
∣

∫ t

σ

‖u0(τ − s)‖2Xdτ

∣
∣
∣
∣

1/2

. (31)

All the assertions of the theorem are verified from this inequality.

Proof (Proof of Theorem 3)

(i) We put σ = s in (31). Then by (10) and (11)

|(u(t, s), u0(t − s))H − (f, f0)H | ≤
∣
∣
∣
∣

∫ t

s

η̃(τ )‖u(τ, s)‖H ‖u0(τ − s)‖H dτ

∣
∣
∣
∣

+ε̃1
√
2C0C1‖f ‖H ‖f0‖H .
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Since e−i(t−s)Λ is unitary, it follows that

‖u(t, s)‖H ≤ (1+ ε̃1
√
2C0C1)‖f ‖H +

∫ t

s

η̃(τ )‖u(τ, s)‖H dτ.

The requirement η(t) ∈ L1(R) and the Gronwall inequality show the assertion
with

CU = (1+ ε̃1
√
2C0C1)e

‖η̃‖
L1 .

(ii) Noting (i), we have from (31), (10) and (11)

|(u(t, s), u0(t−s))H −(u(σ, s), u0(σ −s))H | ≤
{

CU‖f ‖H
∣
∣
∣
∣

∫ t

σ

η̃(τ )dτ

∣
∣
∣
∣+

+ ε̃1

∣
∣
∣
∣

∫ t

σ

‖u(τ, s)‖2Xdτ

∣
∣
∣
∣

1/2√
2C0

}

‖f0‖H .

Here, for fixed any s ∈ R±,
{

· · ·
}

→ 0 as σ , t → ±∞. Thus,

e−i(s−t )MU(t, s) converges strongly in H as t → ±∞.
(iii) Let σ = s and t → ±∞ in (31). Then noting (i) and (11), we have

|(Z±(s)f, f0)H − (f, f0)H | ≤ ‖f ‖H
{

CU

∣
∣
∣
∣

∫ ±∞

s

η̃(τ )dτ

∣
∣
∣
∣‖f0‖H +

+ ε̃1
√
C1

∣
∣
∣
∣

∫ ±∞

s

‖u0(τ − s)‖2Xdτ

∣
∣
∣
∣

1/2}

. (32)

Choose here f = e−isMg and f0 = e−isMg0. Then

|({eisMZ±(s)e−isM − I }g, g0)H | ≤ ‖e−isMg‖H
{

CU

∣
∣
∣
∣

∫ ±∞

s

η̃(τ )dτ

∣
∣
∣
∣×

×‖e−isMg0‖H + ε̃1
√
2C0

∣
∣
∣
∣

∫ ∞

s

‖e−iτMg0‖2Xdτ

∣
∣
∣
∣

1/2}

.

g and g0 being arbitrary, this implies that as s → ±∞,

Z±U(0, s)e−isM = eisMZ±(s)e−isM → I weakly in H .
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(iv) Note that (32) and (10) imply

|({Z±(s)− I }f, f0)H | ≤
{∣

∣
∣
∣

∫ ±∞

s

η̃(τ )dτ

∣
∣
∣
∣CU + ε̃1

√
2C0C1

}

‖f ‖H ‖f0‖H .

Since ε̃1
√
2C1C0 < 1, we can choose ±s > 0 sufficiently large to satisfy

∣
∣
∣
∣

∫ ±∞

s

η̃(τ )dτ

∣
∣
∣
∣CU + ε̃1

√
2C0C1 < 1.

Thus, ‖Z±(s) − I‖B(H ) < 1 and Z±(s) gives a bijection on H . The same
property of Z± then easily follows.

5 Proof of Theorem 4

In order to show the Strichartz estimate (15), the smoothing properties (10) for the
evolution e−itM and (11) for the solution to (12) are not sufficient. The Strichartz
estimate (17) and the smoothing property for the free evolution e−itM0f , where

M0 = i

(
0 1
H 2

0 0

)

,

are also indispensable. This last property is used in the following form:

Proposition 2 Put μ = μ(r) = (1+ r)−1−δ . Then there exists C > 0 independent
of f ∈ L2(R2)

‖μ(r)e−itH0f ‖L2
t L

2 ≤ C‖f ‖. (33)

This proposition is included in (10) if n ≥ 3. So, let us derive necessary results
when n = 2.

Lemma 5 Let R0(κ
2) = (−Δ − κ2)−1, Imκ > 0, in L2(R2). Then there exists

C > 0 independent of κ and f ∈ C∞
0 (R2) such that

‖μ1/2κR0(κ
2)f ‖ + ‖μ1/2∇R0(κ

2)f ‖ ≤ C‖μ−1/2f ‖, (34)

sup
κ∈C+

‖μ{R0(κ
2)− R0(κ̄

2)}f ‖ ≤ C‖μ−1f ‖. (35)

Proof The first estimate (34) is proved in Barcelo-Ruiz-Vega [1]. The second
estimate is easy if we note that R0(κ

2) forms an integral operator

R0(κ
2)f =

∫

R2

i

4
H

(1)
0 (κ |x − y|)f (y)dy,
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where H
(1)
0 (κ |x|) is the Hankel function of the first kind verifying the asymptotic

expansion

lim
κ→0

{

H
(1)
0 (κ |x|)+ 1

2π
log κ

}

= 1

2π
log

1

|x| .

Lemma 6 LetR0(κ) = (M0 − κ)−1. Let A : H → L2, A∗ : L2 → H be defined
by

Af = μ(r)H0f1 f or f = {f1, f2}, A∗g = {2H−1
0 μ(r)g, 0} f or g ∈ L2.

Then there exists C > 0 independent of κ ∈ C+ and g ∈ L2 such that

‖A{R0(κ)−R0(κ̄)}A∗g‖ ≤ C‖g‖, (36)

and hence we have

‖Ae−itM0f ‖L2
t L

2 ≤ C‖f ‖H . (37)

Proof Note that

A{R0(κ)−R0(κ̄)}A∗g = μ(r){κR0(κ
2 − m2)− κ̄R0(κ̄

2 − m2)}μ(r)g. (38)

We put J = κR0(κ
2 − m2) − κ̄R0(κ̄

2 − m2). Then

J = κ̄{R0(κ
2 − m2) − R0(κ̄

2 −m2)} + 2iImκ
√
κ2 − m2

√
κ2 − m2R0(κ

2 − m2), |κ| ≤ 2m,

= κ
√
κ2 − m2

√
κ2 −m2R0(κ

2 − m2) − κ̄
√
κ̄2 − m2

√
κ̄2 −m2R0(κ

2 −m2), |κ| > 2m,

where

∣
∣
∣
∣

2iImκ√
κ2 − m2

∣
∣
∣
∣ is bounded in |κ | ≤ 2m and

κ√
κ2 − m2

,
κ̄√

κ̄2 − m2
are

bounded in |κ | > 2m. In account of these estimates, (34) and (35) are applied
to (38) to obtain (36).

The lemma is complete since (37) is equivalent to (36) (see Kato [4] or Kato-
Yajima [5]).

Proof (Proof of Proposition 2) The first component of e−itM0f is

w(t) = cos(tH0)f1 + H−1
0 sin(tH0)f2.



Smoothing and Strichartz Estimates to Perturbed Magnetic Klein-Gordon Equations 277

So, if we choose f = {H−1
0 g, 0} and f = {0, g} for g ∈ L2 in (37), then

∣
∣
∣
∣

∫ ±∞

0
‖μ(r) cos(tH0)g‖2dt

∣
∣
∣
∣ ≤ C‖g‖2

and
∣
∣
∣
∣

∫ ±∞

0
‖μ(r) sin(tH0)g‖2dt

∣
∣
∣
∣ ≤ C‖g‖2.

Summing up these inequalities, we obtain (33).

The smoothing property for e−itHf is used in the following form:

Proposition 3 Let W = L2 or = H 1
D. Then we have

‖(1 + [r])−1e−itHf ‖L2
t W

≤ CW ‖f ‖W . (39)

Proof We return to (10):

‖e−itMf ‖L2
t X

≤ C‖f ‖H .

Choose here f = {g, 0} and f = {0,Hg}. Then
∫ ∞

−∞

∫

Ω

(1+ [r])−2{|∇ cos(tH)g|2 + m2| cos(tH)g|2 + |H sin(tH)g|2}dxdt

≤ C

∫

Ω

{|∇g|2 + m2|g|2}dx,
∫ ∞

−∞

∫

Ω

(1+ [r])−2{|∇ sin(tH)g|2 + m2| sin(tH)|2 + |H cos(tH)g|2}dxdt

≤ C

∫

Ω

|Hg|2dx.

Combining these to inequalities, we obtain

∫ ∞

−∞

∫

Ω

(1+ [r])−2{|∇e−itHg|2 + m2|e−itHg|2 + |He−itHg|2}dxdt ≤ C‖g‖2
H 1

D

,

which proves (39) with W = H 1
D .

The case W = L2 is similarly proved if we choose f = {H−1g, 0} and f =
{0, g} in (10).

The following lemma is known as Christ-Kiselev theorem ([2]).
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Lemma 7 Let X, Y be Banach spaces and Let T h(t) =
∫ ∞

−∞
K(t, s)h(s)ds be a

bounded operator from Lα
t X to L

β
t Y . If α < β, then T̃ h(t) =

∫ t

0
K(t, s)h(s)ds is

also a bounded operator, and we have ‖T̃ ‖ ≤ C(α, β)‖T ‖.
Proof (Proof of Theorem 4) To show (15) let χ = χ(x), x ∈ Rn, be a C∞-function
whose support is restricted in a neighborhood of Rn\Ω , and we decompose e−itH f

into two parts:

e−itH f = χe−itH f + (1− χ)e−itH f ≡ v1(t) + v2(t).

As for v1(t) we have from (39) with W = H 1
D that

‖v1‖L2
t H

1
D
≤ ‖(1+ [r])−1e−itH f ‖L2

t H
1
D

≤ C‖f ‖H 1
D
.

Interpolating this and the energy inequality ‖v1‖L∞
t L2 ≤ C‖f ‖L2 , we conclude

‖v1‖LpH
2/p
D

≤ C‖f ‖
H

2/p
D

.

Choosing
1

q
= 1

2
− 2

np
, we can apply Sobolev embedding to obtain

‖v1(t)‖LpLq ≤ C‖f ‖
H

2/p
D

. (40)

Our σ = 2/p is a result of this inequality.
Next consider the function v2(x). Note that it satisfies the initial-value problem

in Rn

∂2t v2 + H 2
0 v2 = g(x, t),

v2(0) = (1− χ)f, ∂t v2(0) = −(1− χ)iHf,

where

g(x, t) = (Δχ)e−itH f − 2∇ · ((∇χ)e−itHf ).

The Duhamel principle then asserts that

v2(t) = cos(tH0)(1− χ)f − iH−1
0 sin(tH0)(1− χ)Hf +

∫ t

0
H−1
0 sin{(t − τ)H0}g(τ)dτ.

The free Strichartz estimate (17) shows

‖e−itH0(1− χ)f ‖Lp
t L

q + ‖H−1
0 e−itH0(1− χ)Hf ‖Lp

t L
q ≤ C‖f ‖Hγ

D
. (41)
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As for the third term, note the following inequalities

∥
∥
∥
∥

∫ ∞

0
H−1

0 e−i(t−τ )H0g(τ)dτ

∥
∥
∥
∥
L

p
t H

q,−γ

≤ C

∥
∥
∥
∥H

−1
0

∫ ∞

0
eiτH0(Δχ)e−iτHf dτ

∥
∥
∥
∥

+C

∥
∥
∥
∥H

−1
0 ∇ ·

∫ ∞

0
eiτH02(∇χ) · ∇}e−iτHf dτ

∥
∥
∥
∥

≤ C‖(1+ r)1+δ{|Δχ | + 2|∇χ |}e−iτHf ‖L2
t L

2 ≤ C‖f ‖.

To show the second inequality we have used the boundedness in L2 of H−1
0 and

H−1
0 ∇, and then the dual inequality of (33). The last inequality is a result of (39)

with W = L2.
Now, Lemma 7 with α = 2, β = p and X = Y = H

−γ
q implies the following

∥
∥
∥
∥

∫ t

0
H−1

0 e−i(t−τ )H0g(τ)dτ

∥
∥
∥
∥
L

p
t L

q

≤ C(2, p)‖f ‖ ≤ C‖f ‖Hγ

D
. (42)

Since σ ≥ γ , summarizing (40), (41) and (42), we conclude the assertion (15).
To enter into the proof of (16), we return to Eq. (13). The functionHw(t) verifies

Hw(t) = cos(tH)Hf1 − i sin(tH)f2 −
∫ t

0
sin((t − τ )H)[Vw]2(τ )dτ.

Hence, the inequality (15) assures the estimate

‖ cos(tH)Hf1‖Lp
t L

q + ‖ sin(tH)f2‖Lp
t L

q ≤ C{‖Hf1‖Hσ
D
+ ‖f2‖Hσ

D
}.

To establish the estimate for the third term, we use (17) and also the dual estimate
of (39) with W = L2. Then

∥
∥
∥
∥

∫ ∞

0
e−i(t−τ )Hh(τ)dτ

∥
∥
∥
∥
LpHq,−σ

≤
∥
∥
∥
∥

∫ ∞

0
eiτHh(τ)dτ

∥
∥
∥
∥ ≤ C‖μ(r)−1h‖L2

t L
2 .

Choose h = [Vw]2(t) and remember (15). Then noting the smoothing estimate (11)
for U(t, 0)f , we have

‖μ(r)−1[Vw]2‖L2
t L

2 ≤ C‖U(t, 0)f ‖L2
t X

≤ C‖f ‖H .

Thus, Lemma 7 with α = 2 and β = p is applied to conclude the desired
inequality also to the third term.
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The Cauchy Problem for Dissipative
Wave Equations with Weighted
Nonlinear Terms

Makoto Nakamura and Hidemitsu Wadade

Abstract The Cauchy problem for dissipative wave equations with weighted
nonlinear terms is considered. The nonlinear terms are power type with a singularity
at the origin of Coulomb type. The local and global solutions are shown in the energy
class by the use of the Caffarelli-Kohn-Nirenberg inequality. The exponential type
nonlinear terms are also considered in the critical two-spatial dimensions.

1 Introduction

In this paper, we consider local and global energy solutions for the Cauchy problem
of dissipative wave equations with nonlinear terms which have a space-singularity
at the origin. Let n ≥ 1, 0 ≤ s ≤ 1, s < n/2. Let Q be any fixed function which
satisfies

C∗|ξ |2 ≤ Q(ξ) ≤ C∗|ξ |2 (1)

for any ξ ∈ R
n for some constants C∗ > 0, C∗ > 0, and put #Q := −F−1Q(ξ)F

for the Fourier and inverse Fourier transform F and F−1. We note #Q is a
generalization of the Laplacian # := ∑n

j=1 ∂
2/∂x2j and #Q = # when Q(ξ) =

|ξ |2. Our Cauchy problem is given by

⎧
⎨

⎩

(∂2t − #Q + ∂t )u(t, x)+ f (u(t, x))

|x|s = 0 for (t, x) ∈ [0, T ) ×R
n

u(0, ·) = u0(·) ∈ H 1(Rn), ∂tu(0, ·) = u1(·) ∈ L2(Rn),

(2)
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where u0, u1 and f are real-valued functions. To denote power type nonlinear terms
of order p, we define the following set N(p). We note that f (u) = λ|u|p−1u and
f (u) = λ|u|p for λ ∈ R satisfy f ∈ N(p).

Definition 1.1 Let p ≥ 1. We denote by N(p) the set of function f from R to R

which satisfies f (0) = 0 and

|f (u)− f (v)| ≤ C max
w=u,v

|w|p−1|u− v| (3)

for any u and v ∈ R, where C > 0 is a constant independent of u and v.

The nonlinear term in (2) has a singularity at the origin when s > 0. The case
n = 3, s = 1 and f (u) = −u is known as the Coulomb potential. The case n ≥ 1,
s = 2 and f (u) = λu for λ ∈ R is known as the square-inverse potential (see [3]
for elliptic equations, [2] for heat equation, [4] and [30] for Schödinger equations,
[13] for Klein-Gordon equations). The nonlinear terms of the form |u|p−1u/|x|s are
also considered for elliptic equations and p-Laplace equations (see [14, 24] and the
references therein). Our aim in this paper is to analyze how the singularity affects
on the Cauchy problem and give a unified way to control it in the framework of
energy solutions for dissipative wave equations. When there is no singularity (s =
0), the power type nonlinear terms f (u) could be handled by the standard Sobolev
embeddingsH 1(Rn) ↪→ Lq(Rn) for max{0, 1/2−1/n} ≤ 1/q ≤ 1/2 with (n, q) �=
(2,∞). When there is the singularity (s > 0), we use the Caffarelli-Kohn-Nirenberg
inequality Lemma 3.1, below, and we show the following result. Here, Cb(I,X) =
C(I,X)∩L∞(I,X) andC1

b (I,X) := {u ∈ C1(I,X)∩L∞(I,X) : ∂tu ∈ Cb(I,X)}
for any interval I ⊂ R and normed space X.

Theorem 1.2 Let n ≥ 1, 0 ≤ s ≤ 1, s < n/2. Let p satisfy

1 ≤ p

{
< ∞ if n = 1, 2
≤ 1+ 2(1−s)

n−2 if n ≥ 3.
(4)

Let f ∈ N(p). Then we have the following results.

(1) For any u0 and u1, there exists T = T (‖u0‖H 1(Rn) + ‖u1‖L2(Rn)) > 0 and a
unique solution u ∈ Cb([0, T ),H 1(Rn)) ∩ C1

b ([0, T ), L2(Rn)) of (2).
(2) If n = 1, 2, ‖u0‖H 1(Rn)+‖u1‖L2(Rn) is sufficiently small, and 1+2(2− s)/n ≤

p, then the solution u of (1) is a global solution, namely, we are able to take
T = ∞.

Remark 1.3 The scaling argument shows that the critical index for the upper bound
for p is given by p(μ) = 1 + 2(2 − s)/(n − 2μ) for the Cauchy problems (∂t −
#)u(t, x) + |u(t, x)|p/|x|s = 0 with u(0, ·) ∈ Ḣ μ(Rn), and (∂2t − #)u(t, x) +
|u(t, x)|p/|x|s = 0 with u(0, ·) ∈ Ḣ μ(Rn), ∂tu(0, ·) ∈ Ḣ μ−1(Rn), where Ḣ μ(Rn)

denotes the homogeneous Sobolev space of order μ ∈ R. In this sense, the upper
bound for (2) is expected to be p(1). However, p(1) is not achieved in (4), while the



The Cauchy Problem for Dissipative Wave Equations with Weighted Nonlinear Terms 283

lower bound 1 + 2(2− s)/n in (2) equals to p(0) and it is the critical index for the
L2(Rn) theory.

Remark 1.4 We have considered the single nonlinear term f in Theorem 1.2. W
are also able to consider the sum of nonlinear terms by the analogous proof of the
theorem. Let us consider only the case of double nonlinear terms. Namely, let n ≥ 1,
0 ≤ sj ≤ 1, sj < n/2 for j = 1, 2, and let p1 and p2 satisfy

1 ≤ pj

{
< ∞ if n = 1, 2

≤ 1+ 2(1−sj )

n−2 if n ≥ 3
(5)

for j = 1, 2. Let f1 ∈ N(p1) and f2 ∈ N(p2). Then the result (1) in Theorem 1.2
holds with (2) replaced by

⎧
⎨

⎩

(∂2t − #Q + ∂t )u(t, x) + f1(u(t, x))

|x|s1 + f2(u(t, x))

|x|s2 = 0 for (t, x) ∈ [0,∞) × R
n

u(0, ·) = u0(·) ∈ H 1(Rn), ∂tu(0, ·) = u1(·) ∈ L2(Rn).

(6)

The result (2) in Theorem 1.2 also holds with 1 + 2(2 − s)/n ≤ p replaced by
1+2(2− sj )/n ≤ pj for j = 1, 2. Analogous remark is also valid for the following
theorems.

Theorem 1.2 shows that any growth order p of polynomial type is subcritical
for n = 1, 2. The next theorem shows that any growth order of C1 type is also
subcritical when n = 1. This result follows from the embeddingH 1(R) ↪→ L∞(R),
by which we are able to treat any growth order of the nonlinear term at infinity
|u| → ∞.

Theorem 1.5 Let g ∈ C1(R) be a real-valued function. When n = 1, Theorem 1.2
is also true even if we replace f (u) with f (u)g(u).

When n = 2, the embedding H 1(R2) ↪→ L∞(R2) does not hold and it is
critical embedding. The next theorem shows that the exponential growth order is
also subcritical. We use the weighted Gagliardo-Nirenberg interpolation inequality
Lemma 3.5, below, to prove it. When #Q = #, the exponential nonlinear terms
without singularities (s = 0) have been considered for Schrödinger equations
in [10, 39], wave equations in [25, 40], Klein-Gordon equations in [27, 41],
heat equations in [26], complex Ginzburg-Landau equations and dissipative wave
equations in [38], damped Klein-Gordon equations in [1]. We put

D := F−1
√
Q(ξ)F, (7)

which is a generalization of |∇|.
Theorem 1.6 Let n = 2, 0 ≤ s < 1. Let α > 0, λ ∈ R. Let f (u) = λu(eαu

2 − 1).
Then we have the following results.
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(1) If ‖∇u0‖L2(R2) < {2π(1 − s)/α}1/2, and T > 0 is sufficiently small, then (2)
has a unique local solution u ∈ Cb([0, T ),H 1(R2)) ∩ C1

b ([0, T ), L2(R2)).
(2) If ‖u0‖H 1(R2) + ‖u1‖L2(R2) is sufficiently small, then the solution u of (1) is a

global solution, namely, we are able to take T = ∞.

Remark 1.7 The index 2 of eαu
2
seems to be optimal in the classH 1(R2) in view of

the Trudinger inequality (see [47]). When eαu
2
is replaced by eα|u|2−ε

for 0 < ε ≤ 2,
the size restriction for data in (1) of Theorem 1.6 could be removed.

Finally, we consider the global solutions for large data when our equation
satisfies the energy conservation law, which becomes dissipative by λ ≥ 0.

Theorem 1.8 Let n ≥ 1, 0 ≤ s ≤ 1, s < n/2. Let λ ≥ 0. Let f (u) be given by the
following (1) or (2).

(1) We put f (u) = λ|u|p−1u, where p satisfies (4).
(2) Let n = 2, α > 0. We put f (u) = λu(eαu

2 − 1). We assume

∫

R2

(

|Du0|2 + u21 + λ(eαu
2
0 − 1− αu20)

α|x|s
)

dx ≤ 2π(1− s)C∗
α

, (8)

where C∗ is the constant in (1).

Then for any u0 and u1, (2) has a unique global solution u ∈ Cb([0,∞),H 1

(Rn)) ∩ C1
b ([0,∞), L2(Rn)).

The global existence or blowing up of solutions for the Cauchy problem (2) have
been considered by many authors for power type nonlinear terms with s = 0 and
#Q = #. See for example [19, 20, 22, 28, 31, 32, 36, 38, 42–44, 48, 50]. For
the detailed review of the history, we refer to [45] by Nishihara. The analysis for
nonlinear terms with singularities (s > 0) are considered for elliptic equations
extensively where the singularities appear in a domain or on its boundary (see [6–
8, 12, 16–18, 21, 23, 34, 35, 49]).We consider the nonstationary problem and we give
a unified way to construct energy solutions for s ≥ 0 based on the classical energy
estimates, the Caffarelli-Kohn-Nirenberg inequality and the Gagliardo-Nirenberg
inequality. For the latter inequality, we refer to [29] and [37] for recent results. We
refer to [11, 15] for nonlinear Schrödinger equations and nonlinear Klein-Gordon
equations. We remark that the dissipative wave equation has both aspects of the
heat equation and the wave equation, and the linear and nonlinear estimates in
this paper are applicable to the perturbation of equations and nonlinear terms. The
arguments in this paper would provide a unified method to treat nonlinear terms
with singular weights for parabolic or hyperbolic equations. We refer to the book
[9] by Cherrier and Milani for a unified approach for the Cauchy problems of
quasilinear parabolic and hyperbolic equations with variable coefficients based on
energy estimates, and we consider the case of singular nonlinear terms in this paper.
We put∇ := (∂1, · · · , ∂n),∇t,x := (∂t ,∇), andDt,x := (∂t ,D), whereD is defined
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by (7). The notation a � b denotes the inequality a ≤ Cb for a positive constant C
which is not essential for our arguments.

This paper is organized as follows. In Sects. 2 and 3, we prepare linear estimates
and nonlinear estimates, respectively. In Sect. 4, we prepare a priori estimates on the
energy, which are used in Sect. 5. In Sect. 5, we prove the theorems.

2 Estimates for Linear Terms

We prepare the following two fundamental results. Let 0 < T ≤ ∞. We consider
the Cauchy problem

{
(∂2t − #Q + ∂t )u(t, x)+ h(t, x) = 0 for (t, x) ∈ [0, T )× R

n

u(0, ·) = u0(·), ∂tu(0, ·) = u1(·). (9)

First, we consider the energy estimates. The solution of (9) satisfies the following
energy estimates.

‖u‖2
L∞((0,T ),H 1(Rn))

+ ‖∂tu‖2L∞((0,T ),L2(Rn))
+ ‖∇t,xu‖2L2((0,T )×Rn)

≤ C‖u0‖2H 1(Rn)
+ C‖u1‖2L2(Rn)

+ C

∫ T

0

∫

Rn

(|u| + |∂tu|)|h|dxdt, (10)

where the constant C > 0 is independent of u, T , u0, u1 and h. Indeed, by the
multiplication of ∂tu to (∂2t − #Q + ∂t )u = h, the integration by t and x variables,
and the divergence theorem, we have

‖Du(t, ·)‖2
L2(Rn)

+ ‖∂tu(t, ·)‖2L2(Rn)
+ 2‖∂tu‖2L2((0,t )×Rn)

= ‖Du(0, ·)‖2
L2(Rn)

+ ‖∂tu(0, ·)‖2L2(Rn)
− 2

∫ t

0

∫

Rn

∂tu h dxds. (11)

Similarly, the multiplication of u to the equation yields

‖u(t, ·)‖2
L2(Rn)

+ 2‖Du‖2
L2((0,t )×Rn)

= ‖u(0, ·)‖2
L2(Rn)

+ 2‖∂tu‖2L2((0,t )×Rn)

− 2
∫ t

0

∫

Rn

u h dxds + 2
∫

Rn

u(0, ·)∂tu(0, ·)dx − 2
∫

Rn

u(t, ·)∂tu(t, ·)dx,
(12)
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where the last two terms are bounded by

‖u(0, ·)‖2
L2(Rn)

+‖∂tu(0, ·)‖2L2(Rn)
+2‖∂tu(t, ·)‖2L2(Rn)

+‖u(t, ·)‖2
L2(Rn)

/2. (13)

Combining the above estimates and C∗|ξ |2 ≤ Q(ξ) ≤ C∗|ξ |2, we obtain (10).
Second, we rewrite the Cauchy problem (9) as the integral equation. For ξ ∈ R

n,
we put [ξ ] := (Q(ξ) − 1/4)1/2 if Q(ξ) ≥ 1/4 and [ξ ] := i(1/4 − Q(ξ))1/2 if
Q(ξ) < 1/4. We put ω := F−1[ξ ]F and

K(t) := e−t/2 sin tω

ω
= e−t/2 F−1 sin t[ξ ]

[ξ ] F (14)

for t ≥ 0. We regard the differential equation (9) as the integral equation of the form

u(t, ·) = ∂tK(t)u0 + K(t)(u0 + u1) −
∫ t

0
K(t − τ )h(τ, ·)dτ. (15)

Lemma 2.1 Let u0 ∈ H 1(Rn), u1 ∈ L2(Rn), h ∈ L1((0, T ), L2(Rn)). Then u

given by (15) satisfies u ∈ C([0, T ],H 1(Rn)), ∂tu ∈ C([0, T ], L2(Rn)).

Proof We put 〈ξ〉 := √
1+ ξ2. We have K(·)g ∈ C([0,∞),H 1(Rn)) for g ∈

L2(Rn) by the Lebesgue convergence theorem,

‖K(t + ε)g − K(t)g‖H 1(Rn)

=
∥
∥
∥〈ξ〉

(
e−(t+ε)/2 sin(t + ε)[ξ ]

[ξ ] − e−t/2 sin t[ξ ]
[ξ ]

)
Fg

∥
∥
∥
L2(Rn)

(16)

and | sin t[ξ ]/[ξ ]| � et/2〈ξ〉−1 for t ≥ 0 and ε ∈ R. So that, we also have
∫ ·
0 K(· −

τ )h(τ )dτ ∈ C([0, T ],H 1(Rn)) for h ∈ L1((0, T ), L2(Rn)). Similarly, we have

e−t/2 cos tωg ∈ C([0,∞), L2(Rn))

for g ∈ L2(Rn) by | cos t[ξ ]| ≤ et/2, which shows ∂tK(·)g ∈ C([0,∞), L2(Rn))

for g ∈ L2(Rn). Therefore, we obtain u ∈ C([0, T ],H 1(Rn)). Since ∂2t K(·)g ∈
C([0,∞), L2(Rn)) for g ∈ H 1(Rn) by ∂2t K(·)g = #QK(·)g − ∂tK(·)g, we also
obtain ∂tu ∈ C([0, T ], L2(Rn)). �

Especially, the next result follows quickly from Lemma 2.1.

Corollary 2.2 Let u be the solution of (9)with h = 0. Namely, u is the free solution
for the dissipative wave equation. Then the following estimate holds.

lim
t→0

‖∇u(t, ·)− ∇u0(·)‖L2(Rn) = 0 (17)
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3 Estimates for Nonlinear Terms

We collect several estimates for nonlinear terms.

Lemma 3.1 (Caffarelli, Kohn, Nirenberg [5]) Let n ≥ 1, 1 ≤ p, q, r < ∞,
0 ≤ a ≤ 1. Let real numbers σ , α, β, γ satisfy

1

p
+ α

n
> 0,

1

q
+ β

n
> 0,

1

r
+ γ

n
> 0, γ = aσ + (1− a)β. (18)

Then the inequality

‖|x|γ u‖Lr(Rn) ≤ C‖|x|α∇u‖aLp(Rn)‖|x|βu‖1−a
Lq(Rn)

(19)

holds for any nonconstant function u if and only if

⎧
⎪⎪⎨

⎪⎪⎩

1

r
+ γ

n
= a

(
1

p
+ α − 1

n

)

+ (1− a)

(
1

q
+ β

n

)

0 ≤ α − σ if a > 0
α − σ ≤ 1 if a > 0 with 1

p
+ α−1

n
= 1

r
+ γ

n
.

(20)

We also refer to [33] for the generalization of Caffarelli-Kohn-Nirenberg’s
inequality to the inequalities involving higher order derivatives. The following
lemma follows from the above lemma when we put p = q = 2, α = β = 0,
and σ as γ = aσ .

Lemma 3.2 Let n ≥ 1, and let r , γ satisfy

0 <
1

r
≤ 1

2
,

1

2
− 1

n
≤ 1

r
, n

(
1

2
− 1

r

)

− 1 ≤ γ ≤ 0, −n

r
< γ. (21)

Then there exists a constant C > 0 such that the inequality

‖|x|γ u‖Lr (Rn) ≤ C‖∇u‖a
L2(Rn)

‖u‖1−a

L2(Rn)
(22)

holds for any nonconstant function u, where a := n(1/2 − 1/r) − γ satisfies 0 ≤
a ≤ 1.

By the use of the above lemma, we show the following estimates for nonlinear
terms.

Lemma 3.3 Let n ≥ 1, 0 ≤ s ≤ 1, s < n/2,

1 ≤ p

{
< ∞ if n = 1, 2
≤ 1+ 2(1−s)

n−2 if n ≥ 3
(23)
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We put a := n(p − 1)/2p+ s/p. Let f ∈ N(p). Then there exists a constantC > 0
such that the following inequalities hold.

(1)

∥
∥
∥
∥
f (u)

|x|s
∥
∥
∥
∥
L1((0,T ),L2(Rn))

≤ C‖∇u‖ap
Lap((0,T ),L2(Rn))

‖u‖(1−a)p

L∞((0,T ),L2(Rn))
(24)

(2)

∥
∥
∥
∥
f (u) − f (v)

|x|s
∥
∥
∥
∥
L1((0,T ),L2(Rn))

≤ C max
w=u,v

‖∇w‖a(p−1)
Lap((0,T ),L2(Rn))

‖w‖(1−a)(p−1)
L∞((0,T ),L2(Rn))

· ‖∇(u− v)‖a
Lap((0,T ),L2(Rn))

‖u − v‖1−a

L∞((0,T ),L2(Rn))
(25)

for any T > 0 and any nonconstant functions u and v.

In Lemma 3.3, we remark that 0 ≤ a ≤ 1 holds. And ap ≥ 2 holds if and only if
1+ 2(2− s)/n ≤ p.

Proof (1) By Lemma 3.2, we have

∥
∥
∥
∥
f (u)

|x|s
∥
∥
∥
∥
L2(Rn)

≤ C

∥
∥
∥
∥

u

|x|s/p
∥
∥
∥
∥

p

L2p(Rn)

≤ C‖∇u‖ap
L2(Rn)

‖u‖(1−a)p

L2(Rn)
. (26)

Applying the Hölder inequality in time variable, we obtain the required result. The
proof of (2) follows similarly by the use of (3). �
Corollary 3.4 Let g ∈ C1(R) be a real-valued function. Under the same assump-
tion of Lemma 3.3, the following estimates hold.

(1)

∥
∥
∥
∥
f (u)g(u)

|x|s
∥
∥
∥
∥
L1((0,T ),L2(R))

� C‖∇u‖ap
Lap((0,T ),L2(R))

‖u‖(1−a)p

L∞((0,T ),L2(R))
G(‖u‖L∞((0,T )×R)) (27)

(2)

∥
∥
∥
∥
f (u)g(u) − f (v)g(v)

|x|s
∥
∥
∥
∥
L1((0,T ),L2(R))

≤ C max
w=u,v

‖∇w‖a(p−1)
Lap((0,T ),L2(R))

‖w‖(1−a)(p−1)
L∞((0,T ),L2(R))

· ‖∇(u − v)‖a
Lap((0,T ),L2(R))

‖u− v‖1−a

L∞((0,T ),L2(R))

· max
w=u,v

G(‖w‖L∞((0,T )×R)), (28)

where G(ρ) := max{max|z|≤ρ |g(z)|, ρmax|z|≤ρ |g′(z)|} for ρ ≥ 0.
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Proof The result (1) follows from the proof of Lemma 3.3 analogously by the use
of |g(u)| ≤ G(|u|). The result (2) follows from the bound

|f (u)g(u) − f (v)g(v)| ≤ C max
w=u,v

|w|p−1|u− v| max
w=u,v

G(|w|). (29)

�
Lemma 3.5 ([29, Corollary 1.6]) Let 0 ≤ t < 2, β > (4πe(2 − t))−1/2. Then
there exists a constant r = r(t, β) ≥ 2 such that the inequality

∥
∥
∥
∥

u

|x|t/q
∥
∥
∥
∥
Lq(R2)

≤ βq1/2‖u‖(2−t )/q

L2(R2)
‖∇u‖1−(2−t )/q

L2(R2)
(30)

holds for any u ∈ H 1(R2) and any q with r ≤ q < ∞.

Lemma 3.6 Let 0 ≤ s < 1, T > 0, β > (8πe(1− s))−1/2. Let α > 0, λ ∈ R. We
put

f (u) := λu(eαu
2 − 1). (31)

Then there exists a constant C > 0 such that the following estimates hold.

(1)

∥
∥
∥
∥
f (u)

|x|s
∥
∥
∥
∥
L1((0,T ),L2(R2))

≤ C

∞∑

j=1

au(j)‖∇u‖2
L2((0,T )×R2)

· ‖∇u‖s
L∞((0,T ),L2(R2))

‖u‖1−s

L∞((0,T ),L2(R2))
(32)

(2)

∥
∥
∥
∥
f (u)− f (v)

|x|s
∥
∥
∥
∥
L1((0,T ),L2(R2))

≤ C max
w=u,v

∞∑

j=1

jaw(j)‖∇w‖1+(1−s)/p(j)

L2((0,T )×R2)

· ‖∇w‖s
L∞((0,T ),L2(R2))

‖w‖(1−s)2j/p(j)

L∞((0,T ),L2(R2))

· ‖∇(u− v)‖1−(1−s)/p(j)

L2((0,T )×R2)
‖u − v‖(1−s)/p(j)

L∞((0,T ),L2(R2))
, (33)

where p(j) := 2j+1, au(j) := αjβp(j)(2p(j))p(j)/2‖∇u‖p(j)−3
L∞((0,T ),L2(R2))

/j !, and
the series

∑∞
j=1 au(j) and

∑∞
j=1 jau(j) are finite if

α‖∇u‖2
L∞((0,T ),L2(R2))

< 2π(1− s). (34)
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Proof (1) We use the expansion |f (u)| � ∑∞
j=1

αj

j ! |u|p(j) to have

∥
∥
∥
∥
f (u)

|x|s
∥
∥
∥
∥
L2(R2)

�
∞∑

j=1

αj

j !
∥
∥
∥
∥

u

|x|s/p(j)

∥
∥
∥
∥

p(j)

L2p(j)(R2)

. (35)

For any fixed β with β > (8πe(1− s))−1/2, we have by Lemma 3.5 the estimate

∥
∥
∥
∥

u

|x|s/p(j)

∥
∥
∥
∥
L2p(j)(R2)

≤ β(2p(j))1/2‖∇u‖1−(1−s)/p(j)

L2(R2)
‖u‖(1−s)/p(j)

L2(R2)
(36)

for sufficiently large j , where we are also able to obtain the similar bound for small
j by Lemma 3.2. By the Hölder inequality in time variable, we obtain the required
result. The proof of (2) follows similarly if we use the bound

|f (u) − f (v)| � max
w=u,v

∞∑

j=1

αj

(j − 1)! |w|2j |u− v|. (37)

Finally, the condition (34) yields the convergence of the series since limj→∞ au(j+
1)/au(j) < 1. �

4 A Priori Estimates

We prepare a priori estimates for global solutions for large data.

Lemma 4.1 Let T > 0, n ≥ 1. Let u be the solution of

{
(∂2t − #Q + ∂t )u(t, x)+ h(x, u(t, x)) = 0 for (t, x) ∈ [0, T ) ×R

n

u(0, ·) = u0(·), ∂tu(0, ·) = u1(·). (38)

We assume that there exists a function H such that h(x, u) = ∂H(x, u)/∂u. We put

E(u)(t) :=
∫

Rn

(∂tu(t, x))
2 + |Du(t, x)|2 + 2H(x, u(t, x))dx. (39)

Then we have the following results.

(1) E(u)(t) + 2‖∂tu‖2L2((0,t )×Rn)
= E(u)(0) for 0 ≤ t < T . (40)

(2) Let (u0, u1) �= (0, 0). We assume that H satisfies H(x, u) ≥ 0 for any (x, u) ∈
R

n+1, and u = 0 if H(x, u) = 0. Then

‖Du0‖2L2(Rn)
< E(u)(0), ‖Du‖2

L∞((0,T ),L2(Rn))
< E(u)(0). (41)
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Moreover, for any fixed t0 with 0 ≤ t0 < T , if v is the free solution of

{
(∂2t − #Q + ∂t )v(t, x) = 0 for (t, x) ∈ [t0,∞) ×R

n

v(t0, ·) = u(t0, ·), ∂tv(t0, ·) = ∂tu(t0, ·), (42)

then

‖∂t v(t, ·)‖2L2(Rn)
+ ‖Dv(t, ·)‖2

L2(Rn)
+ 2‖∂tv‖2L2((t0,t )×Rn)

≤ E(u)(0)− 2‖∂tu‖2L2((0,t0)×Rn)
(43)

for any t0 ≤ t < ∞, and the bound ‖Dv‖2
L∞((t0,T ),L2(Rn))

< E(u)(0) holds.

Proof The result (1) follows easily from h = ∂H/∂u, and the multiplication of
∂tu to the first equation in (38). We prove (2) in the following. ‖Du0‖2L2(Rn)

<

E(u)(0) follows from the definition of E(u)(0), (u0, u1) �= (0, 0), and u0 = 0
if h(x, u0) = 0. So that, if ‖Du‖2

L∞((0,T ),L2(Rn))
= E(u)(0), there exists a

nondecreasing sequence {tj }∞j=1 such that 0 < tj ≤ t∞ := limj→∞ tj ≤ T ,

E(u)(0) = limj→∞ ‖Du(tj , ·)‖2L2(Rn)
. This means

lim
j→∞

∫

Rn

(
∂tu(tj , ·)2 + 2H(x, u(tj , x))

)
dx = 0 and ‖∂tu‖L2((0,t∞)×Rn) = 0

(44)

by (1) and H ≥ 0. The latter shows u = u0 on [0, t∞), and u1 = 0, therefore the
former shows u0 = 0 since H(x, u0) = 0 yields u0 = 0, which is a contradiction
to (u0, u1) �= (0, 0). We have shown ‖Du‖2

L∞((0,T ),L2(Rn))
< E(u)(0). Next, we

show (43). We use (1) for v to have

E(v)(t) + 2‖∂tv‖2L2((t0,t )×Rn)
= E(v)(t0) for t0 ≤ t < ∞. (45)

Since we have

E(v)(t0) ≤ E(u)(t0) = E(u)(0)− 2‖∂tu‖2L2((0,t0)×Rn)
, (46)

we obtain (43). We show the final part of the lemma. If ‖Dv‖2
L∞((t0,T ),L2(Rn))

=
E(u)(0), then there exists a nondecreasing sequence {tj }∞j=1 such that t0 <

tj ≤ t∞ := limj→∞ tj ≤ T , E(u)(0) = limj→∞ ‖Dv(tj , ·)‖2L2(Rn)
since

‖Dv(t0, ·)‖2L2(Rn)
= ‖Du(t0, ·)‖2L2(Rn)

< E(u)(0) by (41). This means

‖∂tu‖L2((0,t0)×Rn) = ‖∂tv‖L2((t0,t∞)×Rn) = 0 (47)
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by (43). So that, v = u0 on [t0, t∞) and it yields ‖Du0‖2L2(Rn)
= E(u)(0), which is

a contradiction to (41). �

5 Proof of Theorems

We prove the theorems in the introduction.

5.1 Proof of Theorem 1.2

Let 0 < T ≤ ∞, 0 < R < ∞. We define the complete metric space X(T ,R) by
X(T ,R) := {u ∈ S ′(Rn+1) | ‖u‖X ≤ R}, where

‖u‖X := max{‖u‖L∞((0,T ),H 1(Rn)), ‖∂tu‖L∞((0,T ),L2(Rn)), ‖Dt,xu‖L2((0,T )×Rn)}.
(48)

We show a map $ defined by

$(u)(t) := ∂tK(t)u0 + K(t)(u0 + u1) −
∫ t

0
K(t − τ )

f (u(τ, x))

|x|s dτ (49)

is a contraction on X(T ,R) for some T and R. By (10), we have

‖$(u)‖X � ‖u0‖H 1 + ‖u1‖L2 +
∥
∥
∥
∥
f (u)

|x|s
∥
∥
∥
∥
L1

t L
2
x

. (50)

We estimate the last term by Lemma 3.3 as

∥
∥
∥
∥
f (u)

|x|s
∥
∥
∥
∥
L1

t L
2
x

� ‖∇u‖ap
L

ap
t L2

x

‖u‖(1−a)p

L∞
t L2

x
, (51)

where a := {n(p − 1)+ 2s}/2p. Since 2 ≤ ap when 1+ 2(2− s)/n ≤ p, we have

‖$(u)‖X ≤ C0(‖u0‖H 1 + ‖u1‖L2)+ C

{
T ‖u‖pX
‖u‖pX if 1+ 2(2− s)/n ≤ p

(52)

for some constants C0 > 0 and C > 0, which are independent of u, where we have
used ‖∇u‖Lap

t L2
x

≤ T 1/ap‖∇u‖L∞L2 for the upper inequality. Similarly, we also
have

‖$(u)− $(v)‖X ≤ C max
w=u,v

‖w‖p−1
X

{
T ‖u − v‖X
‖u− v‖X if 1+ 2(2− s)/n ≤ p.

(53)
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Putting R = 2C0(‖u0‖H 1 + ‖u1‖L2), we conclude that $ is a contraction mapping
on X(T ,R) for sufficiently small T > 0 for any data, and moreover T = ∞ for
sufficiently small data when 1+ 2(2− s)/n ≤ p.

Next, we show the uniqueness of the solution. Let v ∈ Cb([0, T ),H 1(Rn)) ∩
C1

b ([0, T ), L2(Rn)) be another solution. We define t0 := inf{t ∈ [0, T ) : u(t) �=
v(t)} and show t0 < T yields a contradiction. Let t0 < T . By the continuity of u
and v, we have (u− v)(t0) = ∂t (u− v)(t0) = 0. Similarly to (53), we have

‖u − v‖X((t0,t0+ε)) ≤ Cε max
w=u,v

‖w‖p−1
X((t0,t0+ε))‖u− v‖X((t0,t0+ε)) (54)

for sufficiently small ε > 0, where ‖ · ‖X((t0,t0+ε)) is defined by (48) with (0, T )

replaced by (t0, t0 + ε). Since ‖v‖X((t0,t0+ε)) < ∞ by L∞((t0, t0 + ε)) ↪→
L2((t0, t0 + ε)), we obtain ‖u − v‖X((t0,t0+ε)) = 0 for sufficiently small ε > 0,
which shows u = v on [t0, t0 + ε) and a contradiction to the definition of t0. �

5.2 Proof of Theorem 1.5

The proof of Theorem 1.5 follows in a similar way to that of Theorem 1.2. The
exception is that we use Corollary 3.4 to derive

∥
∥
∥
∥
f (u)g(u)

|x|s
∥
∥
∥
∥
L1

t L
2
x

� G(C‖u‖L∞H 1)‖∇u‖ap
LapL2‖u‖(1−a)p

L∞L2 , (55)

where we have used the embeddingH 1(R) ↪→ L∞(R).

5.3 Proof of Theorem 1.6

Let uF be the free solution given by uF (t, ·) := ∂tK(t)u0+K(t)(u0 +u1). For any
function uN , let %(uN) be given by

%(uN)(t) := −
∫ t

0
K(t − τ )

f ((uF + uN)(τ, x))

|x|s dτ. (56)

Then the fixed point uN = %(uN) satisfies u = uF + uN for the solution u of (2).
Here, uN denotes the nonlinear part of u. We show % is a contraction mapping on
X(T ,R) in the following. By (10), we have

‖uF ‖X � ‖u0‖H 1 + ‖u1‖L2, (57)
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and by Lemma 3.6, we also have

‖%(uN)‖X �
∥
∥
∥
∥
f (uF + uN)

|x|s
∥
∥
∥
∥
L1

t L
2
x

�
∞∑

j=1

auF+uN (j)‖∇(uF + uN)‖2
L2

t L
2
x
‖∇(uF + uN)‖s

L∞
t L2

x
‖uF + uN‖1−s

L∞
t L2

x

� min{1, T }
∞∑

j=1

auF+uN (j)‖uF + uN‖3X. (58)

Similarly, we also have

‖%(uN) − %(vN)‖X �
∥
∥
∥
∥
f (uF + uN)− f (uF + vN )

|x|s
∥
∥
∥
∥
L1

t L
2
x

� max
w=uF+uN ,uF+vN

∞∑

j=1

jaw(j)‖∇w‖1+(1−s)/p(j)

L2
t L

2
x

‖∇w‖s
L∞

t L2
x
‖w‖2j (1−s)/p(j)

L∞
t L2

x

· ‖∇(uN − vN)‖1−(1−s)/p(j)

L2
t L

2
x

‖uN − vN‖(1−s)/p(j)

L∞
t L2

x

� min{1, T } max
w=uF+uN ,uF+vN

∞∑

j=1

jaw(j)‖w‖2X‖uN − vN‖X. (59)

Here, the series
∑∞

j=1 auF+uN (j) and
∑∞

j=1 jaw(j) converge in finite provided

max
w=uF+uN ,uF+vN

‖∇w‖2
L∞

t L2
x
<

2π(1− s)

α
, (60)

which is satisfied if

‖∇uF ‖2
L∞

t L2
x
<

2π(1− s)

α
(61)

and R > 0 is sufficiently small. By Corollary 2.2, ‖∇uF (t, ·)‖L2 converges to
‖∇u0‖L2 . So that, (61) holds if T > 0 is sufficiently small. Therefore, we obtain (1)
in the theorem. The result (2) follows since (61) holds for small data by the energy
estimate (10).

Next, we show the uniqueness of the solution. The solution u obtained by the
above argument is written as u = uF + uN , where uN is the fixed point of % and
satisfies ‖uN‖X ≤ R. Since R is sufficiently small and uF satisfies (61), we have

‖∇u‖2
L∞((0,T ),L2(Rn))

< 2π(1− s)/α. (62)
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Let v ∈ Cb([0, T ),H 1(R2)) ∩ C1
b ([0, T ), L2(R2)) be another solution. We define

t0 := inf{t ∈ [0, T ) : u(t) �= v(t)} and show t0 < T yields a contradiction. Let t0 <

T . By the continuity of u and v, we have (u− v)(t0) = ∂t (u− v)(t0) = 0. Let uF,t0

be the free solution given by uF,t0(t) := ∂tK(t−t0)u(t0)+K(t−t0)(u(t0)+∂tu(t0)).
Similarly to (59), we have

‖u − v‖X((t0,t0+ε)) ≤ Cmin{1, ε} max
w=u,v

∞∑

j=1

jaw(j)

· ‖w‖2X((t0,t0+ε))‖u− v‖X((t0,t0+ε)) (63)

for sufficiently small ε > 0. Since ‖v‖X((t0,t0+ε)) tends to ‖u‖X((t0,t0+ε)) as ε tends
to 0, we have

∑∞
j=1 jav(j) < ∞ by (62) for sufficiently small ε > 0. So that, we

obtain ‖u − v‖X((t0,t0+ε)) = 0 for sufficiently small ε > 0, which shows u = v on
[t0, t0 + ε) and a contradiction to the definition of t0.

5.4 Proof of Theorem 1.8

When λ = 0, the solution is a free solution and exists globally in time. We assume
λ > 0 in the following. We put

H(x, u) :=
{
λ|u|p+1/(p + 1)|x|s for (1)

λ(eαu
2 − 1− αu2)/2α|x|s for (2).

(64)

Then we have ∂H/∂u = f (u)/|x|s , H ≥ 0, and u = 0 if H(x, u) = 0. We are able
to use Lemma 4.1.

(1) We use (40) to have ‖Dt,xu‖2L∞((0,t ),L2(Rn))
≤ E(u)(0). Combining this and

the trivial inequality

‖u(t, ·)‖L2 ≤ ‖u(0, ·)‖L2 +
∫ t

0
‖∂tu(s, ·)‖L2ds, (65)

we have

‖u(t, ·)‖H 1 + ‖∂tu(t, ·)‖L2 = O(t) (66)

as t → ∞. So that, we obtain the global solutions by the continuation of the local
solutions obtained by Theorem 1.2.

(2) We consider the case (u0, u1) �= (0, 0) since the solution u = 0 is global
in the case (u0, u1) = (0, 0). We note E(u)(0) ≤ 2π(1− s)C∗/α by (8), and it
yields ‖∇u0‖2L2 < 2π(1 − s)/α by (41). By Theorem 1.6, we have a local in time
solution u on [0, T ) for some T > 0. Let T ∗ be the supremum of such T . By (65)
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and ‖∂tu‖2L∞((0,t ),L2)
≤ E(u)(0), we have

‖u(t, ·)‖L2 ≤ ‖u(0, ·)‖L2 + t (E(u)(0))1/2 (67)

for 0 ≤ t < T ∗. We assume T ∗ < ∞ and show a contradiction in the following.
First, we claim

‖∂tu‖L2((0,t )×Rn) �= 0 for 0 < t < T ∗. (68)

Indeed, if this does not hold, then u is a stationary solution and it exists globally,
a contradiction to T ∗ < ∞. Next, for any fixed sufficiently small ε > 0 such that
T ∗ − ε ≥ T ∗/2, let v be the solution of (42) with t0 := T ∗ − ε. By (43), we have

‖Dv‖2
L∞((T ∗−ε,∞),L2)

≤ E(u)(0)− 2‖∂tu‖2L2((0,T ∗−ε)×Rn)

≤ E(u)(0)− 2‖∂tu‖2L2((0,T ∗/2)×Rn)
. (69)

This estimate shows ‖Dv‖2
L∞((T ∗−ε,∞),L2)

is strictly smaller than E(u)(0) uni-
formly on ε by (68). And (67) shows that ‖u(t, ·)‖L2 is also bounded from above
uniformly on ε. So that, the argument in the proof of Theorem 1.6 guarantees that
we are able to continue the solution u beyond T ∗ starting from T ∗ − ε, which is a
contradiction to the definition of T ∗. We note that the corresponding estimate (60)
holds for v by (68) and (69), so that the existence time of u starting from t0 is
bounded from below uniformly on ε.

Next, we show the uniqueness of the solution. The uniqueness for (1) fol-
lows from that of Theorem 1.2. Let us consider the case for (2). Let u be the
global solution obtained by the above argument. Let v ∈ Cb([0,∞),H 1(R2)) ∩
C1

b ([0,∞), L2(R2)) be another solution. We define t0 := inf{t ∈ [0,∞) : u(t) �=
v(t)} and show t0 < ∞ yields a contradiction. Let t0 < ∞. By the continuity
of u and v, we have (u − v)(t0) = ∂t (u − v)(t0) = 0. Since E(u)(t0) ≤
2π(1 − s)C∗/α, we have ‖Du‖2

L∞((0,∞),L2(R2))
< E(u)(0) by Lemma 4.1, which

yields ‖∇v(t0)‖2L2(R2)
< 2π(1−s)/α. So that, the uniqueness result of Theorem 1.6

shows u = v on [t0, t0 + ε) for sufficiently small ε > 0, which is a contradiction to
the definition of t0.

Appendix

In this section, we give a rigorous proof of the energy estimates given by (10),
which has been proved there by formal calculation. Since the equation in (2) has a
singularity at x = 0, the standard density argument by the use of C∞(Rn) in spatial
variables is not valid.We give its modification for the completeness of our argument.
We refer to the paper [46] by Shatah and Struwe for the rigorous proof of the energy
estimates to treat energy solutions of critical semilinear wave equations without
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the singularity (s = 0). We show the corresponding result to the case of singular
nonlinear terms (s > 0). To start with, we prepare the following basic estimate.

Lemma A.1 Let n ≥ 1, 0 < T < ∞. Let u, v ∈ C([0, T ], L2(Rn)). Assume that
the first derivatives ∂tu and ∂t v exist in L2(Rn) for any t ∈ [0, T ]. Then the equality

∂t 〈u(t, ·), v(t, ·)〉 = 〈∂tu(t, ·), v(t, ·)〉 + 〈u(t, ·), ∂t v(t, ·)〉 (70)

holds for any t ∈ [0, T ], where 〈f, g〉 := ∫
Rn f (x)g(x)dx for f , g ∈ L2(Rn).

Proof For ε ∈ R, we put

I := (〈u(t + ε, ·), v(t + ε, ·)〉 − 〈u(t, ·), v(t, ·)〉) /ε
− 〈∂tu(t, ·), v(t, ·)〉 − 〈u(t, ·), ∂t v(t, ·)〉 (71)

and bound it by

|I | ≤ ‖(u(t + ε, ·)− u(t, ·))/ε − ∂tu(t, ·)‖L2(Rn)‖v(t + ε, ·)‖L2(Rn)

+ ‖u(t, ·)‖L2(Rn)‖(v(t + ε, ·) − v(t, ·))/ε − ∂t v(t, ·)‖L2(Rn)

+ ‖∂tu(t, ·)‖L2(Rn)‖v(t + ε, ·)− v(t, ·)‖L2(Rn). (72)

By the assumption, we have limε→0 I = 0 and obtain the required result. �
We start from the following estimates for the strong solutions.

Lemma A.2 Let n ≥ 1, 0 < T < ∞. Let u ∈ C([0, T ],H 2(Rn)) ∩
C1([0, T ],H 1(Rn)) and h ∈ L1((0, T ), L2(Rn)) be real-valued functions. Assume
that the second derivative ∂2t u exists and satisfies

(∂2t − #Q + ∂t )u(t, ·) + h(t, ·) = 0 (73)

inL2(Rn) for any t ∈ [0, T ]. Then the following inequalities hold for any t ∈ [0, T ].

(1) ‖Dt,xu(t, ·)‖2L2(Rn)
+ 2‖∂tu‖2L2((0,t )×Rn)

+ 2
∫ t

0

∫

Rn

∂tu(s, x)h(s, x)dxds = ‖Dt,xu(0, ·)‖2L2(Rn)
(74)

(2) ‖u(t, ·)‖2
L2(Rn)

+ ‖Dt,xu(t, ·)‖2L2(Rn)
+ 2‖Dt,xu‖2L2((0,t )×Rn)

+ 4
∫ t

0

∫

Rn

u(s, x)h(s, x)dxds + 10
∫ t

0

∫

Rn

∂tu(s, x)h(s, x)dxds

≤ 4‖u(0, ·)‖2
L2(Rn)

+ 7‖Dt,xu(0, ·)‖2L2(Rn)
(75)



298 M. Nakamura and H. Wadade

Proof (1) Taking the L2 inner products of both sides of (73) with ∂tu, and using
Lemma A.1 and 2〈∂tu,#Qu〉 = −∂t‖Du‖2

L2(Rn)
, we obtain

∂t

(
‖Dt,xu‖2L2(Rn)

)
+ 2‖∂tu‖2L2(Rn)

+ 2〈∂tu, h〉 = 0. (76)

This leads to ∂t‖Dt,xu‖2 ∈ L1((0, T )) by the assumption on u and h, and we obtain
the required equality by the integration in time variable.

(2) Similarly, taking the L2 inner products of both sides of (73) with u, we have

∂t (2〈u, ∂tu〉 + ‖u‖2
L2(Rn)

) − 2‖∂tu‖2L2(Rn)
+ 2‖Du‖2

L2(Rn)
+ 2〈u, h〉 = 0. (77)

This leads to ∂t (2〈u, ∂tu〉 + ‖u‖2
L2(Rn)

) ∈ L1((0, t)), and we obtain

‖u(t, ·)‖2
L2(Rn)

+ 2‖Du‖2
L2((0,t )×Rn)

+ 2
∫ t

0
〈u(s, ·), h(s, ·)〉ds

= ‖u(0, ·)‖2
L2(Rn)

+2‖∂tu‖2L2((0,t )×Rn)
+2〈u(0, ·), ∂tu(0, ·)〉−2〈u(t, ·), ∂tu(t, ·)〉.

(78)

Since the last term is bounded by ‖u(t, ·)‖2
L2(Rn)

/2+2‖∂tu(t, ·)‖2L2(Rn)
, the required

inequality follows from this equality and (1). �
Next, we consider the energy estimates for the energy solutions.

Lemma A.3 Let n ≥ 1, 0 < T < ∞. Let u ∈ C([0, T ],H 1(Rn)) ∩
C1([0, T ], L2(Rn)) and h ∈ L2((0, T )×R

n) be real-valued functions. Assume that
the second derivative ∂2t u exists and satisfies (73) in H−1(Rn) for any t ∈ [0, T ].
Then the results in Lemma A.2 hold for any t ∈ [0, T ].
Proof Let {ϕj }∞j=1 be a mollifier on R

n. Put uj := u ∗ ϕj and hj := h ∗ ϕj

for 1 ≤ j < ∞. By the assumption on u and h, {uj }∞j=1 and {hj }∞j=1 satisfy

uj ∈ C([0, T ],H 2(Rn)), ∂t (uj ) = (∂tu) ∗ ϕj ∈ C([0, T ],H 1(Rn)) and
hj ∈ L1((0, T ), L2(Rn)). Moreover, ∂2t (uj ) = (∂2t u) ∗ ϕj exists in L2(Rn)

and satisfies (∂2t − #Q + ∂t )uj + hj = 0 in L2(Rn) on [0, T ]. So that, we have
the results in Lemma A.2 with u and h replaced by uj and hj . It is easy to check
by the Lebesgue convergence theorem that ‖uj (t, ·)‖L2(Rn), ‖Dt,xuj (t, ·)‖L2(Rn)

and ‖Dt,xuj‖L2((0,t )×Rn) converge to ‖u(t, ·)‖L2(Rn), ‖Dt,xu(t, ·)‖L2(Rn) and

‖Dt,xu‖L2((0,t )×Rn) as j → ∞. The term
∫ t

0

∫
Rn ∂tuj hjdxds converges to

∫ t

0

∫
Rn ∂tuhdxds by

∣
∣
∣
∣

∫ t

0

∫

Rn

∂tuj (s, x)hj (s, x) − ∂tu(s, x)h(s, x)dxds

∣
∣
∣
∣

≤ ‖∂t (uj − u)‖L2(St )
‖hj‖L2(St )

+ ‖∂tu‖L∞((0,t ),L2(Rn))‖hj − h‖L1((0,t ),L2(Rn))

(79)
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and h ∈ L2(St ), where St := (0, t) × R
n. Similarly, the term

∫ t

0

∫
Rn ujhjdxds

converges to
∫ t

0

∫
Rn uhdxds. Therefore, we have obtained the required results. �

Next, we consider the potential of the inhomogeneous term.

Lemma A.4 Let n ≥ 1, 0 < T < ∞. Let H = H(x, u) be a function on R
n × R

such that H(x, ·) ∈ C1(R,R) for almost everywhere x ∈ R
n. Assume that there

exists a nondecreasing and nonnegative function M on [0,∞) such that

∥
∥
∥
∥
∂H

∂u
(·, u(·))

∥
∥
∥
∥
L2(Rn)

≤ M(‖u‖H 1(Rn)) (80)

∥
∥
∥
∥
∂H

∂u
(·, u(·))−∂H

∂u
(·, v(·))

∥
∥
∥
∥
L2(Rn)

≤M(‖u‖H 1(Rn)+‖v‖H 1(Rn))‖u−v‖H 1(Rn)

(81)

for any u, v ∈ H 1(Rn). Then the estimate

∫ t

0

∫

Rn

∂tu(s, x)
∂H

∂u
(x, u(s, x))dxds =

∫

Rn

H(x, u(t, x))dx

−
∫

Rn

H(x, u(0, x))dx (82)

holds for any t ∈ [0, T ] and u ∈ C([0, T ],H 1(Rn)) ∩ C1([0, T ], L2(Rn)).

Proof For ε ∈ R, we put I as

I := 1

ε

∫

Rn

H(x, u(t+ε, x))−H(x, u(t, x))dx−
∫

Rn

∂H

∂u
(x, u(t, x))∂t u(t, x)dx.

(83)

By the assumption on H , we are able to write

H(x, u(t + ε, x))−H(x, u(t, x)) =
∫ 1

0

∂H

∂u
(x, uθ )dθ(u(t + ε, x)− u(t, x)),

(84)

where uθ := (1− θ)u(t, x)+ θu(t + ε, x). Inserting this equality, we have

|I | ≤
∥
∥
∥
∥

∫ 1

0

∂H

∂u
(·, uθ )dθ

∥
∥
∥
∥
L2(Rn)

·
∥
∥
∥
∥
u(t + ε, ·) − u(t, ·)

ε
− ∂tu(t, ·)

∥
∥
∥
∥
L2(Rn)

+
∥
∥
∥
∥

∫ 1

0

∂H

∂u
(·, uθ )− ∂H

∂u
(·, u)dθ

∥
∥
∥
∥
L2(Rn)

· ‖∂tu(t, ·)‖L2(Rn) . (85)
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So that, by the assumption on u and H , we obtain limε→0 |I | = 0, which shows

∂t

∫

Rn

H(x, u(t, x))dx =
∫

Rn

∂H

∂u
(x, u(t, x))∂tu(t, x)dx. (86)

Since the right hand side is integrable on [0, T ] by
∫

Rn

∣
∣
∣
∣
∂H

∂u
(x, u(t, x))∂tu(t, x)

∣
∣
∣
∣ dx ≤ M(‖u(t, ·)‖H 1(Rn))‖∂tu(t, ·)‖L2(Rn), (87)

we obtain the required result by the fundamental theorem of calculus. �
By Lemmas A.3 and A.4, we quickly obtain the following result.

Corollary A.5 Under the assumption of Lemmas A.3 and A.4, if h and H satisfy

h(t, x) = ∂H

∂u
(x, u(t, x)), (88)

then the estimate

∫

Rn

|Dt,xu(t, x)|2 + 2H(x, u(t, x))dx + 2‖∂tu‖2L2((0,t )×Rn)

≤
∫

Rn

|Dt,xu(0, x)|2 + 2H(x, u(0, x))dx (89)

holds for any t ∈ [0, T ].
Now, we describe that our energy solutions satisfy the energy estimates. Let

n, s, p and f satisfy the assumption in Theorem 1.2. For T > 0, put X :=
L∞((0, T ),H 1(Rn)). Let u0 ∈ H 1(Rn) and u1 ∈ L2(Rn) be arbitrarily fixed. For
any u ∈ X, we put

$(u)(t) := ∂tK(t)u0 + K(t)(u0 + u1)−
∫ t

0
K(t − τ )h(·, u(τ, ·))dτ, (90)

where h(x, u(t, x)) := f (u(t,x))
|x|s andK(·) is defined by (14). We note thatK satisfies

‖∂tK(t)u0‖H 1(Rn) � ‖u0‖H 1(Rn), ‖K(t)(u0 + u1)‖H 1(Rn) � ‖u0 + u1‖L2(Rn),

(91)
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and h satisfies

‖h(·, u(t, ·))‖L2(Rn) � ‖u(t, ·)‖p
H 1(Rn)

(92)

‖h(·, u(t, ·)) − h(·, v(t, ·))‖L2(Rn) � max
w=u,v

‖w(t, ·)‖p−1
H 1(Rn)

‖u(t, ·) − v(t, ·)‖H 1(Rn)

(93)

for any u, v ∈ X and t ∈ [0, T ] from the proof of Lemma 3.3. So that, we obtain the
fixed point u of$ inX for sufficiently small T = T (‖u0‖H 1(Rn)+‖u1‖L2(Rn)) > 0.
Lemma 2.1 shows that u ∈ C([0, T ],H 1(Rn)) ∩ C1([0, T ], L2(Rn)). And ∂2t u

exists and satisfies

(∂2t − #Q + ∂t )u(t, ·) + h(·, u(t, ·)) = 0 (94)

in H−1(Rn) for any t ∈ [0, T ]. So that, we have the required energy estimates (74)
and (75) by Lemma A.3. Moreover when f (u) = λ|u|p−1u with λ > 0, we put H
by the first line in (64). Then H satisfies (88) and the assumption of Lemma A.4
by (92) and (93). So that, we obtain (89) by Corollary A.5. We have described the
energy estimates corresponding to Theorem 1.2 and (1) of Theorem 1.8. The energy
estimates for the other theorems are similarly obtained.

Acknowledgements The author is thankful to the anonymous referee for several comments to
revise the paper.

References

1. L. Aloui, S. Ibrahim, K. Nakanishi, Exponential energy decay for damped Klein-Gordon
equation with nonlinearities of arbitrary growth. Commun. Partial Differ. Equ. 36(5), 797–818
(2011)

2. P. Baras, J.A. Goldstein, The heat equation with a singular potential. Trans. Am. Math. Soc.
284(1), 121–139 (1984)

3. H. Brezis, L. Dupaigne, A. Tesei, On a semilinear elliptic equation with inverse-square
potential. Selecta Math. (N.S.) 11(1), 1–7 (2005)

4. N. Burq, F. Planchon, J.G. Stalker, A.S. Tahvildar-Zadeh, Strichartz estimates for the wave
and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549
(2003)

5. L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights.
Compositio Math. 53(3), 259–275 (1984)

6. F. Catrina, Z.Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities. C. R. Acad. Sci. Paris
Sér. I Math. 330(6), 437–442 (2000)

7. F. Catrina, Z.Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, exis-
tence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math.
54(2), 229–258 (2001)



302 M. Nakamura and H. Wadade

8. J.L. Chern, C.S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities on domains with
the singularity on the boundary. Arch. Ration. Mech. Anal. 197, 401–432 (2010)

9. P. Cherrier, A. Milani, Linear and Quasi-Linear Evolution Equations in Hilbert Spaces.
Graduate Studies in Mathematics, vol. 135 (American Mathematical Society, Providence,
2012), xviii+377pp.

10. J. Colliander, S. Ibrahim, M. Majdoub, N. Masmoudi, Energy critical NLS in two space
dimensions. J. Hyperbolic Differ. Equ. 6(3), 549–575 (2009)

11. V. Combet, F. Genoud, Classification of minimal mass blow-up solutions for an L2 critical
inhomogeneous NLS. J. Evol. Equ. 16(2), 483–500 (2016)

12. H. Egnell, Positive solutions of semilinear equations in cones. Trans. Am. Math. Soc. 330(1),
191–201 (1992)

13. Z. Gan, Cross-constrained variational methods for the nonlinear Klein-Gordon equations with
an inverse square potential. Commun. Pure Appl. Anal. 8(5), 1541–1554 (2009)

14. J.P. García Azorero, I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic
problems. J. Differ. Equ. 144(2), 441–476 (1998)

15. V. Georgiev, S. Lucente, Focusing NLKG equation with singular potential. Commun. Pure
Appl. Anal. 17(4), 1387–1406 (2018)

16. N. Ghoussoub, X.S. Kang, Hardy-Sobolev critical elliptic equations with boundary singulari-
ties. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(6), 767–793 (2004)

17. N. Ghoussoub, F. Robert, Concentration estimates for Emden-Fowler equations with boundary
singularities and critical growth. IMRP Int. Math. Res. Pap. 21867, 1–85 (2006)

18. N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev
inequalities. Geom. Funct. Anal. 16(6), 1201–1245 (2006)

19. N. Hayashi, E.I. Kaikina, P.I. Naumkin, Damped wave equation with super critical nonlineari-
ties. Differ. Integr. Equ. 17(5–6), 637–652 (2004)

20. N. Hayashi, E.I. Kaikina, P.I. Naumkin, Damped wave equation in the subcritical case. J. Differ.
Equ. 207(1), 161–194 (2004)

21. J. Hernández, F.J. Mancebo, J.M. Vega, Positive solutions for singular nonlinear elliptic
equations. Proc. R. Soc. Edinb. Sect. A 137(1), 41–62 (2007)

22. T. Hosono, T. Ogawa, Large time behavior and Lp-Lq estimate of solutions of 2-dimensional
nonlinear damped wave equations, J. Differ. Equ. 203, 82–118 (2004)

23. C.H. Hsia, C.S. Lin, H. Wadade, Revisiting an idea of Brézis and Nirenberg. J. Funct. Anal.
259, 1816–1849 (2010)

24. T-S. Hsu, H-L. Lin, Multiple positive solutions for singular elliptic equations with weighted
Hardy terms and critical Sobolev-Hardy exponents. Proc. R. Soc. Edinb. Sect. A 140(3), 617–
633 (2010)

25. S. Ibrahim, R. Jrad, Strichartz type estimates and the well-posedness of an energy critical 2D
wave equation in a bounded domain. J. Differ. Equ. 250(9), 3740–3771 (2011)

26. S. Ibrahim, R. Jrad, M. Majdoub, T. Saanouni, Local well posedness of a 2D semilinear heat
equation. Bull. Belg. Math. Soc. Simon Stevin 21(3), 535–551 (2014)

27. S. Ibrahim, M. Majdoub, N. Masmoudi, Global solutions for a semilinear, two-dimensional
Klein-Gordon equation with exponential-type nonlinearity. Commun. Pure Appl. Math. 59(11),
1639–1658 (2006)

28. R. Ikehata, Y. Miyaoka, T. Nakatake, Decay estimates of solutions for dissipative wave
equations in RN with lower power nonlinearities. J. Math. Soc. Jpn. 56(2), 365–373 (2004)

29. M. Ishiwata, M. Nakamura, H. Wadade, On the sharp constant for the weighted Trudinger-
Moser type inequality of the scaling invariant form. Ann. Inst. H. Poincaré Anal. Non Linéaire
31(2), 297–314 (2014)

30. T. Kato, Schrödinger operators with singular potentials, in Proceedings of the International
Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces,
Jerusalem (1972). Israel J. Math. 13, 135–148 (1972/1973)

31. S. Kawashima, M. Nakao, K. Ono, On the decay property of solutions to the Cauchy problem
of the semilinear wave equation with a dissipative term. J. Math. Soc. Jpn. 47(4), 617–653
(1995)



The Cauchy Problem for Dissipative Wave Equations with Weighted Nonlinear Terms 303

32. T.T. Li, Y. Zhou, Breakdown of solutions to �u + ut = |u|1+α . Discret. Contin. Dyn. Syst
1(4), 503–520 (1995)

33. C.S. Lin, Interpolation inequalities with weights. Commun. Partial Differ. Equ. 11(14), 1515–
1538 (1986)

34. C.S. Lin, H. Wadade, Minimizing problems for the Hardy-Sobolev type inequality with the
singularity on the boundary. Tohoku Math. J. (2) 64(1), 79–103 (2012)

35. C.S. Lin, Z.Q. Wang, Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg
inequalities. Proc. Am. Math. Soc. 132(6), 1685–1691 (2004)

36. A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations. Publ.
Res. Inst. Math. Sci. 12(1), 169–189 (1976/1977)

37. S. Nagayasu, H. Wadade, Characterization of the critical Sobolev space on the optimal
singularity at the origin. J. Funct. Anal. 258(11), 3725–3757 (2010)

38. M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and
nonlinear dissipative wave equations in Sobolev spaces. Rev. Math. Phys. 23(8), 903–931
(2011)

39. M. Nakamura, T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical
order. J. Funct. Anal. 150, 364–380 (1998)

40. M. Nakamura, T. Ozawa, Global solutions in the critical Sobolev space for the wave equations
with nonlinearity of exponential growth. Math. Z. 231, 479–487 (1999)

41. M. Nakamura, T. Ozawa, The Cauchy problem for nonlinear Klein–Gordon equations in the
Sobolev spaces. Publ. Res. Inst. Math. Sci. (Kyoto University) 37, 255–293 (2001)

42. M. Nakao, K. Ono, Existence of global solutions to the Cauchy problem for the semilinear
dissipative wave equations. Math. Z. 214(2), 325–342 (1993)

43. T. Narazaki, Lp-Lq estimates for damped wave equations and their applications to semi-linear
problem. J. Math. Soc. Jpn. 56(2), 585–626 (2004)

44. K. Nishihara, Lp-Lq estimates of solutions to the damped wave equation in 3-dimensional
space and their application. Math. Z. 244(3), 631–649 (2003)

45. K. Nishihara, Sugaku 62(2), 20–37 (2010) (in Japanese)
46. J. Shatah, M. Struwe, Well-posedness in the energy space for semilinear wave equations with

critical growth. Internat. Math. Res. Notices 1994(7), 303ff., approx. 7pp. (1994)
47. R.S. Strichartz, A note on Trudinger’s extension of Sobolev’s inequalities. Indiana Univ. Math.

J. 21, 841–842 (1971/1972)
48. G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping. J.

Differ. Equ. 174(2), 464–489 (2001)
49. H. Yang, J. Chen, A result on Hardy-Sobolev critical elliptic equations with boundary

singularities. Commun. Pure Appl. Anal. 6(1), 191–201 (2007)
50. Q.S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case. C.

R. Acad. Sci. Paris Ser. I Math. 333(2), 109–114 (2001)



Global Existence Results for a Semilinear
Wave Equation with Scale-Invariant
Damping and Mass in Odd Space
Dimension

Alessandro Palmieri

Abstract We consider a semilinear wave equation with scale-invariant damping
and mass and power nonlinearity. For this model we prove some global (in
time) existence results in odd spatial dimension n, under the assumption that the
multiplicative constants μ and ν2, which appear in the coefficients of the damping
and of the mass terms, respectively, satisfy an interplay condition which makes
the model somehow “wave-like”. Combining these global existence results with a
recently proved blow-up result, we will find as critical exponent for the considered
model the largest between suitable shifts of the Strauss exponent and of Fujita
exponent, respectively. Besides, the competition among these two kind of exponents
shows how the interrelationship betweenμ and ν2 determines the possible transition
from a “hyperbolic-like” to a “parabolic-like” model. Nevertheless, in the case
n ≥ 3 we will restrict our considerations to the radial symmetric case.

1 Introduction

In the last years several papers have been devoted to the study of the semilinear
wave equation with scale-invariant damping and power nonlinearity

⎧
⎪⎪⎨

⎪⎪⎩

utt − Δu+ μ
1+t

ut = |u|p, x ∈ R
n, t > 0,

u(0, x) = u0(x), x ∈ R
n,

ut (0, x) = u1(x), x ∈ R
n,

(1)

where μ is a positive constant.
For suitably large μ it has been proved that (1) and the corresponding linear

problem are “parabolic” under the point of view of the critical exponent for the
power of the nonlinearity and under the point of decay estimates, respectively.
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Indeed, in [3] a global (in time) existence result for p > pFuj(n)
.= 1 + 2

n
in

dimensions n = 1, 2 in the case μ ≥ 5
4 and μ ≥ 3, respectively, is derived in the

energy space. Furthermore, in higher dimensions n ≥ 3 a global existence result is
obtained in exponentially weighted energy spaces provided that p > pFuj(n) and
μ ≥ n + 2. Hence, combining these existence results with the blow-up results of
[4], it results that the critical exponent for (1) is the Fujita exponent pFuj(n), when
μ is sufficiently large.

Independently, in [27], using different techniques,pFuj(n) is proved to be critical,
assumed that μ is grater than a given constant μ0 ≈ (p − pFuj(n))

−2. In particular,
the test function method is employed to prove the blow-up of the solution for
1 < p ≤ pFuj(n) when μ ≥ 1, of course, under suitable assumptions on
data.

Nevertheless, for small values of μ the situation is completely different. In [6]
the special value μ = 2 is studied. In fact, thanks to this choice of μ, (1) can be
transformed in a semilinear free wave equation with nonlinearity (1+ t)−(p−1)|u|p.
Then, using Kato’s lemma, the authors prove a blow-up result for

1 < p ≤ max{pFuj(n), p0(n + 2)} =
{
pFuj(n) if n = 1,

p0(n + 2) if n ≥ 2,

in all spatial dimensions, under some sign conditions for compactly supported initial
data, where p0(n) denotes the so-called Strauss exponent, that is, the positive root
of the quadratic equation

(n − 1)p2 − (n + 1)p − 2 = 0.

Moreover, the above upper bound is shown to be really the critical exponent in the
cases n = 1, 2 and n = 3 for radial symmetric solutions (really recently, the radial
symmetry assumption for n = 3 has been removed in [9, 15]). Afterwords, in [5] the
sharpness of that blow-up result is shown also in odd dimensions n ≥ 5 in the radial
symmetric case. Because of the fact that the critical exponent seemed reasonably
to be p0(n + 2) for any n ≥ 3, that is, the shift of the Strauss exponent of order
exactly 2, namely, the coefficient of the damping term, in [6] it was also conjectured
that the critical exponent for (1) could have been p0(n + μ) when μ ∈ (0, 2) and
n ≥ 3.

Recently, in several works [8, 16, 25, 26], it has been studied the blow-up of
solutions to (1) in the case in which the constant μ is small. More precisely, in [16]
the blow-up of solutions is proved for pFuj(n) ≤ p < p0(n + 2μ) and n ≥ 2,

provided that 0 < μ < n2+n+2
2(n+2) (this condition on μ guarantees the existence

of admissible values for p) and that initial data are nonnegative and compactly
supported. Such a result, together with the upper bound for the lifespan, is derived
by using a Kato type lemma from [24].
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Then, in [8] a blow-up result for the larger range pFuj(n) ≤ p ≤ p0(n + μ) is

proved, assuming that n ≥ 1 and 0 < μ < n2+n+2
n+2 (clearly, also in this case the

condition on μ implies the nonemptiness of the range for p) and that initial data are
nonnegative and compactly supported in a ball around the origin with radius smaller
than 1. The approach therein used is based on suitable self-similar solution of the
conjugate linear equation.

Finally, in [25, 26] the authors improved the range for p which implies the blow-
up of solutions to 1 < p ≤ p0(n + μ) (again under suitable assumptions on data),
by using a similar approach to the one in [16], obtaining a better upper bound for
the life span of the solution in the subcritical case.

In this work we will focus on the Cauchy problem for semilinear wave equation
with scale-invariant damping and mass and power nonlinearity

⎧
⎪⎪⎨

⎪⎪⎩

utt − Δu+ μ
1+t

ut + ν2

(1+t )2
u = |u|p, x ∈ R

n, t > 0,

u(0, x) = u0(x), x ∈ R
n,

ut (0, x) = u1(x), x ∈ R
n,

(2)

under the assumption

δ
.= (μ− 1)2 − 4ν2 = 1. (3)

Recently (2) has been studied in the case in which is “parabolic-like” in [17–
19], in the case in which is “hyperbolic-like” in [17, 20] and in the case in which
is “Klein-Gordon-like” in [7]. For a deeper analysis of how the quantity δ describes

the interplay between the damping term μ
1+t

ut and the mass term ν2

(1+t )2
u we refer

to [22].
We point out, that (3) implies the possibility to link the solution to (2) with the

solution to the semilinear Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

vtt − Δv = (1+ t)−
μ
2 (p−1)|v|p, x ∈ R

n, t > 0,

v(0, x) = u0(x), x ∈ R
n,

vt (0, x) = u1(x)+ μ
2 u0(x), x ∈ R

n,

(4)

via the transformation u(t, x) = (1+ t)−
μ
2 v(t, x).

Assuming the validity of (3), in [17] has been proved a blow-up result for

1 < p ≤
{
pFuj

(
n+ μ

2 − 1
)

if n = 1, 2,

p0(n+ μ) if n ≥ 3,

provided that data are nonnegative and compactly supported (for further details see
also [17, Theorem 2.6]).
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Purpose of this work is study the sufficiency part for this problem. In other words,
we want to prove that

pcrit(n, μ)
.= max{pFuj

(
n + μ

2 − 1
)
, p0(n + μ)}

is actually the critical exponent for (2) in the case in which (3) is fulfilled.
More specifically, for n = 1 we will follow the approach of [3] if p ≥ 2, while

in the case p < 2 we will use L1 − Lp estimates. On the other hand, for n ≥ 3, n
odd we will restrict our considerations to the radial symmetric case, following the
approach developed in [1, 10–14] for the semilinear free wave equation with power
nonlinearity and in [5, 6] for (1).

We stress the importance of the presence of the mass term in (2), since it makes
wider the range of ps, for which we can prove a global (in time) existence result
under the assumption that (3) is fulfilled, than in (1) when μ = 2. Moreover,
the presence of the mass term involves a more explicit understanding of how the
magnitude of μ and ν2 and their interaction, described through the quantity δ,
influence either a “parabolic-like” or a “hyperbolic-like” behavior of the semilinear
scale-invariant model concerning the critical exponent.

Finally, we mention that in the radial symmetric case n ≥ 3 an upper bound for
the coefficient μ has to be required. Naively speaking, this restriction is due to the
fact that we will consider as solutions to our problem functions from a parameter
dependent weighted space. Hence, in order to guarantee the possibility to choose
properly this parameter, whose range depends both on p and μ, we have to assume
a furtherμ-dependent condition on p. The compatibility between this condition and
the lower bound for p implies the following upper bound for μ:

μ ≤ M(n)
.= n−1

2

(
1+

√
n+7
n−1

)
. (5)

Therefore, although it is clear that the upper bound for μ is due to technical
reasons, it is interesting to see that asymptotically

M(n) ∼ n − 1

for large n. The interesting fact is that M(n) has exactly the same asymptotic

behavior of the constant μ∗ = n2+n+2
n+2 which is the upper bound for the coefficient

μ in (1), that is considered in [8] to prove the blow-up result we mentioned above.
So, we found the same restriction for μ, from the asymptotic point of view, working
with tools which are suitable in two different but both “hyperbolic-like” cases, in
the sense we have explained before.

This work is organized as follows: in Sect. 2 the critical exponent for the Cauchy
problem (2) is derived, assuming the validity of (3) in the one dimensional case; in
Sect. 3 the three dimensional case is considered in the radial symmetric case and
the critical exponent is shown to be a suitable shift of Strauss exponent; finally, in
Sect. 4 the general odd n-dimensional case, n ≥ 5 is studied in the radial symmetric
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case and also in this case the critical exponent turns out to be a suitable shift of
Strauss exponent.

2 One-Dimensional Case

Let us begin with the global existence results when n = 1 for the case in which
μ and ν2 fulfill (3). As we mentioned in the introduction, we have two different
results for p above and below 2, respectively. In the Sect. 2.1 we study the case
p ≥ 2, while in Sect. 2.2 the case p < 2 will be considered.

2.1 One-Dimensional Case: p ≥ 2

In this subsection we derive a global (in time) existence result, by using L2 − L2

estimates and requiring additional L1 regularity for Cauchy data. Nevertheless,
before starting with the proof of the main Theorem, we need to recall known results
for decay estimates of the corresponding linear problem in general space dimension
n ≥ 1.

Proposition 2.1 Let μ and ν2 be nonnegative constants such that δ > 0. Let us
consider (u0, u1) ∈

(
L1(Rn)∩H 1(Rn)

)× (
L1(Rn)∩L2(Rn)

) .= A1. Then, for all
κ ∈ [0, 1] the energy solution u to

⎧
⎪⎪⎨

⎪⎪⎩

utt − Δu+ μ
1+t

ut + ν2

(1+t )2
u = 0, x ∈ R

n, t > 0,

u(0, x) = u0(x), x ∈ R
n,

ut (0, x) = u1(x), x ∈ R
n,

(6)

satisfies the decay estimates

‖u(t, ·)‖Ḣ κ (Rn) � ‖(u0, u1)‖A1

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)−κ− n+μ
2 + 1+√

δ
2 if κ < 1+√

δ−n
2 ,

(1+ t)−
μ
2 �(t) if κ = 1+√

δ−n
2 ,

(1+ t)−
μ
2 if κ > 1+√

δ−n
2 ,

where

�(t)
.= (

1+ (log(1+ t))
1
2
)
.

Moreover, ‖ut (t, ·)‖L2(Rn) satisfies the same decay estimate as ‖u(t, ·)‖Ḣ 1(Rn).
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Proposition 2.2 Let μ and ν2 be nonnegative constants such that δ > 0. Let us
assume u0 = 0 and u1 ∈ L1(Rn) ∩ L2(Rn). Then, the energy solution u to

⎧
⎪⎪⎨

⎪⎪⎩

utt − Δu + μ
1+t

ut + ν2

(1+t )2
u = 0, x ∈ R

n, t > τ ≥ 0,

u(τ, x) = u0(x), x ∈ R
n,

ut (τ, x) = u1(x), x ∈ R
n,

(7)

satisfies for t ≥ τ and κ ∈ [0, 1] the following estimates

‖u(t, ·)‖Ḣ κ (Rn) �
(
‖u1‖L1(Rn) + (1+ τ )

n
2 ‖u1‖L2(Rn)

)
(1+ τ )

1+μ
2 −

√
δ
2

×

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)−κ− n+μ
2 + 1+√

δ
2 if κ < 1+√

δ−n
2 ,

(1+ t)−
μ
2 �(t, τ ) if κ = 1+√

δ−n
2 ,

(1+ t)−
μ
2 (1+ τ )−κ− n

2+ 1+√
δ

2 if κ > 1+√
δ−n
2 ,

where

�(t, τ )
.=

(

1+
(
log

(
1+t
1+τ

)) 1
2
)

.

Moreover, ‖ut (t, ·)‖L2(Rn) satisfies the same decay estimate as ‖u(t, ·)‖Ḣ 1(Rn).

For the proof of Propositions 2.1 and 2.2 one can see [19, Theorems 4.6 and 4.7].

Theorem 2.3 Let n = 1 and let μ ≥ 2 and ν2 be nonnegative constants such that
δ = 1 is satisfied. Let p ≥ 2 be such that

p > pFuj(
μ
2 ).

Then, there exists ε0 > 0 such that for any initial data (u0, u1) ∈ A1, where A1 is
defined as in the statement of Proposition 2.1, satisfying ‖(u0, u1)‖A1 ≤ ε0 there is
a uniquely determined solution

u ∈ C([0,∞),H 1(R)) ∩ C1([0,∞), L2(R))

to (2). Moreover, the solution satisfies the decay estimates

‖u(t, ·)‖Ḣ κ (R) �

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)−
μ
2 + 1

2−κ‖(u0, u1)‖A1 if κ < 1
2 ,

(1+ t)−
μ
2 log(e + t)‖(u0, u1)‖A1 if κ = 1

2 ,

(1+ t)−
μ
2 ‖(u0, u1)‖A1 if κ > 1

2 ,

(8)
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for any κ ∈ [0, 1] and ‖ut (t, ·)‖L2(R) satisfies the same decay estimates as
‖u(t, ·)‖Ḣ 1(R).

Remark 2.4 Let us point out that (3) implies necessarily μ ≥ 2 for nonnegative
and nontrivial μ and ν2. For this reason we require 2 as lower bound for μ in the
previous theorem.

Proof We will use the estimates from Propositions 2.1 and 2.2 in the case n = 1
and δ = 1. For any T > 0 we introduce the space

X(T )
.= C([0, T ],H 1(R)) ∩ C1([0, T ], L2(R))

equipped with the norm

‖u‖X(T )
.= sup

t∈[0,T ]

(
(1+ t)

μ
2 − 1

2 ‖u(t, ·)‖L2(R) + (1+ t)
μ
2 (�(t))−1‖u(t, ·)‖

Ḣ
1
2 (R)

+ (1+ t)
μ
2 ‖(ux, ut )(t, ·)‖L2(R)

)
,

where �(t) denotes the same function as in the statement of Proposition 2.1.
We define the operatorN as follows:

u → Nu(t, x)
.= E0(t, 0, x) ∗(x) u0(x)+ E1(t, 0, x) ∗(x) u1(x)+ Fu(t, x)

for any u ∈ X(T ), where E0(t, τ, x) and E1(t, τ, x) denote the fundamental
solution of (7) with initial condition (u0, u1) = (δ0, 0) and (u0, u1) = (0, δ0),
respectively, taken at the initial time τ ≥ 0 and

Fu(t, x)
.=

∫ t

0
E1(t, τ, x) ∗(x) |u(τ, x)|p dτ.

According to Duhamel’s principle we know that u is a solution to (2) if and only
if u is a fixed point of N .

If N satisfies for all data (u0, u1) ∈ A1 the inequalities

‖Nu‖X(T ) � ‖(u0, u1)‖A1 + ‖u‖pX(T ), (9)

‖Nu − Nũ‖X(T ) � ‖u − ũ‖X(T )

(
‖u‖p−1

X(T ) + ‖ũ‖p−1
X(T )

)
(10)

for any u, ũ ∈ X(T ) and uniformly with respect to T > 0, then, by contraction
principle it follows the global (in time) existence of small data solutions.

In order to prove (9) and (10) we will employ the fractional Sobolev embedding

‖f ‖Lq(Rn) � ‖f ‖Ḣ κ (Rn), κ = n
(
1
2 − 1

q

)
, (11)
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for any q ≥ 2, in the case n = 1. Applying Proposition 2.1, we find immediately

‖E0(t, 0, x) ∗(x) u0(x)+ E1(t, 0, x) ∗(x) u1(x)‖ � ‖(u0, u1)‖A1 .

Hence, we have just to estimate Fu in order to prove (9). For any κ ∈ [0, 1], by
using Proposition 2.2, we get

‖Fu(t, ·)‖Ḣ κ (R) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1+ t)−κ−μ
2 + 1

2

∫ t

0
(1+ τ )

μ
2 G(τ, u(τ, ·))dτ if κ < 1

2 ,

(1+ t)−
μ
2

∫ t

0
�̃(t, τ )(1+ τ )

μ
2 G(τ, u(τ, ·))dτ if κ = 1

2 ,

(1+ t)−
μ
2

∫ t

0
(1+ τ )−κ+μ

2 + 1
2G(τ, u(τ, ·))dτ if κ > 1

2 ,

whereG(τ, u(τ, ·)) .= ‖u(τ, ·)‖pLp(R) + (1+ τ )
1
2 ‖u(τ, ·)‖p

L2p(R)
.

Using (11) we have for j = 1, 2

‖u(τ, ·)‖Ljp(R) � ‖u(τ, ·)‖Ḣ κj (R),

where κj = 1
2 − 1

jp
. We underline that from the condition κ1 ≥ 0 yields the

restriction p ≥ 2. On the other hand, the condition κ2 ≤ 1 is satisfied without
further assumptions, being n = 1.

It is clear that, thanks to the definition of norm in X(T ), we have for any u ∈
X(T ) a suitable decay for the L2, Ḣ

1
2 and Ḣ 1 norms of u(t, ·). Furthermore, being

homogeneous Sobolev spaces interpolation spaces, we get

‖u(t, ·)‖Ḣ κ (R) ≤ (1+ t)−
μ
2 + 1

2−κ (�(t))2κ‖u‖X(T ) for κ ∈
(
0, 1

2

)
,

‖u(t, ·)‖Ḣ κ (R) ≤ (1+ t)−
μ
2 (�(t))2(1−κ)‖u‖X(T ) for κ ∈

(
1
2 , 1

)
.

This means that the decay rate is a nondecreasing function with respect to the
exponent κ , for κ ∈ (0, 1

2 ), and for κ ≥ 1
2 the decay rate is the same for any κ ,

modulo a logarithmic term, which of course is negligible.
Being p > pFuj(

μ
2 ), it results κ1 >

4−μ
2(μ+4) and κ2 > 2

μ+4 . Therefore,

‖u(t, ·)‖Ḣ κ1 (R) ≤ (1+ t)
−μ

2 + μ
μ+4 log(e + t)‖u‖X(T ),

‖u(t, ·)‖Ḣ κ2 (R) ≤ (1+ t)
−μ

2 + μ
2(μ+4) log(e + t)‖u‖X(T ).
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Summarizing,

G(τ, u(τ, ·)) � ‖u(τ, ·)‖p
Ḣκ1 (R)

+ (1+ τ )
1
2 ‖u(τ, ·)‖p

Ḣκ2 (R)

�
(
(1+ τ )

−μp
2 + μp

μ+4 + (1+ τ )
1
2−μp

2 + μp
2(μ+4)

)
(�(τ ))p‖u‖pX(T ).

Because of p > pFuj(
μ
2 ), we find

∫ t

0
(1+ τ )

μ
2 G(τ, u(τ, ·))dτ � 1,

being the exponents of integrands smaller than −1. Consequently, we get

‖Fu(t, ·)‖Ḣ κ (R) �

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)−κ−μ
2 + 1

2 ‖u‖pX(T ) if κ < 1
2 ,

(1+ t)−
μ
2 �(t)‖u‖pX(T ) if κ = 1

2 ,

(1+ t)−
μ
2 ‖u‖pX(T ) if κ > 1

2 .

(12)

The estimate (12), together with the remark that the time derivative has the same
decay behavior of the gradient with respect to the spatial variables in Theorem 2.2,
guarantees the validity of (9).

Moreover, combining such relation with the results for the linear equation, we
get the estimate (8) once we proved the existence of the solution, since

‖u‖X(T ) � ‖(u0, u1)‖A1 .

In order to prove (10), it is sufficient to combine the inequality

∣
∣|u|p − |ũ|p∣

∣ � |u− ũ|(|u|p−1 + |ũ|p−1)
(13)

with Hölder’s inequality and to repeat the same estimates as before in the case in
which the source term is |u|p − |ũ|p.
Remark 2.5 The idea of considering the embedding (11) instead of using
Gagliardo-Nirenberg inequality, in order to avoid loss of decay for the Lp and
L2p norms of the solution, is taken from [3, Section 4].

2.2 One-Dimensional Case: p < 2

In the previous subsection we have employed a fractional Sobolev embedding in
order to derive a global existence result for small data solutions by using L1 ∩L2 −
L2 estimates. However, the employment of that inequality requires the restriction
p ≥ 2.
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In this section we are going to prove a global (in time) existence result for
exponents pFuj(

μ
2 ) < p < 2, whether this range is not empty, that is, for μ > 4.

The main tool that allows us to overcome the necessity of condition p ≥ 2 is the
use of L1 − Lp estimates for the linear free wave equation in spatial dimension 1.

More precisely, we are going to use L1+η −Lp estimates with η > 0 sufficiently
small.

Let us state the result concerning the linear part for the free wave equation.

Proposition 2.6 Let v be the solution to the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

vtt − vxx = 0, t > 0, x ∈ R,

v(0, x) = v0(x), x ∈ R,

vt (0, x) = v1(x), x ∈ R.

Then, for any 1 < p ≤ q < ∞ the solution v satisfies for any t ≥ 0 the following
a priori estimate:

‖v(t, ·)‖Lq (R) � (1+ t)
1− 1

p
+ 1

q
(‖v0‖H 1

p(R) + ‖v1‖Lp(R)

)
.

Proof Let us define for a fixed t > 0 the operators

A(t)v0(x)
.= F−1(cos(tξ)v̂0(ξ))(x), B(t)v1(x)

.= F−1
(
sin(tξ)

ξ
v̂1(ξ)

)

(x).

Using basic properties of inverse Fourier transformation, it follows:

‖A(t)v0‖H 1
p(R) = 1

2‖F−1((eitξ + e−itξ )〈ξ〉v̂0(ξ))‖Lp(R) ≤ ‖v0‖H 1
p(R), (14)

and, then, A(t) ∈ L(H 1
p(R) → H 1

p(R)) with ‖A(t)‖L(H 1
p(R)→H 1

p(R)) ≤ 1.
On the other hand, in [23] for any finite p > 1 and for a fixed t > 0 it is proved

that

‖B(t)v1‖H 1
p(R) � ‖v1‖Lp(R). (15)

Therefore, B(t) ∈ L(Lp(R) → H 1
p(R)).

For Bessel potential spaces it holds the embedding H 1
p(R) ↪→ Lq(R) for any

1 < p ≤ q < ∞. Let us underline here that we have to exclude the case p = 1 from
the statement, otherwise the previous embedding is no longer true. Then, taking
t = 1 in (14), (15) and using the previously recalled embedding, we obtain

‖A(1)v0‖Lq(R) � ‖v0‖H 1
p(R), (16)

‖B(1)v1‖Lq(R) � ‖v1‖Lp(R). (17)
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Up to nowwe neglected somehow the decay rates in the estimates for the families
of operators {A(t)}t≥0 and {B(t)}t≥0. However, using a homogeneity argument, we
can now determine sharp decay rates.

The solution of the free wave equation with data (v0, v1) is given by

v(t, x) = A(t)v0(x)+ B(t)v1(x) = F−1
(

cos(tξ)v̂0(ξ) + sin(tξ)

ξ
v̂1(ξ)

)

(x).

Using the homogeneity properties

F−1
(
sin(tξ)

ξ
v̂1(ξ)

)

(x) = tF−1
(
sin ξ

ξ
F(v1(t ·))(ξ)

)(x

t

)
,

F−1(cos(tξ)v̂0(ξ))(x) = F−1( cos ξ F(v0(t ·))(ξ)
)(x

t

)
,

from (17), we get

∥
∥
∥F−1

( sin(tξ)

ξ
v̂1(ξ)

)∥
∥
∥
Lq(R)

� t
1− 1

p+ 1
q ‖v1‖Lp(R),

while from (16) we have

∥
∥F−1(cos(tξ)v̂0(ξ))

∥
∥
Lq(R)

� t
1− 1

p
+ 1

q ‖v0‖Ḣ 1
p(R) + t

− 1
p
+ 1

q ‖v0‖Lp(R),

where in both cases we used scaling properties of Lr and Ḣ σ
r . Combining the last

two estimates with the uniform boundedness of the family of operators {A(t)}t≥0 in
L(H 1

p(R) → Lq(R)), it follows the desired estimate.

Using the inverse transformation u(t, x) = (1+t)−
μ
2 v(t, x) and the invariance of

the classical wave equation with respect to time translations, we obtain immediately
the following results for the scale-invariant wave model with damping and mass.

Corollary 2.7 Let n = 1 and μ, ν2 be nonnegative constants satisfying δ = 1. Let
u be the solution to the Cauchy problem (6). Then, for any 1 < p ≤ q < ∞ the
solution u satisfies for any t ≥ 0 the following a priori estimate:

‖u(t, ·)‖Lq(R) � (1+ t)
−μ

2 +1− 1
p
+ 1

q

(
‖u0‖H 1

p(R) + ‖u1‖Lp(R)

)
.

Corollary 2.8 Let n = 1 and μ, ν2 be nonnegative constants satisfying δ = 1. Let
τ ≥ 0 and let u be the solution to the Cauchy problem (7) with u0 = 0. Then, for
any 1 < p ≤ q < ∞ the solution u satisfies for any t ≥ τ the following a priori
estimate:

‖u(t, ·)‖Lq(R) � (1+ t)−
μ
2 (1+ t − τ )

1− 1
p+ 1

q (1+ τ )
μ
2 ‖u1‖Lp(R).
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Finally, we can state the main result of this subsection, that is, the following
global (in time) existence result.

Theorem 2.9 Let n = 1 and let μ > 4 and ν2 be nonnegative constants satisfying
δ = 1. Let us assume

p ∈ (
pFuj(

μ
2 ), 2

)
.

Then, there exist two constants α = α(p) > 0 and ε0 > 0 such that for any
data (u0, u1) ∈ (

L1(R) ∩ H 1
1+ α

p
(R) ∩ H 1(R)

) × (
L1(R) ∩ L2(R)

) .= A2, with

‖(u0, u1)‖A2 ≤ ε0 there is a uniquely determined solution

u ∈ C([0,∞),H 1(R) ∩ Lp(R)) ∩ C1([0,∞), L2(R))

to the Cauchy problem (2). Moreover, the solution u satisfies for any t ≥ 0 the decay
estimates

‖u(t, ·)‖Lp(R) � (1+ t)
−μ

2 + 1
p+ α

p+α ‖(u0, u1)‖A2 ,

‖u(t, ·)‖Ḣ κ (R) �

⎧
⎪⎪⎨

⎪⎪⎩

(1+ t)−
μ
2 + 1

2−κ‖(u0, u1)‖A2 if κ < 1
2 ,

(1+ t)−
μ
2 log(e + t)‖(u0, u1)‖A2 if κ = 1

2 ,

(1+ t)−
μ
2 ‖(u0, u1)‖A2 if κ > 1

2 ,

with κ ∈ [0, 1], and ‖ut (t, ·)‖L2(R) satisfies the same decay estimates as
‖u(t, ·)‖Ḣ 1(R).

Proof For any T > 0 let us define the space

X(T )
.= C([0, T ],H 1(R) ∩ Lp(R)) ∩ C1([0, T ], L2(R)),

with the norm

‖u‖X(T )
.= sup

t∈[0,T ]

(
(1+ t)

μ
2 − 1

p
− α

p+α ‖u(t, ·)‖Lp(R) + (1+ t)
μ
2 − 1

2 ‖u(t, ·)‖L2(R)

+ (1+ t)
μ
2 ‖u(t, ·)‖Ḣ 1(R) + (1+ t)

μ
2 ‖ut (t, ·)‖L2(R)

+ (1+ t)
μ
2
(
�(t)

)−1‖u(t, ·)‖Ḣ 1/2(R)

)
,

where α > 0 is a sufficiently small constant which depends on p. Throughout the
proof we will prescribe the conditions that α has to fulfill.

Let us underline that the main difference with respect to Theorem 2.3 is the
presence of Lp(R) in the space X(T ).

We define formally the operator N exactly as in the proof of Theorem 2.3. Also
in this case we want to show that N is a contracting mapping from a closed ball of
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X(T ) into itself. By Corollary 2.7 and Proposition 2.1 we get immediately

‖E0(t, 0, x) ∗(x) u0(x)+ E1(t, 0, x) ∗(x) u1(x)‖X(T ) � ‖(u0, u1)‖A2 ,

since, trivially, A2 ↪→ A1. In order to estimate the X(T ) norm of Nu, employing
the same notations as in Theorem 2.3, it remains to estimate the integral term Fu.

Therefore, using L
1+ α

p − Lp estimates from Corollary 2.8, we find

‖Fu(t, ·)‖Lp(R) � (1+ t)−
μ
2

∫ t

0
(1+ t − τ )

1
p+ α

p+α (1+ τ )
μ
2 ‖|u(τ, ·)|p‖

L
1+ α

p (R)
dτ

� (1+ t)
−μ

2 + 1
p+ α

p+α

∫ t

0
(1+ τ )

μ
2 ‖u(τ, ·)‖p

Lp+α(R)
dτ.

Since we are working with p < 2, we may choose α > 0 such that p + α < 2.
Thus, by using Hölder’s inequality and the definition of ‖ · ‖X(τ), we arrive at

‖u(τ, ·)‖Lp+α(R) ≤ ‖u(τ, ·)‖1−θ
Lp(R)‖u(τ, ·)‖θL2(R)

≤ (1+ τ )
−μ

2 + α
p+α+ 1

p+α ‖u‖X(τ),

where 1
p+α

= 1−θ
p

+ θ
2 . Consequently,

‖Fu(t, ·)‖Lp(R) � (1+ t)
−μ

2 + 1
p
+ α

p+α

∫ t

0
(1+ τ )

−μ
2 (p−1)+ p

p+α
+ αp

p+α dτ ‖u‖pX(t).

Let us show now that is possible to choose α > 0 so that the last integral is
uniformly bounded with respect to t . Since we are assuming p > pFuj(

μ
2 ), then,−μ

2 (p − 1)+ 2 < 0. Hence, we can choose α sufficiently small in order to get

−μ
2 (p − 1)+ 2+ α(p−1)

p+α
< 0,

and, being this condition equivalent to require that the exponent of the integrand in
the last integral is strictly smaller than −1, we finally obtain

‖Fu(t, ·)‖Lp(R) � (1+ t)
−μ

2 + 1
p
+ α

p+α ‖u‖pX(t).

Let us estimate now the L2 norm of Fu(t, ·). According to Proposition 2.2, we
find

(1+ t)
μ
2 − 1

2 ‖Fu(t, ·)‖L2(R)

�
∫ t

0
(1+ τ )

μ
2

(
‖u(τ, ·)‖pLp(R) + (1+ τ )

1
2 ‖u(τ, ·)‖p

L2p(R)

)
dτ

(18)
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By using the definition of norm inX(τ), we can immediately determine the decay
rate of the Lp norm of u(τ, ·) as follows:

‖u(τ, ·)‖Lp(R) ≤ (1+ τ )
−μ

2 + 1
p
+ α

p+α ‖u‖pX(τ).

In order to find the decay rate for the L2p norm of u, we can use the fractional
Gagliardo-Nirenberg inequality. Thus,

‖u(τ, ·)‖L2p(R) � ‖u(τ, ·)‖θ1/2(2p)

Ḣ
1
2 (R)

‖u(τ, ·)‖1−θ1/2(2p)

L2(R)

� (1+ τ )
−μ

2 + 1
2p �(t)θ1/2(2p)‖u‖X(τ),

where θ1/2(2p)
.= 1− 1

p
. Also,

(1+ t)
μ
2 − 1

2 ‖Fu(t, ·)‖L2(R) �
∫ t

0
(1+ τ )

−μ
2 (p−1)+1+ αp

p+α dτ ‖u‖pX(t).

As we did in the estimate of ‖Fu(t, ·)‖Lp(R), since p > pFuj(
μ
2 ) we may assume

without loss of generality that

−μ
2 (p − 1)+ 1+ αp

p+α
< −1,

for α sufficiently small. Then, we proved

‖Fu(t, ·)‖L2(R) � (1+ t)−
μ
2 + 1

2 ‖u‖pX(t).

Using Proposition 2.2 in the logarithmic case, for the Ḣ
1
2 norm of integral term,

we have

(1+ t)
μ
2 ‖Fu(t, ·)‖

Ḣ
1
2 (R)

�
∫ t

0
�(t, τ )(1+ τ )

μ
2

(
‖u(τ, ·)‖p

Lp(R)
+ (1+ τ )

1
2 ‖u(τ, ·)‖p

L2p(R)

)
dτ

� �(t)

∫ t

0
(1+ τ )

μ
2

(
‖u(τ, ·)‖pLp(R) + (1+ τ )

1
2 ‖u(τ, ·)‖p

L2p(R)

)
dτ.

Because the last integral is exactly the same integral on the right-hand side
of (18), we may conclude

‖Fu(t, ·)‖
Ḣ

1
2 (R)

� (1+ t)−
μ
2 �(t)‖u‖pX(t),

provided that p > pFuj(
μ
2 ) and α > 0 is sufficiently small.
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Finally, let us study the Ḣ 1 norm of Fu(t, ·) and the L2 norm of the time
derivative of Fu(t, ·). From Proposition 2.2 we have

(1+ t)
μ
2
(‖Fu(t, ·)‖Ḣ 1(R) + ‖∂tFu(t, ·)‖L2(R)

)

�
∫ t

0
(1+ τ )

μ
2 − 1

2

(
‖|u(τ, ·)|p‖L1(R) + (1+ τ )

1
2 ‖|u(τ, ·)|p‖L2(R)

)
dτ.

Since the integral in the last line is dominated by the integral on the right-hand
side of (18), assuming again that p > pFuj(

μ
2 ) and α > 0 is sufficiently small, it

results

‖Fu(t, ·)‖Ḣ 1(R) + ‖∂tFu(t, ·)‖L2(R) � (1+ t)−
μ
2 ‖u‖pX(t).

Summarizing, we proved

‖Nu‖X(T ) � ‖(u0, u1)‖A2 + ‖u‖p
X(T )

. (19)

In order to get the Lipschitz condition, one can proceed as in Theorem 2.3,
obtaining

‖Nu − Nv‖X(T ) � ‖u − v‖X(T )

(
‖u‖p−1

X(T )
+ ‖v‖p−1

X(T )

)
, (20)

provided that p and α > 0 satisfy the same conditions as before. Combining (19)
and (20), it follows the existence of a unique fixed point u ∈ X(T ) for N by
Banach’s fixed point theorem, provided that the norm of initial data is smaller than
a suitable constant ε0 > 0. Finally, since the estimate for Nu and Nu − Nv are
uniform with respect to T , we can extend the solution for any time t > 0. It
remains to prove the decay estimates for the solution as in the statement. Since
‖u‖X(t) � ‖(u0, u1)‖A2 for any t > 0, from the definition of the space X(t) the

estimates for the Lp,L2, Ḣ 1 and Ḣ
1
2 norms of u(t, ·) and the L2 norm of ut (t, ·)

follow immediately. We derive now the estimate for the Ḣ κ norm of u(t, ·) when
κ ∈ (0, 1

2 ) ∪ ( 12 , 1). For κ < 1
2 we have

(1+ t)
μ
2 − 1

2+κ‖u(t, ·)‖Ḣ κ (R) � ‖(u0, u1)‖A1

+
∫ t

0
(1+ τ )

μ
2

(
‖u(τ, ·)‖p

Lp(R)
+ (1+ τ )

1
2 ‖u(τ, ·)‖p

L2p(R)

)
dτ.

Employing the usual estimates for ‖u(τ, ·)‖Lp(R), ‖u(τ, ·)‖L2p(R), for the integral
term we find

∫ t

0
(1+ τ )

μ
2

(
‖u(τ, ·)‖pLp(R) + (1+ τ )

1
2 ‖u(τ, ·)‖p

L2p(R)

)
dτ

� ‖u‖p
X(t)

� ‖(u0, u1)‖pA2
� ‖(u0, u1)‖A2 .
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In a similar way, for κ > 1
2 we get

(1+ t)
μ
2 ‖u(t, ·)‖Ḣ κ (R) � ‖(u0, u1)‖A2 .

Hence, the proof is completed.

In the next two sections we will deal with the radial odd case n ≥ 3. In particular,
we will consider first the three dimensional case and, then, the general odd case
n ≥ 5.

3 Radial Three Dimensional Case

Let us begin with the case n = 3. Hereafter, we denote r = |x| for x ∈ R
n and

〈y〉 .= 1+ |y| for any y ∈ R. In this section we follow [6, Section 5].
Since we are assuming that μ and ν2 satisfy (3), performing the change of

variables v(t, x) = 〈t〉μ
2 u(t, x), we arrive at the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

vtt − Δv = 〈t〉−μ
2 (p−1)|v|p, t > 0, x ∈ R

3,

v(0, x) = f (x), x ∈ R
3,

vt (0, x) = g(x), x ∈ R
3,

(21)

where f (x) = u0(x) and g(x) = u1(x)+ μ
2 u0(x).

We are interested in radial solutions, hence, we may rewrite (21) as

⎧
⎪⎪⎨

⎪⎪⎩

vtt − vrr − 2
r
vr = 〈t〉−μ

2 (p−1)|v|p, t > 0, r ∈ R,

v(0, r) = f (r), r ∈ R,

vt (0, r) = g(r), r ∈ R.

(22)

Throughout this section we will assume for f and g the conditions

|f (j)(r)| ≤ ε〈r〉−(κ+j) for j = 0, 1, (23)

|g(r)| ≤ ε〈r〉−(κ+1), (24)

where ε and κ are positive parameters that will be fixed afterwards.
In the following it is convenient to extend f, g by even reflection, that is,

{
f (−r) = f (r)

g(−r) = g(r)
for r < 0.
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The remaining part of this section is organized in the following way: firstly, we
recall some known result for the radial linear equation when n = 3; then, after some
preparatory results, we will derive the global (in time) existence result.

3.1 Radial Linear Wave Equation: 3-d Case

In this subsection the corresponding linear problem is considered. Let us begin with
a definition.

Definition 3.1 Let us consider the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

vtt − vrr − 2
r
vr = 0, t > 0, r ∈ R,

v(0, r) = f (r), r ∈ R,

vt (0, r) = g(r), r ∈ R.

(25)

We call v ∈ C([0,∞)×R) a solution to Eq. (25), if v fulfills

⎧
⎪⎪⎨

⎪⎪⎩

r2vtt − (r2vrr + 2rvr ) = 0, t > 0, r ∈ R,

v(0, r) = f (r), r ∈ R,

vt (0, r) = g(r), r ∈ R

and if rv ∈ C1([0,∞)×R), r2v ∈ C2([0,∞)× R).

Proposition 3.2 Let f ∈ C2(R) and g ∈ C1(R) be even functions. Let us define the
function

v(t, r) = ∂

∂t

(∫ 1

−1
Hf (t + rσ )dσ

)

+
∫ 1

−1
Hg(t + rσ )dσ

= 1

2r
((t + r)f (t + r) − (t − r)f (t − r))+ 1

r

∫ t+r

t−r

Hg(ρ)dρ,

with

Hh(ρ) = ρh(ρ)

2
for h = f, g.

Then, v is a solution of (25) in the sense of the Definition 3.1.

Proof Let H be a arbitrary function from C1(R). If we denote

w[H ](t, r) .=
∫ 1

−1
H(t + rσ )dσ = 1

r

∫ t−r

t+r

H (ρ)dρ,
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then, w[H ] is a radial solution of the wave equation in the sense of Definition 3.1.
Although this is a well-known fact (see for example [2] or [6, Section 5]), we write
the computation, since we will use some intermediate steps afterwards. Also, for
any r �= 0 it holds

∂tw[H ] =
∫ 1

−1
H ′(t + rσ )dσ = 1

r
(H(t + r)− H(t − r)) ,

∂2t w[H ] = 1

r

(
H ′(t + r)− H ′(t − r)

)
, (26)

∂rw[H ] =
∫ 1

−1
σH ′(t + rσ )dσ = 1

r

∫ 1

−1
σ ∂σH(t + rσ )dσ

= 1

r
(H(t + r)+ H(t − r))− 1

r

∫ 1

−1
H(t + rσ )dσ

= 1

r
(H(t + r)+ H(t − r))− 1

r
w[H ],

∂2r w[H ] = − 1

r2
(H(t + r)+ H(t − r))+ 1

r

(
H ′(t + r)− H ′(t − r)

)

+ 1

r2
w[H ] − 1

r
∂rw[H ]

= 1

r

(
H ′(t + r)− H ′(t − r)

) − 2

r
∂rw[H ]. (27)

Thus, combining (26) and (27), we get

∂2t w[H ] − ∂2r w[H ] = 2

r
∂rw[H ].

Set v = ∂tw[Hf ] + w[Hg]. Due to the linearity of the wave equation it is clear
that v is a radial solution of the wave equation (in the sense of Definition 3.1). Let
us show that v satisfies initial conditions:

v(0, r) = 1

r

(
Hf (r)− Hf (−r)

) + 1

r

∫ −r

r

Hg(ρ)dρ = f (r),

vt (0, r) = 1

r

(
H ′

f (r)− H ′
f (−r)

)
+ 1

r

(
Hg(r)− Hg(−r)

) = g(r),

where we used that Hf ,Hg are odd functions, being f, g even by assumption.

Now we want to derive decay estimates in a weighted L∞
t L∞

r space for radial
solutions of the Cauchy problem (25).

For this reason, it is useful to take account of the following formula:

∂r (rw[H ]) = H(t + r) + H(t − r). (28)



Global Existence Results for a Semilinear Scale-Invariant Wave Equation 323

For any fixed κ > 1, we introduce the Banach space

Xκ
.= {v ∈ C([0,∞)×R) : v even in r , ∂r (rv) ∈ C([0,∞)×R) and ‖v‖Xκ < ∞},

equipped with the norm

‖v‖Xκ

.= sup
t≥0 , r∈R

(
|v(t, r)| + 〈r〉−1|∂r(rv(t, r))|

)
〈t + |r|〉〈t − |r|〉κ−1.

Proposition 3.3 Let us assume (f, g) ∈ C2(R)×C1(R) satisfying (23) and (24) for
some κ > 1 and ε > 0. Then,

‖v‖Xκ � ε.

Proof Let us consider first the case v = w[Hg]. Using the definition of Hg we get
|Hg(ρ)| ≤ ε〈ρ〉−κ . Thanks to (28), we obtain immediately

|∂r(rv(t, r))| � ε〈t − |r|〉−κ .

We estimate this last term in two different cases. If t ≥ 2|r|, then, 〈t〉 ≈ 〈t +
|r|〉 ≈ 〈t − |r|〉. Hence, using 〈r〉 ≥ 1, we find

|∂r (rv(t, r))| � ε〈t − |r|〉−κ+1〈t + |r|〉−1 ≤ ε〈t − |r|〉−κ+1〈t + |r|〉−1〈r〉.

When t ≤ 2|r|, then, 〈t + |r|〉 � 〈r〉. Consequently, we have

|∂r(rv(t, r))| � ε〈t − |r|〉−κ〈t + |r|〉−1〈r〉 ≤ ε〈t − |r|〉−κ+1〈t + |r|〉−1〈r〉.

Therefore, we proved

‖〈r〉−1〈t + |r|〉〈t − |r|〉κ−1∂r (rv(t, r))‖L∞([0,∞)t×Rr ) � ε.

Now we observe that

|v(t, r)| ≤ 1

|r|
∫ t+|r |

t−|r |
|Hg(ρ)|dρ � ε

|r|
∫ t+|r |

t−|r |
〈ρ〉−κ dρ,

where we used the growth condition for g to estimate the integrand. For t ≥ 2|r|,
since the integrand function takes its maximum for ρ = t − |r| and 〈t + |r|〉 ≈
〈t − |r|〉, we find

|v(t, r)| ≤ ε〈t − |r|〉−κ ≈ ε〈t − |r|〉−κ+1〈t + |r|〉−1.
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When t ≤ 2|r| we consider two different subcases. If |r| ≤ 1, since 〈t − |r|〉 ≈
〈t + |r|〉 ≈ 1 and 〈ρ〉−κ ≤ 1, then, we get

|v(t, r)| ≤ ε

|r|
∫ t+|r |

t−|r |
dρ � ε ≈ ε〈t − |r|〉−κ+1〈t + |r|〉−1.

On the other hand, if |r| ≥ 1, then, 〈t +|r|〉 ≤ 3〈r〉 and |r| ≈ 〈r〉. Hence, for t ≥ |r|

|v(t, r)| � ε

〈r〉
∫ t+|r |

t−|r |
〈ρ〉−κ dρ � ε〈t + |r|〉−1

∫ t+|r |

t−|r |
〈ρ〉−κ dρ

� ε〈t + |r|〉−1〈t − |r|〉−κ+1,

thanks to κ > 1. Let us underline that in the case t ≤ |r|, due to the oddness of Hg,
we may represent v as follows:

v(t, r) = 1

r

∫ t+r

r−t

Hg(ρ)dρ.

Consequently, we obtain the same estimate as before, modifying properly the
domain of integration.Note that we can assumewithout loss of generality that r ≥ 0,
being v = w[Hg] even with respect to r . Hence, we proved

‖〈t + |r|〉〈t − |r|〉κ−1v(t, r)‖L∞([0,∞)t×Rr ) � ε.

Now we study the case v = ∂tw[Hf ]. As in the first case, we have

|Hf (ρ)| ≤ ε〈ρ〉−(κ+j−1) for j = 0, 1.

We know that v can be written also in the form

v(t, r) = 1

2r

(
Hf (t + r)− Hf (t − r)

)
.

Consequently, for any t ≥ 2|r|, being 〈t + |r|〉 ≈ 〈t − |r|〉 and using the mean value
theorem, it follows:

|v(t, r)| � ε〈t − |r|〉−κ ≈ ε〈t − |r|〉−κ+1〈t + |r|〉−1.

When t ≤ 2|r|we distinguish two cases. For |r| ≤ 1, since 〈t+|r|〉 ≈ 〈t−|r|〉 ≈ 1,
using once again the mean value theorem, we have

|v(t, r)| � ε � ε〈t − |r|〉−κ+1〈t + |r|〉−1.
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On the other hand, for |r| ≥ 1 using the above representation formula for v, we find

|v(t, r)| � ε

|r|
(〈t + |r|〉−κ+1 + 〈t − |r|〉−κ+1)

� ε

|r| 〈t − |r|〉−κ+1

� ε〈t − |r|〉−κ+1〈t + |r|〉−1,

where we used the relation |r| ≈ 〈r〉 � 〈t + |r|〉 in the last inequality. It is clear that

∂r (rv(t, r)) = 1

2

(
H ′

f (t + r)+ H ′
f (t − r)

)
,

and, then,

|∂r(rv(t, r))| ≤ ε〈t − |r|〉−κ .

Repeating the same estimates seen in the first case v = w[Hg], we arrive at

|∂r(rv(t, r))| � ε〈t − |r|〉−κ〈t + |r|〉−1〈r〉 ≤ ε〈t − |r|〉−κ+1〈t + |r|〉−1〈r〉.

Summarizing, we have proved that ‖v‖Xκ � ε also for v = ∂tw[Hf ]. Using the
triangular inequality, we get the desired estimate for ∂tw[Hf ] + w[Hg].

3.2 Preliminary Results

In the previous section we introduced the space Xκ in which we will consider the
solutions to (22). In this subsection we provide some preliminary estimates that will
play a fundamental role in next subsection.

By Duhamel’s principle we know that the solution of the inhomogeneousCauchy
problem

⎧
⎪⎪⎨

⎪⎪⎩

vtt − vrr − 2
r
vr = F(t, r), t > 0, r ∈ R,

v(0, r) = 0, r ∈ R,

vt (0, r) = 0, r ∈ R

can be written as

v(t, r) =
∫ t

0
vτ (t, r)dτ,
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where vτ is the solution of the homogeneous problem
⎧
⎪⎪⎨

⎪⎪⎩

vtt − vrr − 2
r
vr = 0, t > 0, r ∈ R,

v(τ, r) = 0, r ∈ R,

vt (τ, r) = F(τ, r), r ∈ R.

Being the Cauchy problem (25) invariant by time translation, we have

vτ (t, r) =
∫ 1

−1
HF [τ ](t − τ + rσ )dσ = 1

r

∫ t−τ+r

t−τ−r

HF [τ ](ρ)dρ

with HF [τ ](ρ) = ρF (τ,ρ)
2 . Thus, we obtain

v(t, r) =
∫ t

0

∫ 1

−1
HF [τ ](t − τ + rσ )dσdτ = 1

r

∫ t

0

∫ t−τ+r

t−τ−r

HF [τ ](ρ)dρdτ.

Let us define for any v ∈ Xκ the operator

v → Lv(t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ 1

−1
H̃v[τ ](t − τ + rσ )dσdτ

= 1

r

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ t−τ+r

t−τ−r

H̃v[τ ](ρ)dρdτ (29)

with

H̃v[τ ](ρ) .= ρ|v(τ, ρ)|p
2

. (30)

Hereafter, we denote by H̃v[τ ]′(ρ) the derivative of H̃v[τ ](ρ) with respect to ρ,
considering τ as a parameter.

Proposition 3.4 Let v ∈ Xκ . Then, Lv ∈ Xκ and r2Lv ∈ C2([0,∞) × R).

Furthermore, Lv satisfies

r2(∂2t − ∂2r )Lv − 2r∂rLv = 〈t〉−μ
2 (p−1)r2|v(t, r)|p, t > 0, r ∈ R (31)

with vanishing initial data.

Proof From the continuity of the function H̃v[τ ](ρ), that follows from the assump-
tion v ∈ Xκ ⊂ C([0,∞) × R), we obtain Lv, ∂r (rLv) ∈ C([0,∞) × R).
Furthermore, Lv is even in r . So, Lv ∈ Xκ .

Let us compute the time derivative of Lv. Being H̃v[t](rσ ) odd in σ , then,

∂tLv = 1

r

∫ t

0
〈τ 〉−μ

2 (p−1) (
H̃v[τ ](t − τ + r) − H̃v[τ ](t − τ − r)

)
dτ.
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For the second time derivative, using the previous formula and (27), we get

∂2t Lv = ∂2r Lv + 2
r
∂rLv + 〈t〉−μ

2 (p−1)|v(t, r)|p.

Thus, Lv solves (31) and we get the continuity of the r−derivatives for r2Lv.

Having in mind the result obtained in Proposition 3.4, we introduce the following
definition.

Definition 3.5 We say that v = v(t, r) is a radial solution to (22) in Xκ , if v ∈ Xκ

for some κ > 1 and satisfies the integral equation

v = ∂tw[Hf ] + w[Hg] + Lv.

Since our goal is to prove the global (in time) existence through Banach’s fixed
point theorem, we prove the following preliminary result.

Proposition 3.6 Let p > p0(3+ μ), μ ∈ [2, 1+√
5] and let κ be such that:

max
{
1, 2

p−1 − μ
2

}
< κ ≤ (

μ
2 + 1

)
(p − 1) if p ∈ (p0(3+ μ), pFuj(μ)),

(32)

max
{
1, μ

2

}
< κ ≤ (

μ
2 + 1

)
(p − 1) if p = pFuj(μ), (33)

max
{
1, 1

p−1

}
< κ ≤ (μ

2 + 1
)
(p − 1) if p > pFuj(μ). (34)

Then, the following estimates hold for v,w ∈ Xκ :

‖Lv‖Xκ � ‖v‖pXκ
, (35)

‖Lv − Lw‖Xκ � ‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
. (36)

Remark 3.7 We underline that we can actually find a κ > 1 satisfying the above
conditions. This is possible since for p > p0(3+μ) the relation 1 <

(μ
2 + 1

)
(p−1)

is always true.
In fact the last inequality is equivalent to p > pFuj(μ + 2). However, it holds

p0(3+ μ) > pFuj(μ+ 2), so, p > pFuj(μ+ 2) is valid in this case.
The other conditions on κ are strongly related to the tools that we are using

in order to prove our result and, therefore, they will be explained in detail after
Lemma 3.10.

Remark 3.8 When μ = 1 + √
5 we have p0(3 + μ) = pFuj(μ) (see also

Remark 3.11), thus, we have just the condition (34) for κ in the above theo-
rem.
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Proof Due to the definition of the norm in Xκ , in order to prove (35) it is sufficient
to show that for any t ≥ 0, r ∈ R we have

|Lv(t, r)| � 〈t + |r|〉−1〈t − |r|〉−(κ−1)‖v‖pXκ
, (37)

|∂r (rLv)(t, r)| � 〈t + |r|〉−1〈t − |r|〉−(κ−1)〈r〉‖v‖pXκ
. (38)

But Lv is even in r , therefore, we can restrict ourselves to consider nonnegative
values of r .

Let us consider v ∈ Xκ . By using the relation rvr = ∂r(rv) − v, we get the
following estimates:

|v(τ, ρ)|p � ‖v‖pXκ
〈τ + |ρ|〉−p〈τ − |ρ|〉−p(κ−1),

〈ρ〉−1|ρ∂ρ |v(τ, ρ)|p | � ‖v‖pXκ
〈τ + |ρ|〉−p〈τ − |ρ|〉−p(κ−1).

Moreover, from (30) we obtain

|H̃v[τ ](ρ)| + |H̃v[τ ]′(ρ)| � ‖v‖pXκ
〈τ + |ρ|〉−p〈τ − |ρ|〉−p(κ−1)〈ρ〉. (39)

For r ≥ 0, applying the relation (39) to the definition of Lv, we get

|Lv(t, r)| � 1

r
‖v‖pXκ

I0(t, r), (40)

where

I0(t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ t−τ+r

t−τ−r

〈τ + |ρ|〉−p〈τ − |ρ|〉−p(κ−1)〈ρ〉dρdτ.

By using (28) and (39), we obtain

|∂r(rLv)(t, r)| � ‖v‖pXκ

∑

±
I1,±(t, r), (41)

where

I1,±(t, r)
.=

∫ t

0
〈τ 〉− μ

2 (p−1)〈τ + |t − τ ± r|〉−p〈τ − |t − τ ± r|〉−p(κ−1)〈t − τ ± r〉dτ.

Analogously, in order to prove (36), we have to show

〈t + |r|〉〈t − |r|〉κ−1|Lv(t, r) − Lw(t, r)|
� ‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
, (42)
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〈t + |r|〉〈t − |r|〉κ−1〈r〉−1|∂r(rLv)(t, r) − ∂r (rLw)(t, r)|
� ‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
. (43)

Using (13) and (30), we arrive at

|H̃v[τ ](ρ)− H̃w[τ ](ρ)| � |ρ‖v(τ, ρ) − w(τ, ρ)|
(
|v(τ, ρ)|p−1 + |w(τ, ρ)|p−1

)
.

Therefore, from the definitions of L and of norm in Xκ it follows:

|Lv(t, r) − Lw(t, r)| � 1

r
‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
I0(t, r).

In the same way, employing once again (13), we find

|∂r (rLv)(t, r) − ∂r (rLw)(t, r)| � ‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

) ∑

±
I1,±(t, r).

Consequently, our next step will be to estimate the quantities I0(t, r) and
I1,±(t, r). Hence, in order to conclude the proof we need to use Propositions 3.12
and 3.13, which are stated and proved in the last part of this subsection.

Remark 3.9 If t ≤ r , then, we can slightly modify the representation formula for
Lv. Indeed, being H̃v[τ ] an odd function, we have

∫ r−(t−τ )

(t−τ )−r

H̃v[τ ](ρ)dρ = 0.

Hence,

Lv(t, r) = 1

r

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ t−τ+r

r−(t−τ )

H̃v[τ ](ρ)dρdτ.

For this reason, when t ≤ r we may replace I0(t, r) by

Ĩ0(t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ r+(t−v)

r−(t−τ )

〈τ + ρ〉−p〈τ − ρ〉−p(κ−1)〈ρ〉dρdτ,

obtaining

|Lv(t, r)| � 1

r
‖v‖pXκ

Ĩ0(t, r). (44)

The estimates for I0(t, r), Ĩ0(t, r) and I1,±(t, r) are based on the next lemma.



330 A. Palmieri

Lemma 3.10 Let p > p0(3+ μ), μ ∈ [2, 1+√
5] and let κ be such that

2
p−1 − μ

2 ≤ κ ≤ (μ
2 + 1

)
(p − 1) if p ∈ (p0(3+ μ), pFuj(μ)), (45)

μ
2 < κ ≤ (μ

2 + 1
)
(p − 1) if p = pFuj(μ), (46)

1
p−1 ≤ κ ≤ (

μ
2 + 1

)
(p − 1) if p > pFuj(μ). (47)

Then, for any ξ ∈ R it holds

I (ξ)
.=

∫ |ξ |

−|ξ |
〈η + ξ〉〈η − ξ〉−μ

2 (p−1)〈η〉−p(κ−1)dη � 〈ξ〉−(κ−p). (48)

Proof We split the integral I (ξ) into two parts

I1(ξ)
.=

∫ |ξ |
2

− |ξ |
2

〈η + ξ〉〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−1)dη,

I2(ξ)
.=

( ∫ − |ξ |
2

−|ξ |
+

∫ |ξ |
|ξ |
2

)

〈η + ξ〉〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−1)dη.

We begin with I1(ξ). Let η ∈ [−|ξ |/2, |ξ |/2]. Then, 〈ξ〉 ≈ 〈η + ξ〉 ≈ 〈η − ξ〉.
Therefore, we have

I1(ξ) � 〈ξ〉1−μ
2 (p−1)

∫ |ξ |
2

− |ξ |
2

〈η〉−p(κ−1)dη

= 2〈ξ〉1−μ
2 (p−1)

∫ |ξ |
2

0
〈η〉−p(κ−1)dη.

We study separately the cases p(κ − 1) � 1.

Case κ > 1+ 1
p

Since the power of the integrand function is less than−1, we have

∫ |ξ |
2

0
〈η〉−p(κ−1)dη � 1.

Consequently, I1(ξ) � 〈ξ〉1−μ
2 (p−1) ≤ 〈ξ〉−(κ−p) for κ ≤ (μ

2 + 1
)
(p − 1).

Case κ = 1+ 1
p

In this case a logarithmic term appears. Hence,

I1(ξ) � 〈ξ〉1−μ
2 (p−1) log (〈ξ〉/2) ≤ 〈ξ〉−(κ−p)
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for κ <
(
μ
2 + 1

)
(p−1). But κ = 1+ 1

p
. So, the previous condition on κ is reduced

to the inequality 1+ 1
p

<
(μ
2 + 1

)
(p − 1), which is equivalent to

(2+ μ)p2 − (4+ μ)p − 2 > 0. (49)

However, (49) is obviously satisfied, since p > p0(3 + μ). Let us remark that (49)
is also useful to guarantee that we have a not empty range of admissible values of κ
in the previous case.

Case κ < 1+ 1
p

Being the power of the integrand greater than −1, we get

∫ |ξ |
2

0
〈η〉−p(κ−1)dη � 〈ξ/2〉−p(κ−1)+1.

Therefore, I1(ξ) � 〈ξ〉2−μ
2 (p−1)−p(κ−1) ≤ 〈ξ〉−(κ−p) for κ ≥ 2

p−1 − μ
2 . We

underline that also in this case the condition p > p0(3 + μ) implies that we
have a not empty range of values for κ . Indeed, 2

p−1 − μ
2 < 1 + 1

p
is equivalent

to (49).
Gluing together the previous conditions on κ , we obtain I1(ξ) � 〈ξ〉−(κ−p)

when

κ ∈
[

2
p−1 − μ

2 ,
(μ
2 + 1

)
(p − 1)

]
.

Now, we want to estimate I2(ξ). We may write this term as sum of the following
integrals:

I2,1(ξ)
.=

∫ |ξ |
|ξ |
2

〈η + ξ〉〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−1)dη,

I2,2(ξ)
.=

∫ − |ξ |
2

−|ξ |
〈η + ξ〉〈η − ξ〉−μ

2 (p−1)〈η〉−p(κ−1)dη.

We may reduce our considerations to the case ξ ≥ 0, since for ξ ≤ 0 the situation
is in some sense symmetric between I2,1(ξ) and I2,2(ξ) with respect to the case
ξ ≥ 0. Let us begin with the estimate of I2,1(ξ). For η ∈ [ξ/2, ξ ] it holds the
equivalences 〈η + ξ〉 ≈ 〈η〉 ≈ 〈ξ〉. Consequently,

I2,1(ξ) �

⎧
⎪⎪⎨

⎪⎪⎩

〈ξ〉1−p(κ−1) if μ
2 (p − 1) > 1,

〈ξ〉1−p(κ−1) log(〈ξ/2〉) if μ
2 (p − 1) = 1,

〈ξ〉2−p(κ−1)−μ
2 (p−1) if μ

2 (p − 1) < 1.
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Hence, we have I2,1(ξ) � 〈ξ〉−(κ−p) if and only if

⎧
⎪⎪⎨

⎪⎪⎩

1
p−1 ≤ κ if p > pFuj(μ),

μ
2 < κ if p = pFuj(μ),

2
p−1 − μ

2 ≤ κ if p < pFuj(μ).

We note that the condition 1
p−1 ≤ κ is stronger than 2

p−1−μ
2 ≤ κ , which is the lower

bound for κ coming from the estimate of the term I1(ξ), exactly when p > pFuj(μ).
We estimate now I2,2(ξ). When η ∈ [−ξ,−ξ/2], we employ the equivalences

〈η − ξ〉 ≈ 〈η〉 ≈ 〈ξ〉. Thus, we get

I2,2(ξ) � 〈ξ〉−μ
2 (p−1)−p(κ−1)

∫ − ξ
2

−ξ

〈ξ + η〉dη

� 〈ξ〉−μ
2 (p−1)−p(κ−1)+2 ≤ 〈ξ〉−(κ−p),

where again the last inequality is true for κ ≥ 2
p−1 − μ

2 . This concludes the proof.

Remark 3.11 Let us explain why we may consider only the case μ ≤ 1 + √
5 in

Lemma 3.10. Firstly, for μ ≤ 1+√
5 it holds p0(3+μ) ≤ pFuj(μ). Thus, we have

to consider three different cases for κ (of course, only one case for the limit value
μ = 1+√

5), as have seen in the proof.
Indeed, p0(3+ μ) < pFuj(μ) is equivalent to

√
(μ+4)2+8(μ+2)

2(μ+2) < 1+ 2
μ
− μ+4

2(μ+2) .

However, for nonnegative μ the right-hand side is always positive, thus, we
can take the squared powers of each side, obtaining after some straightforward
computations the inequality μ3 − 8(μ+ 1) < 0. The polynomial

P(x) = x3 − 8(x + 1) = (x + 2)
(
x − 1+√

5
)(
x − 1−√

5
)

has 1 + √
5 as unique positive root and P(x) < 0 for x ∈ (0, 1 + √

5). But this is
exactly the previous condition for μ.

Secondly, for μ > 1+√
5 we have p0(3+ μ) > pFuj(μ). Such relation follows

immediately from the property P(x) > 0 for x > 1+ √
5.

Even though one could think that for μ > 1 + √
5 it might be sufficient to

replace (45), (46) and (47) by

1
p−1 ≤ κ ≤ (μ

2 + 1
)
(p − 1) if p > p0(3+ μ).
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then, one should guarantee that the interval

[
1

p−1 ,
(μ
2 + 1

)
(p − 1)

]

is not empty, that is, the inequality
(
μ
2 + 1

)
p2 − (μ + 2)p + μ

2 ≥ 0 should be
satisfied. But this inequality is equivalent to

p ≥ p̃(μ)
.= 1+

√
2

μ+2 .

By straightforward computations, one can prove that p0(3 + μ) < p̃(μ) is
equivalent to

(μ + 2)(μ2 − 2μ− 4) > 0.

However, the above relation is fulfilled just for μ > 1+√
5.

Summarizing, for μ ∈ [2, 1+√
5] we have the chain of inequalities

p̃(μ) < p0(3+ μ) < pFuj(μ),

which guarantees forp > p0(3+μ) the nonemptiness of the range for κ in (45), (46)
and (47). On the other hand, for μ > 1 + √

5 we have the converse chain of
inequalities pFuj(μ) < p0(3 + μ) < p̃(μ), which guarantees suitable assumptions
on κ only when p ≥ p̃(μ), with the case p ∈ (p0(3+ μ), p̃(μ)) left open.

Proposition 3.12 Let p > p0(3 + μ). Let μ ∈ [2, 1 + √
5] and let κ be as in

Proposition 3.6. Then, it holds

I0(t, r) �
{
r〈t + r〉−κ if t ≥ 2r or 0 ≤ r ≤ 1,

〈t − r〉−(κ−1) if r ≤ t ≤ 2r and r ≥ 1.

Moreover,

Ĩ0(t, r) � 〈t − r〉−(κ−1) if t ≤ r and r ≥ 1.

In particular, the estimates (37) and (42) hold.

Proof We consider first I0(t, r). Since |t − τ − r| ≤ t − τ + r (we are working only
with r ≥ 0), it follows:

I0(t, r) ≤ 2
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ t−τ+r

(t−τ−r)+
〈τ + ρ〉−p〈τ − ρ〉−p(κ−1)〈ρ〉dρ dτ,

where we use the notation (y)+
.= max{y, 0} for any y ∈ R.
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We perform the change of variables ξ = τ + ρ, η = ρ − τ . Being ρ, τ ≥ 0, we
get |η| ≤ ξ . On the other hand, the condition ρ ∈ [(t − τ − r)+, t − τ + r] implies
(t − r)+ ≤ ξ ≤ t + r . Therefore,

I0(t, r) �
∫ t+r

(t−r)+
〈ξ〉−p

∫ ξ

−ξ

〈η + ξ〉〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−1)dη dξ

=
∫ t+r

(t−r)+
〈ξ〉−pI (ξ) dξ �

∫ t+r

(t−r)+
〈ξ〉−κdξ, (50)

where in the last inequality we used Lemma 3.10. Now we estimate the last integral
in different zones of the (t, r)-plane.

Zone t ≥ 2r

For ξ ∈ [t − r, t + r] we have the equivalence 〈ξ〉 ≈ 〈t + r〉. Then, from (50) it
follows I0(t, r) � r〈t + r〉−κ .

Zone 0 ≤ r ≤ 1 and t ≤ 2r

In this zone 〈t + r〉 ≈ 1. So, it is sufficient to show that I0(t, r) � r , but this is clear,
being κ > 0.

Zone r ≥ 1 and r ≤ t ≤ 2r

Being κ > 1 by (50), we get

I0(t, r) �
∫ t+r

(t−r)+
〈ξ〉−κ dξ � 〈t − r〉−(κ−1).

Now we estimate Ĩ0(t, r) for r ≥ 1 and t ≤ r . We consider as before the change
of variables ξ = τ + ρ, η = ρ − τ for the integral

Ĩ0(t, r) =
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ r+(t−τ )

r−(t−τ )

〈τ + ρ〉−p〈τ − ρ〉−p(κ−1)〈ρ〉dρ dτ.

From τ ≥ 0 and r − (t − τ ) ≤ ρ ≤ r + (t − τ ) we have r − t ≤ η ≤ ξ and
r − t ≤ ξ ≤ r + t . Thus, we find

Ĩ0(t, r) �
∫ r+t

r−t

〈ξ〉−p

∫ ξ

r−t

〈η + ξ〉〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−1)dη dξ.

Moreover, [r − t, ξ ] ⊂ [−ξ, ξ ] and, then, applying Lemma 3.10, we have

Ĩ0(t, r) �
∫ r+t

r−t

〈ξ〉−pI (ξ) dξ �
∫ r+t

r−t

〈ξ〉−κ dξ � 〈t − r〉1−κ ,

where we used again the condition κ > 1.
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Finally, we prove (37). We know that (40) and (44) hold for t ≥ r and t ≤ r ,
respectively. For t ≥ 2r or 0 ≤ r ≤ 1, using the relation 〈t + r〉 ≥ 〈t − r〉 and
combining the estimates for I0(t, r) and Ĩ0(t, r), we find

|Lv(t, r)| � 〈t + r〉−κ‖v‖pXκ
≤ 〈t + r〉−1〈t − r〉−(κ−1)‖v‖pXκ

.

If t ≤ 2r and r ≥ 1, then, we have

|Lv(t, r)| � 1

r
〈t − r〉−(κ−1)‖v‖pXκ

� 〈t + r〉−1〈t − r〉−(κ−1)‖v‖pXκ
,

where we used the equivalence r ≈ 〈r〉 ≈ 〈t + r〉 in the last inequality.
Since

|Lv(t, r) − Lw(t, r)| � 1

r
‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
I0(t, r) for t ≥ r,

|Lv(t, r) − Lw(t, r)| � 1

r
‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
Ĩ0(t, r) for t ≤ r,

in the same way one can prove (42). This concludes the proof.

Proposition 3.13 Let p > p0(3 + μ). Let μ ∈ [2, 1 + √
5] and let κ be as in

Proposition 3.6. Then, we have

I1,−(t, r) �
{
〈t − r〉−κ if t ≥ 2r,

〈t − r〉−(κ−1) if t ≤ 2r,

and

I1,+(t, r) � 〈t + r〉−κ .

In particular, the estimates (38) and (43) hold.

Proof We begin with the estimate of I1,−(t, r). Also in this case we divide the
(t, r)-plane in different zones.

Zone t ≥ 2r

If τ ∈ [t − r, t], then, τ + |t − τ − r| ≈ t − r . On the other hand, for τ ∈ [0, t − r]
we have τ + |t − τ − r| = t − r . Consequently,

I1,−(t, r) � 〈t − r〉−p

∫ t

0
〈τ 〉−μ

2 (p−1)〈τ − |t − τ − r|〉−p(κ−1)〈t − τ − r〉dτ

= 〈t − r〉−p(Q− + Q+),
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where

Q−
.=

∫ t−r

0
〈τ 〉−μ

2 (p−1)〈2τ − t + r〉−p(κ−1)〈t − τ − r〉dτ,

Q+
.= 〈t − r〉−p(κ−1)

∫ t

t−r

〈τ 〉−μ
2 (p−1)〈t − τ − r〉dτ.

For Q+ we have

Q+ ≤ 〈t − r〉−p(κ−1)−μ
2 (p−1)

∫ t

t−r

〈t − τ − r〉dτ

� 〈t − r〉−p(κ−1)−μ
2 (p−1)〈r〉2 � 〈t − r〉2−p(κ−1)−μ

2 (p−1).

Since κ ≥ 2
p−1 − μ

2 , we find the desired estimate Q+ � 〈t − r〉p−κ .

Using the change of variables η = − t−r
2 + τ and Lemma 3.10, we have

Q− �
∫ t−r

2

− t−r
2

〈
η + t−r

2

〉−μ
2 (p−1) 〈η〉−p(κ−1) 〈

η − t−r
2

〉
dη

= I
(
r−t
2

)
� 〈t − r〉p−κ . (51)

Combining the estimate for Q+ and Q− we get I1,−(t, r) � 〈t − r〉−κ .

Zone t ≤ 2r

We divide I1,−(t, r) into two integrals I1,−(t, r) = Q̃− + Q̃+ with

Q̃−
.=

∫ (t−r)+

0
〈τ 〉−μ

2 (p−1)〈t − r〉−p〈2τ − t + r〉−p(κ−1)〈t − τ − r〉dτ

= 〈t − r〉−pQ−,

Q̃+
.=

∫ t

(t−r)+
〈τ 〉−μ

2 (p−1)〈2τ − t + r〉−p〈t − r〉−p(κ−1)〈t − τ − r〉dτ

= 〈t − r〉−p(κ−1)Q#+,

where

Q#+
.=

∫ t

(t−r)+
〈τ 〉−μ

2 (p−1)〈2τ − t + r〉−p〈t − τ − r〉dτ.

Let us observe that (51) holds for any t ≥ r , so we obtain Q̃− � 〈t − r〉−κ .
On the other hand, being p > 1 and κ > 1, in order to show the estimate

Q̃+ � 〈t − r〉−(κ−1), it is sufficient to prove that Q#+ is bounded.
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Since 2τ − (t − r) ≥ τ − (t − r), we have

Q#+ �
∫ t

(t−r)+
〈τ 〉−μ

2 (p−1)〈τ − t + r〉−(p−1)dτ.

If t ≥ r and τ ∈ [0, (t − r)/2], then, 〈τ − (t − r)〉 ≥ 〈τ 〉. Consequently, we get
〈τ − (t − r)〉−(p−1) ≤ 〈τ 〉−(p−1).

When t ≥ r and τ ≥ t−r
2 , it holds 〈τ − (t − r)〉 ≤ 〈τ 〉. Hence, the inequality

〈τ − (t − r)〉−(p−1) ≥ 〈τ 〉−(p−1) holds.
Summarizing, for t ≥ r we have

Q#+ �
∫ (t−r)/2

0
〈τ 〉−( μ

2 +1)(p−1)dτ +
∫ t

(t−r)/2
〈t − τ − r〉−( μ

2 +1)(p−1)dτ

�
∫ ∞

0
〈τ 〉−( μ

2 +1)(p−1)dτ.

On the other hand, for t ≤ r , from 〈τ − (t − r)〉 ≥ 〈τ 〉 it follows:

Q#+ �
∫ t

(t−r)+
〈τ 〉−μ

2 (p−1)〈τ − t + r〉−(p−1)dτ ≤
∫ ∞

0
〈τ 〉−( μ

2 +1)(p−1)dτ.

However, for p > p0(3+μ)we have already shown in Remark 3.7 the inequality
1 <

(μ
2 + 1

)
(p − 1). Thus, 〈τ 〉−( μ

2 +1)(p−1) ∈ L1([0,∞)) and, consequently, we
may estimate Q#+ by a constant, as we expected.

Now, combining the estimates for Q̃−, Q̃+ and Q#+, for t ≤ 2r we find

I1,−(t, r) = Q̃− + Q̃+ = 〈t − r〉−pQ− + 〈t − r〉−p(κ−1)Q#+
� 〈t − r〉−p−κ + 〈t − r〉−p(κ−1) � 〈t − r〉−(κ−1).

The estimate for I1,+(t, r) is simpler to get. In fact, because of t − τ + r ≥ 0

I1,+(t, r) = 〈t + r〉−p

∫ t

0
〈τ 〉−μ

2 (p−1)〈2τ − t − r〉−p(κ−1)〈t − τ + r〉dτ.

After the change of variables η = τ − t+r
2 , applying again Lemma 3.10, we find

I1,+(t, r) � 〈t + r〉−p

∫ t+r
2

− t+r
2

〈
η + t+r

2

〉−μ
2 (p−1) 〈η〉−p(κ−1) 〈

η − t+r
2

〉
dη

= 〈t + r〉−p I
(− t+r

2

)
� 〈t + r〉−κ .
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Finally, we prove (38) and (43). For t ≥ 2r , using 〈t + r〉 ≈ 〈t − r〉 and 〈r〉 ≥ 1,
we have

|∂r (rLv)(t, r)| � ‖v‖pXκ

(
I1,−(t, r)+ I1,+(t, r)

)
� ‖v‖pXκ

(〈t − r〉−κ + 〈t + r〉−κ
)

� 〈r〉〈t + r〉−1〈t − r〉−(κ−1)‖v‖pXκ
.

On the other hand, if t ≤ 2r , then, 〈t + r〉 ≈ 〈r〉. Therefore,

|∂r(rLv)(t, r)| � ‖v‖pXκ
(I1,−(t, r)+ I1,+(t, r))

� ‖v‖pXκ
〈t − r〉−(κ−1)

� 〈r〉〈t + r〉−1〈t − r〉−(κ−1)‖v‖pXκ
.

In the same way one can prove (43). Hence, the proof is completed.

3.3 Semilinear Model: 3-d Case

Finally, in this section we can state the global (in time) existence result in the case
n = 3.

Theorem 3.14 Let n = 3. Let us assume μ ∈ [2, 1 + √
5] and ν2 ≥ 0 satisfying

the relation δ = 1 and let

p > p0(3+ μ). (52)

Then, there exist ε0 > 0 and κ2 > κ1 ≥ 1 such that for any ε ∈ (0, ε0) and any
radial data u0 ∈ C2(R3), u1 ∈ C1(R3), satisfying

|dj
r u0(r)| ≤ ε〈r〉−(κ̄+j) for j = 0, 1,

|u1(r)+ μ
2 u0(r)| ≤ ε〈r〉−(κ̄+1),

for some κ̄ ∈ (κ1, κ2], the Cauchy problem (2) admits a uniquely determined radial
solution u ∈ C([0,∞), C2(R3 \ {0})) in the sense that v(t, r) = 〈t〉μ

2 u(t, r) satisfies
Definition 3.5 for any κ ∈ (κ1, κ̄].

Furthermore, the following decay estimates hold for any t ≥ 0, r > 0 and
κ ∈ (κ1, κ̄]:

|u(t, r)| � ε 〈t〉−μ
2 〈t − r〉−κ+1〈t + r〉−1,

|∂ru(t, r)| � ε 〈t〉−μ
2 〈t − r〉−κ+1〈t + r〉−1.
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Proof Let consider the transformation v = 〈t〉μ
2 u. Then, in order to prove the

existence of a radial global (in time) solution for (2), it is sufficient to find a
global (in time) solution v to (22). For this purpose, we will use a standard
contraction argument. Let us define the sequence {vn}n∈N of successive approxi-
mations

v0 = ∂tw[Hf ] + w[Hg], vn+1 = v0 + Lvn.

From Propositions 3.3 and 3.6 we get

‖vn+1‖Xκ ≤ ‖v0‖Xκ + C1‖vn‖pXκ
≤ C0ε + C1‖vn‖pXκ

,

‖vn+1 − vn‖Xκ ≤ C2‖vn − vn−1‖Xκ

(
‖vn‖pXκ

+ ‖vn−1‖pXκ

)
,

where C0, C1, C2 suitable positive constants. Let us consider

ε0 = min

{(

2
p

p−1C0C
1

p−1
1

)−1

,

(

2
p+1
p−1C0C

1
p−1
2

)−1
}

,

then, for ε0 < ε we find via an induction argument

‖vn‖Xκ ≤ 2C0ε, (53)

‖vn+1 − vn‖Xκ ≤ 2−n‖v1 − v0‖Xκ . (54)

By (54) we have that {vn}n∈N is a Cauchy sequence. Denote by v the limit of this
sequence in Xκ . Being the operator L locally Lipschitz, we have that v is solution
of the equation

v = v0 + Lv.

Then, using Proposition 3.4, we have the searched solution of (22). The decay
estimate follows passing to the limit in (53) and using the backward transformation
u = 〈t〉−μ

2 v.

4 Radial Odd Case in Higher Dimensions

In this section we consider the case n ≥ 5, n odd. Although this section has some
common points to Sect. 3, the approach is slightly different. We will follow [5, 11].
As in previous sections, because of (3), carrying out the transformation v(t, x) =
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〈t〉μ
2 u(t, x), we find the semilinear Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

vtt − Δv = 〈t〉−μ
2 (p−1)|v|p, t > 0, x ∈ R

n,

v(0, x) = f (x), x ∈ R
n,

vt (0, x) = g(x), x ∈ R
n,

(55)

where f (x) = u0(x) and g(x) = u1(x)+ μ
2 u0(x). Since we are interested in radial

solutions, we will look for solution of (55) that solves

⎧
⎪⎪⎨

⎪⎪⎩

vtt − vrr − n−1
r

vr = 〈t〉−μ
2 (p−1)|v|p, t > 0, r > 0,

v(0, r) = f (r), r > 0,

vt (0, r) = g(r), r > 0,

(56)

possibly allowing a singular behavior of solutions and their r-derivatives as r → 0+.
As we have done in Sect. 3, we will require some decay properties for the radial
initial data. One difficulty with respect to the case n = 3 consists in the more
complicate integral representation formula for the solution of the corresponding
linear problem, as we will see in the upcoming proofs.

The remaining part of this section is organized as follows: we begin recalling
some known results for the corresponding linear equation; hence, after some
preliminary lemmas, we will provide the global existence result. Nonetheless,
in this case a different argument from the usual contraction principle is
employed.

4.1 Radial Linear Wave Equation: Odd Case in Higher
Dimensions

We recall now some known results for radial solutions of the linear free wave
equation. According to [13, Lemma 3.1] the function v0 defined by

v0(t, r)
.=

∫ t+r

|t−r |
g(λ)K(λ, t, r) dλ + ∂

∂t

∫ t+r

|t−r |
f (λ)K(λ, t, r) dλ, (57)

where the kernel function is defined by

K(λ, t, r)
.= 1

2m!
(
λ

r

)2m+1 (
∂

∂λ

1

2λ

)m

φm(λ, t, r),

φ(λ, t, r)
.= (λ − (t − r))(λ − (t + r)), m

.= n−3
2 ,
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is a solution to the to linear wave equation
⎧
⎪⎪⎨

⎪⎪⎩

vtt − vrr − n−1
r

vr = 0, t > 0, r > 0,

v(0, r) = f (r), r > 0,

vt (0, r) = g(r), r > 0,

(58)

provided that f ∈ C2((0,∞)) and g ∈ C1((0,∞)).

In the following lemma we recall some known estimates for the kernel function
K(λ, t, r) that will be helpful afterwards. For the proof see [13, Lemma 2.3].

Lemma 4.1 Let (t, r) ∈ [0,∞) × (0,∞) such that |t − r| ≤ λ ≤ t + r . Then, it
holds

|K(λ, t, r)| � r−m−1λm+1. (59)

Furthermore, if t ≤ 2r , then, we get

|∂rK(λ, t, r)| � r−m−1λm. (60)

Since we are going to consider a suitable weighted supremum norm for the
solution of the semilinear problem, it is reasonable to require some decay conditions
for f, g.

Namely, we assume

|f (j)(r)| ≤ ε〈r〉−(κ+j), for j = 0, 1, 2, (61)

|g(j)(r)| ≤ ε〈r〉−(κ+1+j), for j = 0, 1, (62)

where ε, κ are positive parameters we will fix afterwards.
In order to define suitably the weight functions in the norm for the solution space,

we have firstly to derive some a priori estimates for solutions to the corresponding
linear homogeneous Cauchy problem. For the proof of the following two lemmas
one can see [11, Lemma 2.4 and Lemma 2.5].

Lemma 4.2 Let v0 = v0(t, r) be the solution to the linear Cauchy problem (58)
defined by (57). Let (t, r) ∈ [0,∞)× (0,∞) be such that t ≥ 2r . Then, we have for
α = 0, 1

|∂α
r v

0(t, r)| � r−m−α

∫ t+r

t−r

( m−1∑

j=0

λm−j−1|Gj(λ)| + |Gm(λ)|
)

dλ, (63)

where

Gj(λ)
.= λj+1g(λ) + (λj+1f (λ))′, 0 ≤ j ≤ m − 1,

Gm(λ)
.= −(λm+1g(λ))′ + (λm+1f (λ))′′.
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Lemma 4.3 Let v0 = v0(t, r) be the solution to the linear Cauchy problem (58)
defined by (57). Let (t, r) ∈ [0,∞)× (0,∞) be such that t ≤ 2r . Then, we have

|v0(t, r)| � r−m−1
∫ t+r

|t−r |

(
λm+1|g(λ)| + λm|f (λ)|

)
dλ

+
∑

±
r−m−1|t ± r|m+1|f (|t ± r|)|, (64)

|∂rv0(t, r)| � r−m−1
∫ t+r

|t−r |

(
λm|g(λ)| + λm−1|f (λ)|

)
dλ

+
∑

±
r−m−1|t ± r|m|f (|t ± r|)|

+
∑

±
r−m−1|t ± r|m+1

(
|g(|t ± r|)| + |f ′(|t ± r|)|

)
. (65)

Finally, we recall some decay estimates for the solution to the linear Cauchy
problem (58).

Proposition 4.4 Let v0 = v0(t, r) be the solution to the linear Cauchy prob-
lem (58) defined by (57), with f ∈ C2((0,∞)), g ∈ C1((0,∞)) satisfying (61)
and (62) for some κ > m + 1 and ε > 0.

Then, we have for any (t, r) ∈ [0,∞)× (0,∞)

|v0(t, r)| ≤ C0 ε r1−m〈r〉−1ψκ(t, r), (66)

|∂rv0(t, r)| ≤ C0 ε r−mψκ(t, r), (67)

whereC0 is a positive constant that is independent of (t, r) and the functionψκ(t, r)

is defined by

ψκ(t, r)
.= 〈t + r〉−1〈t − r〉−κ+m+1. (68)

Proof Combining the results of Lemmas 4.2 and 4.3, we get the desired estimates
(for further details see also [11, Proposition 2.3]).

4.2 Preliminary Lemmas

Let us deal with the semilinear Cauchy problem (56). Firstly, we clarify to what kind
of solutions we are interested in. Let us introduce the following parameter dependent
Banach space for solutions:

Xκ
.= {

v ∈ C([0,∞), C1(0,∞)
) : ‖v‖Xκ<∞

}
,



Global Existence Results for a Semilinear Scale-Invariant Wave Equation 343

where

‖v‖Xκ

.= sup
t≥0 , r>0

(
rm−1〈r〉|v(t, r)| + rm|∂rv(t, r)|

)
ψκ(t, r)

−1 (69)

for a suitable constant κ > m + 1, being ψκ defined by (68).
Thanks to Proposition 4.4, it follows immediately

‖v0‖Xκ ≤ C0 ε, (70)

where v0 = v0(t, r) is the solution of the corresponding linear and radial Cauchy
problem defined by (57).

Let us consider now the integral operator L defined for any v ∈ Xκ by

v → Lv(t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)ω(t, τ, r)dτ

=
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
|v(τ, λ)|pK(λ, t − τ, r)dλdτ (71)

with λ±
.= t − τ ± r. Being the model (58) invariant by time translations, according

to Duhamel’s principle Lv is the solution to the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

wtt − wrr − n−1
r

wr = 〈t〉−μ
2 (p−1)|v|p, t > 0, r > 0,

w(0, r) = 0, r > 0,

wt (0, r) = 0, r > 0.

Therefore, it is natural to introduce the following definition:

Definition 4.5 We say that v = v(t, r) is a radial solution to (55) in Xκ , if v ∈ Xκ

for some κ > m + 1 and

v(t, r) = v0(t, r) + Lv(t, r) for any t ≥ 0 , r > 0.

Before stating the global (in time) existence result for the semilinear model (56),
it is useful to prove some preliminary results. Let us start with the n dimensional
variant of Lemma 3.10.

Lemma 4.6 Let n ≥ 5 be an odd integer. Let us denote

I (ξ)
.=

∫ ξ

−ξ

〈η − ξ〉−μ
2 (p−1)〈η + ξ〉1−m(p−1)〈η〉−p(κ−(m+1))dη,

where m = n−3
2 . Let us assume p > p0(n + μ) and μ ∈ [2,M(n)], where M(n) is

defined as in (5). Let us consider κ in the following way:
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(i) for μ ∈ [2, n− 1]
2

p−1 − μ
2 ≤ κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p ∈ (

p0(n + μ), pFuj(
n−1
2 + μ

2 )
)
,

n−1
2 < κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p ≥ pFuj(

n−1
2 + μ

2 );

(ii) for μ ∈ [n− 1,M(n)]
2

p−1 − μ
2 ≤ κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p ∈ (

p0(n + μ), pFuj(μ)
)
,

μ
2 < κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p = pFuj(μ),

1
p−1 ≤ κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p ∈ (

pFuj(μ), pFuj(n− 1)
)
,

n−1
2 < κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p ≥ pFuj(n − 1).

Then, the integral I (ξ) can be estimated for any ξ ≥ 0 as follows:

I (ξ) � 〈ξ〉−(κ−m−p). (72)

Remark 4.7 Let us underline that the choice of κ in Lemma 4.6 guarantees in all
subcases that

κ > m + 1 = n−1
2 . (73)

Furthermore, the assumptions made on κ imply always the lower bound

κ ≥ 2
p−1 − μ

2 . (74)

We are going to use several times the lower bounds (73) and (74) for κ in the
upcoming proofs.

Remark 4.8 Let us underline thatM(3) = 1+√
5. So, we found an upper bound for

μ which is consistent with the one obtained in Sect. 3 for the case n = 3. Moreover,
the conditions on κ when μ ∈ [n − 1,M(n)] are exactly those we have seen in the
statement of Lemma 3.10.

Proof Following the approach of [6], we split the integral into three subintegrals
I (ξ) = I1(ξ) + I2(ξ) + I3(ξ), where

I1(ξ)
.=

∫ ξ
2

− ξ
2

〈η + ξ〉1−m(p−1)〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−(m+1))dη,

I2(ξ)
.=

∫ ξ

ξ
2

〈η + ξ〉1−m(p−1)〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−(m+1))dη,

I3(ξ)
.=

∫ − ξ
2

−ξ

〈η + ξ〉1−m(p−1)〈η − ξ〉−μ
2 (p−1)〈η〉−p(κ−(m+1))dη.
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Let us start with I1(ξ). Since for η ∈ [− ξ
2 ,

ξ
2 ] we may use the equivalences

〈η + ξ〉 ≈ 〈ξ〉 ≈ 〈η − ξ〉, we get

I1(ξ) �

⎧
⎪⎪⎨

⎪⎪⎩

〈ξ〉1−(m+μ
2 )(p−1) if k > 1

p
+ m + 1,

〈ξ〉1−(m+μ
2 )(p−1) log〈ξ〉 if k = 1

p
+ m + 1,

〈ξ〉2−(m+μ
2 )(p−1)−p(κ−(m+1)) if k < 1

p
+ m + 1.

In the first case, we have 〈ξ〉1−(m+μ
2 )(p−1) � 〈ξ〉−(κ−m−p) if and only if κ ≤(

m + μ
2 + 1

)
p − (μ

2 + 1
)
. Therefore, we obtain

κ ∈
(
1
p
+ m + 1, (m + μ

2 + 1)p − (
μ
2 + 1)

]
,

as range for κ in the first case. Using the condition p > p0(n + μ), we have
that is actually possible to choose κ in such a way. For κ = 1

p
+ m + 1, we

find 〈ξ〉1−(m+μ
2 )(p−1) log〈ξ〉 � 〈ξ〉−(κ−m−p) thanks to p > p0(n + μ). In the

third case we may estimate 〈ξ〉2−(m+μ
2 )(p−1)−p(κ−(m+1)) � 〈ξ〉−(κ−m−p), assuming

κ ≥ 2
p−1 − μ

2 , that is we consider

κ ∈
[

2
p−1 − μ

2 ,
1
p
+ m + 1

)
.

Employing again p > p0(n + μ), we find that this range for κ is not empty.
Summarizing, gluing together all three intervals for κ , we have the inequality

I1(ξ) � 〈ξ〉−(κ−m−p) provided that

κ ∈
[

2
p−1 − μ

2 , (m + μ
2 + 1)p − (

μ
2 + 1)

]
.

Now we estimate I2(ξ). For η ∈
[
ξ
2 , ξ

]
we have 〈η + ξ〉 ≈ 〈ξ〉 ≈ 〈η〉, so,

I2(ξ) �

⎧
⎪⎪⎨

⎪⎪⎩

〈ξ〉1−m(p−1)−p(κ−(m+1)) if p > pFuj(μ),

〈ξ〉1−m(p−1)−p(κ−(m+1)) log〈ξ〉 if p = pFuj(μ),

〈ξ〉2−(m+μ
2 )(p−1)−p(κ−(m+1)) if p < pFuj(μ).

Analogously as in the estimate of I1(ξ), we find that I2(ξ) � 〈ξ〉−(κ−m−p),

provided that

⎧
⎪⎪⎨

⎪⎪⎩

κ ≥ 1
p−1 if p > pFuj(μ),

κ >
μ
2 if p = pFuj(μ),

κ ≥ 2
p−1 − μ

2 if p < pFuj(μ).
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Finally, it remains to consider I3(ξ). In the case in which η ∈
[
−ξ,− ξ

2

]
it holds

〈η − ξ〉 ≈ 〈ξ〉 ≈ 〈η〉 and, then,

I3(ξ) �

⎧
⎪⎪⎨

⎪⎪⎩

〈ξ〉−μ
2 (p−1)−p(κ−(m+1)) if p > pFuj(m),

〈ξ〉−μ
2 (p−1)−p(κ−(m+1)) log〈ξ〉 if p = pFuj(m),

〈ξ〉2−(m+μ
2 )(p−1)−p(κ−(m+1)) if p < pFuj(m),

� 〈ξ〉−(κ−m−p),

where, in order to allow the validity of the last inequality, we have to make the
following assumptions on κ :

⎧
⎪⎪⎨

⎪⎪⎩

κ ≥ m − μ
2 if p > pFuj(m),

κ > m − μ
2 if p = pFuj(m),

κ ≥ 2
p−1 − μ

2 if p < pFuj(m).

In particular, if we assume that κ > m + 1 and κ ≥ 2
p−1 − μ

2 , then, the estimate

I3(ξ) � 〈ξ〉−(κ−m−p) is always fulfilled.
Since we need to require always the validity of the condition κ > m + 1 for κ ,

it is useful to find the values of the exponent p such that the lower bounds for κ ,
that is 2

p−1 − μ
2 or 1

p−1 , are exactly equal to m + 1. These bounds are given by

pFuj(
n−1+μ

2 ) and pFuj(n− 1), respectively.
Thanks to these remarks, we get

max
{
m + 1, 2

p−1 − μ
2

}
=

{
m + 1 if p ≥ pFuj(

n−1+μ
2 ),

2
p−1 − μ

2 if p ≤ pFuj(
n−1+μ

2 ),

and

max
{
m + 1, 1

p−1

}
=

{
m + 1 if p ≥ pFuj(n − 1),
1

p−1 if p ≤ pFuj(n − 1).

Moreover, the following chain of inequalities are satisfied:

pFuj(n − 1) ≤ p0(n + μ) < pFuj(
n−1+μ

2 ) ≤ pFuj(μ) for μ ∈ [2, (n−1)2

n+1 ]
p0(n+ μ) ≤ pFuj(n− 1) ≤ pFuj(

n−1+μ
2 ) ≤ pFuj(μ) for μ ∈ [ (n−1)2

n+1 , n − 1],
p0(n+ μ) ≤ pFuj(μ) ≤ pFuj(

n−1+μ
2 ) ≤ pFuj(n − 1) for μ ∈ [n− 1,M(n)].
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Among the previous inequalities the relations between the shift of the Strauss
exponent and the shifts of Fujita exponent are less straightforward to prove than the
others. Let us show how to prove that p0(n + μ) < pFuj(μ) for μ ∈ [2,M(n)]. By
definition of the Strauss exponent, it follows immediately that p0(n+μ) < pFuj(μ)

is equivalent to require:

(n + μ− 1)pFuj(μ)2 − (n + μ+ 1)pFuj(μ) − 2 > 0,

that is,

μ2 − (n − 1)μ− 2(n− 1) < 0.

The previous quadratic equation has positive discriminant for all n ≥ 5 and
its two roots have different sign, according to Descartes’ rule. Thus, we get the
condition p0(n + μ) < pFuj(μ) provided that μ ∈ [2,M(n)]. In particular, we see
how the upper bound for μ comes into play. Analogously, one can prove that the
condition

pFuj(
n−1+μ

2 ) > p0(n + μ)

is always fulfilled for any μ ≥ 2 and that

pFuj(n − 1) ≥ p0(n + μ) for μ ≥ (n−1)2

n+1 .

Combining the restrictions on κ coming from the estimates of I1, I2 and I3 with
all possible dispositions of the exponentsp0(n+μ), pFuj(μ), pFuj(

n−1+μ
2 ), pFuj(n−

1) on the real line, we find (72).

Remark 4.9 In the statement of Lemma 4.6 in each subcase for the choice of κ in a
suitable interval, that depends on μ and p, one can see that the range of admissible
κs is not empty.

The nonemptiness of the interval
[

2
p−1 − μ

2 , (
n−1
2 + μ

2 )p − (
μ
2 + 1)

]
is equiva-

lent to the requirement (n+μ− 1)p2 − (n+μ+ 1)p− 2 > 0, which is true in all
cases we are dealing with, since we are considering p > p0(n + μ).

Also in the case of the interval
[
n−1
2 , ( n−1

2 + μ
2 )p − (

μ
2 + 1)

]
, we have a not

empty set because of p > p0(n+μ). Indeed, the nonemptiness of such range for κ
is equivalent to p > pFuj(n − 1 + μ). But p0(n + μ) > pFuj(n − 1 + μ) for any
μ ≥ 0, so, thanks to the assumption p > p0(n + μ), we are always working with
p > pFuj(n− 1+ μ).

Finally, let us study the nonemptiness of the interval

[
1

p−1 , (
n−1
2 + μ

2 )p − (
μ
2 + 1)

]
,
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which is equivalent to the solvability of the quadratic equation

(n + μ− 1)p2 − (n+ 2μ+ 1)p + μ ≥ 0.

The positive solution to the quadratic equation related to the previous inequality is
given by

p̃(μ, n)
.= n + 1+ 2μ+ √

(n + 1)2 + 8μ

2(n+ μ− 1)
.

One can prove that p0(n + μ) ≥ p̃(μ, n) when μ ≤ M(n), with, of course,
reversed inequality if we consider μ above M(n). Therefore, in this last case we
find a not empty range of values for κ . Let us point out that, in order to study the
condition p0(n + μ) ≥ p̃(μ, n), one has to solve the cubic inequality

μ3 − (n2 − 1)μ− 2(n− 1)2 > 0.

Once we remark that a quadratic factor of the above cubic polynomial is μ2 − (n−
1)μ − 2(n − 1) (which we met in the study of the condition p0(n + μ) < pFuj(μ)

in the proof of Lemma 4.6), the desired condition follows immediately.

Remark 4.10 Let us explain now why we are not able to prove Lemma 4.6 for
p > p0(n + μ), if we deal with the case μ > M(n). In this case we have that
p0(n + μ) > pFuj(μ) and, therefore, one could think to change the assumption on
κ in Lemma 4.6 in the following way:

1
p−1 ≤ κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p0(n + μ) < p < pFuj(n− 1),

n−1
2 < κ ≤ ( n−1

2 + μ
2 )p − (

μ
2 + 1) if p ≥ pFuj(n − 1).

Nevertheless, as we observed in Remark 4.9, now we are in the case in which
p̃(μ, n) > p0(n + μ) and there would be an empty range of admissible κs for
exponents p close to p0(n + μ). Namely, if we worked with the approach of this
section even for μ > M(n), then, we would get a global existence result only for
p > p̃(μ, n).

In the next result we prove some estimates that we will use in order to deal with
the nonlinearity in the weighted L∞

t L∞
r space that we will consider in the next

section as space for solutions.

Lemma 4.11 Let n ≥ 5 be an odd integer. Let us assume

p ∈ (
p0(n + μ), 1+ 2

m

)

and μ ∈ [2,M(n)]. Let us consider κ as in Lemma 4.6.



Global Existence Results for a Semilinear Scale-Invariant Wave Equation 349

Then, for any (t, r) ∈ [0,∞)× (0,∞) the following estimates hold:

I (t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
〈λ〉−m(p−1)+1ψκ(τ, λ)

pdλ dτ � rψκ(t, r), (75)

J (t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
λm−(m−1)p〈λ〉1−pψκ(τ, λ)

pdλ dτ � rψκ(t, r).

(76)

Moreover, if t ≥ 2r , then, we get

J ′(t, r) .=
∫ t−2r

0
〈τ 〉−μ

2 (p−1)
∫ λ+

λ−
λ−m(p−1)+1ψκ(τ, λ)

pdλ dτ � rψκ(t, r).

(77)

Furthermore, if r ≥ 1, then, we obtain

P+(t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)〈λ+〉−m(p−1)+1ψκ(τ, λ+)pdτ � rψκ(t, r), (78)

P−(t, r)
.=

∫ t

0
〈τ 〉−μ

2 (p−1)〈λ−〉−m(p−1)+1ψκ(τ, |λ−|)pdτ � rψκ(t, r). (79)

Proof In order to prove the estimates for I (t, r), J (t, r), J ′(t, r), P+(t, r) and
P−(t, r), we need to split the (t, r)-plane in different zones.

Estimate for I (t, r)

We perform the change of variables ξ = λ + τ, η = λ− τ . Therefore,

I (t, r) �
∫ t+r

|t−r |

∫ ξ

−ξ

〈ξ − η〉−μ
2 (p−1)〈ξ + η〉−m(p−1)+1〈ξ〉−p〈η〉−p(κ−(m+1)) dη dξ

�
∫ t+r

|t−r |
〈ξ〉−p

∫ ξ

−ξ

〈ξ − η〉−μ
2 (p−1)〈ξ + η〉−m(p−1)+1〈η〉−p(κ−(m+1)) dη dξ

=
∫ t+r

|t−r |
〈ξ〉−pI (ξ) dξ �

∫ t+r

|t−r |
〈ξ〉−κ+m dξ,

where in the last inequality we employed Lemma 4.6. Let us consider separately
three different subcases.

Case t ≥ 2r or r ≤ 1

I (t, r) �
∫ t+r

t−r

〈ξ〉−κ+m dξ � 〈t − r〉−κ+mr � rψκ(t, r),
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where in the second last inequality we used that 〈ξ〉−κ+m is decreasing on the
domain of integration and in the last inequality the relation 〈t − r〉 ≈ 〈t + r〉 is
employed.

Case r
2 ≤ t ≤ 2r and r ≥ 1

Being κ > m + 1, then,

I (t, r) �
∫ t+r

|t−r |
〈ξ〉−κ+m dξ � 〈t − r〉−κ+m+1 ≈ rψκ(t, r),

where in the last estimate the equivalence r ≈ 〈t + r〉 is used.
Case t ≤ r

2 and r ≥ 1

I (t, r) �
∫ t+r

r−t

〈ξ〉−κ+m dξ � 〈r − t〉−κ+mt � rψκ(t, r),

where the relation 〈r − t〉 ≈ 〈t + r〉 is employed in the last inequality. Thus, we
proved (75).

Estimate for J (t, r)

Since for λ ≥ 1 it holds λ ≈ 〈λ〉, then,

J (t, r) �
∫

Ω

〈τ 〉−μ
2 (p−1)

∫ min(1,λ+)

|λ−|
λm−(m−1)p〈λ〉1−pψκ(τ, λ)

pdλ dτ + I (t, r),

where we denote Ω
.= {τ ∈ [0, t] : |λ−| ≤ 1}. For λ ∈ [0, 1] and τ ≥ 0 it holds

〈τ + λ〉 ≈ 〈τ 〉 ≈ 〈τ − λ〉, therefore, it results ψκ(τ, λ) � 〈τ 〉−κ+m. Consequently,

J (t, r) � J̃ + I (t, r),

where

J̃
.=

∫

Ω

〈τ 〉−μ
2 (p−1)−(κ−m)p

∫ min(1,λ+)

|λ−|
λm−(m−1)pdλ dτ.

In order to show (76), since we have already shown (75), it is sufficient to prove that
J̃ � rψκ(t, r). We consider separately the case t ≥ 2r or r ≤ 1 and the case t ≤ 2r
and r ≥ 1.

Case t ≥ 2r or r ≤ 1

SinceΩ = [t−r−1, t−r+1]∩{τ ≥ 0}, then, 〈τ 〉 ≈ 〈t−r〉 for τ ∈ Ω . Therefore,

J̃ � 〈t − r〉−μ
2 (p−1)−(κ−m)p

∫

Ω

∫ min(1,λ+)

|λ−|
λm−(m−1)pdλ dτ.
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If m − (m − 1)p > 0, being the function λm−(m−1)p bounded on [0, 1] and
meas(Ω) ≤ 2, we obtain

J̃ � 〈t − r〉−μ
2 (p−1)−(κ−m)p

∫

Ω

∫ min(1,λ+)

|λ−|
dλ dτ

� r〈t − r〉−μ
2 (p−1)−(κ−m)p.

On the other hand, when m − (m − 1)p < 0, we get

J̃ � 〈t − r〉−μ
2 (p−1)−(κ−m)p

∫

Ω

|λ−|m−(m−1)p
∫ min(1,λ+)

|λ−|
dλ dτ

� 〈t − r〉−μ
2 (p−1)−(κ−m)p(λ+ − |λ−|)

∫ t−r+1

t−r−1
|t − τ − r|m−(m−1)p dτ

� r〈t − r〉−μ
2 (p−1)−(κ−m)p,

where in the last inequality we used the condition

m − (m − 1)p > −1, (80)

in order to guarantee the finiteness of the last integral.
Let us underline that the condition (80) follows from the assumptions on p we

are considering in this theorem. Indeed, for n ≥ 7 the upper bound p < 1 + 2
m
is a

stronger condition on p than (80), while (80) is trivially fulfilled in the case n = 5.
Concluding, from (73), we have for t ≥ 2r or r ≤ 1

J̃ � r〈t − r〉−μ
2 (p−1)−(κ−m)p � r〈t − r〉−(κ−m) ≈ rψκ(t, r),

where in the last step we used 〈t + r〉 ≈ 〈t − r〉 for t ≥ 2r or r ≤ 1.

Case t ≤ 2r and r ≥ 1

Firstly, we observe that Ω = [t − r − 1, t − r + 1] ∩ {τ ≥ 0} is nonempty if and
only if t ≥ r − 1. Using again (80), we find

J̃ �
∫

Ω

〈τ 〉−μ
2 (p−1)−(κ−m)p

∫ 1

0
λm−(m−1)pdλ dτ

�
∫

Ω

〈τ 〉−μ
2 (p−1)−(κ−m)p dτ.

For t ≥ r + 1, since the exponent for 〈τ 〉 in the last integral is negative, we get

J̃ �
∫ t−r+1

t−r−1
〈τ 〉−μ

2 (p−1)−(κ−m)p dτ ≤ 2〈t − r − 1〉−μ
2 (p−1)−(κ−m)p.
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Moreover, 〈t − r − 1〉 � 〈t − r〉. Hence, for t ≥ r + 1, it holds

J̃ � 〈t − r〉−μ
2 (p−1)−(κ−m)p � 〈t − r〉−(κ−m) � rψκ(t, r),

where in the last step we used 〈t + r〉 � 〈r〉 ≈ r for t ≤ 2r and r ≥ 1. Otherwise,
if t ∈ [r − 1, r + 1], then,

J̃ �
∫ t−r+1

t−r−1
〈τ 〉−μ

2 (p−1)−(κ−m)p dτ � 1 � 〈t − r〉−(κ−m),

being |t − r| ∈ [0, 1]. Finally, using the inequality r � 〈t + r〉 for t ≤ 2r and
r ≥ 1, we find again the estimate J̃ � rψκ(t, r) also in the subcase t ∈ [r − 1, r +
1]. Consequently, combining all subcases, we got J̃ � rψκ(t, r) and, hence, we
proved (76).

Estimate for J ′(t, r)

Now we want to prove the estimate for J ′(t, r) when t ≥ 2r . Let us remark that we
can reduce our considerations to the subcase r ≤ 1.

Indeed, if t ≥ 2r and r ≥ 1, then, λ− ≥ r ≥ 1 for τ ∈ [0, t − 2r], and,
consequently, J ′(t, r) � I (t, r) � rψκ(t, r). So, let us assume t ≥ 2r and r ≤ 1.
Analogously to what we did for J (t, r), we may estimate

J ′(t, r) �
∫

Ω ′
〈τ 〉−μ

2 (p−1)
∫ min(λ+,1)

λ−
λ−m(p−1)+1ψκ(τ, λ)

p dλ dτ + I (t, r),

whereΩ ′ .= {τ ∈ [0, t − 2r] : λ− ≤ 1} = [0, t − 2r] ∩ {τ : τ > t − r − 1}. Thanks
to r ≤ 1, it follows that Ω ′ is not empty and Ω ′ = [(t − r − 1)+, t − 2r]. As we
have already seen, for λ ∈ [0, 1] it holds ψκ(τ, λ) � 〈τ 〉−κ+m. Hence,

J ′(t, r) � J̃ ′ + I (t, r),

where

J̃ ′ .=
∫ t−2r

(t−r−1)+
〈τ 〉−μ

2 (p−1)−(κ−m)p

∫ min(λ+,1)

λ−
λ−m(p−1)+1 dλ dτ.

Also, if we prove that J̃ ′ � rψκ(t, r), then, it follows immediately (77). We
distinguish two subcases.

Case t ≥ r + 1 and r ≤ 1

Being the exponent for 〈τ 〉 negative in the previous integral and using the inequality
〈t − r − 1〉 � 〈t − r〉, we get

J̃ ′ � 〈t − r〉−μ
2 (p−1)−(κ−m)p

∫ t−2r

t−r−1

∫ min(λ+,1)

λ−
λ−m(p−1)+1 dλ dτ. (81)
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When −m(p − 1)+ 1 ≥ 0, then, (81) implies

J̃ ′ � r〈t − r〉−μ
2 (p−1)−(κ−m)p

∫ t−2r

t−r−1
λ
−m(p−1)+1
+ dτ

� r〈t − r〉−μ
2 (p−1)−(κ−m)p(1+ 2r)−m(p−1)+1(1− r)

� r〈t − r〉−μ
2 (p−1)−(κ−m)p.

Otherwise, in the case −m(p − 1)+ 1 < 0, by (81) it follows:

J̃ ′ � r〈t − r〉−μ
2 (p−1)−(κ−m)p

∫ t−2r

t−r−1
λ
−m(p−1)+1
− dτ

� r〈t − r〉−μ
2 (p−1)−(κ−m)p,

where in the last inequality we used the condition −m(p − 1) + 1 > −1 (which
is equivalent for the upper bound of p in the statement), in order to guarantee the
boundedness of the integral.

Summarizing, we proved that J̃ ′ � r〈t − r〉−μ
2 (p−1)−(κ−m)p, so, using again

〈t − r〉 ≈ 〈t + r〉 for t ≥ 2r and (73), eventually, we find

J̃ ′ � r〈t − r〉−μ
2 (p−1)−(κ−m)p � r〈t − r〉−(κ−m) ≈ rψκ(t, r).

Case 2r ≤ t ≤ r + 1 and r ≤ 1

Since in this case 〈t − r〉 ≈ 〈t + r〉 ≈ 1, it is sufficient to show that J̃ ′ � r in order
to obtain the same estimate as before. Being −μ

2 (p − 1)− (κ − m)p < 0, then,

J̃ ′ �
∫ t−2r

0

∫ min(λ+,1)

λ−
λ−m(p−1)+1 dλ dτ.

If −m(p − 1)+ 1 ≥ 0, being λ−m(p−1)+1 a bounded function on the domain of
integration, we have

J̃ ′ � r(t − 2r) � r(1− r) � r,

else when −m(p − 1)+ 1 < 0, using again the upper bound for p, we obtain

J̃ ′ � r

∫ t−2r

0
λ
−m(p−1)+1
− dτ � r.

So, we proved J̃ ′ � rψκ(t, r) for t ≥ 2r too and, in turn, (77).

Estimate for P−(t, r)
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Let us write down ψκ(τ, |λ−|) more explicitly

ψκ(τ, |λ−|) =
{
〈t − r〉−1〈t − r − 2τ 〉−κ+m+1 if τ ≤ t − r,

〈t − r − 2τ 〉−1〈t − r〉−κ+m+1 if τ ≥ t − r.
(82)

We consider separately three different cases.

Case t ≥ 2r and r ≥ 1

We use (82). Therefore,

P−(t, r) ≤ 〈t − r〉−pR− + 〈t − r〉−(κ−m)pR+,

being

R−
.=

∫ t−r

0
〈τ 〉−μ

2 (p−1)〈t − τ − r〉−m(p−1)+1〈t − r − 2τ 〉(−κ+m+1)pdτ,

R+
.=

∫ t

t−r

〈τ 〉−μ
2 (p−1)〈t − τ − r〉−m(p−1)+1dτ,

where we used for t ≥ 2r and τ ≥ t − r the relation 〈t − r − 2τ 〉 ≥ 〈t − r〉.
We estimate now R+. Since p < 1+ 2

m
and t − r ≥ r , then,

R+ � 〈t − r〉−μ
2 (p−1)

∫ t

t−r

〈t − τ − r〉−m(p−1)+1dτ

� 〈t − r〉−μ
2 (p−1)〈r〉−m(p−1)+2 � 〈t − r〉−μ

2 (p−1)−m(p−1)+2.

Hence, being r ≥ 1, it holds

〈t − r〉−(κ−m)pR+ � 〈t − r〉−(κ−m)p−μ
2 (p−1)−m(p−1)+2

� 〈t − r〉−(κ−m) � r〈t − r〉−(κ−m),

where in the second inequality we used the condition (74) on κ .
Let us deal with the integralR−. Carrying out the change of variables t−r−2τ =

η, we obtain

R− �
∫ t−r

−(t−r)

〈t − r − η〉−μ
2 (p−1)〈t − r + η〉−m(p−1)+1〈η〉(−κ+m+1)pdη

� 〈t − r〉−(κ−m−p),
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where in the last estimate we employed Lemma 4.6. Also,

〈t − r〉−pR− � 〈t − r〉−(κ−m) � r〈t − r〉−(κ−m).

Summarizing, for t ≥ 2r and r ≥ 1, we have

P−(t, r) � r〈t − r〉−(κ−m) � rψκ(t, r),

where in the last inequality we used the relation 〈t − r〉 ≈ 〈t + r〉 for t ≥ 2r .

Case r ≤ t ≤ 2r and r ≥ 1

By (82) it follows:

P−(t, r) = 〈t − r〉−pR− + 〈t − r〉(−κ+m+1)pR′+,

where R− is defined as before and

R′+
.=

∫ t

t−r

〈τ 〉−μ
2 (p−1)〈t − τ − r〉−m(p−1)+1〈t − r − 2τ 〉−pdτ.

We point out that the term R− can be estimated exactly as in the previous case,
so, R− � 〈t − r〉−(κ−m−p).

Now we deal with R′+. Being 〈τ − t + r〉 ≤ 〈2τ − t + r〉 and 〈τ − t + r〉 ≤ 〈τ 〉
for τ ∈ [t − r, t], it results

R′+ �
∫ t

t−r

〈τ − t + r〉−μ
2 (p−1)−(m+1)(p−1)dτ � 1.

In the last step we employed the condition

−(m + 1+ μ
2 )(p − 1) < −1, (83)

in order to guarantee the uniform boundedness of the integral. Indeed, (83) is
equivalent to require the lower bound p > pFuj(n + μ − 1). However, we are
assuming p > p0(n + μ) and p0(n + μ) > pFuj(n + μ − 1) so, in particular, the
condition p > pFuj(n + μ− 1) is fulfilled.

Summarizing, for 1 ≤ r ≤ t ≤ 2r we obtained the estimate

P−(t, r) � 〈t − r〉−pR− + 〈t − r〉(−κ+m+1)pR′+
� 〈t − r〉−p〈t − r〉−(κ−m−p) + 〈t − r〉(−κ+m+1)p

� 〈t − r〉−κ+m+1 ≈ rψκ(t, r),

where in the last line we used the relation r ≈ 〈t + r〉 for t ≤ 2r and r ≥ 1.
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Case t ≤ r and r ≥ 1

Using again (82) and the chain of inequalities 〈τ 〉 ≤ 〈τ − t + r〉 ≤ 〈2τ − t + r〉 for
0 ≤ τ ≤ t ≤ r , we obtain

P−(t, r) � 〈t − r〉(−κ+m+1)p
∫ t

0
〈τ 〉−μ

2 (p−1)〈τ − t + r〉−(m+1)(p−1)dτ

� 〈t − r〉(−κ+m+1)p
∫ t

0
〈τ 〉−(m+1+μ

2 )(p−1)dτ

� 〈t − r〉−κ+m+1 ≈ rψκ(t, r),

where we estimated uniformly the integral by a constant, because of the condi-
tion (83), and in the last step the condition 〈t + r〉 ≈ r for t ≤ r and r ≥ 1 is used.
Combining the estimates for P−(t, r) in the subcases t ≥ 2r , r ≤ t ≤ 2r and t ≤ r ,
we have (79).

Estimate for P+(t, r)

We consider separately the cases t ≥ 2r and t ≤ 2r .

Case t ≥ 2r and r ≥ 1

Since ψκ(τ, λ+) = 〈t + r〉−1〈t + r − 2τ 〉−κ+m+1, then,

P+(t, r) = 〈t + r〉−p

∫ t

0
〈τ 〉−μ

2 (p−1)〈λ+〉−m(p−1)+1〈t + r − 2τ 〉−p(κ−m−1)dτ.

Performing the change of variables η = t + r − 2τ , τ ∈ [0, t] implies

η ∈ [r − t, t + r] ⊂ [−(r + t), r + t]

and, consequently, using the equivalence 〈t+r〉 ≈ 〈t−r〉 for t ≥ 2r and Lemma 4.6,
we get for r ≥ 1

P+(t, r) � 〈t + r〉−pI (t + r) � 〈t + r〉−(κ−m) � rψκ(t, r).

Case t ≤ 2r and r ≥ 1

We can repeat the same estimate seen in the subcase t ≥ 2r , obtaining again
P+(t, r) � 〈t + r〉−κ+m. Finally, since 〈t − r〉 ≤ 〈t + r〉 and r ≥ 1, we have

P+(t, r) � 〈t + r〉−(κ−m) � 〈t − r〉−κ+m+1〈t + r〉−1 � rψκ(t, r).

Thus, combining the estimates for the cases t ≥ 2r and t ≤ 2r we have (78). The
proof is completed.
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4.3 Semilinear Model: Odd Case in Higher Dimensions

In order to prove that the operator

N : v ∈ Xκ −→ Nv = v0 + Lv

has a unique determined fixed point for some κ > m + 1, which is a radial solution
to (55) inXκ according to Definition 4.5, we are going to prove the following result.

Theorem 4.12 Let n ≥ 5 be an odd integer. Let p ∈ (
p0(n + μ), 1 + 2

m

)
and

μ ∈ [2,M(n)]. Let us consider κ as in Lemma 4.6. If v ∈ Xκ , then,

‖Lv‖Xκ ≤ C1‖v‖pXκ
. (84)

Furthermore, if we define on Xκ the norm

|||v|||Xk

.= sup
t≥0 , r>0

rm|v(t, r)|ψκ(t, r)
−1,

then, for any p < 2 and any v,w ∈ Xκ we get

‖Lv − Lw‖Xκ ≤ C2(M1 + M2), (85)

|||Lv − Lw|||Xκ
≤ C3M3, (86)

while for any p ≥ 2 and any v,w ∈ Xκ we get

‖Lv − Lw‖Xκ ≤ C4M1, (87)

where

M1
.= ‖v − w‖Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
, (88)

M2
.= |||v − w|||p−1

Xκ

(
‖v‖Xκ + ‖w‖Xκ

)
, (89)

M3
.= |||v − w|||Xκ

(
‖v‖p−1

Xκ
+ ‖w‖p−1

Xκ

)
. (90)

Here C1, · · · , C4 denote positive constants which are independent of t and r .

Proof We want to prove first (84). Let v ∈ Xκ . Using the definition of the norm
‖ · ‖Xκ , we get

|v(τ, λ)|p � λ−(m−1)p〈λ〉−pψκ(τ, λ)
p‖v‖pXκ

, (91)

|∂λ|v(τ, λ)|p | � λ−(m−1)p−1〈λ〉−(p−1)ψκ(τ, λ)
p‖v‖pXκ

. (92)
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Let us start with the case r ≤ 1. Using the representation formula (71), we have
for α = 0, 1

∂α
r Lv(t, x) =

∫ t

0
〈τ 〉−μ

2 (p−1)∂α
r ω(t, τ, r)dτ = Aα + Bα,

where Aα and Bα denote the integral over [0, (t − 2r)+] and [(t − 2r)+, t],
respectively.

Let us begin with the estimate of the term Aα. Of course, it makes sense to
consider this term only in the case t ≥ 2r . Using (91), (92) and Lemma 4.2 when
the initial time is shifted from 0 to τ and the first data is identically zero, we obtain

|Aα| �
∫ t−2r

0
〈τ 〉−μ

2 (p−1)
∣
∣
∣
∣∂

α
r

∫ λ+

λ−
|v(τ, λ)|pK(λ, t − τ, r)dλ

∣
∣
∣
∣ dτ

�
∫ t−2r

0
〈τ 〉−μ

2 (p−1)r−m−α

∫ λ+

λ−
λm

(|v(τ, λ)|p + λ|∂λ|v(τ, λ)|p |
)
dλ dτ

� r−m−αJ (t, r) ‖v‖pXκ
� r−m+1−αψκ(t, r) ‖v‖pXκ

,

where in the last line we have used (76) from Lemma 4.11.
For the estimate of the term Bα , we consider separately the cases α = 0 and

α = 1.
We begin with the estimate of B0 in the case t ≥ 2r . Hence,

|B0| �
∫ t

t−2r
〈τ 〉−μ

2 (p−1)
∣
∣
∣
∣

∫ λ+

|λ−|
|v(τ, λ)|pK(λ, t − τ, r)dλ

∣
∣
∣
∣dτ

�
∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm+1|v(τ, λ)|pdλ dτ

� r−m−1
∫ t

t−2r
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
λm+1−(m−1)pψκ(τ, λ)

pdλ dτ ‖v‖pXκ
,

where in the second inequality we used (64) from Lemma 4.3, when the initial time
is shifted from 0 to τ and the first data is identically zero, and in the third inequality
we employed (91). Since for τ, λ belonging to the domain of integration in the last
integral |λ−| ≤ λ ≤ λ+ ≤ 3r implies 4〈τ−λ〉 ≥ 〈τ 〉, then, 〈τ+λ〉 ≥ 〈τ−λ〉 � 〈τ 〉.
Also, the previous chain of inequalities implies

ψκ(τ, λ) � 〈τ 〉−κ+m for τ ∈ [t − 2r, t] and λ ∈ [|λ−|, λ+]. (93)

Consequently,

|B0| � r−m−1
∫ t

t−2r
〈τ 〉−μ

2 (p−1)−(κ−m)p

∫ 3r

0
λm+1−(m−1)pdλ dτ ‖v‖pXκ

.
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Let us remark that the exponent of λ in the internal integral is positive, thanks
to (80). Therefore, we can estimate the λ-integral by 3r , thus,

|B0| � r−m

∫ t

t−2r
〈τ 〉−μ

2 (p−1)−(κ−m)pdτ ‖v‖pXκ
. (94)

The upper bound for p is equivalent to m(p − 1)− 2 < 0. Hence, thanks the lower
bound for κ given in (74), we find

−μ
2 (p − 1)− (κ − m)p ≤ −μ

2 (p − 1)− (κ − m)+ 2− κ(p − 1)

≤ −(κ − m). (95)

Then,

|B0| � r−m

∫ t

t−2r
〈τ 〉−(κ−m)dτ ‖v‖pXκ

� r−m〈t − 2r〉−(κ−m)2r ‖v‖pXκ
.

Because of 〈t−2r〉 � 〈t−r〉 and 〈t−2r〉 � 〈t+r〉 for r ∈ (0, 1], we may conclude

|B0| � r−m+1ψκ(t, r) ‖v‖pXκ
. (96)

Let us estimate now the term B0 in the case in which t ≤ 2r . Even in this case we
want to get the same estimate as in the case t ≥ 2r . However, for t ≤ 2r and r ≤ 1
it holds ψκ(t, r) ≈ 1 and, then, it is sufficient to prove that |B0| � r−m+1‖v‖pXκ

in
order to get the same estimate as before. We can repeat the same estimates of the
previous case provided that we substitute the first extreme of integration t − 2r with
0, since the chain of inequalities |λ−| ≤ λ ≤ λ+ ≤ t + r = 3r is still true for τ and
λ in the domain of integration. Also,

|B0| �
∫ t

0
〈τ 〉−μ

2 (p−1)
∣
∣
∣
∣

∫ λ+

|λ−|
|v(τ, λ)|pK(λ, t − τ, r)dλ

∣
∣
∣
∣dτ

�
∫ t

0
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm+1|v(τ, λ)|pdλ dτ

� r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
λm+1−(m−1)pψκ(τ, λ)

pdλ dτ ‖v‖pXκ

� r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)−(κ−m)p

∫ 3r

0
λm+1−(m−1)pdλ dτ ‖v‖pXκ

� r−m

∫ t

0
〈τ 〉−μ

2 (p−1)−(κ−m)pdτ ‖v‖pXκ
� r−mt ‖v‖pXκ

� r−m+1 ‖v‖pXκ
,
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where in the fourth inequality we use that ψκ(τ, λ) � 〈τ 〉−(κ−m), since the relations
〈τ + λ〉 ≥ 〈τ 〉 and 4〈τ − r〉 ≥ 〈τ 〉 are satisfied on the domain of integration in this
case, thanks to λ ≤ 3r .

Let us consider now the estimate of B1. As for B0, it is convenient to study the
case t ≥ 2r first. Using (65) from Lemma 4.3 when the initial time is shifted from
0 to τ and the first data is identically zero, we get

|B1| �
∫ t

t−2r
〈τ 〉−μ

2 (p−1)
∣
∣
∣
∣∂r

∫ λ+

|λ−|
|v(τ, λ)|pK(λ, t − τ, r)dλ

∣
∣
∣
∣dτ

�
∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm|v(τ, λ)|pdλ dτ

+
∑

±

∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1|λ±|m+1|v(τ, |λ±|)|p dτ.

The estimate of the double integral is analogous to that one for the term B0, the only
difference is the power of λ in the internal integral. Thus, we can proceed as follows:

∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm|v(τ, λ)|pdλ dτ

� r−m−1
∫ t

t−2r
〈τ 〉−μ

2 (p−1)−(κ−m)p

∫ 3r

0
λm−(m−1)pdλ dτ ‖v‖pXκ

� r−m−1
∫ t

t−2r
〈τ 〉−μ

2 (p−1)−(κ−m)p dτ ‖v‖pXκ
,

where in the last step we used the condition m − (m − 1)p > −1 to control the
λ-integral with a constant. We remark that we obtained exactly the integral that
appears in the right-hand side of (94). So, repeating the same steps as before, we
arrive at

∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm|v(τ, λ)|pdλ dτ � r−mψκ(t, r) ‖v‖pXκ

,

here, as we have already explained, the different power for r with respect to the final
estimate of B0 is due to the fact that we estimated the λ-integral by a constant.

It remains to estimate the terms

∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1|λ±|m+1|v(τ, |λ±|)|p dτ.
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By using (91) and (93), we get

|v(τ, |λ±|)|p � |λ±|−(m−1)p〈λ±〉−pψκ(τ, |λ±|)p ‖v‖pXκ

� |λ±|−(m−1)p〈τ 〉−(κ−m)p ‖v‖pXκ
.

Hence,
∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1|λ±|m+1|v(τ, |λ±|)|p dτ

�
∫ t

t−2r
〈τ 〉−μ

2 (p−1)−(κ−m)pr−m−1|λ±|m+1−(m−1)p dτ ‖v‖pXκ

� r−m−1
∫ t

t−2r
〈τ 〉−μ

2 (p−1)−(κ−m)p dτ ‖v‖pXκ
,

where in the last inequality we used the fact that the exponent of |λ±| is positive and
that 0 ≤ |λ−| ≤ λ+ ≤ 3r ≤ 3 for t − 2r ≤ τ ≤ t . Using again (95), we find

∫ t

t−2r
〈τ 〉−μ

2 (p−1)r−m−1|λ±|m+1|v(τ, |λ±|)|p dτ

� r−m−1
∫ t

t−2r
〈τ 〉−(κ−m) dτ ‖v‖pXκ

� r−mψκ(t, r) ‖v‖pXκ
,

where in the last step we used the inequality 〈t − 2r〉−(κ−m) ≤ ψκ(t, r) as in (96).
Summarizing, if we combine the previous two estimates, we have for t ≥ 2r

|B1| � r−mψκ(t, r) ‖v‖pXκ
.

The next step is to prove that |B1| � r−m ‖v‖pXκ
for t ≤ 2r ≤ 2. Indeed, thanks

to ψκ(t, r) ≈ 1 which holds in this zone, the previous inequality implies |B1| �
r−mψκ(t, r) ‖v‖pXκ

as in the case t ≥ 2r .
As in the above case, we can estimate B1 with the same two terms. More

precisely, replacing the first extreme of integration with 0 in place of t − 2r , we
obtain

|B1| �
∫ t

0
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm|v(τ, λ)|pdλ dτ

+
∑

±

∫ t

0
〈τ 〉−μ

2 (p−1)r−m−1|λ±|m+1|v(τ, |λ±|)|p dτ.

Let us estimate in first place the integral

B̃1
.=

∫ t

0
〈τ 〉−μ

2 (p−1)r−m−1
∫ λ+

|λ−|
λm|v(τ, λ)|pdλ dτ.
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Following the same approach we used for the estimate of B0 in the case t ≤ 2r ≤
2, we arrive at

B̃1 � r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
λm−(m−1)pψκ(τ, λ)

pdλ dτ ‖v‖pXκ

� r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)−(κ−m)p

∫ 3r

0
λm−(m−1)pdλ dτ ‖v‖pXκ

� r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)−(κ−m)pdτ ‖v‖pXκ
� r−m ‖v‖pXκ

,

where we estimated the λ-integral by a constant thanks to (80) and the other steps
are analogous to the above cited situation.

Let us deal with the term

B̂1
.=

∑

±

∫ t

0
〈τ 〉−μ

2 (p−1)r−m−1|λ±|m+1|v(τ, |λ±|)|p dτ.

We can follow the steps we have employed in the case t ≥ 2r , since the only
difference consists of the domain of integration with respect to τ . Indeed, we have
already seen that ψκ(τ, λ) � 〈τ 〉−(κ−m) for t ≤ 2r ≤ 2, τ ∈ [0, t] and λ ∈
[|λ−|, λ+]. This yields

B̂1 �
∑

±

∫ t

0
〈τ 〉−μ

2 (p−1)−(κ−m)pr−m−1|λ±|m+1−(m−1)p dτ ‖v‖pXκ

� r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)−(κ−m)p dτ ‖v‖pXκ
.

Also in this case we used that the functions |λ±|m+1−(m−1)p are bounded on the
domain of integration, being m + 1 − (m − 1)p > 0 and |λ−| ≤ λ+ ≤ 3. By using
again (95), we get

B̂1 � r−m−1
∫ t

0
〈τ 〉−(κ−m) dτ ‖v‖pXκ

� r−m−1t ‖v‖pXκ
� r−m ‖v‖pXκ

.

Summarizing, we obtained for t ≤ 2r ≤ 2

|B1| � B̃1 + B̂1 � r−m ‖v‖pXκ
,

as we expected.
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Up to now we considered only the case r ∈ (0, 1]. Now we have to study the
case r ≥ 1. Using (59), (91) and λ ≤ 〈λ〉, we have

|Lv(t, r)| � r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
|v(τ, λ)|pλm+1 dλ dτ

� r−m−1J (t, r) ‖v‖Xκ � r−mψκ(t, r) ‖v‖Xκ ,

where in the last inequality we have used (76).
Now we deal with the term ∂rLv(t, r) for r ≥ 1. As in the case r ≤ 1, we split

∂rLv(t, r) into two integrals

∂rLv(t, x) =
∫ t

0
〈τ 〉−μ

2 (p−1)∂rω(t, τ, r)dτ = A1 + B1.

The estimate of the term A1 is exactly the same seen in the case r ≤ 1. So, when
t ≥ 2r , we find |A1| � r−mψκ(t, r)‖v‖pXκ

even for r ≥ 1.
Let us consider the term B1. Differentiating the λ-integral, it results

B1 =
∫ t

(t−2r)+
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
|v(τ, λ)|p∂rK(λ, t − τ, r) dλ dτ

+
∫ t

(t−2r)+
〈τ 〉−μ

2 (p−1)|v(τ, λ+)|pK(λ+, t − τ, r) dτ

−
∫ t

(t−2r)+
〈τ 〉−μ

2 (p−1) ∂r |λ−|︸ ︷︷ ︸
±1

|v(τ, |λ−|)|pK(|λ−|, t − τ, r) dτ.

Therefore, using (60), (59) for λ = |λ±| and (91), it follows:

|B1| � r−m−1
∫ t

(t−2r)+
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
|v(τ, λ)|pλm dλ dτ ‖v‖pXκ

+ r−m−1
∑

±

∫ t

(t−2r)+
〈τ 〉−μ

2 (p−1)|v(τ, |λ±|)|p|λ±|m+1 dτ ‖v‖pXκ

� r−m−1(
J (t, r)+ P+(t, r) + P−(t, r)

) ‖v‖pXκ
� r−mψκ(t, r) ‖v‖pXκ

,

where in the second step we estimate |λ±|m+1−(m−1)p ≤ 〈λ±〉m+1−(m−1)p and in
the last estimate we used (76), (78) and (79).

Combining all estimates we have obtained up to now, we have shown

|Lv(t, r)| � r−m+1ψκ(t, r)‖v‖pXκ
for r ∈ (0, 1],

|Lv(t, r)| � r−mψκ(t, r)‖v‖pXκ
for r ≥ 1,

|∂rLv(t, r)| � r−mψκ(t, r)‖v‖pXκ
.
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The previous inequalities imply (84), according to the definition of ‖ · ‖Xκ .
Now we prove (85) and (87). If v,w ∈ Xκ , then,

Lv(t, r) − Lw(t, r) =
∫ t

0
〈τ 〉−μ

2 (p−1)ω̃(t, τ, r) dτ

=
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
(|v(τ, λ)|p − |w(τ, λ)|p)

K(λ, t − τ, r) dλ dτ. (97)

By using the definition of the norm ‖ · ‖Xκ , (13) and (88), we get

∣
∣|v(τ, λ)|p − |w(τ, λ)|p∣

∣ � λ−(m−1)p〈λ〉−pψκ(τ, λ)
pM1. (98)

For the λ-derivative, when p < 2, if we denote F(u) = p|u|p−2u, then,

∣
∣∂λ

(|v(τ, λ)|p − |w(τ, λ)|p)∣
∣

� |F(v(τ, λ))||∂λv(τ, λ) − ∂λw(τ, λ)| + |F(v(τ, λ)) − F(w(τ, λ))||∂λw(τ, λ)|
� |v(τ, λ)|p−1|∂λv(τ, λ) − ∂λw(τ, λ)| + |v(τ, λ) − w(τ, λ)|p−1|∂λw(τ, λ)|
� λ−(m−1)p−1〈λ〉−(p−1)ψκ(τ, λ)

pM1 + λ−mpψκ(τ, λ)
pM2, (99)

where in the second inequality we used that F is Hölder continuous andM1,M2 are
defined by (88) and (89), respectively.

On the other hand, when n = 5 and p ∈ [2, 3), then, using the mean value
theorem, we get

∣
∣∂λ

(|v(τ, λ)|p − |w(τ, λ)|p)∣
∣

� |F(v(τ, λ))||∂λv(τ, λ) − ∂λw(τ, λ)| + |F(v(τ, λ))− F(w(τ, λ))||∂λw(τ, λ)|
� |v(τ, λ)|p−1|∂λv(τ, λ)− ∂λw(τ, λ)|

+ |v(τ, λ)− w(τ, λ)|(|v(τ, λ)| + |w(τ, λ)|)p−2|∂λw(τ, λ)|
� λ−(m−1)p−1〈λ〉−(p−1)ψκ(τ, λ)

pM1. (100)

Since the decay rate for |v(τ, λ)|p in (91) is the same decay rate of |v(τ, λ)|p −
|w(τ, λ)|p in (98) and the decay rate for ∂λ|v(τ, λ)|p in (92) is the same decay rate
of ∂λ

(|v(τ, λ)|p −|w(τ, λ)|p)
in (100), in the case p ≥ 2 we can show (87) exactly

as we showed (84), replacing ‖v‖pXκ
by M1.

Proving (85), we should pay attention to the addend λ−mpψκ(τ, λ)
pM2, when

we employ (99) to estimate ∂λ
(|v(τ, λ)|p − |w(τ, λ)|p)

.
Checking the previous estimates we have done to prove (84), we see that we need

to control the λ-derivative of the source only in the estimates of |Aα| for t ≥ 2r . So,
let us focus on the corresponding part in the case in which we work with Lv − Lw
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in place of Lv. We use the notation

Ãα
.=

∫ (t−2r)+

0
〈τ 〉−μ

2 (p−1)∂α
r ω̃(t, τ, r)dτ for α = 0, 1.

If we proceed as we did in the estimate ofAα, employing (98) and (99), we obtain

|Ãα| �
∫ t−2r

0
〈τ 〉−μ

2 (p−1)
∣
∣
∣
∣∂

α
r

∫ λ+

λ−

(|v(τ, λ)|p − |w(τ, λ)|p)
K(λ, t − τ, r)dλ

∣
∣
∣
∣ dτ

� r−m−α

∫ t−2r

0
〈τ 〉−μ

2 (p−1)
∫ λ+

λ−
λm−(m−1)p〈λ〉−(p−1)ψκ(τ, λ)

pdλ dτ M1

+ r−m−α

∫ t−2r

0
〈τ 〉−μ

2 (p−1)
∫ λ+

λ−
λ−(m−1)p+1ψκ(τ, λ)

pdλ dτ M2

� r−m−α
(
J (t, r)M1 + J ′(t, r)M2

)
� r−m+1−αψκ(t, r) (M1 + M2),

where in the last estimate we used (76) and (77).
In all other possible cases, it is sufficient to use (98). Therefore, we may repeat

exactly the same estimates seen for Lv also for Lv − Lw, replacing ‖v‖pXκ
by M1,

since we use (98) instead of (91). In this way, we find

|Lv(t, r) − Lw(t, r)| � r−m+1ψκ(t, r) (M1 + M2) for r ∈ (0, 1],
|Lv(t, r)Lw(t, r)| � r−mψκ(t, r) (M1 + M2) for r ≥ 1,

|∂rLv(t, r) − ∂rLw(t, r)| � r−mψκ(t, r) (M1 + M2),

from which (85) follows immediately.
Finally, we prove (86). Similarly to what we have done in the previous estimate,

we need first to determine a decay estimate by using the definition of the norms
‖ · ‖Xκ , ||| · |||Xκ

. Using (13) and (90) we have

∣
∣|v(τ, λ)|p − |w(τ, λ)|p∣

∣ � λ−(m−1)p−1〈λ〉−(p−1)ψκ(τ, λ)
p M3.

Employing the previous decay estimate in (97) together with (59), we find

|Lv(t, r) − Lw(t, r)|

� r−m−1
∫ t

0
〈τ 〉−μ

2 (p−1)
∫ λ+

|λ−|
λm−(m−1)p〈λ〉−(p−1)ψκ(τ, λ)

p dλ dτ M3

� r−m−1J (t, r)M3 � r−mψκ(t, r)M3,

where in the last step (76) is used. According to the definition of ||| · |||Xκ
, the above

estimate implies immediately (86). This concludes the proof.
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Theorem 4.13 Let n ≥ 5 be an odd integer. Let us assume μ ∈ [2,M(n)] and
ν2 ≥ 0 satisfying the relation δ = 1, where M(n) is defined as in (5), and let

p ∈ (
p0(n + μ), pFuj(

n−3
2 )

)
. (101)

Then, there exist ε0 > 0 and κ2 > κ1 ≥ m + 1, with m = n−3
2 , such that for any

ε ∈ (0, ε0) and any radial data u0 ∈ C2(Rn), u1 ∈ C1(Rn), satisfying

|dj
r u0(r)| ≤ ε〈r〉−(κ̄+j) for j = 0, 1, 2,

|dj
r (u1(r)+ μ

2 u0(r))| ≤ ε〈r〉−(κ̄+1+j) for j = 0, 1,

for some κ̄ ∈ (κ1, κ2], the Cauchy problem (2) admits a uniquely determined radial
solution u ∈ C([0,∞), C1(Rn\{0})), in the sense that v(t, r) = 〈t〉μ

2 u(t, r) satisfies
Definition 4.5 for any κ ∈ (κ1, κ̄].

Furthermore, the following decay estimates hold for any t ≥ 0, r > 0 and
κ ∈ (κ1, κ̄]:

|u(t, r)| � ε r−m+1〈r〉−1〈t〉−μ
2 〈t − r〉−κ+m+1〈t + r〉−1,

|∂ru(t, r)| � ε r−m〈t〉−μ
2 〈t − r〉−κ+m+1〈t + r〉−1.

Proof Let us fix a κ in (κ1, κ̄]. Considering the transformed Cauchy problem (56),
according to our setting it is enough to prove that the operator

Nv = v0 + Lv for any v ∈ Xκ

admits a uniquely determined fixed point, provided that ε0 is sufficiently small. In
the case in which n = 5 and p ∈ [2, 3), thanks to (84) and (87), using a standard
contraction argument, we may derive the existence and the uniqueness of a fixed
point for N in a closed ball of Xκ around the origin with sufficiently small radius.
When p < 2 we cannot use Banach’s fixed point theorem, so we have to modify our
argument. We will follow the method employed in [14, Section 5]. Let us consider
the sequence of successive approximations, that is,

v0 = v0, vj+1 = Nvj = v0 + Lvj for any j ≥ 0.

Let ε0 be defined by

ε0 = min
{(

2
p

p−1C0C
1

p−1
1

)−1
,
(
2

p+1
p−1C0C

1
p−1
3

)−1
,
(
2

p+1
p−1C0C

1
p−1
2

)−1}
. (102)

Combining (70), (84) and (102), it follows that N maps the closed ball in Xκ

with radius 2C0ε around 0 into itself.
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Now we show that {vj }j∈N is a Cauchy sequence in Xκ . We know that ‖vj‖Xκ ≤
2C0ε0 for any j ≥ 0. Therefore, by using (85) and (102), we get

‖vj+1 − vj‖Xκ = ‖Lvj − Lvj−1‖Xκ

≤ 2−1‖vj − vj−1‖Xκ + 4C0C2ε0
∣
∣
∣
∣
∣
∣vj − vj−1

∣
∣
∣
∣
∣
∣p−1
Xκ

.

Now we use the Lipschitz condition

|||Lv − Lw|||Xκ
≤ 2−1|||v − w|||Xκ

, (103)

for v,w ∈ Xκ such that ‖v‖Xκ , ‖w‖Xκ ≤ 2C0ε0, that is obtained combining (86)
and the condition (102). Also,

∣
∣
∣
∣
∣
∣vj − vj−1

∣
∣
∣
∣
∣
∣
Xκ

≤ 2−j+1|||v1 − v0|||Xκ
= 2−j+1|||Lv0|||Xκ

.

If we denote A = 2p+1C0C2ε0|||Lv0|||p−1
Xκ

, then,

‖vj+1 − vj‖Xκ ≤ 2−1‖vj − vj−1‖Xκ + A2−j (p−1).

Thus, applying iteratively the previous inequality, we get

‖vj+1 − vj‖Xκ ≤ 2−j‖Lv0‖Xκ + Aj 2−j (p−1) −→ 0 as j → ∞.

Being (Xκ, ‖ · ‖Xk) a Banach space, there exists v = lim
j→∞ vj in Xκ , and, since

L is locally Hölder-continuous, in particularNv = v.
Finally, the uniqueness of the fixed point for N in {v ∈ Xκ : ‖v‖Xκ ≤ 2C0ε0}

follows immediately from (103). This concludes the proof.

Remark 4.14 In Theorem 4.13, according to Lemma 4.6, the lower bound and the
upper for the parameter κ are given by κ1 = max{m + 1, 2

p−1 − μ
2 ,

1
p−1 } and

κ2 = (m + 1+ μ
2 )p − (

μ
2 + 1), respectively.

5 Conclusions

Combining the result of Sects. 2, 3 and 4 with the blow-up result we mentioned in
the introduction, we may conclude that:

• pFuj(
μ
2 ) is the critical exponent for (2) under the assumption (3) in the one

dimensional case;
• p0(n + μ) is the critical exponent for (2) in the radial symmetric case, provided

that (3) and (5) are satisfied, in the odd dimensional case n ≥ 3.
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It would be resonable to get the same result of Sect. 4 in the even dimensional
case n ≥ 4. Nevertheless, because of the fact that Huygens’ principle is no
longer valid in even dimension, the representation formula for the radial linear
problem (58) is more complicate and, hence, a more delicate analysis is necessary
for the treatment of the semilinear case. Very recently in [21] this case is consider,
assuming (3) and the same upper bound for μ as in this paper, and p0(n + μ) is
shown to be critical in this case too.

Acknowledgements The author thanks his supervisor Michael Reissig, who introduced him first
to the study of the model considered in this work. Furthermore, the author thanks Marcello
D’Abbicco, who provided a crucial hint to overcome a difficulty in the one dimensional case.
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Wave Equations in Modulation
Spaces–Decay Versus Loss of Regularity

Maximilian Reich and Michael Reissig

Abstract Recently the study of partial differential equations in modulation spaces
gained some relevance. A well-knownCauchy problem is that for the wave equation,
where several contributions exist concerning the local (in time) well-posedness. We
refer to Bényi et al. (J Func Anal 246.2:366–384, 2007), Cordero and Nicola (J
Math Anal Appl 353.2:583–591, 2009) and Reich (Modulation spaces and nonlinear
partial differential equations. PhD thesis, TU Bergakademie Freiberg, 2017). By
taking advantage of some tools and concepts from the theory of partial differential
equations the authors provide some time-dependent estimates of the solution u =
u(t, x) to the Cauchy problem of the free wave equation. The main result yields
the possibility to consider more delicate problems concerning the wave equation in
modulation spaces such as global (in time) well-posedness results.

1 Introduction

Classical modulation spaces got originally introduced by Feichtinger [5] as a
family of Banach spaces controlling globally local frequency information of a
function or distribution, respectively. Thus, modulation spaces are an important
tool when discussing problems in time-frequency analysis. But it also turned out
that modulation spaces find fruitful applications in the theory of partial differential
equations (e.g. see [1, 3, 10, 20, 30–32]). Numerous practical applications concern
the propagation of different kind of waves. Within the scope of this work we
consider the corresponding abstract model, which is the Cauchy problem for the
free wave equation

utt − Δu = 0, u(0, x) = ϕ(x), ut (0, x) = ψ(x), (1)
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where (t, x) ∈ R
n+1. Our goal is to establish time-dependent estimates of the

solution u = u(t, x) to Cauchy problem (1). Note that there are already several
contributions to the Cauchy problem for the wave equation, see, e.g., [1, 3] or
generalized Schrödinger equations, see, e.g., [11]. In [1] the authors prove the
following estimate (without any loss of regularity)

‖u(t, ·)‖M0
p,q

≤ C(t)
(‖ϕ‖M0

p,q
+ ‖ψ‖M0

p,q

)
, (2)

whereas in [3] the local (in time) well-posedness of the corresponding semi-linear
Cauchy problem

utt − Δu = f (u), u(0, x) = ϕ(x), ut (0, x) = ψ(x),

with analytic source terms f = f (u) is proved for initial data

(ϕ,ψ) ∈ Ms
p,q(R

n) ×Ms−1
p,q (Rn).

However, our main interest is devoted to the function C = C(t) in (2). Following
the computations in [1] this constant can be specified by C(t) = Cec|t | with some
positive constants C, c. Subsequently we will apply some fundamental tools, which
are already well-established in the theory of partial differential equations, in order
to propose a family of estimates instead of (2) only. In particular the goal is to find
assumptions under which the right-hand side in (2) decays in time, i.e., we want
to avoid the behavior C(t) → ∞ as t → ∞, but we allow a loss of regularity
instead. Section 4 treats this problem. It turns out that the concept of working on the
conjugate line with respect to the Lp-norm together with the method of stationary
phase gives us the possibility to obtain the desired estimates. Extensive literature
concerning this topic is provided by Reissig and Ebert [4, Chapter 16]. As it can be
seen there it is of great advantage to work in so-called homogeneous spaces, which
allow a better localization around the origin. Generally this turned out to be a fruitful
tool in the recent study of partial differential equations. We refer to, e.g., [2, 12, 16,
21]. So we will establish a decomposition method providing a better localization
around the origin in the modulation space norm, which is done in Sect. 3. Let us
begin with some preliminaries.

2 Preliminaries

First we introduce some basic notation. We define 〈ξ〉 := (1+ |ξ |2) 1
2 . The notation

a � b is equivalent to a ≤ Cb with a positive constant C. Let X and Y be
two Banach spaces. Then the symbol X ↪→ Y indicates that the embedding is
continuous. The Fourier transform of an admissible function f is defined by

Ff (ξ) = f̂ (ξ) = (2π)−
n
2

∫

Rn

f (x)e−ix·ξ dx (x, ξ ∈ R
n).
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Analogously, the inverse Fourier transform is defined by

F
−1f̂ (x) = (2π)−

n
2

∫

Rn

f̂ (ξ)eix·ξ dξ (x, ξ ∈ R
n).

Feichtinger [5] originally defined modulation spaces by taking Lebesgue norms of
the so-called short-time Fourier transform of a function f with respect to x and ξ .
The short-time Fourier transform is a particular joint time-frequency representation.
For the definition and mapping properties we refer to [8]. By introducing the
following decomposition principle we adopt the idea of obtaining local frequency
properties of a function f , which was also established in [5]. The so-called
frequency-uniformdecomposition was independently introduced byWang (e.g., see
[31]). Let ρ : Rn �→ [0, 1] be a Schwartz function, which is compactly supported in
the cube

Q0 :=
{
ξ ∈ R

n : −3

4
≤ ξi ≤ 3

4
, i = 1, · · · , n

}
.

Moreover, assume that ρ(ξ) = 1 if |ξi | ≤ 1/2 for i = 1, 2, · · · n. Then we define
ρk(ξ) := ρ(ξ−k), ξ ∈ R

n, k ∈ Z
n. Now the collection {σk}k∈Zn is a decomposition

of Rn into uniform cubes, where

σk(ξ) := ρk(ξ)
( ∑

k∈Zn

ρk(ξ)
)−1

, ξ ∈ R
n, k ∈ Z

n.

The operator

�k := F
−1(σkF(·)

)
, k ∈ Z

n,

is called uniform decomposition operator. In [5] Feichtinger also showed that there
is an equivalent definition of modulation spaces defined in terms of the short-
time Fourier transform and modulation spaces defined by means of the uniform
decomposition operator. Subsequently we will work with the latter one.

Definition 2.1 Let 1 ≤ p, q ≤ ∞ and assume s ∈ R to be the weight parameter.
Suppose the window ρ ∈ S (Rn) is compactly supported. Then the weighted
modulation space Ms

p,q(R
n) consists of all tempered distributions f ∈ S ′(Rn)

such that their norm

‖f ‖Ms
p,q

=
( ∑

k∈Zn

〈k〉sq‖�kf ‖qLp

) 1
q

is finite with obvious modifications when p = ∞ and/or q = ∞.
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Moreover, essential tools to obtain our main results in Sect. 4 concern the theory of
Fourier multipliers. Let us introduce the sets

L
q
p := {

T ∈ S
′(Rn) : ‖T ∗ f ‖Lq ≤ C‖f ‖Lp for all f ∈ S(Rn)

}

and

M
q
p := {

F(T ) : T ∈ L
q
p

}
,

whereMq
p is the set of multipliers of type (p, q). If p = q , then we writeMp instead

ofMp
p . For the theory of Fourier multipliers inLp-spaces we refer to Hörmander [9],

Mikhlin [14] and Lizorkin [13]. A general reference regarding Fourier multipliers is
Grafakos [7]. Moreover, general Fourier multipliers of classical modulation spaces
are treated in [6]. In the following we list some important results given in the
literature, which will be of great use later on.

First let us state a version of the so-called Bernstein multiplier theorem, see [33,
Proposition 1.11].

Proposition 2.2 Assume L > n
2 to be an integer and ∂k

xi
σ ∈ L2(R

n), i = 1, · · · , n,
for 0 ≤ k ≤ L. Then for 1 ≤ p ≤ ∞ it holds

∥
∥F−1(

σFf
)∥
∥
Lp

� ‖σ‖1−
n
2L

L2

( n∑

i=1

‖∂L
xi
σ‖L2

) n
2L ‖f ‖Lp

for all f ∈ S (Rn).

A concept of radial Fourier multipliers is given by means of modified Bessel
functions. For a detailed insight we refer to Narazaki, Reissig [15], where some
basic properties and the proof of Lemma 2.3 below can be found. We define a
compactly supported radial test function χ ∈ C∞

0 (Rn) such that

χ(ξ) = ρ(|ξ |) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |ξ | ≥ r,

1 if |ξ | ≤ r
2 ,

0 ≤ ρ(|ξ |) ≤ 1 if r
2 ≤ |ξ | ≤ r,

(3)

where ρ ∈ C∞
0 (R) and r ≥ 2 is a fixed number, which will be specified later.

Moreover, subsequently we write for the partial Fourier transform with respect to
the x-variable F instead of Fx→ξ and F−1 instead of F−1

ξ→x , respectively.

Lemma 2.3 Let the dimension n ≥ 2 and α ∈ (0, 1]. Assume χ ∈ C∞
0 (Rn) to be

defined by (3). Then it holds

∥
∥F−1(χ(ξ)eit |ξ |α

)∥
∥
L1

� (1+ |t|) n+1
2 . (4)
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Remark 2.4

(i) In order to prove Lemma 2.3 we can let χ be any smooth radial function with
compact support. Definition of χ in (3) is given for technical reasons with
regard to later computations and Lemma 2.5 below.

(ii) The proof of Lemma 2.3, see [15], provides the Fourier multiplier estimate (4)
for all multipliers of the form mt(ξ) = χ(ξ)etμ(|ξ |) as long as μ ∈ Cn+1(R \
{0}) is a complex-valued homogeneous function of order α > 0, i.e.,μ(s|ξ |) =
sαμ(|ξ |) for all s > 0 and all ξ �= 0, and mt = mt(ξ) is bounded for all t > 0
and all ξ ∈ R

n.
(iii) Inequality (4) immediately yields χ(·)eit |·|α ∈ Mp for all 1 ≤ p ≤ ∞.

Some fundamental work was done in [1]. Lemma 2.5 provides a special case of
Theorem 4 in [1]. There the authors proved the same result for the multiplier χeiμ

by assuming that μ ∈ Cn+1(Rn \ {0}) is homogeneous of order α > 0.

Lemma 2.5 Let the dimension n ≥ 1. Let χ ∈ C∞
0 be defined by (3) and α ∈ (0, 1].

Then it holds

∥
∥F−1(

χ(ξ)eit |ξ |α
)∥
∥
L1

� ec|t | (5)

with some positive constant c > 0. Consequently, χ(·)eit |·|α ∈ Mp for all 1 ≤
p ≤ ∞.

Remark 2.6

(i) The constant c in (5) can be specified by c = (2r)α.
(ii) Lemma 2.3 excludes the one-dimensional case n = 1 in contrast to Lemma 2.5.

Let us state another Fourier multiplier result. We refer to [9, Theorem 1.11]. Here
we use the notation meas{G} for the Lebesgue measure of a given set G ⊂ R

n.

Proposition 2.7 Let f be a measurable function such that

meas
{
ξ ∈ R

n : |f (ξ)| ≥ l
} ≤ Cl−b

with some positive constants C, b ∈ (1,∞) and all l > 0. If additionally 1 < p ≤
2 ≤ q < ∞ and 1

p
− 1

q
= 1

b
, then f ∈ M

q
p .

Eventually, we state a Littman type lemma, which is a fundamental tool in order to
get the desired time decay estimates in Sect. 4.

Proposition 2.8 Let f ∈ C∞
0 (Rn) be such that supp f ⊂ {

ξ ∈ R
n : 1

2 ≤ |ξ | ≤ 2
}
.

Assume τ0 to be a large positive number. Then for all τ ≥ τ0 it holds

∥
∥F−1(

e−iτ |ξ |f (ξ)
)∥
∥
L∞ ≤ C(1 + τ )−

n−1
2

∑

|α|≤s

‖Dα
ξ f (ξ)‖L∞,

where s > n+3
2 .
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Proof A proof and some further references can be found in [4], see Theorem 16.3.1.

Furthermore, we provide another important tool, which is covered by Theorem 1.7
in [9].

Proposition 2.9 Let 1 ≤ p ≤ ∞ and m1,m2 be two multipliers belonging to Mp.
Then m1 ·m2 ∈ Mp.

3 A Better Localization Around the Origin

Homogeneous spaces use a better localization of functions around the origin. The
motivation of introducing homogeneous function spaces is well-known, see, e.g.,
Triebel [29]. Here we adopt the concept of localizing the origin in the modulation
space norm although we cannot have homogeneity for modulation spaces with
respect to dilation, see [22, Theorem 1.1]. This contrasts with, e.g., homogeneous
Besov spaces Ḃs

p,q (R
n), which satisfy the estimate

‖f (λ·)‖Ḃs
p,q

≤ cλ
s− n

p ‖f ‖Ḃs
p,q

for all λ > 0 and all f ∈ Ḃs
p,q (R

n), where c is some positive constant, 1 ≤ p, q ≤
∞ and s ∈ R. The proof can be found in [29] and is based on basic Fourier analysis,
where one takes advantage of the dyadic decomposition.

For modulation spaces Ms
p,q(R

n) the idea is to refine the decomposition around
the origin, i.e. around suppσ0, based on dyadic cubes, which was introduced by
Triebel [26, 27], see also Runst, Sickel [19]. The set

Kj := {
ξ ∈ R

n : |ξi | ≤ 2j , i = 1, · · · , n}\{
ξ ∈ R

n : |ξi | < 2j−1 , i = 1, · · · , n}
,

j = 0,−1,−2, · · · , is divided into the 3 n-hyperplanes

{
ξ ∈ R

n : ξi = 0
}
,

{
ξ ∈ R

n : ξi = 2j−1}
, and

{
ξ ∈ R

n : ξi = −2j−1}

for i = 1, · · · , n. Thus, we obtain congruent cubes Pj,l with l = 1, 2, · · · , 4n − 2n

and j = 0,−1,−2, · · · . Let ξj,l be the center of Pj,l . Then there exist smooth and
compactly supported functions ηj on R such that

φj,0(ξ) := ηj (ξ1)ηj (ξ2) · · · ηj (ξn),

ξ = (ξ1, ξ2, · · · , ξn), j = 0,−1,−2, · · · , satisfies

suppφj,0 ⊂ {
ξ ∈ R

n : |ξi | ≤ 2j−1, i = 1, · · · , n}
.
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Moreover, we put φj,l := φj,0(ξ − ξj,l ). Consequently,

suppφj,l ⊂
{
ξ ∈ R

n : |ξi − (ξj,l )i | ≤ 2j−1, i = 1, · · · , n}
.

Hence, we defined a decomposition {φj,l}j,l of [−1, 1]n into dyadic cubes and we
call the operator

Δj,l := F
−1(φj,lF(·)

)
, l = 1, · · · , 4n − 2n, j = 0,−1,−2, · · · ,

dyadic decomposition operator. However, before defining the modified modulation
spaces we need to overcome some technical difficulties in order to preserve the basic
functional analytic structure. Let

Z(Rn) = {
φ ∈ S (Rn) : Dα

Fφ(0) = 0 for all α ∈ N
n
}

be a closed subspace of the Schwartz space S (Rn). Hence, Z(Rn) is a Fréchet
space. Let us consider the restriction of a bounded linear functional u on S (Rn),
i.e. u ∈ S ′(Rn), on Z(Rn). It holds

(u+ p)(φ) = u(φ)

for all φ ∈ Z(Rn), where p is some polynomial. Let Z′(Rn) denote the topological
dual of Z(Rn). Conversely, a distribution u ∈ Z′(Rn) can be linearly and
continuously extended from Z(Rn) toS (Rn). We see that two different extensions
u1 and u2 only differ by a polynomial, i.e., suppF(u1 − u2) = {0}. Hence, the
space Z′(Rn) may be identified with the quotient space S ′(Rn)/P , where P is
the collection of all polynomials p.

Definition 3.1 Let 1 ≤ p, q ≤ ∞ and s ∈ R. Assume that {σk}k∈Zn is a uniform
decomposition of unity (defined above). Moreover, let {φj,l}j,l , l = 1, · · · , 4n − 2n

and j = 0,−1,−2, · · · , be the decomposition of [−1, 1]n into dyadic cubes. Then
the localized modulation space Ks

p,q(R
n) is the collection of all f ∈ Z′(Rn) such

that

‖f ‖Ks
p,q

:=
( ∑

k∈Zn\{0}
|k|sq‖�kf ‖qLp

+
0∑

j=−∞

4n−2n∑

l=1

2sjq‖Δj,lf ‖qLp

) 1
q
< ∞

with obvious modification for q = ∞.

We find the following connections between the spaces Ks
p,q(R

n) and the classical
modulation spaces Ms

p,q(R
n).

Proposition 3.2 Let 1 ≤ p, q ≤ ∞ and s ∈ R. Then it holds

Lp(R
n) ∩ Ks

p,q(R
n) ↪→ Ms

p,q(R
n) for p ∈ [1,∞).
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If s > 0, then

Ms
p,q(R

n) ↪→ Ks
p,q(R

n).

Here we identify g ∈ Ms
p,q(R

n) with its equivalence class [g] in Ks
p,q(R

n).
If p = ∞, then we have the a-priori estimate

‖g‖Ms∞,q
≤ C

(‖[f ]‖Ks∞,q
+ ‖g‖L∞

)
for all g ∈ L∞ ∩ [f ].

Proof A basic Fourier multiplier argument immediately yields

‖f ‖Ms
p,q

�
( ∑

k∈Zn\{0}
|k|sq‖�kf ‖qLp

+ ‖�0f ‖qLp

) 1
q � ‖f ‖Ks

p,q
+ ‖f ‖Lp .

Moreover, for j < 0 it holds ‖Δj,lf ‖Lp � ‖�0f ‖Lp and due to s > 0 we,
consequently, obtain

‖f ‖Ks
p,q

�
( ∑

k∈Zn\{0}
|k|sq‖�kf ‖qLp

+ ‖�0f ‖qLp

0∑

j=−∞

4n−2n∑

l=1

2sjq
) 1

q

�
( ∑

k∈Zn

〈k〉sq‖�kf ‖qLp

) 1
q
,

which proves the desired result.

Let us define the operator

Iμf (x) = F
−1(|ξ |μFf (ξ)

)
(x), f ∈ Z′(Rn)

for any real number μ. Then Iμ maps Z′(Rn) onto itself. Applying the theory of
maximal functions and following the concepts explained by Triebel [28, 29] gives
the following result.

Proposition 3.3 Let 1 ≤ p, q ≤ ∞, s ∈ R and μ ∈ R. Then Iμ maps Ks
p,q(R

n)

isomorphically onto K
s−μ
p,q (Rn). Moreover, ‖Iμf ‖

K
s−μ
p,q

is an equivalent norm on

Ks
p,q(R

n).

4 Estimates for the Free Wave Equation

Let us consider the Cauchy problem for the free wave equation

utt − Δu = 0, u(0, x) = ϕ(x), ut (0, x) = ψ(x), (6)
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with initial data ϕ,ψ belonging to the test function space C∞
0 (Rn). Without loss

of generality we only consider positive times t in the following. The solution u to
Cauchy problem (6) can be represented by

u(t, x)

= 1

2
F
−1

((
ei|ξ |t + e−i|ξ |t )ϕ̂(ξ)

)
(t, x)+ F

−1
((

ei|ξ |t − e−i|ξ |t) 1

2i|ξ | ψ̂(ξ)
)
(t, x),

where (t, x) ∈ R+ × R
n. Taking partial derivatives with respect to the time t we

obtain

∂�
t u(t, x) =

i�

2
F
−1

((|ξ |�ei|ξ |t + (−1)�|ξ |�e−i|ξ |t )ϕ̂(ξ)
)
(t, x)

+ i�−1

2
F
−1

((|ξ |�−1ei|ξ |t − (−1)�|ξ |�−1e−i|ξ |t )ψ̂(ξ)
)
(t, x)

(7)

for � ∈ N. Moreover, we know that the weight parameter s ∈ R corresponds to
the regularity of an element in the modulation space Ms

p,q(R
n), or respectively

Ks
p,q(R

n). Due to Toft [25, Theorem 3.9’] and Proposition 3.3 we find the relation

‖∂β
x f ‖Ms

p,q
� ‖f ‖

M
s+|β|
p,q

and ‖∂β
x f ‖Ks

p,q
� ‖f ‖

K
s+|β|
p,q

for all β ∈ N
n and f ∈ M

s+|β|
p,q (Rn) or f ∈ K

s+|β|
p,q (Rn). Thus, in the subsequent

computations we do not consider derivatives with respect to physical space variable
x. Instead we only assume for the weight parameter s ≥ 0 since this includes
arbitrary derivatives of the function u = u(t, x) with respect to x.

The first step consists in providing well-known estimates of the term ∂�
t u(t, ·) in

the classical modulation spaceMs
p,q(R

n), where we use standard Fourier multiplier
results.

Theorem 4.1 Let 1 ≤ p, q ≤ ∞ and s ≥ 0. Assume n ≥ 2 and u = u(t, x) to be
the solution to Cauchy problem (6). It holds

‖u(t, ·)‖Ms
p,q

� (1+ t)
n+1
2

(‖ϕ‖Ms
p,q

+ t‖ψ‖
Ms−1

p,q

)

and

∥
∥∂�

t u(t, ·)
∥
∥
Ms

p,q
� (1+ t)

n+1
2

(‖ϕ‖
Ms+�

p,q
+ ‖ψ‖

Ms+�−1
p,q

)
,

where � ≥ 1. Moreover, if n = 1, then there exists a constant c > 0 such that

∥
∥∂�

t u(t, ·)
∥
∥
Ms

p,q
� ect

(‖ϕ‖
Ms+�

p,q
+ ‖ψ‖

Ms+�−1
p,q

)

for all � ∈ N.
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Proof Due to representation (7) we see that we need to distinguish the cases � = 0
and � ≥ 1. We proceed considering the case � = 0. Observe that

‖�ku(t, ·)‖Lp ≤
∥
∥
∥F−1

(
σk(ξ)

(
ei|ξ |t + e−i|ξ |t)ϕ̂(ξ)

)∥
∥
∥
Lp

+
∥
∥
∥F−1

(
σk(ξ)

sin(|ξ |t)
|ξ | ψ̂(ξ)

)∥
∥
∥
Lp

=: P1 + P2.

Obviously, the multipliers sin(|ξ |t )
|ξ | and e±i|ξ |t are not differentiable at the origin for

fixed times t > 0. Therefore we investigate the terms P1 and P2 separately for small
and large frequencies. Hence, we distinguish the cases ‖k‖∞ ≤ 2 and ‖k‖∞ ≥ 3.
Moreover, we define χ by (3), where we put r = 8

√
n. First assume n ≥ 2 for the

dimension n. By using Young’s inequality and Lemma 2.3 it follows

P2 ≤
∑

‖l‖∞≤1

∥
∥
∥F−1

(
σk+l (ξ)

sin(|ξ |t)
|ξ | σk(ξ)ψ̂(ξ)

)∥
∥
∥
Lp

≤ t

∥
∥
∥F−1

(
χ(ξ)

sin(|ξ |t)
|ξ |t

)∥
∥
∥
L1

‖�kψ‖Lp

� t (1+ t)
n+1
2 ‖�kψ‖Lp

for all k ∈ Z
n such that ‖k‖∞ ≤ 2. Here we applied the ideas of the proofs of the

results from Section 2 in [15] to verify the estimate

∥
∥
∥F−1

(
χ(ξ)

sin(|ξ |t)
|ξ |

)∥
∥
∥
L1

� t (1+ t)
n+1
2 .

For the same range of k we analogously obtain

P1 � (1+ t)
n+1
2 ‖�kϕ‖Lp .

If the dimension n = 1, then Lemma 2.5 yields

P1 � tect‖�kψ‖Lp and P2 � ect‖�kϕ‖Lp

for some constant c > 0. Now we turn to all k ∈ Z
n such that ‖k‖∞ ≥ 3. By

Young’s inequality and Proposition 2.2 it holds

P1 � (1+ t)
n
2 ‖�kϕ‖Lp and

P2 �
∑

‖�‖∞≤1

∥
∥
∥F−1

(
σk+�(ξ)

ei|ξ |t

|ξ | σk(ξ)ψ̂(ξ)
)∥

∥
∥
Lp

� (1+ t)
n
2 〈k〉−1‖�kψ‖Lp ,
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which completes the proof for � = 0. By the same arguments we obtain the desired
results for � ≥ 1. We shall only add the comment that the multiplier χ(·)| · |� ∈ Mp

for all 1 ≤ p ≤ ∞, which follows immediately, e.g., due to the proof of Lemma 2.5,
see [1]. Thus, Lemma 2.5 together with Proposition 2.9 yields χ(·)| · |�e±i|·|t ∈ Mp,
1 ≤ p ≤ ∞. Thus, the proof is complete.

In the estimates of Theorem 4.1 we observe that the solution does not loose
regularity with respect to the initial data. However, the right-hand sides are
increasing in time. A well-known concept in order to propose modified estimates
to the estimates of Theorem 4.1 regarding the time-dependence of the right-hand
sides is working on the conjugate line with respect to the Lp-norm. This gives us
the opportunity to obtain an estimate of the solution u = u(t, ·) to (6), where the
right-hand side is independent of the time t . However, we have to accept a loss of
regularity.

Theorem 4.2 Suppose s ≥ 0, n ≥ 2 and let u = u(t, x) be the solution to Cauchy
problem (6). Let 1 ≤ q ≤ ∞ and 1 < p ≤ 2 be such that n( 2

p
− 1) = 1. Then it

holds

∥
∥∂�

t u(t, ·)
∥
∥
Ms

p′,q
� ‖ϕ‖

Ms+1+�
p,q

+ ‖ψ‖
Ms+�

p,q

for all � ∈ N. Here p′ denotes the conjugate exponent to p.

Proof First note that
∣
∣ ei|ξ |t|ξ |

∣
∣ ≥ l implies |ξ | ≤ 1

l
and therefore Proposition 2.7 yields

F
−1

(ei|ξ |t

|ξ |
)
∈ L

p′
p

if 1 < p ≤ 2 and n
( 2
p
− 1

) = 1. Then we find the estimates

∥
∥
∥F−1

(ei|ξ |t

|ξ |
)
∗ F−1(

σk(ξ)|ξ |ϕ̂(ξ)
)∥
∥
∥
Lp′

�
∥
∥F−1(

σk(ξ)|ξ |ϕ̂(ξ)
)∥
∥
Lp

� 〈k〉‖�kϕ‖Lp

and

∥
∥
∥F−1

(ei|ξ |t

|ξ |
)
∗ F−1(

σk(ξ)ψ̂(ξ)
)∥
∥
∥
Lp′

� ‖�kψ‖Lp .

Analogously, we proceed in the case � ≥ 1, which completes the proof.

Moreover, it is desirable not only to get an estimate, where the right-hand side
is independent of the time t , see Theorem 4.2, but also to obtain an estimate of the
solution u to the free wave equation, where the right-hand side is even decaying in
time. The subsequent classical method gives us some interplay between the decay
rate with respect to the time t and the loss of regularity of the solution u. Thus,
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we introduce the so-called method of stationary phase, where we take advantage of
working on the conjugate line with respect to the Lp-norm and a better localization
around the origin. For our purposes this can be done by applying the localized
modulation space Ks

p,q(R
n) introduced in Definition 3.1. We basically adopt the

theory explained in [4, Chapter 16]. We define two zones in the extended phase
space (0,∞)×R

n. The pseudo-differential zone is given by

Zpd := {
(t, ξ) ∈ (0,∞)× R

n : t|ξ | ≤ 1
}

and the hyperbolic zone is defined by

Zhyp := {
(t, ξ) ∈ (0,∞)×R

n : t|ξ | ≥ 1
}
.

Moreover, we define an auxiliary function χ ∈ C∞(Rn) satisfying χ(ξ) ≡ 0 for
|ξ | ≤ 1

2 , χ(ξ) ≡ 1 for |ξ | ≥ 3
4 , and χ(ξ) ∈ [0, 1]. With the help of this function we

can treat the Fourier transformed solution to the free wave equation (6) separately
in the pseudo-differential zone and in the hyperbolic zone. Thus, we rewrite ∂�

t u

explained by (7) as follows:

∂�
t u(t, x) = i�

2
F
−1

((
ei|ξ |t + (−1)�e−i|ξ |t)1− χ(tξ)

|ξ |2r F
(|D|2r+�ϕ

)
(ξ)

)
(t, x)

+ i�

2
F
−1

((
ei|ξ |t + (−1)�e−i|ξ |t)χ(tξ)

|ξ |2r F
(|D|2r+�ϕ

)
(ξ)

)
(t, x)

+ i�−1

2
F
−1

((
ei|ξ |t − (−1)�e−i|ξ |t)1− χ(tξ)

|ξ |2r F
(|D|2r+�−1ψ

)
(ξ)

)
(t, x)

+ i�−1

2
F
−1

((
ei|ξ |t − (−1)�e−i|ξ |t)χ(tξ)

|ξ |2r F
(|D|2r+�−1ψ

)
(ξ)

)
(t, x),

where we also used basic properties of the Fourier transform. Let us start with the
localization in the pseudo-differential zone, i.e., we estimate the quantity

∥
∥
∥F−1

(
e−i|ξ |t 1− χ(tξ)

|ξ |2r F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
Ks

p,q

.

First note that
∣
∣e−i|η| 1−χ(|η|)

|η|2r
∣
∣ ≥ l implies |η| ≤ l− 1

2r and, therefore, Proposition 2.7
yields

F
−1

(
e−i|η| 1− χ(|η|)

|η|2r
)
∈ Lm

p
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if 1 < p ≤ 2 ≤ m < ∞ and 2r ≤ n
( 1
p
− 1

m

)
. Hence, taking Definition 3.1 into

account, it follows

∥
∥
∥F−1

(
σk(ξ)e

−i|ξ |t 1− χ(tξ)

|ξ |2r F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
Lm

= t2r−n+ n
m

∥
∥
∥F−1

(
e−i|η| 1− χ(|η|)

|η|2r
)
∗ F

−1
(
σk

(η

t

)
F

(|D|2r+�ϕ
)(η

t

))∥
∥
∥
Lm

� t2r−n+ n
m

∥
∥
∥F−1

(
σk

(η

t

)
F

(|D|2r+�ϕ
)(η

t

))∥
∥
∥
Lp

= t
2r−n+ n

m
+n− n

p
∥
∥�k

(|D|2r+�ϕ
)∥
∥
Lp

= t
2r−n( 1

p
− 1

m
)∥∥�k

(|D|2r+�ϕ
)∥
∥
Lp

(8)

for k ∈ Z
n \ {0}, where we also used the change of variables η = tξ and tz = x

together with some basic properties of the Fourier transform. In the same way we
obtain

∥
∥
∥F−1

(
φj,l(ξ)e

−i|ξ |t 1− χ(tξ)

|ξ |2r F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
Lm

� t
2r−n( 1

p− 1
m)∥∥Δj,l

(|D|2r+�ϕ
)∥
∥
Lp

(9)

with l = 1, 2, · · · , 4n − 2n and j = 0,−1,−2, · · · . We shall remark that the
left-hand side of (8) vanishes for large times t due to the support properties of the
window function σk . The previous estimates also hold if we replace the term e−i|ξ |t
by ei|ξ |t .

Now let us treat the localization in the hyperbolic zone. We define a test function
ρ ∈ C∞

0 (Rn) such that suppρ ⊂ {ξ ∈ R
n : 1

2 ≤ |ξ | ≤ 2}. Moreover, we put
ρκ(ξ) := ρ(2−κξ) for κ ≥ 1 and ρ0(ξ) := 1− ∑∞

κ=1 ρκ(ξ). By Young’s inequality
we obtain

∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r σk(ξ)F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
L∞

≤
∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r
)∥

∥
∥
L∞

∥
∥�k

(|D|2r+�ϕ
)∥
∥
L1

.
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Let us fix some sufficiently large number κ0 ∈ N. Then there exists a constant
C = C(κ0) such that for all κ ≤ κ0 it follows

∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r
)∥

∥
∥
L∞

= t2r
∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

(t|ξ |)2r
)∥

∥
∥
L∞

≤ Ct2r−n

due to support properties. For the case κ ≥ κ0 we introduce the change of variables
tξ = 2κη and obtain

∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r
)∥

∥
∥
L∞

= 2κn−2κr t2r−n
∥
∥
∥F−1

(
e−i2κ |η|χ(2κ |η|)ρκ(2κ |η|)

|η|2r
)∥

∥
∥
L∞

= 2κ(n−2r)t2r−n
∥
∥
∥F−1

(
e−i2κ |η| ρ(|η|)

|η|2r
)∥

∥
∥
L∞

� (1+ 2κ)−
n−1
2 2κ(n−2r)t2r−n

� 2κ(
n
2+ 1

2−2r)t2r−n,

where we also used the Littman type lemma with τ := 2κ , see Proposition 2.8.
Now we want to deduce an L2−L2-estimate. By Plancherel’s identity and Hölder’s
inequality it follows

∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r σk(ξ)F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
L2

�
∥
∥
∥e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r
∥
∥
∥
L∞

∥
∥�k

(|D|2r+�ϕ
)∥
∥
L2

.

Taking account of support properties we obtain

∥
∥
∥e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r
∥
∥
∥
L∞

= t2r
∥
∥
∥e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

(t|ξ |)2r
∥
∥
∥
L∞

� 2−2κr t2r .

Consequently, the well-known Riesz-Thorin interpolation theorem yields the esti-
mate

∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r σk(ξ)F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
Lp′

� 2κ((
n
2+ 1

2 )(
2
p−1)−2r)

t
2r−n( 2p−1)∥∥�k

(|D|2r+�ϕ
)∥
∥
Lp

(10)
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for k ∈ Z
n \ {0} and 1 < p ≤ 2. Here p′ denotes the conjugate exponent to p. The

same computations yield

∥
∥
∥F−1

(
e−i|ξ |t χ(t|ξ |)ρκ (t|ξ |)

|ξ |2r φj,l(ξ)F
(|D|2r+�ϕ

)
(ξ)

)∥
∥
∥
Lp′

� 2κ((
n
2+ 1

2 )(
2
p−1)−2r)

t
2r−n( 2

p−1)∥∥Δj,l

(|D|2r+�ϕ
)∥
∥
Lp

(11)

with l = 1, 2, · · · , 4n − 2n and j = 0,−1,−2, · · · . We shall note that the left-hand
side of (11) vanishes for small times t due to the support properties of the window
function φj,l . Remark that the estimates (10) and (11) also hold if we replace the
term e−i|ξ |t by ei|ξ |t .

After proving the Fourier multiplier estimates on the conjugate line in the pseudo-
differential and the hyperbolic zone we are able to estimate the term ∂�

t u, where u is
the solution to the free wave equation (6). First we consider small times t ∈ (0, 1].
Combining (8) to (11) and putting 2r := n( 2

p
− 1) yields

∥
∥F−1(|ξ |�e−i|ξ |t σk(ξ)F(ϕ)(ξ)

)∥
∥
Lp′

�
∥
∥�k

(|D|n( 2
p−1)+�

ϕ
)∥
∥
Lp

and

∥
∥F−1(|ξ |�e−i|ξ |t φj,l(ξ)F(ϕ)(ξ)

)∥
∥
Lp′

�
∥
∥Δj,l

(|D|n( 2
p−1)+�

ϕ
)∥
∥
Lp

for all 1 < p ≤ 2. For times t ≥ 1 we choose 2r := n+1
2 ( 2

p
− 1) in (8) to (11). This

gives

∥
∥F−1(|ξ |�e−i|ξ |t σk(ξ)F(ϕ)(ξ)

)∥
∥
Lp′

� (1+ t)
− n−1

2 ( 2
p−1)∥∥�k

(|D| n+1
2 ( 2p−1)+�

ϕ
)∥
∥
Lp

and

∥
∥F−1(|ξ |�e−i|ξ |t φj,l(ξ)F(ϕ)(ξ)

)∥
∥
Lp′

� (1+ t)
− n−1

2 ( 2
p
−1)∥∥Δj,l

(|D| n+1
2 ( 2

p
−1)+�

ϕ
)∥
∥
Lp

for all 1 < p ≤ 2. In the same way we can show

∥
∥F−1(|ξ |�−1e−i|ξ |t σk(ξ)F(ψ)(ξ)

)∥
∥
Lp′

� (1+ t)
− n−1

2 ( 2p−1)∥∥�k

(|D|n( 2
p−1)+�−1

ψ
)∥
∥
Lp
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as well as

∥
∥F−1(|ξ |�−1e−i|ξ |t φj,l(ξ)F(ψ)(ξ)

)∥
∥
Lp′

� (1+ t)
− n−1

2 ( 2p−1)∥∥Δj,l

(|D|n( 2
p−1)+�−1

ψ
)∥
∥
Lp

for all times t > 0 and for all 1 < p ≤ 2. Here p′ denotes the conjugate
exponent to p. Moreover, the term e−i|ξ |t can be replaced by ei|ξ |t . Summarizing
the previous estimates and taking account of Proposition 3.3 we have proved the
following theorem.

Theorem 4.3 Let 1 ≤ q ≤ ∞ and 1 < p ≤ 2. Assume ϕ,ψ ∈ C∞
0 (Rn) and let

u = u(t, x) be the solution to Cauchy problem (6). Then it holds

∥
∥∂�

t u(t, ·)
∥
∥
Ks

p′,q
� (1+ t)

− n−1
2 ( 2

p
−1)(‖ϕ‖

K
s+Mp+�
p,q

+ ‖ψ‖
K

s+Mp+�−1
p,q

)
,

where Mp ≥ n( 2
p

− 1) ≥ 1, s ≥ 0 and � ∈ N. Here p′ denotes the conjugate
exponent to p.

Remark 4.4 Let us give some remarks to the statements of Theorems 4.1, 4.2,
and 4.3. In Theorem 4.1 we give an a-priori estimate for solutions of the Cauchy
problem for the free wave equation in scales of modulation spaces, where in these
estimates we do not have any loss of regularity. Here the time-dependent coefficient
is not essential because one would use such an estimate only for getting well-
posedness results. The estimates from Theorems 4.2 and 4.3 are on the conjugate
line. Here we have on the one hand a loss of regularity and on the other hand
decaying time dependent coefficients. The application of stationary phase method
provides an almost optimal estimate. Optimality should be verified by showing
that exactly this loss of regularity together with the decay, and not a better decay,
appears. But this is another story.

Theorem 4.3 points out that localized modulation spaces Ks
p,q(R

n) provide new
estimates of the solution u to the free wave equation and its derivatives ∂tu

concerning the decay rate of the time t . Furthermore, we immediately notice the
connection between the decay rate and the loss of regularity, which is described by
the parameter Mp. So the faster the decay in time the higher the loss of regularity,
which is a rather natural observation. Nevertheless the spaces Ks

p,q(R
n) can only

serve as auxiliary spaces since our main goal is to obtain estimates in classical
modulation spaces Ms

p,q(R
n). Thus, we use the connection between these two

spaces, see Proposition 3.2, together with some embedding results. But first let us
recall an estimate for the solution to the Cauchy problem (6) in Lebesgue spaces. We
refer to Theorem 16.6.4 and Theorem 16.6.6 in [4]. Here we use the Sobolev spaces
Hs

p = Hs
p(R

n) of fractional order for p ∈ (1,∞) and s ∈ R. They are defined as
follows:

Hs
p(R

n) := {
f ∈ S′(Rn) : ‖f ‖Hs

p
= ∥

∥F−1(〈ξ〉sF (f )
)∥
∥
Lp < ∞}

.
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Proposition 4.5 Let 1 < p ≤ 2. Assume ϕ,ψ ∈ C∞
0 (Rn) and let u = u(t, x) be

the solution to Cauchy problem (6). It holds

∥
∥∂�

t u(t, ·)
∥
∥
Lp′

� (1+ t)
− n−1

2 ( 2p−1)(‖ϕ‖
H

Mp+�
p

+ ‖ψ‖
H

Mp+�−1
p

)
,

where Mp ≥ n( 2
p
− 1) ≥ 1. Here p′ denotes the conjugate exponent to p.

Remark 4.6 Note that in Theorem 4.3 and Proposition 4.5 we only need to assume
Mp ≥ n( 2

p
− 1) ≥ 0 if � ≥ 1.

Moreover, we mention two embeddings between modulation spaces and fractional
Sobolev spaces, see [23, Proposition 2.9] and [24], respectively. We denote the
conjugated exponent of p and q by p′ and q ′, respectively.

Proposition 4.7 Let 1 ≤ p, q ≤ ∞ and s ∈ R. Then it holds

Ms
p,q(R

n) ↪→ H
s+μnθ(p,q)
p (Rn)

for any μ > 1, where

θ(p, q) := min
{
0; q−1 −max

{
p−1;p′−1}}

.

Moreover, if 1 ≤ q ≤ p ≤ r ≤ q ′, then

Ms
p,q(R

n) ↪→ Hs
r (R

n).

The estimate of Theorem 4.3 in the auxiliary spaces Ks
p,q(R

n) combined with
Proposition 4.5, taking account of the embeddings in Proposition 4.7, yield the
following main result due to Proposition 3.2.

Theorem 4.8 Let 1 ≤ q ≤ ∞ and the dimension n ≥ 2. Let 1 < p ≤ 2n
n+1 . Assume

ϕ,ψ ∈ C∞
0 (Rn) and let u = u(t, x) be the solution to Cauchy problem (6).

(i) If q ≤ p, then it holds

∥
∥∂�

t u(t, ·)
∥
∥
Ms

p′,q
� (1+ t)

− n−1
2 ( 2p−1)(‖ϕ‖

M
s+Mp+�
p,q

+ ‖ψ‖
M

s−1+Mp+�
p,q

)
,

where Mp ≥ n( 2
p
− 1), s > 0 and � ∈ N.

(ii) If q > p, then it holds

∥
∥∂�

t u(t, ·)
∥
∥
Ms

p′,q
� (1+ t)

− n−1
2 ( 2

p
−1)(‖ϕ‖

M
s+Mp+�
p,q

+ ‖ψ‖
M

s−1+Mp+�
p,q

)
,

where Mp ≥ n( 2
p
− 1), s > n( 1

p
− 1

q
) and � ∈ N.
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Remark 4.9

(i) The condition p ≤ 2n
n+1 ensures that Mp ≥ n( 2

p
− 1) ≥ 1. This together with

p > 1 gives that our result is only valid for dimensions n ≥ 2.
(ii) The remark under Proposition 4.5 applies here as well. So if � ≥ 1, then we can

assume 1 < p ≤ 2.

Summarizing, Theorem 4.1 and Theorem 4.8 provide estimates of the form

∥
∥∂�

t u(t, ·)
∥
∥
M

s0
p′,q

≤ C(t)
(‖ϕ‖

M
s1+�
p,q

+ ‖ψ‖
M

s1−1+�
p,q

)
(12)

for � ∈ N and some weights s0, s1. Remark that modulation spaces increase with
their integrability parameters, see, e.g., [18, Corollary 2.7]. For this reason we can
replace the Ms

p,q norms at the left-hand sides of the estimates in Theorem 4.1
by the Ms

p′,q norms. Here we take account of p′ > p. Consequently, a standard
interpolation argument between the statements of Theorems 4.1 and 4.8 gives

∥
∥∂�

t u(t, ·)
∥
∥
Ms

p′,q
� (1+ t)ρ

(‖ϕ‖
M

s+η+�
p,q

+ ‖ψ‖
M

s−1+η+�
p,q

)
, (13)

where for θ ∈ [0, 1] we have

ρ = ρ(θ, n, p) = θ
n + 3

2
− (1− θ)

n− 1

2

( 2

p
− 1

)
if � = 0,

ρ = ρ(θ, n, p) = θ
n + 1

2
− (1− θ)

n− 1

2

( 2

p
− 1

)
if � ≥ 1, and

η = η(θ, n, p) = (1− θ)Mp ≥ (1− θ)n
( 2

p
− 1

)
.

Example 4.10 As explained in the introduction it is desirable that the right-hand
side in (13) is bounded with respect to the time t . In other words, it is desirable to
have ρ ≤ 0 while the parameter η describes the loss of regularity of u = u(t, ·). A
first result for ρ = 0 is obtained by Theorem 4.2. Thus, (13) modifies this result if

p >
2n2 + 2

n2 + n + 2
or p >

2n2 + 4n+ 2

n2 + 3n+ 4
,

respectively. Note that we can even choose θ such that C(t) → 0 as t → ∞ in (12).

Acknowledgements Both authors thank both referees for their valuable proposals. In particular,
they pointed out some incorrectness in Proposition 3.2 in the submitted version.



Wave Equations in Modulation Spaces–Decay Versus Loss of Regularity 389

References

1. Á. Bényi, K. Gröchenig, K.A. Okoudjou, L.G. Rogers, Unimodular Fourier multipliers for
modulation spaces. J. Func. Anal. 246.2, 366–384 (2007)

2. F.M. Christ, M.I. Weinstein, Dispersion of small amplitude solutions of the generalized
Korteweg-de Vries equation. J. Func. Anal. 100.1, 87–109 (1991)

3. E. Cordero, F. Nicola, Remarks on Fourier multipliers and applications to the wave equation.
J. Math. Anal. Appl. 353.2, 583–591 (2009)

4. M.R. Ebert, M. Reissig, Methods for Partial Differential Equations (Birkhäuser, Cham, 2018)
5. H.G. Feichtinger, Modulation spaces of locally compact Abelian groups, in Proceedings of

International Conference on Wavelets and Applications, ed. by R. Radha, M. Krishna, S.
Thangavelu (New Delhi Allied Publishers, Chennai, 2003), pp. 1–56

6. H.G. Feichtinger, G. Narimani, Fourier multipliers of classical modulation spaces. Appl.
Comput. Harmon. Anal. 21.3, 349–359 (2006)

7. L. Grafakos, Classical and Modern Fourier Analysis (Pearson Education, Inc., Upper Saddle
River, 2004)

8. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)
9. L. Hörmander, Estimates for translation invariant operators in Lp spaces. Acta Math. 104.1,

93–140 (1960)
10. T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with

negative derivative indices. J. Differ. Equ. 248, 1972–2002 (2009)
11. K. Johansson, Generalized free time-dependent Schrödinger equation with initial data in

Fourier Lebesgue spaces. J. Pseudo-Differ. Oper. Appl. 2, 543–556 (2011)
12. C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized

Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46.4,
527–620 (1993)

13. P.I. Lizorkin, Multipliers of Fourier integrals and bounds of convolution in spaces with mixed
norms. Applications. Math. USSR-Izvestiya 4.1, 225 (1970)

14. S.G. Mikhlin, On the multipliers of Fourier integrals. Doklady Akademii nauk SSSR 109, 701–
703 (1956)

15. T. Narazaki, M. Reissig,L1 estimates for oscillating integrals related to structural damped wave
models, in Studies in Phase Space Analysis with Applications to PDEs, ed. by M. Cicognani,
F. Colombini, D. Del Santo (Birkhäuser, Basel, 2013), pp. 215–258

16. A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant
time-dependent mass and dissipation, II. Math. Nachr. 291, 1859–1892 (2018)

17. M. Reich, Modulation Spaces and Nonlinear Partial Differential Equations. PhD thesis, TU
Bergakademie Freiberg (2017)

18. M. Reich, W. Sickel, Multiplication and composition in weighted modulation spaces, in
Mathematical Analysis, Probability and Applications – Plenary Lectures: ISAAC 2015, Macau.
Springer Proceedings in Mathematics and Statistics, ed. by L. Rodino, T. Qian (Springer,
Cham, 2016), pp. 103–149

19. T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear
Partial Differential Equations. Walter de Gruyter (1996)

20. M. Ruzhansky, M. Sugimoto, W. Wang, Modulation spaces and nonlinear evolution equations,
in Evolution Equations of Hyperbolic and Schrödinger Type, ed. by M. Ruzhansky, M.
Sugimoto, J. Wirth. Progress in Mathematics (Springer, Basel, 2012), pp. 267–283

21. G. Staffilani, The initial value problem for some dispersive differential equations. PhD thesis,
University of Chicago (1995)

22. M. Sugimoto, N. Tomita, The dilation property of modulation spaces and their inclusion
relation with Besov spaces. J. Funct. Anal. 248.1, 79–106 (2007)

23. J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential
calculus, II. Ann. Global Anal. Geom. 26, 73–106 (2004)



390 M. Reich and M. Reissig

24. J. Toft, Convolution and embeddings for weighted modulation spaces. Adv. Pseudo-Differ.
Oper. 155, 165–186 (2004)

25. J. Toft, Pseudo-differential operators with smooth symbols on modulation spaces. Cubo 11.4,
87–107 (2009)

26. H. Triebel, Fourier analysis and function spaces. Teubner-Texte Math. 7, Teubner, Leipzig
(1977)

27. H. Triebel, Spaces of Besov-Sobolev-Hardy type. Teubner-Texte Math. 9, Teubner, Leipzig
(1978)

28. H. Triebel, Modulation spaces on the Euclidean n-space. Z. Anal. Anwend. 2.5, 443–457
(1983)

29. H. Triebel, Theory of Function Spaces (Birkhäuser, Basel, 1983)
30. B. Wang, C. Huang, Frequency-uniform decomposition method for the generalized BO, KdV

and NLS equations. J. Differ. Equ. 239.1, 213–250 (2007)
31. B. Wang, H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough

data. J. Differ. Equ. 232, 36–73 (2007)
32. B. Wang, Z. Lifeng, G. Boling, Isometric decomposition operators, function spaces Eλ

p,q and
applications to nonlinear evolution equations. J. Funct. Anal. 233.1, 1–39 (2006)

33. B. Wang, Z. Huo, C. Hao, Z. Guo, Harmonic Analysis Method for Nonlinear Evolution
Equations, I (World Scientific, Singapore/Hackensack, 2011)


	Preface
	Contents
	On Effective PDEs of Quantum Physics
	1 Introduction
	2 Hartree and Gross-Pitaevski Equations
	2.1 Origin and Properties
	2.1.1 Properties of the Hartree and Gross-Pitaevski Equations

	2.2 Particles Coupled to the Electromagnetic Field

	3 The (Generalized) Hartree-Fock Equations
	3.1 Formulation and Properties
	3.1.1 Exchange Energy Term

	3.2 Static gHF Equations
	3.3 Coupling to the Electromagnetic Field
	3.4 Static gHFem Equations
	3.4.1 Free Energy
	3.4.2 Electrostatics


	4 Density Functional Theory
	4.1 Crystals
	4.2 Macroscopic Perturbations

	5 Hartree-Fock-Bogoliubov Equations
	6 Bogoliubov-de Gennes Equations
	6.1 Formulation
	6.2 Symmetries
	6.3 Conservation Laws
	6.4 Stationary Bogoliubov-de Gennes Equations
	6.5 Free Energy
	6.6 Ground/Gibbs States
	6.7 Symmetry Breaking
	6.8 Stability
	6.8.1 Normal States
	6.8.2 Superconducting States
	6.8.3 Mixed States
	6.8.4 Magnetic Flux Quantization


	7 Existence of Periodic Solutions by the Variational Technique
	References

	Critical Exponents for Differential Inequalities with Riemann-Liouville and Caputo Fractional Derivatives
	1 Introduction
	1.1 Notation

	2 Global Weak Solutions
	3 A Suitable Test Function
	4 Proof of Theorem 1
	5 Proof of Theorem 2
	6 Decay Estimates for the Fractional Subdiffusive Equation
	6.1 Proof of Lemma 3
	6.2 Decay Estimates
	6.3 Proof of Theorems 3 and 4

	References

	Weakly Coupled Systems of Semilinear Effectively Damped Waves with Different Time-Dependent Coefficients in the Dissipation Terms and Different Power Nonlinearities
	1 Introduction
	1.1 Notations

	2 Main Results
	2.1 Low Regular Data
	2.2 Data from Energy Space
	2.3 Data from Sobolev Spaces with Suitable Regularity
	2.4 Large Regular Data

	3 Philosophy of Our Approach
	3.1 Proof of Theorem 2.1
	3.2 Proof of Theorem 2.6
	3.3 Proof of Theorem 2.8
	3.4 Proof of Theorem 2.11

	4 Concluding Remarks
	Appendix
	References

	Incompressible Limits for Generalisations to Symmetrisable Systems
	1 Introduction
	1.1 An Example: The Incompressible Limit for the Euler System
	1.2 An Example: The Quasineutral Limit for the Euler–Poisson System

	2 Assumptions and Main Results
	3 The Uniform Existence Interval
	4 The Incompressible Limit
	5 An Application
	6 Concluding Remarks
	References

	The Critical Exponent for Evolution Models with Power Non-linearity
	1 Introduction
	1.1 Notation

	2 Main Results
	3 The Linear Estimates
	4  Applications to Semilinear Evolution Equations
	4.1 Local and Global Existence in the Case 2σ≥n
	4.2 Local and Global Existence in the Case n> 2σ

	Appendix
	References

	Blow-Up or Global Existence for the Fractional Ginzburg-Landau Equation in Multi-dimensional Case
	1 Introduction
	2 Local Well-Posedness of (1)
	2.1 Two Dimensional Case
	2.2 The Case n ≥3: Local H1 Existence Result
	2.3 Three Dimensional Case, Small H1 Data Solutions for p=3

	3 Blow-Up for (1)
	4 A Priori Estimates
	References

	Semilinear Damped Klein-Gordon Models with Time-Dependent Coefficients
	1 Introduction
	2 Main Results
	2.1 Examples

	3 Decay Estimates for Solutions to Linear Cauchy Problems
	3.1 Proof of Theorem 1 and Lemma 1

	4 Proof of Theorem 2
	References

	Wave-Like Blow-Up for Semilinear Wave Equations with Scattering Damping and Negative Mass Term
	1 Introduction
	2 Main Result
	3 Lower Bound for Derivative of the Functional
	4 Lower Bound for the Weighted Functional
	5 Lower Bound for the Functional
	6 Iteration Argument
	7 Proof for Theorems 2 and 3
	8 Proof for Theorem 4
	References

	4D Semilinear Weakly Hyperbolic Wave Equations
	1 Introduction
	1.1 Notation

	2 Preliminary Results
	2.1 Energy Estimates
	2.2 The Liouville Transformation
	2.3 Representation Formula

	3 Proof of Theorem 1
	3.1 The Estimate for the Initial Term
	3.2 The Estimate for the Mass Term
	3.3 Estimates for the Nonlinear Part
	3.4 The Estimate for the Linear Term
	3.5 Proof of Theorem 1, Conclusion

	4 Remark, for the Speciale Case λ1=2
	References

	Smoothing and Strichartz Estimates to Perturbed Magnetic Klein-Gordon Equations in Exterior Domain and Some Applications
	1 Introduction and Main Results
	2 Proof of Theorem 1
	3 Proof of Theorem 2
	4 Proof of Theorem 3
	5 Proof of Theorem 4
	References

	The Cauchy Problem for Dissipative Wave Equations with Weighted Nonlinear Terms
	1 Introduction
	2 Estimates for Linear Terms
	3 Estimates for Nonlinear Terms
	4 A Priori Estimates 
	5 Proof of Theorems
	5.1 Proof of Theorem 1.2
	5.2 Proof of Theorem 1.5
	5.3 Proof of Theorem 1.6
	5.4 Proof of Theorem 1.8

	Appendix
	References

	Global Existence Results for a Semilinear Wave Equation with Scale-Invariant Damping and Mass in Odd Space Dimension
	1 Introduction
	2 One-Dimensional Case
	2.1 One-Dimensional Case: p≥2
	2.2 One-Dimensional Case: p< 2

	3 Radial Three Dimensional Case
	3.1 Radial Linear Wave Equation: 3-d Case
	3.2 Preliminary Results
	3.3 Semilinear Model: 3-d Case

	4 Radial Odd Case in Higher Dimensions
	4.1 Radial Linear Wave Equation: Odd Case in Higher Dimensions
	4.2 Preliminary Lemmas
	4.3 Semilinear Model: Odd Case in Higher Dimensions

	5 Conclusions
	References

	Wave Equations in Modulation Spaces–Decay Versus Lossof Regularity
	1 Introduction
	2 Preliminaries
	3 A Better Localization Around the Origin
	4 Estimates for the Free Wave Equation
	References


