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Preface

The theory of evolution partial differential equations (PDEs) has made considerable
strides in the last several years. This rapid development was driven on by the
connections between this theory and other fields of the mathematics, e.g., the har-
monic analysis, and by its strong ties to problems from mathematical physics. This
volume includes 13 papers highlighting recent results in mathematics, and focusing
on nonlinear PDEs and their applications. Readers will find, e.g., contributions on
the qualitative properties of solutions of linear and nonlinear evolution models, as
well as results concerning well-posedness, asymptotic profiles of solutions, blow-up
behavior, and the influence of low regular coefficients.

We employed a strict blind review process, in the course of which each
contribution was evaluated by two anonymous referees. The papers provide a broad
range of ideas and include detailed proofs of their results.

Most of the contributors attended the sessions “Recent progress in evolution
equations” and “Nonlinear PDEs” during the 11th ISAAC congress, which was held
in Vixjo, Sweden, in 2017. Some speakers were invited to deliver their talks during
a joint day of these two sessions. Though the event is what initially provided the
idea of creating a special volume of selected research papers, the present volume is
not merely a collection of proceedings, but a stand-alone project gathering original
contributions from active researchers on the latest trends in nonlinear evolution
PDEs.

The International Society for Analysis, its Applications and Computation
(ISAAC) has organized the biennial ISAAC congress at venues around the globe
since 1997. The 2017 congress continued the successful series of meetings:
in Delaware, USA (1997), Fukuoka, Japan (1999), Berlin, Germany (2001),
Toronto, Canada (2003), Catania, Italy (2005), Ankara, Turkey (2007), London,
UK (2009), Moscow, Russia (2011), Krakow, Poland (2013), Macau, China
(2015). ISAAC is home to nearly 300 members from all regions of the world,
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as well as eight special interest groups focusing on different areas of analysis and
computation.

Bari, Italy Marcello D’ Abbicco
Ribeirao Preto, Sdo Paulo, Brazil Marcelo Rempel Ebert
Pisa, Italy Vladimir Georgiev
Tokyo, Japan Tohru Ozawa
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Ilias Chenn and 1. M. Sigal

Abstract The Hartree-Fock equation is a key effective equation of quantum
physics. We review the standard derivation of this equation and its properties
and present some recent results on its natural extensions — the density functional,
Bogolubov-de Gennes and Hartree-Fock-Bogolubov equations. This paper is based
on a talk given at ISAAC2017.

1 Introduction

The Hartree-Fock equation (HFE) is a (if not the) key effective equation of quantum
physics. It plays a role similar to that of the Boltzmann equation in classical physics.
It gives a fairly accurate and yet sufficiently simple description of large (and not so
large) systems of quantum particles. The trade-off here is the high dimension for
nonlinearity: while the n—particle Schrodinger equation

i fi o H,v 1

l g; — n (D
is a linear equation in 3n+ 1 variables, the Hartree-Fock one is a nonlinear one in 3+
1 variables. Here # is the Planck constant divided by 27 and H,, is the Schrodinger
operator or (quantum) Hamiltonian of the n—particle system, it is given in (14)
below.

The HFE involves an orthonormal system of n functions, {1}, on R3, or the

projection operator y := Y . |¥;){;| acting on L?(R?), and can be written in the
latter case as

ay
ot

ih * =1[hy,y] 2
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2 I. Chenn and I. M. Sigal

where ), := h + v * p, + ex(y), with & a one-particle Schrodinger operator (say
h = " A+ V(x), where V (x) is an external potential), p), (x, 1) 1= y(x, x, 1) =

T 2m

il (x)]? and ex(y) (“exchange term”) is the operator with the integral kernel

ex(y)(x,y) == —v(x — y)y(x,y) (3)
==Y pi@vlx — »T). )

(Here and in what follows, A(x, y) stands for the integral kernel of an operator
A.) Furthermore, to deal with quantum statistics (where the number of particles is
not fixed but is a quantum observable), (2) is extended to arbitrary non-negative,
trace class operator y on L>(R?) satisfying ¥ < 1 (expressing the Pauli exclusion
principle). This describes fermions. For bosons, one drops the exchange term ex (y)
and the condition y < 1.

Replacing ex(y) given above by a local function xc(p,) of the function
py(x,t) = y(x,x,t) leads to the Kohn-Sham equation underlying the density
functional theory (DFT) which is exceptionally effective in the computations in
Quantum Chemistry and in particular, of the electronic structure of matter.

It was discovered by Bardeen, Cooper and Schrieffer for fermions and by
Bogolubov, for bosons, that for quantum fluids (superconductors and superfluids,
respectively)

— the HFE falls short
— there are natural generalizations of the HFE describing these phenomena.

It turns out that this generalization is mathematically very natural and was
overlooked in the mathematics literature, though the framework for it existed.

To explain how this generalization arises, we go back to the HFE and present
its alternative derivation. We just indicate main steps; for details, see [3] and for
background, [9, 36].

In abstract formulation, which applies also to statistical mechanics and quantum
field theory, the states are defined as positive linear (‘expectation’) functionals on a
C* algebra, o7, elements of which are called observables, and the evolution of states
is given by the von Neumann-Landau equation

ihdwr(A) = w([A, H]), YA € &, &)
where H is a quantum Hamiltonian which is affiliated with 7.
Technically, one takes for <7, an algebra of bounded operators (namely the Weyl

algebra, 20) on the fermionic/bosonic Fock space, which for spinless particles is
written as

Fi=) BIL®R). d=1.23, ©)
0
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where @ stands either for the wedge product, A, or symmetric product, . For
a many-body system, the quantum Hamiltonian H on Fock space, .-# is given by
H := ®{° Hy, with the n—particle Schrodinger operators H, defined in (14) below.
If one introduces annihilation and creation operators, 1 (x) and ¥*(x) on .%, which
map the n-particle sector in (6) into (n — 1)- and (n + 1)-sectors, respectively, then
H is written in terms of these operators as

1
H = /dx YOy (x) + ) /dxdy v = YOV OMYOY (), (D)

with h a one-particle Schrodinger operator acting on the variable x and v a pair
potential of the particle interaction (see (14) below).

We can think about the algebra of observables as generalized by (unbounded)
operators ¥ (x) and ¥*(x). The Hartree-Fock approximation is obtained by restrict-
ing the evolution to the states, ¢, determined by the expectation

y(x, ) = oY () ¥ ()], ®)

provided ¢[¥(x)] = 0, in the following way. Let 1/f#(x) stands for either ¥ (x) or
Y*(x). We require that o[y (x1) ... %" (xx)] to be zero if the number of *’s and
¥ are not equal and is expressed in terms of sums of products of [y*(x;) ¥ (x;)]
according to the Wick theorem (see [9]), exactly as for the Gaussian processes in
probability; such states are called the quasifree states.'

However, the property of being quasifree is not preserved by the dynamics (5)
and the main question here is how to project the true quantum evolution onto the
class of quasifree states. Following [3], we do this by restricting the evolution,

ihdrp(A) = ¢ ([A, H]) €))

to observables A, which are at most quadratic in the creation and annihilation
operators. Then we arrive at a closed, self-consistent dynamics for ¢;. When
expressed in terms of the operator y with the integral kernel y (x, y), it gives exactly
the Hartree-Fock equation, (2).

The point here is that states determined by the expectations (8) are not the most
general quasifree states. The most general quasifree states ¢ determine and are
determined by expectations of all possible pairs of I/Afﬁ(x) = 1/fﬁ(x) — oW (x)):

!Y(x,y) = o[ () ¥ ()], 10

ax, y) == @[ x) ¥l

1For application of the quasifree states in the classical kinetic theory see [46].
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Mathematically, these are exactly the states discovered by Bardeen, Cooper and
Schrieffer for fermions and by Bogolubov, for bosons, and for which the former
received and the latter should have received the Nobel prize.

Now, let y and « denote the operators with the integral kernels y (x, y) and
a(x, y). After peeling off the spin components, definition (10) implies that

0<y=y" (=1 andoa"=a, (1)

where 0 = Co C with C being the complex conjugation and the condition y < 1
applies only to fermions (as was mentioned above, it is an expression of the Pauli
exclusion principle).

The operator y can be considered as a one-particle density operator (matrix) of
the system, so that p, (x) := y(x, x) is the particle density. The operator a gives
the particle pair coherence (x(x, y) is a two-particle wave function). (For confined
systems, y and o are trace class and Hilbert-Schmidt operators, respectively, with
Try = [y(x,x)dx < oo giving the particle number, while for thermodynamic
systems, they are only locally so.)

Following [3], we define self-consistent approximation as the restriction of the
many-body dynamics to quasifree states. More precisely, we map the solution w;
of (5), with an initial state wy, into the family ¢; of quasifree states satisfying

ihd:p: (A) = ¢:([A, H]) 12)

for all observables A, which are at most quadratic in the creation and annihilation
operators. As the initial condition, ¢g, for (12) we take the ‘quasifree projection’ of
wp. We call this map the nonlinear quasifree approximation of equation (5).

We expect ¢; to be a good approximation of wy, if wy is close to the manifold of
quasifree states.

The BdG equations give an equivalent formulation of the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity.

Evaluating (12) for monomials A € {yr(x), ¥*(xX)¥(y), v (x)¥(y)}, yields a
system of coupled nonlinear PDE’s for (¢, y, @) where ¢ (x) := ¢(¥(x)) and y
and « are defined in (10). For the standard many-body hamiltonian, (7), these give
the (time-dependent) Hartree-Fock-Bogolubov (HFB) or Bogolubov-de Gennes
(BdG) equations, depending on whether we deal with bosons or fermions (see (99),
(100) and (101) or (108), (109) and (110) below). In the latter case, one takes
¢(x, 1) := @ (¥(x)) = 0. As was mentioned above, the HFB equaitons describes
Bose-Einstein condensation and superfluidity while the BdG equations describes
superconductivity, the remarkable quantum phenomena.

HFB and BdG equations provide a more faithful description of quantum systems
going beyond the Gross-Pitaevski (i.e. the nonlinear Schrédinger) and Ginzburg-
Landau equations, which can be derived from them in certain regimes. While the
latter equations accumulated quite a substantial literature (see e.g. [16, 19, 54, 55]
and [53] for recent books and a review), the research on the former ones is just
beginning.

%k 3k ok ok ckek
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There are many fundamental problems about the HFB and the BdG equations
which are completely open. Generally, there are three types of questions one would
like to ask about an evolution equation:

¢ Derivation;
*  Well-posedness;
* Special solutions (say, stationary solutions or traveling waves) and their stability.

Some rigorous results on the derivation of the Hartree-Fock-Bogolubov (HFB)
equations can be found in [34, 40, 48] (see also [6, 7, 30-32, 52] for earlier
results and references). The well-posedness (or existence) for the time-dependent
HFB equations for confined systems (see above) was proven in [4]. The well-
posedness theory for the time-dependent Bogolubov-de Gennes (BdG) equations
is developed in [5]. For thermodynamics systems (see above), it is open. Some
important stationary solutions of the BdG and HFB equations were found in [22, 37]
and [3, 49, 50], respectively.

In this contribution, we recall the standard derivation and properties of the HF
(and H) equations and discuss recent work on the Kohn-Sham (KS), HF, BdG
and HFB equations [3, 22, 23]. To fix ideas, we concentrate mostly on the BdG
equations.

There is a considerable physics literature on the subject. As for rigorous
works, the three fundamental contributions to the subject, [2, 33, 37], deal with
foundational issues (relation to quasifree states and quadratic hamiltonians on the
Fock space and the general variational problem), with the critical temperature and
the superconducting solutions and with the derivation of the Ginzburg-Landau
equations respectively. For more references, and discussion see some recent papers
[3, 5, 22, 23] and reviews [38, 39]. The object of these and other works on the
subject is the time-independent theory. The results we discuss are complementary
to this work.

2 Hartree and Gross-Pitaevski Equations

2.1 Origin and Properties

In what follows we use the units in which the (normalized) Planck constant i and
the speed of light ¢ are both equal to 1 and the typical particle mass is set to 1/2.
With this agreement, the evolution of quantum n-particle system is given by the
Schrodinger equation

0¥ H,W. (13)
i = .
at "
Here H, is the Schrodinger operator or Hamiltonian of the physical system. For the
system of n identical particles (say, electrons or atoms) of mass 1/2, interacting with
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each other and moving in an external potential V the Hamiltonian is

n
1
H, = thi + ) Zv(x,- —x/'), (14)
i=1 i#]
where hy, = —Ay 4+ V(x) and v is the interaction potential. For spinless

fermions/bosons, it acts on the state space, which in the spinless case can be written
as

@1L*(RY), d =1,2,3.

The Schrodinger equation is an equation, (13), in dn+ 1 variables, x1, . . ., x, and
t. Even for a few particles it is prohibitively difficult to solve. Hence it is important
to have manageable approximations.

One such an approximation, which has a nice unifying theme and connects to a
large areas of physics and mathematics, is the self-consistent (or mean-field) one. In
it one approximates solutions of n-particle Schrédinger equations by products of n
one-particle functions (i.e. functions of d + 1 variables) appropriately symmetrized.
This results in a single nonlinear equation in d + 1 variables, or several coupled such
equations. The trade-off here is the number of dimensions for the nonlinearity. This
method is especially effective when the number of particles, n, is sufficiently large.

We give a heuristic derivation of the self-consistent approximation for the
Schrédinger equation above. (See [36] for details and references to rigorous results.)
First, we observe

Proposition 1 The Schridinger equation is the Euler-Lagrange equation for sta-
tionary points of the action functional

S(¥) :=/{—1m<¢/, W) — (¥, H,W)}dr, (15)

Now, for bosons, we consider the the action functional (15) on the space (not
linear!)

(W= Tyly € H' (RY)), (16)

where (®] ) is the function of 3n+-1 variables defined by (&7 ) (x1, ..., xp, 1) 1=
Y(x1,1)...¥(xy, t). For fermions, we take

(W i=Aly; s e HR)Vi=1,...,n) (17)

Here (A7) (x1, ..., Xp, t) := det[y; (x}, )] is the determinant of the n x n matrix
[Wi(xj, )], called the Slater determinant.
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We begin with bosons. We have the following elementary result:

Proposition 2 Let |y||> =n — 1 ~ n and Sy (¥) = ";1 S(®7v) (‘H’ stands for
the Hartree). Then we have

SH(w://{—Imw, B — VY2 — VI P
- ;li/f|2v>k|1/f|2}dxdt. (18)

We see that the quadratic terms on the r.h.s. of (18) are of the order O (n), while the
quartic ones, are O (vn?) The regime in which these terms are of the same order,
O (n?), i.e. for which, v = O(1/n) is called the mean-field regime.

The Euler-Lagrange equation for stationary points of the action functional (18)
considered on the first set of functions is

iaa‘ﬁ’ = (h+vx Y1)y, (19)
with the normalization ||/||> = n — 1 ~ n. This nonlinear evolution equation is
called the Hartree equation (HE).

If the inter-particle interaction, v, is significant only at very short distances (one
says that v is very short range, which technically can be quantified by assuming
that the “particle scattering length” a is small), one replaces v(x) — 4mwad(x) and
Equation (19) becomes

0y
iy =hy KRy, (20)
where k := 4ma (with the normalization ||¥||> = n). This equation is called

the Gross-Pitaevski equation (GPE) or the nonlinear Schrodinger equation. It is
derived using the Gross-Pitaevski approximation to the original quantum problem
for a system of n bosons. The Gross-Pitaevski equation is widely used in the theory
of superfluidity, and in the theory of Bose-Einstein condensation (see [36, 41] and
references therein).

Proofs of the local and global existence for (19) and (20) can be found in [19, 21,
55].

2.1.1 Properties of the Hartree and Gross-Pitaevski Equations
We say that the map T on a space of solution is a symmetry of an equation iff the

fact that ¢ is a solution of the equation implies that Ty is also a solution. It is
straightforward to prove the following
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Proposition 3 The Hartree and Gross-Pitaevski equations have the following
symmetries

1. the time-translations, ¥ (x,t) — ¥ (x,t +5), s € R,
2. the gauge transformations,

U(x, 1) = Y (x, 1), a € R,

3. for V. =0, the spatial translations, ¥ (x,t) = ¥ (x + y,t), y € R3,
4. for V = 0, the Galilean transformations, v € R3,

.01 v2
Yx, 1) — QU Dy (x — vt ),

5. for V spherically symmetric, the spatial rotations, ¥ (x,t) — ¥ (Rx,t), R €
0(3),

As the result of the time-translational and the gauge symmetries, the energy and
the number of particles functionals

W)= [ {I99i + Vvl + G| ax. @

where G(|¥/|?) := }|¥|?v * |y|? for HE and G(|¢|?) := 1« |y|* for GPE, and

N = / Iy l2dx.,

are independent of time, 7. Moreover, for V = 0, the field momentum,

P(y) :=/&(x,t)(—ivx>w(x,t)dx,

and, for V spherically symmetric, the field angular momentum,

L) I=/lﬁ(x,t)(x A=V (x, Ddx,

are conserved. These conservation laws impose constraints on the dynamics leading
to qualitative understanding of possible scenarios and are used in the proofs of the
global existence, existence and stability of stationary solutions and traveling waves;
for definitions and a review see [36].

We also note that HE and GPE are Hamiltonian systems (see Section 19.1 of
[36D).
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2.2 Particles Coupled to the Electromagnetic Field
We start with the action
S) = // {=Im(y, 3, y) (22)
— VY = VYl = Gy P Jdxdr, (23)
where G(|y|?) is given after (21), and use the principle of minimal coupling in
which one replaces the usual derivatives 9, and V by covariant ones, d;¢ = 0; +ie¢

and V, = V — jea, where ¢ and a are the electric and magnetic potentials and e is
the electric charge of ¥, and adds the action,

Sem(a, ¢) :://[|a,a+v¢|2—|cur1a|2}dxdt,

of the the electro-magnetic field (for the latter, see e.g. [36], Sections 19.1.1
and 19.6). Then, assuming the external potential V = 0, the total action becomes

S, a, ¢) :=ff{—1m<w, doV) — IVa¥r > — G|y Jdxdt
+ Sem(a, ¢). (24)

for a triple (¢, a, ¢) : R?Y —» C x R? x R, of complex and real functions and a
vector field. The Euler-Lagrange equations for this action are given by

3

iV = by + 8y P, 250)
—8;(0;a + V¢) = curl* curla — Im(l/_fVal/f), (25b)
—div(d,a + Vo) = e|y|?, (25¢)

where hyy == —Ag+ep+V,with A, = Vg, the covariant Laplacian, g(s) = G'(s)
and the vector quantity J (x) := Im(y V, ) is the electric current, while |1/|? is the
charge density (remember we omit the charge of the particle), so that the second and
third equations are Ampere’s and Gauss law part of the Maxwell equations.

Moreover, curl® is the Lz—adjoint of curl, so that for d = 3, we have curl* = curl
and for d = 2, curla := d1ap — da; is a scalar, and for a scalar function, f(x),
curl* f = (82.f, =91 f) is a vector.

It is straightforward to prove that (25) are the Euler-Lagrange equations for
action (24). Now, in addition to translation and rotation invariance (if V =
0), equations (25) are invariant under the local gauge transformations: for any
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sufficiently regular function x : R x R — R,

Tfauge D (Y(x, ), a(x, 1), p(x, 1))
> (@ XDy (x, 1), alx, 1) + Vex (x, 1), p(x, 1) — d x(x,1)). (26)

Using this gauge invariance, we can choose x so that a and/or ¢ satisfy certain
additional conditions. This is called gauge fixing. For instance, we can choose x
so that diva = 0 (the Coulomb gauge), or ¢ satisfies ¢ = O (the temporal gauge).
Both conditions break gauge invariance. The gauge fixing which preserves the gauge
invariance is the Lorentz (or radiation) gauge

diva + d,¢ = 0.

Note that in the Coulomb gauge, diva = 0, Eq. (27b) becomes the familiar Poisson
equation, —A¢ = e|yr|>.

Neglecting in (25) the magnetic field produced by changing charge distribution
(and the electric field), we arrive at the Schrodinger-Poisson system

0
i af = he¥ + g(IV1)Y, (27a)
— A¢p = e|y )%, (27b)

where hy == —A+ep+V
One can derive (25) from the many-body Schrddinger equation coupled to the
quantized electromagnetic field.

3 The (Generalized) Hartree-Fock Equations

3.1 Formulation and Properties

The Euler-Lagrange equation for stationary points of the action functional (15)
considered on the Hartree-Fock states, (17), is a system of nonlinear, coupled
evolution equations

OV 2 7

N IR CER AR (28)
1 1

where, recall, h := —A + V, for the unknowns 1, . .., ¥,. This system plays the

same role for fermions as the Hartree equation does for bosons. Equation (28) is

called the Hartree-Fock equations (HFE).
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Properties of HFE The Hartree-Fock equations are

1. invariant under the time-translations and gauge transformations, and, for V = 0,
the spatial translations, ¥;(x) — V¥;(x + y), y € R, and the Galilean
transformations, v € R3, and, for V spherically symmetric, the rotations.

2. invariant under time and space independent unitary transformations of

{’»”1» ceey w}’l}
3. a Hamiltonian system (see Sections 24.6 and 24.7 of [36]).

Again, similarly to HE, as the result of the time-translational and the gauge
symmetries, the energy and the number of particles functionals

1
E®W) :=/ DGVl + Vivi) + Qi Q_1vil)
1
-5 [ = E v oidy)ax (29)

N@) =) /R WilPdx (30)

are conserved, similarly, for linear and angular momenta. Moreover, HFE conserve
the inner products, (¥, ¥;), Vi, j. For arigorous theory, see [8, 20, 42, 44, 45, 47].

The item (2) above shows that the natural unknown for HFE is the subspace
spanned by {v;}, or the corresponding projection y := ), [;)(v;|. HFE can be
rewritten as an equation for y:

Oy
i =lhy.yl (3D

where h, 1= h+v % py, +ex(y), with p, (x) ==y (x,x) =), |¥i (x)|? and ex(y)
is the operator with the integral kernel

ex(y)(x, y) == —v(x = Py (x,3) = = D Fi)vx — (). (32)

Recall that A(x, y) stands for the integral kernel of an operator A.

This can be extended to arbitrary non-negative density operators y satisfying (for
fermions) y < 1, and leads to a new class of nonlinear differential equations. (The
properties 0 < y and y < I as well as all eigenvalues of y as conserved under the
evolution.)
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Finally, note that the energy and the number of particles in the new formulation
is given by

1
E(y) :=Tr((h + Sk Py)Y) + Ex(y), (33)

N(y) :=Try =/py, (34)

where, recall, h := —A+V, p, (x) := y(x,x) and Ex(y) := —;Tr(yvtiy), where
viy is the operator with the integral kernel v(x — y)y (x, y). Note that

Tr((v * py)y) = /pyv * pydx = //py(x)v(x —y)py(y)dxdy,

Tr(yvity) = / / v — Wy (x, ) Pdxdy.

It is straightforward to show that that equations (28), (29) and (30) can be rewritten
as (31), (32), (33) and (34), respectively.

Note that the HE can be also formulated with y being a rank one projection
times n and extended to operators y with no constraint on the size. In this case, the
exchange terms ex(y) and Ex(y) should be omitted from the definition of 4, and
the energy.

y is called the (one-particle) density operator and y(x,x) (or y(x,x,1)) is
interpreted as the one-particle density, so that Try = [y (x,x)dx is the total
number of particles. It should satisfy

0O<y=y*"(=D (335)

where the second inequality is required only for fermions. The HF flow preserves
these properties.

3.1.1 Exchange Energy Term

We extend Eq. (31) by allowing different exchange terms in the definition of 4,
rather than just (32). Specifically, we let the exchange energy term, ex(y), to take
the following forms:

— ex(y) := 0 for the Hartree (or reduced Hartree-Fock, if y < 1) model,

— ex(y) := —vf y for the Hartree-Fock case and

— ex(y) is a local function, ex(y) = xc(py), of the function p, (x) := y(x, x),
say, coming from Ex(p) = —c¢ f p*/3, in the density functional theory (DFT).

We call (31) with a general exchange energy term, ex(y), the generalized
Hartree-Fock equation (gHFE).
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3.2 Static gHF Equations

Clearly, y, is a static solution to (31) iff y solves the equation

[hy,y]=0. (36)

For any reasonable function f and u € R, solutions of the equation

y = f(B(hy — W), (37)

solves (36). Under certain conditions, the converse is also true. (The reason for
introducing the parameters 8 = 1/T, u > 0 (the inverse temperature and chemical
potential) will become clear later.)

Under certain conditions on f satisfied by our choice below, the chemical
potential p is determined by the condition that Try = n.

The physical function f is selected by either a thermodynamic limit (Gibbs
states) or by a contact with a reservoir (or imposing the maximum entropy
principle). For fermions, it is given by the Fermi-Dirac distribution

foy =+, (38)
and for bosons, by the Bose-Einstein one
fy = -nh. (39)

(One can also consider the Boltzmann distribution f(A) = e ) Inverting the
function f and letting f~! =: s, we rewrite the stationary gHFE as

hy—B7'5'(y) =0, (40)
Here, recall, by, :==hy — = —-A+V +ex(y) —pnand 0 < B < oo (inverse
temperature) and © > 0 (chemical potential). It follows from the equations s’ =
f~! and (38) that, up to a constant, the function s is given by
sA) =—@AInA+ (1 —21)In(1 - 1)), 41
for fermions, and by

s(A) = —(AIna — (1 4+ 1) In(1 + 1)), 42)

for bosons, so that for fermions, we have

LA
Sl =~ " . (43)
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3.3 Coupling to the Electromagnetic Field

We couple the gHFE to the electromagnetic field. We assume that the particles are
carry the unit charge density e = —1, so that the charge of density is —p,,.

As before, we use the principle of minimal coupling assuming the inter-particle
potentials and external potentials are of the electromagnetic nature. This gives the
system of self-consistent equations for y and the vector and scalar potentials a and

¢b:

latV = [h¢,a,}/7 V], (44)
—div(da + Vo) = 47 (k — py). (45)
—0,(8ra + Vo) = curl* curla — j(y, a), (46)

where « (x) is an external (positive) charge distribution, j(y, @) is the current given
by j(y,a)(x) := —4n[—iVa, y14(x, x), with [A, Bly := AB + BA,

hgay =—2Aa—¢+ex(y). (47)

Since ¢ = —1, we have that V, = V +ia and A, = Vaz. We call (44), (45), (46)
and (47) the gHFem equations.

We will discuss symmetries of this system in a more general context later on.
Here we only note briefly that, in addition to the rigid motion symmetries, it has the
gauge symmetry which did not make its appearance so far and which plays a central
role in quantum physics.

As above, the energy and the number of particles are conserved and are given by

E(y,a,$) :=Tr(hay) + Ex(y) + Eem(a, ¢), (48)

N(y) :=Try = / Pys (49)

where h, := —A, and E.n(a, @) is the energy of the the electro-magnetic field,
given by

Eem(a, ¢) = 811 f {|8ta LV + |curla|2]dx. (50)

The conservation of N is obvious. To prove the conservation of E, we use the
definition j := —47'rdaTr((—Aa)y) and the relation d Ex = ex, to compute

1
O (Tr(hay) + Ex(y)) = Tr(ha,yy) — Aoy /jél &1Y)
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where h, , = —Aq +ex(y). By (44)and hy,y = hy o,y + ¢, we have Tr(hy,, y) =
Tr(¢y) = [ oy, this gives

1
MHMW%HMWD=/¢M—4n/M- (52)

Next, using that £ = —a — V¢, we compute

0 Eem(a, ¢) = 4; / [— (a+Ve) - E +curl* curla - a]dx. (53)

Combining the last two relations and and integrating by parts gives

1 .
WE(y.a,¢) =i / (¢4 p, + divE)
—(E+j —curl* curla)d). (54)

Now, using (45) and (46) (div E = 47 (x — py), and E = curl* curla — j(y,a))
yields 0; E(y, a, ¢) = 0. OJ

Above, we assumed the external magnetic field is zero.

To describe crystals we take « to be either periodic (crystals) or uniform (jellium).

If k and p, are .Z-periodic, then integrating (45) over a fundamental cell, £2, of
the lattice ., we arrive at the solvability condition (the charge conservation law)

/IOVZ/ K. (55)
2 2

3.4 Static gHFem Equations

It is easy to see that (y,a, ¢) is a static solution to (44), (45) and (46) if and
generically only if (y, a, ¢) solves the equations

vy = fBhgay —n). (56)
A = 4n(k — py). 57)
curl* curla = j(y, a), (58)
where, recall, hy 4, = —As — ¢ + ex(y) and f is a sufficiently regular function

f. Physically relevant f are given by either (38) or (39), depending on whether the
particles in question are fermions or bosons. (Remember that the unit charge of y is
e=—1.)

To this we add the solvability condition (55), which determines the chemical
potential .
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3.4.1 Free Energy

The static gHF equations (56), (57) and (58) arise as the Euler-Lagrange equations
for the free energy functional

Fg(y,a) = E(y,a) = B~'S(y) — uN(¥), (59)
where S(y) = —Tr(y Iny + (1 — y) In(1 — y)) is the entropy, N(y) := Try is the

number of particles and E(y, a) is the static part of energy (48), with ¢ expressed
in terms of p,, by solving the Poisson equation (57) for ¢,

1
E(y,a) =Tr((=A)y) + ) /(K — p)AT (=) (i — py)dx

+ ! /dx|cur1a(x)|2+Ex(y). (60)
8w

This, not quite trivial, fact is proven in [22]. (For a formal statement in a more
general situation see Theorem 4 below.)

We demonstrate informally that (56), (57) and (58) are the Euler-Lagrange
equations for (59). By the definitions of E(y, a), Ex(y) and S(y), we have

dyE(y,a)§ = Tr(hy§) (61)

and

dyS(y) =Tr(s(y)é), (62)

which implies (56) with ¢ given by (57). Next, using the definition j, :=
—47d,Tr((—Aq)y), we find

1
d.E(y,a)a = A / (Ja — curl* curla) a, (63)
b

which yields (58).

3.4.2 Electrostatics

We describe the important case of electrostatics here, i.e. the time-independent case
with a = 0. In this case, Egs. (56), (57) and (58) become

y = f(Blhg,y —w)), (64)
Ap =4n(k — py), (65)
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where hy , := —A — ¢ + ex(y), which after solving Eq. (57) for ¢, gives
y = f(B(hy — ), (66)
where hy, == —A — ¢,, + ex(y), with ¢, = A~ 4m(k — p). To this we add the

solvability condition (55), which determines the chemical potential p. Moreover,
we associate with the charge density, k — p, the potential

¢p = 4 (=) e — p), (67)

satisfying the Poisson equation (65).
The energy and free energy for (66) are given by

E(y) :=Tr((=4)y) (68)
1

t, /(K — py) (AT (= 2) " (i — py) (X)dx + Ex(y), (69)

Fg(y) = E(y) — B7'S(y) — uN(y). (70)

4 Density Functional Theory

The starting point of the (time-dependent) density functional theory (DFT) are the
equations (44), (45) and (46) but with the exchange term ex(y) is taken to be of
the form xc(p, ), where xc(2) is a local function combining contributions of the
exchange and correlation energy. For the former one usually take the expression
—cp*/3, going back to Dirac, and the latter is found empirically. This simple but
profound modification opens an incredible computational potential of the theory.

We concentrate on the simplest case of electrostatics. In this case Eq.(66)
becomes

v = fBHp, — 1), (71)

where f is given by (38) and, with ¢, = (—A) M (k — p) =1 v* (k — p),

hy = —A— ¢, +xc(p). (72)
Equation (71) is an extension of the key equation of the DFT — the Kohn-Shan
equation — to positive temperature 7 = 1/8 > 0. The energy and free energy
for (71) are given by

1
E(y) :=Ti((=4)y) + 5 /(Py — KV * (py — &) +Xe(py), (73)
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Fg(y) := E(y) — B7'S(y) — uN(p). (74)

Let den be the map from operators, A, into functions p4(x) = den[A](x) :=
A(x, x) with A(x, y) being generalized kernel of A (‘den’ stands for ‘density’).
Taking the diagonal of (71), we arrive at the following equation for p

p =den[f(B(hy — )] (75)

Equation (75) gives an equivalent formulation of the Kohn-Sham equation (71).
For « (and p) Z-periodic, we add to equation (75) the charge conservation law
(cf. (55)), which determines the chemical potential 1,

/,0=/K, (76)
2 2

where £2 is a fundamental cell of the lattice .Z.
Conversely, starting from (75) and (76), we define the potential ¢ =
(=) 47k — ©) produced by the charge distribution k — p. Then ¢ satisfies

— Ap = 4n(k — p). (77)

Note that because of the minimal coupling, there is no (pure) DFT theory when
the system in question is coupled to the magnetic field.

4.1 Crystals

Here one deals with the electrostatics, (64), or, in the DFT context, (71) (or (75)).
for an ideal crystal, one assumes that k' = kper is periodic w.r. to some lattice Z,
representing an .Z periodic charge distribution of crystal ions. An example of such
an Kper is

Kper(¥) = ) Ka(x = 1). (78)
le?

where k, denotes an ionic (‘atomic’) potential.

The simplest special case of periodic « is k constant. Such a system is called the
Jjellium. For k = «je| constant, (75) has the solution (pje1 = Kijel, ijel)- Indeed, (76)
reduces to pje] = kjel and (75) to one equation for x, which has a unique solution
for p near pjer [23].

The existence (without uniqueness) of a certain periodic, trace class solution
to equation (71) (or (75)) with certain class of density terms xc is obtained in
[1] via variation techniques. (See [17, 18] for earlier results for the Hartree and
Hartree-Fock equations. We present a somewhat different proof of the latter result
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in Sect. 7.) The next result proven in [23], establishes, under more restrictive
conditions, uniqueness and quantitative bounds needed for the next result.

Let £2 be a fundamental cell of the lattice . and |£2| denote its area. Denote by
ng‘er(Rd) the locally Sobolev space of .Z-periodic functions with the inner product
given by that of H®(£2). We have:

Theorem 1 (Ideal crystal) Let T > 0, d =2 or 3, B = 1/T be sufficiently large
and |82| be sufficiently small. We assume that

1. Kper is the £ —periodic background charge distribution s.t.
(a) Kper € H[fer Sfor s > 2 and||kpe|| us is sufficiently small;
(b) Kjer = | _(12| [ Kper and Kper = Kper — Kjel Satisfy
[xc(kjeD)| < w’}fejl and kpe, € Hpye, for s > 2, where wq is the volume of the
d-sphere;
2. xc € W fors > 2 and ||xc||ws. is sufficiently small.
Then the Kohn-Sham equation (75) has a unique solution (pper, fhper) € Hl‘;er(Rd) X
Ry satisfying

| oper — Kper ll 1 S ||Kl;er||nge,, (79)
| tper — jetl S ichel s, (80)

where (pjel = Kiel, Mjel) is a solution to (75) with k = Kijel.

Proof (Idea of proof of Theorem 1) We write (75) as a fixed point problem

p =2, ), (p,p) :=den[f(Bh, — )l (81)

To this we add the charge conservation law (76) with £2 a fundamental cell of .Z.
To handle the constrai_nt (76), we let P denote the projection onto constants,
Pf = \Sl2l fg f,andlet P = 1 — P and split (81) into two equations

p'=Po(p' +p", 1), (82)
o =Pd(p +p", 1. (83)

where p’ == Pp = \-}ZI Jopand p” = Pp = p — p'. By the constraint (76),
we have p/ = |_(12‘ fo «. Hence (82) and (83) are equations for 4 and p”. We

first solve (83) for p” by a fixed point theorem and then (82) for w, by an implicit
function argument.

A central open problem here is to determine whether the (locally) free energy
minimizing solution breaks spontaneously symmetry or not. The spontaneous sym-
metry breaking means that p,, has lower (coarser) symmetry than « (‘spontaneous
symmetry breaking’).
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4.2 Macroscopic Perturbations

A key problem in solid state physics is derivation of an effective, macroscopic
equations for crystals from microscopic ones. In the full generality this problem
is far from our reach. However one can reasonably hope to derive such equations
starting from the DFT microscopic theory.

We consider macroscopic perturbations (say, local deformations) of ideal crystals
and the dielectric response to them. At the first step, one would like to prove
existence of solutions under local deformation of crystals. The appropriate spaces
for our analysis are the homogenous Sobolev spaces:

H'(RY) = {f 1 :=/|p|25|f|2(p> < oo} : (84)

We note that H* and H~* are dual spaces under the usual L2(RR?) pairing (-, -) and
that H®, unlike H*, contains only s-order derivative in its norm.
We state some of the assumptions used below. To begin with we assume d = 3.
[A1] (regularity of «)
Kk = Kper + &', Where
Kper 18 Z-periodic and satisfies

kper € Hoo (R)?

and ' € (H> N H ) (RY),

[A2] (regularity of xc)
xc e ¢* (R4) together with its derivatives
is bounded near the origin as
|xc(L)| < €A for € small.
Since «’ is not periodic, constraint (76) does not apply here. Let (poper., fper)
be the periodic solution to the Kohn-Sham equation (75), with the . —periodic

background charge density «per given in Theorem 1. The next result shows that the
periodic solutions of Theorem 1 are stable under local perturbations.

Theorem 2 (Stability under local perturbations) Ler d = 3 and the constraints
of Theorem 1 be obeyed and assume [Al] and [A2]. In addition, let ||k || -2 < 1
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and ||k'||y2 < 1. Then the Kohn-Sham equation (75), with k = kper + k' and
W = Uper, has a unique solution p satisfying

P = pper + 0 with p' € (H* N H™?)(R?) and (85)

||P/||H2m-1*2 S ||K/||H2mH72- (86)

Theorem 2 is proven in [23]. Similar results for T = 1/8 = 0 were proven in
[1, 11,12, 15, 17] (see [14, 39] for very nice reviews).

Dielectric response We consider Eq. (75) in the macroscopic variables at 1 <<
B < oo. Let L5 := 5.2 be a microscopic crystalline lattice (on the microscopic
scale 1) with a fundamental domain 25 centered at the origin. Let ngr be
%5 —periodic microscopic charge distribution of the form

Koer (¥) = 8 Yicper (87" x) (87)

where Kper 1s a % —periodic function on R9. Note that under this scaling, the Ll-
norm is preserved.

We consider a macroscopically perturbed background charge distribution (writ-
ten in the macroscopic coordinate x)

ks(x) = /cger(x) +«'(x), (88)

where «/(x) € L*(RY) is a small local perturbation living on the macroscopic
scale (1), producing macroscopically deformed crystal. To study the macroscopic
behavior, we rescale the Kohn-Sham equations (75) to obtain

ps = den[ frp(B(hg; — )], (89)

where hy; = —8%2A — 8¢s(x) with the potential ¢ given by

¢s5 i= (—A) (ks — ps) - (90)

Given ngr’ Theorem 8 implies that (89) has a Zs-periodic solution pger =

873 pper(81x), with associated potential ¢3er = 7 'pper(6~1x). We list additional
assumptions needed for the next and key result.

Let hper = —A — per. Let $(R3 ) denote the size of the spectral gap of hper at u
on LZ(R?) and &(£2) denote the size of the spectral gap of hper at p on L%(£2) with
periodic boundary condition.

[A3] (spectral gap condition)

5
£:=ERY) - (56 > 0.
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[A4] (scaling condition)
8«1 andp > Ce™! In(1/6) for C large.
We now present the main result of [23] on the derivation of the effective Poisson
equation:

Theorem 3 Suppose that d = 3 and fix a solution pper as above. Let assumptions
[AI]-[A4] hold. Then the rescaled Kohn-Sham equation (89), with background
charge distribution defined in (88) and (. = (iper, has a unique solution ps in
L2+ H~' 4+ H~2 with associated potential ¢ of the form

per
¢5 = ¢ger + ¢o + ¢rem,1 + ¢rem,2s (91)

where ¢ger is the potential associated to the periodic solution pger, Grem,i> | = 1,2,
obey the estimates

prem. 1l g1 3y < 8% and llprem2ll 2 w3y S 8 (92)

and ¢ satisfies the equation
—divegVego = «’ (93)

with a real positive 3 x 3 matrix, €q, given in (94), (95), (96) and (97) below.
A similar result for T = 1/8 = 0 was proven in [13, 14] (see also [27-29]).
Remark 1

1. We note that in general & (R3) < £(£2). One sees this by passing to Bloch-Floquet
decomposition of Aper and noting that & (R3) is the inf of all spectral gaps of the
fiber decomposed operators on L2(£2).

2. The number 2 comes from Hardy’s inequality. In dimension d = 3, Hardy’s
inequality is || f || Lo (r3) < IV fllL2r3)- We note that if p = 6, then its conjugate

: 6
isqg=3.
3. The constant C appearing in [A4] can be taken to be any number C > 100.
4. The 3 x 3 matrix €q in (93) is of the form
€0 =13x3 + €, (94)
1 . .
E(/) = 12 TTLZ(Q) frger(z)(_lV)”per(z)(_lv)”per(z) (95)

1
— e [FEpre (96)
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where rper(z) = (z — hper)il, hper = —A — ¢per + XC(Oper), and

p1 = 2xp3\ o+ (—iV) den 7§ Toer (2) (=i V) per(2) - (97)

Here xp denotes a characteristic function of the set Q and £2* stands for a
fundamental cell of the reciprocal lattice.

S Hartree-Fock-Bogoliubov Equations

For appropriate spaces, it is shown in [3] that, for the Hamiltonian H given in
Eq. (7), ¢; satisfies (12) if and only if the triple (¢, ¥, «) of 1*'- and 2M_order
truncated expectations of ¢;, defined by (cf. (10))

¢(x, 1) == ¢ (Y (x)),
y (3, D) =gy () Y (O] — @ [P* (DT el¥ ()], (98)
a(x,y, 1) =gy (x) (NI = elv ()] e v (],

satisfies the time-dependent Hartree-Fock-Bogoliubov equations

i =h(y)o + 61’6 + k(@) , (99)
iy =[h(y?). y1- + k@), a]_. (100)
i =[h(y?), aly + [k(@®), y1¢

+ k(@?), (101)

where the subindex 7 is not displayed, [A1, A2]+ = A1A2T/* + A2A1T/*, y? =
Y +19)(¢| and a? := a + |$)(¢], and

h(y)=h+v=xd(y)+viy, (102)
k(o) =via, d@x):=alx,x). (103)

In these equations, v ff « is the operator with the integral kernel v f o (x; y) 1= v(x —
»a(x; y).

Here, ¢ describes the Bose-Einstein condensed atoms, y, thermal atomic cloud
and o, the superfluid component of the atomic gas.

For the pair potential v(x — y) = gé(x — y), the HFB equations in a somewhat
different form have first appeared in the physics literature; see [26, 35, 51] and, for
further discussion, [3, 4].

Note that if we drop the third terms in (99) and (100), then we arrive at,
essentially, the Gross-Pitaevski and Hartree equations, respectively. If we drop the
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last term on the r.h.s. of (101), then equations (99), (100) and (101) have solutions
of the form (¢, 0,0) and (0, y, 0), where ¢ and y solve the Gross-Pitaevski and
Hartree equations, id;¢; = h¢y + |¢,|2¢, and i9;y; = [h(yr), y1]—, respectively.
The last term on the r.h.s. of (101) prevents the 100% condensation.

Equations (99), (100) and (101), with the last term on the r.h.s. of (101) dropped,
form the no quantum depletion model. Equations (99) and (100), with « = 0, are
called the two-gas model.

Given appropriate spaces, here are some key properties of (99), (100) and (101)
at a glance [3, 4]:

(A) Conservation of the total particle number: If ¢; solves Eq. (12) then the number
of particles,

N @ty Vi, 01) = @i(N), (104)

where N is the particle-number operator, is conserved.
(B) Existence and conservation of the energy: If ¢, solves (12) then the energy

& (n(en) = ¢ (H) (105)

is conserved. Moreover, & is given explicitly by the expression

1
E@,y, @) = Trlh(y?) + blI$) (9lly + 2b[J/])/]
+ ; / v(x — Ya?(x, y)|Pdxdy . (106)

(C) Positivity preservation property: If I' = (g 1_‘,1_?) > 0 atr = 0, then this holds
for all times.

(D) Global well-posedness of the HFB equations: If the pair potential v is in the
Sobolev space WPl with p > d, and satisfies v(x) = v(—x) and the initial
condition (¢, yo, ®p) is in a certain mixed functional — operator space and
satisfies (gg 11(370) > 0, then the HBF equations (99), (100) and (101) have a
unique global solution in the same space.

6 Bogoliubov-de Gennes Equations

6.1 Formulation

We assume for simplicity that the external potential is zero, V = 0. Since the
Bogoliubov-de Gennes (BdG) equations describe the phenomenon of superconduc-
tivity, they are naturally coupled to the electromagnetic field. We describe the latter
by the vector and scalar potentials a and ¢.
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It is convenient to organize the operators y and « (see (10)) into the self-adjoint
matrix-operator

n::(”* “_). (107)
af 11—y

Assuming y carries electric charge in units of —1 (i.e. the charge density is —p,,
the time-dependent BdG equations can be written as (see e.g. [22, 24, 25])

i =[A(n, a), nl, (108)

hya via

Wlth A(nv a) = (vﬁo_l —hya
defined through the integral kernels as v o (x; y) := v(x — y)a(x; y), and

), where v(x) is a pair potential, the operator v ff « is

hya = ha +v % py —VEY, py(x) = y(x: ). (109)

Above h, = —A, and the terms v * p, and —v iy describe the self-interaction
and exchange energies. Equation (108) is coupled to the Ampere’s law part of the
Maxwell equations

—0;(8;a + V@) = curl* curla — j(y, a), (110)
where ¢ is the scalar potential and j (y, a) is the superconducting current, given by

jy,a)(x) :=[—iVg, y]1+(x, x).

Here, recall, [A, B]+ := AB + BA.
Finally, recall that y and « satisfy (11). In fact, one has the stronger property

0<n=n"<L (111)

Remarks

(1) In general, h, might contain also an external potential V (x), due to the
impurities.

(2) For o = 0, Eq.(108) becomes the time-dependent Hartree-Fock equation (44)
for y. Thus the HFE is the special diagonal case of the BdG equations.

(3) We may assume that the physical space is either R or a finite box in R? and
y and « are gauge periodic operators trace-class and Hilbert-Schmidt operators
w.r. to trace per volume. For a detailed discussion of spaces see [22].

(4) One should be able to derive (108) and (110) from hamiltonian (7) coupled to
the quantized electro-magnetic filed.

Connection with the BCS theory Equation (108) can be reformulated as an
equation on the Fock space involving an effective quadratic hamiltonian (see [3]
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for the bosonic version). These are the effective BCS equations and the effective
BCS hamiltonian (see [24, 25, 38]).

6.2 Symmetries

The equations (108), (109) and (110) are invariant under the gauge transformations
and, if the external potential V is zero, also under translations and rotations, defined
as

T (v, a,a, 9) > (eXye ™ e XaeX a+Vyx, ¢ —dx), (112)
for any sufficiently regular function x : RY — R, and
T (y,a,a,¢) = (Uny U, ', UpaUy Y, Upa, Upd), (113)
forany h € R,
T : (v.oa,¢) — UpyU, " UpaU, ', pUpa, Upg), (114)
for any p € O(d). Here Uy and U, are the standard translation and rotation

transforms Uy, : f(x) = f(x+h)and U, : f(x) — f(p_lx). In terms of 7,
say the gauge transformation, TXgauge, could be written as

~ ~ “ ix
n— TEEnTF )™, where TF"¢ = <e0 eol.x> . (115)

Notice the difference in action of this transformation on the diagonal and off-
diagonal elements of 7.

The invariance under the gauge transformations can be proven by using the
relation

TEE (T ™ = ¢ (T (@57,
proven by expanding g’(n) (or g B H,,)), and the gauge covariance of A(7n, a):
(TN AT, @) = A@, a). (116)
The gauge symmetry is not a physical one, but rather an invariance of the solution
space (or the covariance of the equations) under ‘reparametrizations’. Therefore the

natural objects are gauge-equivalent classes of solutions. This leads to the notion of
gauge or magnetic translations (mt, below) and gauge or magnetic rotations. The
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former are given by the transformations

Ths : (0, @) — (TEMEYTITI™ (3, a), (117)
for any s € R?, where Xs(x) := x - ap(s), where ap(x) is the vector potential with
the constant magnetic field, curl @, = b. The invariance under these transformations

will be called the magnetic translation (mt) symmetry. The latter is given by the
transformations

Top : (0. a) — (T ¥ ™' TS (0, a). (118)
for p € O(d). We remark that in general T,; and Tj, are only projective
representations of .Z and O (d), respectively.

Finally, the equations (108), (109) and (110) are invariant under the transforma-
tions (see [2])

n—1—n and n — —J*nJ (the particle-hole symmetry).

01

Here J .=
ere (_10

) . The second relation follows from (the particle-hole symmetry)

J*AT = —A. (119)
The form (107) of the matrix operator 7 is characterized by the relation
J*nd =1-1. (120)

By the above, the evolution preserves this relation, i.e. if an initial condition has this
property, then so does the solution.
6.3 Conservation Laws

The Bogolubov-de Gennes equations (108), (109) and (110) form a hamiltonian
system with the conserved energy functional

1 1
E(,a) = Tro(hay) + 2Trrz (v py)y) — 2Tr:z((vti7/)7/) (121)
1 * 1 2
+ Tre(a* (vie) + /dxlcurla(x)l . (122)
2 2 Jo

where £2 is either R? or a fundamental cell of a macroscopic lattice in R? (see
Sect. 6.6).
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The energy E(n, a) can be derived from the total quantum hamiltonian, Hicy,
of the many body system coupled to the quantum electromagnetic field, through
quasifree reduction as E(n, a) := ¢(Hiot), where ¢ is a quasifree state in question
(see (10) and [3] or [38]). Its conservation law is related to the conservation of
the total energy ¢ (Hio). (The combinatorial coefficients of each term result from
restriction to SU (2) invariant states and peeling of spin variables (cf. [38]).)

Conservation of (121)—(122) can be also proven directly similarly to the proof of
the conservation law of (48).

6.4 Stationary Bogoliubov-de Gennes Equations

We consider stationary, rather than static, solutions to (108) of the form
m o= T5, (123)

with n and x = p independent of ¢ and a independent of  and ¢ = 0. We have

Proposition 4 Equation (123), with n and ¥ = w independent of t, is a solution
to (108) iff n solves the equation

[Aga, n] =0, (124)

10

where Ayq = Ayay = A, a) — pS, with § := <O |

), and is given explicitly
hyg — 1 vio
Apg =7 - , 125
" ( vie’* —hyaw) =

with hy, ;= —Aq + v * p, — vy and, recall, via is an operator with the integral
kernel v(x — y)a(x, y).

Proof Plugging (123) into (108) and using that for x independent of x,
o = iXT)%auge[Sv nl
and (116), we obtain
— x[S.nl =1[A@, a),n]. (126)

Since x = u, the latter equation can be rewritten as (124).

For any reasonable function f, solutions of the equation

n=f(BAp), 27
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solve (124) and therefore give stationary solutions of (108). Under certain condi-
tions, the converse is also true.

The physical function f is selected by either a thermodynamic limit (Gibbs
states) or by a contact with a reservoir, or imposing the maximum entropy principle.
It is given by the Fermi-Dirac distribution (38), i.e.

f)y =1+ (128)

Inverting the function f, one can rewrite (127) as BA;, = ). Let 7! =
s’. Then the static Bogoliubov-de Gennes equations can be written as

Aga = B7's' () =0, (129)
curl* curla — j(y,a) = 0. (130)
Here 0 < B < oo (inverse temperature) and s(n) := —(nIlnn + (1 — n) In(1 — n))
(see (41)).
Remarks

(1) One can express these equations in terms of eigenfunctions of the operator A,
which is the form appearing in physics literature (see [2, 3]).

(2) If we drop the direct v * p, and exchange self-interaction —vfly, then the
operator hy,,, and therefore A;, are independent of y and consequently
Eq. (127) defines y in terms of « and a:

Nga = f(BAaa), Where Agyq = Ana|y:0- (131)

(3) For (127) to give n of the form (107), the function f(h) should satisfy the
conditions

f(h) = f(h)and f(—h) =1— f(h). (132)

The function f (k) given in (128) satisfies these conditions. From now on, we
assume f (h) has explicit form (128).

6.5 Free Energy

The stationary Bogoliubov-de Gennes equations (129) and (130) arise as the Euler-
Lagrange equations for the free energy functional

Fg(n,a) := E(n,a) — B~ Si(n) — uN (), (133)

where S(n) = Trs(n) is the entropy, N(n) := Try is the number of particles,
and E(n,a) is the energy functional given in (121)-(122) with n and a time-
independent.
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It is shown in [22] that on carefully chosen spaces

(a) The free energy functional Fg is well defined;

(b) Fg is continuously (Gateaux) differentiable;

(c) If 0 < n < 1 and (n, a) is even in the sense of [22], Eq. (1.17), then critical
points of Fg satisfy the BAG stationary equations (129) and (130);

(d) Minimizers of Fg are its critical points.

Now, we define the partial gradients 0,Fg(n,a) and 0,Fg(n,a) by
dnFg(n,a)n’ = Tr(n'd,Fs(n,a)) and d,Fg(n,a)a’ = [a' - 9. Fp(n, a),
respectively. (Though the expression for Fg(n,a) is often formal, 9, Fg(n, a)
and 9, Fg(n, a) could be well-defined on appropriate spaces.)

Theorem 4 Minimizers of the free energy Fg(n, a) are critical points of Fg(n, a),
i.e. they satisfy the Euler-Lagrange equations

0 Fg(m,a) =0 and 9,Fg(n,a) =0, (134)

for some B and p (the latter are determined by fixing S(n) and Tr(y)). The Gdteaux
derivatives, 3, Fg(n, a) and 9, Fg(n, a), are given by

O Fp(n,a) = Aya — B¢ (), (135)
and
9. Fg(n, a) == curl* curla — j(y, a), (136)

where, recall, j(y,a)(x) = [—iV,, yl+(x,x), with [A, Bly := AB + BA.
Consequently, the equations (134) can be rewritten as (129) and (130).

For the translation invariant case, the corresponding result is proven in [37]. In

general case, but with @ = 0 (which is immaterial here), the fact that BdG is
the Euler-Lagrange equation of BCS was used in [33], but seems with no proof
provided.

By (134), (135) and (136), we can write the equations (129) and (130) as
Fj(n, @) =0, (137)

where F/g(n, a) = (0, Fg(n,a), 9, Fg(n, a)).

Remarks

(1) Due to the symmetry (120), S(n) = Trs(n) = —Trnlnn, with s(X) given
in (41).

(2) Fg(n,a) is a Helmholtz free energy. This energy depends on the temperature
and the average magnetic field, b = |é| /, 0 curla (for a sample occupying a

finite domain Q), in the sample, as thermodynamic parameters. Alternatively,
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one can consider the free energy depending on the temperature and an applied
magnetic field, . For a sample occupying a finite domain Q, this leads (through
the Legendre transform) to the Gibbs free energy

Ggo(m,a):=Fgp(n,a) — Doh,

where @ = b|Q| = f 0 curla is the total magnetic flux through the sample.
The parameters b or 4 do not enter the equations (129) and (130) explicitly.

6.6 Ground/Gibbs States

We are looking for stationary states which minimize the free energy per unit volume.
More precisely, with some license, we say that (14, a,) is a ground/Gibbs state
(depending on whether 8 = oo or 8 < 0), if there is a macroscopic lattice £™2°,
s.t. (04, ay) satisfies

o TI™(n,a) = fffuge(n, a),V s € L™ and for some function y. : Z™M° x
RY — R,

for some lattice 2™ < R? with macroscopic fundamental cell £2™°, and
(1%, ax) minimizes Fggmacro (7, a) among states having the above property. This is
equivalent to considering the equations on a large twisted torus.

In what follows, we will deal with 8 < oo, i.e. with the Gibbs states only.

In general, equations (129) and (130) have the following stationary solutions
which are candidates for the Gibbs state:

1. Normal state: (7%, 0), with o, = 0.
2. Superconducting state: (1, 0), with a, # 0.
3. Mixed state: (1, ax), with oy # 0 and a, # 0.

One expects that the Gibbs state has the maximal possible symmetry. If the
external fields are zero, then the equations are magnetically translationally invariant.
Thus, one expects that the Gibbs state is magnetically translational invariant.

We have the following general result

Proposition 5 ([22]) If n is mt-invariant, then « = 0 (i.e. the state (n,a) is
normal).

In the opposite direction we have

Conjecture 5 For B < oo sufficiently small, a Gibbs, normal state is mt-invariant
and therefore unique.

A stronger form of this conjecture is

Conjecture 6 A Gibbs, normal state is mt-invariant and therefore unique.
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6.7 Symmetry Breaking

Theorem 7 ([22]) Let d = 2. Suppose that b > 0 and assume that the interaction
potential v < — C|x| ™,k < 2. Then 30 < B//(b) < BL.(b) < 00 s.1.

o If B < B/ (b), then any Gibbs state is normal;
o If B > BL(D), then the ground/Gibbs state is a mixed state.

Temperature T'

T, =T/

Normal (MT Invariant?)

Phase Transition

In view of Proposition 5 and Conjecture 5 above, this result suggests that under
the stated conditions and as the temperature is lowered, the symmetry of the Gibbs
state is broken spontaneously.

The corresponding result for b = 0 was proved in [37]. In this case, there are
no mixed states and the ‘mixed state’ in the statement should be replaced by the
‘superconducting state’. Consequently, there are no symmetry breaking in this case.

6.8 Stability

To formulate the next result, we need some definitions. Recall that F’ ﬁ’, (n, a) is the
gradient of Fg(n, a) in the metric

(G d). &) = Tr(r)*E) + / J
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Consequently, the Gateaux derivative d F’ ,g (n, a) is the Hessian of Fg(n, a) at (n, a)
and therefore is formally symmetric. It can be shown that it is self-adjoint.

Let u = (, a). We say that a solution u, to (137) is (linearly or energetically)
stable iff the linearization d F ,g (uy) of the map Fy.(u) (i.e. the hessian, Fy (uy), of
the functional Fr(u)) at u, is non-negative, i.e.

dF/f;(u*) >0,

and unstable otherwise.

Note that the stability implies the energy minimization property locally in space
(i.e. on a sufficiently large twisted torus).

We also consider a weaker notion of stability — the stability w.r. to generation of
the superconducting «-component, which we call the a-stability.

Proposition 6 ([22]) Let b > 0. The mt invariant (normal) state is a-stable for
B < Bl(b) and, if v(r) < —|r|™* with k < 2, unstable for 8 > B.(D).

6.8.1 Normal States

For b = 0 we can choose a = 0 and the magnetic translation invariance becomes
the usual translation invariance. In this case, if we drop the direct and exchange
self-interactions from /4,4, then, as was mentioned above, the normal state is given
by (131), with @ = 0. If the direct and exchange self-interactions are present, then
the existence of the normal states is established in [10].

These are normal translationally invariant states. For b # 0, the simplest normal
states are the magnetically translation (mt-) invariant ones. The existence of the mt-
invariant normal states for b # 0 is proven in [22]. They are of the form (n =
ng.b, @ = ap), where ap(x) is the magnetic potential with the constant magnetic
field b (curlap = b) and (cf. (131))

ngp = (V’S” 0 ) (138)

with yg;, a solution to the equation

y = s (Bhy.a),

with s7 := (s/)"L. (For s(x) = —(xInx + (1 — x)In(1 — x)), we have s*(h) =
— -1
(eh + 1) " and therefore vgb solves the equation y = (eﬁh%“b + 1) )
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6.8.2 Superconducting States

The existence of superconducting, translationally invariant solutions is proven in
[37] (see this paper and [38] for the references to earlier results and [22], for a
somewhat different approach).

6.8.3 Mixed States

For the mixed states, in the cylinder geometry, which means effectively d = 2, there
is the following specific possibility:

* Vortex lattices: For a mesoscopic lattice .Z (i.e. much finer that #£™3°)_ the state
(n, a) satisfies T, (n, a) = T)‘%f‘uge(n, a), for every s € £™° and for some
maps s : .Z x R? = R.

The map yx; : .2 x R?> — R satisfies the co-cycle conditions,
Xs4t(X) — xs(x +1) — x1(x) € 217, Vs,t € £, (139)

and are called the summands of automorphy (see [53] for a relevant discussion).
(The map ¢/ : & x R> — U(1), where x(x,s) = xs(x) is called the factor of
automorphy.)

Excitations of the ground state are given by magnetic vortices, which are defined
by the condition

. T;Ot(n, a) = f‘;pauge(n, a) for every p € O(2) and some functions g, : O(2) x
R2 > R.

The existence of vortex lattices is proven in [22]). One might be able to prove
the existence of vortices by making lattices coarser (or b — 0) in the vortex lattice
solutions.

6.8.4 Magnetic Flux Quantization

Denote by §2 ¢ a fundamental cell of .. One has the following results

(a) Magnetic vortices: 2; fR2 curla = degg € Z;
(b) Vortex lattices: 2171 /. o, curla=ci(x) € Z

Here deg g is the degree (winding number) of the map €8 1 0(2) — U(1) (which
is map of a circle into itself, here we assume that g(p) = g, is independent of
x) and c1 () is the first Chern number associated to the summand of automorphy
x L x R? - R (see [53]).
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7 Existence of Periodic Solutions by the Variational
Technique

Let d = 2 or 3. An operator A on L?(R9) is said to be (.£—) periodic iff UsAUY =
A,Vs € £, where Uy is the translation operator by s € R?. In what follows for any
periodic operator A, the trace is understood as the trace per volume

TrA :=Tro sy x2A X2 (140)

where g is the indicator function on a fundamental domain §2 of .Z. Let L%er (R?)

denote the local L? space of .Z-periodic functions with the inner product of L2(£2).
We define the spaces

"7 ={y € BLoo(RD) : ||y lls.p == IM*y M|, < oo}, (141)

per
where M = «/—A and || - | p 1s the usual Schatten tracial p-norm. Set

L7 =r""n{Tty =Z)n{0<y =y* <1
N0y =0l < ) (142)
In this section we use the variational approach and the fact that (71) (or (75)) is
the Euler-Lagrange equations for free energy (74) to prove the following (see [22])

Theorem 8 Let B < o00. Let k = kper is £ —periodic (an ideal crystal) and
Xc assume is smooth bounded below, and C' on with Xc' bounded. Then there
exists € R such that the KS equation (71) on I(}’l have an £ —periodic, energy
minimizing solution y satisfying f_Q y(x,x)= fg K.

Since we minimize the free energy for Try constant, we drop the term —uTry
from (74) to arrive at the free energy functional to be minimized

1
Zp(y) =Tr(=D)y) + {(oy — k), (=) oy — 1)) 1202
+ /Q Xe(py) = B71S(). (143)
Moreover, recall p,, (x) = y(x, x) and Xc'(s) = xc(s) and

S(y) = Trs(y), s(&x)=—(xInx)+ (1 —x)In(l —x)). (144)

We set Fg(y) = oo if any of the terms is not defined.

Theorem 9 (Main Result) Under the conditions of Theorem 8, Fg(y) has a
minimizer on the set I(% 1 Moreover, this minimizer satisfies KS equation (71).
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We prove this theorem in a series of steps. We will use standard minimization
techniques to prove that .%g(y) is coercive and weakly lower semi-continuous, and

Ig’l weakly closed.
Part 1: coercivity

Lemma 1 Assume that Try = Z. We have the lower bound

1 1
() z,T((=4y) + , (o — 1), —A)p—x)—C. (145)

for some constant C.

Proof Recall that frp(A) = (e* + 1)‘1. First observe that } Tr(—Ay) — B~ S(y)
with Tr y = Z has minimizer

1
v =/ B,4=w) (146)

for a suitable Lagrangian multiplier, u, from Try = Z. Evaluating éTr(—Ay) -
B~1S(y) at this minimizer gives some constant, say, Cj.

Recalling definition (143) and using that Ex is bounded below, say by C»,
gives (145).

Part 2: Convergence We follow the ideas of [18]. By Part 1, we note that each term
on the r.h.s. of (145) is either positive or constant. Thus, .#g is bounded below. Let
¥a be a minimizing sequence of .%g (y ). Then we see that ||y, || ;1.1 = Tr(—A)y, and
||V_1,0yn lz2(s) are uniformly bounded. We look for a limit of the sequence (y,).
The non-abelian Holder inequality show that

[¥allo2 < Ivnllooll¥nlljon = Z < 00 (147)

is bounded. Hence, upto a subsequence, the kernels y;, (x, y) are in L% o (RxRR) (the
space of .Z-periodic under the action (x, y) — (x + s,y +5), s € .Z£), locally L?
functions on (R? x R?) and converges weakly to some y(;(x, y) € Lfm (R? x R?).
We extend y;(x, y) to all of R? x R? by periodicity. Let ¥, denote the operator
whose kernel is ) (x, y). Clearly, y, — ¥, weakly in 7%2.

Now, we show that y; € I&’l. That is, ¥ € IV and Tr(yy) = Z, (¥)* = vy
and 0 < y6 < 1. Using the Bloch-Floquet decomposition, we see that

/Q dETrpag)l(1 = A0)' P (e (1 — A)' /) (148)

Z/m d& Trp2 () [(1 — Ag) ] (149)

=Tr(l — Ay, < 0. (150)
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where the second line follows by expanding the traces on L(£2) in an orthonormal
basis of eigenfunctions of —Ag¢ and the fact 0 < (y;,)¢. This shows that (1 —
Ag)l/z(yn)g(l — Ag)l/2 is trace class (hence HS) for almost every § € £*. It
follows that the full operator (1 — A)l/ 2)/,,(1 — A)l/ 2 is HS in trace per volume
norm and whose trace is equal to (150). Hence a weak limit exists and necessarily
is (1 — A)1/2y)(1 — A)!/2. We see that

Z = lim Tr(yy) (151)
= lim Tr((1 = 2)2y,(1 = 221 = 27 = Tr(yy) (152)

since 1 — A is HS (in trace-per-volume norm) for d = 2, 3. The fact y € I(} )1
is proved by using a compactness argument pointwise in the fiber decomposition
through a Bloch-Floquet argument similar to one used in (148), (149) and (150).
Note that the fact y; = y;;* and the bound 0 < y;j < 1 is preserved by weak HS (per
volume) convergence.

Finally, we show that ./p, € H 1(£2) and converges to some ,0(’)’ e HY(2)
weakly. Let ¢, (§, x) denote the eigenvectors of y: with eigenvalue A in its Bloch-
Floquet-Zack decomposition. Since the map f f o [VJ/f|? is convex, we see

that
17212
/ |V\/P(X)|2dx :/ \Y (/ d& Z)le(ps(x”Z) dx (153)
I?) o o
Sffz/*dXd‘%Z)‘SWV/’Ag@J)IIZ (154)
S/KZ/*dXd'éZ*S'VWg(E,x)IZ (155)
=Tr(—Ay) (156)

This shows that ,/p, are bounded in H 1(£2) and thus converges weakly, in H "'to
\/,o(’)’ € Hl(.Q). Compactness of Hl(.Q) in L2(.Q) shows that ,/p, converges to

\/ po in L?, hence p, — Py in L'(£2). 1t follows that for any smooth bounded
periodic function f

(pg, ) = lim (pn, f) = lim Try, f (157)
= lim Tr(yf) (158)

=(py. f) (159)
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Thus, we denote the common limit as yo = p; = p; and po := den[py]. We
summarize the types of convergences here:

(1= )2, =)V =~ 1 = )21 — A)Y? weakly in 192 (160)

n = /poin H'(£2) (161)

on —Kk — po— Kk in H1(2) (162)
for some yy € I(}’l and pp := den[yp]. The last line follows by compact embedding
theorem on £2.

Part 3: Weak lower semi-continuity

Lemma 2 The functional Fg is weakly lower semi-continuous with respect to
convergence (160), (161) and (162).

Proof We study the functional .#g(y) term by term. For the first term on the r.h.s.
of (143), it satisfies Tr(hy) = ||y |l;1.1 and is linear, it is || - || ;1,1-weakly lower semi-
continuous. The Coulumb term {(x — py,), (=) (k- Py)) is quadratic and easily
seen to be H~!(£2)-weakly lower semi-continuous. The exchange-correlation term
is weakly lower semi-continuous by (161) (which implies that Xc(p,) — Xc(p0)
a.e.) and Fatou’s lemma.

Thus, we study the term —,B_lS (y). We use an idea from [43] which allows
to reduce the problem to a finite-dimensional one. To the latter end, we recall that
S(y) = Tr(s(y)) for s(x) = —x Inx. In Bloch-Floquet decomposition, this term is

—S(m) = — fﬂ dES((r)e) = — fﬂ dETr(s () (163)

where s(x) = é(—x In(x) — (1 — x) In(1 — x)). We define the relative entrop of A
and B to be

S(A|B) :=Tr(s(A|B)), s(A|B):= A(n(A)—In(B)). (164)
Then we see that

S(A) = S(B) — S(A|B) — Tr[(A — B) In(B)]. (165)

Using this formula, writing A = ()¢ and B = (yy)s = <l+ g\/—A>$ where C is
e
chosen so that Tr(g,) = Z,

—S(vn) =/Q* d€ (—1)S((y2)e) + Tr((va)e — (e In(ya)e) (166)

+ S((n)el (o)) (167)
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We note that In((yx)e) S 1+ \/—ﬁAg and |S(yx)| < oo. By (160) and linearity
(hence convexity), (166) converges in the limit to —S(y%) + Tr((Yo — yx) In(yx).
So it suffices that we control the last term (167). We improve convergence for a.e.
&. By considering \/ (¥n)e and dropping to a subsequence, (148) shows that (1 —
Ag)l/ 2\/ (¥n)e converges weakly in HS norm for almost every £ € £2*. Similarly,

/Q dETrpa o)l (r)e(l = A0y (ym)e] (168)
:/m d& Trp2 ) [(1 = Ag)yn] (169)
=Tr(1 — Ay, < o0 (170)

by expanding the trace using an orthonormal basis of (y,,)¢. Thus, weak convergence
is also obtained for \/(y,,)g(l — Ag)l/z. Regarding \/(yn)g as an kernel in L2(£2 x
£2), and since £2 is compact, we may assume that (y,)¢ — (y0)¢ in HS norm for
almost every & € £2*. Now, by [43], we can write

S((vn)el(y)e)+Tr((vi)e — (Vn)e)

= sup Tr(si((vn)el(vx)e)) a71)
2€(0,1)

where s (x)(A|B) = 27 L(s(AA + (1 = x)B) — As(A) — (1 — A)s(B)). Moreover,

55 (A|B) > 0 for any A, B since the entropy function s is concave. Hence, we may
write

S((vnel(y)e)+Tr((vi)e — (Vn)e)

= sup sup Tr(Psx((¥n)el(Vs)e)) (172)
re@,1) P

where the supp is taken over all finite rank projections P. It follows that for any A
sufficiently small and any finite rank projection P,

S((nel(vo)e) + Tr((v)e — (Ya)e) = Tr(Psi((vn)e |(v4)e)) (173)

Taking n — oo, since P is finite rank and (y,): — ()¢ in HS norm (hence
operator norm) for almost every £ € 2%,

lillggng((J/n)s [(ye)e)+Tr((ve)e — (Vo)e)

= Tr(Ps; (Vo) (v4)s)) 174)
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Now taking lim sup; _, o+ and supp, we see that

11111_1)}gf S((vn)el (r)e)+Tr((v)e — (V0)e)

= Tr(s ((Y)g [ (v4)e)) - 175)

The proof is complete by Fatou’s Lemma applied to the integral |, o+ d £ and the fact

fdéTr((J/*)s — (v0)g) = Tr(ys) — Tr(yo) =0. (176)

Proof of Theorem 9: Existence of Minimizer. With the results above, the proof is
standard. Let () € I(} Thea minimizing sequence for .%. Lemma 1 shows that .7
is coercive. Hence ||y |1 is bounded uniformly in n. By Sobolev-type embedding

theorems, (y,) converges strongly in I 1 for any s < 1. Moreover, together with

the Banach-Alaoglu theorem, the latter implies that (y,,) converges weakly in 101’1.
Hence, denoting the limit by yp, we see that, by Lemma 2, 9‘,3 is lower semi-
continuous:

liminf . Zg (yn) > F5(v0). (177)
n—o0

Hence, yy is indeed a minimizer. To show that minimizer satisfies the gHF equation,
we start with some lemmas.
Lemma3 Lety € Ig’l be suchthat s(y) ;= —(yIny + (1 —y) In(1 —y)) is trace
class and y' satisfy

Try' =0and (v')* < (v(1 = y))*. (178)
Then, Fg(y) is Gateaux differentiable at y with respect to variations y' and

dy F5(v)g' = dy Fg(y)y' = Trl(hg — B~'s'(¥))7]. 179)

Proof We consider first the variation in Ié "1 of the form y + ey’ for € > 0 small.

Note that if y’ satisfies (178), then for € small enough, y + €y’ € I&’l. Let
dyFg(y,a)y’ := 0:Fg(y + €y’,a) |e—o, if the rh.s. exists. From (133) and (121)
and the assumption that X¢’ is bounded, we see that

dy Fg(y,a)y’ =Tr(hgy") — B~'dS()Y/, (180)

where —A¢ = 4n(k — p) provided dS(y)y’ = 0.S(y + €y’) |e=o exists.
Differentiability of S is proved in the next lemma.

Lemmad Lety € Iy be such that s(y) == —(y Iny + (1 —y) In(1 — y)) is trace
class and y’ satisfy the second condition in (178). Then S is Gateaux differentiable
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and its derivative is given by

dS(y)y' =Te(s" (»)y". (181)

Proof For simplicity, we will only consider the case s(A) = —XAlIn(A) as the full
case is similar. Denote " := y + €y’. We write

S(") = S(y) = ~Tr(y(Iny” —Iny)
+ey'(Iny” —Iny) +ey'Iny) (182)
= A+ B —€Tr(y' Iny). (183)

Using the formula Ina — Inb = fooo[(b +1)~! — (a 4+ 1)~!]dt and the second
resolvent equation, we compute

o0
A:=—Ti(y(y" —Iny)) = —Tr/O iy +07 ' ="+ dt
o0
=—Tr / o+ ey’ "+ Nt
0
o0
=—Tr ([ iy +ney' (v +0)7 )t
0
o0
- f yv +07 ey’ (v +t>1ey’(y”+t>1}dr). (184)
0
Similarly, we have
B :=—Tr(ey/(Iny” —Iny)) (185)
o
- Trf (V[ +07 = O+ e
0
o0
=— Tr/ (ev'(y +D 7 ey’ (" + 1)~ )dr. (186)
0
Combining the last two relations with (183), we find
S(y +ey) — S(y) = €S + R, (187)

o
S1:=-Try'Iny — Tr/ Yy +07 Y (y +0nar (188)
0

o0
Ry :=—Tr /0 o+ e+ Yy +n!

— Y+ Y@ +n N (189)
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The estimates below show that the integrals on the r.h.s. converge. We can compute
the integral

[e¢)
Tr f o +07y' (v + 7 (190)
0
o
—Tv f (v + 072yt = Try! (191)
0
in the expression for S;. Moreover, using y (y +1)~! — 1 = —t(y +1)~!, we can

rewrite the expression for R;. Together, we obtain
S1:=Tr{y' Iny +y'}, (192)

R, :=Tr/ o+ o+ "+ ar. (193)
0

Using ()/’)2 < (y(1 - )/))2 and y is trace class, we see that (192) is well defined
and finte. To demonstrate the convergence in (193), we estimate the integrand on
the r.h.s. of (193). we can formally write

G+ o+ Y+ (194)
=G+ Y+ @+ ) =y v+ (195)
n>0

Since y’ and y are bounded. We see that

Hy +07W @+ @+ ey (v + 07110 (196)
<"ty + 0 Mool +07 W @+ 0 oy (v + 071 (197)
<"y’ 07 0 el (r + 07N (198)

Thus, if € < Jlly'(y + )7z forall # € [0,00) and [;° Y/ (v + O~ y'(y +
)~ ,01dt < oo, then we have convergence. By the condition in (178) on y’, we
have

Iy’ + 0 Moo < lyA =) + 1) oo < 1IN+ loo

where ny (1 — y). Since 0 < y < 1, so does n. Hence

ly' (r +6) e < 1
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Next,

ly' v+~ (& + 07 o

<V +07 ey &+ 07 e (199)
Now, we show that (199) is L2(dt). By the condition in (178) on y’, we have

ly' v+ e <lly@=y) @+ e <lnt+07" 2,

where  := y (1 — y). Thus,
0+ 07 e S TreRe + ) = /Q ANTHR () )
Let pg n be the eigenvalues of the operator ns := y: (1 — y¢). Then we have

e e + 0717 = D 1, (e + 072, (200)
n

and therefore

(o) o
/O Ine (e + 1)~ |172dt = /0 3wl (e + 07 2d1
n
= e =Troz. (201)
n

Since y(1 — y) is a trace class operator, this proves the claim and, with it, the
convergence of the integral in (193).

To sum up, we proved the expansion (187) with S; given by (192), which is
the same as (181), and R, bounded. In particular, this implies that S is C! and its
derivative is given by (181).

And finally, we have the following:
Lemma 5 Suppose that y is a minimizer of Fg on 11’1, then) <y < 1.

Proof We prove that y cannot have eigenvalues 0 and 1 simultaneously. The case
where only O or only 1 is an eigenvalue is treated similarly. If not, decomposing into
Bloch-Floquet decomposition yg, we see that y¢ has a kernel for a subset, So C £2%,
and eigenspace of 1 on S| C £2%, both of positive measure. For A = 0, 1, let P; ¢
denote the projection onto the A-eigenvector for each & € S in a way such that Py ¢
is measurable in &. Let

P= [ dtrers—ro. (202)
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where f(£) > 0 is chosen so that TrP = 0. Since 0 < y < 1, it is not hard to sees
that P satisfies (178). Following the proof of Lemmas 3 and 4, we compute

Fply +€P) = Fp(y) (203)

=5~ /ﬂ dE(ef ) In(ef (£)) Poce (204)
+ (= ef @)l — ef ) Prg) + Ofe) (205)
|11 |Sol

By choosing f(x) = 50| XS0 T |5,] XSt for example, we note that the first term is of
order O (e In€) > O(¢) and negative. This contradicts minimality of y.

Proof (Proof of Theorem 9: Solution to KS equation (71)) By the minimizer
existence part of Theorem 9, let yp € Iol’1 denote the minimizer of the free energy
F. For notational convenience let A := dy, Z (o). We show that A is multiple of
the identity. Let

vo := yo(1 — 1) / dé 1, (206)
Q*
and let

b=yl — ) /Q déu 207)

where ug € Lg (£2) is an arbitrary elements of the fiber space in the Bloch-Floquet
decomposition and ||ug||> is uniformly bounded upto a null set in £2* and v is
orthogonal to vyp. By Lemma 5, we see that 0 < yp < 1. This shows that y (1 — y)
is a (possibly unbounded) bijection. Hence the linear space spanned by all such v’s
is dense in L2(R3). Let

S 1 B

Py, . (208)
lool3 ™

where P, is the orthogonal projection onto x. Then we note that y’ satisfies the
condition (178). Hence, by minimality of y, Lemma 3 shows that

Tr(Ay') > 0. (209)
We note that if y/ satisfies condition (178), so does —y’. It follows that

Tr(Ay) =0. (210)



On Effective PDEs of Quantum Physics 45

It follows that

0=/ dé Tr(Aggl) 11)

Q*

B . lvli3

= d&§ Tr(Ag(Py)g) — 5 Tr(Ag (Po)e) (212)
o+ llvoll3

B Ivll3

=(v, Av) — 5 {vo, Avo) . (213)

llvollz

Let X = x/||x||, then we see that
(0, Av) = (vo, Ado) (214)

for all v orthogonal to vy of the form (207). Since the space of vy and all such v’s
are dense, we conclude that A is a multiple of the identity, which we denote by .
This shows that

0=A—pu=dyF)—ul=haue—B"'s (). (215)

The case for d,.#(y0) = 0 is much easier. Its proof is standard and can be found,
for example, in [22].

Finally, to see that u € R, we simply note that ul = hy — B71s'(yo) is
symmetric.
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Critical Exponents for Differential )
Inequalities with Riemann-Liouville e
and Caputo Fractional Derivatives

Marcello D’Abbicco

Abstract We find the critical exponents for global in time solutions to differential
inequalities with power nonlinearities, supplemented by an initial data condition.
The operator for which the differential inequality is studied contains a Caputo or
Riemann-Liouville time derivative of fractional order and a sum of homogeneous
spatial partial differential operators. In the special case of a fractional diffusive
equation, the obtained critical exponents are sharp. In particular, global existence of
small data solutions to the fractional diffusive equation with Caputo and Riemann-
Liouville time derivative of order in (0, 1) and in (1, 2), holds for supercritical
powers. The existence result for the superdiffusive case (¢ € (1,2)), which
interpolates a semilinear heat equation and a semilinear wave equation, was recently
obtained in the general setting by the author and his collaborators. We use a simple
representation of Mittag-Leffler functions to show that global existence of small
data solutions for supercritical powers also holds for to the subdiffusive equation
with Caputo and Riemann-Liouville time derivative (a € (0, 1)).

1 Introduction

We consider the fractional differential inequalities
“Df,u+ A(x, 00u > [u]’, >0, x eR", (1)
and

REDG, w4+ ACx, 00)u > ul?, t>0, x e R, 2
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wherex € Ry \ N, p > 1, and CDS‘ , and RLD‘(’)‘ . respectively denote the Caputo
and the Riemann-Liouville (forward) fractional derivatives of order ¢, with starting
time 0.

We assume that

Ax, 00 = Y ag(n)dl, 3)

1<|Bl<m

is a differential operator of order m > 1, with ag smooth in R" \ {0} and
homogeneous of degree rg < ||, that is,

Vg, drg <|Bl: Vx #0, ag(x)= |x|rﬂa,g(x/|x|). 4)

The differential operator A(x, dx) is homogeneous of degree h if || — rg = h,
for any B. In the general case, we will denote by & the lowest degree of the
homogeneous terms ag 8}? (see later, definition (13)).

Moreover, we assume that

vg:  dlag(x) =0. S

Thanks to condition (5), the adjoint operator A*(x, d,) contains no zero order terms
(see later, Definition 1).

The study of differential inequalities for evolution equations in the space-time
is inspired by the study of differential inequalities in the space R”" (see, for
instance, [2]). In particular, the method of the test function used to prove differential
inequalities in space can be adapted to operators in the space time [0, 00) x R”
(see, in particular, [6], for general variable coefficients operators). The technique
employed to study differential inequalities is often sharp even when applied to
the corresponding equality, replacing the inequality Lu > |u|? by the equa-
tion Lu = |u|P. That is, for several models (for instance, heat equations, damped
wave equations, and related systems) the counterpart of a nonexistence result
for a differential inequality (or a system of differential inequalities) in some
range for power nonlinearities, is given by the existence result for differential
equations (or system of differential equations), out of the previous range for power
nonlinearities.

Here and in the following, we set k = [a] = —|—«], the smallest integer
which is greater or equal than «. For any 8 > 0, the (forward) Riemann-Liouville
fractional integral of order g is given by

1

t
_5)f-1
r) /0 (t=9)""" f(s)ds,

I =
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forany ¢+ > 0. For any @ € Ry \ N, the (forward) Caputo and Riemann-Liouville
fractional derivatives of order & > 0, are given by the expressions

D, f() =I5 (08 £) @), (6)
Rlpg, f() = o (J§ f) @), 7

for any ¢+ > 0. We remark that, due to o« ¢ N, the definition of Caputo fractional
derivative given in (6) is equivalent to the more general one (see Theorem 2.1
in [11]):

- (W0
Dy, £ = DY, f,  f0) = F0) - Zf O

Jj=

At t = 0, the previous definitions are intended as the limit:

“Df, £(0) = lim “Df, £(1), ®)
“Dg, f(0) = lim KEDG, £ (1), ©9)
I8 10 = lim J Coro. (10)

We supplement the inequalities with an initial condition, respectively,
O u(0, x) = ue—1(x), (11)
for (1), and
REDE (0, x) = ug—1(x), (12)

for (2) (initial condition (12) is intended in the sense of (9)). In initial condition (12)
we formally set

RUDS (0, x) = J2*u(0, x),

when « € (0, 1) (in the sense of (10)).

We derive a necessary condition on the exponent p in (1) and, respectively, (2),
which has to be satisfied to have global in time solutions, provided that suitable sign
assumptions are verified by the initial data defined in (11) and, respectively, (12).
For the ease of reading, we postpone the definition of global (weak) solution to
Sect. 2.
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Theorem 1 Let o € Ry \N. Assume that A(x, dy) verifies (4) and (5), and fixh > 0
as

h = al;};%(lﬁl —7p). 13)

Assume that there exists a non-trivial global weak solution u to (2) (in the sense of
Definition 4), with

Ugy—1 >0, orug_ € L' with / Ug—1(x)dx > 0, (14)

where uy_1 is the initial condition in (12). Then
1
n>h <1 — ) ,
o

h
n—h(l—1/a)

and p > p(n, ), where

pn,a) =1+ (15)

Assume that there exists a global weak solution u to (2) (in the sense of Definition 4),
and that there exist ¢ > 0, R > 0, such that

ug—1(x) > elx|™%, Vx| >R, (16)

for some 6 € (—00, n), where uy—_1 is the initial condition in (12). Then
1
06>h|1- ,
o

h
0—h(l—1/a)

and p > p(0, o), where

pO,a)=1+ a7

We remark that the critical exponent in (15) for problem (2) was the same under
both the assumption u#,—1 > 0 and fR” ug—1dx > 0. Namely, the result remain
valid even if uy_1 = 0 (and the solution is non trivial, which implies « > 1). On the
other hand, for problem (1), the stronger sign assumption on the initial data u,_;
brings the benefit of a larger critical exponent.

Theorem 2 Let @ € Ry \ N and set k = [o]. Assume that A(x, dy) verifies (4)
and (5), and fix h > 0 as in (13).
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Assume that there exists a non-trivial global weak solution u to (1) (in the sense
of Definition 3), with

ue—1 = 0, (18)

where u,—1 is the initial condition in (11). Then

1
n>h (1 — ) ,
o
and p > p(n, a), where p(n, a) is given by (15).

Assume that there exists a global weak solution u to (1) (in the sense of
Definition 3), with

ue—y € L, f Ue_1(x)dx > 0, (19)
]er

where u,—1 is the initial condition in (11). Then

hik — 1)
n> ,
o

and p > p(n, ), where

h

Py =1+ e -1ja

(20)

Assume that there exists a global weak solution u to (1) (in the sense of Definition 3),
and there exist ¢ > 0, R > 0, such that

ue—1(x) = elx|™ Vx| = R, 1)
for some 6 € (—o0, n), then

h(k — 1)
> 9

o

0

and p > p(0, o), where

h

PO=1H o el ~ e

(22)
Remark 1 It is clear that

p@O.0) > p(b, ),

for any @ € Ry \ N, and for any 6 < n.
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The critical exponents in Theorems 1 and 2 have a special interest, in view of the
fact that for & € (0, 1) and for @ € (1, 2), we can provide examples of Cauchy-type
problems with power nonlinearity |u|”, for which global small data solutions exist
in the supercritical range of p.

Indeed, in the limit case @ = 1, both the critical exponents in (15) and (20)
tend to 1 4+ h/n. For integer, even, values of 4, this latter is Fujita exponent for the
diffusive equation (see, in particular, [10])

u+ (=" =P, 1 =0.
In [7, 8], it has been shown that global solutions to the Cauchy-type problem

D, u+ (=A)"2u=ul?, >0,
u(0, x) = uo(x), (23)
ur (0, x) = u(x),

for o € (1,2), exist, for any p > p(n, «), if initial data are assumed to be small
in L. Moreover, if the second data u; vanishes, then global small data solutions
exist for any p > p(n, ).

Similarly, global solutions to the Cauchy-type problem

KD, u + ()" 2u = ul?, 1 >0,

Jo - *u(0, x) =0, (24)

—1
RLDG u(0, x) = ug—1(x),

for @ € (1, 2), exist, for any p > p(n, o). Here the initial condition is intended in
the sense of (9).

Moreover, global solutions to (23) exist assuming small data in L™, with m €
(1,2),if p > p(n/m,a), and if p > p(n/m,a) when u; vanishes, and global
solutions to (24) exist assuming small data in L™, with m € (1,2], if p >
pn/m, ).

The previous results show that the exponents p(n, @) and p(n, ), in Theorems 1
and 2 are sharp for o € (1, 2). Indeed, Theorems 1 and 2 are valid, in particular, if
the equality is verified in (2) and (1), and for the constant coefficients, homogeneous,
operator A = (—A)"/2, with h even integer.

The next statements will also prove the sharpness of the exponent p(n, o) in
Theorem 2 and of the exponent p(n, «) in Theorem 1 for @ € (0, 1). For the sake
of brevity, we fix h = 2 and we only consider L' smallness of the initial data.

Theorem 3 Leta € (0,1), n > 1, and

.2
pZMM=1+n=pMJ)
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Moreover, let p < 1+ 2/(n — 2), if n > 3. Then there exists ¢ > 0 such that for
anyug € o = L' N LP, with

luoller = lluoll 1 + lluollLr < e,

there exists a unique solution u € € ([0, 00), L?) to the Cauchy-type problem

C —
Df, u — Au = |ulP, t >0, 25)
u(0, x) = ug(x).
Moreover; the solution verifies the following long time decay estimate
=% (=)
lur, HllLr = C(A+1) P uoll.or (26)

foranyt > 0, and for some C > 0, independent of uy.

Remark 2 For o € (0, 1), the critical exponent p(n) = 1 + 2/n in Theorem 3 is
the same critical exponent for the heat equation. However, in the critical case p =
1 + 2/n, we have the existence of global small data solutions for the subdiffusive
equation, whereas finite time blow-up holds for the heat equation.

Before stating the corresponding result with the Riemann-Liouville fractional
derivative, we need to introduce the following space. For any y € (0, 1), we
define €, (I, X), where I = [0,T] or I = [0,T), and X is a functional space,
as the space of functions f (¢, x) such that¥ f(z,-) € €, X).

Theorem 4 Leta € (0,1),n > 1, and

2

Moreover, let p < 1+ 2/(n — 2), if n > 3, and assume the following restriction

on p:
-1)(p-D+ 1- <1. 27
o 2 p

Then there exists € > 0 such that for any uq—1 € &/ = L' N L™, with
lua—1llr = Nlua—1llpr + lua—1llLe < ¢,
there exists a unique solution u € 61— ([0, 00), LP) to the Cauchy-type problem

RL _
! D8‘+M—Au_|u|”, t>0, 28)

Jo (0, x) = g1 (x).
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Moreover, the solution verifies the following long-time decay estimates

. _na 1_1
lu(t, )y <Ct*7 P A+ 2 (=) lua—1ller, (29)

for any t > 0, and for some C > 0, independent of uy—1. In (28), the initial
condition is intended in the sense of (10).

Remark 3 Condition (27) will be used to control the singular behavior of the power
nonlinearity at + = 0. We remark that the range of powers p > p(n, «) which
satisfy (27) is not empty. Indeed, p(n, @) is the solution of the equation

1 - n .
( —1)(p—1)+ (p-DH=1
o 2

Condition (27) may also be written as a second order inequality in p:

1 n
< —1)(p—1)p+ (p—1) =p.
o 2

The equations in problems (23), (24), (25) and (28), are generally called fractional
diffusive equations. To distinguish among the cases ¢ € (1,2) or ¢ € (0, 1), we
may say that the equations in (23), (24) are superdiffusive equations, and that the
equations in (28) and in (25) are subdiffusive equations, to mean that the fractional
order of these equations is above, or below, the order 1 of the classical diffusive
equation (heat equation).

Global existence of small data solutions to the fractional subdiffusive equation in
integral form

t
u(t,x):u(O,x)—I—/ lu(r, )P~ u(r, x)dt + J§, Au(t, x), (30)
0

with « € (0,1) and p > 1 4+ 2/(na), have been recently studied in [1]. The
main difference between this model and ours is that a classical integral of order 1
is applied to the power nonlinearity in (30), whereas only a fractional integral of
order « is applied to the power nonlinearity in the integral formulation of (25).
Indeed, applying Jg, to both sides of (25), we get the integral formulation of (25):

t
u(t,x) —u0,x) = / u(t, x)dt = J01+u(t, x) = Jo (Au + |u|P).
0

The problem to find critical exponents for the differential inequalities (1) and (2), or
for the Cauchy-type problem associated, has some analogy with the problem to find
critical exponents for partial differential equations with nonlinear memory of power
nonlinearities. In particular, in [3], the authors proved that the critical exponent for
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the Cauchy problem

u; — Au = Jé’+|u(t,x)|1’, t>0, x eR",
u(0, x) = up(x),

is given by

2(1 + )

n—2o

max{ﬁ(n,a), lia}’ pn,a) =1+ (€2))

Namely, small data global solutions exist for p > max{p(n, «), 1/(1 — )}, and
any solution blows up in finite time if | < p < max{p(n, @), 1/(1 — )}, provided
that 9 > O is non-trivial. The same critical exponent remains valid for damped
waves with nonlinear memory (see [4])

Uy +up — Au = Jg+|u(t,x)|”, t >0, x e R,
u(0, x) = up(x),
ur (0, x) = u(x),

and a modified version of this critical exponent comes into play for waves with
fractional damping (—A)%u; and nonlinear memory [5]. The result in [3] has also
a special interest, since it provides an example of Cauchy problem, for which the
critical exponents is not the one predicted by scaling arguments. For problems (1)
and (2), the critical exponent is the one predicted by scaling arguments, in general.

Remark 4 The critical exponent p(n,«) obtained in Theorem 1 for (2) with
initial condition (12), under the assumption (14), is given by scaling arguments,
when A(x, dy) is homogeneous (or quasi-homogeneous, as in [9]). The same
happens for the critical exponent p(n, o) obtained in Theorem 2 for (1) with initial
condition (11), under the assumption (19).

Indeed, if A(x, d,) is homogeneous of degree /4, given a solution u to the equation

h
in (2) or in (1), the function A »—! u()\c};t, Ax) is a solution to (2) or to (1) for any
A € (0, +00). We notice that

_ h h(a—1)
REDE N (uret, Ax))| g =2 o ug—1(x),

O Gt 20)| g = 2" w1 (),

and

h h _n
IAr=to@A)llLe =rr=t < l@liLa,
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with ¢ = wuq_1, u,—1. Therefore, the scaling exponent for (2) with initial condi-
tion (12), that is, the solution to

h(oe — 1 h
(a )Jr "o,
o p—1 g¢q

is

n(p—1) o
h (@—D(p-—D+a’

Gsc =

Indeed, the critical exponent p(n, «) is the solution to gsc = 1.
On the other hand, the scaling exponent for (1) with initial condition (11), that
is, the solution to
hik — 1 h n
( ) +

- =0,
o p—1 g¢q

is

_n(p—l) o
R R [ 'Y

Indeed, the critical exponent p(n, «) is the solution to gsc = 1.

If one replaces assumption (19) by (18), then Theorem 2 only gives the critical
exponent p(n, ). This latter is, indeed, the critical exponent obtained for @ € (1, 2)
and A = (—A)g, when u; = 0 and ug(x) € L' (see (23)). However, this critical
exponent is not given by scaling arguments.

1.1 Notation

In the following, we write f; < f> when there exists C > 0 such that fi < Cf>.
We write f1 ~ f> when f; < f>and f < f1.

2 Global Weak Solutions

To deal with weak solutions, we shall investigate how integration by parts work with
respect to both the space and time variable.
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Definition 1 For a given operator A(x, d,), as in (3), its adjoint operator is obtained
by

A*x, 00 f@) = Y (=Dl (ap(x) £ (1))

1<|Bl=m

= > (—D'ﬂ'Z(ﬁ)(af‘ya,gm)arf(x)
1<|Bl<m =B Y

= > bW ),
lyl<m

where

by= Y. (’3>af‘yaﬁ(x).
B>y Y
|Bl<m

In particular, if condition (5) holds for A(x, d,), then bg = 0 in A*(x, dy).
We provide some examples of operators, for which conditions (4) and (5) are
valid.

Example 1 1f

A=A@) = Y apdl

1=<|Bl=m

is an operator with constant coefficients, then condition (5) trivially holds, 4 in (13)
is given by

h = min{| 8| : ag # 0},

and A*(0x) = A(—0y).
Example 2 1f

A(x, ) = [x|*4%,
then condition (5) trivially holds, 4 = 2 in (13), and

A*(x, 0y) = A(Jx|*A 4 4x - V + 2n)
= (|x|*?A +4x -V +2n)A + (4x -V +2n)A + 8A
= A+8x-VA+4(n+2)A.
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Example 3 1f
A(x, ) = x{dy — 87,
then condition (5) trivially holds, # = 2 in (13), and
A*(x,8y) = A+ 8x19] + 1297
Example 4 Let us consider
A =V Ix2ldy, + /Ix1] 1202, + x] %0y, B,
Then condition (5) holds, 2 = 1/2 in (13), and
A = A+2(/|x1| — x;3)3x2.
Remark 5 We notice that, for any A > 0, it holds
ap(x) 0f (f (1)) = M7 ag of ) Ow),
for any sufficiently smooth f. Namely, setting
Ap = ag(x)df
we have
Ap(fGx)) = MPIZ8 (A £) ().

By homogeneity,

A5 (f(x)) = AP (A% £ (0x).

M. D’ Abbicco

The proof of this property in the more general setting of quasi-homogeneous oper-
ators L(x, y, dx, dy), and the application of the test function method to Liouville
problems with these operators, can be found in [9]. A generalization of the definition
of quasi-homogeneous operators and the application of the test function method to
Liouville and Cauchy problems for these operators, is given in [6]. The statements in
this paper may be conveniently improved using the definition of quasi-homogeneous
operator, but our interest is more focused to study the influence of the fractional
derivatives in time on a differential inequality in the space time [0, co) x R".

As a consequence of (13) and Definition 1, we derive

Ap(f() = 0GM),  A%(f () = OGN,

as A — 0.
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In order to give our definition of weak solution to problem (1) with initial
condition (11) and to problem (2) with initial condition (12), we need the backward
in time analogous of the fractional integration, and Caputo and Riemann-Liouville
derivatives.

Definition2 For any B > 0 and T € (—o0, +00], we define the (backward)

Riemann-Liouville fractional integral of order S,

1

1) = re)

T
/ (s =0~ f(s)ds,
13
forany t € (—oo, T). Then, we define

DS _f(1) = JFZ((=90* ) ), (32)

RLD§_ f(1) = (=3  (J52* £)(®), (33)

for any ¢+ € (—o0o, T), the (backward) Caputo and Riemann-Liouville fractional
derivatives of order @ > 0.

Remark 6 We considered the possibility to take 7 = +o0o in Definition 2
(see (2.2.2) in [11]), but trough this paper we will always consider compactly
supported functions. We remark that if supp f C (—oo, T1), for some 71 < T,
then obviously

1- 1-
Jr U f @) =57 f@,
in particular, the fractional integrals and derivatives of functions compactly sup-
ported in [0, b) are zero for any ¢ € [b, T). For this reason, we choose T = +o00 to

avoid to fix, time by time, a sufficiently large 7" such that f is compactly supported
in [0, T).

Definition 3 We say thatu € Lf;c (R4 x R™) is a global weak solution to (1) if for
any test function ¢ € €™ "™ (R, x R, it holds

/Oo/ u(t, x) REDY_ 4+ A*(x, 3)e(t, x) dx dt
0 n

- f (0w (0, x)) (J5%9)(0, x) dx

K—2 .
-3 /R (310, x)) "Dl 9)(0, x) dx
=0

[e¢)
Z/ / lu(t, x)|” o(t, x) dx dt.
0 Jre
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Definition 4 We say thatu € Lf;c (R4 x R™) is a global weak solution to (2) if for
any test function ¢ € ‘KJnaX{K’M}(RJF x R™) it holds

/00/ u(t, x) (CD‘;O_ + A% (x, 0)(t, x)dx dt
O n
Kk—2 - 4
-3 / "Dy u)(0, x) (=8)7 (0, x) dx
j=0"F

- /R (J5%w)(0, x) (=) ' 9(0, x) dx

o0
z/ /|u(r,x)|"so<r,x>dxdt.
0 Rn

In order to motivate the definition of global weak solution to (1) and (2) given in
Definitions 3 and 4, we will employ the following fractional integration by parts
result.

Lemma 1 (Lemma 2.7 in [11]) Letb > O, f € LP'([0, b]), g € LP2([0, b]), and

either p1, p2 = lwith1/p1+1/p2 < 14+8,0r p1, p2 > land 1/ p1+1/pr = 14+8.
Then we have the following:

b b
/0 UL @ gy dt = fo £ Jf g, (34)

We are now ready to show that classical solutions to (1) are weak solutions,
according to Definition 3.

Proposition 1 Let u € €™ (R, x R") be a classical solution to (1). Then u
is a global (weak) solution to (1), according to Definition 3.

Proof Let ¢ € ‘Kcmax{K’m}(R+ x R™"). We fix b > 0 such that ¢ is supported
in [0, b) x R".
After multiplying Eq. (1) by ¢ and integrating over R4 x R”, we get

/Oo / (DY, u(t, x)e(t, x) dxdt
0 R?

+/°°/ (A(x,ax)u(t,x)) o(t,x)dxdt
0 R~

o0
z/ /|u(t,x)|f’so<t,x>dxdt.
0 R’l
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By Definition 1, we may write
[e¢)
f f (Ax, 0)u(t, x)) o(t, x) dx dt
0 Jre

= /00/ u(t, x) (A*(x, Bx)q)(t,x)) dxdt.
0 n

On the other hand, recalling the definition of Caputo fractional derivative (6), we
have

/00/ (“Dg, u(t, x)g(t, x) dx dt
0 Jre
=/ /(J('):“ (@Fu(t, x))e(t, x) dx dt.
0 Jre

Being ¢ supported in [0, b) x R", due to the fact that 9/ u and ¢ are continuous, we
may apply first fractional integration by parts (34) and then classical integration by
parts, to obtain:

/ / (J(')(Jr_a O ut, x)))p(t, x)dxdt
0 R®
b
:/ / (J(')(_;a @ u(t, x))e(t, x)dx dt
0 JR"
b
=/ / @ u(t, x)(Jy_* o(t,x))dx dt
0 JR”
:/oo/ @ u(t, x))(J " @(t, x)) dx dt
0 R”

= /0 /n u(t, x)((—0) (J5 % o(t, x))) dx dt
k—1 ' ‘
a Z \/R" (at/u(oﬂ -x))((_at)l(717] (Jgoia QD(O, x))) dx.
j=0

The proof follows, noticing that

1 _ . A 1
(_at)l( 1 ](Jé(o:){f)z(_at)l( 1 ](Jo(gfl /) (a—1 /)f)ZRLD‘;O_ ]fa

forany j = 0,...,x — 2, according to (33),due tofoe — 1 — jl =[] -1 —j =
Kk—1—7j.
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Similarly, we may show that classical solutions to (2) are weak solutions, according
to Definition 4.

Proposition 2 Let u € €™*<m (R, x R") be a classical solution to (2). Then u
is a global (weak) solution to (2), according to Definition 4.

Proof Let ¢ € €M™ ™R, x R"). We fix b > 0 such that ¢ is supported
in [0, b) x R".

After multiplying Eq.(2) by ¢, integrating over R; x R” and employing
Definition 1, we get

/000 ,/]Rn (RLD8+ M(l‘, ‘x))(p(tv -x) dxdt

~|—/OO/ u(t, x) (A*(x, Bx)(p(t,x)) dx dt
0 n

oo
2/ / |u(z, x)|Po(1, x)dx dt.
0 Rn

Recalling the definition of Riemann-Liouville fractional derivative (7) and using
classical integration by parts, we obtain

/OOO /Rn(RLD‘(’)‘Jru(t,x))(p(t,x)dx dt
:/ / (8;‘(]6:“u(t,x)))(p(t,x)dxdt
0 R~
=/ / (Joy “ult, X)) (=) p(t, x)) dx dt
0 R~

Kk—1
- Z/Rn (@] (Jg 7 w)(O, ) (=) (0, x)) dx dt.
i=0

Being ¢ supported in [0, b) x R", due to the fact that ¥ and 9, ¢ are continuous, we
may apply fractional integration by parts (34), obtaining

/ /(J(')‘Jr_“u(t,X))((—az)’(f/)(t,X))dxdt
0o Jrr
b
=/ / (Joy “u(t, x)((—3) p(t, x)) dx dt
0 JRre
b
=/ / u(t, x)(Jy~* (=3 o(t, x))) dx dt
0 JRe

=/ / u(t, x)(J55 % (=0 p(t, x))) dx dt.
0 R~
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The proof follows by noticing that

o+j—k

8] (JET* u(0, %)) = R T u(0, x),

according to (7), and that
TS5 ()% p(t, x)) = “DY_e(t, x),

according to (32).

3 A Suitable Test Function

According to Definitions 3 and 4, we need, in general, k initial conditions to
supplement Eqgs. (1) and (2). Namely, to get a Cauchy-type problem, we have to
assign the initial values

w(©0,x), 3 'u(,x),

if we consider Eq. (1), and the initial values
w0, D00, L, DT, x),

if we consider Eq. (2).

However, in order to derive a nonexistence result which is independent of the
first « — 1 initial conditions, we may choose a suitable test function ¢(¢, x). For
problem (2), the task is trivial, as in the case of Cauchy problems for operators with
integer derivatives in time.

Remark 7 Letu € Lf;c (R4 x R™) be a global weak solution to (2), supplemented

by (12). Let ¢ € %maX{K’m}(R+ x R™) be a test function, with ¢ (¢, x) independent
of ¢ in a neighborhood of the line {# = 0}. Then it holds

/ ” / u(t, x) (DY _ 4+ A*(x, 8,))@(t, x) dx dt
O n
—/ a1 (x) 9(0, x) dx
Rn

o0
z/ /|u(r,x)|f’so<r,x>dxdr,
0 R7

as a consequence of B,j(p(O, x) = 0,forany j = 1,...,« — 1. In the previous
inequality, the only initial condition appearing is the one assigned in (12).
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In order to obtain the analogous of Remark 7, we shall find a test function ¢ (¢, x),
such that

RLD“ 1T 00 x) =0,  j=0,... -2

]

Moreover, we want a nonnegative test function ¢(¢, x).

Lemma2 Let ¢ > 1 and g € €*([0, o0)), positive, non-increasing, with supp g =
[0, 1], be such that

g() = co(l = H*Y,  ina left neighborhood of t = 1, (35)
for some cy > 0. Let y € (0, 1). Then
f@6)y="DL_g() = DL, _g(®)
verifies f € €*71([0, 00)), is supported in [0, 1, is nonnegative, and
Joo f(@0) = g(®. (36)

Proof Due to the fact that supp g = [0, 1], it holds

o DY () ifr <1,
Doo—g(t) = .
0 ift > 1,

cHY :
D7 g(r) ifr <1,

DY gy ={ =8
0 ift > 1.

Due to the fact that g(1) = 0, we get
KDl ¢) =“D{ g0,  1€l0,D).
As a consequence of (35), we obtain (see (2.1.19) in [11])

re+2)

¢ 1_te+1*)/’
re+2—-y) o(l=0

RLDY () =

in a left neighborhood of # = 1. In particular, “D}_g(1) = REDY ¢(1) = 0 (as
usual, the values in = 1 are intended as the limits as t — 1, see also (8), (9)). It
follows that f is well-defined, it belongs to f € €*~!([0, 00)) and it is supported
in [0, 1]. We notice that

F@6) =D gty =—J "¢ @),
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and so it is nonnegative, being g’(r) nonpositive. Equality (36) follows by (see
also (2.4.43)in [11])

1
3 foy=—J 1 7"¢w ——/ g'(s)ds = g(t) — g(1) = g(1).
t

Remark 8 Let g be as in Lemma 2, with £ — 1 > max{x, m}. Moreover, assume
that g is constant in a right neighborhood of + = 0, and set f as in Lemma 2,
with y = k — a. Let ¢ € g em (), nonnegative. Then ¢(¢, x) = f(t) ¥ (x)
is a nonnegative test function for which Definition 3 applies.

Letu € L{;C(RJr x R™) be a global weak solution to (1), supplemented by (11).
Then it holds

/OO/ u(t, x) REDY_ + A*(x, 3,)e(t, x) dx dt
0 n

- / 1 (x) (J90)(0, x) dx

/ / lu(t, x)|P @(t, x)dx dt,

as a consequence of

RLp ™ r0) = g'0) =0, ... RDY ' £(0) = g« D0) =0,

and
Joo 2 £(0) = g(0).

In the previous inequality, the only initial condition appearing is the one assigned
in (11).

4 Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof (Theorem 1) Let u be a global nontrivial weak solution to (2), with initial
condition (12), in the sense of Definition 4. Assume that (14) holds.
Forany R > 1l and T > 1, we fix

o, x) = f@/T) Y x/R),
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where f € C@maX{K’m}([O, 00)), is a suitable, nonnegative, test function, constant
in [0, 1/2], with supp f C [0, 1], and ¢ € €>°(R") is a suitable, nonnegative, test
function, constant in By = {x € R" : |x| < 1/2}, with suppyy C B) = {x €
R*: |x| < 1}.

According to Remark 7, it follows that

Ing = /O /R e, DI /T (/R dx di
S/Oo/ u(t, x) (CDgo,+A*(x,Bx))f(t/T)w(x/R)dxdt
O n
- f a1 () (0, x) dx
Rn
Z/m/ u(t, x) CD%_f(t/T)) ¥ (x/R) dx dt
O n
+ / /R u(t, x) £t/ T) (A*(x, ) (x/R)) dx di
O n

— 1) /R o1 (X) Y/ R) dix.

We notice that /¢ 7 is nonnegative, since f and ¥ are nonnegative. By homogeneity,
we obtain

“DE_f(t/T) =T~ (D%_f)t/T),
so that, by Holder’s inequality, we derive
[ [ o syt m dx
= Tﬁ"‘/o / lu(t, ) [(CDL_ )t/ T)| ¥ (x/R) dx di
1 o0 p, l/
ST Igq (/0 /R D /I F@/T) 7 yix/R)dxdr)’
1
ST I+ (R T)Ii’,
provided that

Cno -1
|CDe- NI f 7 =C, (37)

for some C > 0. We notice that, in the last inequality, we used that f(z/T) is
supported in [0, T'], that ¥ (x/R) is supported in Bg(0). In order to obtain (37),
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it is sufficient to ask that f(r) > 0 in [0, 1), with f(r) = co(1 — )¢, in a left
neighborhood of + = 1, for some ¢y > O, for a sufficiently large £ > max{x, m}.
Indeed, for any fixed ¢ > 0, condition (37) trivially holds in [0, 1 — €], since f is
continuous and positive. On the other hand, in [1 — ¢, 1] it holds

Ca -1 t—a—*
ICDS_ YOI (f@) » SA+1) ’,

so that it is sufficient to take £ > «/(1 — 1/p) to derive (37).
For any || <m and y < B, let us set

cpy =0l Vag(n).

We notice that cg, is homogeneous of degree rg — |B] + |y[, since ag is
homogeneous of degree rg. Then it holds

B (x/R)) = 0f (ap(x) ¥ (x/R))

=y (f ) 3% 7 ap(x)) 8 (Y (x/R))

v=p

> (f ) R7eg () (37 ) (x/R)

Y=

™

)3 (ﬁ) Rl ey, (x/R) (37 ¥)(x/R)
y=B Y

= RPN (ﬁ ) (cp.y X Y)(x/R)

r=B

= R* Pl (A54) (x/R).

We also notice that, as a consequence of (5), (AEI//)(X) vanishes in a neighborhood
of the origin, since ¥ is constant in a neighborhood of the origin.
By Holder’s inequality, and by using (13), we may now obtain

/0 /R e, )1 £/ T) A" (x, 909 (x/R)| dx dt
1 S 4 Y
511§,T(/ / ST A 009 G/ R e/ R) ™ dcdr)?
0 R"

1 1
SIp R (R,
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provided that

A Y < C,

for any |8| < m, for some C > 0. For a suitable function v, the above condition
holds, as a consequence of the fact that the coefficients of A/’g are smooth away from

the origin. For instance, if ¥ = ¥, with Ve %.° and sufficiently large £.
As a consequence of (14), there exists a sufficiently large R such that

— f(0) / Ug—1(x) Y (x/R)dx <0, VR > R. (38)
RV!

Summarizing, we proved that

1 1

Iny SIE (T 4+ R R'T)7,
for R > R. In the following we fix R = R(T) = T%h sothat T~ = R, and

1
—a+ l+m;1/h

IR(T),T 5 II?(T),T T o 39)

As a consequence,
—ap'+1+7
Iy, ST P70,

Assume, by contradiction, that
, no
—ap + 1+ L <0,

thatis, p < p(n, o), where p(n, ) is as in (15). Due to
T/2 / no
FO) v (0) / / lu(t, )P dxdt < Iy ST P+,
0 Br(1),2(0)
taking the limit as T — oo, we deduce that

£(0) ¥(0) /m/ (. )P ddt < 0.
0 Rn

i.e., u = 0. Now let us consider the critical case p = p(n, «). In this case, we only
get that Ig(r), 7 is bounded by (39). That is, taking the limit as T — 00, we obtain
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that u € L?. On the other hand, taking into account that

“D%_f)t/T)=0,  Vte[0,T/2),
A*(x, 0x)¥(x/R) =0, Vx € BR/z,

we may refine estimate (39) to derive

1

Irary,T S (/GC lu(t, x)|? f(t)T)y(x/R) dxdt) i
T

where G(T) = [0, T/2] x Bg2 and G5 = ([0, 00) x R") \ G7. Due to the fact
that u € L? and Gr ' [0, 00) x R", we obtain that the right-hand side in the
previous inequality vanishes as T — oo. That is, proceeding as before, we deduce
that u = 0.

Therefore, u is trivial if p < p(n, @). This concludes the proof.

If we replace (14) by (16), then we may replace (38) by

- f0) /Rn ug—1(x) ¥ (x/R) dx

IA

—f(0) ug—1(x)dx
Br2

—eCR"Y, VR > R,

IA

for some C > 0. As a consequence, we may refine (39) into

1 I+na/h —
—a+ (n—0)a
Ireyr Slge T 0 7 —€T

By Young inequality, we derive

P na (n—0)a
Ireryr ST P —eT

For any fixed ¢ > 0, the right-hand side is negative, for sufficiently large R, if

0
—ap’ + 1+ ;<0,

that is, if p < p(6, @), where p(0, «) is as in (17). This concludes the proof.
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5 Proof of Theorem 2

We are now ready to prove Theorem 2.

Proof (Theorem 2) Let u be a global nontrivial weak solution to (1), with initial
condition (11), in the sense of Definition 3. Assume that (18) holds.
Forany R > land T > 1, we fix

o, x) = f@/T) Y x/R),

where ¥ € €>°(R") is a suitable, nonnegative, test function, constant in B 2=
{x e R": |x| < 1/2}, with suppy C By = {x € R" : |x| < 1}, as in the proof
of Theorem 1. On the other hand, we choose f as in Lemma 2 and Remark 8. More
precisely, we fix g € €*([0, 00)), positive, non-increasing, with supp g = [0, 1],
and constant in [0, 1/2], be such that (35) holds, that is,

g() = co(1 —H**',  in aleft neighborhood of r = 1,
for some cp > 0. Then we put

f() =RDE Y ().

According to Remark 8, it follows that
I = /00/ lu(t, x)|? @(t, x)dx dt

0 R”

5/00/ u(t, x) REDY_ + A*(x, 3,)e(t, x) dx dt
0 n
- / 100 U5 9)0, x) dx

- / N / u(t, x)RUDE,_(f(t/ T)Y (x/R) dx dr
0 n
+/ / u(t,x) f(t/T)A*(x, 0x)) (¥ (x/R)) dx dt

0 R”

gy /Rn ue—1(x) Y (x/R)dx.

Here we used that, by homogeneity, it holds

X (f@/TONi=0 = T (IS )/ T)li=0
= TK_ag(t/T)|t:().
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By homogeneity, we also obtain

RLDE, (f(t/T)) =T~ R'DE,_f£)(t/T),

so that, by Holder’s inequality, we derive
*® RLHo
A lu(t, ™D f/THI ¥ (x/R) dx dt
(o)
= T*“/ / lu(t, )| |(""DE_ £)(t/T) ¥ (x/R) dx dt
0 R
1 00 ’ ? 1/
ST ( / f |RDE_ /T &/ T) 7 yr(x/Rydxdr)”
' 0 R~
1 1
ST 15 (R'T)7,
provided that

IRLpZ._ )| f7r <C, (40)

for some C > 0. We notice that, in the last inequality, we used that f(z/T) is
supported in [0, T'] and that ¥ (x/R) is supported in B (0). In order to obtain (40),
it is sufficient to take a sufficiently large £ > max{x, m}. Indeed, for any sufficiently
small, fixed ¢ > 0, condition (40) trivially holds in [0, 1 — €], since f is continuous
and positive. On the other hand, in [1 — &, 1] it holds

re+2)

_ 1= (k—a)
“re+2—w—an TP ’

f)y=c
so that

£+1_K_Z+a;;lfk

IRLDE £ (f(1) P < (1+1)

and it is sufficient to take £ > « — 1 + «/(p — 1) to derive (40).
Proceeding as in the proof of Theorem 1, we derive once again

/0 /l;" lu(t, x)| f(t/T)|A*(x, 3,)¥ (x/R)| dx dt
! 1
S I]?ﬁT R_h (Rn T)r.

Weset R = R(T) = T*'" sothat T~% = R, as in the proof of Theorem 1.



74 M. D’ Abbicco

We now distinguish the three cases, according to which data assumption we take
among (18), (19) or (21).
Let us assume (18). In this case, we can only deduce that

—g(0) T"_“/ we—1(x) ¥(x/R)dx <0,
Rll

so that we derive (39), as in the proof of Theorem 1. Therefore, repeating the steps in
the proof of Theorem 1, we find again that u is trivial if p < p(n, ). This concludes
the proof.

Now let us assume (19). In this case, there exists a sufficiently large R, such that

—g(0) T"f‘)‘/ Ug—1(x) Y (x/R)ydx < —eT“%, VR > R,
Rll
where
1
&= 5 2(0) / Ue—1(x)dx.
RV!

As a consequence, we may refine (39) into

1 _a+l+na/h
Ircry,T S Ilg r T o — T,

By Young inequality, we derive
Ircr).T 5 Tfap'+1+”,f‘ — Tk
For any fixed ¢ > 0, the right-hand side is negative, for sufficiently large R, if

, no
—ap + 1+ h <Kk —a,

that is, if p < p(n, @), where p(n, @) is as in (20). This concludes the proof.
Finally, let us assume (21). In this case, we may estimate

—g(O) T /Rn ue—1(x) Y (x/R) dx

IA

O [ uama
Br2

<—eCT" *“R"Y, VR > R,
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for some C > 0. As a consequence, we may refine (39) into

1 14na/h

_ (n—0)a
Inaryr SIET %0 0 —eT* 0,

By Young inequality, we derive
Kk—a+(n—0)a

! no
Irary,r STV HH0 —eT

For any fixed ¢ > 0, the right-hand side is negative, for sufficiently large R, if
, (2]
—ap' + 1+ " <Kk —a,

thatis, if p < p(0, ), where p(0, ) is as in (22). This concludes the proof.

6 Decay Estimates for the Fractional Subdiffusive Equation

Let us consider the Cauchy-type problem of fractional order « € (0, 1) with
Riemann-Liouville derivative

RLpe vy —ay = f(1), t=0,
{ Hipry y=f@®, t= @l
‘I()J,- y(o):yafls
and with Caputo derivative
Cno
D —Ay=f@), t>0
: oy —rAy=[f@®), t= 42)
y(0) = yo.

where A € R. If f is sufficiently smooth, then the solutions to these problems are
given (see Examples 4.1 and 4.9 in [11]), respectively, by:

t
V() = Yo 117" Eg o (11%) +/ (t = )" Eqa(Mt —5)*) f(5)ds, (43)
0

t
() = y0 Ea 1 0%) + /0 (1 = 9% EuaOult — 9)*) f(5) ds. (44)

Here E, g is Mittag-Leffler function [12], described by its analytic expression

o0

zJ
Evp(2)=) FBt /)

j=0
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In particular, if f € 6]_q, that is, e f(¢) is continuous, then the solution to (41)
may be constructed in the space 67", thatis, y and RLD%‘ .y are both in %1—_«. On
the other hand, if f is continuous, then the solution to (42) may be constructed in
the space €%, that is, y and CDS‘ .y are both continuous.

Fora € (0, 1) and |arg z| € (am, ], the Mittag-Leffler function E, g(z) may be
represented by (see Theorem 1.1.2 in [13]):

Fup(2) = 1 /°° Tsin(Br) — zsin(w (B — ) 1 efré dr. 45)
o gOl(Tv Z)

where
ga(T,2) = 12 — 2tz cos(am) + 2. (46)
Let us define the convolution operator
Kap(t,) %00 9(x) = 147" F 7 (Ea s (—1°151) (), 47)
where .% denotes the Fourier transform with respect to x, and ¢ = .F¢. Then, as a
consequence of (43) and (44), we derive that u is a solution to (28) or, respectively,
to (25), if, and only if,
u(t, x) = 17" Koa(t,) #(x) tta—1(x)
+ /Ot(t — ) Koo (t = 5.°) () [u(s, )P (x)ds, (48)
or, respectively,

u(t, x) = Ko 1(t, ) *x) uo(x)

t
~|—/ (t =) Koot —s,°) %) lus, )P (x)ds, (49)
0

forany t € (0, T), in a suitable space.
In order to prove Theorems 4 and 3, we will rely on the following.

Lemma3 Let o € (0, 1). Then there exists § € (0, 1) such that we have the
following pointwise estimate:

(14 |x[)="=° ifn <3,
Koo (1, )| <C x|~ + |x])~* ifn =4, (50)
x|~ (A + x)7 ifn > 5,
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(1+ |x]~! ifn=1,
Kt (L, X)) <C x| A+ xD72 ifn=2, (€29)
Ix|="=D A+ x)72 ifn >3

As a consequence of Lemma 3 and of the scale invariance of K, g, we immediately
derive the following.

Corollary 1 Let o € (0, 1) and t > 0. Then Ko o(t,-) € L' N L*® ifn < 3 and

Koo(t,) e L' NLP, Visp<i+ . (52)
n—
ifn > 4. On the other hand, Ky 1(t,-) € L" N L*, foranyr > 1, ifn = 1 and
2
Kyi1(t,) e L' NLP, Vi<r<p<l+ 5 (53)
n—

if n > 2. Moreover,

_ na 171
IKa,pt, Hpa =1 2 (=) [ Ka,p(1, )L,

forany t > 0 and admissible q.
By Young inequality, we immediately obtain the following result.

Corollary 2 Let Ky g asin (47), with p = a, 1, and 1 < p < g < oo. Assume that

(-4
n — < 4,
2}
1 1
O<n< — )<2,
P 4q

ifB=ua or

if B =1.Then

no (1

_ _ 1
IKap(t, ) %00 @liLe = Ct 2 <” ") lellze, (54

where C > 0 is independent of ¢.

Estimate (54) has been proved in [1, Lemma 1] for 8 = 1, without relying on the
representation of Mittag-Leffler functions in (45).
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In Corollary 1, we cannot prove that K, o and K, | are in the endpoint spaces,
as a consequence of the estimates in (50) and (51). That is, we cannot prove that
Koo(t,) € Lo+, when n > 4, that Ko1(t,-) € L»2, when n > 2, and
that K4,1(¢, -) € Ll, forany n > 1.

However, by Hardy-Littlewood-Sobolev theorem, we may extend Corollary 2 to
cover the endpoints, if we restrictto 1 < p < g < oo.

Corollary 3 Let Ky g asin (47), with B =a, 1, and 1 < p < q < 00. Assume that

(b=4)

n - 547

P 9
(b-4)

n — <2,
P g

if B = 1. Then (54) holds, where C > 0 is independent of ¢.

ifB =« or

6.1 Proof of Lemma 3

We are now ready to prove Lemma 3.

Proof (Lemma 3) Thanks to the integral representation (45), we may write

sin(ar)

ix§ * ‘Ci rl
Kyo(l,x) = e / e " drdE
o a@m)rr Jgn 0 &a(t,—IE?)

_sin(r(1 — @) ixé /OO & —ra
Kaad, ) = am)tm Rn ¢ 0 &(t,—l€1%) ¢ dr ks

As a consequence of
ga (v, —[§") = 7%+ 21[§ P cos(am) + [§]* = e(x + [, (55)

where ¢ = 1 — cos(am), we immediately derive that

1
o) Ta 1
Koo(l,x 5/ / e T dr dE.
| Ot,Ol( )l re Jo _’:2 |%_|4 s
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In particular, Ky o € L™ if n = 1, 2, 3. Indeed, it is sufficient to estimate

e ‘Etlx 1 1, 1
f ) 4€7T0{ drf/ Te “e " dt < 00,
o T°+I§] 0

for |&€] < 1, and

o0 ‘[t:t 1 I 1
[t arsiart [ e et ar= et
o T-+IE] 0

for |&| > 1. Similarly, we derive that

[} 2
€] -
Ky 1(1, < T dtdé,
| C{,l( X)lw\/n\/(\) T2+|S|4e T 5

in particular, K1 € L* if n = 1. Indeed, it is sufficient to use the change of
variable T = |£|%0 to estimate

00 2 [ee) 2
LIER— / 4
e dt < dt
/0 T2 4 g4 “Jo rA4EM

for |&€] < 1, and

f‘” HE effz,dr<|§|72/°°e,rédrzc|é|fz
0o TZHIE - 0 '

for |€] > 1.
It is easy to check that

1
o/ | SET @+ IER T vy e, (56)
‘ ¢ (ga<r,—|5|2>)
thanks to (55). If y # 0, we may refine estimate (56) to

1
ol ( )| < lEr e +ieR vivi= 1 (57)
& ga (T, %)
More in general, if 2k 4+ 1 < |y| for some k € N, then we may refine estimate (57)
to
‘ ¥

! 2(k+D—lyl 2\ —(k+3)
85 (ga(f,_|§|2))‘§|§| (Tt + &9 .
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but estimates (56) and (57) will be sufficient for us. Indeed,

I

ag.( 1 ) __2%j(cos(meT + 21€1%)

I\ go (T, —[€?) (8 (1. —[£]%)?

3 1 ) - | 28j(cos(raT + 21&1%) + 486
I\ ga (T, —[£]?) (8o (T, —|€]?))?

48 & (cos(ma)T + 2[€[%)?

2 s
* (ga (T, —[E])3

and so on. To derive the desired estimate, it is sufficient to notice that

|cos(ma)lt + 2[£1* < T + &I,
(ga(T, —IEMN ' S (T + 1172,

as a consequence of (55). As a consequence of (56) and (55), we derive

(P Vs e wew, o
§\galT, —[E[)/ 1~

for any y. Moreover, if 1 42k < |y| for some k € N, then we may estimate

12

2(k+1)—1y| 2\ (k+2)
‘85 (ga(f,_|§|2))‘§|§| Yi(z 4 |€]%) ’

but estimate (58) will be sufficient for us.
Thanks to the identity
n

ix& — Xj 0 ix-& 59
e ;imz%je ; 9

for any m € N, we may integrate by parts m times K o and Ky 1, obtaining:

Koo (L OIS e Z ‘/ lxsf e —|5|2>)“1”e_“L drde]

2
Ko 1 (L) S |x|7" Z ‘/,, lxs/ E (Tlgl_mz))e_”l‘ drdé‘

lyl=

Let us consider first Ky o. For any fixed y with |y| = m, we split the integral into
two parts, {|£] < lx|~1} and {|&] > |x|~!}, and we perform one additional step of



Critical Exponents for Differential Inequalities with Fractional Derivatives 81

integration by parts in this latter:

ix§ 4 e drds
fn / ga(r —IEIZ))
. o0 1 1
=/ e’xéf (a7 ) ) e e drde
lgI<lx|~1 0 8a (T, —|&]%)

_I_/ ixé /oo (ay 1 ) 1 _-[Cll d d%‘
e Ta e T
£ 1> x| ! 0\ g(r, —IE?)

=1Ilp+ 11 + Iv,

where

& 1 1 1

/ et / <8§/ 5 )ra e T dr dé,

lEI<lx|~! 0 8e (T, —|€1%)

. o0 1 1

Z / X / (8; 5 )rclx e " dtdsS,
= lE|=|x|~! 0 8a(T, —1§1%)
—Xn: Xj / pixE /00 (35'3y 1 )ﬂlt e_fé dr dE.

il gz Jo VU gz —lEP)

Moreover, we may perform one additional step of integration by parts in /o, that is,
Iso = J» + Joo, Where

XXk 1 I
Jh = / / ”‘5/ 3,07 Te e T dr dsS,
Z X% Jig =g 0 <s’ Sgol(fa_|%‘|2))

XiXk 1 Lo l
J, f / “‘f/ 9, 0z, 07 « e T dr dE.
> ezt Jo (0u2e,2 g (T, |é|2))

]kl

We claim that we may estimate

[Kaa(LO] S [T, Vix <1 n=5 (60)
and, for any § € (0, 1), we may estimate

|Ko.1(1, x)| < |x] 72, Vix| <1, ifn =4 (61)

By the fact that K, o € L> if n = 1, 2, 3, and by claims (60) and (61), we conclude
estimate (50) for |x| < 1.
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To prove claim (60), we fix m = n — 5. Thanks to (56) with |y | = n — 5, we may
use

‘a§<ga<r,1—|s|2))‘ SIETT @ +1ED T < 5T

to estimate

_ oyl _
|Io|s/ €] "“f tee " drde < |x| 7!,
[E]<]x|—1 0

and
0 1
Il S IxI‘I/ ISI‘"“/ ta e T drdS = Clx|7.
€ |=|x|~! 0

Similarly, setting y1 = y +¢;, so that 3; 9} = 8", thanks to (56) with |yi| = n—4,
we may use

‘al’l

1
—(n—4) 2,2 —n
S<ga<r,—|g|2))‘5|¥l T +EP2 < g™,

to estimate

0 1
Il < IxI72 f |§|*"f te e ™ drdS = Clx|~".
18 |=]x|~! 0

Finally, setting y» = y +¢; + ek, so that g, 0, ag = agz, thanks to (56) with |y;| =
n — 3, we may use

‘J’z

1
—(n—=3) 2\—2 —n—1
% (ga(Tv_|§|2))‘ S Il (T + &7 < |&] ,

to estimate
o0 1 1
ool < Ix172 / IEI_”‘I/ tee T drdS < |x|7.
€1=]x| ! 0

This proves (60). In space dimension n = 4, we shall fix y = 0, since we cannot
take |y| = n — 5 = —1. However, for any small § € (0, 1), thanks to (55), we may
use

1 5
SE+ED ST g7,
2o (T, —|E[?)
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to estimate
—ays [0yt o -5
|10|§/ 1ISI / T 2Tee TN drdE S |x|70,
[E1<[x]~ 0

and

o0 1
|11|5|x|*‘/ |s|*4+5/ A T e ds = Clal .
&]=]x|~! 0

On the other hand, setting y; = e}, so that 8;7. = 9", thanks to (56) with |y1] =1,
we may use

1
o, Sl @ +iED 2 <1l
2 gu(s, —|s|2))
to estimate
0 1
ool S 1| / IEI‘S/ e e drds < C.
|]1=]x]1 0

This proves (61).
We now claim that, for a sufficiently small § € (0, 1), we may estimate

|Ke,1 (1, S x| ™70, Vx| >1,n>1. (62)

By claim (62), we conclude estimate (50) for |x| > 1.
To prove our claim, we fix m = n. By (§7) with |y| = n, we use

1 _ _ 28 o=
\ag(g e _mz))\ SEPT@+IER T ST T,
o ’
where we assume §/2 < 1/« — 1, t