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Abstract. Stabilization of motion of a wheeled robot with constrained
control resource by means of a continuous feedback linearizing the closed-
loop system in a neighborhood of the target path is considered. The
problem of selection of the feedback coefficients is set and discussed. In
the case of a straight target path, the desired feedback coefficients are
defined to be those that result in the partition of the phase plane into
two invariant sets of the nonlinear closed-loop system while ensuring the
greatest asymptotic rate of the deviation decrease. A hybrid control law
is proposed that ensures the desired properties of the phase portrait and
minimal overshooting and is stable to noise. The proposed techniques
are extended to the case of circular target paths.
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1 Introduction

There exist many applications (for example, in agriculture [1,2]) where a vehicle
is to be driven along some target path with a high level of accuracy. Such tasks are
performed by automatic vehicles (further referred to as wheeled robots (WRs), or
simply robots) equipped with navigational and inertial tools and satellite anten-
nas. The problem of bringing the robot from an initial state to a preassigned
target path and stabilizing its motion along the path is called path stabiliza-
tion problem (or path following problem); it was discussed in a great number of
publications. Various models (e.g., monocycle, simple car, car-like model with
and without drive actuator, tractor with trailers, etc.) and target curves (e.g.,
straight lines, circles, general-form curvilinear paths) were considered (see, e.g.,
[1–7] and references therein).
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One of the commonly accepted approaches frequently and successfully used
for solving the path stabilization problem is based on the exact linearization
of the equations of motion in a part of variables by applying an appropriate
nonlinear feedback (partial feedback linearization) [1–5]. In the framework of
this approach, the original affine system is transformed into a normal form,
from which the desired feedback linearizing the system in stabilizable variables
is easily found. If the vehicle speed varies in time, in order to transform to the
normal form, it is required first to change the independent variable. By applying
different time scales, one can obtain different normal forms and, accordingly,
different feedbacks. A detailed discussion of this issue, as well as comparison of
different linearizing feedbacks can be found in [3].

The presence of control constraints makes the path stabilization problem
much more complicated since it cannot be linearized in the entire state space.
One of the commonly accepted techniques, in this case, is to use the saturated
linearizing feedback, which yields linearity only in the vicinity of the target path.
The goal of this study is to find out how to select coefficients of the saturated
linearizing feedback to improve the efficiency of stabilization when the control
resource is bounded.

2 Problem Statement

We consider the kinematic model of a wheeled robot, which describes the sim-
plest vehicle moving without lateral slippage with two rear driving wheels and
front wheels responsible for steering the platform. In the planar case, the robot
position is described by two coordinates (xc, yc) of some point of the platform,
the so-called target point, and one angle describing the orientation of the plat-
form with respect to a fixed reference system Oxy. For the target point, the
point located in the middle of the rear axle is taken, and for the angle, the angle
θ between the central line of the platform (which coincides with the direction of
the velocity vector) and the x-axis. The kinematic equations of such a robot are
well known to be (see, for example, [1–7])

ẋc = v cos θ,
ẏc = v sin θ,

θ̇ = v tan φ/L.
(1)

Here, the dot over a symbol denotes differentiation with respect to time, v ≡ v(t)
is a scalar linear velocity of the target point, and L is the distance between
the front and rear axles. The vehicle is controlled by turning the front wheels
through an angle φ, |φ| ≤ φmax < π/2. Since the angle φ in the above range and
the instant curvature u of the curve described by the target point are related
by the one-to-one relationship u = tan φ/L, it is convenient to take u to be the
control variable, which satisfies the two-sided constraints

− ū ≤ u ≤ ū, (2)

where ū = tan φmax/L is the maximal possible curvature of the actual trajectory
described by the target point.
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In the path stabilization problem, it is required to synthesize a control law
u that brings the robot to a given target path and stabilizes its motion along
the curve. The target path is given in a parametric form by a pair of functions
(X(s), Y (s)), where s is a natural parameter (arc length), and is assumed to be
feasible. The latter means that the functions X(s) and Y (s) are twice differen-
tiable [4] everywhere except for a finite number of points (and, hence, curvature
k(s) of the target curve is a piecewise continuous function), and the maximum
curvature k̄ = maxs k(s) of the target path satisfies the constraint k̄ < ū.

It has been shown in [5] that, by changing state variables and applying time
scaling, the path following problem can be written in the canonical form [3], as
the problem of finding a feedback that stabilizes the zero solution of the system

z′
1 = z2, z′

2 = (1 + z22)
3/2u − k(1 + z22)

1 − kz1
. (3)

In (3), z1 is the deviation of the robot from the target path, z2 = tan ψ, where
ψ is the angle between the direction of the velocity vector and the tangent line
to the target curve at the point closest to the robot, and the prime denotes
differentiation with respect to the new independent variable ξ, which satisfies
the equation ξ̇ = v cos ψ.

If the control resource is not bounded (ū = ∞), then closing system (3) by
the feedback

u = − σ(z)
(1 + z22)3/2

+
k

√
1 + z22(1 − kz1)

, (4)

where z = [z1, z2]T and σ(z) is a linear function with positive coefficients, we
obtain the linear system

z′
1 = z2, z′

2 = −σ(z), (5)

the zero solution of which is globally asymptotically stable. For convenience of
calculations, without loss of generality, we will represent function σ(z) in the
form

σ(z) = λ2z1 + 2λγz2, λ > 0, γ > 0. (6)

In the case of the constrained control resource, applying the saturation func-
tion to the linearizing control law, i.e., selecting the feedback in the form

u = −satū

(
σ(z)

(1 + z22)3/2
− k

√
1 + z22(1 − kz1)

)

, (7)

we get a hybrid system given by the linear Eq. (5) in the set where |u| < ū and
by the nonlinear equations

z′
1 = z2, z′

2 = −k(1 + z22)
1 − kz1

− sign(σ(z))(1 + z22)
3/2ū (8)

in the set where the control reaches saturation.
As can be seen, the properties of the system under study are determined

by the four parameters: the feedback coefficients λ and γ, path curvature k,
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and the control resource ū. Let us turn to an equivalent system of equations in
dimensionless variables, which will allow us to get rid of one parameter. It is easy
to verify that all above equations are invariant with respect to the transformation

ũ = u/ū, ξ̃ = ξū, z̃1 = z1ū, z̃2 = z2, λ̃ = λ/ū, γ̃ = γ, k̃ = k/ū. (9)

Thus, study of the behavior of an arbitrary WR reduces to studying a dimen-
sionless WR with the control resource equal to one. To simplify subsequent
calculations and formulas, we will use the same notation (without tilde) as in
the dimensional case to denote dimensionless quantities and parameters. Thus,
all above equations remain valid for the dimensionless variables by setting ū = 1
in Eqs. (7) and (8).

Clearly, the efficiency of the stabilization directly depends on the coefficients
of the linear function σ(z). However, the author failed to find any publications on
wheeled robots where the problem of finding optimal (in one or another sense)
feedback coefficients is solved or even posed. In works [1,2,5], when discussing
the practical implementation of the proposed linearizing feedbacks, the values
of the coefficients are either set arbitrary (in numerical experiments with WR
models) or selected experimentally (when the case in point are real automated
vehicles). For example, in [1,2], to control a farm tractor, the authors used a lin-
earizing feedback depending on one parameter, the value of which was selected
experimentally from the condition that stabilization in a strip of width 15 m
is achieved without reaching the control constraint (without getting into the
saturation mode). Such an approach is not only badly justified but also is too
cumbersome, since the results obtained for one WR cannot be used for another
WR with different geometric characteristics and/or different control resource,
which brings us to the necessity of development of a theoretically justified app-
roach to solving the problem of selection of the feedback coefficients.

In the particular case of a straight target path and one-parameter family of
the coefficients with the fixed γ = 1 (in this case, system (5) has one repeated
pole −λ), this problem was studied in [8]. The desired value of the parameter
was defined in [8] as the greatest λ for which there exists a partition of the
phase plane into two invariant half-planes (i.e., any trajectory of the closed-loop
system completely lies in one of the half-planes). The existence of two invariant
half-spaces implies that the phase portrait of the nonlinear system (3), (7) is
topologically equivalent to the phase portrait of the linear system (5) in the
entire plane R2 (rather than in a neighborhood of the origin). It was proved that
the optimal in this sense value is λopt = 3

√
3ū/2 and that the phase plane is

partitioned into the desired half-planes by the asymptote z2 = −λoptz1.
In this paper, we study the more general case where the roots of the charac-

teristic polynomial of the linear system (5) are different. First, we pose the same
problem as in [8]:

Problem 1. Determine feedback coefficients for which (i) there exists a parti-
tion of the phase plane into two invariant sets and (ii) the asymptotic rate of
approaching the target path is as high as possible.



340 A. Pesterev

We will also study how the results obtained for the straight paths can be
extended to the case of circular paths.

It should be emphasized that the above criterion of the selection of the feed-
back coefficients is quite natural. The fulfillment of this criterion means that the
WR approaches the target path in a non-oscillatory way: the trajectory of the
WR intersects the target curve at most once.

To get an idea of how the feedback coefficients affect system behavior, we
first consider the phase portrait of the linear system (5), which governs the
closed-loop system behavior when the control resource is unbounded.

3 Phase Portrait of the Linear System

The roots of the characteristic equation μ2 +2γλμ+λ2 = 0 of the linear system
(5) are easily found to be

μ1,2 = −λ1,2, λ1 = γλ(1 −
√

1 − 1/γ2), λ2 = γλ(1 +
√

1 − 1/γ2). (10)

For γ ≥ 1, the roots are real negative numbers and the linear system has
a stable node at the origin. If γ < 1, μ1 and μ2 are complex conjugate num-
bers, and z = 0 is a focus of the linear system. Clearly, in the latter case, no
entire trajectory of the system can lie from the one side of a straight line passing
through the origin; i.e., the above-formulated criterion certainly cannot be sat-
isfied. Therefore, in what follows, we assume that γ ≥ 1. Note that, for γ = 1,
we arrive at the case of a degenerate node (repeated root μ1,2 = −λ) considered
in [8].

A typical phase portrait of a system with a stable node is shown in Fig. 1.
Here, γ = 1.1, λ ≈ 4.0, λ1 ≈ 2.6, and λ2 ≈ 6.3. The system has two eigenvectors
collinear to the straight lines z2 = −λ1z1 and z2 = −λ2z1. Any system trajectory,
except those beginning at points on the straight line corresponding to the larger
eigenvalue (λ2), touches the asymptote z2 = −λ1z1 at the origin. With regard to
(10), the equation of the asymptote can be written as z2 + γλ(1−√

1 − 1/γ2)z1
= 0. Multiplying this equation by γλ(1 +

√
1 − 1/γ2), we obtain the asymptote

equation in the form

γλ(1 +
√

1 − 1/γ2)z2 + λ2z1 = 0. (11)

The asymptote divides the phase plane into two half-planes A− (below the
asymptote) and A+ (above the asymptote), where the left-hand side of (11)
is less or greater than zero, respectively. Clearly, A− and A+ are invariant sets
of system (5), i.e., any trajectory completely lies in one of these half-planes
and may intersect the target path not more than once. The deviation decreases
exponentially with the exponent equal to the lesser eigenvalue μ1 = −λ1.
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4 Stabilization of a Robot with Constrained Control
Along a Straight Path

The system with a constrained control ceases being linear when it comes to the
“saturation” region, the set where the inequality

|σ(z)| ≥ (1 + z22)
3/2 (12)

holds. Clearly, the saturation region is a disconnected set consisting of two non-
intersecting sets lying from both sides of the straight line σ(z) = 0. It is easy to
see that the system moves along an integral curve in the direction of increasing
(decreasing) variable z2 in the left (right) saturation region.

Any trajectory of the nonlinear system (3), (7) completely lies in the domain
A− or A+ if and only if the asymptote z2 = −λz1 does not intersect the sat-
uration regions, since a system trajectory can intersect the asymptote only in
the saturation region (where the system is nonlinear). Let us find conditions
the fulfillment of which guarantees that the asymptote does not intersect the
saturation region. In view of symmetry, it will suffice to consider one (say, left)
component of the saturation region. Let us rewrite inequality (12) holding in the
saturation region as

λ2z1 + λγz2 ≤ −(1 + z22)
3/2 − λγz2.

Fig. 1. Phase portrait of a linear system with stable node at the origin.
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Adding γλ
√

1 − 1/γ2z2 to the both sides of this inequality, we obtain

λ2z1 + λγ(1 +
√

1 − 1/γ2)z2 ≤ −(1 + z22)
3/2 − λγ(1 −

√
1 − 1/γ2)z2. (13)

In order that the entire component of the saturation region lies under the asymp-
tote, the right-hand side of the inequality must be negative in it. Indeed, in
this case, the left-hand side of the inequality is also negative in the saturation
region, i.e., in view of (11), belongs to the set A−. The condition of negativeness
of the right-hand side of the inequality can be written with regard to (10) as
(1+z22)

3/2 ≥ −λ1z2. Replacing the inequality sign by the equality sign, squaring
both sides of the equality obtained and introducing the notation x = z22 , we
arrive at the equation (1 + x)3 = λ2

1x. This equation can be viewed as the equa-
tion in the unknown point of tangency of the cubic and linear (with an unknown
coefficient) functions of x. Equating derivatives of both functions at the point
of tangency, λ2

1 = 3(1 + x)2, and substituting the right-hand side of the last
equation for λ2

1 into the previous equation, we obtain x = 1/2. Substituting this
into the last equation, we find that the asymptote touches the saturation region
when λ1 = 3

√
3/2 and that the ordinate of the point of tangency is z2 = −√

1/2.
Thus, for the smaller eigenvalue λ1, we obtained the same value λopt that was
obtained in [8] for λ in the case of the multiple roots. The corresponding λ is
easily found from the relations (10): λ = λopt/(γ(1 − √

1 − 1/γ2)). Thus, we
have proved the following assertion valid for a straight target path.

Theorem 1. Let the coefficients of feedback (7), (6) satisfy the condition

γ ≥ 1, λ(γ) =
λopt

γ(1 − √
1 − 1/γ2)

, λopt =
3
√

3
2

. (14)

Then, the half-planes A− or A+ lying from the two sides of the straight line
a(z) = 0, where

a(z) = λoptz1 + z2, (15)

are invariant sets of the closed-loop system (3), (7), (6), and any solution of the
system asymptotically tends to the origin with the exponential rate (−λopt).

Theorem 1 implies that there exist an infinite number of pairs of the parame-
ters γ and λ(γ) related by the condition (14) for which we have the same partition
of the phase plane and the same asymptotic rate of the deviation decrease. On
the asymptote, the closed-loop system (3), (7), (6) is linear for any γ ≥ 1, and
any solution of the system tends to zero exponentially with the exponent (−λopt)
not depending on γ. Indeed, for any γ, we have

σ(z) = λ2z1 + 2γλz2 = λ1λ2z1 + (λ1 + λ2)z2 = λ2(λ1z1 + z2) + λ1z2,

where λ1 = λopt. On the asymptote, λ1z1 + z2 = 0, and the linearizing control
(4) takes the form u = λ1z2/(1 + z22)

3/2. It is easy to check that the right-hand
side of the last expression does not exceed one, with the extreme values u = ±1
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Fig. 2. Saturation regions of system (3) with k = 0 closed by feedback (7), (6) for
γ = 1, γ = 2, and γ = 5.

being achieved only at z2 = ±1/
√

2. Hence, on the asymptote, the closed-loop
system (3), (7) takes the form z′

1 = z2, z′
2 = −λoptz2.

Let us find out in what way the selection of the value of γ affects the behavior
of the closed-loop system. First, the greater the value of γ, the larger the sat-
uration region. Figure 2 shows the saturation sets for three values of γ: γ = 1,
γ = 2, and γ = 5. The thin line depicts the asymptote, which separates the
two components of the saturation region for any γ ≥ 1 and touches them at the
points with the coordinates z2 = ±1/

√
2.

Let z(ξ, z0, γ) denote the trajectory of the system (3) closed by the feed-
back (7), (6) with the initial condition z(0) = z0. From Theorem 1, it follows
that deviation z1(ξ, z0, γ) either monotonically tends to zero or has one local
extremum at the point of intersection with the axis z1. In the latter case, the
quality of the control can additionally be characterized by the magnitude of this
extremum, which will we referred to as “overshooting” and denoted as M(z0, γ),

M(z0, γ) = max
ξ

[z1(ξ)sign(z2(0))]. (16)

If the deviation tends to zero monotonically, the overshooting is zero.
It can be shown that the minimum of the overshooting is achieved on the

limit trajectories, the trajectories to which trajectories z(ξ, z0, γ) tend as γ → ∞.
The corresponding limit feedback (7), (6) is given by the discontinuous function
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u(z) =
{−1, z ∈ A+,

1, z ∈ A−.
(17)

Fig. 3. Phase portrait of the closed-loop system (3), (17).

Figure 3 shows the phase portrait of system (3) closed by the limit control
law (17). In the sets A+ and A−, the system moves along integral curves of
equation (8) given by

z1 = z1(0) ∓
(

1
√

1 + z22(0)
− 1

√
1 + z22

)

. (18)

Having reached the asymptote, the system moves (“slides”) along it to the origin.
However, in practice, the discontinuous control law (17) is not applicable

because of the chattering arising when the system moves along the asymptote.
Indeed, since the set of points belonging to the asymptote has zero measure, the
control will alternately take limit values ±1 when moving along it.

Is it possible to get rid of the above drawback and still preserve minimality
of the overshooting? To answer this question, let us analyze the character of the
trajectories of the closed-loop system. It can be seen from Fig. 3 that motion
of the system closed by the limit control law (17) consists of the following two
stages: motion along an integral curve (18) with the limit control +1 or (−1)
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and motion along the asymptote. In terms of the original system, on the first
stage, the robot makes a turn moving with the front wheels turned through the
maximal angle until the angle ψ takes the value ψ = − arctan(λoptz1), after
which the second stage starts when the system “slides” along the asymptote. It
is on the second stage where chattering arises. Note also that, if the overshooting
M(z0) is positive, then it is achieved on the first stage, when the system moves
with the limit control.

The above observation makes us think of a combined (hybrid) two-stage con-
trol law: to apply the limit (saturated) control on the first stage, like in the
discontinuous control law (17), and, after hitting the asymptote, to use the con-
tinuous feedback (7), (6) with the minimal γ = 1 on the second stage. Such a
strategy makes it possible to combine advantages of the limit discontinuous con-
trol law and the continuous feedback with small γ and to get rid of disadvantages
of both. The discontinuous law (17) brings the system from an initial state z0

to the asymptote in a minimal time and with the minimal overshooting M(z0).
The control on this stage takes only one value u = 1 or u = −1 and is insensitive
to noise. Switching to the continuous feedback on the second stage allows the
system to avoid chattering. When moving along the asymptote, the system is
linear, and the deviation decreases exponentially. Since the rate of convergence
does not depend on γ, the use of the minimal γ = 1 ensures the least sensitivity
to measurement noise without sacrificing the convergence rate.

In practice, the exact hit of the asymptote is impossible because of measure-
ment noise and approximation errors. Therefore, switching from the discontin-
uous to continuous feedback should occur upon entering some neighborhood of
the asymptote, the so-called control switching set Π, so that the control law
takes the form

u(z) =

⎧
⎨

⎩

−1, z /∈ Π, z ∈ A+,
1, z /∈ Π, z ∈ A−,

−sat1[(λ2
optz1 + 2λoptz2)/(1 + z22)

3/2], z ∈ Π.
(19)

How to select the asymptote neighborhood depends on a particular imple-
mentation of the control law (19). The answer to this question may depend
on many factors, such as the accuracy of measurements of the state variables,
digitization frequency, robot’s velocity, and so on. Here, we would only like to
emphasize that it is important that the switching set be invariant. This property
guarantees that have occurred in the set, the system will never leave it.

5 Stabilization of a Robot with Constrained Control
Along a Circular Path

The case of curvilinear target paths is much more complicated, and the optimal-
ity criterion adopted in the case of a straight path cannot be satisfied. In this
section, we confine our consideration to only paths with constant curvature, i.e.,
circles, and will show, first, why this criterion is not applicable and, second, how
to modify it.
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Fig. 4. Saturation regions U+ (blue boundary) and U− (green boundary) of system
(3) with k = −0.5 closed by feedback (7), (6) with γ = 1 and λ = 3.54. (Color figure
online)

For definiteness, we assume that the robot moves in the clockwise direction,
which implies that the path curvature is negative, k = const < 0. Unlike in the
previous case, the domain of the system is a half-plane z1 > 1/k rather than R2,
and the saturation regions depend not only on the feedback coefficients but also
on the path curvature k. Let us denote the sets where the control takes values
+1 and −1 as U+(k) and U−(k), respectively,

U+(k) =

{

z : − σ(z)
(1 + z22)3/2

+
k

√
1 + z22(1 − kz1)

≥ 1

}

, (20)

U−(k) =

{

z : − σ(z)
(1 + z22)3/2

+
k

√
1 + z22(1 − kz1)

≤ −1

}

. (21)

Taking into account the negativeness of k, it is not difficult to see that U+(k)
is a bounded set and U+(k) ⊂ U+(0), whereas U−(k) ⊃ U−(0) is unbounded
and may consist of two disconnected subsets (see, e.g. Fig. 4), where U+(0) and
U−(0) are the saturation regions for a straight target path. A typical picture of
the saturation regions for a circular path is shown in Fig. 4. Here, k = −0.5,
λ = 3.54, and γ = 1. The boundary of the bounded set U+ is shown by the
thick blue line, while the boundaries of the two unbounded components of U−
are depicted by the thick green lines.
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Since the term k/
√

1 + z22(1 − kz1) tends to −∞ when z1 → 1/k for any
z2, any straight line passing through the origin (including the asymptote for
any feedback coefficients), necessarily intersects the set U−(k). Let, similar to
the straight-path case, A+ and A− denote the intersection of the system domain
z1 > 1/k with the half-planes z2+λz1 > 0 and z2+λz1 < 0, respectively. Taking
into account that trajectories can intersect the asymptote from the lower set A−
to the upper one A+ in the region U−(k), the both sets cannot be invariant sets
of the system whatever feedback coefficients are; i.e., the criterion formulated in
Sect. 2 cannot be satisfied.

On the other hand, a trajectory beginning in the upper half-plane A+ can
intersect the asymptote and enter the lower half-plane A− only in the set U+(k).
Hence, if the asymptote does not intersect the set U+(k), no trajectories can
come from A+ to A−; i.e., A+ is a positive invariant set of the system in this
case. Taking into account that our goal is to obtain the closed-loop system with
the phase portrait similar to that of the corresponding linear system and the
greatest convergence rate, this brings us at the following optimization problem
statement.

Problem 2. Find feedback coefficients that guarantee the existence of a positive
invariant half-plane while ensuring the greatest rate of deviation decrease.

Similar to the case of a straight path, given the curvature k, we seek for λ1

such that the line z2 = −λ1z1 touches the boundary of the set U+(k), which is
found similar to that in the case of a straight target path. To this end, like in
Sect. 4, we rewrite the inequality defining the set U+(k) such that its left-hand
side coincide with the left-hand side of the asymptote Eq. (11) (cf. (13))

λ2z1 + λγ(1 +
√

1 − 1/γ2)z2 ≤ −f(z, k, λ1)z2, (22)

where

f(z, k, λ1) = (1 + z22)
3/2 − k(1 + z22)

1 − kz1
+ λ1z2. (23)

From (22), it follows that the set U+(k) completely lies under the asymptote
when f(z, k, λ1) ≥ 0 ∀z ∈ U+.

To find the value of λ1 for which the asymptote touches the boundary of the
set U+(k), we consider the restriction

f̄(z2, k, λ1) = (1 + z22)
3/2 +

λ1(λ1z2 − k)
λ1 + kz2

(24)

of the function f(z, k, λ1) to the asymptote, which is obtained by substituting
z1 = −z2/λ1 into (23). The desired λ1(k) is a solution to the nonlinear equation

F (k, λ1) = 0, (25)

where
F (k, λ1) = min

z2<0
f̄(z2, k, λ1). (26)



348 A. Pesterev

Fig. 5. Dependence of the asymptotic convergence rate λ1 on the circular path
curvature.

For a given k, the solution to problem (24)–(26) is easily found numerically.
Simple analysis shows that λ1(k) is a monotonically increasing function of |k|.
Figure 5 shows dependence of the convergence rate λ1 on the path curvature
obtained by numerical solving problem (24)–(26). For example, for the case of
the circular path with k = −0.5, the saturation regions for which are depicted
in Fig. 4, λ1 ≈ 3.54. As can be seen, the corresponding asymptote z2 = −3.54z1
shown in Fig. 4 by the inclined thin line actually touches the set U+.

The results of this section are summarized in the following theorem.

Theorem 2. Let k = const and the coefficients of feedback (7), (6) satisfy the
condition

γ ≥ 1, λ(γ) =
λ1(k)

γ(1 − √
1 − 1/γ2)

, (27)

where λ1(k) is the solution of problem (24)–(26). Then, the set A+ = {(z1, z2) :
z1 > 1/k, z2 > −λ1(k)z1} is a positive invariant set of the closed-loop system
(3), (7), (6), and any solution of the system asymptotically tends to the origin
with the exponential rate −λ1(k).

Thus, like in the case of a straight target path, there exist an infinite number
of pairs (γ, λ(γ)) resulting in the same partition of the phase plane and the
same convergence rate. All reasonings regarding the selection of a particular
pair presented in Sect. 4 remain valid for the circular paths. The best option is
the combined (hybrid) strategy: to apply the limit (saturated) control to bring
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the system from an initial state z(0) to the asymptote (which is equivalent to
using infinitely large γ and λ) and, then, to switch to the saturated linearizing
feedback with the minimal γ = 1 to slide to the origin along the asymptote.
The only difference compared to the straight-path case is that in the region of
negative z1 (inside the circle), where the asymptote intersects the set U− (see
Fig. 4), the system can leave the asymptote staying in the positive invariant set
A+. For any initial condition, the WR can intersect the target path at most
twice.

6 Conclusions

In the paper, stabilization of a wheeled robot along a target path has been
discussed. In the case of an unlimited control resource, the problem is easily
solved by applying the feedback linearization technique. If the control is bounded,
the application of the saturated linearizing feedback results in a nonlinear closed-
loop system and brings one to the problem of selecting the feedback coefficients
to optimize the performance of the stabilization. For a straight target path, the
desired feedback coefficients are defined to be those that result in the partition
of the phase plane into two invariant sets of the nonlinear closed-loop system
while ensuring the greatest asymptotic rate of the deviation decrease. The use of
the feedback law with such coefficients guarantees that the robot intersects the
target path not more than once. It has been proved that there exists a family
of the optimal coefficients. A hybrid control law has been proposed that ensures
the desired properties of the phase portrait and minimal overshooting and is
stable to noise. Such a partition has been shown to be impossible for circular
target paths. In this case, optimal feedback coefficients are defined to be those
that guarantee the existence of a positive invariant half-plane while ensuring
the greatest rate of deviation decrease. The problem of numerical finding the
optimal coefficients has been solved.

In the future, we plan to study the problem of finding optimal feedback coef-
ficients for the problem of stabilizing robot’s motion along general-form target
paths.
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