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Abstract. The beam oscillations are modeled by the fourth-order
hyperbolic partial differential equation. The minimized functional is the
energy integral of an oscillating beam. Control is implemented via cer-
tain function appearing in the right side of the equation. It was shown
that the solution of the problem exists for any given damping time, but
with decreasing this time, finding the optimal control becomes more com-
plicated. In this work, numerical damping of beam oscillations is imple-
mented via several fixed point actuators. Computational algorithms have
been developed on the basis of the matrix sweep method and the second
order Marquardt minimization method. To find a good initial approxi-
mation empirical functions with a smaller number of variables are used.
Examples of damping the oscillations via a different number of actuators
are given. It is shown that the amplitude of the oscillations of any control
functions increases with the reduction of the given damping time. Exam-
ples of damping the oscillations in the presence of constraints on con-
trol functions are given; in this case, the minimum damping time exists.
The damping of oscillations is considered also in the case when different
combinations of actuators are switched on at different time intervals of
oscillation damping.

Keywords: Marquardt minimization method · Oscillations damping
Fixed point actuators · Matrix sweep method

1 Introduction

Methods of damping of oscillations of elements of complex mechanical systems
began to develop intensively in the 70s of the XX century. The most significant
were the works of Lagness [1], Russell [2], Butkovskiy [3,4], in which the problem
of damping of string oscillations was considered and conditions for the existence
of a solution to the problem were obtained. In particular, Butkovskiy proposed
to use a point actuator for damping the oscillations of the string. However, later
it was shown that in the case if a solution appears in the form of standing waves,
if the actuator is in a node of standing waves, then the solution of the problem
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may not exist. To avoid such a situation, Muravey [5,6] suggested using a point
actuator moving along a small section of a string, but the practical implemen-
tation of such actuator is very difficult. In [7,8] it was shown that the solution
of the problem exists for any positive time T , however, as T decreases, finding
the optimal control becomes more complicated. In this paper, we consider the
possibility of damping the beam oscillations using several fixed point actuators.

2 Problem Statement

2.1 Oscillations Damping

The purpose of this work is to develop numerical method for damping forced
transverse oscillations of a beam via multiple fixed point actuators. The trans-
verse oscillations of a beam are described by the Petrovsky-hyperbolic equation

utt = −a2uxxxx + g (x, t) , (x, t) ∈
∏

= {0 ≤ x ≤ l, 0 ≤ t ≤ T} . (1)

Here, the time t and the linear dimension x are related to the characteristic
values t∗ and x∗. We will consider the initial displacement and the velocity of
the beam movement

u|t=0 = h0 (x) , ut|t=0 = h1 (x) , 0 ≤ x ≤ l (2)

as initial perturbations. At the ends of the beam, the conditions of articulation
are superimposed.

u|x=0 = uxx|x=0 = 0, u|x=l = uxx|x=l = 0, 0 ≤ t ≤ T. (3)

The energy of the oscillating beam is

E (t) =
∫ l

0

[
u2
t (x, t) + a4u2

xx (x, t)
]
dx. (4)

The problem of damping is to find the control function g (x, t), which transfers
the beam from the initial state (2) to the state

u|t=T = 0, ut|t=T = 0, 0 ≤ x ≤ l (5)

in time T . According to Lions [9], this property of the system is called strict
controllability.

Thus, the problem of damping of oscillations consists in finding the optimal
control function g (x, t) ∈ L2 ((0, T ) × (0, l)) such, that for any initial perturba-
tions h0 (x) , h1 (x)

E (T ) = 0. (6)

As a control function, we consider p fixed point actuators

g (x, t) =
p∑

i=1

wi (t) δ (x − xi) , (7)

where wi(t), i = 1, . . . , p - control functions, δ - Dirac delta-function, xi - points
in which the actuators are placed. We will assume that wi(t) ∈ L2 (0, T ) , i =
1, . . . , p.
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2.2 Numerical Solution

Equation (1) can be reduced to a system of two equations of the second order
{

ut = avxx,
vt = −auxx +

∑p
i=1 fi (x, t) ; (8)

where

fi (x, t) =

{
wi(t)

(− x
al (l − xi)

)
, x < xi,

wi(t)
(
1
a (x − xi) − x

al (l − xi)
)
, x ≥ xi.

(9)

We solve it by the matrix sweep method [10]. We approximate the control func-
tions wi (t), i = 1, . . . , p with piecewise-constant functions: ∀t ∈ [ti, ti+1) assume
wi (t) where wi

j - const, i = 1, . . . , p, j = 0, . . . , NT−1. Then the integral of the
beam energy will be a function of the variables wi

j

E (T ) = L
(
w1

0, . . . , w
p
NT

)

=
∫ l

0

[
u2
t

(
w1

0, . . . , w
p
NT

, x, T
)

+ a4u2
xx

(
w1

0, . . . , w
p
NT

, x, T
)]

dx
(10)

For the numerical computation of the energy integral (10) we use the Simpson
method.

2.3 Minimization

The optimal values w1
0, . . . , w

p
NT

, which minimize (10) with a specified accuracy
ε, are the required solution of the problem. To solve the oscillation damping
problem, we use the Marquardt method [11].

For large sizes of a finite-difference grid or when using a sufficiently large
number of actuators, the numerical computation of control functions by using
second-order minimization methods can be a computationally complex problem
that requires a lot of computation time. However, it is possible to significantly
reduce the computation time by finding a good initial approximation from min-
imizing some empirical function that depends on a small number of parameters.

The basic idea of using empirical functions is to replace the initial minimiz-
able function with another continuous function w (t)EMP which depends on a
small number of parameters. Suppose that each of the control functions has the
following form

w (e1, . . . , e7, t)EMP = e1 sin (e2t + e3) + e4 sin (e5t + e6) sin (e7t) , (11)

where constant values e1, . . . , e7 are not yet known. We introduce a special trans-
formation function

LEMP (e) = L (w (e)EMP , . . . , w (e)EMP) . (12)

To find the empirical coefficients e11, . . . , e
1
7, . . . , e

p
1, . . . , e

p
7, we will solve the

problem of finding the minimum of the function (12) using the Marquardt
minimization method. The resulting control functions are used as the initial
approximation for minimizing (10) with a specified accuracy ε.

Empirical formulas are best used as an initial approximation or in tasks where
precision is not a high priority.
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3 Use of Multiple Actuators

3.1 Solution Existence Problem

Consider the following example. The initial conditions are h0 (x) = 0.1 sin (2πx),
h1 (x) = 0. The input parameters are a = 1, l = 1, and we set the required
damping time equal to T = 0.5, the size of the finite-difference grid will be
N ×K = 20 × 250, so hx = 0.05, ht = 0.002. We will assume that the oscillation
damping task is solved if L (w (t)) ≤ ε, where ε = 10−4.

The actuator placed at the point x0 = 0.5 can not dampen the beam oscilla-
tions, since the point x0 = 0.5 is a node of standing waves. This is clearly seen
in the Fig. 1.

The model suggested by Butkovsky has the following drawback: in the case
of the appearance of a solution (1) in the form of standing waves, if x0 falls into
a node of standing waves, then the solution of the problem may not exist. Let us
consider the same conditions of the example, but for damping the oscillations we
use two fixed point actuators at the points x1 = 0.25, x2 = 0.75, respectively. We
rewrite the condition for solving the task in the form L (w1 (t) , w2 (t)) ≤ 10−4.
The size and steps of the finite-difference grid are the same.

We solve the task for two cases: using the minimization of the function (12)
with initial control of the form w1 (t) ≡ 0, w2 (t) ≡ 0 and using empirical func-
tions (12) to obtain the initial approximation. In the first case, the task was
solved with the error L (w1 (t) , w2 (t)) = 5.0701 · 10−13.

In the second case, using the Marquardt minimization method, we find the
following empirical coefficients e:

e =
(

1000 −0.1196 0.0317 1000 −6.6844 2.9977 −6.5086
1000 −2.7326 3.2003 1000 −2.5081 −3.1785 9.9958

)
(13)

Substituting them into (12), we obtain the control functions w1 (t)EMP ,
w2 (t)EMP, allowing to solve the system with an error of LEMP

(
e11, . . . , e

2
7

)
=

0.32495. Next, we take them as the initial approximation and use the Marquardt
method again for the final determination of the control functions w1 (t) , w2 (t).
As a result, we minimized the value of the beam energy integral (12) with the
error L (w1 (t) , w2 (t)) = 4.8804 · 10−13.

The graphs of the values of the function u (x, t), illustrating the process of
damping the beam oscillations, and the final form of the control functions w1 (t)
and w2 (t) for both cases are shown on Figs. 2 and 3 respectively.

Thus, the task is solved for a time T = 0.5. It is noticeable that, despite the
same initial conditions and grid parameters, the form of the control functions
differs depending on the initial approximation, and the damping proceeds in
different ways.

3.2 Alternation of Actuators

To dampen oscillations in the case of certain initial conditions, it may be neces-
sary to use different groups of actuators at different time intervals. Let the initial
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Fig. 1. The process of damping of oscillations via an actuator at the point x0 = 0.5
(damping does not occur)

conditions be h0 (x) = 0.25 exp (x) sin (2πx) , h1 (x) = 0. The input parameters
are a = 1, l = 1, the required damping time is T = 0.2, the size of the finite-
difference grid will be N × K = 20 × 250, so hx = 0.05, ht = 0.0008. We assume,
that the task of damping the oscillations is solved if

L (w1 (t) , . . . , wp (t))) ≤ ε, (14)

where ε = 10−4.

Fig. 2. The oscillation damping process via two actuators at the points x1 = 0.25, x2 =
0.75 (a) with the initial values w1

0, . . . , w
2
NT

= 0, (b) with the empirical approximation
(3.2)
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Fig. 3. The control functions w1 (t) and w2 (t), obtained (a) with the initial values
w1, . . . , w2 = 0, (b) with the empirical approximation (3.2)

On the time slice T = 0.2 (Fig. 4(b)), it is noticeable that the two actua-
tors placed at the points x1 = 0.25 and x2 = 0.75 can not dampen the initial
oscillations (Fig. 4(a)).

To dampen the oscillations, we divide the task into two time intervals. We will
use 4 actuators placed at the points x1 = 0.15, x2 = 0.25, x3 = 0.65, x4 = 0.75,
but in the first interval T ∈ [0; 0.1] we will use only two of them at the points
x2 and x4. The other two actuators at the points x1 and x3 on this interval will
be left inactive.

Minimizing the function (12), we obtain the empirical coefficients e:

e =
(

1000 −3.2196 3.0779 1000 −5.9374 −0.0239 7.5418
1000 30.536 3.0844 1000 25.405 0.1781 29.208

)
(15)

Further we get w2 (t)EMP , w4 (t)EMP and use them as the initial approximation
for w2 (t) , w4 (t). We solve the task with the error L (w2 (t) , w4 (t)) = 1.1797.
In Fig. 5 the process of partial damping of oscillations in the time interval T =
[0; 0.1] and a time slice of T = 0.1 is shown.

Fig. 4. The process of oscillation damping via two actuators at the points x1 =
0.25, x2 = 0.75 (partial damping), (b) the cut of the values of the function u (x, t) , t =
T = 0.2 (further damping is not possible)
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Fig. 5. The oscillation damping process via two actuators at the points x2 = 0.25, x4 =
0.75 on the interval T in[0; 0.1] (partial damping), (b) the cut of the values of the
function u (x, t) , t = T = 0.1 (further damping is not possible)

In the second time interval T ∈ [0.1; 0.2] to dampen the oscillations we use
two remaining actuators at the points x1 = 0.15, x3 = 0.65. The previous two
actuators at the points x2 and x4 are left inactive. We will use the solution of
the previous subtask as a new initial perturbation. For the initial velocity, in
this case we put v (l, t) of the previous subtask as v (0, t) of the second subtask.

By minimizing (12), we obtain e:

e =
(

1000 2.8741 3.1415 1000 10.572 0.9895 3.0815
1000 6.8311 3.1421 1000 13.532 −2.3983 −7.1904

)
(16)

By using w1 (t)EMP , w3 (t)EMP as the initial approximation for w1 (t) and w3 (t)
we get the error L (w1 (t) , w3 (t)) = 2.2163·10−13 for the second subtask. Figure 6
shows the process of damping of oscillations in the time interval T ∈ [0.1; 0.2]
(a scale is used for u (x, t), which is 20 times smaller than in Fig. 5) and a time
slice of T = 0.2.

Thus, the task is solved in time T = 0.2 via two actuators x2 = 0.25 and
x4 = 0.75 on T ∈ [0; 0.1] and two actuators x1 = 0.15 and x3 = 0.65 on
T ∈ [0.1; 0.2] with the resulting error L (w1 (t) , . . . , wp (t)) = 2.2163 · 10−13.
Combining u1 (x, t) and u2 (x, t) into u (x, t), we illustrate on Fig. 7 a complete
process of damping the oscillations in this task.

Thus, a numerical method for damping the beam oscillations is developed
via several fixed point actuators. It makes it possible to research the process of
damping the oscillations for a different time T .

3.3 Dependence of the Damping Process on Time

Suppose that the initial conditions have the following form h0 =
0.1 sin (2πx) , h1 (x) = 0. The input parameters are a = 1, l = 1, the size of
the finite-difference grid is N × K = 20 × 50, so hx = 0.05, ht = 0.002. To
dampen the oscillations, we use 4 actuators placed at the points x1 = 0.2, x2 =
0.4, x3 = 0.6, x4 = 0.8, respectively. The condition for damping the oscillations,
as before, will be assumed
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Fig. 6. (a) The oscillations damping process via two actuators at the points x1 =
0.15, x3 = 0.65, on the interval T ∈ [0.1; 0.2], (b) the cut of the values of the function
u (x, t) , t = T = 0.2

Fig. 7. The complete process of damping oscillations via four actuators

L (w1 (t) , w2 (t) , w3 (t) , w4 (t)) ≤ ε, (17)

where ε = 10−4. We set the damping time to T = 0.1. By default, the initial
approximation for all control functions will be assumed to be zero.

On Fig. 8 the process of damping of the oscillations u (x, t) and the control
functions wi (t) , i = 1, . . . , 4 are shown.

Consider the same conditions of the example, but put T = 0.01. On Fig. 9
the damping process and control functions are shown.

Drawing attention to Figs. 8(a) and 9(a), it is possible to clearly notice the
difference in the process of damping of the oscillations depending on the pre-
scribed damping time T . Thus, if we set a sufficiently long time, the damping
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Fig. 8. (a) The oscillations damping process via four actuators at the points x1 =
0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8 for the time T = 0.1, (b) the control functions
w1 (t) , w2 (t) , w3 (t), and w4 (t)

Fig. 9. (a) The oscillations damping process via four actuators at the points x1 =
0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8 for the time T = 0.01, (b) the control functions
w1 (t) , w2 (t) , w3 (t), and w4 (t)

proceeds more smoothly. Conversely, if a small time is set, a multitude of micro-
oscillations on the beam arise, which are then smoothed by the control functions.
The amplitude of the oscillations of any control functions increases almost expo-
nentially along with a decrease in the prescribed damping time.

3.4 Constrained Control Functions

Let us consider the case when constraints are imposed on control functions. This
case is more approximate to the practical implementation since in the design
of actuator mechanisms it is necessary to lay the maximum permissible power
of the drives. To find constrained control functions, it is necessary to use meth-
ods of finding a conditional minimum. In this work, the penalty minimization
method is used using the Marquardt method to solve the corresponding problem
of finding an unconditional minimum.

Since the maximum amplitude of each of the control functions begins to
increase as the damping time approaches zero, it is necessary to select a damping
time for which L (w1 (t) , . . . , wp (t)) ≤ ε and wi (t) ∈ [a; b]. We call the minimal
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time T , under which both conditions are satisfied, by the optimal damping time.
The damping time can be reduced either by expanding the admissible boundaries
of the control function or by increasing the number of actuators.

Let the initial conditions be h0 (x) = 0.2x (1 − x) , h1 (x) = 0. The input
parameters are a = 1, l = 1, the size of the grid is N ×K = 40×120. We assume
that the oscillation damping task is solved if L (w1 (t) , . . . , wp (t)) ≤ ε, where
ε = 10−4.

We show that it is possible to reduce the minimum damping time by increas-
ing the number of actuators with constant constraints. Initially, we will solve
the task using a single fixed point actuator, placed in x1 = 0.5. On the control
function, we impose the constraints w (t) ∈ [−2; 2]. The minimum time required
for damping is T = 0.2265.

The control function w (t) is shown on Fig. 10(a).
Now we solve the same task via of two actuators placed in x1 = 0.25 and

x2 = 0.75 respectively. The constraints imposed on the control functions remain
the same. In this case, it is possible to reduce the minimum time required for
damping to T = 0.1825.

The control functions w1 (t) , w2 (t) are shown on Fig. 10(b).

Fig. 10. Control functions wi left(t right) with constraints wi (t) ∈ [−2; 2] , i = 1, . . . , p
for (a) p = 1, T = 0.2265, (b) p = 2, T = 0.1825

And, finally, we solve the task with the use of 4 actuators at the points
x1 = 0.25, x2 = 0.4, x3 = 0.6, x4 = 0.75. We impose the previous constraints on
all control functions. In this case, the minimum time was reduced to T = 0.1237.

The oscillation damping process and control functions are shown on Fig. 11.

3.5 Realtime Oscillations Damping

In the previous examples, the problem of searching for some “ideal” control
is considered, which is assumed a priori known before the direct beginning of
oscillations damping. However, in fact, at the moment of the beginning of the
damping of the oscillations, we do not know anything about how the actuators
should behave, and the task of finding the control arises. Of course, we could
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Fig. 11. (a) Control functions w1 (t) , w2 (t) , w3 (t) and w4 (t) with constraints
w1 (t) , w2 (t) , w3 (t) , w4 (t) ∈ [−2; 2] for T = 0.1237, (b) the oscillations damping pro-
cess via four actuators at the points x1 = 0.25, x2 = 0.4, x3 = 0.6, x4 = 0.75 for the
time T = 0.1237 with constraints w1 (t) , w2 (t) , w3 (t) , w4 (t) ∈ [−2; 2]

set the required damping time as a constant and start the process of finding
control functions using the minimization methods right when registering the
displacement, but it is obvious that this should take some time (which can be
very, very impressive, up to several hours for some conditions). Moreover, even
if we spend some time after the oscillations begin to look for control functions
and try to apply the resulting control, it is likely that the displacement of the
beam at this point in time will be completely different, and our control will, at
best, not have the required smoothing effect on the beam, or even worse, will
intensify the oscillations. We show that using the method of numerical damping
described above it is possible to obtain the required control directly during the
damping process. In this task, we made the transition from the dimensionless T
to the dimensional damping time.

Let the parameters of the beam be a = 1, l = 1. On the beam are set
N + 1 = 21 sensors at the same distance hx = l/N = 0.05 from each other,
which register the oscillations. Consider the case when sensors has detected the
oscillations of the beam shown in the Fig. 12.

Now we will search the damping time T in seconds.
Numerous computations have shown that the time in which one iteration of

the Marquardt method is calculated is on the average 90 ms. Under the iteration
calculation time, here is meant the total execution time of the OpenCL kernels
of calculating the integral of the energy, the gradient and the Hessian matrix of
the function (10), obtained using the runtime profiler. Suppose that the response
time of the actuators is 10 ms. Thus, the total response time of the system will
be ht = 90 ms + 10 ms = 0.1 s.

By the condition, the time spent by the actuators for damping the beam
oscillations on each individual time interval ti ∈ [0, T ] , ti − ti−1 = ht is exactly
equal the real program execution time on calculation the iteration of the numer-
ical damping method corresponding to this time interval. In other words, the
time of damping T , which was considered in all previous tasks, will be equal to
the time of the program execution in seconds.
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Fig. 12. The initial displacement of h0 (x)

The calculation process ends when L (w1 (t) , w2 (t)) ≤ ε, where ε = 10−4.
In this case, oscillations damping was performed with an allowable error of
L (w1 (t) , w2 (t)) = 7.7879 ·10−5 for 30 iterations of minimization method. Mul-
tiplying the number of iterations by the response time, we get that the damping
time of the oscillations was T = 3 s.

The process of damping of the oscillations u (x, t) and the form of the control
functions w1 (t), w2 (t) are shown on Fig. 13.

Fig. 13. (a) The process of damping the oscillations in real time via two actuators at
the points x1 = 0.25, x2 = 0.75 for the time T = 3 s, (b) the control functions w1 (t)
and w2 (t)
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4 Conclusion

The problem of damping of forced transverse oscillations of an elastic beam for
an arbitrary predetermined time T is considered. A computational algorithm
with second-order convergence is developed for approximating the calculation
of the oscillations of a freely supported beam with a given control. Control is
considered via several fixed point actuators. Finding the control that performs
oscillations damping is accomplished via minimization of a certain function of
multiple variables by the Marquardt method.

For sufficiently large sizes of a finite-difference grid, the process of finding a
numerical solution can be computationally complex and time-consuming. Empir-
ical formulas are proposed, which make it possible to significantly reduce the
calculation time. Empirical formulas are best used as an initial approximation
or in tasks where precision is not a high priority.

The case is considered when different groups of actuators are used for different
periods of time to dampen oscillations.

The oscillations damping is considered in the presence of constraints imposed
on the control functions. In this case, the minimum time for damping the oscilla-
tions exists. It is shown that this time can be reduced by increasing the number
of actuators.

In conclusion, an estimate was made of the real-time of finding the control
of oscillations damping and, as a consequence, the possibility of practical imple-
mentation of the proposed algorithm.
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