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Abstract. The paper addresses the problem of constructing lower and
upper bounding functions for univariate functions. This problem is of a
crucial importance in global optimization where such bounds are used
by deterministic methods to reduce the search area. It should be noted
that bounding functions are expected to be relatively easy to construct
and manipulate with. We propose to use piecewise linear estimators for
bounding univariate functions. The rules proposed in the paper enable
an automated synthesis of lower and upper bounds from the function’s
expression in an algebraic form. Numerical examples presented in the
paper demonstrate the high accuracy of the proposed bounds.
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1 Introduction

This paper is devoted to constructing lower and upper bounding functions for
univariate functions. A function φ(x) is called lower (upper) bounding function
(or simply bound) for a function f(x) over an interval [a, b] if f(x) ≥ φ(x)
(f(x) ≤ φ(x)) for all x ∈ [a, b].

Lower and upper bounds for objective functions and constraints play an
important role in global optimization. Indeed, suppose we know a lower bounding
function φ(x) for an objective function f(x). Than we can safely exclude from
the further search the set defined by the following inequality:

φ(x) ≥ fr − ε, (1)
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where fr is an incumbent value (best solution found along the search) and ε is
a prescribed tolerance [6,7].

The inequality 1 can be solved efficiently only when the function φ(x) has
a simple structure. In this work one of such function types: piecewise linear
function (or PWL-function for brevity) is studied. We propose a method to
obtain PWL bounds from the function’s algebraic representation (formula). The
evaluation of bounds is driven by rules that are applied iteratively from the
bottom of the expression tree to its top similarly to computing function values,
interval bounds or derivatives. We show that PWL bounds constructed with the
help of the proposed approach are generally much tighter than bounds computed
with the interval [10] or slope [20] arithmetic.

The paper is organized as follows. The Sect. 2 outlines related works and
compares our approach with existing ones. The definition and properties of PWL
bounds are discussed in Sect. 3. Numerical examples comparing the accuracy of
PWL bounds and other approaches are presented in Sect. 4.

2 Related Work

Deterministic univariate global optimization stems from seminal works of
Pijavskij [18] and Shubert [26]. In these papers authors proposed to use the Lip-
schitzian property of a function to determine the precision of found solutions.
They used simple Lipschitzian underestimations:

μ(x) = f(c) − L|x − c|,

where L is the Lipschitz constant.
These ideas were further developed in works of Strongin and Sergeyev [23,28]

who established an elaborated theory (“information-statistical approach”) for
estimating function bounds over given intervals.

Second-order Lipschitzian bounds were studied in [1,3]. Authors proposed to
use the following underestimation:

μ(x) = f(c) + f ′(c)(x − c) − L(x − c)2, (2)

where L is the Lipschitzian constant for the derivative. This underestimation
was further improved by Sergeyev in [24]. Sergeyev introduced a smooth support
function that is closer to the objective function than 2. In the paper [25], geo-
metric and information frameworks are taken into consideration for constructing
global optimization algorithms. Another paper [15] is devoted to the develop-
ment of effective global optimization algorithms with Lipschitz functions and
Lipschitz first derivatives.

The further progress in univariate global optimization was made by an impor-
tant observation that interval bounds on the derivatives can replace a Lipschitz
constant. In [4] authors combine ideas borrowed from the Pijavskij method and
interval approaches. Besides new bounds the paper introduces powerful reduc-
tion rules that can significantly speed up the search process.
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Another replacement of Lipschitz constant is provided by slopes. A slope is
defined as an interval Sf (c) that satisfies the following inclusion:

f(x) ⊆ f(c) + Sf (c) · [x, x],

where c is a point within the interval [x, x].
Clearly Sf (c) ⊆ [minx∈[x,x] f

′(x),maxx∈[x,x] f
′(x)]. However, this inclusion is

often strict: slopes can provide much tighter bounds than derivative estimations.
In [20,21] efficient algorithms for evaluating slopes are proposed. Slopes are
evaluated from an algebraic expression driving by rules similarly to automatic
differentiation.

It worth to note powerful global optimization techniques [6,7,9,17,19,27]
for a multivariate case that can serve as a source of good ideas for univariate
optimization. See [11] for a good survey of such approaches.

Interval bounds, Lipschitzian bounds and slopes can be considered as a sim-
ple form of linear underestimations. More elaborate PWL lower bounds called
“kites” are considered in [29]. Kites combine the centered forms and the linear
boundary value forms thereby achieving better approximation w.r.t. both forms
used separately.

Concave PWL lower and convex PWL upper bounds consisting of exactly two
line segments were considered in [5,13]. Authors propose the rules to evaluate
these bounds automatically from an algebraic representation of an expression.

We also should mention that the approach suggested in our paper differs from
convex envelopes, convex underestimators and other convexification techniques
developed in [2,8,12,14]. The main difference between the approaches outlined
above and ours is that we consider generic PWL bounds not limiting to convex
or concave cases with an arbitrary finite number of segments.

3 Piecewise Linear Bounds

3.1 Basic Properties of Piecewise Linear Functions

A piecewise linear function on an interval [a, b] is defined as a sequence of seg-
ments zi connecting points (xi, yi) and (xi+1, yi+1). More formally:

ψ(x) = yi +
yi+1 − yi

xi+1 − xi
(x − xi), x ∈ [xi, xi+1], i = 1, . . . , n − 1.

where n ≥ 2, a = x1 ≤ · · · ≤ xn = b. In what follows we’ll use the abbreviation
PWL for “piecewise linear”.

Where appropriate we will denote a PWL function by a sequence of its nodes
enclosed in braces:

{(x1, y1), . . . , (xn, yn)}.

A set of PWL functions is closed under a set of basic algebraic operations
including superposition. More formally this is stated in the two apparent propo-
sitions below.
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Proposition 1. Let ψ(x) and φ(x) be PWL functions on an interval [a, b]. Then
expressions

λψ(x), λ ∈ R

|ψ(x)|,
ψ(x) ± φ(x),
max(ψ(x), φ(x)),
min(ψ(x), φ(x))

are PWL functions on [a, b].

Proposition 2. Let φ(x) and ψ(x) be PWL functions on intervals [a, b], [c, d],
where c = minx∈[a,b] ψ(x), d = maxx∈[a,b]ψ(x). Then ω(x) = ψ(φ(x)) is a PWL
function on [a, b].

A piecewise linear lower (upper) bound for a function f(x) on an interval
[a, b] is a piecewise linear function ψ(x) such that f(x) ≥ ψ(x) (f(x) ≤ ψ(x))
for all x ∈ [a, b].

A desirable feature for practice is an ability to automatically construct PWL
bounds from the function representation. Below we introduce a theory and rules
for computing PWL bounds automatically assuming that the symbolic represen-
tation of a function is known.

3.2 PWL Bounds for Elementary Functions

PWL bounds are computed from the tree representation of an expression from
the bottom (leaves) to the top (root). The rules to compute bounds rely on PWL
bounds for elementary functions.

Under the elementary functions we understand the following univariate func-
tions sin(x), cos(x), arcsin(x), arccos(x), tan(x), arctan(x), cot(x), ex,
ln(x), 1

x (for x > 0), xα (α > 0). Many of elementary functions (like ex, ln(x), 1
x )

are convex or concave on a whole domain of definition. For remaining ones (like
sin(x), cos(x), tan(x)) the interval to compute bounds can be subdivided into
smaller intervals where a function is concave or convex. Thus w.l.o.g. we can limit
our consideration to a case when a function is convex (the concavity case is similar).
It is obvious that the list of elementary functions can be easily enlarged.

Proposition 3. Let f(x) be a convex function over an interval [a, b]. Consider
n ≥ 1 points within this interval a ≤ x1 < · · · < xn ≤ b. Define a function μ(x)
as follows

μ(x) = max
1≤i≤n

ψi(x),

where ψi(x) = f(xi) + di(x − xi) and di is a subderivative of f(x) at a point xi

on an interval [a, b]. Then μ(x) is a lower PWL bound for f(x) (Fig. 1).



174 O. Khamisov et al.

Fig. 1. The lower PWL bound for a convex function

Proposition 4. Let f(x) be a convex function over an interval [a, b]. Consider
n ≥ 2 points within this interval a = x1 < · · · < xn = b. Define a function ψ(x)
as follows:

ψ(x) = yi +
yi+1 − yi

xi+1 − xi
(x − xi), x ∈ [xi, xi+1], i = 1, . . . , n − 1.

where yi = f(xi), i = 1, . . . , n. Then ψ(x) is an upper PWL bound for f(x)
(Fig. 2).

Propositions 3 and 4 provide grounds for constructing lower and upper
bounds for elementary functions. Clearly the precision of bounds grows with
the number of points in a set x1, . . . , xn.

3.3 Automated Synthesis of PWL Bounds

In the previous section we proposed an approach to constructing linear bounds
for elementary functions. However to compute bounds for a function defined by
an expression we need rules to calculate bounds for a superposition of functions
and basic operators used to construct formulas.

We start from simple rules for linear combination and min,max operators.
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Fig. 2. The upper PWL bound for a convex function

Proposition 5. Let μf (x), μf (x) be PWL lower and upper bounds for a func-
tion f(x) on an interval [a, b]. Let μg(x), μg(x) be PWL lower and upper bounds
for a function g(x) on an interval [a, b]. Then the following properties hold:

λμf (x) ≤ λf(x) ≤ λμf (x), λ > 0, (3)

λμf (x) ≤ λf(x) ≤ λμf (x), λ < 0, (4)

μf (x) + μg(x) ≤ f(x) + g(x) ≤ μf (x) + μg(x), (5)

μf (x) − μg(x) ≤ f(x) − g(x) ≤ μf (x) − μg(x), (6)

min(μf (x), μg(x)) ≤ min(f(x), g(x)) ≤ min(μf (x), μg(x)), (7)

max(μf (x), μg(x)) ≤ max(f(x), g(x)) ≤ max(μf (x), μg(x)). (8)

Obvious rules (3)–(5) allow to construct PWL bounds for linear combinations
of elementary functions.

The situation with multiplication is more complex. If x ∈ [a, b], y ∈ [c, d] then
the following inequalities [10] hold for multiplication:

min(φ1(x), φ2(x), φ3(x), φ4(x)) ≤ f(x) g(x) ≤ max(φ1(x), φ2(x), φ3(x), φ4(x)),
(9)

where φ1(x) = μf (x) · μg(x), φ2(x) = μf (x) · μg(x), φ3(x) = μf (x) · μg(x),
φ4(x) = μf (x) · μg(x). Observe that expressions φi(x), i = 1, 2, 3, 4 are piece-
wise quadratic. Since quadratic functions are either concave or convex the
PWL lower and upper bounds for them are readily constructed according to
Propositions 3 and 4. The lower bounds for min(φ1(x), φ2(x), φ3(x), φ4(x)) and
max(φ1(x), φ2(x), φ3(x), φ4(x)) are obtained from (7), (8).
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The PWL bounds for the reciprocal 1/x can be constructed following Propo-
sitions 3 and 4 for an interval [a, b], when either a > 0 or b < 0. The remaining
case 0 ∈ [a, b] is omitted in this paper and left for further studies. Having bounds
for the reciprocal the division is reduced to the multiplication in a standard way
x/y = x 1

y .
To evaluate bounds for complex expressions we need rules to process function

superposition. Consider a function h(x) = f(g(x)) on an interval [a, b]. Let μg(x)
and μg(x) be PWL bounds for g(x) on an interval [a, b]:

μg(x) ≤ g(x) ≤ μg(x), x ∈ [a, b]. (10)

Denote c = minx∈[a,b] μg(x), d = maxx∈[a,b]μg(x). Let μf (x) and μf (x) be
PWL bounds for a function f(x) on [c, d]:

μf (x) ≤ f(x) ≤ μf (x), x ∈ [c, d]. (11)

Proposition 6. If the function μf (x) is non-decreasing monotonic on [c, d] then
μf (μg(x)) is a PWL lower bound for h(x) on [a, b].

Proof. According to the Proposition 2 μf (μg(x)) is a PWL function. It remains
to prove that μf (μg(x)) ≤ h(x) on [a, b]. Consider x ∈ [a, b]. From (10) we
derive that μg(x) ≤ g(x). Since μg(x), g(x) ∈ [c, d] and μf (x) is non-decreasing
monotonic on [c, d] we obtain μf (μg(x)) ≤ μf (g(x)). From (11) it follows that
μf (g(x)) ≤ f(g(x)) = h(x). Thus μf (μg(x)) ≤ h(x) for x ∈ [a, b].

Figure 3 shows the synthesis of a PWL lower bound for the composite function
h(x) = sin2(x) on an interval [0, π]. Notice that sin(x) ∈ [0, 1] when x ∈ [0, π].
The outer function x2 as well as PWL lower bound μf are non-decreasing mono-
tonic on interval [0, 1]. That is why it suffices to consider a PWL lower bound
μg for the inner function sin(x). According to the Proposition 6 the composite
function μf (μg) is a PWL lower bound for the function sin2(x).

Proposition 7. If the function μf (x) is non-increasing monotonic on [c, d] then
μf (μg(x)) is a PWL lower bound for h(x) on [a, b].

Proof. According to Proposition 2 μf (μg(x)) is a PWL function. It remains
to prove that μf (μg(x)) ≤ h(x) on [a, b]. Consider x ∈ [a, b]. From (10) we
derive that g(x) ≤ μg(x). Since μg(x), g(x) ∈ [c, d] and μf (x) is non-increasing
monotonic on [c, d] we obtain μf (μg(x)) ≤ μf (g(x)). From (11) it follows that
μf (g(x)) ≤ f(g(x)) = h(x). Thus μf (μg(x)) ≤ h(x) for x ∈ [a, b].

Figure 4 shows the synthesis of a PWL lower bound for a composite function
h(x) = sin2(x) on [π, 2π] interval. Notice that sin(x) ∈ [−1, 0] when x ∈ [π, 2π].
Unlike the previous example the outer function x2 as well as the PWL lower bound
μf are non-increasing monotonic on the interval [−1, 0]. Therefore we take the
PWL upper bound μg for the inner function sin(x). According to the Proposition 7
the composite function μf (μg) is a PWL lower bound for the function sin2(x).
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Fig. 3. Synthesis of PWL lower bound for sin2(x) on [0, π]

Fig. 4. Synthesis of PWL lower bound for sin2(x) on [π, 2π]
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In the same way we can prove the following two propositions.

Proposition 8. If the function μf (x) is non-decreasing monotonic on [c, d] then
μf (μg(x)) is a PWL upper bound for h(x) on [a, b].

Proposition 9. If the function μf (x) is non-increasing monotonic on [c, d] then
μf (μg(x)) is a PWL upper bound for h(x) on [a, b].

If PWL bounds for an elementary function f(x) on [c, d] are monotonic we
can directly apply Propositions 6–9 to compute PWL bounds for a composite
function f(g(x)). Otherwise we need to somehow obtain monotonic PWL bounds
for f(x). Fortunately this can be easily done for any PWL bound. We explain
this for an upper bound (Fig. 5).

Suppose μ(x) is a PWL function on an interval [c, d]. The Monotonize pro-
cedure constructs a PWL function μ̃(x) that is non-decreasing monotonic and
μ(x) ≤ μ̃(x) for all x ∈ [c, d].

μ̃(x1) := μ(x1)
for i = 2 to n do

if μ̃(xi−1) > μ(xi) then
μ̃(xi) := μ̃(xi−1)

else
μ̃(xi) := μ(xi)

end
end

Algorithm 1: Monotonize

Fig. 5. “Lifting” PWL upper bounds
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Starting from the leftmost node x1 = c the Monotonize algorithm compares
successive nodes of a PWL function and if the monotonicity is violated fixes it
by “lifting” one node until the link between successive nodes is horizontal. If
μ(c) = μ(x1) > μ(xn) = μ(d) it is usually better to construct a non-increasing
PWL upper bound μ̃(x) going in the opposite direction (from d to c) in the same
manner. The case of a lower bound is considered similarly.

4 Numerical Examples

Below we consider two examples and compare the proposed approach with the
interval [10] and the slopes [20,21] arithmetic. For the sake of presentation qual-
ity we use approximate computations with a small precision. In practice the
computations could be as accurate as needed.

Example 1. Compute the PWL lower bound for the h(x) = sin(x) · (−x2 + x)
function over the [1, 3] interval.

According to the rule (9) the lower bound μh(x) is computed as follows:

μh(x) = min
(
μf (x)μg(x), μf (x)μg(x), μf (x)μg(x), μf (x)μg(x)

)
.

Observe that μf (x) ≥ 0 while μg(x) ≤ 0 for x ∈ [1, 3] (Fig. 6). Thus we can
conclude that μh(x) = μf (x)μg(x). Two tangents 0.54x + 0.3 and −0.99x + 3.11
forming the upper bound for sin(x) intersect at x = 1.83. For simplicity we
choose the same x for constructing chords −1.83x + 1.83 and −3.83x + 5.50
constituting the lower bound for g(x).

Fig. 6. Steps for synthesis lower PWL bound of function sin(x)(−x2 + x)
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Fig. 7. Lower PWL bound for function sin(x)(−x2 + x)

Fig. 8. Steps 1–3 for synthesis lower PWL bound of function − exp(x3−x2) on x ∈ [0, 2]
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Fig. 9. Steps 4–5 for synthesis lower PWL bound of function − exp(x3−x2) on x ∈ [0, 2]

Multiplying the obtained bounds we get

μf (x)μg(x) =

{
φ(x) = (0.54x + 0.3)(−1.83x + 1.83), x ∈ [1, 1.83]
(−3.83x + 5.50)(−0.99x + 3.11), x ∈ [1.83, 3].

However φ(x) is not piecewise linear. Thus we need to construct a PWL
bound for φ(x). Figure 7 shows a PWL lower bound {(1.0, 0.0), (1.76,−1.76),
(2.03,−2.8), (2.64,−2.8), (3,−0.91)} for the φ(x) (and hence that for f(x)). This
lower bound gives a lower estimate for the f(x) equal to −2.8.

Interval analysis gives the following result:

h([1, 3]) ⊆ sin([1, 3]) · (−[1, 3]2 + [1, 3]) = [0.14, 1] · ([−9,−1] + [1, 3])
= [0.14, 1] · [−8, 2] = [−8, 2],

yielding −8 as a lower bound.
To estimate h(x) by means of slopes arithmetic we compute the enclosure Ys

of sh(c,A) for A = [1; 3] and c = 2:

h((A, c, 1)) = sin((A, c, 1)) · (−(A, c, 1)2 + (A, c, 1))

= sin(([1, 3], 1, 1)) · (−([1, 3], 1, 1)2 + ([1, 3], 1, 1))
= ([0.14, 1], 0.84, [−0.99, 0.54]) · (−([1, 9], 1, [2, 4]) + ([1, 3], 1, 1))
= ([0.14, 1], 0.84, [−0.99, 0.54]) · (([−8, 2], 0, [−3,−1]))
= ([−8, 2], 0, [−3,−0.14]) = (Yx, Yc, Ys).
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Thus the slopes arithmetic gives the following inclusion:

h([1, 3]) ⊆ h(c) + Ys(A − c) = 0 + [−3,−0.14] · ([1, 3] − 1) = [−6, 0],

yielding −6 as a lower bound.

Example 2. Evaluate a lower bound for a composite function h(x) = −ex3−x2
,

x ∈ [0, 2].

Notice that h(x) is neither convex nor concave on [0, 2]. The function is a
composition of the outer function f(x) = −ex and the inner function g(x) =
x3 − x2. Figures 8 and 9 demonstrate synthesis of a PWL lower bound.

Since −ex and its lower PWL bound μf are non-increasing functions (Fig. 9)
we can apply the Proposition 7.

According to the Proposition 7 we fist need to compute the image of the inner
function which is a difference of two elementary functions x3 and x2. To obtain
the upper PWL bound take a point x = 1.5 from [0, 2]. Then the upper PWL
bound for x3 is {(0, 0), (1.5, 3.375), (2, 8)}. It consists of two chords μ1(x) =
2.25x and μ2(x) = 9.25x − 10.5. Similarly the upper PWL bound for x2 is
{(0, 0), (1.5, 2.25), (2, 4)}. It also consists of two chords ν1(x) = 1.5x and ν2(x) =
3.5x − 3.

In order to build lower PWL bounds for x3 and x2 we draw tangents at points
x = 0 and x = 2. The resulting lower PWL bound for x3 is

{
(0, 0), ( 43 , 0), (2, 8)

}
.

It consists of two tangents μ1(x) = 0 and μ2(x) = 12x − 16. The lower PWL
bound for x2 obtained in a similar way is {(0, 0), (1, 0), (2, 2)}. It also consists of
two tangents ν1(x) = 0 and ν2(x) = 4x − 4.

Now, we are ready to build upper and lower PWL bounds for the inner
function g(x) = x3 − x2. According to the rule 6 the upper PWL bound is as
follows:

μg(x) =

⎧
⎪⎨
⎪⎩

μ1(x) − ν1(x) = 2.25x, x ∈ [0, 1],
μ1(x) − ν2(x) = −1.75x + 4, x ∈ [1, 1.5],
μ2(x) − ν2(x) = 5.25x − 6.5, x ∈ [1.5, 2].

The similarly computed lower PWL bound looks as follows:

μg(x) =

⎧
⎪⎨
⎪⎩

μ1(x) − ν1(x) = −1.5x, x ∈ [0, 4
3 ],

μ2(x) − ν1(x) = 10.5x − 16, x ∈ [ 43 , 1.5],
μ2(x) − ν2(x) = 8.5x − 13, x ∈ [1.5, 2].

Using obtained bounds we get the following estimation of the inner function
image: g(x) ∈ [−2, 4]. According to the Proposition 7 we should construct a
lower PWL bound for the outer function f(x) = −ex over [−2, 4]. Choosing
a point x = 1.125, x ∈ [−2, 4] we obtain a PWL lower bound μf (x), with the
following sequence of nodes {(−2,−0.13), (1.125,−3.08), (4,−54.59)}. It consists
of the following two chords: φ1(x) = −0.95x − 1.99 for x ∈ [−2, 1.125] and
φ2(x) = −17.91x + 17.06 for x ∈ [1.125, 4] depicted at the Fig. 9.
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Finally we get the PWL lower bound μh(x) for h(x) = ex3−x2
over x ∈ [0, 2]

as a composite function μf (μg(x)):

μh(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−0.95 · (2.25x) − 1.99, x ∈ [0, 0.5],
−17.91 · (2.25x) + 17.06, x ∈ [0.5, 1],
−17.91 · (−1.75x + 4) + 17.06, x ∈ [1, 1.5],
−17.91 · (5.25x − 6.5) + 17.06, x ∈ [1.5, 2.0].

Finally we get the following lower PWL bound for h(x) = −ex3−x2

over x ∈ [0, 2]: {(0,−1.99), (0.5,−1.068), (1,−23.23), (1.5,−7.56), (2,−54.59)}.
Observe that the lower estimation −54.59 of the function is precise: f(2) =
−e2

3−22 ≈ −54.59.
The interval analysis gives the following result:

h([0, 2]) ⊆ − exp([0, 2]3 − [0, 2]2) = − exp([0, 8] − [0, 4])
= − exp([−4, 8]) = [−2980.95,−0.018].

yielding the lower estimate −2980.95.
The lower estimation of h(x) = −ex3−x2

by means of slopes arithmetic is
computed as follows. First compute the enclosure Ys of sh(c,A) for A = [0; 2]
and c = 1:

h((A, c, 1)) = − exp(([0, 2], 1, 1)3 − ([0, 2], 1, 1)2)
= − exp(([0, 8], 1, [1, 7])) − ([0, 4], 1, [1, 3]))
= − exp(([−4, 8], 0, [−2, 6]))
= −([0.018, 2980.95], 1, [0.491, 496.65])
= ([−2980.95, 0.018],−1, [−496.65,−0.491])
= (Yx, Yc, Ys).

The slope based enclosure is computed as follows:

h([A]) ⊆ h(c) + Ys(A − c) = −1 + [−496.65,−0.491] · ([0, 2] − 1)
= −1 + [−496.65,−0.491] · [−1, 1] = [−497.65, 495.65].

Table 1 summaries the results obtained with the help of different approaches.
The superiority of the proposed approach is clearly observed.

Table 1. Comparison of estimates obtained by different approaches

Function PWL estimate Interval estimate Slope estimate

sin(x) · (−x2 + x)) −2.8 −8 −6

−ex
3−x2 −54.59 −2980.95 −497.65
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5 Conclusions

We proposed an approach to an automated construction of bounding func-
tions of one variable. The synthesis of bounds is driven by rules applied to an
algebraic expression of a function. The proposed approach was experimentally
compared with interval and slope arithmetic. Experiments demonstrated that
for some functions the proposed method can significantly outperform standard
approaches.

It should be noted that our approach can be helpful in separable program-
ming problems [16,22]. We plan to study this topic in the future.
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