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Abstract. We consider the stochastic optimization of finite sums over
a Riemannian manifold where the functions are smooth and convex.
We present MASAGA, an extension of the stochastic average gradient
variant SAGA on Riemannian manifolds. SAGA is a variance-reduction
technique that typically outperforms methods that rely on expensive
full-gradient calculations, such as the stochastic variance-reduced gradi-
ent method. We show that MASAGA achieves a linear convergence rate
with uniform sampling, and we further show that MASAGA achieves
a faster convergence rate with non-uniform sampling. Our experiments
show that MASAGA is faster than the recent Riemannian stochastic
gradient descent algorithm for the classic problem of finding the leading
eigenvector corresponding to the maximum eigenvalue. Code related to
this paper is available at: https://github.com/IssamLaradji/MASAGA.
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1 Introduction

The most common supervised learning methods in machine learning use empir-
ical risk minimization during the training. The minimization problem can be
expressed as minimizing a finite sum of loss functions that are evaluated at a
single data sample. We consider the problem of minimizing a finite sum over a
Riemannian manifold,

min_ f(z) = 3 fi(a),
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where X is a geodesically convex set in the Riemannian manifold M. Each func-
tion f; is geodesically Lipschitz-smooth and the sum is geodesically strongly-
convex over the set X. The learning phase of several machine learning models
can be written as an optimization problem of this form. This includes princi-
pal component analysis (PCA) [39], dictionary learning [34], Gaussian mixture
models (GMM) [10], covariance estimation [36], computing the Riemannian cen-
troid [11], and PageRank algorithm [33].

When M = R?, the problem reduces to convex optimization over a stan-
dard Euclidean space. An extensive body of literature studies this problem in
deterministic and stochastic settings [5,22,23,28,29]. It is possible to convert
the optimization over a manifold into an optimization in a Euclidean space by
adding x € X as an optimization constraint. The problem can then be solved
using projected-gradient methods. However, the problem with this approach is
that we are not explicitly exploiting the geometrical structure of the manifold.
Furthermore, the projection step for the most common non-trivial manifolds
used in practice (such as the space of positive-definite matrices) can be quite
expensive. Further, a function could be non-convex in the Euclidean space but
geodesically convex over an appropriate manifold. These factors can lead to poor
performance for algorithms that operate with the Euclidean geometry, but algo-
rithms that use the Riemannian geometry may converge as fast as algorithms
for convex optimization in Euclidean spaces.

Stochastic optimization over manifolds and their convergence properties have
received significant interest in the recent literature [4,14,30,37,38]. Bonnabel [4]
and Zhang et al. [38] analyze the application of stochastic gradient descent (SGD)
for optimization over manifolds. Similar to optimization over Euclidean spaces
with SGD, these methods suffer from the aggregating variance problem [40]
which leads to sublinear convergence rates.

When optimizing finite sums over Euclidean spaces, variance-reduction tech-
niques have been introduced to reduce the variance in SGD in order to achieve
faster convergence rates. The variance-reduction techniques can be categorized
into two groups. The first group is memory-based approaches [6,16,20,32] such as
the stochastic average gradient (SAG) method and its variant SAGA. Memory-
based methods use the memory to store a stale gradient of each f;, and in each
iteration they update this “memory” of the gradient of a random f;. The aver-
aged stored value is used as an approximation of the gradient of f.

The second group of variance-reduction methods explored for Euclidean
spaces require full gradient calculations and include the stochastic variance-
reduced gradient (SVRG) method [12] and its variants [15,19,25]. These methods
only store the gradient of f, and not the gradient of the individual f; functions.
But, these methods occasionally require evaluating the full gradient of f as
part of their gradient approximation and require two gradient evaluations per
iteration. Although SVRG often dramatically outperforms the classical gradient
descent (GD) and SGD, the extra gradient evaluation typically lead to a slower
convergence than memory-based methods. Furthermore, the extra gradient cal-
culations of SVRG can lead to worse performance than the classical SGD dur-
ing the early iterations where SGD has the most advantage [9]. Thus, when the
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bottleneck of the process is the gradient computation itself, using memory-based
methods like SAGA can improve performance [3,7]. Furthermore, for several
applications it has been shown that the memory requirements can be alleviated
by exploiting special structures in the gradients of the f; [16,31,32].

Several recent methods have extended SVRG to optimize the finite sum
problem over a Riemannian manifold [14,30,37], which we refer to as RSVRG
methods. Similar to the case of Euclidean spaces, RSVRG converges linearly
for geodesically Lipschitz-smooth and strongly-convex functions. However, these
methods also require the extra gradient evaluations associated with the original
SVRG method. Thus, they may not perform as well as potential generalizations
of memory-based methods like SAGA.

In this work we present MASAGA, a variant of SAGA to optimize finite
sums over Riemannian manifolds. Similar to RSVRG, we show that it con-
verges linearly for geodesically strongly-convex functions. We also show that
both MASAGA and RSVRG with a non-uniform sampling strategy can converge
faster than the uniform sampling scheme used in prior work. Finally, we con-
sider the problem of finding the leading eigenvector, which minimizes a quadratic
function over a sphere. We show that MASAGA converges linearly with uniform
and non-uniform sampling schemes on this problem. For evaluation, we consider
one synthetic and two real datasets. The real datasets are MNIST [17] and the
Ocean data [18]. We find the leading eigenvector of each class and visualize
the results. On MNIST, the leading eigenvectors resemble the images of each
digit class, while for the Ocean dataset we observe that the leading eigenvector
represents the background image in the dataset.

In Sect. 2 we present an overview of essential concepts in Riemannian geom-
etry, defining the geodesically convex and smooth function classes following
Zhang et al. [38]. We also briefly review the original SAGA algorithm. In Sect. 3,
we introduce the MASAGA algorithm and analyze its convergence under both
uniform and non-uniform sampling. Finally, in Sect.4 we empirically verify the
theoretical linear convergence results.

2 Preliminaries

In this section we first present a review of Riemannian manifold concepts, how-
ever, for a more detailed review we refer the interested reader to the litera-
ture [1,27,35]. Then, we introduce the class of functions that we optimize over
such manifolds. Finally, we briefly review the original SAGA algorithm.

2.1 Riemannian Manifold

A Riemannian manifold is denoted by the pair (M, G), that consists of a smooth
manifold M over R? and a metric G. At any point z in the manifold M, we define
Tm(z) to be the tangent plane of that point, and G defines an inner product in
this plane. Formally, if p and ¢ are two vectors in T (z), then (p,q), = G(p, q).
Similar to Euclidean space, we can define the norm of a vector and the angle
between two vectors using G.
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To measure the distance between two points on the manifold, we use the
geodesic distance. Geodesics on the manifold generalize the concept of straight
lines in Euclidean space. Let us denote a geodesic with ~(t) which maps [0,1] —
M and is a function with constant gradient,

d2

E’Y(t) =0.

To map a point in Ty (z) to M, we use the exponential function Exp,, : Ty (x) —
M. Specifically, Exp,(p) = z means that there is a geodesic curve vZ(t) on the
manifold that starts from z (so 42(0) = z) and ends at z (so v2(1) = z =
Exp,(p)) with a velocity of p (%fy; (0) = p). When the Exp function is defined
for every point in the manifold, we call the manifold geodesically-complete. For
example, the unit sphere in R" is geodesically complete. If there is a unique
geodesic curve between any two points in M’ € M, then the Exp, function
has an inverse defined by the Log, function. Formally the Log, = Exp;1 :
M’ — Ty(x) function maps a point from M’ back into the tangent plane at
x. Moreover, the geodesic distance between = and z is the length of the unique
shortest path between z and x, which is equal to ||Log,(z)| = ||Log, (z)]|.

Let uw and v € 7Tp(xz) be linearly independent so they specify a two
dimensional subspace S, € Ta(z). The exponential map of this subspace,
Exp,(Sz) = Sm, is a two dimensional submanifold in M. The sectional curva-
ture of Sy denoted by K(Say, x) is defined as a Gauss curvature of Sys at x [41].
This sectional curvature helps us in the convergence analysis of the optimization
method. We use the following lemma in our analysis to give a trigonometric
distance bound.

Lemma 1 (Lemma 5 in [38]). Let a, b, and c be the side lengths of a geodesic
triangle in a manifold with sectional curvature lower-bounded by Kpin. Then

2 v/ | Kmin|

<
" tanh(\/|Kminlc)

Another important map used in our algorithm is the parallel transport. It
transfers a vector from a tangent plane to another tangent plane along a geodesic.
This map is denoted by I'? : Ty(x) — Tpm(z), and maps a vector from the
tangent plane 7y((z) to a vector in the tangent plane 7r((z) while preserving
the norm and inner product values.

P, q), = (I (), I7(q)).

b? 4 ¢* — 2bccos(£ (b, c)).

Grassmann Manifold. Here we review the Grassmann manifold, denoted
Grass(p, n), as a practical Riemannian manifold used in machine learning. Let p
and n be positive integers with p < n. Grass(p,n) contains all matrices in R™*?
with orthonormal columns (the class of orthogonal matrices). By the definition
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of an orthogonal matrix, if M € Grass(p,n) then we have M "M = I, where
I € RP*P is the identity matrix. Let ¢ € TGrass(pn)(2), and ¢ = UXVT be its
p-rank singular value decomposition. Then we have:

Exp,(tq) = 2V cos(tX)V T + Usin(tX)V .

The parallel transport along a geodesic curve y(t) such that y(0) = z and (1) =
z is defined as:

IZ(tg) = (—aVsin(tX) U + Ucos(tX)U" +1-UU")q.

2.2 Smoothness and Convexity on Manifold

In this section, we define convexity and smoothness of a function over a manifold
following Zhang et al. [38]. We call X € M geodesically convex if for any two
points y and z in X, there is a geodesic v(t) starting from y and ending in z with
a curve inside of X'. For simplicity, we drop the subscript in the inner product
notation.

Algorithm 1. The Original SAGA Algorithm

1: Input: Learning rate 7.

2: Initialize zo = 0 and memory M(® with gradient of zo.
3: fort=1,2,3,... do

4: ﬂ:%Z?:1Mt[ﬂ
5 Pick 4; uniformly at random from {1...n}.
6: v = Vi (x) = M'[ie] + £ 7 M*[j)

71 Ti+1 = Tt — ’f](l/t)
8.
9:

Set M1 [iy] = V fi, () and M*T'[j] = M*'[4] for all j # .
end for

Formally, a function f : X — R is called geodesically convex if for any y and
z in X and the corresponding geodesic 7, for any ¢ € [0, 1] we have:

fO@®) < A=) f(y) +1f(2).

Similar to the Euclidean space, if the Log function is well defined we have the
following for convex functions:

f(2) + (g, Log.(y)) < f(v),

where ¢, is a subgradient of f at z. If f is a differentiable function, the
Riemannian gradient of f at z is a vector g, which satisfies 4 |,_o f(Exp, (tg.)) =
(92, Vf(2)),, with Vf being the gradient of f in R™. Furthermore, we say that
f is geodesically p-strongly convex if there is a g > 0 such that:

J(2) + (g2, Log. () + 5 [Log. ()| < f(v).
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Let * € X be the optimum of f. This implies that there exists a subgradient
at ¥ with g,» = 0 which implies that the following inequalities hold:

ILog, (=)|* < §<f<z> — f(z))

* K *
(g, Log, (z7)) + 5 [Log. (z")|* < 0

Finally, an f that is differentiable over M is said to be a Lipschitz-smooth
function with the parameter L > 0 if its gradient satisfies the following inequality:

l9= = Iy gyl || < Li[Log, (y)|| = L d(z,y),

where d(z,y) is the distance between z and y. For a geodesically smooth f the
following inequality also holds:

F(y) < F(2) + (92, Log u) + 5 Loz ()

2.3 SAGA Algorithm

In this section we briefly review the SAGA method [6] and the assumptions
associated with it. SAGA assumes f is p-strongly convex, each f; is convex, and
each gradient V f; is Lipschitz-continuous with constant L. The method generates
a sequence of iterates x; using the SAGA Algorithm 1 (line 7). In the algorithm,
M is the memory used to store stale gradients. During each iteration, SAGA
picks one f;, randomly and evaluates its gradient at the current iterate value,
V fi, (z¢). Next, it computes vy as the difference between the current Vf;, (z)
and the corresponding stale gradient of f;, stored in the memory plus the average
of all stale gradients (line 6). Then it uses this vector v; as an approximation of
the full gradient and updates the current iterate similar to the gradient descent
update rule. Finally, SAGA updates the stored gradient of f;, in the memory
with the new value of Vf;, (z).

Let psaga = m Defazio et al. [6] show that the iterate value x; converges
to the optimum z* linearly with a contraction rate 1 — psaga,

E [th - x*HQ] < (1 - psaga)tc7

where C'is a positive scalar.

3 Optimization on Manifold with SAGA

In this section we introduce the MASAGA algorithm (see Algorithm 2). We
make the following assumptions:

1. Each f; is geodesically L-Lipschitz continuous.
2. f is geodesically p-strongly convex.
3. f has an optimum in X, i.e., x* € X.
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4. The diameter of X is bounded above, i.e., max, ,ex d(u,v) < D.
5. Log, is defined when z € X
6. The sectional curvature of X is bounded, i.e., Knin < Kx < Kpax.

These assumptions also commonly appear in the previous work [14, 30,37, 38].
Similar to the previous work [14,37,38], we also define the constant ¢ which is
essential in our analysis:

vV |Kmin‘D . i
¢ = { tanh(y/|Kmin| D) I Konin < 0
1 if Kmin 2 0

In MASAGA we modify two parts of the original SAGA: (i) since gradients
are in different tangent planes, we use parallel transport to map them into the
same tangent plane and then do the variance reduction step (line 6 of Algo-
rithm 2), and (ii) we use the Exp function to map the update step back into the
manifold (line 7 of Algorithm 2).

3.1 Convergence Analysis

We analyze the convergence of MASAGA considering the above assumptions and
show that it converges linearly. In our analysis, we use the fact that MASAGA’s
estimation of the full gradient v is unbiased (like SAGA), i.e., E [1y] = V f(a4).
For simplicity, we use V f to denote the Riemannian gradient instead of g,. We
assume that there exists an incremental first-order oracle (IFO) [2] that gets an
i€{l,..,n}, and an z € X, and returns (f;(z), Vfi(x)) € (R x Typ(z)).

Theorem 1. If each f; is geodesically L-smooth and f is geodesically p-strongly
convex over the Riemannian manifold M, the MASAGA algorithm with the

2__ 2
constant step size n = 2t ZfEHisélL—gaxL converges linearly while satisfying

the following:

E [dQ(mt,x*)] <(1-p)r°,

. 2 o *
where p = min{ gz, =2}, 70 = 2007 S MO -T2 [V fila)] P+
d?(xg,x*) is a positive scalar, and o > 1 is a constant.

Algorithm 2. MASAGA Algorithm

1: Input: Learning rate n and xo € M.

2: Initialize memory M ©) with gradient of xg.
3: fort=1,2,3,... do

L =LY M

5. Pick i; uniformly at random from {1...n}.
6: vy = Vf“ (l't) — F;g I:Mt[’l,t] - ﬂ}

7o ai = Exp,, (—n(n))
8.

9:

Set M'[iy] = I'F0 [V fi, (z¢)] and M*1[j] = M*[j] for all j # i..
end for
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Proof. Let 6 = d*(x¢,2*). First we find an upper-bound for E [||v¢[|?].

E [|lvel*] = E [IIV fi, (xe) — Lot [M*[ir] — ] |1*]
=E [[IVfi,(ze) = 32 [V fir (@")] = Ly [M"[ie] = I3 [V fi (27)] = 2] |I7]
<S2E [V fi, (we) = Tt [V £, ()] 7]
+ 28 [|| 5y [M[ie] = T2 [V fi, ()] — 2] |17]
<2 [||V iy (we) — T [V fi (7)) ||]
+ 2B [| M [id] = T2 [V fi, (@7)] ]
<2128, + 2B [|| M [i] — 72 [V fi, ()] |1?]

The first inequality is due to (a + b)? < 2a? + 2b? and the second one is from
the variance upper-bound inequality, i.e., E [x2 —E [J;]Q] < E [x2] The last
inequality comes from the geodesic Lipschitz smoothness of each f;. Note that
the expectation is taken with respect to ;.

E [6¢11] <E [ — 2 (v, Exp, (—2%)) + (n?||ve?]
=6, — 20 (V f(z1), Exp,, (=2%)) + (n°E [||w]|]
< 6 — npde + Cn°E [||v|?]
< (1= pm)d; + ¢ [2L26; + 2B [[|M[if] — T30 [V fi, ()] [1?]]
= (1 — pn + 2¢L*n*)6; + 20n* W,

The first inequality is due to the trigonometric distance bound, the second one
is due to the strong convexity of f, and the last one is due to the upper-bound
of v;. W, is defined as follows:

RS e ]
V= DM = e [V i) |17
i=1
We define the Lyaponov function

Tt :(5t—|—c%

for some ¢ > 0. Note that ™ > 0, since both 6; and ¥, are positive or zero. Next
we find an upper-bound for E [¥;4].

E Wil = (- IV file) — 2 VG

+ U= DG Y IM) - 122 (V) )

= G IV ) — T VA + (1 )

n

L’ 1
<—4+(1- )%
n n
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The inequality is due to the geodesic Lipschitz smoothness of f;. Then, for some
positive p < 1 we have the following inequality:
t+1 t 2 2 cL?
E [T = (1= )T < (1= pm+ 20L%0* = (1= p) + = )8,

+ (2¢n* — (1 —p) + (1 — %))% (1)

In the right hand side of Inequality 1, §; and ¥; are positive by construction.
If the coefficients of d; and ¥; in the right hand side of the Inequality 1 are
negative, we would have E [T+1] < (1 — p)T". More precisely, we require

1
27— o1~ p) + el ~ ) <0 (2)
cL?
1—M77+2<L22—(1_P)+7§0 (3)
To satisfy Inequality 2 we require p < % — @ If we set ¢ = 2an(n? for some

a > 1, then p < % — ﬁ, which satisfies our requirement. If we replace the value
of ¢ in Inequality 3, we will get:

p—un + 20L*n* + 2a(L?n” <0

_ o 2u— /2 =8p(1+a)CL? ,  2u+ /2 —8p(1+ a)(L?
- A1+ a)CL? = A1 + a)CL?

)

nen

o
8(1+a)(L?"
- ﬁ} and n = n, then we have:

To ensure the term under the square root is positive, we also need p <

Finally, if we set p = min{m7 =

E [Tt+1] < (1-p)tro,

where 7V is a scalar. Since ¥ > 0 and E [6;41] < E [Y"7], we get the required
bound:
E [§¢11] < (1= p)*'70

Corollary 1. Let 8 = 8’2%22, and & :ﬂ—l—q/%z—i-l > 1. If we set a = & then

2

we will have p = Suﬁw = % — % Furthermore, to reach an € accuracy, i.e.,

E [d*(zr,*)] < €, we require that the total number of MASAGA (Algorithm 2)
iteration T satisfy the following inequality:

_— (8(1 + §)<L2

1
Jlog(1) (1)
Note that this bound is similar to the bound of Zhang et al. [37]. To make it clear,
notice that @ < 20 + 1. Therefore, if we plug this upper-bound into Inequality 4
we get

28+ 2)¢L? 1 2L (L? 1 L? 1
7= (2L g2y — O S+ S g = Ol (),

€
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The L—; term in the above bound is the squared condition number that could
be prohibitively large in machine learning applications. In contrast, the original
SAGA and SVRG algorithms only depend on % on convex function within linear
spaces. In the next section, we improve upon this bound through non-uniform
sampling techniques.

3.2 MASAGA with Non-uniform Sampling

Using non-uniform sampling for stochastic optimization in Euclidean spaces can
help stochastic optimization methods achieve a faster convergence rate [9,21,31].
In this section, we assume that each f; has its own geodesically L;-Lipschitz
smoothness as opposed to a single geodesic Lipschitz smoothness L = max{L;}.
Now, instead of uniformly sampling f;, we sample f; with probability £E7 where
L= %Z?Zl L;. In machine learning applications, we often have L < L. Using
this non-uniform sampling scheme, the iteration update is set to

L
L, i),

T4 = Exp,, (—n(

which keeps the search direction unbiased, i.e., E [LL l/t} = Vf(z+). The follow-
it

ing theorem shows the convergence of the new method.

Theorem 2. If f; is geodesically L;-smooth and f is geodesically u-strongly
convex over the manifold M, the MASAGA algorithm with the defined non-

2u+y/p2—8p(L+al) % L

4(L+aL)S L

uniform sampling scheme and the constant step size n =

converges linearly as follows:
E [d®*(z¢,2*)] < (1= p)'7?,

. i L’L =
where p = min{ gy, - 2}, y = ML L —max{L;}, L= LY, L,
and o > 1 is a constant, and T° = % S L%HMO[Z} — 22 Vi) |1* +

d?(xo,*) are positive scalars.

Proof of the above theorem could be found in the supplementary material.

Corollary 2. Let § = szlfi’ and & = B + \/%24—1 > 1. If we set a = @
2

then we have p = W = 1 — L. Now, to reach an € accuracy, i.e.,
E [d*(zr,z*)] <€, we require:
CLL 1

TZO(”'*‘,)TLQ)IOg( ) (5)

€

where T is the number of the necessary iterations.
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Observe that the number of iterations 7 in Equality 5 depends on LL instead
of L?. When L < L, the difference could be significant. Thus, MASAGA with
non-uniform sampling could achieve an e accuracy faster than MASAGA with
uniform sampling.

Similarly we can use the same sampling scheme for the RSVRG algorithm [37]
and improve its convergence. Specifically, if we change the update rule of Algo-
rithm 1 of Zhang et al. [37] to

s+1 _ s+1
il = Expmfﬂ—n( v,

it

then Theorem 1 and Corollary 1 of Zhang et al. [37] will change to the following
ones.

Theorem 3 (Theorem 1 of [37] with non-uniform sampling). If we use
non-uniform sampling in Algorithm 1 of RSVRG [37] and run it with the option
I as described in the work, and let

_ 3L (14 4Qn" — 2np)™ (p — 5¢nL?)
= 2¢nL? w—2¢nL?

where m is the number of the inner loop iterations, then through S iterations of
the outer loop, we have

<1,

E [d*(27,2%)] < (@)%d*(@°, %)

The above theorem can be proved through a simple modification to the proof of
Theorem 1 in RSVRG [37].

Corollary 3 (Corollary 1 of [37] with non-uniform samplmg) With non-
uniform sampling in Algorithm 1 of RSVRG, after O(n +2 CL z)log(1) IFO calls,

the output x, satisfies

E[f(za) - f@")] < €.

Note that through the non-uniform sampling scheme we improved the
RSVRG [37] convergence by replacing the L? term with a smaller L? term.

4 Experiments: Computing the Leading Eigenvector

Computing the leading eigenvector is important in many real-world applications.
It is widely used in social networks, computer networks, and metabolic networks
for community detection and characterization [24]. It can be used to extract a
feature that “best” represents the dataset [8] to aid in tasks such as classifi-
cation, regression, and background subtraction. Furthermore, it is used in the
PageRank algorithms which requires computing the principal eigenvector of the
matrix describing the hyperlinks in the web [13]. These datasets can be huge (the
web has more than three billion pages [13]). Therefore, speeding up the leading
eigenvector computation will have a significant impact on many applications.
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We evaluate the convergence of MASAGA on the problem of computing the
leading eigenvalue on several datasets. The problem is written as follows:

: IIENEN T
min T)=——=1 ziz; | x, 6
i 1) = e (S ©

which is a non-convex objective in the Euclidean space R?, but a (strongly-)
convex objective over the Riemannian manifold. Therefore, MASAGA can
achieve a linear convergence rate on this problem. We apply our algorithm on
the following datasets:

— Synthetic. We generate Z as a 1000 x 100 matrix where each entry is sampled
uniformly from (0,1). To diversify the Lipschitz constants of the individual
z;’s, we multiply each z; with an integer obtained uniformly between 1 and
100.

— MNIST [17]. We randomly pick 10,000 examples corresponding to digits 0-9
resulting in a matrix Z € R10,000x784,

— Ocean. We use the ocean video sequence data found in the UCSD background
subtraction dataset [18]. It consists of 176 frames, each resized to a 94 x 58
image.

We compare MASAGA against RSGD [37] and RSVRG [4]. For solving
geodesically smooth convex functions on the Riemannian manifold, RSGD and
RSVRG achieve sublinear and linear convergence rates respectively. Since the
manifold for Eq. 6 is that of a sphere, we have the following functions:

Px(H) = H — trace(X " H)X, V. f(X) = Px(Vf(X)),

Expy (U) = cos(||U])X + WU rew) =y,

where P corresponds to the tangent space projection function, V,.f the
Riemannian gradient function, Exp the exponential map function, and I" the
transport function. We evaluate the progress of our algorithms at each epoch ¢
by computing the relative error between the objective value and the optimum as
! (mltf):lf ~ . We have made the code available at https: //github.com /IssamLaradji/
MASAGA.

For each algorithm, a grid-search over the learning rates {10!,
1072,...,1077} is performed and plot the results of the algorithm with the best
performance in Fig. 1. This plot shows that MASAGA is consistently faster than
RSGD and RSVRG in the first few epochs. While it is expected that MASAGA
beats RSGD since it has a better convergence rate, the reason MASAGA can
outperform RSVRG is that RSVRG needs to occasionally re-compute the full
gradient. Further, at each iteration MASAGA requires a single gradient evalu-
ation instead of the two evaluations required by RSVRG. We see in Fig. 1 that
non-uniform (NU) sampling often leads to faster progress than uniform (U) sam-
pling, which is consistent with the theoretical analysis. In the NU sampling case,
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Fig. 1. Comparison of MASAGA (ours), RSVRG, and RSGD for computing the leading
eigenvector. The suffix (U) represents uniform sampling and (NU) the non-uniform
sampling variant.

HEIEl O O

(a) Example MNIST images ) Exact solution ) MASAGA

Fig. 2. The obtained leading eigenvectors of all MNIST digits.

HEE
EGN AHO

(a) MNIST digits (b) MASAGA for digits 1-6

Fig. 3. The obtained leading eigenvectors of the MNIST digits 1-6.

we sample a vector z; based on its Lipschitz constant L; = ||z;]|?. Note that for
problems where L; is not known or costly to compute, we can estimate it by
using Algorithm 2 of Schmidt et al. [31].

Figures2 and 3 show the leading eigenvectors obtained for the MNIST
dataset. We run MASAGA on 10,000 images of the MNIST dataset and plot
its solution in Fig.2. We see that the exact solution is similar to the solution
obtained by MASAGA, which represent the most common strokes among the
MNIST digits. Furthermore, we ran MASAGA on 500 images for digits 1-6 inde-
pendently and plot its solution for each class in Fig. 3. Since most digits of the
same class have similar shapes and are fairly centered, it is expected that the
leading eigenvector would be similar to one of the digits in the dataset.

Figure 4 shows qualitative results comparing MASAGA, RSVRG, and RSGD.
We run each algorithm for 20 iterations and plot the results. MASAGA’s and
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(a) Example Ocean frames

(b) Exact solution (c) RSGD (d) MASAGA (e) RSVRG

Fig. 4. The obtained leading eigenvectors of the ocean dataset after 20 iterations.

RSVRG’s results are visually similar to the exact solution. However, the RSGD
result is visually different than the exact solution (the difference is in the center-
left of the two images).

5 Conclusion

We introduced MASAGA which is a stochastic variance-reduced optimization
algorithm for Riemannian manifolds. We analyzed the algorithm and showed
that it converges linearly when the objective function is geodesically Lipschitz-
smooth and strongly convex. We also showed that using non-uniform sampling
improves the convergence speed of both MASAGA and RSVRG algorithms.
Finally, we evaluated our method on a synthetic dataset and two real datasets
where we empirically observed linear convergence. The empirical results show
that MASAGA outperforms RSGD and is faster than RSVRG in the early iter-
ations. For future work, we plan to extend MASAGA by deriving convergence
rates for the non-convex case of geodesic objective functions. We also plan to
explore accelerated variance-reduction methods and block coordinate descent
based methods [26] for Riemannian optimization. Another potential future work
of interest is a study of relationships between the condition number of a func-
tion within the Euclidean space and its corresponding condition number within
a Riemannian manifold, and the effects of sectional curvature on it.

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton (2009)

2. Agarwal, A., Bottou, L.: A lower bound for the optimization of finite sums. arXiv
preprint (2014)

3. Bietti, A., Mairal, J.: Stochastic optimization with variance reduction for infinite
datasets with finite sum structure. In: Advances in Neural Information Processing
Systems, pp. 1622-1632 (2017)



358

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. Babanezhad et al.

Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans.
Autom. Control 58(9), 2217-2229 (2013)

Cauchy, M.A.: Méthode générale pour la résolution des systémes d’équations simul-
tanées. Comptes rendus des séances de ’Académie des sciences de Paris 25, 536—
538 (1847)

Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient
method with support for non-strongly convex composite objectives. In: Advances
in Neural Information Processing Systems (2014)

Dubey, K.A., Reddi, S.J., Williamson, S.A., Poczos, B., Smola, A.J., Xing, E.P.:
Variance reduction in stochastic gradient Langevin dynamics. In: Advances in Neu-
ral Information Processing Systems, pp. 1154-1162 (2016)

Guyon, C., Bouwmans, T., Zahzah, E.h.: Robust principal component analysis
for background subtraction: systematic evaluation and comparative analysis. In:
Principal Component Analysis. InTech (2012)

. Harikandeh, R., Ahmed, M.O., Virani, A., Schmidt, M., Kone¢ny, J., Sallinen, S.:

StopWasting my gradients: practical SVRG. In: Advances in Neural Information
Processing Systems, pp. 2251-2259 (2015)

Hosseini, R., Sra, S.: Matrix manifold optimization for Gaussian mixtures. In:
Advances in Neural Information Processing Systems, pp. 910-918 (2015)

Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contempo-
rary algorithms for computing the matrix geometric mean. Electron. Trans. Numer.
Anal. 39(EPFL-ARTICLE-197637), 379402 (2012)

Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in Neural Information Processing Systems (2013)
Kamvar, S., Haveliwala, T., Golub, G.: Adaptive methods for the computation of
pagerank. Linear Algebra Appl. 386, 51-65 (2004)

Kasai, H., Sato, H., Mishra, B.: Riemannian stochastic variance reduced gradient
on Grassmann manifold. arXiv preprint arXiv:1605.07367 (2016)

Koneény, J., Richtarik, P.: Semi-stochastic gradient descent methods. arXiv
preprint (2013)

Le Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an expo-
nential convergence rate for strongly-convex optimization with finite training sets.
In: Advances in Neural Information Processing Systems (2012)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. IEEE
Trans. Pattern Anal. Mach. Intell. 32(1), 171-177 (2010). https://doi.org/10.1109/
TPAMI.2009.112

Mahdavi, M., Jin, R.: MixedGrad: an o(1/t) convergence rate algorithm for stochas-
tic smooth optimization. In: Advances in Neural Information Processing Systems
(2013)

Mairal, J.: Optimization with first-order surrogate functions. arXiv preprint
arXiv:1305.3120 (2013)

Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm. In: Advances in Neural Information Pro-
cessing Systems, pp. 1017-1025 (2014)

Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxi-
mation approach to stochastic programming. STAM J. Optim. 19(4), 1574-1609
(2009)

Nesterov, Y.: A method for unconstrained convex minimization problem with the
rate of convergence O(1/k?). Doklady AN SSSR 269(3), 543-547 (1983)


http://arxiv.org/abs/1605.07367
https://doi.org/10.1109/TPAMI.2009.112
https://doi.org/10.1109/TPAMI.2009.112
http://arxiv.org/abs/1305.3120

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

MASAGA: SAGA for Manifold Optimization 359

Newman, M.E.: Modularity and community structure in networks. Proc. Natl.
Acad. Sci. 103(23), 8577-8582 (2006)

Nguyen, L., Liu, J., Scheinberg, K., Taka¢, M.: SARAH: a novel method for
machine learning problems using stochastic recursive gradient. arXiv preprint
arXiv:1703.00102 (2017)

Nutini, J., Laradji, I., Schmidt, M.: Let’s Make Block Coordinate Descent Go Fast:
Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear
Convergence. ArXiv e-prints, December 2017

Petersen, P., Axler, S., Ribet, K.: Riemannian Geometry, vol. 171. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-26654-1

Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averag-
ing. STAM J. Contr. Optim. 30(4), 838-855 (1992)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statist.
22(3), 400-407 (1951). https://doi.org/10.1214/aoms/1177729586

Sato, H., Kasai, H., Mishra, B.: Riemannian stochastic variance reduced gradient.
arXiv preprint arXiv:1702.05594 (2017)

Schmidt, M., Babanezhad, R., Ahmed, M., Defazio, A., Clifton, A., Sarkar, A.:
Non-uniform stochastic average gradient method for training conditional random
fields. In: Artificial Intelligence and Statistics, pp. 819-828 (2015)
Shalev-Schwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for
regularized loss minimization. J. Mach. Learn. Res. 14, 567-599 (2013)

Sra, S., Hosseini, R.: Geometric optimization in machine learning. In: Minh, H.Q.,
Murino, V. (eds.) Algorithmic Advances in Riemannian Geometry and Applica-
tions. ACVPR, pp. 73-91. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-45026-1_3

Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere. In: 2015
International Conference on Sampling Theory and Applications (SampTA), pp.
407-410. IEEE (2015)

Udriste, C.: Convex Functions and Optimization Methods on Riemannian Man-
ifolds, vol. 297. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-
8390-9

Wiesel, A.: Geodesic convexity and covariance estimation. IEEE Trans. Signal
Process. 60(12), 6182-6189 (2012)

Zhang, H., Reddi, S.J., Sra, S.: Riemannian SVRG: fast stochastic optimization on
Riemannian manifolds. In: Advances in Neural Information Processing Systems,
pp- 4592-4600 (2016)

Zhang, H., Sra, S.: First-order methods for geodesically convex optimization. In:
Conference on Learning Theory, pp. 1617-1638 (2016)

Zhang, T., Yang, Y.: Robust principal component analysis by manifold optimiza-
tion. arXiv preprint arXiv:1708.00257 (2017)

Zhao, P., Zhang, T.: Stochastic optimization with importance sampling for regu-
larized loss minimization. In: International Conference on Machine Learning, pp.
1-9 (2015)

Ziller, W.: Riemannian manifolds with positive sectional curvature. In: Dearri-
cott, O., Galaz-Garcia, F., Kennard, L., Searle, C., Weingart, G., Ziller, W. (eds.)
Geometry of Manifolds with Non-negative Sectional Curvature. LNM, vol. 2110,
pp. 1-19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06373-7_1


http://arxiv.org/abs/1703.00102
https://doi.org/10.1007/978-3-319-26654-1
https://doi.org/10.1214/aoms/1177729586
http://arxiv.org/abs/1702.05594
https://doi.org/10.1007/978-3-319-45026-1_3
https://doi.org/10.1007/978-3-319-45026-1_3
https://doi.org/10.1007/978-94-015-8390-9
https://doi.org/10.1007/978-94-015-8390-9
http://arxiv.org/abs/1708.00257
https://doi.org/10.1007/978-3-319-06373-7_1

	MASAGA: A Linearly-Convergent Stochastic First-Order Method for Optimization on Manifolds
	1 Introduction
	2 Preliminaries
	2.1 Riemannian Manifold
	2.2 Smoothness and Convexity on Manifold
	2.3 SAGA Algorithm

	3 Optimization on Manifold with SAGA
	3.1 Convergence Analysis
	3.2 MASAGA with Non-uniform Sampling

	4 Experiments: Computing the Leading Eigenvector
	5 Conclusion
	References




