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Abstract. Kernel methods are a popular choice for classification
problems, but when solving large-scale learning tasks computing the
quadratic kernel matrix quickly becomes infeasible. To circumvent this
problem, the Nyström method that approximates the kernel matrix using
only a smaller sample of the kernel matrix has been proposed. Other tech-
niques to speed up kernel learning include stochastic first order optimiza-
tion and conditioning. We introduce Nyström-SGD, a learning algorithm
that trains kernel classifiers by minimizing a convex loss function with
conditioned stochastic gradient descent while exploiting the low-rank
structure of a Nyström kernel approximation. Our experiments suggest
that the Nyström-SGD enables us to rapidly train high-accuracy clas-
sifiers for large-scale classification tasks. Code related to this paper is
available at: https://bitbucket.org/Whadup/kernelmachine/.

1 Introduction

Kernel methods are a very powerful family of learning algorithms for classifi-
cation problems. In addition to their empirical success, we can give strong sta-
tistical guarantees for the generalization error [3,18]. However, learning kernel
classifiers traditionally involves computing a N × N kernel matrix and solving
linear algebra problems like matrix inversion or eigen-decomposition requiring
O(N3) operations, which quickly becomes infeasible for large-scale learning.

Recently, Ma and Belkin [13] have proposed an algorithm for large scale
kernel learning based on conditioned stochastic gradient descent. Conditioning
is an established technique from first-order optimization where we change the
coordinate system of the optimization problem to achieve faster convergence to
a low-loss classifier. Another recent work by Rudi et al. [17] applies a combina-
tion of conditioning and Nyström sampling to learn kernel classifiers. Nyström
sampling is a technique to approximate a kernel matrix by evaluating only a
smaller sample of m rows of the full kernel matrix. This reduces both the time
and space requirement to O(mN). Both these approaches are limited to mini-
mizing mean-squared error loss (RMSE), where the empirical risk minimization
problem reduces to solving a linear system. RMSE is not an ideal loss function
for classification problems, as it punishes model outputs that lead to correct
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classifications. Since different loss function exhibit different convergence behav-
ior of the classification error, by choosing a good loss function it is possible to
obtain even faster convergence to high-accuracy solutions [9].

We extend the work of Ma and Belkin to allow general convex loss func-
tions that are better suited for learning classifiers and present Nyström-SGD, an
algorithm that combines stochastic gradient descent, conditioning and Nyström
sampling. We summarize our contributions as follows:

– We show that the conditioned SGD algorithm by Ma and Belkin can be
extended to convex loss functions other than RMSE. While their derivation
is based on rewriting the optimization problem as solving a linear system, we
view it as convex optimization problem and extend results for optimization
in Euclidean spaces [8] to reproducing kernel Hilbert spaces.

– We present Nyström-SGD, a learning algorithm that computes a Nyström
approximation of the kernel matrix and runs conditioned SGD with this
approximated kernel. We show that we can derive a useful conditioner from
the approximation and that the resulting update rule of the iterative opti-
mization algorithm can be implemented extremely efficiently.

– We show our method achieves competitive results on benchmark datasets.
While computing the Nyström-approximation and the conditioner are compu-
tationally expensive steps, our experiments suggest that our approach yields
lower-loss solutions in less time than previous algorithms.

The remainder of the paper is structured as follows: We begin by revisiting repro-
ducing kernel Hilbert spaces and introducing necessary notation. We continue
by discussing related research, particularly covering techniques used to speed up
kernel learning. In Sect. 4 we introduce conditioned stochastic gradient descent
in reproducing kernel Hilbert spaces. In Sect. 5 we show how to speed up this
approach by replacing the kernel matrix with the Nyström approximation, which
results in very efficient update rules. In Sect. 6 we demonstrate the effectiveness
of our approach in various experiments. This paper is concluded in Sect. 7.

2 Preliminaries on Reproducing Kernel Hilbert Spaces

We begin this section by reviewing reproducing kernel Hilbert spaces (RKHS) in
which we seek to find linear classification models. The necessary notations will
be introduced in this section.

We are interested in learning classification models given labeled data points
(xi, yi) ∈ X ×Y with i = 1, ..., N . We denote by X = [x1, ..., xN ] the data matrix.

Let k : X ×X → R be a positive-definite kernel. A reproducing kernel Hilbert
space associated to a kernel k is a Hilbert space with associated scalar product
〈·, ·〉H. Data points x ∈ X are embedded in H via x �→ k(x, ·). The reproducing
property 〈f, k(x, ·)〉H = f(x) holds for all f ∈ H. Particularly it holds that
〈k(x, ·), k(x′, ·)〉H = k(x, x′).

We learn functions from the model family

x �→ 〈f, k(x, ·)〉H (1)
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where f, k(x, ·) are elements of the RKHS H. We can think of f as a hyperplane
in H. By the representer theorem for kernel Hilbert spaces, we can express these
functions as

〈f, k(x, ·)〉H =
n∑

i=1

αik(xi, x). (2)

The kernel analogue of the Gram matrix XT X is called kernel matrix and we
write K = k(xi, xj)|i,j=1,...,N . For notational convenience we define KNi = Ki

and KNB = [KNi]i∈B . Similarly KBB = k(xi, xj)|i,j∈B . Furthermore we define
KN · = [k(xi, ·)]i=1,...,N .

The kernel analogue of the covariance matrix C = 1
N

N∑
i=1

xix
T
i is the covari-

ance operator

C =
1
N

N∑

i=1

k(xi, ·) ⊗ k(xi, ·). (3)

Interestingly, kernel matrix and covariance operator share the same spectrum of
eigenvalues and have closely connected eigenvectors and eigenfunctions [16,19].
If λ is an eigenvalue of K with normalized eigenvector u ∈ R

N , i.e. λu = Ku,
the corresponding normalized eigenfunction of C is

� =
1√
λ

N∑

i=1

uik(xi, ·). (4)

It then holds that λ
N � = C�.

3 Related Work

Stochastic gradient descent is probably the most used optimization algorithm
used in machine learning recently, particularly for deep network training. SGD
training of kernel classifiers has been studied in the past. We separate two
approaches: First, as the representer theorem allows us to represent kernel clas-
sifiers as a linear combination of kernel evaluations, it is possible to take the
derivative of the loss with respect to those coefficients α and optimize using
SGD. This was pioneered by Chapelle [4]. The second approach is to take the
derivative with respect to the parameter vector in the reproducing kernel Hilbert
space, as proposed by Shalev-Shwartz et al. [20]. The resulting SGD update rule
can be expressed in terms of α as well and we will rely on this formulation in
this work.

Conditioning is a technique to speed up first order optimization methods
by transforming the geometry of the optimization problem using a conditioning
matrix [8]. Recently it has also been applied to optimization for kernel methods,
mostly for kernel ridge regression. In kernel ridge regression, learning reduces
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to solving a linear system. This linear system can be solved with iterative opti-
mization methods. Avron et al. [2] speed up this optimization using a conditioner
based on random feature maps. Cutajar et al. [6] evaluate a variety of different
conditioners and achieve fast convergence. Recently Ma and Belkin [13] pro-
posed to use a conditioner to speed up SGD training of kernel classifiers. Their
conditioning operator changes the geometry of the RKHS and is very similar to
the conditioner for Euclidean spaces proposed by Gonen and Shalev-Shwartz [8].
They prove that their conditioning operator accelerates convergence and that the
speedup depends on the decay of eigenvalues of the kernel matrix. Furthermore
they show that without conditioning, only a fraction of classifiers is reachable in
a polynomial number of epochs, which limits the expressive power of classifiers
learned with vanilla SGD.

With Nyström sampling [7,10,21] we avoid computing the full kernel matrix
and instead compute a low-rank approximation based on a sample of rows of
the kernel matrix. It is subjected to rigorous analysis for the mean squared error
loss [12]. Recently Rudi et al. [17] show that it suffices to sample O(

√
N) rows

of the kernel matrix to achieve optimal statistical accuracy if we use Nyström
sampling for kernel ridge regression. Their approach iteratively solves a linear
system using conditioned conjugate gradient descent where the conditioner is
obtain via Nyström sampling as well.

An alternative approach for making large-scale kernel learning tractable is
sampling the kernel feature space instead of sampling the kernel matrix. By
approximating the RKHS in finite dimensional Euclidean spaces, we reduce the
kernel learning task to the linear case where efficient learning is easy. The most
popular choice of features are random Fourier features [11,15].

4 Kernel Learning with Conditioned SGD

We continue by reviewing the conditioned stochastic gradient descent for
Euclidean vector spaces, on which we will base our conditioned stochastic gra-
dient descent algorithm in RKHS.

4.1 Conditioned Stochastic Gradient Descent

Let us review a preconditioning solution in Euclidean vector spaces proposed
by Gonen and Shalev-Shwartz [8]. We want to minimize the empirical loss of a
linear classifier with a convex loss function l via

min
w∈Rd

1
N

N∑

i=1

l(〈w, xi〉, yi) (5)

using a stochastic (sub)gradient descent (SGD) approach. The iterative algo-
rithm updates an intermediate solution by randomly choosing a minibatch of
examples B ⊆ {1, ..., N} and applying the iteration
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wt+1 = arg min
w

|B|
2η

||w − wt||2� +
∑

i∈B

l (〈w, xi〉, yi)

+
∑

i∈B

〈
w − wt, l′(〈w, xi〉, yi) · xi

〉 (6)

where || · ||� is a vector norm and l′(〈wt, xi〉, yi) is the (sub)derivative of l(ŷ, y)
with respect to the first argument ŷ evaluated at 〈wt, xi〉. If we use the Euclidean
norm, we get the classic stochastic gradient descent update rule

wt+1 = wt − η

|B|
∑

i∈B

l′(〈wt, xi〉, yi) · xi (7)

If instead we use the norm ||w||A =
√

wT Aw for a positive-definite matrix A,
the update rule becomes

wt+1 = wt − η

|B|
∑

i∈B

l′(〈wt, xi〉, yi) · A−1x. (8)

We call A the conditioning matrix. We want to select A such that the optimiza-
tion algorithm converges to a minimum as fast as possible, while still allowing
efficient updates. To this end Gonen and Shalev-Shwartz [8] propose to use a con-
ditioning matrix with a low-rank structure. This allows efficient matrix-vector
multiplication, hence the update rule has little overhead over the traditional
SGD update. We denote by C = UΛUT the eigen-decomposition of C where
U is the orthonormal matrix of eigenvectors and Λ = diag(λ1, ..., λN ) contains
the eigenvalues in non-increasing order. Golen and Shalev-Shwartz propose the
following conditioner

A−1 = I −
k∑

i=1

(
1 − a√

λi

)
uiu

T
i (9)

a =

√√√√ 1
N − k

N∑

i=k+1

λi (10)

that only uses the first k eigenvalues and -vectors of C. However computing a
requires knowing all the eigenvalues. We settle for an upper bound: By bounding
λi ≤ λk+1 for all i ≥ k+1 we have a ≤ √

λk+1 =: ã. This leads to the conditioner

A−1 = I −
k∑

i=1

(
1 −

√
λk+1

λi

)
uiu

T
i . (11)

which is the foundation of our approach.

4.2 Kernel Learning with Conditioned Stochastic Gradient Descent

In the kernel setting, the empirical risk minimization objective becomes

min
f∈H

1
N

N∑

i=1

l(〈f, k(xi, ·)〉H, yi) (12)
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Shalev-Shwartz et al. show that the SGD update (7) carries over to the kernel
setting [20] where f t ∈ H. We obtain

f t+1 = f t − η

|B|
∑

i∈B

l′(〈f t, k(xi, ·)〉H, yi)k(xi, ·) (13)

By setting f0 = 0 =
∑

i 0·k(xi, ·) we obtain an update rule that can be expressed
in terms of α as in (2). By induction, every f t can be written as a linear com-
bination of kernel basis functions k(xi, ·). By substituting k(xi, ·) �→ ei with the
ith standard basis vector ei, we obtain the update rule for α.

We propose to use a similar conditioner matrix as (11) for kernel reproducing
Hilbert spaces. Let λi, �i be the eigenvalues and eigenfunctions of C. We define
the conditioning operator

A−1 = I −
k∑

i=1

(
1 −

√
λk+1

λi

)
�i(·) ⊗ �i(·) (14)

which is very similar to the conditioner proposed by Ma and Belkin [13], but has
an additional square-root1. We obtain the update rule for conditioned SGD in
kernel reproducing Hilbert spaces

f t+1 = f t − η

|B|
∑

i∈B

l′(〈f t, k(xi, ·)〉, yi)A−1k(xi, ·) (15)

In this scenario, we can still derive efficient updates for α. We decompose A−1 =
I − D and focus on D as I results in standard SGD updates. For notational

convenience we define λ̃i = 1 −
√

λk+1λi
−1. We see that

Dk(xi, ·) =
k∑

j=1

λ̃j�j(·)〈�j(·), k(xi, ·)〉H (16)

=
k∑

j=1

λ̃j�j(·)
N∑

l=1

1√
Nλj

ulj · k(xl, xi) (17)

=
k∑

j=1

λ̃j

Nλj
KT

Niuj

N∑

l=1

uljk(xl, ·) (18)

= KT
Ni

k∑

j=1

λ̃j

Nλj
uju

T
j

︸ ︷︷ ︸
=:D

KN · =: KT
NiDKN · (19)

For notational convenience we define D := UΛ̃U with Λ̃ is a diagonal matrix
with coefficients as in (19). Thus we can rewrite the conditioned SGD iteration
in terms of α as
1 Inspection of the source-code released with [13] shows that the experiments were

actually conducted with a conditioner that uses the same square-root.
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αt+1 = αt − η

|B|
∑

i∈B

l′(〈αt,KNi〉, yi) (ei − DKNi) (20)

The update can still be computed efficiently, as it does not need additional
kernel evaluations and D is a low-rank matrix which allows efficient matrix-
vector multiplication.

5 Faster Training via Nyström Sampling

So far we have derived a conditioned stochastic gradient descent algorithm that
operates in reproducing kernel Hilbert spaces. Unfortunately we either have to
store O(N2) elements of the kernel matrix or compute O(N2) kernel evaluations
with each pass over the data. We address this by applying Nyström sampling to
obtain an approximation of the kernel matrix that only requires O(Nm) kernel
evaluations and storage for a constant sample-size m < N . While Ma and Belkin
[13] use a Nyström sampling approach to estimate the conditioning matrix, we
additionally use it to speed up the learning.

The Nyström approximation is computed as follows [7,10,21]: We draw a
sample of m landmark points L uniformly at random from X and compute KNL

and extract KLL. Now the approximation is defined as

K̃ = KNLK−1
LLKT

NL (21)

To obtain the conditioning matrix D, we compute the exact eigenvalues and
eigenvectors of K̃. Let V ΣV T = KLL be the eigen-decomposition of KLL. We
decompose

KNLV Σ−1 =: QR (22)

where Q is unitary and R is upper-triangular and then decompose

RΣRT =: ŨΛŨT (23)

where Ũ is unitary and Λ is diagonal. Now we can write

K̃ = QŨΛŨT QT =: UΛUT (24)

where U := QŨ is unitary. Thus U contains the orthonormal eigenvectors of
K̃ and Λ contains the corresponding eigenvalues. We can store K̃ in O(Nm)
storage because of its low-rank structure. The computational cost of computing
the eigenvalues and -vectors is dominated by computing the QR-decomposition
that needs O(Nm2) operations and the two eigen-decomposition operations that
need O(m3) operations with standard linear algebra routines. Since we know all
the eigenvalues and vectors, we can set k = m. We now show that this has no
negative effects on the runtime of SGD updates.

We note that predictions are computed as K̃α = UΛUT α, hence we never
need to know α ∈ R

N explicitly, but it suffices to provide ΛUT α ∈ R
m. Thus
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Algorithm 1. Nyström-SGD( Data-Set (xi, yi)i=1,...,N , kernel k, and hyperpa-
rameters as described above)

Sample landmark points L and materialize KNL

Decompose V ΣV T := KLL.
Decompose QR := KNLV Σ−1

Decompose ŨΛŨT := RΣRT

Multiply U := QŨ .
Set Λ̃ according to (19).
Initialize w = 0 ∈ R

m.
for i = 1, ..., t do

ŷ = UB·w for random minibatch B.
w = w − η

|B|
∑

i∈B

l′(ŷi, yi) · (Λ − Λ̃Λ2)UT
i·

return w

we can express the stochastic gradient updates not in α, but in ΛUT α. This
dramatically accelerates the stochastic gradient update, which simplifies to

ΛUT αt+1 = ΛUT αt − η

|B|
∑

i∈B

l′iΛUT (ei − DK̃Ni)

= ΛUT αt − η

|B|
∑

i∈B

l′iΛUT (ei − UΛ̃UT UΛUT
i )

= ΛUT αt − η

|B|
∑

i∈B

l′i(Λ − Λ̃Λ2)UT
i· (25)

The update reduces to computing the product of a diagonal matrix with selected
rows of U which costs O(|B|m) operations. The update rule without condition-
ing can be derived analogously. The full learning algorithm is depicted in Algo-
rithm 1.

To obtain predictions for previously unseen data x, we extend the Nyström
approximation kernel matrix by one row and compute ŷ(x) = KL(x)K−1

LLKT
NLα

where KL(x) = k(xi, x)|i∈L. We can express this in terms of ΛUT α as

ŷ(x) = KL(x)(V RT ŨΛ−1)(ΛUT α) (26)

where V RT ŨΛ−1 ∈ R
m×m is a constant matrix that we compute only once and

ΛUT α is the output of the learner.

6 Experiments

In this section we empirically investigate the advantages of using condition-
ing and a Nyström kernel approximation for training kernel classifiers. We first
present the setup of our experiments. Then we investigate convergence behavior
of conditioned SGD with general loss functions. We present results on classifi-
cation performance of our method and finally evaluate the runtime benefits of
Nyström-SGD.
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6.1 Design Choices

We first describe the basic setup of our experiment, including the datasets and
kernels used.

Datasets. We conduct our experiments mostly on standard datasets used
in many machine learning publications. We use standard datasets MNIST,
CIFAR10, IMDB and SUSY. The FACT dataset [1] contains 16 high-level fea-
tures derived from simulated sensor measurements of a telescope recording cos-
mic rays in two classes, gamma and proton. Important properties of the datasets
are summarized in Table 1.

We apply standard pre-processing to all datasets: We reduce color-channels
to a single greyscale value and normalize these to a [0, 1] range. Text data is
tokenized and transformed into a bag-of-words representation with relative word
frequencies. The most-frequent 30 words are omitted, the following 10k most-
frequent words are used as features.

Table 1. Datasets used in our evaluations

Dataset Type N dim |Y| Val.-N

MNIST Image 60K 784 10 10K

CIFAR10 Image 50K 1024 10 10K

IMDB BoW 25K 10,000 2 25K

SUSY Physics 4M 18 2 1M

FACT Physics 1.10M 16 2 369K

Kernels. The most-important user-choice for running the proposed learning
algorithm is the choice of a suitable kernel function. For our evaluations, we rely
on the following three kernel functions:

– RBF-Kernel: Probably the most-frequently used kernel for classification
tasks is the radial basis function kernel defined as k(x, x′) = exp(−γ 1

2 ||x −
x′||22) where γ > 0 is a hyperparameter. We use γ = 1

d where d is the dimension
of x in all our experiments.

– Inverted-Polynomial-Kernel: k(x, x′) = (2−〈x̄, x̄′〉)−1 where x̄ = ||x||−1
2 ·x

denotes the normalized input vector [22].
– Arc-Cosine-Kernel: The arc-cosine kernel assesses what fraction of half-

spaces both x and x′ lie in. k(x, x′) = 1
π ||x|| · ||x′|| · (sin θ + (π − θ) cos θ)

where θ = arccos 〈x,x′〉
||x||·||x′|| [5].

The latter two kernels have connections to deep networks. These have been used
for theoretical analyses of neural network learning: The arc-cosine kernel induces
feature maps that correspond to neural networks with infinitely-many ReLu-
nodes [5]; the inverted-polynomial kernel induces a class of predictor functions
that is a superset of fully-connected networks with bounded weights [22].
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Loss Functions. We experiment with different classification losses:

– Mean-Squared Error. Plugging in the mean-squared error loss l(ŷ, y) =
1
2 (ŷ − y)2, our proposed algorithm is highly related to the approach proposed
by Ma and Belkin [13], as discussed above. We believe that the Mean-Squared-
Error is not ideal for classification problems as it unnecessarily punishes out-
puts that lead to correct classifications when ŷy > 1.

– Hinge-Loss. The loss function used in support vector machines is defined
as l(ŷ, y) = max(0, 1 − ŷy) with y ∈ {−1, 1}. The hinge-loss does not have a
Lipschitz-continuous subgradient, but the smoothed-hinge loss or Huber-loss
can be used if a Lipschitz-smooth loss function is desired.

– Squared Hinge-Loss l(ŷ, y) = max(0, 1 − ŷy)2. It consistently outperforms
other loss functions in the evaluations by Janocha and Czarnecki [9]. It has
a Lipschitz-smooth gradient and large gradient when classification is far off.

Hyperparameters. Arguably the most important hyperparameter is the step-
size. Following the arguments of Ma and Belkin [13], we set η = 1

λ1
when no

conditioner is used. For RMSE and Squared-Hinge, λ1 is an upper bound of the
Lipschitz constant of the gradient, using the inverse of the Lipschitz constant is
a popular selection for the stepsize for convex optimization. When conditioning
is used, we set η = 1

λ1

√
λ1
λk

to account for the conditioning operator. We briefly
experimented with using larger stepsizes, however for some combinations of ker-
nel and dataset this leads to divergence. For instance, a multiplicative increase of
factor 2 leads to divergence on MNIST with squared hinge loss and RMSE. We
defer the analysis of other stepsize policies than constant steps to future work.

In most of our experiments, we use m = 10, 000 as the sample size to estimate
the eigenvalues or approximate the kernel matrix. For the SUSY dataset we settle
for m = 5000 due to main memory constraints. This does not negatively impact
classification performance. We use a batch size of 64 in all our experiments. When
we use Nyström sampling, we set k = m, otherwise we set k = 160 following the
results of Ma and Belkin.

6.2 Convergence Results

In this section we compare the optimization progress with conditioning to the
standard SGD updates. We show that the conditioned SGD updates substan-
tially accelerate convergence to low-loss solutions. Ma and Belkin demonstrated
the effectiveness of conditioning for RMSE loss, we hypothesize that these results
carry over to other convex losses.

To this end we run SGD and the conditioned SGD algorithm from Sect. 4.2
with all combinations of kernel, loss and the smaller three datasets. We run
the optimization for 10 training epochs. As we can see in Table 2, conditioning
consistently yields better loss values than unconditioned SGD.

Next we want to test our hypothesis, that there are loss functions better
suited for training classifiers than RMSE. Following the results of Janocha and
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Table 2. Loss after 10 epochs of training for different datasets and kernel functions.
Runs using conditioning (columns marked ‘yes’) consistently reach lower losses than
vanilla SGD (‘no’).

Cond. RMSE Hinge Hinge
2

no yes no yes no yes

MNIST rbf 2.97 1.46 2.06 0.64 2.97 0.79

arc 0.72 0.25 0.40 0.06 0.44 0.05

inv 0.67 0.11 0.39 0.01 0.41 0.01

CIFAR rbf 3.60 3.36 2.28 2.13 3.60 3.35

arc 3.28 2.69 2.11 1.89 3.24 2.45

inv 3.21 2.23 2.08 1.67 3.15 1.95

IMDB rbf 2.02 1.78 2.00 1.85 2.02 1.79

arc 1.71 0.72 1.63 0.47 1.55 0.50

inv 1.55 0.63 1.63 0.46 1.55 0.49

Czarnecki [9], we expect to obtain faster convergence to classifiers with small
empirical risk with squared hinge loss than with RMSE. For each dataset and
kernel, we compare the training accuracies achieved with each loss function after
10 epochs and use the lowest accuracy as reference. Now we check after how many
epochs the training accuracy exceeded this worst accuracy. Figure 1 shows the
results for the arccosine kernel; we see that the squared hinge loss reaches the
reference accuracy using only 6–7 of the 10 epochs. This suggests that using
general convex loss functions is beneficial. Squared hinge loss causes large gra-
dients for far-off predictions and zero gradient for correct predictions, thereby
combining benefits of RMSE loss and hinge loss.

Fig. 1. Number of epochs needed to reach accuracy of slowest learner (lower is better)

6.3 Classification Performances

In this section we evaluate the classification performance achieved by running
Nyström-SGD on the datasets. All our experiments do not use explicit regulariza-
tion. However when using SGD-like methods where the initial solution is zero, we
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can regularize by limiting the number of training iterations. This early-stopping
regularization is effective, as the norm of the solution grows with each gradient
update, thus early solutions have lower norms. We report the best validation
error, of the best choice of kernel and loss function. Nyström-SGD is compared
to conditioned SGD with the full kernel matrix as well as Eigen-Pro, the app-
roach by Ma and Belkin [13], that uses RMSE loss and the full kernel matrix.
For the larger datasets, due to memory constraints we only run Nyström-SGD
ourselves and rely on published results for comparison.

Table 3. Classification performance of different configurations. We tried different ker-
nels (arc: arccosine, inv: inverted polynomial) and loss functions (rmse: root mean-
squared error, hinge: Hinge loss, hinge2: squared hinge loss) and report the number
of epochs used for training (ep).

Nyström SGD Conditioned SGD Eigen Pro

Acc. Config Acc. Config Acc. Config

FACT 86.77 arc, hinge 10ep - - - -

SUSY 79.84 arc, hinge
2 5ep - - 80.20 [13]

MNIST 98.77 inv, hinge
2 7ep 98.68 inv, hinge

2 7ep 98.51 inv, rmse 7ep

CIFAR 46.08 inv, hinge
2 8ep 48.19 inv, hinge

2 70ep 48.17 inv, rmse 72ep

IMDB 88,08 arc, hinge
2 3ep 88.52 inv, hinge

2 16ep 88.29 inv, rmse 8ep

We depict our results in Table 3. On the Fact dataset we achieve 86.7% accu-
racy, which compares to the published 87.1% ROC AUC achieved with random
forests [14]. The performance on CIFAR is far worse than state-of-the-art results
achieved with convolution networks. We believe that choosing a kernel designed
for image tasks will improve this performance.

Over most datasets we see that using the Nyström approximation decreases
accuracy by a small margin. We attribute this to the approximation error
induced. The notable exception is the MNIST dataset, where Nyström-SGD
achieves the best accuracy. We hypothesize that the approximation works as a
form of regularization that prevents overfitting.

6.4 Runtime Analysis

In this section, we analyze the trade-off between the initialization phase of the
algorithm and the actual training, i.e. the SGD iterations.

Obviously computing the Nyström approximation of the kernel matrix and
its eigenvalues and vectors are costly operations. We need to verify that it is
worthwhile to do so. In Table 4 we report the runtime of the two phases in
seconds for the different datasets. We use arccosine kernel and squared hinge
loss, but these choices have very little impact on runtime. We use a machine with
two Intel Xeon E5-2697v2 CPUs with 12 cores each and ∼300 GB of memory.
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Table 4. Runtime for different combinations of components: Using Conditioning (C)
and using Nyström sampling (N). Using Nyström sampling dramatically reduces the
cost of training epochs. Computing the exact conditioner for a Nyström approximation
is the most expensive initialization.

C N Phase FACT SUSY MNIST CIFAR IMDB

Y N Setup - - 130 s 113 s 255 s

Epoch - - 448 s 420 s 835 s

N Y Setup 823 s 984 s 172 s 198 s 445 s

Epoch 114 s 390 s 12 s 11 s 3 s

Y Y Setup 3400 s 4941 s 442 s 485 s 648 s

Epoch 114 s 390 s 12 s 11 s 3 s

First of all we note that the SGD epochs are significantly accelerated by
using the Nyström approximation. The factor depends on the runtime of com-
puting the kernel function and is higher when the dimension of d is higher.
This speedup comes at the cost of computing the approximation once. This
takes only unsubstantially longer than computing the approximate conditioner
for the exact kernel matrix. We see that computing the exact conditioner for the
Nyström operation is the most expensive initialization step. Depending on the
dataset, it is as expensive as only computing the Nyström approximation and
running between 20 and >60 epochs of SGD.

Table 5. Progress of the optimization compared between Nyström-SGD with and
without conditioning. After 200 epochs of SGD training without conditioning (Vanilla),
the accuracy of Nyström-SGD still is not matched.

Conditioning 20 Epochs Vanilla 20 Epochs Vanilla 200 Epochs

Train Test Train Test Train Test

FACT 86.77 86.84 84.28 84.3 84.99 85.10

SUSY 80.04 80.27 80.05 80.12 80.18 80.18

MNIST 100.00 98.47 96.26 95.91 98.78 97.98

CIFAR 73.80 46.05 35.52 33.16 44.53 38.06

IMDB 97.88 85.67 79.47 80.24 87.58 86.26

Thus for learning with Nyström approximation, we check if models trained
only few epochs with conditioning outperform models trained more iterations
without conditioning. As we can see in Table 5 this is generally the case. To
achieve the same accuracy on the training data as the learner with conditioning
after 20 epochs, the learner without conditioning requires more than 200 epochs
of training. Thus in total, the cost of learning a high-accuracy prediction model
with Nyström and conditioning is lower than without conditioning or without
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Nyström. All but one classifiers trained with conditioning have better validation
accuracy after 20 epochs than vanilla SGD after 200 epoches. The IMDB dataset
is an exception: As we can see in Fig. 2, with conditioning we reach the solution
with best validation accuracy in the second epoch and from there on start to
overfit. The vanilla learner does not reach the overfitting stage in 200 epochs.

Fig. 2. Convergence behavior for training (x) and testing (squares) on IMDB data. In
200 epochs, vanilla SGD does not reach training accuracy of Nyström-SGD after 20
epochs. Nyström-SGD reaches solution with best validation accuracy after 1 epoch and
subsequently begins to overfit. Vanilla SGD is still learning after 200 epochs and does
not overfit yet.

Overall, these results are in line with the result of Ma and Belkin [13], that
vanilla SGD can only reach a fraction of the function space in polynomial time.

7 Conclusion and Outlook

Building on results of Ma and Belkin [13], we have derived a conditioned stochas-
tic gradient descent algorithm for learning kernel classifiers that minimize arbi-
trary convex loss functions. Then we have presented Nyström-SGD, a learning
algorithm that combines conditioned SGD with Nyström approximation. This
way we reduce the number of kernel evaluations needed to train a model; over-
all we need only m · N kernel evaluations. We compute a useful conditioner for
optimizing models using the approximated kernel matrix by efficiently comput-
ing its exact eigen-decomposition. Exploiting the structure of conditioner and
kernel approximation has allowed us to speed-up the stochastic gradient updates
significantly.

In our experiments we have shown the benefits of conditioning and the advan-
tages of choosing a suitable loss function for fast convergence to a high-accuracy
classifier. Nyström-SGD has a computationally expensive setup phase that com-
putes the approximation and conditioner in O(m2N + m3) and fast iterations
with cost per epoch of O(Nm). Our experiments suggest that this expensive
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setup is worthwhile, as we rapidly converge to a high-accuracy solutions on a
number of benchmark datasets.

In the future, we want to derive generalization bounds that quantify the
influence of the sample size m similar to the ones presented by Rudi et al. [17].
Furthermore we want to investigate using approximate conditioning operators for
the Nyström kernel approximation that are cheaper to compute by avoiding the
computation of the full QR decomposition and the second eigen-decomposition.

Currently the sample for the Nyström approximation is drawn uniformly at
random. More advanced sampling schemes have been proposed. These allow to
draw smaller samples while maintaining the same level of accuracy. Incorporating
these into our algorithm is certainly beneficial.
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