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Abstract. While the predictive advantage of ensemble methods is nowa-
days widely accepted, the most appropriate way of estimating the weights
of each individual model remains an open research question. Meanwhile,
several studies report that combining different ensemble approaches leads
to improvements in performance, due to a better trade-off between the
diversity and the error of the individual models in the ensemble. We
contribute to this research line by proposing an aggregation framework
for a set of independently created forecasting models, i.e. heteroge-
neous ensembles. The general idea is to, instead of directly aggregat-
ing these models, first rearrange them into different subsets, creating
a new set of combined models which is then aggregated into a final
decision. We present this idea as constructive aggregation, and apply
it to time series forecasting problems. Results from empirical experi-
ments show that applying constructive aggregation to state of the art
dynamic aggregation methods provides a consistent advantage. Con-
structive aggregation is publicly available in a software package. Data
related to this paper are available at: https://github.com/vcerqueira/
timeseriesdata. Code related to this paper is available at: https://github.
com/vcerqueira/tsensembler.
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1 Introduction

Supervised learning consists of searching for a model that represents an accu-
rate hypothesis about some unknown function f we want to approximate. In
particular, one way ensemble learning methods approach this problem is by con-
structing a set of M models H = {h1, . . . , hM}, and aggregating them in some
way to create a final decision ĥ:

ĥ =
M∑

i=1

wihi (1)
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where wi denotes the weight of model hi, ∀ i ∈ {1, . . . , M}. The predictive
advantage of combining different models over using a single one is nowadays
widely accepted [3,20]. However, estimating the weighting factors for each model
in an ensemble remains an open research question.

Previous work by Webb et al. [29,30] shows that combining ensemble learn-
ing techniques may improve predictive performance through a better trade-
off between diversity and individual error of the ensemble members. These
approaches typically combine different ensemble methods during the learning
process. We hypothesise that similar effects can be obtained from a portfolio
of heterogeneous models [5]. This is the main motivation for this work. This
approach can be advantageous because models in a portfolio are typically inde-
pendent and thus easily parallelised.

In this paper we propose an aggregation framework for a set of diverse and
independently created models H, following the basic principles of constructive
induction [31]. Constructive induction refers to procedures that modify a set of
original attributes, where some of the attributes are removed, others are added,
and some of the existing ones are aggregated [31]. This leads to a new set of
attributes which hopefully provides an overall better description for approxi-
mating f relative to the original set. We follow a similar approach, but in our
work the attributes refer to predictive models. To the best of our knowledge,
there is no closely related approach for aggregating predictive models.

The aggregation framework proposed in this paper works by rearranging a
set of diverse models H into different, overlapping subsets (denoted as CH). The
elements in each of these subsets are then aggregated, leading to a new set of
models H ′ (or sub-ensembles [30]) for approximating f . Similarly to constructive
induction approaches, the search for CH is done by analysing the individual
predictive performance of the original models H in observations not used in the
learning process (e.g. a validation set). Essentially, the new models h′ ∈ H ′

correspond to aggregated subsets of consistently top performing models h. We
refer to this as constructive aggregation (CA). Our working hypothesis is
that, similarly to approaches for combining different ensemble methods [30], CA
leads to a decrease in the individual error of ensemble members, without overly
decreasing the diversity among them.

To illustrate our idea, the workflow of CA is presented in Fig. 1 with
H = {h1, h2, h3}. After analysing the performance of each model in unseen obser-
vations, the set of committees CH = {{h1}, {h1, h2}, {h2, h3}} is created; then
the models hi within each committee are aggregated into models H ′. Finally,
the new set of combined models H ′ is aggregated into a final approximation ĥ′.
Both of these aggregations are done according to a linear combination (Eq. 1).
The construction of the committee set CH is carried out by applying the concept
of out-performance contiguity (OC) which is also formalised in this paper.

We apply CA to tackle time series forecasting tasks, where the goal is to
predict future numeric values of time series. In experiments on 30 time series
from several domains, aggregating a number of forecasting models using CA
provides a consistent advantage in terms of predictive performance. That is,
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Fig. 1. Workflow of constructive aggregation: the set of available models H is rear-
ranged into different subsets CH . Each subset is aggregated into H ′, and become
hypotheses for approximating f . The models in H ′ are aggregated into the final
decision ĥ′.

applying state of the art aggregation methods to H ′ leads to a better predictive
performance relative to applying them to H. Moreover, we provide results that
demonstrate that the constructive aggregation process entails a small execution
time overhead. In summary, the contributions of this work are the following:

– Constructive Aggregation (CA), a new concept which consists in rearranging
a portfolio of heterogeneous models H into different subsets CH , aggregating
them, and using them as hypotheses H ′;

– Out-performance Contiguity (OC), an approach for building CH in time-
dependent forecasting problems;

– An extensive set of experiments including: paired comparisons that quan-
tify the percentual difference in error between using CA and aggregating H
directly (non-CA); execution time analysis of CA using OC; a sensitivity anal-
ysis of the main parameters behind the approach; and a study of CA in terms
of bias-variance-covariance trade-off.

In the next section we overview the related work to this paper. In Sect. 3
we present CA, and formalise its application to forecasting problems via OC.
In Sect. 4 we provide an extensive set of experiments to validate the proposal.
Afterwards, in Sect. 5 we discuss the results and limitations of our work, outlin-
ing future directions. Finally, we summarise the paper in Sect. 6. The proposed
method is publicly available as an R software package1.

2 Related Work

In this section we briefly review the related work to this paper. We describe
ensemble approaches for forecasting, focusing on dynamic aggregation of several
experts designed for these problems. We then outline important approaches for
combining different ensemble learning methods, which motivated this work.
1 tsensembler: on CRAN or at https://github.com/vcerqueira/tsensembler.

https://github.com/vcerqueira/tsensembler
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2.1 Ensembles for Forecasting

An assumption of our work is that no forecasting model is universally applicable.
Aiolfi and Timmermann [1] demonstrated this in empirical experiments, showing
that different forecasters presented a varying relative performance over time.
These findings can be regarded as a manifestation of the No Free Lunch theorem
by Wolpert [33] (no learning algorithm is best suited for all tasks).

A successful approach to cope with this issue is to combine the opinion of
a number of models, i.e. ensemble methods. While the simple average has been
shown to be a robust combination method [28] (Simple), ensemble approaches
for time series forecasting are typically dynamic: the weight of each model in
the ensemble changes over time. This dynamic component is usually designed to
cope with concept drift [13].

2.2 Dynamic Combination of Forecasting Experts

Windowing. One of the most common and successful approaches to com-
bine predictive models in time dependent data is to weight them according to
their recent performance [24,27] (WindowLoss). Essentially, these approaches
are based on the assumption that the immediate future is likely to resemble the
recent past.

Regret Minimisation. In the seminal work on online learning by Cesa-Bianchi
and Lugosi [8], the authors describe several approaches for dynamically aggregat-
ing the opinion of a set of experts. These are typically designed for regret minimi-
sation, having interesting theoretical properties. Essentially, regret is the average
error suffered with respect to the best we could have obtained. In this paper we
focus on the following three approaches: the exponentially weighted average [8,
Sect. 2.1] (EWA), the polynomially weighted average [8, Sect. 2.1] (MLpol), and
the fixed share aggregation [8, Sect. 5.2] (FixedShare). We will consider the
application of these approaches using the gradient trick [8, Sect. 2.5]. We refer
to the work by Cesa-Bianchi and Lugosi [8] for a comprehensive read on these
approaches. Zinkevich [36] proposed an approach based on online convex pro-
gramming and gradient descent that also minimises regret (OGD).

Combining by Learning. Another approach for dynamically combining fore-
casting models is to apply multiple regression to their output, similarly to stacked
generalisation [32]. For example, Gaillard et al. [12] describe a setup in which
Ridge regression is used to aggregate experts by minimising the L2-regularised
least-squares (Ridge). Recently, Cerqueira et al. [7] proposed a metalearning
approach named ADE (arbitrated dynamic ensemble), in which the weights of
the experts are computed according to predictions of the loss that they will
incur.
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2.3 Combining Different Ensemble Approaches

Following the advantage shown by ensemble methods [19], further gains have
been reported by approaches that combine different ensemble learning meth-
ods. Webb [29] developed Multiboosting, which combines AdaBoost [10] with
Wagging [2]. In a posterior work [30], Webb and Zheng claim that Multiboosting
and other similar approaches provide a better trade-off between the error of the
individual members of the ensemble and the diversity among them. Yu et al. [35]
presented an approach for combining a number of ensembles, dubbed Cocktail
Ensemble, using the ambiguity decomposition. This kind of approaches have also
been shown to be successful in popular machine learning competitions [25].

In this paper we follow a similar motivation for aggregating a number of
forecasting models. Notwithstanding, the outlined approaches differ from our
work in an important way: these build the different sub-ensembles during the
learning process. Conversely, our approach settles on a portfolio of heterogeneous
models [5] where the sub-ensembles are formed after the learning process, using
a validation data set.

3 Methodology

This paper is focused on the problem of forecasting future values of uni-variate
time series. A time series Y is a temporal sequence of values Y = {y1, y2, . . . , yt},
where yi ∈ R, ∀ yi ∈ Y is the value of Y at time i.

As is standard in these problems, we construct a set of observations (the
training cases) which are based on the past K lags of the time series. Each
observation is composed of a feature vector xi ∈ X ⊂ R

K , which denotes the
previous K values, and a target value yi ∈ Y ⊂ R, which represents the value
we want to predict. The objective is to approximate an unknown function f :
X → Y, i.e. a function that maps the recently observed values of the series (as
represented by the lagged feature vector), to the future value of the series.

3.1 Constructive Aggregation

Our approach is based on heterogeneous ensembles [5]: a set of models created
in parallel and separately from each other. Diversity in the ensemble, a key
ingredient in these methods [3], is introduced by varying the learning algorithm
used to train each model h ∈ H.

We propose an aggregation approach for H based on constructive induc-
tion [31], and denote this idea as constructive aggregation (CA). CA works by
rearranging the models h ∈ H into different, possibly overlapping, subsets CH ,
and aggregating these into a new set of hypotheses H ′. Given that forecasting
models typically show a varying relative performance over time [1], our idea is
that there are different subsets of models that work well in different time inter-
vals. As such, aggregating these subsets into different combined opinions (H ′)
may lead to better representations for approximating f .
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Similarly to related approaches in the literature (c.f. Sect. 2.3) this app-
roach may result in a better trade-off between diversity and the individual
error of the ensemble members. Particularly, we hypothesise that aggregating
H ′ decreases the individual error without overly decreasing diversity (relative to
aggregating H).

CA can be split in three main steps (c.f. Fig. 1): (i) how to build CH from H;
(ii) how to aggregate the elements of CH into a new set of hypotheses H ′; and
(iii) how to aggregate H ′ into a final decision ĥ′. In the next subsections we will
address each of these steps in turn.

Algorithm 1. Out-performance contiguity for CH

input : set of hypotheses H; validation set D;
smoothing window λ; contiguity window α

1 foreach hypothesis hi in H do
2 foreach observation (xj,yj) in D do
3 eij ← |ŷi

j − yj | // absolute error of hi in observation j

4 e′i
j ← moving average(eij , λ)

5 foreach observation (xj,yj) in D do
6 rj ← rank(e′

j) // rank of each hypothesis in observation j
7 CH ← {} // list of committees

8 foreach size T from 1 to (|H|-1) do
9 TOPT ← top T ranked hypothesis across D

10 foreach τ in TOPT do
11 if τ is top ranked for at least α consecutive points then
12 CH ← CH ∪ τ

13 return CH

3.2 CA for Forecasting via Out-Performance Contiguity

We propose out-performance contiguity (OC) for building CH from H. This
approach is geared towards time series where observations are time-dependent.

Let D denote a set of validation observations. OC works by analysing the
predictive performance of each model h ∈ H in D. More precisely, this procedure
can be summarised as follows: a subset with size T of available models H is
aggregated and used as an hypothesis for approximating f , if its elements are
the top T performers (relative to H) for α contiguous observations. From the
example in Fig. 1, the subset {h1, h2} is aggregated into an hypothesis h′ ∈ H ′

because h1 and h2 outperform h3 during a contiguous time interval of size α.
This idea is formalised in Algorithm 1. Initially (lines 1–4), for each model

we compute its absolute error in observations of validation data (D). To control
for outliers, the loss is smoothed using a moving average of window size λ.
Afterwards (lines 5–6), we compute the rank of each model h ∈ H across D,
using the smoothed error. Then (line 8), for each possible size T of the subsets
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of H (except the size of the full set H), i.e. from 1 to |H|-1, we do as follows. All
top ranked T models across D are retrieved (line 9). If the models composing this
top is unchanged for α observations, the respective subset becomes an element
of CH (lines 10–12). In the extreme case in which CH is empty, we revert to using
the original set of hypotheses H.

Effectively, OC searches for groups of models that perform well in consecu-
tive unseen observations to form CH . The goal of this search is to make a better
exploration of the regions of the input space where these groups consistently
perform better relative to other models in the available pool. Moreover, these
groups may be relevant in the future due to the potential variance in relative per-
formance shown by forecasters [1], or by other recurring concepts that typically
characterise time series [13].

3.3 Aggregation Steps

CH into H ′. The preceding subsection presents an approach for retrieving the
set of subsets CH from H. Most of the elements in CH are potentially comprised
by several models h ∈ H. As such, they need to be aggregated, in order to form
a single combined opinion h′ ∈ H ′.

In this work we accomplish this by using a windowing approach. Essentially,
the elements h ∈ H in each subset from CH are aggregated according to their
recent performance [24,27]. As mentioned in Sect. 2.2, the idea is that recent
observations are more similar to the one we intend to predict, and thus they
are considered more relevant. More formally, the weight of each model hi in a
committee c ∈ CH is given by its relative loss in the last λ observations:

wi =
scale(−L

i

λ)
∑

i∈c scale(−L
i

λ)
(2)

where L
i

λ denotes the average loss of model i in the last known λ observations,
and scale represents the min–max scaling function.

H ′ into ĥ′. The objective of the CA process, from H to H ′, is to create a
new representation that presents a better approximation to f . Therefore, our
working idea is that applying state of the art aggregation methods to this new
set of hypothesis H ′ is better than applying them directly to H.

4 Experimental Evaluation

We carried out several experiments to validate CA via OC for forecasting with
dynamic ensembles. These address the following research questions:

Q1: How do state of the art approaches for dynamic combination of forecasters
perform when applied using CA relative to non-CA?

Q2: How do state of the art aggregation methods applied with CA perform
relative to state of the art methods for forecasting?
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Q3: What are the implications of CA in terms of bias, variance, and covariance?
Q4: How sensitive is CA via OC to different values of α and λ?
Q5: How does CA scale in terms of execution time relative to non-CA?
Q6: Is CA simply pruning or avoiding poor models?

To address these questions we used 30 real-world time series from five different
domains, briefly described in Table 1. The size of each time series was truncated
to 3000 instances in order to speed up execution time.

Table 1. Datasets and respective summary

ID Time series Data source Data characteristics Size K |CH |
1 Rotunda AEP Porto Water

Consumption from

different locations in the

city of Porto [7]

Half-hourly values from

Nov. 11, 2015 to Jan. 11,

2016

3000 16 41

2 Preciosa Mar 3000 8 32

3 Amial 3000 9 32

4 Global Horizontal Radiation Solar Radiation

Monitoring [7]

Hourly values from Apr.

25, 2016 to Aug. 25, 2016

3000 13 44

5 Direct Normal Radiation 3000 12 55

6 Diffuse Horizontal Radiation 3000 12 33

7 Average Wind Speed 3000 6 39

8 CO.GT Air quality indicators in

an Italian city [21]

Hourly values from Mar.

10, 2004 to Apr. 04 2005

3000 15 41

9 PT08.S1.CO 3000 6 39

10 C6H6.GT 3000 6 34

11 NMHC.GT 3000 10 33

12 PT08.S2.NMHC 3000 6 34

13 PT08.S4.NO2 3000 7 37

14 PT08.S5.O3 3000 6 32

15 NOx.GT 3000 10 35

16 NO2.GT 3000 15 36

17 PT08.S3.NOx 3000 6 32

18 Temperature 3000 8 25

19 RH 3000 6 34

20 Humidity 3000 7 41

21 Electricity Total Load Hospital Energy Loads [7] Hourly values from Jan.

1, 2016 to Mar. 25, 2016

3000 14 44

22 Equipment Load 3000 10 35

23 Gas Energy 3000 7 29

24 Gas Heat Energy 3000 8 26

25 Water heater Energy 3000 10 18

26 Foreign exchange rates Data market [14] Daily, from Dec. 31, 1979

to Dec. 31, 1998

3000 12 25

27 Rainfall in Melbourne Daily, from from 1981 to

1990

3000 27 33

28 Mean flow Saugeen river Daily, from from 1981 to

1990

3000 7 50

29 No. of Births in Quebec Daily, from Jan. 1, 1977

to Dec. 31, 1990

3000 6 21

30 Mean Wave Height Hourly, from Nov. 9, 2004

to Sep. 9, 2005

3000 17 39
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4.1 Experimental Setup

The methods are evaluated using the root mean squared error (RMSE) on a
repeated holdout procedure with 20 testing periods. For each repetition, a ran-
dom point in time is chosen from the full time window available for each series,
and the previous window consisting of 60% of the data set size is used for train-
ing the ensemble while the following window of size 10% is used for testing. This
approach was evidenced to provide robust estimates relative to other estimation
procedures [6]. The validation set D described in Algorithm 1 consists of the
final 30% observations of the training set. Specifically, each model h ∈ H is ini-
tially trained in 70% of the training set, and CH is built using the following 30%
observations. Then, all models are retrained using the complete training set.

We estimate the size K of the feature vectors x ∈ X using the false nearest
neighbours approach [17]. The estimated value for each series is shown in Table 1.
The parameters of OC, α and λ, are set to 30 and 100, respectively. This means
that the elements of each subset in CH show a better rank than the elements
of other subsets of the same size for a contiguous window of 30 points. Each
point denotes the average loss of each model in the last 100 observations. The
number (averaged across the 20 testing periods) of subsets comprising CH is also
described in Table 1 (|CH |).

4.2 Set of Hypotheses H and Aggregation Approaches

The set of models H forming the ensemble are built using the following 15 learn-
ing algorithms: support vector regression with Gaussian, Laplace, and linear ker-
nels (SVR g, SVR lp, SVR l, respectively) [16]; Gaussian processes with Gaussian,
Laplace, and linear kernels (GP g, GP lp, GP l, respectively) [16]; LASSO regres-
sion [11], Ridge regression [11]; random forest (RF) [34]; multivariate adaptive
regression splines (MARS) [23]; principal components regression (PCR) [22]; partial
least squares (PLS) [22]; rule-based regression (RBR) [18]; and projection pursuit
regression with SuperSmoother and splines smoothing methods (PPR SS, and
PPR Spl, respectively) [26]. As a preliminary analysis, in Fig. 2 we show the dis-
tribution of the rank of each model across the 30 problems. A rank of 1 means
that the respective model was the best performing one in a given dataset.

Fig. 2. Boxplot of the rank for each hypothesis in H across the 30 problems
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These models are aggregated using the following approaches (c.f. Sect. 2.2 for
an overview):

– WindowLoss: Weights computed according to the performance of the models
in the last λ observations;

– Simple: Models are averaged using the arithmetic mean;
– FixedShare: The fixed share approach;
– Ridge: An approach that uses Ridge regression to aggregate models;
– ADE: A method for the arbitrage of forecasting models;
– OGD: An approach based on online gradient descent;
– MLpol: The polinomially weighted average forecast combination;
– EWA: Aggregation approach based on an exponentially weighted average.

When the methods are employed using CA, their name is denoted using the
prefix “CA” (e.g. CA.Simple). We include the following baselines: LossTrain,
in which the original hypotheses H are aggregated according to their RMSE in
the training data; CA.SimpleWorst, a variant of CA.Simple in which CH is built
using the consistently worst performers, as opposed to using the best performers
– this is accomplished by searching for the bottom ranked hypotheses (see line 9 in
Algorithm 1); and CA.SimpleRandom, another variant of CA.Simple in which CH

is built randomly – the number of subsets and respective sizes are set according
to OC, but these are filled with random models from the available pool. As a
forecasting baseline, we include ARIMA [15], an online state of the art approach
for time series forecasting.

4.3 Results

On Predictive Performance. Our first experiment is used to study the impact
of CA on state of the art forecast combination approaches. In other words, we
want to understand if, given an aggregation method, it is better to apply it to
the set of hypotheses H ′ built using CA via OC, or directly to the set of original
hypotheses H (non-CA).

Figure 3 addresses this question (Q1). The boxplots represent the log per-
centual difference in RMSE between CA and non-CA, for the different aggre-
gation methods and across the 30 time series. Negative values denote better
performance when the methods are applied using CA. These results show that,
for almost all aggregation methods CA leads to a better predictive performance
in the majority of problems. The exception is MLpol, which is relatively robust
to CA.

These results are corroborated by the critical difference diagram in Fig. 4 [9].
In this, almost all state of the art aggregation methods show a better average
rank when applied using CA via OC (again, the exception is MLpol). CA.ADE
shows the best average rank of all methods. Almost all methods significantly
outperform ARIMA, which shows that these are able predict future values of time
series better than a state of the art approach (Q2).
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Fig. 3. Log percentual difference in RMSE between CA and non-CA for each aggrega-
tion method. Negative values denote a decrease in RMSE (better performance) when
using CA.

Fig. 4. Critical difference diagram for the post-hoc Nemenyi test [9]

Error Decomposition. From a regression perspective, and according to Brown
et al. [4] we decomposed the squared error into bias, variance, and covariance
terms as follows: bias

2
+var 1

M +(1+ 1
M )covar+σ2, where bias

2
, var, and covar

represent the average bias, variance and covariance of the ensemble members,
respectively. σ2 is a constant irreducible term representing the variance of the
noise. While a single estimator can be analysed using a bias-variance trade-off,
the quadratic error generalisation of a regression ensemble depends on the bias,
variance, and covariance of the individual models. The covariance term quantifies
the diversity of the ensemble. Increasing values of average covariance denote less
diversity. We refer to the work by Brown et al. [4] for a comprehensive read.

To analyse the impact of CA in this decomposition, we measured the per-
centual difference in each component relative to non-CA, across the 30 problems.
Although the decomposition is valid for non-uniformly weighted ensembles [4],
in the interest of brevity we focus on the simple average aggregation, i.e. differ-
ence between CA.Simple and Simple. This study is reported in Fig. 5. Negative
values represent a percentual decrease in the respective term when applying CA.
In the left part of the figure we present the decomposition following the proposed
approach. For comparison, in the right side we present the same decomposition
using the baseline CA.SimpleWorst.

According to the figure, CA.Simple shows an average decrease in the bias
term relative to Simple. This outcome is reasonable since CA focus on searching
consistently top performing subsets of models, i.e. regions where some multiple
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Fig. 5. Log percentual difference in bias
2
, var, covar, and RMSE between CA.Simple

and Simple (left), and between CA.SimpleWorst and Simple (right)

individual models consistently show better rank than other equal-sized groups of
models. There is also a considerable decrease in the average variance term. This
is expected since most of the models in H ′ are combinations of models from H,
which, when averaged, decrease variance. Oppositely, this leads to an average
increase in the covariance term. This is also expected because each model from
H can be part of multiple subsets that form the set of hypotheses H ′, leading
to an increase of the ensembles’ redundancy.

CA.SimpleWorst also leads to an average decrease in variance. Although
less noticeable relative to CA.Simple, it also leads to a decrease in diversity
(increase in covariance). The interesting part of this comparison is that for
CA.SimpleWorst the bias term increases considerably, leading to a worse per-
formance relative to Simple. This outcome suggests, as we hypothesised, that
CA.Simple improves the performance through an improvement in the average
bias of the members of the ensemble, even though it sacrifices some diversity to
this effect (Q3).

Parameter Sensitivity and Execution Time. To address question Q4 we
analysed the sensitivity of parameters α and λ (c.f. Algorithm 1). This analysis
is presented in Fig. 6a. This graphic shows an heatmap with the average rank
of each combination of (α, λ) across the 30 problems. For simplicity we focused
on the Simple aggregation method, and the set of values of each parameter
were chosen arbitrarily. Overall, when α and λ are not set with too low values
(from the searched grid) the average rank is relatively stable. In practice, the
most appropriate set of values strongly depend on the data and the portfolio of
models H.

Regarding question Q5, we studied the execution time of CA. Again, in the
interest of conciseness we focused on the Simple aggregation method. To carry
out this analysis we compute the time spent to train and aggregate the ensemble.
Then, we measure the time difference between CA and non-CA for each time
series. The results are reported in Fig. 6b, demonstrating that, on average, the
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Fig. 6. (a) Heatmap illustrating the average rank CA for varying α and λ parameters
with the Simple method. (b) distribution of difference in execution time (seconds)
when using Simple aggregation with and without CA.

Simple method using CA takes around 30 s more than when not using CA. This
overhead is caused by the creation of CH via OC. Notwithstanding, we note that
the difference in execution time also depends on the aggregation approach, i.e.
how it scales with the number of predictors.

On Pruning. As we already mentioned, CA via OC builds the set of committees
CH focusing on consistently top performers. In this context, it might be argued
that the improvements in performance are due to avoiding poor predictors, and
it could be reached by simply pruning them from the aggregation rule.

To test this hypothesis we compared CA.Simple with an approach that quan-
tifies the weight of each model according to the average rank in the last λ obser-
vations (denoted as AvgRank). We focus on the rank because it is the metric
we use to build CH . Moreover, we apply AvgRank with a decreasing number
of models, where the predictors are dynamically suspended (assigned weight 0)
according to the AvgRank. For example, when using 10 out of the available 15
models (AvgRank.10) and for a given time step we do as follows. We compute
the average rank of each of the 15 models in the last λ observations. Then, we
drop the worst 5 models, weighing the remaining ones (w.r.t. AvgRank).

Fig. 7. Log percentual difference in RMSE of AvgRank with a decreasing number of
predictors (denoted as sufix) relative to CA.Simple. Negative values denote lower RMSE
by CA.Simple.
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The results of this analysis are presented in Fig. 7. The suffix in the name of
each approach denotes the number of members in each ensemble. The boxplots
represent the log percentual difference in RMSE of each variant of AvgRank
relative to CA.Simple, across the 30 time series. Results show that CA.Simple
presents a better performance, which is increasing as AvgRank is applied with
a decreasing number of models. This outcome suggests that CA is not simply
pruning poor predictors (Q6) from the aggregation rule.

5 Discussion

5.1 On the Trade-Off Between Individual Error and Diversity

This paper follows evidence from previous work by Webb et al. [29,30], which
showed that combining different ensemble approaches leads to a better trade-off
between individual error of the ensemble members and diversity.

The original motivation of Webb with Multiboosting [29] was to increase
diversity while maintaining a reasonable individual error. Notwithstanding,
Webb and Zheng [30] later report different approaches where the inverse hap-
pens: cases where both diversity and individual error decrease, also leading to a
lower ensemble error. The results from our experiments follow the second case.
However interesting, these incite further investigation. Particularly, research into
the mechanisms behind the success of this improved trade-off.

5.2 Other Limitations and Future Work

We presented OC for retrieving the set of committees CH with a small execution
time overhead. Despite the results showing a systematic improvement in predic-
tive performance, our intuition is that this approach can be further improved.
For example, as presented (c.f. Algorithm 1), OC searches for subsets of H of
all sizes (except the full size of H), which can lead to an unnecessary redun-
dancy. This can be particularly important if the portfolio of models H is larger
than in our experimental design. We can potentially overcome this problem by
introducing a depth parameter, which controls how large the subsets should be.

Contrary to other approaches, CA combines different sub-ensembles after the
learning process, starting from a portfolio of heterogeneous models. This can be
advantageous in terms of flexibility: sub-ensembles can be updated, new models
can be added to the portfolio H, or obsolete ones removed.

This paper is focused on forecasting problems. In particular, the proposed
algorithm OC capitalises on the time dependency among observations. Notwith-
standing, our intuition is that the basic idea behind CA can be generalised to
i.i.d. domains, e.g. standard regression tasks. We will also investigate this issue
in future work.
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6 Summary

Constructive aggregation (CA) rearranges a set of independently created
hypotheses H into different subsets CH . This is achieved using out-performance
contiguity (OC), which searches for groups of models that outperform other
groups of same size contiguously during some time interval. These subsets are
then aggregated into different combined hypotheses H ′.

Applying state of the art aggregation approaches for forecasting to H ′ is
demonstrated to provide better performance relative to applying them to H, on
average. Moreover, this is accomplished with mild execution time overhead.

The results also suggest that the improvement in performance is mainly due
to a decrease in individual error of the members of the ensemble. Although
diversity also decreases, CA leads to a better trade-off between these two factors.
The proposed method is publicly available in a software package.

Acknowledgements. This work is financed by Project “Coral - Sustainable Ocean
Exploitation: Tools and Sensors/NORTE-01-0145-FEDER-000036”, which is financed
by the North Portugal Regional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement, and through the European Regional Devel-
opment Fund (ERDF).

References

1. Aiolfi, M., Timmermann, A.: Persistence in forecasting performance and condi-
tional combination strategies. J. Econ. 135(1), 31–53 (2006)

2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

3. Brown, G.: Ensemble learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of
Machine Learning, pp. 312–320. Springer, Boston (2010). https://doi.org/10.1007/
978-0-387-30164-8 252
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