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Abstract. Recent advances in deep learning lead to breakthroughs in
many machine learning tasks. Due to the data-dri ven nature of deep
learning, the training procedure often requires large amounts of manu-
ally annotated data, which is often unavailable. One-shot learning aims
to categorize the new classes unseen in the training set, given only one
example of each new class. Can we transfer knowledge learned by one-
shot learning from one domain to another? In this paper, we formu-
late the problem of domain adaption in one-shot image classification,
where the training data and test data come from similar but different
distributions. We propose a domain adaption framework based on adver-
sarial networks. This framework is generalized for situations where the
source and target domain have different labels. We use a policy network,
inspired by human learning behaviors, to effectively select samples from
the source domain in the training process. This sampling strategy can
further improve the domain adaption performance. We investigate our
approach in one-shot image classification tasks on different settings and
achieve better results than previous methods. Code related to this paper
is available at: https://github.com/NanqingD/DAOSL.
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1 Introduction

Convolutional Neural Networks (CNNs) have led significant progress in the
domain of computer vision such as image recognition [12], object detection [22]
and semantic segmentation [19]. When modern visual recognition systems can
benefit from large image datasets like ImageNet [6] and PASCAL VOC [8], deep
learning methods still face the obstacle of requiring large amounts of manually
annotated data. With the knowledge transfer, humans can tell the difference
between up to 30,000 object categories [4]. Especially, children can recognize
new objects quickly in their learning phase with proper guidance, even they only
see the examples for few times. These motivate the study of one-shot learning,
where one annotated example is available for each class to predict. One approach
is based on Bayesian statistics. Li et al. [18] proposed a complex framework with
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strong probabilistic hypothesis using generative object category model and vari-
ational Bayesian expectation maximization (VBEM). Another approach is meta-
learning [27]. Santoro et al. [23] attacked the problem by learning to memorize
unseen classes with a Memory Augmented Neural Network (MANN). Ravi and
Larochelle [21] utilized a Long Short-Term Memory network (LSTM) [13] as a
meta-learner to optimize the learner. There are two challenges in meta-learning
approach. The gradient-based optimization usually requires large amounts of
labeled data, and the random initiation can have unpredictable effects on the
learner. In this work, we focus on a simpler but more efficient approach, the
metric-based approach. The metric-based approach projects the raw images into
a learned feature space and classifies the image based on a certain distance
metric. Due to the simplicity and efficiency, the metric-based approach has been
applied in the industry for tasks like face recognition and person re-identification.

The metric-based methods can achieve state-of-the-art performance in one-
shot classification tasks, but the accuracy can be easily influenced when the test
data comes from a different distribution [24,29]. Domain adaption means learn-
ing a mapping from the source domain to the target domain with the presence
of a shift between two data distributions, so a predictor trained on the source
domain can be applied on the target domain [9,32]. In our case, a good one-
shot learning system can be applied to the target domain with classes unseen
in the source domain, just like a student with only basic knowledge in English
can differentiate Greek letters with just a glance. In previous domain adaption
methods, examples in the source domain are assumed to have equal importance
in the training process if there is no prior knowledge. Assume there is a learner
wants to learn animals of Canidae family from an incomplete encyclopedia which
only includes sections about Felidae and Insecta. Given only a few pictures about
Canidae, the learner may find that dogs and cats share more features than bugs.
After few trials, the learner should pay more attention to Felidae than Insecta,
even though the learner may not have a clear definition of Canidae.

In this paper, we formulate the domain adaption problem in one-shot learn-
ing. Fused by recent advances in one-shot learning and domain adaption, we
propose an adversarial framework for domain adaption in one-shot learning. We
train the one-shot classifier and auxiliary domain discriminator simultaneously.
Motivated by the behavior of human learners, we propose to use a policy gradient
method [25,26,30] to select the samples from the source domain in the training
phase, which is different from the traditional random sample selection, By incor-
porating the reinforced sample selection process in our adversarial framework,
we further improve the domain adaption performance in one-shot learning. We
also discuss the how the proposed sampling strategy is linked to distance met-
ric learning (DML) [31] and curriculum learning [3]. The concept is illustrated
in Fig. 1. This work focuses on a difficult situation where source domain and
target domain do not have any overlap in categories. We investigate our app-
roach in one-shot image classification tasks with different settings. To the best
of our knowledge, there is no similar work in either one-shot learning or domain
adaption.
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Fig. 1. Illustration of the motivation. Examples are embedded to certain feature spaces
under three situations. (a) No domain adaption. (b) Domain adaption with random
sample selection. (c) Domain adaption with reinforced sample selection.

2 Related Work

Many works [16,21,23,24,29] have contributed to q-shot learning, here q > 0
means the number of labeled examples for the new class unseen in the training
set. One-shot learning is an extreme case when there is only one example for each
new category. Compared with the Bayesian approach [18] and the meta-learning
approach [21,23] in one-shot learning, recently proposed metric-based methods
[24,29] achieve state-of-the-art performance with fewer parameters and simpler
optimization settings. Given an episode, which consists of a query image and
a support set of images, a metric-based method computes a certain similarity
measure between the embedded query image and each of the embedded support
image, and then uses the similarities as weights of a weighted nearest neighbor
classifier to predict the label of the query image.

Domain adaption can also be accomplished through adversarial training after
Goodfellow et al. first introduced adversarial networks in generative adversarial
networks (GANs) [11]. A standard classifier can be decomposed into two parts,
a feature extractor, and a label predictor. Domain-adversarial neural network
(DANN) proposed a gradient reversal layer to connect an auxiliary domain dis-
criminator with feature extractor for unsupervised domain adaption (UDA). One
problem for DANN is that the domain discriminator converges quickly, which
can cause the gradient to vanish [28]. Another unsupervised domain adaption
method is adversarial discriminative domain adaption (ADDA) [28]. ADDA uses
different feature extractors for each domain. The source feature extractor and
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predictor (classifier) is trained on the source domain first. Then the source feature
extractor is fixed and the predictor is replaced with a domain discriminator. The
target feature extractor is trained with on the target domain in an adversarial
fashion to align the representations of the target domain with the representations
of the source domain. The problem with this method is that the performance
on target domain is highly dependent on the predictor trained on the source
domain [7]. With limited training examples, there is no guarantee of the quality
of the predictor. In other words, the optimization objective for domain adaption
and prediction on the source domain may not be aligned in one-shot setting.
The most related recent work is few-shot adversarial domain adaption (FADA)
[20], which focus on supervised domain adaption. FADA pairs examples from
source domain with examples from target domain as input for domain classi-
fier. Because target labels are used for pairing in the training process, FADA is
a supervised domain adaption. For previous domain adaption methods, source
domain and the target domain are required to have the same classes. But in
one-shot learning, this constraint is relaxed.

3 Adversarial Domain Adaption with Reinforced Sample
Selection

To address the problems listed in Sect. 2, we present our methodology for domain
adaption in one-shot learning. Firstly, we formulate the domain adaption prob-
lem in metric-based one-shot learning. Secondly, we propose an adversarial
domain adaption framework without stage-wise training scheme. Thirdly, we
introduce the concept of overgeneralization in domain adaption. Finally, we pro-
pose reinforced sample selection as a solution to overgeneralization. The complete
pipeline is illustrated in Fig. 2.

3.1 Problem Definition

Given a source domain S as training data and a target domain T as test data,
domain adaption learns a mapping between S and T . We denote

S = {(x1, y1), ..., (xNS
, yNS

)},

where xi represents an example from S and yi ∈ YS with YS = {1, ...,KS} is the
corresponding label. xi is multi-dimensional, for simplicity, we assume it can be
represented as a D-dimension feature vector, xi ∈ R

D. We denote

T = {{(x̄1, ȳ1), ..., (x̄t, ȳt)}, {x̄t+1, ..., x̄NT
}}f,

where x̄j represents an example from D and ȳj ∈ YT with YT = {KS +1, ...,KS +
KT }. In this paper, we assume KS > KT and NT � t. We focus on YS ∩YT = ∅,
which is the most difficult situation for the learner.

A K-way q-shot learning task is defined as: Given q labelled examples for
each of K classes that have not been seen before as support set, classifying unla-
belled query examples into one of K classes [16,21,23,24,29]. Let fθ denotes an
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Fig. 2. Illustration of the model architecture. The figure depicts the data flow in the
training phase. At the beginning of an episode, a random sample from the target
domain goes through the feature extractor and discriminator for the first pass. Then
policy network receives the sample and outputs a sampling policy to the sampler.
The sampler selects support set and query image from the source domain based on
the policy. The one-shot classifier uses the support set and query image to update
the feature extractor. The target sample goes through the one-shot classifier with the
support set again to calculate the reward. The reward is used to update the policy
network. The details are described in Sects. 3.1, 3.2 and 3.4.

embedding function with parameters θ. fθ embeds the input to a M -dimensional
representation, fθ : R

D → R
M . d denotes a similarity measure function. For

q = 1 and k ∈ {1, ...,K}, with support set {(xk, yk)} and query example x, the
probability of x belongs to class k is defined as

pθ(y = k|x) =
exp(d(fθ(x), fθ(xk)))

∑K
k′=1 exp(d(fθ(x), fθ(xk′)))

. (1)

Under this definition, the metric-based one-shot learning problem can be formu-
lated as a standard multiclass classification problem.

In a naive transfer learning setting, the classifier trained on S is finetuned
on T to offset the shift between S and T , where t is expected to be much
larger than KT to produce a good result. However, we have t = KT in one-shot
learning. It is not practical to finetune the one-shot classifier with KT labeled
examples. We argue that, in one-shot learning, we can train fθ on S and use
Eq. 1 to predict labels for {x̄t+1, ..., x̄NT

} based on {(x̄1, ȳ1), ..., (x̄t, ȳt)}. fθ is a
projection function and fθ(x̄j) represents the feature vector when x̄j is projected
to some feature space. The objective of domain adaption in one-shot learning
can be defined as follows: We want to find the optimal θ, such that fθ(x̄j) has the
most discriminative features for a classifier to correctly assign a label to it. The
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loss for this objective is hard to be defined explicitly. To alleviate this problem,
we use adversarial networks.

3.2 Adversarial Domain Adaption

The state-of-the-art methods for adversarial domain adaption (ADA) usually
consist of multi-stage training paradigms [20,28]. We argue that, in one-shot
learning, the training of the one-shot classifier and the discriminator should be
optimized simultaneously. One critical issue for one-shot learning is overfitting
[24], while stage-wise training can cause overfitting in each stage and the over-
fitting is intractable. The basic task of domain adaption is to make the original
domain of representations fθ(xi) and fθ(x̄j) indistinguishable [2]. As in [11],
we introduce a discriminator which is a parametric function of gφ. gφ takes the
embedded features as input and outputs a probability score for the input comes
from source domain, gφ : RM → R. The discriminator is then a binary classifier,

pφ(y = 1|fθ(xi)) =
exp(gφ(fθ(xi)))

1 + exp(gφ(fθ(xi)))
, (2)

pφ(y = 0|fθ(x̄j)) =
1

1 + exp(gφ(fθ(x̄j)))
. (3)

The one-shot classifier and the domain discriminator are optimized alternatively.
Given fixed fθ, gφ is optimized to maximize the probability of correctly dif-

ferentiating fθ(x̄j) from fθ(xi). The binary cross entropy loss is defined as

Jφ = − 1
BS

∑

i

log(pφ(y = 1|fθ(xi))) − 1
BT

∑

j

log(1 − pφ(y = 0|fθ(x̄j))), (4)

where BS is the batch size of samples from S and BT is the batch size of samples
from T for the discriminator updating step.

Given fixed gφ, fθ is optimized to achieve two goals at the same time. Firstly,
we want to train a one-shot classifier on S which can assign the correct label for
each query example. The multiclass cross entropy loss is defined as

Jcls = − 1
BS

∑

i

∑

k

yk log(pθ(y = k|xi)), (5)

where BS is the batch size of samples from S and yk is binary, denoting whether
class label k is the correct classification for xi. Secondly, we want to use the
embedding function to project examples from both S and T to a feature space
that S and T have high similarity. Adversarial networks transform the original
problem of how to maximize the similarity between S and T into how to make
them indistinguishable. So fθ is also trained to make discriminator to assign
the wrong labels to fθ(x̄j), where the optimization goal is to maximize the loss
that fθ(x̄j) is classified from T . Following the practice of [11], the optimization
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Algorithm 1. Training an episode of adversarial domain adaption in a K
way one-shot learning task, where K ≤ KS and K ≤ KT . sample() denotes
a function that samples fixed number of elements from a set. sampleSup-
port() denotes a function that samples the support set of image and label
pairs from S and sampleQuery() denotes a function that samples the query
image and label from S based on support set, same as [29, 24]. All samples
are sampled uniformly without replacement.
Input : S, T , θ, φ
Output: θ, φ
Support ← {}
Query ← {}
Target ← sample({x̄j}, BT )
for b ∈ {1, ..., BS} do

support ← sampleSupport(S); Add support to Support
query ← sampleQuery(S, support); Add query to Query

end
Calculate Jφ with Support, Query and Target by (4)
Update φ by minimizing Jφ

Calculate Jcls with Support and Query by (5)
Calculate Jadvwith target by (6)
Update θ by minimizing Jθ

problem can also been seen as minimization of loss that fθ(x̄j) is classified from
S, so this adversarial loss can be defined as

Jadv = − 1
BT

∑

j

log(pφ(y = 1|fθ(x̄j))), (6)

where BT is the batch size of samples from T . The total loss for classifier updating
step is then

Jθ = Jcls + λadvJadv, (7)

where λadv is a weight for adversarial loss. The training for adversarial domain
adaption in one-shot learning is illustrated in Algorithm 1. Note, {ȳj} is not
used in the optimization for either θ or φ, so adversarial domain adaption in
one-shot learning is unsupervised.

3.3 Overgeneralization

Generalization is an important ability for humans and animals to acquire knowl-
edge in one circumstance and apply the knowledge to new situations [10]. In con-
trast, discrimination is the ability to discriminate different stimuli. Humans can
not memorize all the discriminative features with limited memory. Generaliza-
tion can help humans to save memory in the learning process. Domain adaption
in one-shot learning can be seen as a mixture of generalization and discrimina-
tion. In this study, we observe a phenomenon that the learner learns too much
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in S and performs worse on T . We call this phenomenon overgeneralization for
domain adaption in one-shot learning.

Overgeneralization can be caused by the misaligned optimization objectives.
The learner’s goal is to accurately classify the examples from T , while ADA
tries to minimize the distance between the distributions of S and T in a pro-
jected space [2,11]. There is no supervision for T , thus the extracted features
are dependent on S. With limited memory, the learner memorizes more gener-
alized features from S but misses the features that are most discriminative for
T , especially when KS � KT . Previous methods [20,28] have shown that ADA
performs well when S and T share same categories. One solution is then to find
a subset of S, so the distance between the distributions of the subset and T is
minimal. Note this subset selection problem is not convex or differentiable. We
present our solution, reinforced sample selection.

3.4 Reinforced Sample Selection

Random sample selection has been widely used in many machine learning tasks
to reduce variance and avoid overfitting. In supervised learning, more examples
usually help the learner to grasp more discriminative features. However, the large
sample size of S may not help domain adaption in one-shot learning because S
and T can have totally different categories. The unsupervised domain adaption
problem is intractable since there are no labels from T . The minimization of Jcls

can be seen as a regularization of fθ to learn useful features for one-shot learning
task on S. However, there is no guarantee for the performance of T .

We propose to train the learner to learn the sampling strategy through rein-
forcement learning, which is in contrast to typical random sample selection. In
the domain adaption process, the learning system actively selects samples from
S when it sees an image from T . To accomplish this, we introduce a policy net-
work to select the categories from S. In each episode, the support set and query
image will be sampled from this selected categories. Be more specific, given an
image from T , the policy network will output a policy for the sampler, and the
sampler will sample examples from a subset of S. The examples sampled from
the subset of S are used to train the one-shot classifier and the domain discrim-
inator. Given x̄ from T , assume there are (xsim, ysim) ∈ S and (xdis, ydis) ∈ S,
where ysim �= ydis. Here, sim means xsim and x̄ are similar because they share
some attributes in the semantic feature space, e.g. a cat and a dog both have
four legs and fur. dis means xdis and x̄ are not similar. Mathematically, fθ

trained in this way should make fθ(x̄) close to fθ(xsim) and distant to fθ(xdis)
in a projected feature space, even without the label information from T . The
illustration is presented in Fig. 1(c). We call this sampling mechanism reinforced
sample selection (RSS). Since we output one sampling policy at once, RSS is
actually a single-step Markov Decision Process [25].

The policy network is parameterized with ψ, denoted as hψ. We have
hψ : RD → R

G, where G is the number of disjoint subsets of S. An intuitive
design is to make sampling decision for each category independently, which can
be implemented by G independent Bernoulli distributions. The support set is
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then sampled from the selected categories. However, there are two problems with
this design: (1) The number of possible combinations of the selected categories
is huge for large G (for G = 10, we have 210 > 103); (2) For each combina-
tion, there is a large variety which is uncontrollable. Here, constrained by the
computational power, we simplify the problem by making the subsets mutu-
ally exclusive. Ideally, G = KS , but considering computational complexity when
KS � KT , in practice, we can utilize the side information (e.g. superclass), or
clustering to G groups through a preprocessing step [31]. For x̄ ∈ {x̄j}, hψ(x̄) is
a G elements vector. Let g ∈ {1, ..., G}, we define

pψ(y = g|x̄) =
exp(hψ(x̄)[g])

∑G
g′=1 exp(hψ(x̄)[g′])

, (8)

where [n] represents the nth element of a vector. We will decide whether or not
to sample from group g based on a multinomial distribution with probabilities
{pψ(y = g|x̄)| ∀ g ∈ {1, ..., G}}, the sampling policy is denoted as Ωψ(x̄).

Another key component in reinforcement learning is setting the proper
reward. With Euclidean distance defined on fθ, the optimization objective of
fθ can be formulated as

min ||fθ(x̄) − fθ(xsim)||2, max ||fθ(x̄) − fθ(xdis)||2. (9)

This can be further generalized as a deep DML problem with proper constraints
[31]. However, the set of sim and the set of dis are not defined in most situations,
and we can not solve the problem directly. Alternatively, we utilize the one-shot
classifier. In an episode of a K-way one-shot learning task, we select the subset of
S according to Ωψ(x̄) before sampling the support set and query image. After θ
and φ are updated as in Algorithm 1, if the one-shot classifier correctly predicts
the class label for the query image, then we replace the query image with the
target image. We perform a one-shot classification with the original support set
and updated query image. Note, the label of the query image is still the original
label since we do not have the label for the target image. We want to see if the
target image can confuse the one-shot classifier. The one-shot classifier is based
on nearest neighbor search. If the target query image can be correctly classified,
the target image is “close” to the corresponding image in the projected feature
space. The reward is defined as

R(Ωψ(x̄)) =

{
1 if correct,
−γ otherwise.

(10)

where γ is a small positive number. Since KS � KT , the reward will be sparse. In
practice, given a support set, we choose to accumulate the reward by repeating
the sampling operation for all the possible classes of query images. In other
words, after the support set is sampled, we sample the query images for all K
classes and for each class, we replace the query image with the target image to
perform a one-shot classification. The reward of each query class is added up to
calculate the total reward for the sampling action.
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Algorithm 2. Training an episode of adversarial domain adaption with
reinforced sample selection for a K way one-shot learning task, where K ≤
KS and K ≤ KD. The settings and notations are the same as Algorithm 1.
Input : S, T , θ, φ, ψ
Output: θ, φ, ψ
Query ← {}
Target ← sample({x̄j}, 1)
Sample Support from S according to Ωψ(Target)
for q ∈ {1, ..., K} do

query ← sampleQuery(S, support); Add query to Query
end
Calculate Jφ with Support, Query and Target by (4)
Update φ by minimizing Jφ

Calculate Jcls with Support and Query by (5)
Calculate Jadvwith Target by (6)
Update θ by minimizing Jθ

Calculate Jpn with Support and Target by (11)
Update ψ by minimizing Jpn

The policy network is trained to maximize the expected reward EΩψ
[R]. We

define the loss for policy network as the negative expected reward

Jpn = −EΩψ
[R(Ωψ(x̄))]. (11)

The Jpn or expected reward can be optimized by policy gradient, based on the
REINFORCE rule [30]. The expected gradient is

∂

∂ψ
Jpn = −EΩψ

[R(Ωψ(x̄))
∂

∂ψ
log(p(Ωψ(x̄))] (12)

where log(p(Ωψ(x̄)) means the log probability of sampled policy Ωψ when the
target image is x̄. Ωψ is a multinominal distributions with G possible events,
the probability mass function thus can be written as

p(Ωψ(x̄)) =
G∏

g=1

pψ(y = g|x̄)1g , (13)

1g is an indicator function indicates whether group g is selected by Ωψ(x̄),∑
g 1g = 1. RSS can be incorporated into Algorithm 1 with moderate modifica-

tion. The updated algorithm is illustrated in Algorithm 2.
It is worth noting that RSS can be linked to curriculum learning. Similar to a

curriculum, the entry-level courses can give a student general information about
the field of study, which is easy to learn. The advanced courses have narrower
topics but provide more details, and they are difficult to learn. When hψ is
randomly initialized, the sampling strategy, similar to random selection, can
help fθ learn more general information. As the learning proceeds, the sampling
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strategy learned by hψ can focus on certain category groups and extract more
domain-specific features, thus achieving better domain adaption performance.
Similar to trial and error of human learners, RSS updates ψ and adjusts the
output policy iteratively. By focusing on more relevant data and neglecting noise,
RSS can also be interpreted as a weighted sampling method. A large probability
for certain category means there is a higher chance that the category is sampled.
The policy network learns the attention to category.

4 Experiments

4.1 Basic Settings

Dataset. Hand-written character recognition has been used to evaluate the
machine learning algorithms in many works [16,21,23,24,29]. We use Omniglot
[17] as the source domain and EMNIST [5] as the target domain (Fig. 3).
Omniglot contains 1623 different characters from 50 different languages. Each
character is written by 20 different people. Each image has a resolution of
105×105. Because the characters of Latin is identical to the characters of English,
we remove Latin. The modified Omniglot has 1597 classes. EMNIST consists of
10 digits, 26 English letter with both uppercase and lowercase. There are 62
classes in total. Each image has a resolution of 28 × 28. We randomly select 20,
50 and 100 examples for each class to make a balanced subset of EMNIST. All
the images are resized to 28 × 28, same as [21,24,29].

Fig. 3. Examples for hand-written character. Omniglot: (a) Aurebesh (an invented Star
Wars language); (b) Greek; (c) Japanese (Hiragana); (d) Kannada; (e) Malayalam.
EMNIST: (f) digits; (g) English (upper-case); (h) English (lower-case).

Implementation. There is no previous work for domain adaption in one-shot
learning. A naive baseline model is training one-shot classifier on the source
domain and applying it directly to the target domain, which is the standard
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transfer learning. We choose Matching Networks (MN) [29] as the backbone
architecture. We use Adam optimizer [15] for all experiments. The learning rate
is fixed to 10−4 for the one-shot classifier, the domain discriminator and the
policy network. We choose BS = 1 and BT = 1. We stop the training for all
experiments train the one-shot classifier for 100 epochs which each epoch consists
of 2000 episodes. The experiments are implemented in TensorFlow framework
[1] on a GTX Titan X GPU.

Evaluation. The evaluation follows the protocol of [29]. The evaluation metric
is the standard mean accuracy. In the evaluation phase, the support set and the
query image are randomly sampled 10000 times. It is worth mentioning that
[24,29] only report the accuracy as a single number. With the fixed checkpoints
of the model, we repeat the evaluation 100 times to produce the mean and the
standard deviation of the accuracy.

4.2 Adversarial Domain Adaption

fθ is a CNN feature extractor with four identical modules. Same as MN, each
module is a sequential operations of two 3 × 3 convolutions with batch normal-
ization [14] and ReLU, and one 2× 2 max-pooling. The number of filters for the
four modules are all 64. fθ is followed by a metric-based non-parametric clas-
sifier defined in Eq. 1. Here d(a, b) = cos(a, b). gφ consists of 3 fully-connected
layers with number of outputs 64, 64 and 2. For this experiment, the domains
differ in the content (language and writing styles) and image quality (color and
resolution). In Table 1, we present the results of transfer learning (TL) and adver-
sarial domain adaption (ADA) with different values λadv and different number
of examples for each category in the target domain for 5-way 1-shot learning.
ADA consistently outperforms TL with a large margin while λadv is sensitive to
the target data. We fix λadv = 10−3 for the following experiments. In addition to
d(a, b) = cos(a, b), we try a different the distance functions d(a, b) = −||a − b||2
[24] and the results are presented in Table 2. The results imply that euclidean
distance is more suitable than cosine distance not only in one-shot learning [24],
but also in domain adaption. Table 3 shows the results of k-way 1-shot learning
tasks. Not superisingly, ADA still consistently outperforms TL.

4.3 Reinforced Sample Selection

Without losing the generality of the proposed method, we simulate the experi-
ments for RSS in the task of hand-written character recognition. The simulated
experiments can be easily extended to general object recognition. hψ has sim-
ilar architecture as fθ, where the four identical modules are followed by one
fully-connected layer with number of outputs G. In this experiment, we sim-
ulate the ideal situation, where the source domain can be split into two dis-
joint subset, i.e. G = 2. There are one sim set and one dis set, as discussed in
Sect. 3.4. Considering the huge computational cost for large KS , we shrink both



Domain Adaption in One-Shot Learning 585

Table 1. Sensitivity of λadv of ADA in 5-Way 1-Shot Learning. nT means the number
of examples for each category in the target domain.

Model nT = 20 nT = 50 nT = 100

Random Guess 20 20 20

TL 42.35 ± 0.51 47.48 ± 0.53 47.35 ± 0.47

ADA (λadv = 1) 46.23 ± 1.58 49.80 ± 1.68 52.70 ± 1.51

ADA (λadv = 10−1) 51.30 ± 1.77 47.55 ± 1.73 51.06 ± 1.56

ADA (λadv = 10−2) 52.58 ± 1.55 47.54 ± 1.65 48.58 ± 1.62

ADA (λadv = 10−3) 53.73 ± 1.59 48.46 ± 1.54 48.32 ± 1.34

ADA (λadv = 10−4) 49.98 ± 1.32 52.96 ± 1.43 48.67 ± 1.54

Table 2. Sensitivity of d(·, ·) in ADA in 5-Way 1-Shot Learning.

Model acc(%) ± std (%)

TL (cosine) 42.35 ± 0.51

ADA (cosine) 53.73 ± 1.59

TL (euclidean) 50.07 ± 0.45

ADA (euclidean) 55.87 ± 1.53

Table 3. ADA in k-Way 1-Shot Learning.

Model 5-way 10-way 20-way

Random Guess 20 10 5

TL 42.35 ± 0.51 31.09 ± 0.45 21.62 ± 0.43

ADA 53.73 ± 1.59 35.22 ± 1.62 23.30 ± 1.29

the source domain and target domain. For the target domain, we only use the
capital English characters of EMNIST, i.e. KT = 26. For the source domain,
we only select 16 languages with 596 characters in total, i.e. KS = 596. The set
of sim contains 256 characters from Anglo-Saxon (Futhorc), Armenian, Asom-
tavruli (Georgian), Cyrillic, Greek, Hebrew, Latin, and Mkhedruli (Georgian).
Because we do not involve the lower-case characters of EMNIST, Latin is added
back to the source domain. The set of dis contains 340 characters from Balinese,
Bengali, Grantha, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya. See Fig. 3
for an intuitive illustration of the sim set, the dis set and the target domain.
The results are presented in Table 4. Intuitively, training on more training data
usually leads to better performance on the test data in the supervised setting,
where the training data and the test data have the same categories. However,
it may not be true in unsupervised setting, as discussed in Sect. 3.4. In the 5-
way 1-shot learning task, we get an opposite result that training on the subset
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which is similar to the test data produce better results, in both TL and ADA.
As discussed in Sect. 3.3, this may caused by overgeneralization. The same phe-
nomenon can also be observed in the ADA of 10-way 1-shot learning task. RSS
can even achieve better results than ADA trained on sim. RSS tries to utilize
the source domain maximally and achieve a balance between the generalization
and discrimination.

Table 4. RSS in k-Way 1-Shot Learning.

Model 5-way 10-way

TL 41.17 ± 0.51 36.19 ± 1.42

TL (dis) 45.78 ± 1.68 32.23 ± 1.30

TL (sim) 46.34 ± 1.34 30.50 ± 1.41

ADA 45.02 ± 1.43 33.99 ± 1.36

ADA (dis) 43.11 ± 1.51 30.35 ± 1.49

ADA (sim) 51.20 ± 1.64 37.31 ± 1.51

RSS 52.31 ± 1.63 38.41 ± 1.48

5 Conclusions

In this paper, we study the problem of domain adaption in one-shot learning.
We review and compare the recent studies in one-shot learning and adversar-
ial domain adaption. We formulate the problem of domain adaption in metric-
based one-shot image classification. We propose an adversarial framework and
investigate the limitations of adversarial training. Motivated by human learn-
ing, we introduce a new sampling strategy called reinforced sample selection to
improve the domain adaption performance. We acknowledge that the improve-
ments can be made to the reinforcement learning setting and optimization pro-
cedure. Domain adaption in one-shot learning and using reinforcement learning
in domain adaption are both underdeveloped. In this work, we have the first
trial in this area based on the cognitive science concepts and use experiments
to validate the proposed framework. In the future, we will work more on the
theoretical analysis of domain adaption in one-shot learning.
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