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Abstract. Parametric embedding methods such as parametric t-
distributed Stochastic Neighbor Embedding (pt-SNE) enables out-of-
sample data visualization without further computationally expensive
optimization or approximation. However, pt-SNE favors small mini-
batches to train a deep neural network but large mini-batches to approx-
imate its cost function involving all pairwise data point comparisons, and
thus has difficulty in finding a balance. To resolve the conflicts, we present
parametric t-distributed stochastic exemplar-centered embedding. Our
strategy learns embedding parameters by comparing training data only
with precomputed exemplars to indirectly preserve local neighborhoods,
resulting in a cost function with significantly reduced computational and
memory complexity. Moreover, we propose a shallow embedding net-
work with high-order feature interactions for data visualization, which
is much easier to tune but produces comparable performance in contrast
to a deep feedforward neural network employed by pt-SNE. We empiri-
cally demonstrate, using several benchmark datasets, that our proposed
method significantly outperforms pt-SNE in terms of robustness, visual
effects, and quantitative evaluations.

1 Introduction

Unsupervised nonlinear dimensionality reduction methods, which embed high-
dimensional data to a low-dimensional space, have been extensively deployed
in many real-world applications for data visualization. Data visualization is an
important component of data exploration and data analytics, as it helps data
analysts to develop intuitions and gain deeper understanding about the mecha-
nisms underlying data generation. Comprehensive surveys about dimensionality
reduction and data visualization methods can be found in van der Maaten et al.
[13] and Burges [3]. Among these approaches, nonparametric neighbor embed-
ding methods such as t-SNE [12] and Elastic Embedding [4] are widely adopted.
They generate low-dimensional latent representations by preserving neighboring
probabilities of high-dimensional data in a low-dimensional space, which involves
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pairwise data point comparisons and thus has quadratic computational complex-
ity with respect to the size of a given data set. This prevents them from scaling
to any dataset with a size beyond several thousand. Moreover, these methods are
not designed for readily generating the embedding of out-of-sample data that are
prevalent in modern big data analytics. To generate out-of-sample data embed-
ding given an existing sample embedding, computationally expensive numerical
optimization or Nyström approximation is often performed, which is undesirable
in practice [2,5,26].

Parametric embedding methods, such as parametric t-SNE (pt-SNE) [11]
employing a deep neural network (DNN), learn an explicit parametric mapping
function from a high-dimensional data space to a low-dimensional embedding
space, which can readily generate the embedding of out-of-sample data. The
objective function of pt-SNE is the same as that of t-SNE with quadratic compu-
tational complexity. Fortunately, owing to the explicit mapping function defined
by the DNN, optimization methods such as stochastic gradient descent or con-
jugate gradient descent based on mini-batches can be deployed when pt-SNE is
applied to large-scale datasets.

However, on one hand, the objective function of pt-SNE is a sum of a
quadratic number of terms over pairwise data points, which requires mini-batches
with fairly large batch sizes to achieve a reasonably good approximation to the
original objective; On the other hand, optimizing the parameters of the DNN
in pt-SNE also requires careful choices of batch sizes, which is often best served
with small batch sizes to avoid being stuck in a bad local minimum. These con-
flicting choices of batch sizes make the optimization of pt-SNE hard and render
its performance sensitive to the chosen batch size. In addition, to approximate
the loss function defined over all pairwise data points, pt-SNE independently
computes pairwise neighboring probabilities of high-dimensional data for each
mini-batch, so it often produces dramatically different embeddings with differ-
ent choices of user-defined perplexities that are coupled with batch sizes. Finally,
although the mapping function of pt-SNE parameterized by a DNN is powerful,
it is very hard to learn and requires complicated procedures such as tuning net-
work architectures and tuning many hyper-parameters. For data embedding and
visualization purposes, most users are reluctant to go through these complicated
procedures.

To address the aforementioned problems, in this paper, we present unsuper-
vised parametric t-distributed stochastic exemplar-centered embedding. Instead
of modeling pairwise neighboring probabilities, our strategy learns embedding
parameters by comparing high-dimensional data only with precomputed repre-
sentative high-dimensional exemplars, resulting in an objective function with
linear computational and memory complexity with respect to the number of
exemplars. The exemplars are identified by a small number of iterations of k-
means updates, taking into account both local data density distributions and
global clustering patterns of high-dimensional data. These nice properties make
the parametric exemplar-centered embedding insensitive to batch size and scal-
able to large-scale datasets. All the exemplars are repeatedly included into each
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mini-batch, and the choice of the perplexity hyper-parameter only concerns the
expected number of neighboring exemplars calculated globally, independent of
batch sizes. Therefore, the perplexity is much easier to choose by the user and
much more robust to produce good embedding performance. We further use
noise contrastive samples to avoid comparing data points with all exemplars,
which further reduces computational/memory complexity and increases scala-
bility. Although comparing training data points only with representative exem-
plars indirectly preserves similarities between pairwise data points in each local
neighborhood, it is much better than randomly sampling small mini-batches in
pt-SNE whose coverages are too small to capture all pairwise similarities on a
large dataset.

Moreover, we propose a shallow embedding network with high-order fea-
ture interactions for data visualization, which is much easier to tune but pro-
duces comparable performance in contrast to a deep neural network employed
by pt-SNE. Experimental results on several benchmark datasets show that, our
proposed parametric exemplar-centered embedding methods for data visual-
ization significantly outperform pt-SNE in terms of robustness, visual effects,
and quantitative evaluations. We call our proposed deep t-distributed stochas-
tic exemplar-centered embedding method dt-SEE and high-order t-distributed
exemplar-centered embedding method hot-SEE.

Our contributions in this paper are summarized as follows: (1) We propose
a scalable unsupervised parametric data embedding strategy with an objective
function of significantly reduced computational complexity, avoiding pairwise
training data comparisons in existing methods; (2) With the help of exemplars,
our methods eliminate the instability and sensitivity issues caused by batch sizes
and perplexities haunting other unsupervised embedding approaches including
pt-SNE; (3) Our proposed approach hot-SEE learns a simple shallow high-order
parametric embedding function, beating state-of-the-art unsupervised deep para-
metric embedding method pt-SNE on several benchmark datasets in terms of
both qualitative and quantitative evaluations.

2 Related Work

Dimensionality reduction and data visualization have been extensively studied in
the last twenty years [3,13]. SNE [9], its variant t-SNE [12], and Elastic Embed-
ding [4] are among the most successful approaches. To efficiently generate the
embedding of out-of-sample data, SNE and t-SNE were, respectively, extended
to take a parametric embedding form of a shallow neural network [15] and a
deep neural network [11]. As is discussed in the introduction, the objective func-
tions of neighbor embedding methods have O(n2) computational complexity for
n data points, which limits their applicability only to small datasets. Recently,
with the growing importance of big data analytics, several research efforts have
been devoted to enhancing the scalability of nonparametric neighbor embed-
ding methods [23,24,26,27]. These methods mainly borrowed ideas from efficient
approximations developed for N-body force calculations based on Barnes-Hut
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trees [23] or fast multipole methods [7]. Iterative methods with auxiliary vari-
ables and second-order methods have been developed to optimize the objective
functions of neighbor embedding approaches [5,25,26]. Particularly, the alter-
nating optimization method with auxiliary variables was shown to achieve faster
convergence than mini-batch based conjugate gradient method for optimizing
the objective function of pt-SNE. All these scalability handling and optimiza-
tion research efforts are orthogonal to our development in this paper, because all
these methods are designed for the embedding approaches modeling the neigh-
boring relationship between pairwise data points. Therefore, they still have the
sensitivity and instability issues, and we can readily borrow these speedup meth-
ods to further accelerate our approaches modeling the relationship between data
points and exemplars.

Our proposed method hot-SEE learns a shallow parametric embedding func-
tion by considering high-order feature interactions. High-order feature interac-
tions have been studied for learning Boltzmann Machines, autoencoders, struc-
tured outputs, feature selection, and biological sequence classification [8,10,14,
16,17,19–22]. To the best of our knowledge, our work here is the first success-
ful one to model input high-order feature interactions for unsupervised data
embedding and visualization.

Our work in this paper is also related to a recent supervised data embedding
method called en-HOPE [17]. Unlike en-HOPE, our proposed methods here are
unsupervised and have a completely different objective function with different
motivations.

3 Methods

In this section, we introduce the objective of pt-SNE at first. Then we describe
the parametric embedding functions of our methods based on a deep neural
network as in pt-SNE and a shallow neural network with high-order feature
interactions. Finally, we present our proposed parametric stochastic exemplar-
centered embedding methods dt-SEE and hot-SEE with low computational cost.

3.1 Parametric t-SNE Using a Deep Neural Network and a Shallow
High-Order Neural Network

Given a set of data points D = {x(i) : i = 1, . . . , n}, where x(i) ∈ R
H is

the input feature vector. pt-SNE learns a deep neural network as a nonlinear
feature transformation from the high-dimensional input feature space to a low-
dimensional latent embedding space {f(x(i)) : i = 1, . . . , n}, where f(x(i)) ∈ R

h,
and h < H. For data visualization, we set h = 2.

pt-SNE assumes, pj|i, the probability of each data point i chooses every
other data point j as its nearest neighbor in the high-dimensional space follows a
Gaussian distribution. The joint probabilities measuring the pairwise similarities
between data points x(i) and x(j) are defined by symmetrizing two conditional
probabilities, pj|i and pi|j , as follows,
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pj|i =
exp(−||x(i) − x(j)||2/2σ2

i )∑
k �=i exp(−||x(i) − x(k)||2/2σ2

i )
, (1)

pi|i = 0, (2)

pij =
pj|i + pi|j

2n
, (3)

where the variance of the Gaussian distribution, σi, is set such that the perplexity
of the conditional distribution Pi equals a user-specified perplexity u that can
be interpreted as the expected number of nearest neighbors of data point i.
With the same u set for all data points, σi’s tend to be smaller in regions
of higher data densities than the ones in regions of lower data densities. The
optimal value of σi for each data point i can be easily found by a simple binary
search [9]. Although the user-specified perplexity u makes the variance σi for
each data point i adaptive, the embedding performance is still very sensitive to
this hyperparameter, which will be discussed later. In the low-dimensional space,
pt-SNE assumes, the neighboring probability between pairwise data points i and
j, qij , follows a heavy-tailed student t-distribution. The student t-distribution is
able to, on one hand, measure the similarities between pairwise low-dimensional
points, on the other hand, allow dissimilar objects to be modeled far apart in
the embedding space, avoiding crowding problems.

qij =
(1 + ||f(x(i)) − f(x(j))||2)−1

∑
kl:k �=l(1 + ||f(x(k)) − f(x(l))||2)−1

, (4)

qii = 0. (5)

To learn the parameters of the deep embedding function f(.), pt-SNE mini-
mizes the following Kullback-Leibler divergence between the joint distributions
P and Q using Conjugate Gradient descent,

� = KL(P ||Q) =
∑

ij:i�=j

pij log
pij

qij
. (6)

The above objective function has O(n2) terms defined over pairwise data
points, which is computationally prohibitive and prevents pt-SNE from scaling
to a fairly big dataset. To overcome such scalability issue, heuristic mini-batch
approximation is often used in practice. However, as will be shown in our experi-
ments, pt-SNE is unstable and highly sensitive to the chosen batch size to achieve
reasonable performance. This is due to the dilemma of the quadratic cost func-
tion approximation and DNN optimization through mini-batches: approaching
the true objective requires large batch sizes but finding a good local minimum
benefits from small batch sizes.

Although pt-SNE based on a deep neural network has a powerful nonlin-
ear feature transformation, parameter learning is hard and requires complicated
procedures such as tuning network architectures and tuning many hyperparam-
eters. Most users who are only interested in data embedding and visualization
are reluctant to go through these complicated procedures. Here we propose to
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use high-order feature interactions, which often capture structural knowledge of
input data, to learn a shallow parametric embedding model instead of a deep
model. The shallow model is much easier to train and does not have many
hyperparameters. In the following, the shallow high-order parametric embed-
ding function will be presented. We expand each input feature vector x to have
an additional component of 1 for absorbing bias terms, that is, x′ = [x; 1], where
x′ ∈ R

H+1. The O-order feature interaction is the product of all possible O
features {xi1 × . . . × xit × . . . × xiO} where, t ∈ {1, . . . , O}, and it ∈ {1, . . . , H}.
Ideally, we want to use each O-order feature interaction as a coordinate and then
learn a linear transformation to map all these high-order feature interactions to
a low-dimensional embedding space. However, it’s very expensive to enumerate
all possible O-order feature interactions. For example, if H = 1000, O = 3, we
must deal with a 109-dimensional vector of high-order features. We approximate
a Sigmoid-transformed high-order feature mapping y = f(x) by constrained
tensor factorization as follows,

ys =
m∑

k=1

Vskσ(
F∑

f=1

Wfk(Cf
Tx′)O + bk), (7)

where bk is a bias term, C ∈ R
(H+1)×F is a factorization matrix, Cf is the f -th

column of C, W ∈ R
F×m and V ∈ R

h×m are projection matrices, ys is the s-th
component of y, F is the number of factors, m is the number of high-order hidden
units, and σ(x) = 1

1+e−x . Because the last component of x′ is 1 for absorbing bias
terms, the full polynomial expansion of (Cf

Tx′)O essentially captures all orders
of input feature interactions up to order O. Empirically, we find that O = 2
works best for all datasets we have and set O = 2 for all our experiments. The
hyperparameters F and m are set by users. Combining Eqs. 1, 4, 6 and the feature
transformation function in Eq. 7 leads to a method called high-order t-SNE (hot-
SNE). As pt-SNE, the objective function of hot-SNE involves comparing pairwise
data points and thus has quadratic computational complexity with respect to
the sample size. The parameters of hot-SNE are learned by Conjugate Gradient
descent as in pt-SNE.

3.2 Parametric t-Distributed Stochastic Exemplar-Centered
Embedding

To address the instability, sensitivity, and unscalability issues of pt-SNE, we
present deep t-distributed stochastic exemplar-centered embedding (dt-SEE)
and high-order t-distributed stochastic exemplar-centered embedding (hot-SEE)
building upon pt-SNE and hot-SNE for parametric data embedding described
earlier. The resulting objective function has significantly reduced computational
complexity with respect to the size of training set compared to pt-SNE. The
underlying intuition is that, instead of comparing pairwise training data points,
we compare training data only with a small number of representative exemplars
in the training set for neighborhood probability computations. To this end, we
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simply precompute the exemplars by running a fixed number of iterations of k-
means with scalable k-means++ seeding on the training set, which has at most
linear computational complexity with respect to the size of training set [1].

Formally, given the same dataset D with formal descriptions as introduced
in Sect. 3.1, we perform a fixed number of iterations of k-means updates on
the training data to identify z exemplars from the whole dataset, where z is a
user-specified free parameter and z << n (please note that k-means often con-
verges within a dozen iterations and shows linear computational cost in prac-
tice). Before performing k-means updates, the exemplars are carefully seeded
by scalable k-means++, which will make our methods robust under abnormal
conditions, although our experiments show that random seeding works equally
well. We denote these exemplars by {e(j) : j = 1, . . . , z}. The high-dimensional
neighboring probabilities is calculated through a Gaussian distribution,

pj|i =
exp(−||x(i) − e(j)||2/2σ2

i )∑
k exp(−||x(i) − e(k)||2/2σ2

i )
, (8)

pj|i =
pj|i
n

, (9)

where i = 1, . . . , n, j = 1, . . . , z, and the variance of the Gaussian distribution,
σi, is set such that the perplexity of the conditional distribution Pi equals a
user-specified perplexity u that can be interpreted as the expected number of
nearest exemplars, not neighboring data points, of data instance i. Since the
high-dimensional exemplars capture both local data density distributions and
global clustering patterns, different choices of perplexities over exemplars will
not change the embedding too much, resulting in much more robust visualization
performance than that of other embedding methods insisting on modeling local
pairwise neighboring probabilities.

Similarly, the low-dimensional neighboring probabilities is calculated through
a t-distribution,

qj|i =
(1 + dij)−1

∑n
i=1

∑z
k=1(1 + dik)−1

, (10)

dij = ||f(x(i)) − f(e(j))||2, (11)

where f(·) denotes a deep neural network for dt-SEE or the high-order embed-
ding function as described in Eq. 7 for hot-SEE.

Then we minimize the following objective function to learn the embedding
parameters Θ of dt-SEE and hot-SEE while keeping the exemplars {e(j)} fixed,

min �(Θ, {e(j)}) =
∑n

i=1

∑z
j=1 pj|i log pj|i

qj|i
(12)

where i indexes training data points, j indexes exemplars, Θ denotes the high-
order embedding parameters {{bk}mk=1,C,W,V} in Eq. 7.

Note that unlike the probability distribution in Eq. 4, qj|i here is computed
only using the pairwise distances between training data points and exemplars.
This small modification has significant benefits. Because z << n, compared to
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the quadratic computational complexity with respect to n of Eq. 6, the objective
function in Eq. 12 has a significantly reduced computational cost, considering
that the number of representative exemplars is often much much smaller than n
for real-world large datasets in practice.

3.3 Further Reduction on Computational Complexity and Memory
Complexity by Noise Contrastive Estimation

We can even further reduce the computational complexity and memory complex-
ity of dt-SEE and hot-SEE using noise contrastive estimation (NCE). Instead
of computing neighboring probabilities between each data point i and all z
exemplars, we can simply only compute the probabilities between data point
i and its ze nearest exemplars for both P and Q. For high-dimensional proba-
bility distribution Pi, we simply set the probabilities between i and other exem-
plars 0; for low-dimensional probability distribution Qi, we randomly sample zn
non-neighboring exemplars outside of these ze neighboring exemplars, and use
the sum of these zn non-neighboring probabilities multiplied by a constant Ke

and the ze neighboring probabilities to approximate the normalization terms
involving data point i in Eq. 10. Since this strategy based on noise contrastive
estimation eliminates the need of computing neighboring probabilities between
data points and all exemplars, it further reduces computational and memory
complexity.

Fig. 1. The sensitivity test of batch size/exemplar size on COIL100 and MNIST.

4 Experiments

In this section, we evaluate the effectiveness of dt-SEE and hot-SEE by
comparing them against state-of-the-art unsupervised parametric embedding
method pt-SNE based upon three datasets, i.e., COIL100, MNIST, and Fashion.
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The COIL100 data1 contains 7200 images with 100 classes, where 3600 samples
for training and 3600 for test. The MNIST dataset2 consists of 60,000 training
and 10,000 test gray-level 784-dimensional images. The Fashion dataset3 has the
same number of classes, training and test data points as that of MNIST, but
is designed to classify 10 fashion products, such as boot, coat, and bag, where
each contains a set of pictures taken by professional photographers from different
aspects of the product, such as looks from front, back, with model, and in an
outfit.

Fig. 2. The sensitivity test of perplexity on COIL100 and MNIST.

To make computational procedures and tuning procedures for data visualiza-
tion simpler, none of these models was pre-trained using any unsupervised learn-
ing strategy, although hot-SNE, hot-SEE, dt-SEE, and pt-SNE could all be pre-
trained by autoencoders or variants of Restricted Boltzmann Machines [10,18].

For hot-SNE and hot-SEE, we set F = 800 and m = 400 for all the datasets
used. For pt-SNE and dt-SEE, we set the deep neural network architecture to
input dimensionality H-500-500-2000-2 for all datasets, following the architec-
ture design in van der Maaten [11]. For hot-SEE and dt-SEE, when the exemplar
size is smaller than 1000, we set batch size to 100; otherwise, we set it 1000.
With the above architecture design, the shallow high-order neural network used
in hot-SNE and hot-SEE is as fast as 2.5 times of the deep neural network used
in pt-SNE and dt-SEE for embedding 10, 000 MNIST test data.

For all the experiments, the predictive accuracies were obtained by the 1NN
approach on top of the 2-dimensional representations generated by different
methods. The error rate was calculated by the number of misclassified test data
points divided by the total number of test data points.

1 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php.
2 http://yann.lecun.com/exdb/mnist/.
3 https://github.com/zalandoresearch/fashion-mnist.

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
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4.1 Performance Comparisons with Different Batch Sizes
and Perplexities on COIL100 and MNIST

Our first experiment aims at examining the robustness of different testing meth-
ods with respect to the batch size and the perplexity used. Figures 1 and 2 depict
our results on the COIL100 and MNIST datasets when varying the batch size
and perplexity, respectively, used by the testing methods.

Figure 1 suggests that, for the COIL100 data, the pt-SNE was very sensitive
to the selection of the batch size; efforts were needed to find a right batch size in
order to obtain good performance. On the other hand, the use of different batch
sizes/exemplar sizes had very minor impact on the predictive performance of
both the dt-SEE and hot-SEE strategies. Similarly, for the MNIST data, as
shown in Fig. 2, in order to obtain good predictive performance, the pt-SNE
needed to have a batch size not too big and not too small. On the contrary, the
hot-SEE methods was insensitive to the size of batch larger than 300.

Fig. 3. Comparing pt-SNE to hot-SEE with a small batch size = 100 (perplexity =
3) or a reasonable perplexity = 10 (batch size = 1000) to illustrate pt-SNE’s unstable
visual performance on MNIST.
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Based on the results in Fig. 1, we selected the best batch sizes for both
the COIL100 and MNIST data sets, with 600 and 1000, respectively, but we
varied the values of the perplexities used. In Fig. 2, one can observe that, the
performance of the pt-SNE and hot-SNE could dramatically change due to the
use of different perplexities, but that was not the case for both the dt-SEE and
hot-SEE. Similarly, for the MNIST data, as depicted in Fig. 2, in order to obtain
good predictive performance, one would need to carefully tune for the right
perplexity. On the contrary, both the dt-SEE and hot-SEE methods performed
quite robust with respect to different selected perplexities.

Because the choices of batch size and perplexity are coupled in a complicated
way in pt-SNE as explained in the introduction, we run additonal experiments
to show the advantages of dt-see and hot-see. When we set perplexity to 10 and
batch size to 100, 300, 600, 1000, 2000, 3000, 5000, 10000, the test error rate
of pt-SNE on MNIST is, respectively, 32.97%, 22.1%, 24.00%, 16.30%, 12.41%,
12.28%, 13.09%, 16.43%, which still varies a lot. In contrast, the error rates of dt-
SEE or hot-SEE using 1000 exemplars are consistently below 10% with the same

Fig. 4. The best MNIST embeddings generated by pt-SNE, hot-SNE, dt-SEE, and
hot-SEE.



488 M. Renqiang Min et al.

batch size ranging from 100 to 10000 and perplexity 3 and 10, which again shows
shat exemplar-centered embedding dt-see and hot-see are much more robust than
pt-SNE.

4.2 Experimental Results on the Fashion Dataset

We also further evaluated the predictive performance of the testing methods
using the Fashion data set. We used batch sizes of 1000 and 2000, along with
perplexity of 3 in all the experiments since both pt-SNE and hot-SNE favored
these settings as suggested in Figs. 1 and 2. The achieved accuracies are shown
in Table 1.

Results in Table 1 further confirmed the superior performance of our methods.
Both the dt-SEE and hot-SEE significantly outperformed the pt-SNE and hot-
SNE.

4.3 Two-Dimensional Visualization of Embeddings

This section provides the visual results of the embeddings formed by the pt-SNE
and hot-SEE methods.

Table 1. Error rates (%) by 1NN on the 2-dimensional representations produced by
different methods with perplexity = 3 on the Fashion dataset.

Methods Error rates

pt-SNE (batchsize = 1000) 32.48

pt-SNE (batchsize = 2000) 32.04

hot-SNE (batchsize = 1000) 31.29

hot-SNE (batchsize = 2000) 31.82

dt-SEE (batchsize = 1000) 29.42

dt-SEE (batchsize = 2000) 28.30

hot-SEE (batchsize = 1000) 29.06

hot-SEE (batchsize = 2000) 28.18

The top and bottom subfigures in Fig. 3 depicts the 2D embeddings on the
MNIST data set created by pt-SNE and hot-SEE, with batch size of 100 (per-
plexity = 3) and perplexity of 10 (batch size = 1000), respectively. From these
visual figures, one may conclude that dt-see and hot-SEE were more stable com-
pared to their competitors pt-SNE and hot-SNE.

In Fig. 4, we also provided the visual results of the MNIST embeddings cre-
ated by pt-SNE, hot-SNE, dt-SEE, and hot-SEE, with batch size of 2000. These
results imply that the dt-SEE and hot-SEE produced the best visualization:
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Fig. 5. The embeddings generated by pt-SNE and hot-SEE on the Fashion dataset.

the data points in each cluster were close to each other but with large separa-
tion between different clusters, compared to that of the pt-SNE and hot-SNE
methods.

Also, in Fig. 5, we depicted our visual 2D embedding results on the Fashion
data set. These figures further confirmed the better clustering quality generated
by the hot-SEE method, compared to that of the pt-SNE strategy.

4.4 Noise Contrastive Estimation

In this section, we evaluated the performance of the noise contrastive estimation
(NCE) strategy applied to our method hot-SEE with perplexity 3 and 2000
exemplars. We set ze = zn = 100 and Ke = 18. Table 2 show the error rates (%)
obtained by 1NN on the two-dimensional representations produced by hot-SEE
with or without NCS, respectively, on the MNIST and Fashion datasets.

Table 2. Error rates (%) obtained by 1NN on the two-dimensional representations
produced by hot-SEE (perplexity = 3 and 2000 exemplars) with or without further
computational complexity reduction based on Noise Contrastive Estimation (NCE),
respectively, on the MNIST and Fashion datasets.

MNIST Fashion

Standard w/NCE Standard w/NCE

9.30 9.69 28.18 28.19

Results in Table 2 suggest that the NCE was able to further reduce the com-
putational and memory complexity of our method without sacrificing the predic-
tive performance. As shown in the table, the accuracy difference of the hot-SEE
method with and without NCE was less than 0.4% for both the MNIST and
Fashion data sets.
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4.5 Careful Exemplar Seeding vs. Random Initialization

We also further evaluate the performance of our methods in terms of different
exemplar initializations used. We compared the performance of using careful
seeding based on scalable K-means++ and randomly initialized exemplars. We
presented the results in Table 3. From Table 3, one can observe that our methods
were insensitive to the exemplar seeding approach used. That is, very similar
predictive performances (less than 0.4%) were obtained by our methods on all
the three testing data sets, i.e., COIL100, MNIST, and Fashion.

Table 3. Error rates (%) obtained by 1NN on the 2-dimensional representations pro-
duced by hot-SEE (perplexity = 3) with careful seeding or random seeding on the
COIL100 (with 600 exemplars), MNIST (with 2000 exemplars), and Fashion (with
2000 exemplars) datasets.

COIL100 MNIST Fashion

Careful seeding Random seeding Careful seeding Random seeding Careful seeding Random seeding

58.67 58.44 9.30 9.19 28.18 28.53

4.6 Comparing Evaluation Metrics of kNN (k ≥ 1) and Quality
Score

We believe that the evaluation metric based on 1NN test error rate used in the
previous experimental sections is more appropriate than kNN test error rate with
k > 1. The reason is that the 1NN performance exactly shows how accurately
our exemplar-based embedding methods catpure very local neighborhood infor-
mation, which is more challenging for our proposed methods. Because exemplars
are computed globally, it is much easier for dt-see and hot-see to achieve better
performance based on kNN with k > 1. On the MNIST dataset, we show the
best training and test error rates of kNN with k ≥ 1 using the two-dimensional
embedding generated by different methods in Table 4, which consistently shows
that dt-see and hot-see significantly outperforms pt-SNE and supports our claims
above.

Another evaluation metric based on Quality Score was used by a recent
method called kernel t-SNE (kt-SNE) [6]. The Quality Score metric computes
the k (neighborhood size) nearest neighbors of each data point, respectively, in
the high-dimensional space and in the low-dimensional space, and the metric
calculates the preserved percentage of the high-dimensional neighborhood in the
low-dimensional neighborhood averaged over all test data points as the Quality
Score, with respect to different neighborhood size k. In Table 5, we compute the
quality scores of different methods on the MNIST test data for preserving their
neighborhood on the training data with neighborhood size ranging from 1 to 100.
These results also show that hot-see and dt-see consistently outperform pt-SNE.
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Table 4. The training error rates ( tr) and test error rates ( te) of kNN with different
k’s using the two-dimensional embedding generated by different methods on MNIST.

Method The number of nearest neighbors k in kNN

1 2 3 4 5 6 7 8 9 10

pt-sne tr 12.49 12.49 9.26 8.84 8.45 8.30 8.18 8.12 8.08 8.08

pt-sne te 12.55 12.55 9.79 9.48 9.12 8.95 8.83 8.72 8.72 8.69

hot-see tr 8.87 8.87 6.31 6.05 5.83 5.68 5.64 5.63 5.60 5.58

hot-see te 9.19 9.19 7.21 6.76 6.61 6.42 6.41 6.41 6.42 6.36

dt-see tr 7.19 7.19 5.09 4.90 4.72 4.67 4.62 4.62 4.56 4.56

dt-see te 8.80 8.80 6.69 6.45 6.25 6.17 6.02 6.02 5.94 5.96

Table 5. Quality scores (%, the higher the better) for different embedding methods
computed on the test set against the training set on MNIST.

Method Neighborhood size

1 10 20 30 40 50 60 70 80 90 100

pt-sne 0.55 4.01 6.68 8.76 10.56 12.17 13.62 14.93 16.06 17.19 18.23

hot-see 1.12 5.25 8.22 10.53 12.48 14.19 15.69 17.04 18.27 19.41 20.44

dt-see 1.14 6.74 10.68 13.52 15.78 17.56 19.03 20.22 21.31 22.27 23.17

We find that Kernel t-SNE is also capable of embedding out-of-sample data.
To have a similar experiment setting on MNIST as that used in kernel t-SNE,
we randomly choose 2000 data points as held-out test set from the original test
set (size = 10000) to get 10 different test sets with size 2000, the test error rates
of our methods compared to kernel t-SNE are, kernel t-SNE: 14.2%, fisher kernel
t-SNE: 13.7%, hot-see: 9.11% ± 0.43%, dt-see: 8.74% ± 0.37%. Our methods
hot-see and dt-see significantly outperform (fisher) kernel t-SNE.

5 Conclusion and Future Work

In this paper, we present unsupervised parametric t-distributed stochastic
exemplar-centered data embedding and visualization approaches, leveraging
a deep neural network or a shallow neural network with high-order feature
interactions. Owing to the benefit of a small number of precomputed high-
dimensional exemplars, our approaches avoid pairwise training data compar-
isons and have significantly reduced computational cost. In addition, the high-
dimensional exemplars reflect local data density distributions and global clus-
tering patterns. With these nice properties, the resulting embedding approaches
solved the important problem of embedding performance being sensitive to
hyper-parameters such as batch sizes and perplexities, which have haunted other
neighbor embedding methods for a long time. Experimental results on several
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benchmark datasets demonstrate that our proposed methods significantly out-
perform state-of-the-art unsupervised deep parametric embedding method pt-
SNE in terms of robustness, visual effects, and quantitative evaluations.

In the future, we plan to incorporate recent neighbor-embedding speedup
developments based on efficient N-body force approximations into our exemplar-
centered embedding framework.
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